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Abstract

I study optimal contracting in a general repeated moral hazard setting where the noisy
signals of the agent’s hidden efforts are either privately observed by the principal or
observed by both agent and principal but not verifiable. In this setting, there is a
subset of contract renegotiations that cannot be detected by the public. I call these
renegotiations private revisions and I show that optimal private-revision-proof con-
tracts are robustly tractable: Each date, if the signal exceeds some threshold then the
agent is retained. Otherwise the agent is randomly terminated. This simple structure
does not rely on any strong assumptions about the utility functions or the nature of
the underlying uncertainty.
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1 Introduction

Think about a standard, dynamic moral hazard model where the agent exerts hidden effort,
generating noisy informative signals, and the principal can pay the agent a contingent wage
and possibly terminate him. Unless one assumes a special functional form for utility, or a
simple signal distribution, or, more likely, some combination of both, the resulting optimal
contract will simply not be tractable.

This is difficult to square with real-life contracts and makes integrating the theory with
the rest of economics challenging. The lack of tractability means doing comparative stat-
ics can be challenging, particularly over two of the most important facets: how the agent
trades consumption across states (risk-aversion) and across time (inter-temporal substitu-
tion). Moreover, the lack of tractability also means that it is typically difficult to introduce
an optimal contracting component to a model of something else on which one suspects con-
tracts have an important effect. And lastly, the lack of tractability is directly or indirectly
the reason for a number of significant contracting puzzles: Why do contracts use promo-
tion as an incentive device? What do contracts with savings look like? Why are contracts
arms-length?

In this paper, I introduce a general, dynamic moral hazard framework to bridge the gap
between theory and practice. At every date, the principal pays the agent some amount, the
agent applies a hidden effort which generates a noisy informative signal, and the principal
may choose to terminate the agent. Everything is governed by a long-term contract signed
at date zero. Players have general recursive preferences and the underlying uncertainty
satisfies a weak first-order stochastic dominance property. Thus, the model is in every way
a standard, general, dynamic moral hazard model, except that I assume signals are either
privately observed by the principal or observable but not verifiable. This is in contrast to
the most common assumption that the signals are public - something like stock price or cars
sold. But as the two public signals examples highlight, most people do not work in jobs with
that kind of objective performance measure. The more prevalent setting is one where the
performance measure is subjective. In such settings, the non-public signals approach of this
paper is more relevant.

I then formulate and solve the optimal contracting problem. I find that optimal contracts
are tractable across states and time. At each date, if the signal is above a threshold then the
agent is retained, otherwise he is randomly terminated. If the agent is retained then he faces
a threshold spot contract the next date as well. Moreover, the spot contract the agent faces
each date is independent of the history leading up to that date. In particular, the threshold
for date t is a constant of date t and optimal contracts are memoryless.

To understand the key insight of the paper that delivers robustly tractable optimal con-
tracts, first think about contracting with public signals. Broadly speaking, there are two
classes of contracts of interest: incentive-compatible contracts and the subset of renegotiation-
proof (incentive-compatible) contracts. Which class one formulates the optimal contracting
problem over depends on one’s assumptions about commitment. In this paper, I argue that,
in the non-public setting, there is a natural assumption about the degree of commitment
that is between full-commitment and no commitment:

In a public signals setting, any alteration of the contract is observable by outside parties.
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Thus, whether the principal and agent distort the payment amount or change how the
signals get mapped to decisions doesn’t really make a difference - they are all just simply
renegotiations. In the non-public signals setting, there is a big difference between distorting
a decision into something that didn’t exist before and changing how the signals get mapped
to existing decisions. For example, suppose the contract originally stipulates that the agent
receives $1 for a “poor” or “fair” signal and $2 for a “good” signal. Changing the good
signal payment to $4 is a verifiable alteration of the contract even if the signals themselves
are not verifiable. In contrast, changing the payment mapping so that the contract pays $1
for poor and $2 for fair or good is a private revision which cannot be verified by the public.
In this paper, I assume that the principal and agent can commit to not make verifiable
alterations but cannot commit to abstain from private revisions. As a result, the optimal
contracting problem is formulated over the set of private-revision-proof contracts, which lies
between the incentive-compatible and renegotiation-proof contracts. The resulting optimal
private-revision-proof contracts are my robustly tractable optimal contracts.

1.1 Related Literature

2 The Benchmark K-Model

In this section, I consider a benchmark risk-neutral model where the principal privately
observes the noisy informative signals.

The complete dynamic model is a static segment repeated K times. I call it the K-model.
A segment spans the beginning of date t to the beginning of date t+1 where t = 0, 1, . . . K−1.
The following figure shows a generic segment:

Principal

Public
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t+ 1

τ

ζt

−h(at)

t

tρt+1

rt+1

u(at)

wtξt

Figure 1: The three lanes that run across the figure denote what is observable to the principal only,
to the public, and to the agent only.

At the beginning of date t, a public randomizing device ξt is realized and then a termi-
nation decision τ is made. If the agent is terminated then both parties exercise their outside
options at date t with normalized values equal to zero. If the agent is retained then the agent
is paid wt ∈ R and chooses effort at ∈ [0,∞) with cost h(at) satisfying h′′ > 0 and h′(0) = 0.
The principal observes a private randomizing device ζt and then receives a random utility
with expectation u(at) where u is a strictly increasing function. Next, at the beginning of
date t + 1, the principal observes a private informative signal tρt+1 with density f(·, at). I
assume the distribution of tρt+1 has a common support across all effort levels and that f(·, a)
first-order stochastic dominates f(·, a′) whenever a > a′. The principal then makes a report
rt+1 taking values in some sufficiently rich message space.
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The date t termination decision, effort choice, and payment can depend on all prior public
information: {ri}ti=1 ∪ {ξi}ti=0. The date t+ 1 principal report can depend on all prior infor-
mation private to the principal as well as the public randomizing devices: {ζi, iρi+1, ξi}ti=0.

A contract specifies τ , and wt, at, and rt+1 for t = 0, 1, . . . K − 1. A date s continuation
contract specifies these objects for t = s, s + 1, . . . K − 1. In general, a date s continuation
contract is not a contract in the (K−s)-model in which the static segment is repeated K−s
times. This is because the principal’s report strategy in a continuation contract can depend
on his private randomizing devices and private informative signals that occur before the
continuation contract. However, this mismatch can be easily fixed by introducing the notion
of an alternate version of the (K − s)-model. In the alternate version, the initial private
randomizing device is no longer just ζs but also includes all previous private randomizing
devices and private informative signals of the K-model conditional on the public information
at the beginning of the date s continuation contract.

Remark. A date s continuation contract is a contract in its alternate version of the (K−s)-
model.

Given a contract, the total payoffs of the agent and principal are

W0 = Ea,r

[
τ−1∑
t=0

βt(wt − h(at))

]
(1)

V0 = Ea,r

[
τ−1∑
t=0

βt(−wt + u(at))

]
(2)

Furthermore, define the date t continuation payoffs (Wt, Vt) to be the total payoffs of the
date t continuation contract viewed as a contract in its alternate version of the (K − t)-
model. Thus, the totals payoffs of the agent and principal admit the following recursive
representation:

W0 = Ea,r[w0 − h(a0) + βW1] (3)

V0 = Ea,r[−w0 + u(a0) + βV1] (4)

Finally, I assume that either player can choose to walk away from the contract. This imposes
an interim participation constraint on both sides. Since outside options are normalized to
zero, the interim constraint ensures that the continuation payoff process (Wt, Vt) is always
nonnegative.

A contract is incentive-compatible if interim participation constraints are satisfied, the
agent’s effort is a best response to the principal’s report strategy, and the following principal’s
truth-telling constraint is satisfied: given any public history h through the end of date t− 1
and any two date t messages m and m′, Vt(h ∪m) = Vt(h ∪m′). From now on all contracts
are assumed to be incentive-compatible.
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2.1 What are Private Revisions?

As an example, suppose the principal and agent initially agreed to a contract that contained
the following date t continuation contract: At the beginning of date t + 1, the principal
reports whether or not his private signal tρt+1 exceeds an extremely high threshold ρ. If
so, then a “good” continuation contract with payoff (W g

t+1, Vt+1) is enacted. Otherwise a
“bad” continuation contract with payoff (W b

t+1, Vt+1) is enacted where W b
t+1 < W g

t+1. Such
a seemingly ex-post inefficient clause may appear in an optimal contract for the sake of
ex-ante efficiency. It is precisely the type of unreasonable arrangement I want to eliminate
endogenously.

Since the good payoff is extremely hard to achieve, this date t continuation contract
provides poor incentives for effort at and would benefit from revision: The principal is better
off lowering ρ and inducing a higher effort at. Of course, the agent will also be better off.
Formally, changing the principal’s report strategy is a renegotiation of the contract, just like
a change in, say, how much wt to pay the agent. In practice, however, these two types of
renegotiations can be very different.

A change in wt is verifiable by the public even if the signal that maps to wt is not. A
change in rt+1 need not be verifiable. The principal’s report strategy depends in part on the
principal’s private history. Changes like the aforementioned lowering of ρ cannot be verified
by the public. This is true of any private revision of rt+1 which leaves its dependence on the
public history unchanged.2

In a public signals setting, there is no such thing as a private revision. Every revision
is a verifiable contract renegotiation. Thus, as long as there is a third party such as a
court that has perfect commitment and can enforce contracts, the principal and agent have
no opportunity to change the contract after it is signed. Therefore, the space of relevant
contracts is all incentive-compatible contracts. However, when signals are not public, even
if there is a perfect court, the principal and agent still have a little room to change the
contract in ways that remain under the court’s radar. These changes are precisely the
private revisions. Thus, the natural space of contracts in the non-public setting is not the
entire set of incentive-compatible contracts, but rather the subset of private-revision-proof
contracts.

I now recursively define private-revision-proof contracts. I first define private-revision-
proof contracts for models of length one (the reduced-form model) and then inductively
define private-revision-proof contracts for the K-model.

2.2 The Reduced-Form Model

The reduced-form model is the first segment of the K-model with continuation payoffs
(W1, V1) ≥ 0 appended to the end. Unlike in the K-model where (W1, V1) are quantities
endogenous to the choice of contract, here (W1, V1) are simply exogenous functions of the

2Not every change in rt+1 is a private revision. For example, suppose there is a third message, okay,
which, given the public history leading up to the date t continuation contract, is never reported. Then if the
principal changes his strategy and reports okay, his revision is clearly not private.
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public information available at the end of the first segment: ξ0 and r1. In the reduced-form
model, the agent’s and principal’s utilities naturally take the forms of (3) and (4) respectively.

Without loss of generality, I focus on contracts that do not involve any chance of initial
termination. A contract in the reduced-form model specifies a contract game G = {w0}
and a Nash equilibrium E = {a0, r1}. On the principal’s side, the truth-telling constraint
implies that the principal’s continuation payoff is constant over all equilibrium path messages.
Without loss of generality, I may assume that the entire message space is on the equilibrium
path and that V1 is constant over the entire space.

Fix a contract {G,E = (a0, r1)}. Notice E is not the only equilibrium of G. Pick any
other report strategy r̃ and let ã be the best response. Then {ã, r̃} is also an equilibrium of
G. In this paper, I restrict attention to a subset of contracts by introducing an equilibrium
selection:

Definition. A reduced-form contract {G,E} is private-revision-proof if E ∈ P(G), the
Pareto-frontier of the equilibrium set of G.

Suppose the principal and agent signed a contract {G,E = (a0, r1)} that did not respect
this selection: E /∈ P(G). Let the principal choose any alternative (ã, r̃) ∈ P(G) that Pareto
dominates (a0, r1). Then before the agent acts, the principal can privately inform the agent
that he plans on playing r̃ instead of r1 and that therefore it is in the agent’s best interest
to play ã instead of a0. I call such a change a private revision. In the previous subsection,
I argued that there is scope for such private revisions. Anticipating such credible private
revisions, the agent, ex-ante, demands a private-revision-proof contract.

The key property of private-revision-proof (PRP) contracts in the reduced-form model is
that the principal uses a simple threshold report strategy:

Lemma 1. Let (a0, r1) ∈ P(G). There is a threshold 0ρ
∗
1 such that if 0ρ1 ≥ 0ρ

∗
1 the principal

reports the message that maximizes W1. Otherwise the principal reports the message that
minimizes W1. Thus, it suffices to assume that the message space consists of only two
messages: {good, bad} with W1(good) ≥ W1(bad).

This is easy to see. Suppose r1 does not satisfy the threshold property. Then consider
the following alternative report strategy rimprove: for all signals above ρ∗ report the message
that maximizes W1 and below ρ∗ report the message that minimizes W1. Here ρ∗ is selected
so that under the measure generated by a0, the agent’s payoff under rimprove is the same as
under r1. Let aimprove be the agent’s best response to rimprove. Clearly, the agent is better
off in the equilibrium {aimprove, rimprove}. Moreover, due to the FOSD property of 0ρ1, the
agent’s benefit as a function of the effort exerted is steeper than under r1. This means that
the best response effort aimprove > a0, which means the principal is also better off.

Remark. The principal does not use his private randomizing device ζ0.

A much stronger version of this important property holds once I move beyond the reduced-
form model and introduce private-revision-proofness in the full K-model. Any dependence
of the principal’s report strategy rt+1 on any private component of the principal’s history
other than tρt+1 will be privately revised away before the agent chooses at. This is because
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any such dependence is not influenced by at, and will drag it down. Thus, private-revision-
proofness severely limits the scope of history dependence. As a result, optimal contracts are
forward rather than backward looking.

2.3 PRP Contracts in the K-model

Given the definition of PRP contracts in the reduced-form model and given the recursive
structure of contracts in the K-model, the definition of PRP contracts in the K-model is
naturally:

Definition. A K-model contract is PRP if it is PRP as a reduced-form contract and if each
continuation contract is PRP in the (K − 1)-model.

This definition implicitly assumes that a continuation contract is a contract in the (K−1)-
model. But recall that such a continuation contract is only a contract in its alternate version
of the (K−1)-model. Thus, technically speaking, the definition is not well-defined. However,
the different versions only differ by the initial private randomizing devices which, as noted
in the previous remark, PRP contracts ignore. Thus, with respect to PRP contracts, I can
speak of models without reference to which version it is.

From now on contract will mean PRP contract. I now characterize the Pareto-optimal
contracts. Since there is risk neutrality and equal discounting, the timing of pay is partially
irrelevant and so I will just characterize one particular implementation of the agent-optimal
contract that gives all of the Pareto-optimal surplus to the agent. Any other Pareto-optimal
allocation can be achieved by simply taking an agent-optimal contract and shifting down
the initial transfer to the agent. Of course, the pay structure of the particular contract I
characterize may not be the robust one with respect to certain perturbations of the model
parameters (e.g. making the agent slightly more impatient than the principal). However, the
optimal effort levels and report thresholds are independent of the choice of implementation
or allocation, as is the recursive structure of the contract. More importantly, I have chosen to
start with the risk-neutral, equal discounting case mostly because of the ease of exposition.
I will eventually extend the analysis to more general utility functions where the timing of
pay matters.

Let S∗t denote the surplus of Pareto-optimal contracts in the (K − t)-model.
Consider the agent-optimal contract with payoff (W0 = S∗0 , V0 = 0). Either it is trivial

(i.e. immediate termination) or it does not involve any chance of immediate termination.
Assume the latter. Then let (W1(good), V1(good)) be the total payoff of the good-continuation
contract and let (W1(bad), V1(bad)) be the total payoff of the bad-continuation contract. The
truth-telling constraint implies V1(good) = V1(bad) = V1. Moreover, due to the partial
irrelevance of the timing of pay, it is without loss of generality to assume that V1 = 0.

The total surplus S∗0 , which is also the agent’s total payoff W0, can be computed using a
simple formula:

W0 = S∗0 = −h(a(∆∗1)) + u(a(∆∗1)) + β(W1(good)− F (ρ(∆∗1), a(∆∗1))∆∗1) (5)
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where ∆∗1 := W1(good)−W1(bad) is the date 1 “bonus” for good performance that provides
the agent with incentives to exert effort a0.

Here, a(∆∗1) is the agent’s date 0 effort choice and ρ(∆∗1) is the principal’s date 1 report
threshold. Both are completely determined by ∆∗1. To see this, suppose at some arbitrary
date the agent faces some threshold ρ and bonus ∆ at the beginning of the next date.
Then the agent’s effort that date is completely determined: a = a(∆, ρ). Then by the PRP
condition, the principal will select the ρ that maximizes a(∆, ρ). Thus, ultimately, ρ = ρ(∆)
and a = a(∆, ρ(∆)) = a(∆).

Since I am characterizing a Pareto-optimal contract, S∗0 must be maximized. Equation
(5) then implies W1(good) = S∗1 and

∆∗1 := arg max
∆∈[0,S∗1 ]

−h(a(∆)) + u(a(∆))− βF (ρ(∆), a(∆))∆ (6)

Since W1(bad) = W1(good)−∆∗1 ∈ [0, S∗1 ] and V1(bad) = V1(good) = 0, the bad-continuation
contract can be achieved as an appropriately calibrated randomization between termination
and the good-continuation contract. The probability of termination should be ∆∗1/S

∗
1 .

Thus I have shown that in the agent-optimal contract, the agent applies effort a∗0 :=
a(∆∗1). The principal then observes 0ρ1. If it exceeds ρ(∆∗1) then the principal reports good
and the agent is retained. Otherwise the principal reports bad and the agent is potentially
terminated. If the agent is retained then the agent-optimal contract of the (K − 1)-model
is enacted. Of course, by recursion, the agent-optimal contract of the (K − 1)-model starts
the exact same way as the agent-optimal contract of the K-model. Thus, the agent-optimal
contract has a simple recursive backbone: At any date t, the agent-optimal contract has the
same recursive threshold structure as in the first segment. See Figure 2.

To fully characterize the agent-optimal contract, it remains to compute the constants ∆∗t+1

and S∗t+1 for t = 1, 2 . . . K−1 and to compute the payments w∗t . This can be done using back-
wards induction. In the base case, S∗K = 0. In the inductive step, using the arguments made
earlier, given S∗t+1, ∆∗t+1 = arg max∆∈[0,S∗t+1]−h(a(∆)) + u(a(∆)) − βF (ρ(∆), a(∆))∆ and

S∗t = h(a(∆∗t+1)) +u(a(∆∗t+1)) +β(S∗t+1−F (ρ(∆∗t+1), a(∆∗t+1))∆∗t+1). To compute w∗t , simply
note that S∗t = W ∗

t = w∗t−h(a(∆∗t+1))+β(S∗t+1−F (ρ(∆∗t+1), a(∆∗t+1))∆∗t )⇒ w∗t = u(a(∆∗t+1)).
The backwards induction is now complete and I can state the optimality theorem.

Theorem 1. The agent-optimal contract has the following recursive structure:
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• At date t, the agent puts in effort a∗t = a(∆∗t ) and is paid u(a∗t ).

• At the beginning of date t+ 1, if tρt+1 ≥ ρ(∆∗t ) then the principal reports good and the
agent is retained. Otherwise the principal reports bad and the agent is terminated with
probability ∆∗t+1/S

∗
t+1.

• If the agent is terminated, both parties exercise their outside options at date t+ 1.

• If the agent is retained then the agent-optimal contract starting at date t+1 is enacted.

The optimality theorem implies that Pareto-optimal contracts can be easily re-written
in a way that satisfies the full-review property, which requires distinct realizations of tρt+1

to lead to distinct reports rt+1 for all t. See Levin (2003). The full-review property im-
plies that the principal does not keep any private information from the agent.3 Moreover,
Pareto-optimal contracts are memoryless: the induced action sequence and report threshold
sequence are both deterministic. It turns out that when the evaluation period is “short,”
the memoryless property can be somewhat of a curse. This is explored in Section 5, where I
take the model to continuous-time and talk about arms-length relationships. In Section 3, I
characterize Pareto-optimal contracts under a general class of recursive preferences. Pareto-
optimal contracts still satisfy the full-review property and are essentially memoryless.

3 Contracts under General Recursive Preferences

Definition. Define W+
t to be the date t ex-post agent continuation payoff which is a function

of the public history up through the date t principal report plus the public randomizing device
ξt. In general, I will add a “+” superscript to denote the ex-post version of a contract
parameter (e.g. a+

t , w+
t ).

Recall, Wt is a function of the public history up through the date t principal report.
Thus, Wt is the expectation of W+

t with respect to the date t public randomizing device.
In the risk-neutral analysis, following a good report, Wt ≡ W+

t . However, following a bad
report, W+

t ∈ {Wt(good), 0}.
The reason I now introduce extra notation for ex-post values is because the analysis of

Pareto-optimal contracts with general recursive preferences requires some switching back-
and-forth between ex-ante and ex-post parameters, beginning with the definition of the
recursive preferences themselves.

Define the agent’s recursive preference to be:

Wt = f−1
A E(fA(W+

t ))) W+
t = uA(w+

t , a
+
t ) + βAWt+1

uA is strictly increasing in the first argument and uA(w, ·) satisfies u′′A(w, ·) < 0 and u′A(w, 0) =
0 for all w. fA is a strictly increasing continuous function. βA > 0 is the agent discount

3The set of PRP contracts is a strict subset of the set of contracts satisfying the full review property.
In general, requiring only the full-review property leads to higher payoffs - the principal can commit to
inefficient report strategies that may be value enhancing ex-ante.
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factor. Note, if the effort component were removed, uA(w) := wρ, and fA(W ) := Wα/ρ then
the agent would have Epstein-Zin preferences over wage.

Similarly, define the principal’s recursive preference to be:

Vt = f−1
P E(fP (V +

t ))) V +
t = uP (−w+

t , a
+
t ) + βPVt+1

uP is strictly increasing in both arguments. fP is a strictly increasing continuous function.
βA > 0 is the principal discount factor.

There are two differences between the risk-neutral case and the recursive case that are
worth pointing out. The more minor difference is that under general recursive preferences,
public randomization plays a more important role. Without certain concavity restrictions
on uA, uP , fA, and fP , the Pareto-frontier is a priori not public randomization proof. For
some agent payoffs, the Pareto-optimal contract must be a public randomization of other
Pareto-optimal contracts. This was not true in the risk-neutral case.4

The more significant departure from the risk-neutral case is that the parameter values
of a Pareto-optimal contract now depend on which Pareto optimal allocation is chosen. In
the risk neutral case, every Pareto optimal allocation can be achieved by taking the agent-
optimal contract and simply increasing the initial payment w0. This means that without
loss of generality, one can assume that all parameter values of all Pareto-optimal contracts
except w0 are independent of the choice of initial allocation. With recursive preferences,
parameter values will, in general, depend on the initial allocation.

Thus, the entire set of Pareto-optimal contracts does not possess the structural uniformity
that is a hallmark of the risk-neutral case. However, on the individual level, a Pareto-
optimal contract under recursive preferences still has virtually all of the structure of a risk-
neutral Pareto-optimal contract: the principal still uses a simple threshold report strategy;
the full-review property is still satisfied; and, modulo the public randomization history, all
parameters are still memoryless except that w+

t (bad) < w+
t (good): That is, the date t ex-

post wage depends on the most recent report. Recall, in the risk-neutral case, w+
t (bad) =

w+
t (good). This bit of history dependence means that following a bad report, if the agent is

not terminated, his continuation contract is not actually Pareto-optimal. But the inefficiency
is only transitory: After the initial lower wage, the slate is wiped clean and the agent’s
prospects become identical to what he would’ve faced if the report were good and the Pareto-
optimal continuation contract were enacted.

I now retrace the steps that led to Theorem 1. To ease the exposition, I will conduct
the analysis with the assumption that all Pareto-optimal continuation contracts are a pri-
ori public randomization proof. Afterwards, I relax this assumption and explain how the
statement of the results change.

First, the definition of PRP contracts in the reduced-form model is unchanged. Second,
the proof of Lemma 1 still holds. This means that the spot contract at each date still exhibits
the simple threshold structure with two messages. Moving to the K-model, the recursive
definition of PRP contracts is unchanged. The key difference is that now the timing of pay

4With general recursive preferences, having a concave Pareto-frontier and being public randomization
proof are no longer equivalent. This equivalence holds only when fP and fA are linear and the preferences
are expected utility.
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is relevant. This means that if one verifies that the agent-optimal contract satisfies some
desirable structural properties, one can no longer conclude that all other Pareto-optimal
contracts also satisfy these desirable properties. I now characterize the structure of a generic
Pareto-optimal contract.

So fix a Pareto-optimal allocation (W0, V0). Let (W1(good), V1(good)) and (W1(bad), V1(bad))
be its 1 continuation payoffs. It is still true that V1(good) = V1(bad) = V1. It is still true
that the payoff (W1(good), V1(good)) is on the date 1 Pareto-frontier although I can no longer
assume that it is the agent-optimal one. That is, I can no longer assume that V1 = 0

The question is how to deliver the bad-continuation payoff (W1(bad), V1(bad)). The con-
tinuity of f−1

A EfA implies that there is some mixture mix0 of the good-continuation contract
and termination that will deliver a payoff W1(bad) to the agent. If V1 = 0 then we are done,
because mix0 will also deliver payoff V1(bad) = V1 = 0 to the principal. However, in general,
V1 > 0, which means mix0 will actually deliver a payoff V̂ < V1 to the principal. To fix this,
consider the alternate continuation contract where the initial transfer is lessened by some
constant amount D where D is defined to be the amount so that the agent’s continuation
payoff is W1(bad). Call this contract the D-continuation contract. The principal’s payoff
under the D-continuation contract obviously exceeds V1. The trivial mixture mixD between
the D-continuation contract and termination that puts all the weight on the D-continuation
contract generates an agent payoff equal to W1(bad). mixD generates a principal’s payoff
> V1. Now consider the family of continuation contracts that are identical to the good-
continuation contract except the initial transfer is decreased by an amount d ∈ [0, D]. Call
such a continuation contract a d-continuation contract. Let mixd denote the mixture be-
tween the d-continuation contract and termination that delivers W1(bad) to the agent. When
d = 0, mixd delivers principal payoff < V1. When d = D, mixd delivers principal payoff
> V1. So by continuity, there is a d∗ such that mixd∗ delivers payoff V1 to the principal.

Thus, to achieve the bad-continuation payoff (W1(good), V1(good)) simply randomize be-
tween the d∗-continuation contract and termination according to mixd∗ .

Theorem 2. Pareto-optimal contracts are memoryless and satisfy the full-review property.
The date t Pareto-optimal continuation contract with agent payoff Wt has the following re-
cursive structure:

• The agent puts in effort at(Wt) and is paid wt(Wt, good).

• At the beginning of date t + 1, if tρt+1 ≥ ρt+1(Wt) then the principal reports good and
the agent is retained. Otherwise the principal reports bad and the agent is terminated
with some probability pt+1(Wt).

• If the agent is terminated, both parties exercise their outside options at date t.

• If the agent is retained following a good report, the Pareto-optimal continuation con-
tract with agent payoff Wt+1(Wt) is enacted.

• If the agent is retained following a bad report, then the continuation contract enacted is
the same as the good-continuation contract except the initial payment is wt+1(Wt+1, bad)
which is lower than wt+1(Wt+1, good).

10



Once the initial payoff W0 is fixed, the entire payoff process Wt is known. Thus, a Pareto-
optimal contract’s continuation payoff process is memoryless. Similarly, the action process
at(·), the good- and bad- payment processes wt(·, good) and wt(·, bad), and the threshold
process ρt+1(·) are all memoryless.

If a Pareto-optimal continuation contract is a public randomization of other Pareto-
optimal continuation contracts, then its parameters will of course depend on the realization of
the public randomizing device. Thus, modulo the history of public randomizations, a Pareto-
optimal contract’s parameters are still memoryless. In particular, the full-review property
still holds. Theorem 2 would have to be slightly modified in the following way: Instead of
there being a function Wt+1(Wt), there would be a public random function W+

t+1(W+
t ). For

each realization of W+
t+1, there would be a corresponding bad continuation contract which

would be identical to the good continuation contract except the initial payment smaller by
some amount d∗. This d∗ can be chosen to be independent of the realization of the bad
continuation contract. The date t ex-post action a+

t (·), ex-post good- and bad- payments
w+
t (·, good) and w+

t (·, bad), and the date t + 1 ex-post threshold ρ+
t+1(·) would depend on

W+
t .

4 Observable but Not Verifiable Signals

The characterization of Pareto-optimal contracts can be easily extended to a setting where
the informative signals are observed by both the agent and the principal but is still not ver-
ifiable. This is the same level of observability assumed in the relational contracts literature.

Formally, each segment of the K-model still begins with a public randomizing device ξt
followed by a termination decision τ . There is no need for a private randomizing device. The
agent exerts hidden effort at with cost h(at) and receives payment wt. The principal receives
utility u(at). Then at the beginning of date t+ 1, the informative signal tρt+1 is observed by
the principal and agent but not by the public.

A contract specifies τ , and wt and at for t = 0, 1, . . . K − 1. These objects can depend
on the history of public randomizing devices and non-public informative signals leading up
through the beginning of date t. A date s continuation contract specifies these objects for
t = s, s+ 1, . . . K− 1. A date s continuation contract is a contract is the (K− s)-model. An
incentive-compatible contract is one where the agent’s effort process a is a best response to
τ and w.

Just like before I can define continuation payoffs Wt and Vt for all t which depend on
both the public and non-public history leading up through the realization of the informative
signal at the beginning of date t.

Assumption. Both the principal and agent can freely dispose of output.

Free disposal is typically applied to generate a monotonicity property in contracts. Innes
(1990) assumes this for the principal and numerous papers assume this for the agent. This
assumption implies that the principal and agent’s payoffs are weakly positively correlated
across histories holding the public component fixed: In particular, let h be a history leading
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up to date t+ 1 and let tρ
′
t+1 and tρ

′′
t+1 be two informative signals with tρ

′
t+1 >t ρ

′′
t+1. Then

Wt+1(h tρ
′
t+1) ≥ Wt+1(h tρ

′′
t+1) and Vt+1(h tρ

′
t+1) ≥ Vt+1(h tρ

′′
t+1) (7)

Moreover, if it were the case that inequalities were strict, then whenever tρ
′′
t+1 occurred, the

principal and agent could always surreptitiously choose the h tρ
′
t+1-continuation contract

leading both players to be strictly better off. Thus, it must be that either Wt+1(h tρt+1) or
Vt+1(h tρt+1) is constant over all tρt+1. If Wt+1(h tρt+1) is the one that is constant, it also
doesn’t hurt to simply let Vt+1(h tρt+1) be constant as well. Thus, without loss of generality,
I can focus on contracts where Vt+1(h tρt+1) is constant over all tρt+1.

This creates a contracting space that is equivalent to the space of incentive-compatible
contracts in the private signals setting. Thus, I can now further refine the space by imposing
private-revision-proofness. All the results and proofs go through unchanged.

5 Arms-Length Contracting

For this section I specialize the discrete time model so that tρt+1 ∼ N(1, at). There is a
natural embedding of the discrete time model in a continuous-time Brownian framework
running from 0 to K. In the Brownian framework there is a Brownian motion (Zt,Ft) along
with a continuum of public randomizing devices (ξt,Gt). In the embedding, the continuum
of public randomizing devices is sampled at integer dates. The agent of the discrete time
model selects a continuous effort process {at}t∈[0,K] but can only change his effort level at
integer dates. The chosen effort process generates a Brownian motion with drift: dPt =
atdt + dZt. The principal of the discrete time model samples Pt only at integer dates.
For example, at date 2 the principal observes P2. But since he has already observed P1,
observing P2 is equivalent to observing P2 − P1 =d 1ρ2. The principal pays the agent via a
continuous payment process wt which can only change at integer dates. The agent’s utility
is E[

∫ τ
0
βt(wt − h(at))dt] and the principal’s utility is E[

∫ τ
0
βt(u(at) − wt)dt]. Here τ is the

integer valued stopping time that equals the date when the contract is terminated.
By increasing, in lock-step, the frequency at which the agent can change his effort level,

the principal can sample the Brownian motion, the payment level can be changed, and the
contract can be terminated, the model approaches the continuous-time limit. In this limit,
at date t + dt, the principal observes tρt+dt|atdt ∼ N(dt, atdt). Factoring out a dt, it is
equivalent to assume that the principal observes a signal ∼ N( 1

dt
, at).

Thus, as the length of each segment goes to zero, each tρt+dt becomes increasingly noisy,
and it becomes increasingly harder to provide incentives. There are two potential ways the
principal can overcome this problem.

One way exploits the fact that normal random variables, no matter how noisy, have
arbitrarily informative tails. So the principal can induce effort by setting the report threshold
to be extremely low and punishing the agent extremely when tρt+dt drops below the threshold.
This arrangement is similar to the one proposed by MacLeod (2003). Unfortunately, this
method requires an extremely large continuation surplus to be put at risk, and so is not
feasible in my setting.
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The other method exploits the efficiency of cross-pledging. The principal does not evalu-
ate the agent over an interval of time. During this interval, he accrues a flow of signals, and
then at the end of the time interval, he makes a termination decision based on some aggrega-
tion of all of the accrued signals. This arrangement is similar to the one proposed by Fuchs
(2007) and can be formally implemented by assuming that the principal’s message space is a
singleton which always leads to continuation for all dates before the last date of the interval.
Then at the very last date, the principal is able to send one of a number of messages, some of
which lead to continuation, and others to termination. This method of providing incentives
does not require a large continuation surplus to be put at risk. Unfortunately, this method
is not private-revision-proof. On the second to last date of the interval, the principal will
privately revise his report strategy so that it only depends on the last signal. The agent,
expecting this, will choose zero effort except for the last instance.

Proposition 1. In continuous-time, contracts induce zero effort.

Proof. See Appendix.

Proposition 1 implies that to induce effort, one must somehow expand the contracting
space. The question is how to expand the space in way that is economically reasonable and
leads to nontrivial effort. There are two impediments to inducing effort in the continuous-
time setting. One, the principal receives a constant flow of extremely noisy information.
Two, the principal constantly uses the noisy information he just received to privately revise
the contract.

Thus, any useful expansion of the contract space must target at least one of these imped-
iments. Targeting the second impediment would be difficult in practice as contracts would
need to effectively ban private communication between the principal and agent. Thus I will
focus on limiting the flow of information. In the current setup, the principal constantly
samples the Brownian motion. A very natural expansion of the contract space is to allow
the contract to stipulate when the principal can sample the Brownian motion. In practice,
this can be achieved by having pre-specified evaluation times such as annual performance re-
views, having the principal be physically distant from the agent, increasing the the principal’s
responsibilities, and creating a culture of independence.

Definition. An arms-length contract is a contract that specifies a finite set of random eval-
uation times 0 < t1 < t2 < . . . tN = K on which the principal can sample Pt and make a
report. Each ti ∈ Fti−1

× Gti−1
and t0 := 0.

Note, even though the principal only samples at discrete dates in an arms-length contract,
he is still able to constantly communicate with the agent. In particular, the principal can
still constantly privately revise the contract. However,

Lemma 2. It is sufficient to check that an arms-length contract is private-revision-proof at
evaluation dates.

Proof. See Appendix.
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This lemma is not as trivial as it sounds. While it is true that in between evaluation
dates the principal is not receiving any new information with which to privately revise, the
action set he can affect with private revision is changing. During an evaluation period, the
agent is still constantly selecting his action process. The concern is that halfway through an
evaluation period when the agent has already sunk some of his effort costs, the principal can
privately revise the contract to induce a higher effort process for the rest of the evaluation
period. Lemma 2 would be trivial only if for some reason the agent can only update his
effort choice at evaluation dates.

In general, the evaluation times ti of an arms-length contract can be random. However,
Pareto-optimality and the PRP condition together imply that without loss of generality each
evaluation time ti is constant.

Lemma 3. Every Pareto-optimal allocation can be achieved by an arms-length contract
whose evaluation times are non-random.

To see this, consider the evaluation time t1. Define V +
0 to be the principal’s date 0 ex-post

payoff, which is realized after the date 0 public randomizing determining t1 is realized. Pick
a realization t∗1 of t1 that maximizes V +

0 . Then the contract with t1 ≡ t∗1 delivers a higher
principal payoff. Thus Pareto-optimality implies it is without loss of generality to assume t1
is constant.

Recycling the analysis of the discrete model, at date t1, the principal will employ a
threshold report strategy. Following the report the contract will either terminate or a Pareto-
optimal continuation contract is enacted. Therefore, by recursion, t2 and in general ti are
also deterministic.

Unlike in the discrete time case where for a single evaluation period the agent chooses
a single effort, in arms-length contracts the agent chooses an effort sequence. However,
the maximization problem for the optimal effort sequence is equivalent to the maximization
problem for a single effort. To see this, suppose the agent is a facing an evaluation period of
length k, a principal report threshold ρ, and a bonus ∆. Then the optimal effort sequence
solves the following problem:

a(k,∆, ρ) := {as(k,∆, ρ)}s∈[0,k) = arg max
{as}s∈[0,k)

βk∆

[
1− Φk

(
ρ−

∫ k

0

asds

)]
−
∫ k

0

βsh(as)ds

(8)

Here Φk is the cdf of a normal random variable with mean 0 and variance k. Optimality
implies that for all s ∈ [0, k), βsh′(as(k,∆, ρ)) = h′(a0(k,∆, ρ)). Thus, once a0 is chosen, all
the other efforts are pinned down and the maximization problem reduces to one only over
the initial effort level.

Lemma 4. In arms-length contracts, the induced effort sequence in an evaluation period
is fully determined by a single effort, say, the initial one. Let a(k,∆, ρ) and â(k̂, ∆̂, ρ̂)
be two induced effort sequences. If at(k,∆, ρ) > ât(k̂, ∆̂, ρ̂) for some t ∈ [0, k ∧ k̂), then
as(k,∆, ρ) > âs(k̂, ∆̂, ρ̂) for all s ∈ [0, k ∧ k̂).
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To characterize Pareto-optimal contracts, it suffices to find for each t ∈ [0, K), the
surplus S∗(t) of a Pareto-optimal arms length contract that starts at date t. The function
S∗(t) satisfies the following equation:

S∗(t) = max
k∈(0,K−t], ∆∈[0,S(t+k)]

u(a(k,∆))− h(a(k,∆)) + βk(S∗(t+ k)− F (k, ρ(k,∆), a(k,∆))∆)

(9)

with the boundary condition S∗(K) = 0.
Here, ρ(k,∆) is the PRP report threshold the principal uses for an evaluation period of

length k and incentives ∆. The corresponding action sequence chosen by the agent is a(k,∆).
u(a(k,∆)) and h(a(k,∆)) are the present discounted benefit and cost of the action sequence
a(k,∆). F (k, ρ(k,∆), a(k,∆)) is the probability that the principal reports bad at the end of
an evaluation period of length k given threshold ρ(k,∆) and action sequence a(k,∆).

Computing S∗(t) via Equation (9) is quite straightforward. The reason is that all of
the auxiliary functions - a(k,∆), ρ(k,∆), u(a(k,∆)), and h(a(k,∆)) - can be computed
beforehand and moreover, all of these functions are defined in a direct, non-recursive way.
Once they are all computed, input them into Equation (9), which now becomes a standard
Bellman equation for a bounded univariate function with compact domain.

I now summarize the computations of the auxiliary functions. First, for each ρ, k, ∆, we
have already seen how computing the induced effort process a(k,∆, ρ) is as easy as computing
the single induced effort in a period of the discrete model. Once a(k, ρ,∆) is determined, I
can define the associated expected present discounted benefit and cost:

u(a(k, ρ,∆)) :=

∫ k

0

βsu(as(k, ρ,∆))ds h(a(k, ρ,∆)) :=

∫ k

0

βsh(as(k, ρ,∆))ds (10)

And now by definition, the auxiliary function ρ(k,∆) = arg maxρ u(a(k, ρ,∆)). Even
though this maximization involves evaluating a function defined over continuous time action
sequences, it is a quite simple maximization: Lemma 4 implies that to find ρ(k,∆) it suffices
to compute arg maxρ a0(k, ρ,∆).

And now all the other auxiliary functions are determined: a(k,∆) = a(k, ρ(k,∆),∆),
u(a(k,∆)) = u(a(k, ρ(k,∆),∆)), h(a(k,∆)) = h(a(k, ρ(k,∆),∆)) and F (k, ρ(k,∆),∆) =

Φk(ρ(k,∆)−
∫ k

0
as(k,∆)ds).

Proposition 2. Let S∗(t) be the solution to (9), and let k∗(t),∆∗(t) be the associated
argmaxes. An arms-length contract specifying evaluation dates 0 < t1 < t2 < . . . < tN = K
and action sequence {as}Ks=0 is Pareto-optimal if and only if the following conditions are
satisfied:

• For each i = 1, 2, . . . K, ti−ti−1 = k∗(ti−1), and for any s ∈ [ti−1, ti), as = as−ti−1
(k∗(ti−1),∆∗(ti−1))

• At each evaluation date ti, if Pti−Pti−1
exceeds ρ(k∗(ti−1),∆∗(ti−1)) the principal reports

good and the agent is retained. Otherwise the principal reports bad and the agent is
terminated with probability ∆∗(ti−1)/S∗(ti).
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• If the agent is retained after the evaluation at date ti then a Pareto-optimal arms-length
contract starting at date ti is enacted.

In the special case K =∞, characterizing Pareto-optimal contracts is even more straight-
forward. By self-similarity, solving the Bellman equation for the surplus function S∗(t)
simplifies to solving for a single surplus S∗.

Corollary 1. In any infinite horizon Pareto-optimal arms-length contract, the surplus S∗

solves the following equation:

S∗ = max
k>0, ∆∈[0,S∗]

u(a(k,∆∗))− h(a(k,∆∗)) + βk(S∗ − F (ρ(k,∆∗), a(k,∆∗))∆∗) (11)

Let k∗ be the corresponding argmax. The agent is evaluated every k∗ dates. At the end of any
evaluation period if the agent’s performance that period exceeds ρ(k∗,∆∗) then the principal
reports good and the agent is retained. Otherwise the principal reports bad and the agent is
terminated with probability ∆∗/S∗.

One of the interesting properties of arms-length contracts relates to how the effort se-
quence within an evaluation period evolves. Suppose the agent faces some ∆ and a principal
report threshold ρ in an evaluation period of length k. Then the agent solves the maximiza-
tion problem in Equation (8) where as(k,∆, ρ) is the agent’s optimal effort choice s units of
time into the evaluation period.

Notice that the agent’s efforts are perfect substitutes in the benefit component but are
imperfect substitutes in the cost component due to discounting. This implies that the agent’s
chosen effort sequence within an evaluation period starts small, monotonically increases,
and approaches its maximum right before the evaluation. For example, if h(a) = 1

2
a2 then

as(k,∆, ρ) = a0(k,∆, ρ)/βs.

Corollary 2. The agent procrastinates in arms-length contracts.

6 Conclusion

This paper looks at optimal contracting in a general dynamic moral hazard model where
the noisy signal is either privately observed by the principal or is observable but not ver-
ifiable. I highlight a class of contract renegotiations called private revisions that ought to
survive even in the presence of a public third party with perfect commitment and ability to
enforce contracts. I then characterize optimal private-revision-proof contracts. These con-
tracts have simple threshold spot contracts and are essentially memoryless. This tractability
across states and time is robust to different utility functions and signal distributions. As an
application, I extend the model to continuous time and show how private-revision concerns
can rationalize arms-lengths contracting.
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7 Appendix

Proof of Proposition 1. Let a(dt,K) denote the initial induced effort in the model with time
length dt and terminal date K. Since the initial effort is always the largest, it suffices to
show that

lim
dt→0

lim
K→∞

a(dt,K) = 0

Let a(dt) := limK→∞ a(dt,K). Let ρ(dt) denote the associated threshold. Let F (·, µ, σ2)
denote the cdf of a normal random variable with mean µ and variance σ2. It must be that

lim
dt→0

F

(
ρ(dt), a(dt),

1

dt

)
/dt = λ

for some λ ∈ (0,∞). I now show that for any k ∈ (−∞,∞),

lim
dt→0

F

(
ρ(dt), a(dt) + k,

1

dt

)
/dt = λ

This result means the agent faces no incentives when dt→ 0 and therefore limdt→0 a(dt) = 0.
To prove the claim, I normalize the problem and show that if limdt→0 F

(
ρ(dt), 0, 1

dt

)
/dt =

λ then limdt→0 F
(
ρ(dt), k, 1

dt

)
/dt = λ for all k. Together, a change-of-variable and the

standard Gaussian tail estimate imply

F

(
ρ(dt), 0,

1

dt

)
= F

(
ρ(dt)

√
dt, 0, 1

)
≈ φ(|ρ(dt)

√
dt|)

|ρ(dt)
√
dt|

Similarly,

F

(
ρ(dt), k,

1

dt

)
= F

(
(ρ(dt) + k)

√
dt, 0, 1

)
≈ φ(|(ρ(dt) + k)

√
dt|)

|(ρ(dt) + k)
√
dt|

=

φ(|ρ(dt)
√
dt|)

|ρ(dt)
√
dt|

· |ρ(dt)
√
dt|

|(ρ(dt) + k)
√
dt|
· e−ρ(dt)kdt−k2dt/2

It suffices to show that ρ(dt)(dt)r = 0 for all r > 1
2
. Suppose not, then F

(
ρ(dt)

√
dt, 0, 1

)
<

F ((dt)ε, 0, 1) for some ε. But the Gaussian tail estimate implies

F ((dt)ε, 0, 1) /dt ∼ φ((dt)ε)/(dt)1+ε → 0

Contradiction.

Proof of Lemma 2. It suffices to prove that a contract which is PRP at evaluation dates is
PRP.

Without loss of generality, consider the initial evaluation period [0, t1]. Let ∆ be the
bonus and ρ be the report threshold at the evaluation date t1. The induced action sequence
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is a(t1,∆, ρ) from (8). From now on I will refer to this sequence as a and use as denote the
element of a at date s. Let {ws}s∈[0,t1) be the wage sequence. The agent’s date t continuation
payoff for any t ∈ [0, t1) is

Wt = βt1−tEWt1

(
ρ−

∫ t1

0

asds

)
−
∫ t1

t

βs−th(as)ds+

∫ t1

t

βs−twsds (12)

where Wt1(ρ−
∫ t1

0
asds) is the random variable ∈ {Wt1(good),Wt1(bad)} whose distribution

depends on ρ−
∫ t1

0
asds.

Suppose at some interim date t̃ ∈ (0, t1), the contract is not private-revision proof. Let ρ̃
be a Pareto-improving report threshold. Then the agent’s revised action at date s ∈ [t̃, t1) is

a′s := as−t̃

(
t1 − t̃,∆, ρ̃−

∫ t̃

0

asds

)

By Lemma 4, a′s > as for all s ∈ [t̃, t1). By assumption, the agent’s revised continuation
payoff W ′

t̃
:=

βt1−t̃EWt1

(
ρ̃−

∫ t̃

0

asds−
∫ t1

t̃

a′sds

)
−
∫ t1

t̃

βs−th (a′s) ds+

∫ t1

t̃

βs−twsds ≥ Wt̃ (13)

I now show that the contract isn’t private-revision-proof at date 0. Suppose the principal
privately revises to ρ̃ at date 0. The agent’s revised action sequence is a(t1,∆, ρ̃) which I
will call ã for short. Let W̃0 be the agent’s new date 0 payoff. By definition, W̃0 is weakly
larger than his payoff under the action sequence {as}s∈[0,t̃) ∪ {a′s}s∈[t̃,t1) which is

β t̃W ′
t̃ −

∫ t̃

0

βsh(as)ds+

∫ t̃

0

βswsds ≥ β t̃Wt̃ −
∫ t̃

0

βsh(as)ds+

∫ t̃

0

βswsds = W0

To show that the principal is also better off under ρ̃, consider the function f(x) := EWt1(ρ̃−
x−

∫ t1
0
ãsds) defined over R. Since the agent chooses ã in response to ρ̃, it must be that

f ′(0) = β−t1+sh′(ãs) ∀s ∈ [0, t1) (14)

Here, f ′(0) is the normalized marginal benefit of the action sequence ã and the constant
β−t1+sh′(ãs) is the normalized marginal cost. f is an increasing logistic-shaped function
with a convex lower half and a concave upper half. f(0) must be in the concave region. If
not, then there exists a unique x∗ > 0 such that f ′(x∗) = f ′(0) and f ′(x) > f ′(0) for all
x ∈ (0, x∗). The principal can achieve a Pareto-improvement by revising ρ̃ to ρ̃ − x∗: the
agent will still apply the same effort, but the probability of reporting bad is decreased.

Consider the scenario where the agent has chosen a up to date t̃ and faces ρ̃. I previously
defined a′ to be the agent’s best response starting from date t̃. Suppose instead the agent
chooses the action sequence ã starting from date t̃: At date s ≥ t̃, he chooses ãs. The

normalized marginal benefit is f ′(
∫ t̃

0
(as − ãs)ds) and by (14) the normalized marginal cost
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is f ′(0). If a > ã, then f ′(
∫ t̃

0
(as − ãs)ds) < f ′(0). That is, the marginal cost exceeds the

marginal benefit at ã. Moreover, since f is concave for all values of x > 0, the only way the
agent can adjust effort so as to equate marginal cost and benefit is to decrease effort, which
implies a′ < ã. Contradiction. So a ≤ ã and the principal is also better off under ρ̃.
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