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Abstract

We study the optimal provision of incentives in a dynamic multistage agency setting.
Specifically, there is a project, whose benefits are realized only after multiple sequential
breakthroughs. The project requires funding from the principal and is operated by an
agent who is protected by limited liability and can divert cash flows for private benefit.
The nature of progress plays an important role in the optimal incentive scheme. When
breakthroughs are tangible (i.e., observable and contractible), they serve as a useful
monitoring device, and the principal controls incentives through a sequence of deadlines
and a reward scheme that decreases over time; a breakthrough in one stage extends the
amount of time the agent has to complete the next stage. When breakthroughs are
intangible (i.e., privately observed by the agent), the principal must provide incentives
for truthful self-reported progress. Our primary questions are whether, to what extent,
and how this type of communication can be used in a meaningful way.
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1 Introduction

Contracting environments often require completion of sequential stages before their benefits

can be realized. Industries which are R&D intensive are especially relevant. To fix ideas,

consider the stages involved in the development of a new drug. Doing so requires first

identifying the specific chemical compounds or molecule to treat the disease in vitro (i.e.,

in test tubes), and then demonstrating its efficacy in pre-clinical (i.e., animal) trials. Once

these two are successfully completed, clinical (i.e., human) trials progress through three

sequential stages: dosing, small scale and large scale. All of these stages must be successfully

completed before a drug can be brought to the FDA and considered for approval, and only

after approval can the drug be brought to market and generate revenue for its developer

and health benefits for society. Additional relevant applications of multistage projects are

ubiquitous; construction, product and software development, venture capital, basic research

and so on. Naturally, complex projects such as these require substantial amounts of funding

in order to come to fruition and the preferences of the employee, researcher, or scientist

(the “agent”) regarding the timing, intensity and direction of investment are unlikely to

be completely aligned with the preferences of the firm, institution, or funding entity (the

“principal”). In this paper we develop a theory to investigate optimal provision of incentives

in a class of multistage agency problems.

The environment we study features a project that requires successful completion of

multiple stages, referred to as breakthroughs, in order for the principal to realize the project

benefits. The model is set in continuous time with breakthroughs arriving randomly according

to a Poisson process. The arrival rate of breakthroughs depends on whether the principal

funds the project and the fraction of the funds the agent diverts for private benefit (or,

equivalently, whether the agent shirks). Both principal and agent are risk-neutral — the

agent, however, has limited funds to invest and is protected by limited liability.1

Within our multistage environment, there is a rich space of contracts and information

structures to explore. We are especially interested in how the nature of progress influences the

provision of incentives and the value of the project. In some contexts, progress is a tangible

object that can be easily observed by the principal (e.g., whether a software subroutine

works). In other contexts, progress is less well defined and infeasible for the principal to gauge,

in which case it may become a source of private information for the agent (e.g., complex

experimental data).2 We say that progress is tangible if it is observable to both parties and

1Without limited liability, the first best outcome can be sustained by simply “selling” the project to the
agent. This solution is practically infeasible for most of the relevant applications under consideration.

2Recent examples of extensive data falsification and alleged falsification are the respective cases of Diederik
Stapel, formerly a professor of social psychology at Tilburg University, and Anil Potti, formerly a cancer
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can be contracted upon. On the other hand, intangible progress is privately observed by the

agent and hence, cannot be directly contracted upon.3 We investigate the following set of

questions in particular: When progress is tangible, in what way is it used to incentivize the

agent? Should the agent be given a limited amount of time to make each breakthrough? Or,

does the principal control incentives solely through dynamically adjusting “reward” payments

for ultimate success? When progress is intangible, does communication have value? More

specifically, is it possible for the principal to elicit “self reports” from the agent and use these

reports to provide stronger incentives and increase the value of the project? Or, can the

principal do just as well by ignoring any self-reported progress made by the agent?

To build intuition for our results and provide a baseline for comparison, we start by

analyzing a single-stage project in which there is one tangible breakthrough needed for the

benefits to be realized. In this case, the optimal contract takes a fairly simple and intuitive

form. The principle provides the agent with a deadline T ∗ and a reward schedule, which is

decreasing over time. If the agent realizes the breakthrough at τ ≤ T ∗, he collects the reward

of W (τ). If a breakthrough is not realized by the deadline, the principal terminates the

project (i.e., discontinues investment indefinitely) and both players get their outside option.

Note that the use of a deadline plays an important role in the provision of incentives. This is

despite the fact that the first-best outcome involves the agent working indefinitely until the

breakthrough arrives.

We then incorporate a second stage to the project. Thus, there is a preliminary (e.g.,

research) stage which must be successfully completed before moving on to the ultimate (e.g.,

development) stage. A breakthrough in the preliminary stage does not generate any direct

benefits but it means the project progresses to the ultimate stage. If and when a breakthrough

in the ultimate stage occurs, the project benefits are realized and thus a breakthrough in the

ultimate stage is tangible.

When preliminary breakthroughs are also tangible, they can serve as a useful monitoring

device. In the first stage, the principal provides incentives to the agent through three separate

channels. The first channel is a first-stage deadline, denoted T1. If the project does not

progress to the second stage by the deadline, then the principle discontinues investment and

the project is terminated. The first stage deadline need not be deterministic. For some

parametric cases, the principal uses a soft deadline: for t > T1, the principal randomizes over

whether to terminate the project. Soft deadlines are useful because they allow the principal to

provide strong incentives in the first stage, while simultaneously not reducing the probability

researcher at Duke University. Both Stapel’s misconduct and Potti’s alleged misconduct went undetected by
their employers, funding agencies, and professions for a number of years.

3Yet another possibility is that progress is not directly observed, but it can be verified, perhaps at some
cost (e.g., checking the proof of a theorem). See Section 5 for more discussion.
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of success in the second stage conditional on making a breakthrough before the soft deadline.

The second channel is a second-stage deadline that (weakly) decreases with the amount of

time it takes the agent to make his first breakthrough. That is, the earlier the agent makes

the first breakthrough, the more time he gets to make the second one. In expectation, the

second stage deadline, denoted T2(τ1) is strictly greater than T1. Therefore, the optimal

contract can be interpreted as putting the agent on a “short leash” until progress is made

at which point, he is given a longer leash to complete the second stage. Finally, the third

channel is a monetary reward schedule paid to the agent only upon the ultimate success of the

project. The reward schedule is also (weakly) decreasing in both the time of the preliminary

breakthrough τ1 and the ultimate breakthrough τ2.

For the case of intangible progress, our results are more preliminary and speculative

at this point. Several preliminary results are as follows. First suppose that there is no

communication between principle and agent regarding how the project has progressed. In

this case, if the principle uses a deadline, some degree of cash flow diversion will occur. This

is because an agent who has not yet made any progress has probability proportional to (dt)2

of having two breakthroughs sufficiently close to the deadline, whereas diverting investment

for private benefit allows him to realize a payoff proportional to (dt). Hence, an agent who

has not yet had a breakthrough will “run out of steam” and begin diverting cash flows as the

deadline approaches. However, cash flow diversion is socially inefficient and such a contract

can be improved upon by enriching the contract space to allow for two additional features:

communication and severance.

We introduce communication by allowing the agent to submit self reports telling the

principal if and when he has made a breakthrough. An important observation is that the

optimal contract that was derived in the case of tangible progress will not induce truthful

reporting when the progress is intangible. To see why, suppose the agent has not yet had a

breakthrough and time is nearing T1. Rather than being fired at T1, the agent strictly prefers

to falsely report a breakthrough to “extend his clock” and, by doing so, obtain a payoff equal

to the value of diverting investment for the rest of his tenure.

By the Revelation principle, it is sufficient to consider contracts in which truthful reporting

is induced. To incentivize truth telling requires that two new constraints be satisfied. We

refer to them as No False Progress (NFP) and No Hidden Progress (NHP). The former

ensures a deviation of the form described above is not profitable and the latter ensures that

an agent who has made a breakthrough prefers to report it immediately rather than “hide”

it for some period of time.

We present some preliminary results about the structure of the optimal mechanism in the

intangible progress setting and formulate several conjectures. For instance, the “short-leash,
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long-leash” scheme that the principal implements under tangible progress is unlikely to be

optimal when progress is intangible. This is because long second-stage deadlines necessitate

large first-stage severance payments in order to provide incentives for the agent to truthfully

report lack of progress. Severance payments, of course, confer information rents to the agent

at the principal’s expense. Thus, we conjecture that when progress is intangible the optimal

mechanism involves a relatively long initial stage and a relatively short final stage, reversing

the optimal structure under tangible progress.

In the next section, we discuss related literature. In Section 2, we present a single-stage

version of the model as a benchmark. In Section 3, we consider a two-stage project with

tangible progress. Section 4 analyzes a two-stage project with intangible progress. Section 5

discusses several extensions. Section 6 concludes.

1.1 Related Literature

There is a large and growing literature studying the optimal provision of incentives in dynamic

environments. A non-exhaustive list includes Green (1987), Spear and Srivastava (1987),

Phelan and Townsend (1991), Quadrini (2004), Clementi and Hopenhayn (2006), DeMarzo

and Sannikov (2006), DeMarzo and Fishman (2007) and Sannikov (2008). Our single-stage

model benchmark is most similar to Hopenhayn and Nicolini (1997), who looks at incentive

provision to search for employment while simultaneously providing unemployment insurance,

and Mason and Välimäki (2011) who consider the role of commitment in dynamic moral

hazard problem.4 A novel aspect of our model is that we explicitly consider environments

with multiple sequential stages.

Our multistage environment with tangible progress is closely related to Biais, Mariotti,

Rochet, and Villeneuve (2010), who analyze a model in which large (observable) losses may

arrive via a Poisson process, and an agent must exert unobservable effort in order to minimize

the likelihood of their arrival. They allow for investment and characterize firm dynamics as

well as asymptotic properties. Our model differs in that it (i) features only a finite number of

arrivals, (ii) the arrival of a breakthrough is “good news”, and (iii) we consider the case in

which arrivals are unobservable to the principal. Several other recent papers that involve

observable Poisson arrivals include Hoffmann and Pfeil (2010), Piskorski and Tchistyi (2011),

DeMarzo, Livdan, and Tchistyi (2014).

When progress is intangible, the agent has access to private information that is persistent.

Dynamic contracting with persistent private information has been studied in discrete type

settings by Fernandes and Phelan (2000), Battaglini (2005), Tchistyi (2013), and with a

4See also Lewis (2012) that considers a delegated search model in which the optimal contract includes a
deadline and a bonus for early completion.
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continuum of types using a first order approach by Williams (2011) and Edmans, Gabaix,

Sadzik, and Sannikov (2012). Our solution approach is most similar to Zhang (2009). One

key difference in our environment is the presence of public (contractible) information (i.e., the

ultimate success of the project), which is informative about the agent’s underlying private

information. Another difference from Zhang (2009), is that the transitions probabilities

across states are endogenously determined in our setting. Optimal dynamic mechanisms

are explored in Board (2007), Eso and Szentes (2007), Bergemann and Valimaki (2010) and

Pavan, Segal, and Toikka (2014) among others. One of our key questions is to understand

the value of communication (i.e., using a direct revelation mechanism).

There is also an extensive literature that studies the role of learning in contractual

environments and how to incentivize experimentation in bandit type problems. Examples

include Levitt and Snyder (1997) , Inderst and Mueller (2010), Manso (2011), Hörner and

Samuelson (2014), Halac, Kartik, and Liu (2013). In our model, there is no learning or social

value of information, the principal only uses information for the sole purpose of providing

stronger incentives to the agent.

Holmstrom and Milgrom (1991) and Laux (2001) look at settings with simultaneous tasks

whereas in our setting the project involves stages that must be completed sequentially. Lerner

and Malmendier (2010) investigate the role of property rights and contractibility in the design

of research agreements within a multi-task setting and empirically document more prevalent

use of termination options in settings where effort is not contractible.

Relational contracting and environments in which evaluations are either subjective or

privately observed by the principal have been studied by Baker, Gibbons, and Murphy (1994),

Baker (2000), Macleod (2003), Levin (2003), Fuchs (2007), and Maestri (2012). The primary

difference in these models is that the principal has subjective information and must decide

how to optimally use it whereas, in our setting, the agent endogenously acquires private

information over time and the principal must decide how best to elicit it.

2 Single-Stage Project

A principal (she) contracts with an agent (he) to undertake a project over a potentially

infinite time horizon. Both parties are risk-neutral and do not discount the future.5 The

principal is not financially constrained, while the agent has no financial resources and is

protected by limited liability.6

5This assumption is for expositional purposes. Incorporating a common discount rate, r > 0, into the
model is a fairly straightforward exercise. Throughout the paper, we remark on when results differ when
discounting is incorporated.

6Without financial constraints and limited liability for the agent, the first-best outcome can easily be
sustained by simply “selling” the project to the agent. However, this solution is practically infeasible for
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The project requires funding from the principal, at flow cost c, in order to operate.

Provided the principal has not yet terminated the project, the agent chooses whether to

divert funds for private benefit at each instant of time. That is, the agent chooses an action

at ∈ [0, 1] which represents the fraction of the funds that are invested in the project and

(1− at) represents the fraction that are diverted for benefit. The arrival rate of success is

then given by λat. Thus, if the agent does not divert any funds over an interval of length

∆, then the probability that the project is successful during the interval is 1− e−λ∆. If the

principal terminates the project, the arrival rate of success is zero forever after. Upon the

arrival of success the principal realizes a benefit b > 0, makes any outstanding promised

payments to the agent and the game ends. The agent receives no intrinsic benefit from a

success, he benefits solely from the compensation delivered by the principal.

The principal cannot observe whether the agent invests or diverts the funds she supplies.

If the agent diverts c dollars for a period of length ∆ then he receives a private benefit of φc∆,

where φ ∈ (0, 1) measures the severity of the agency problem.7 For notational convenience

define µ ≡ 1
λ

to be the expected amount of time before experiencing success if the agent

invests indefinitely. We assume the parameter values satisfy

b− cµ > φcµ. (1)

Intuitively, the principal (essentially) must give the agent φc per period in continuation

value in order to prevent diversion in addition to the flow cost c of investment. Equation

1, therefore, ensures that the principal’s benefit, b, outweighs her expected cost (1 + φ)cµ .

Note that this inequality is stronger than would be needed in a first-best situation where the

principal ran the project herself, namely b− cµ > 0. Further, note that the first-best policy

(absent the agency conflict) is to invest indefinitely since the expected flow benefit is larger

than the cost.

At t = 0, the principal offers the agent a contract. If the agent rejects the contract

offer, then both parties receive their outside options. A contract is a triple, and denoted

Γ = {a,W, T}, where at is the recommended action to the agent at date t, dWt is a monetary

payment made to the agent at time t, T is a termination rule (perhaps random or infinite).

Limited liability requires that payments to the agent must be non-negative, dWt ≥ 0.

Given a recommended action profile, a = {at, 0 ≤ t ≤ ∞} let τ denote the random variable

for the arrival time of success.

most of the relevant applications under consideration.
7We model the agency environment as a cash flow diversion (CFD) problem. It is well-known (e.g.,

DeMarzo and Fishman (2007)) that CFD models are formally equivalent to hidden effort models in which
the agent must be incentivized to exert effort.
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The principal faces a constrained maximization problem. Her objective function is

max
{τ,W,a}

Ea
[
b · 1{τ≤T} −

∫ T∧τ

0

(cdt+ dWt)

]
Subject to the incentive compatibility constraint

a ∈ arg max
ã

Eã
[∫ T∧τ

0

(φc(1− ãt)dt+ dWt)

]
,

and the participation constraint

Ea
[∫ T∧τ

0

(φc(1− ãt)dt+ dWt)

]
≥ U. (2)

Lemma 2.1. For a single-stage project, there exists a solution to the principal’s problem

such that (i) T is deterministic and finite, (ii) at = 1 for all 0 ≤ t ≤ T , and (iii) dWt = 0

for all t 6= τ .

Lemma 2.1 narrows the set of contracts one needs to consider and simplifies the formulation

of the principal’s problem. Following standard techniques, we formulate it recursively as a

dynamic programming problem where the state variable is given by the agent’s continuation

value. For any t < T , let Ut be the expected continuation utility of the agent under the

contract if he has not succeeded by date t, let w(Ut) denote the promised utility (i.e., monetary

payment) to the agent for success, and let V (Ut) denote the principal’s expected continuation

payoff. Given any incentive compatible contract, for t ≤ T , the agents continuation value

evolves according to8

λUt = λw(Ut) + U ′t . (3)

The incentive compatibility constraint, which ensures that locally the agent prefers investing

to diverting funds for any t ≤ T is given by

λ (w(Ut)− Ut) ≥ φc. (4)

Finally, that the project is terminated at T implies that both principal and agent get their

respective outside options at that point. We normalize both outside options to zero for

notational convenience

V (UT ) = 0, UT = 0. (5)

Note that (3)-(5) immediately implies that Ut ≥ 0 for all t ∈ [0, T ) and hence the agent’s

8Expression (3) as well as all other differential equations appearing below can be derived as the limit of a
discrete-time model in which the probability of succeeding in a period of length ∆t is λ∆t.
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participation constraint is satisfied. The principal’s value function, V (Ut), solves the Bellman

equation

λV (Ut) = max
W,U ′t

λ(b− w(Ut))− c+ V ′(Ut)λ(Ut − w(Ut)) (6)

s.t. (IC1)-(5).

Note that V ′(u) ≥ −1 for all u, since the principal can always make direct monetary payments.

It is then straightforward to show that the incentive compatibility condition, equation (IC1),

must bind with equality for all Ut; if it were slack, the principal could simply reduce w and

increase T . This modification leads to a strict improvement in the principal’s payoff. That

(IC1) binds everywhere pins down w. Moreover, it implies that prior to a breakthrough,

the agent’s continuation utility falls proportional to time: U ′t = −φc. Combining this fact

with the boundary condition in equation (5), equation (6) implies that the principal’s value

function is given by

V ∗(u) =
(
b− c

λ
− u
)
−
(
b− c

λ

)
e−λu/φc. (7)

The first term on the right-hand side represents the first best value of the project net of

delivering u to the agent. The second term is the agency cost required to prevent cash flow

diversion. Notice that V ∗(u) is strictly concave, which confirms that randomization over the

termination deadline is suboptimal.

The only choice left to the principal is to select the optimal initial utility for the agent, or

(equivalently) the optimal termination date of the contract. Hence, she solves

max
u∈R+

V ∗(u). (8)

Proposition 2.2 (Single-Stage Optimal Contract). The solution to the principal’s problem

can be implemented with a deadline

T ∗ ≡ µ ln

(
b− cµ
φcµ

)
, (9)

and a reward payment for success that is decreasing over time according to wt = φc(µ+T ∗−t).9

The parametric restriction in (1) ensures that T ∗ > 0. Note that the optimal deadline

is increases as the agency problem becomes less severe, with limφ→0 T
∗ =∞. That is, the

(second-best) outcome and principal payoffs converge to first-best as the agency conflict

goes to zero. As we noted earlier, if the principal could run the project herself at the same

9 Interestingly, the same expression (9) holds if the principal and agent both discount the future at rate
r > 0.
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cost, then her optimal policy is to invest c until the project is successful regardless of how

long it takes. Hence, the finite deadline T ∗ exists only to mitigate agency costs. Because

success essentially ends the contractual relationship, the agent’s reward upon succeeding

must compensate him not only for the instantaneous incentive to divert funds, but for the

expected value of the option to divert funds for the rest of the contractual relationship. The

deadline T ∗ ensures that the option value to the agent of diverting funds is finite and falls

over time.

3 Two-Stage Project with Tangible progress

With the single-stage benchmark in hand, let us now introduce a second stage. Henceforth,

suppose the agent must make two breakthroughs in order for the principal to realize the

project benefits (i.e., the principal obtains benefit b only after the second breakthrough has

been achieved). We will distinguish between the first stage of the project (before the first

breakthrough) and the second stage (after the first breakthrough and before the second). To

simplify notation and to facilitate comparison, we assume that λ, c, and φ are the same in

both stages. Finally, in this section we assume that progress is tangible. That is, the time

of the first (and second) breakthroughs is observable to both players and can be contracted

upon. We take up the case of intangible progress in Section 4.

As before, a contract consists of Γ = {a,W, T}, where each of the elements can depend on

the entire history, which we denote by ht, is summarized by the triple (t, τ1, τ2): t denotes the

total time elapsed; τs ∈ ∅ ∪ [0, t) denotes the elapsed time in stage s at which a breakthrough

arrives, where τs = ∅ indicates that a breakthrough in stage s has not occurred.

Since progress is tangible (i.e., there is no persistent private information), the optimal

contract can be derived recursively using the state variable, (s, Ut), where s denotes the

current stage and Ut denotes the promised utility to the agent. Analogous to Lemma 2.1,

one can show that the optimum can be implemented without cash flow diversion (i.e., a = 1

prior to termination). For any Γ, we let w(s, u) denote the implied transitional promised

utility delivered to the agent conditional on realizing a breakthrough in stage s when current

promised utility is u. Similar to the single-stage case, providing incentives not to divert

requires that

λ (w(s, Ut)− Ut) ≥ φc. (IC)

Unlike Lemma 2.1, when multiple stages remain, the use of random project termination or

soft deadlines may be required to achieve the optimum. Let σ(s, u) denote the rate at which

the project is terminated (i.e., σ(s, u) = limdt→0
Pr(T∈(t,t+dt)|s,u)

dt
). Omitting arguments, the
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promise keeping condition requires

U ′t = (λ+ σ)Ut − (λw + σP ), (PK)

where P denotes the severance payment to the agent upon termination.

We solve for the optimal contract by backward induction on the number of stages remaining.

Note the optimal contract in the second stage (conditional on u) is the same as that from

the single stage problem. Specifically, it involves (i) w(2, Ut) = φcµ+ Ut and (ii) U ′t = −φc,
until Ut = 0 at which point the project is terminated. We therefore take the second stage

value function as given and use it to solve the principal’s problem in first stage. To do so,

define V2(u) ≡ V (u) (from equation (7)) to be the principal’s value function in the second

stage. The principal’s value function in the first stage solves

λV1(u) = max
{w,σ,P}≥0

λV2(w)− c− σ(V1(u) + P ) + V ′1(u)U ′t (10)

s.t. (IC), (PK)

Note that the principals objective is weakly decreasing in P and any contract in which P > 0

can be weakly improved upon by increasing w and setting P = 0 without violating either

constraint (recall that V ′2 ≥ −1). Therefore, as in Section 2, using a severance payment

is suboptimal. Moreover, randomization is optimal (i.e., σ > 0) if and only if the value

principal’s value function has a convex portion when randomization is not permitted. We

can therefore proceed by assuming σ(1, u) = 0 for all u and then check whether the resultant

value function is concave.

We adopt a conjecture and verify technique by supposing that (IC) always binds in stage 1

and then verifying that this cannot be improved upon. The supposition is w(1, u) = u+ φcµ,

which combined with (PK) implies U ′t = −φc. Hence, our candidate V1 satisfies

λV1(u) = λV2(u+ φcµ)− c+ V ′1(u)(−φc),

which has a solution of the form

b− 2c

λ
− u− λu

φc

(
b− c

λ

)
e−(1+ λ

φc
u) +K1e

− λ
φc
u.

The terminal boundary condition V c
1 (0) = 0, gives K1 = 2c−λb

λ
. And thus we are left with a
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Figure 1: This figure illustrates the value functions and optimal dynamics for the case when (12) holds.
Starting from the red asterisk, the continuation values follow the left pointing arrows on the red line
until either (1) a breakthrough occurs (e.g., at the black diamond) at which point they jump upward to
the blue line as indicated by the solid arrow or (2) the origin is reached at which point the project is
terminated.

candidate value function

V c
1 (u) =

(
b− 2c

λ
− u
)
−
(
b− 2c

λ

)
e−

λ
φc
u − λu

φc

(
b− c

λ

)
e−(1+ λ

φc
u). (11)

Similar to the value function in equation (7), the first term on the right-hand side above is

the first-best value of the project net of delivering u to the agent, while the remaining terms

represent the (expected) agency costs. Given the closed form expression for the candidate

value function, it is easy to check for its concavity.

Lemma 3.1. V c
1 is concave for all u ≥ 0 if and only if

λb ≥ 2c(e− 1)

e− 2
. (12)

When V c
1 is concave, the principal cannot benefit from randomizing. Therefore, if (12) holds

then (11) characterizes the principal’s value function in the first stage under the optimal

contract.

Figure 1 illustrates the value function and optimal dynamics in this case. The optimal

incentive scheme can be implemented with a remarkably simple structure. At the beginning

of the contract the principal sets two clocks, a short one with length T1 and a long one with
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length µ+T1. If the agent has not made a breakthrough by T1, then the project is terminated.

On the other hand, if he makes the first breakthrough at τ1 < T1, then he gets the remaining

time on the long clock, µ+ T1 − τ1, to make the second breakthrough. Thus he is rewarded

for an early first-stage breakthrough with more time to make a second-stage one, and he is

rewarded by making an early second-stage breakthrough with a higher cash payment. The

details are summarized in the following result.

Proposition 3.2. Suppose that (12) holds. Then, the optimal contract can be implemented

with a hard deadline in the first stage T ∗1 , a conditional (hard) deadline in the second stage

T ∗2 (τ1) = µ+ T ∗1 − τ1 and the reward schedule w(τ1, τ2) = φc(µ+ T ∗2 (τ1)− τ2) such that:

• If the agent is not successful in the first stage prior to T1, then the project is terminated.

• If the agent succeeds in stage 1 at τ1 < T1, he is given additional time T ∗2 (τ1) to complete

the second stage. If the agent does not complete the second stage prior to prior to T2(τ1),

then the project is terminated.

• The agent is rewarded only if the project ultimately succeeds and in the amount w(τ1, τ2).

3.1 Soft Deadlines

If (12) does not hold, then there exists a ū such that V c
1 is convex on [0, ū]. To characterize

the principal’s value function for this case, we find the steepest possible line through the

origin that intersects V c
1 . That is, let

uS = arg max
u

V c
1 (u)

u
.

Proposition 3.3. If (12) does not hold, then the principal’s value function under the optimal

contract is given by V1(u) =
V c1 (uS)

uS
u for u ∈ [0, uS] and V1(u) = V c

1 (u) and for u ≥ uS.

In this case, randomizing over termination dates is needed to optimally provide incentives.

That is, the principal gives the agent a soft deadline, after which the project may be terminated,

or it may not. Note that a breakthrough in the first stage has no value to the principal

without its counterpart in the second stage. Thus, the soft deadline can be useful because it

allows the principal to provide incentives in the first stage without further reducing the second

stage deadline. Conditional on not terminating the project, the principal effectively “stops

the clock”, thus preserving the the probability of ultimate success conditional on reaching

the second stage.
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Figure 2: This figure illustrates the value function and dynamics in the first stage when (12) does not
hold. Starting from the red asterisk, the continuation values follow the left pointing arrows on the red
line until either (1) a breakthrough occurs at which point they jump upward as in Figure 1 (not pictured
here) or (2) the blue dot is reached at which point the principal randomizes between termination (a jump
to the origin) and remaining at the blue dot. Conditional on making a breakthrough from the blue dot,
continuation values jump to the same point regardless of the time at which the breakthrough occurs.

Proposition 3.4. Suppose that (12) does not hold. Then, the optimal contract can be

implemented with a soft deadline T ∗∗1 in the first stage, a conditional (hard) deadline in the

second stage T ∗∗2 (τ1) = µ + 1
σ

+ (T ∗∗1 − τ1)
+, a termination rate σ and the reward schedule

w(τ1, τ2) = φc(µ+ T ∗∗2 (τ1)− τ2) such that:

• If the agent does not have a breakthrough in the first stage prior the soft deadline, then

the principal (randomly) terminates the project at rate σ.

• If the agent has a breakthrough in the first stage at τ1, he is given additional time

T ∗∗2 (τ1) to complete the second stage. If the agent does not succeed in the second stage

prior to T ∗∗2 (τ1), then the project is terminated.

• The agent is rewarded only if the project ultimately succeeds prior to being terminated

and in the amount w(τ1, τ2).

3.2 Deadlines: First stage versus Second stage

One natural question is whether the agent should have more time to make a breakthrough in

the first stage or in the second stage.

Proposition 3.5. Conditional on making a breakthrough in the first stage, the expected

amount of time the agent has to complete the second stage is strictly larger than the (expected)

amount of time the agent has to complete the first stage.
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In other words, the principal keeps the agent on a relatively “short leash” until he makes

the initial breakthrough. After that, he is granted a longer horizon to bring the project to

fruition. This result seems intuitive but it depends critically on the tangibility of progress.

When the principal uses only hard deadlines, conditional on an ultimate success, the total

payment to the agent depends only on the total time to completion (i.e., τ1 + τ2). This

same feature is not true when the principal uses a soft deadline. Specifically, conditional

on not being terminated prior to the first breakthrough, the reward is constant over any

τ1 > T ∗∗1 beyond when the principal starts randomizing. Hence, for any such τ1 the agent

is compensated as if the total time to completion was T ∗∗1 + τ2 regardless of when the first

breakthrough actually occurred.

4 Intangible Progress

We now suppose that progress is intangible. That is, the first breakthrough is not observed by

the principal and hence the time at which it occurs, τ1, cannot be directly contracted upon.

We maintain that the second breakthrough is tangible (i.e., the agent can neither falsify nor

hide the ultimate success of the project). First, we consider a limited space of contracts in

which communication between the principal and agent is not possible. This specification

seems quite natural for certain situations in which communicating may be prohibitively

difficult or costly. Furthermore, it is not obvious that being able to condition on self reports

from the agent has any value to the principal. After all, the only reason for the principal

to use this information is to strengthen the agents incentives and reduce the rents he can

extract. And given that the agent must be provided with incentives to report truthfully,

whether this information can be used in a meaningful way is one of the key questions we wish

to answer. In Section 4.2, we present some preliminary analysis on this point.

4.1 No Communication

Suppose that there is no communication between the principal and the agent and consider

any reward scheme wt (for ultimate success) and deterministic termination rule, T . When

termination is near and the agent has not yet progressed to the second stage (i.e., for t1 close

to T ), it becomes extremely costly for the principal to satisfy incentive compatibility.

Lemma 4.1. For any bounded reward scheme w and deterministic termination rule, T , there

exists a t̄ < T such that if the agent has not progressed to the second stage by t̄, he will divert

the entire investment (i.e., at = 0) for all t ∈ (t̄, T ).

The intuition is actually quite straightforward. A simple calculation yields that

Pr(τ2 ≤ T |τ1 > t1) = 1− eλ(T−t1) (1 + λ(T − t1)) .

14



As (T−t1)→ 0, the above expression (and hence the benefit of investing cash flows) converges

to zero at a rate proportional to (T − t1)
2, whereas the benefit of cash flow diversion is

proportional to (T − t1), implying the agent will eventually prefer diversion as long as W is

bounded.

Lemma 4.1 suggests several possibilities. Either, the optimal contract without commu-

nication involves positive probability of cash flow diversion, or, it involves a more complex

termination rule in which the principal randomizes over the time at which termination occurs.

This suggests there is a potential for value from communication.

To see why, consider the case of cash flow diversion and suppose that upon reaching t̄,

the principal asks the agent “Have you made a breakthrough yet?” To induce the agent to

report truthfully, the principal promises to make a “severance” payment to the agent of

P = φc(T − t̄) if he answers “no” and continue funding the project until T with the same

reward scheme if he answers “yes”. This induces truthful reporting and does not change

the overall probability of ultimate success because the agent who accepts the severance

payment would have otherwise been diverting funds for private benefit. Further, it lowers the

principal’s expenditure by (1− φ)c(T − t̄) conditional on the agent reporting “no”. Thus,

this simple form of communication with the agent strictly improves the principal’s expected

payoff. From this argument, it appears there is in fact a role for communication.10

4.2 With Communication

Let us now introduce the possibility of communication more generally. By the Revelation

Principle, it is without loss to look at contracts in which the agent truthfully reports progress

if and when it occurs. We let τ̂1 denote the time at which the agent self-reports his first

breakthrough. To induce truthful reporting requires two sets of constraints, which we refer to

as the no-false-progress (NFP) and no-hidden-progress (NHP). Let U1(t1) denote the agent’s

continuation utility in the first stage of the project and U2(τ1, t2) denote his continuation

utility after truthfully reporting a breakthough at τ1 and after a period of length t2 has

elapsed in second stage since the report.

To get a flavor for the implications of the truth-telling constraints, we note that the

solution to the setting with tangible progress (characterized in Section 3) will not induce

truthful reporting. Specifically, the agent would falsely report progress at T ∗1 because this

would raise his payoff by at least φcµ (in violation of NFP).

The class of contracts under consideration consists of a first stage deadline, T1, a schedule

of second-stage deadlines conditional on the agent’s report, T2(τ̂1), a severance payment if the

10We conjecture, though it remains to be shown, that randomized termination rules can also be improved
upon with communication.
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first-stage deadline is reached without a reported breakthrough, P , and a reward schedule

W (τ̂1, τ2). Making a severance payment at the second deadline is not optimal because it

undermines incentives for investment and truthful reporting. We conjecture (and intend to

prove) that this class is without loss of generality with respect to the set of feasible payoffs.

Diverting cash flows is an inefficient form of compensation. That is, the principal can

compensate the agent more efficiently through direct payments. Hence, it is again without

loss to focus on contracts in which the agent does not divert cash flows. The contract must

satisfy the analogous conditions to those in the case of tangible progress. The main difference

is that at the deadline T1, the agent receives the severance payment, resulting in the boundary

condition

U1(T1) = P. (BC1)

In addition and as mentioned earlier, the contract must satisfy truth-telling constraints.

No False Progress

Suppose the agent falsely reports a stage-one breakthrough at some t < T1, and let Ũ2(t, t2)

be his off-path value function for falsely reporting progress at t and has yet to make a

breakthrough after an additional period of length t2. The no-false-progress constraint is

written

U1(τ1) ≥ Ũ2(τ1, 0), ∀τ1 ∈ [0, T1]. (NFP)

That is, the agent must prefer not to falsely report a breakthrough at any point in the first

phase of the project. A few key observations are as follows. First, combining (IC1) and (NFP)

yields

U2(τ1, 0) ≥ φcµ+ Ũ2(τ1, 0).

Next, note that one option available to the agent after falsely reporting progress is to divert

funds for the remainder of the contract, so

Ũ2(τ1, 0) ≥ φcT2(τ1). (13)

Combining this with the previous inequality yields

U2(τ1, 0) ≥ φc(µ+ T2(τ1)). (14)

This says that the agent receives information rents in the second stage of the project; unlike

in the observable-progress setting, IC2 does not always bind.
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The agent’s off-path value function satisfies the HJB equation

dŨ2(τ1, t)

dt
= −φc−max

at
at

(
λ
(
U2(τ1, t)− Ũ2(τ1, t)

)
− φc

)
. (15)

Lemma 4.2 (Off-Path Behavior). If (14) binds, then

Ũ2(τ1, t2) = φc(T2(τ1)− t2). (16)

That is, at2 = 0 for all t2 ∈ [0, T2(τ1)).

Because there is no reason to pay the agent more than necessary, we conjecture that (14)

will bind. Then, Lemma 4.2 says that following a false report, the optimal strategy for the

agent will be to divert funds for the rest of the contract, implying that (NFP) can be recast

as

U1(τ1) = φcT2(τ1), ∀τ1 ∈ [0, T1]. (17)

Moreover, using a similar logic, we conjecture (IC1) will bind, yielding

U1(t1) = P + φc(T1 − t1), ∀t1 ∈ [0, T1].

Combining this with the previous equality gives

T2(τ1) = P/φc+ T1 − τ1. (18)

That is, putting additional time on the second clock requires a larger severance payment in

order to keep the agent from falsely reporting progress and then diverting funds until the

second deadline.

No Hidden Progress

The no-hidden-progress constraint says that the agent must always prefer reporting a first-stage

breakthrough to hiding it for any length of time while diverting funds

U2(τ1, 0) ≥ φc(τ̂1 − τ1) + U2(τ̂1, 0), ∀τ1 ∈ [0, T1), and τ̂1 ∈ (τ1, T1]. (NHP)

Note that if (IC1) and (14) bind, then we have

U2(τ1, 0) = P + φc(µ+ T1 − τ1). (19)
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This automatically satisfies (NHP) – so the no-hidden-progress constraint will not be active

provided that (IC1) binds and (14) holds with equality.

Preliminary Analysis of the Optimal Contract with Communication

The principal’s contract design problem is to maximize her expected payoff by choice of: T1,

T2(τ1), P , and W (τ1, τ2) subject to the constraints identified above. As noted above (IC1)

and (NFP) imply that (IC2) must be slack at least some of the time, hence we will relax this

constraint and then check that it is satisfied in the relaxed problem.

We now proceed by assuming (IC1), (NFP), and (14) bind with equality, in which case,

as shown above, (NHP) is redundant. At the beginning of the second stage the principal’s

value function is

V2(τ1, 0) =

∫ T2(τ1)

0

λ(b− cµ−W (τ1, τ2))e−λτ2 dτ2

= (b− cµ)
(
1− e−λT2(τ1)

)
− U2(τ1, 0)

= b− cµ)
(
1− e−λT2(τ1)

)
− φc(µ+ T2(τ1)),

where the last line follows from (14).

Similarly, at the beginning of the first stage the principal’s value function satisfies

V1(0) =

∫ T1

0

λ(V2(τ1, 0)− cµ)e−λτ1) dτ1 − Pe−λT1).

Substituting for V2(τ1, 0) from the previous expression and for T2(τ1) from (18), and performing

the integration yields

V1(0) = (b− 2cµ)
(
1− e−λT1

)
− λT1(b− cµ)e−λ(P+T1) − (P + φcT1), (20)

which must be maximized with respect to T1 and P . Note that W does not appear in the

problem. Hence, we must also find a reward schedule that implements the solution; i.e., one

that satisfies (IC2) and binding (14)

u2(τ1, 0) =

∫ T2(τ1)

0

λW (τ1, τ2)e−λτ2 dτ2 = φc(µ+ T2(τ1)). (21)

Lemma 4.3 (Reward Schedule). Suppose that (IC1), (NFP), and (14) bind with equality.

Then, the following reward schedule implements any T1 and T2(τ1) = P/φc+ T1 − τ1

W (τ1, τ2) = φc

(
µ2

T2(τ1)
eλτ2 + µ+ T2(τ1)− τ2

)
. (22)
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Proposition 4.4 (Optimal Two-Stage contract with Self-Reported Progress). Suppose that

(IC1), (NFP), and (14) bind with equality. A necessary condition for a strictly positive first

period deadline is

b− 2cµ > φcµe. (23)

If the optimal first period deadline is strictly positive then it is strictly bigger than µ and the

optimal severance payment is given by

P ∗ = −µ ln

(
b− 2cµ

b− cµ

)
. (24)

The above analysis suggests that a positive severance payment will generally be part of

the solution when communication is possible. Providing the agent with incentives not to

falsely report progress via a severance payment is, however, costly to the principal. For this

reason, it is probable that the optimal schedule of second-stage deadlines will be relatively

short as compared with the first-stage deadline. In other words, once the agent reports the

first breakthrough, he will not have much time before he must deliver the final project. This

would contrast sharply with the case of observable progress where the first deadline is always

shorter than the second (i.e., Proposition 3.5).

Except for a couple of technical proofs, the analysis of the setting with observable progress

explored in Sections 2 and 3 is largely complete. The analysis of unobservable progress

presented in Sections 4.1 and 4.2 is somewhat preliminary. In particular, we aim to answer

the following set of questions.

1. Intangible Progress. Thus far, we have restricted the class of contracts we consider.

Lemmas 2.1 as well as some other preliminary analysis suggest that a general optimal

contract for the principal belongs to this class, but this needs to be rigorously established.

Further, we need to verify the active constraints and derive both necessary and sufficient

conditions for a strictly positive first period deadline and severance payment.

Without communication, we have yet to determine the optimal contract. This is a

critical step in understanding the value of communication and may help shed light on

the design of real-world incentive schemes as well as the optimal schedule for reporting

when doing so is costly (see below).

2. Tangible vs Intangible. We have conjectured that the second deadline will be short

when progress is intangible relative to when it is tangible, but this (of course) must be

formally demonstrated. More generally, we are interested in how the nature of progress

affects the incentive scheme. Presumably, the agent will extract additional rents when
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the progress is intangible, but the extent to which total surplus is affected remains an

open question.

3. Value of Communication. An interesting set of questions involves comparing the optimal

contract without reports to the optimal one with self-reported progress. Specifically,

how much does the principal gain by inducing the agent to truthfully report his progress

and in which environments does this matter the most?

5 Discussion and Extensions

After developing a deeper understanding on the role of progress in two-stage projects and the

value of communication, there are a number of promising avenues to explore. A non-exhaustive

list of these potential directions is discussed below.

N-Stage Projects. An obvious and important extension is to consider projects with more

than two stages. For example, in the case of observable progress it would be edifying to know

whether the result given in Proposition 3.5 that the agent is granted more time to complete

each successive phase of the project is robust.

With intangible progress, each stage (save the last) will require a severance payment.

Taking the limit as N →∞ can answer another interesting set of questions.11 As N becomes

arbitrarily large, the importance of an individual stage becomes less relevant. Nevertheless,

progress will remain a useful monitoring device for the principal and we expect the tangibility

of progress to continue to play an important role in determining the optimal incentive scheme.

We are curious to see how the respective limits compare to the (stationary) Brownian cash

flow diversion models (e.g., DeMarzo and Sannikov, 2006).

Asymmetric Stages. In reality, different stages are unlikely to be symmetric. In some

environments, progress may be more rapid but more expensive in later stages (λ2 > λ1 and

c2 > c1). In others, it may be easier for the agent to divert funds in early stages (φ1 > φ2).

More generally, the parameters λ, c, and φ, should be allowed to vary across stages of

the project. Performing comparative statics with respect to these parameters will provide

valuable insights regarding the design of optimal incentive schemes across a broader class of

applications. Also, when progress is intangible and stages are asymmetric (e.g., φ1 > φ2),

(NHP) will likely bind, so that the agent must be given incentives not to hide an early

breakthrough.

Projects in Teams. Consider the two-stage project with tangible progress and now suppose

the principal has the ability to split the individual stages across two different agents. Is this a

11To maintain positive and finite project value, λ→∞ at a rate proportional to N .
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preferable arrangement for the principal to using a single agent for both stages (as in Section

3). One observation is that even when using two agents, the principal will give less time

to the first agent and more time to the second agent conditional on a breakthrough in the

first stage. This is because a success in the first stage is worth less to the principal than the

ultimate success. More generally, we plan to explore under what conditions is it a good idea

to break up different stages across different agents and under what conditions should they be

combined.

Heterogeneous Agents. Agents might differ in a number of dimensions not readily observed

by the principal. For instance, some might be more talented (higher λ) and/or more honest

(lower φ). Consider, for example, a setting with observable progress where there are two

possible types of agent, λH > λL. Here, the frequency of successes can be used by the

principal as a screening instrument in order to help separate types and mitigate payment of

information rents. In a setting of unobservable progress it would be especially interesting to

study a situation where agents receive intrinsic private benefits from completion of the project,

which they also privately observe. Calibrating the optimal incentive scheme to account for

such unobserved heterogeneity is a challenging but potentially fruitful avenue for study.

Monitoring and Verification. How frequently should the principal monitor the progress of

the agent? How much should a principal invest in a technology that can verify progress? How

should it be optimally used? Should the principal use experts in order to verify reports from

the agent. Should the experts be “inside” the organizations or should they be independent

contractors? An obvious advantage of such technology is to relax the no-hidden-progress

and no-false-progress constraints. The trade-off is that monitoring and verification is costly:

indeed the principal may still have to provide incentives to the verifying experts to induce

them to exert effort and report truthfully. Further exploration of these questions may provide

insights as to what type of projects should be conducted inside the organization and which

ones should be outsourced.

Costly Reporting. Our model assumes that there are no costs associated in sending

messages from the agent to the principal. But for many relevant applications, communicating

with the principal (e.g., submitting progress reports) may be a costly and time consuming

exercise. In this case, the principal will also need to decide on a schedule for progress reports

and in doing so, trade off the ultimate success of the project for more information about its

current progress.

Limited Commitment. Thus far, we have allowed the principal to commit to a long-term

contract that can be conditioned on the entire past performance (or self reports). In some

applications, especially when breakthroughs occur infrequently (e.g., basic research), it is
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difficult to justify this assumption. It might be more reasonable to think that the principal

has only a limited form of commitment. For example, the principal can commit to a length

of time for which she agrees to fund the project (e.g., a three year grant), but cannot commit

to whether (or how much) additional funding she will provide at the end of the grant. This

is an important consideration that we believe can be addressed within our framework.

6 Conclusion

We study the optimal provision of incentives in a dynamic multistage agency setting. When

breakthroughs are tangible, they serve as a useful monitoring device, and the principal

controls the agents incentives through a sequence of increasing deadlines and a reward scheme

that decreases over time. When breakthroughs are intangible, communication with the agent

(i.e., self-reported progress) can have value to the principal. However, the principal must

provide incentives for truthful reports, which requires the use of payments upon project

termination, which we have interpreted as severance pay.
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Appendix

Several of the proofs below are incomplete and/or contain only a sketch of the argument.

Proof of Lemma 2.1. Cash flow diversion is an inefficient form of compensation. Hence, any

contract in which the as < 1 over some interval can be improved upon by increasing the

promised utility for success such that the agent will be induced to and/or direct monetary

payments. Since both principal and agent are risk nuetral and do not discount cash flows, it

is without loss to make all payments at the end of the project. Further, any payment upon

termination distorts the agents incentives.

Proof of Proposition 2.2. Noting that V (u) is concave in u we can differentiate and get

that u∗0 =
φc log(λb−cφc )

λ
. Since U ′t = −φc, this implies that the time of project termination is

T ∗ = 1
λ

log
(
λb−c
φc

)
. That w is of the stated form follows from noting that (4) binds and

substituting in Ut = φc(T ∗ − t).

Proof of Lemma 3.1. Twice differentiating V c
1 (u) gives

d2

du2
V c

1 (u) =
λe−

λu
cφ
−1 (cλ(u− (e− 2)bφ)− bλ2u+ 2(e− 1)c2φ)

c3φ3
(25)

The term inside the parentheses is strictly decreasing in u given (1). Therefore, the function

is concave for all u ≥ 0 if and only if d
du2
V c

1 (0) ≤ 0. Evaluating (25) at u = 0, we get that

sign

(
d

du2
V c

1 (0)

)
≤ 0 ⇐⇒ sign

(
λ(2(e− 1)c− (e− 2)bλ)

ec2φ2

)
≤ 0.

The second inequality is equivalent to (12).

Proof of Proposition 3.2. That the optimal contract can be implemented with the two dead-

lines follows from U ′t = −φc, that continuation utility jumps up by φcµ conditional on a

breakthrough and that the project must be terminated when Ut = 0. That w is of the stated

form follows from similar arguments to those given in the proof of Proposition 2.2.

Proof of Proposition 3.3. By Lemma 3.1, when (12) does not hold, there exists a ū > 0 such

that V c
1 is convex on [0, ū). Standard arguments (e.g., DeMarzo and Fishman (2007)) imply

that under these conditions it is optimal to randomize.

Proof of Proposition 3.4. To be completed.

Proof of Proposition 3.5. We break the proof into two separate cases depending on whether

(12) holds.
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1. Suppose that (12) holds. From Proposition 3.2, we have that

E[T ∗2 |τ1 ≤ T ∗1 ] = µ+ T ∗1 − E[τ1|τ1 ≤ T ∗1 ]

Noting that E[τ1|τ1 ≤ T ∗1 ] < E[τ1] = µ, yields, E[T ∗2 |τ1 ≤ T ∗1 ] > T ∗1 and completes the

argument.

2. Suppose that (12) does not hold. Let T̃1 denote the random variable represnting the

first period deadline. From Proposition 3.3, we have that

E[T ∗2 |τ1 ≤ T̃1] = µ+
1

σ
+ E[T ∗∗1 − τ1)+|τ1 ≤ T̃1]

≥ µ+
1

σ
+ E[T ∗∗1 − τ1|τ1 ≤ T̃1]

> µ+
1

σ
+ T ∗∗1 − E[τ1|τ1 ≤ T̃1]

>
1

σ
+ T ∗∗1 = E[T̃1].

Proof of Lemma 4.1. A simple calculation yields that

Pr(τ2 ≤ T |τ1 > t1) = 1− eλ(T−t1) (1 + λ(T − t1)) .

As (T−t1)→ 0, the above expression (and hence the benefit of investing cash flows) converges

to zero at a rate proportional to (T − t1)
2, whereas the benefit of cash flow diversion is

proportional to (T − t1), implying the agent will prefer diversion as long as W is bounded.

Proof of Lemma 4.2. Because U2(τ1, 0) = φc(µ+ T2(τ1)) and U2(τ1, 0 ≥ φcµ+ Ũ2(τ1, 0), (16)

is actually the only feasible solution. We verify that it indeed satisfies (15. Note that

u2(τ1, 0) = φc(µ+T2(τ1)) and dU2(τ1,t2)
dt2

≤ −φc together imply U2(τ1, t2) ≤ φc(µ+T2(τ1)− t2).

Thus, for all t2 ∈ [0, T2(τ1)]

λ
(
U2(τ1, t2)− Ũ2(τ1, t2)

)
− φc ≤ λ (φc(µ+ T2(τ1)− t2)− φc(T2(τ1)− t2))− φc = 0.

Hence, a(t2) = 0 for all t2 ∈ [0, T2(τ1)]. Substituting this into (15) gives dŨ(τ1,t2)
dt2

= −φc.
Integration and the boundary condition Ũ2(τ1, T2(τ1)) = 0 establish the claim.
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Proof of Lemma 4.3. We have

U2(τ1, t2) =

∫ T2(τ1)

t2

λW (τ1, τ2)eλ(t2−τ2) dτ2

= φc

(
µ

T2(τ1)
+ 1

)
(T2(τ1)− t2).

This yields (21) for t2 = 0 and evidently satisfies (IC2).

Proof of Proposition 4.4. First we show that a non-trivial optimum must involve the value

of P given in (24). To see this, compute the first-order conditions

∂V1(0)

∂T1

=
(
(λb− 2c) + (λT1 − 1)(λb− c)e−λP

)
e−λT1 − φc = 0 (26)

and
∂V1(0)

∂P
= λT1(λb− c)e−λ(P+T1) − φc = 0. (27)

Solving these for P yields (24). Moreover, substituting(24) into (26) yields the necessary

condition for a non-trivial optimum

H(T ∗∗1 ) ≡ (λb− 2c)λT ∗∗1 e−λT
∗∗
1 − φc = 0.

Note that

H(0) = lim
T1→∞

H(T1) = −φc.

Thus a necessary condition for the existence of a non-trivial optimum is maxT1 H(T1) > 0. It

is straightforward to verify that H(·) is maximized at T1 = µ, and H(µ) > 0 iff (23) holds. It

remains to check the second-order condition and decide about whether low outside option for

principal works.
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