
Endogenous substitution between antibiotics under open access
to the resource of antibiotic efficacy1

Bruno Nkuiya
Bren School of Environmental Science & Management,

University of California, Santa Barbara

and

Markus Herrmann
Department of Economics, CREATE,

Université Laval
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Endogenous substitution between antibiotics under open access
to the resource of antibiotic efficacy

Abstract

We analyze the use of multiple antibiotics when producers have open access to a common
pool of antibiotic treatment efficacy. Patients derive demand for each antibiotic given its
price, additional recovery rate (intrinsic quality) and level of treatment efficacy. The market
outcome is compared to the social optimum and we characterize the dynamics of infected
individuals, antibiotic efficacy and treatment rates. We show that the high-quality antibiotic
drug loses its comparative advantage over time under both allocations making the low-quality
drug the treatment of last resort. The switch to the last-resort treatment occurs at a later
point of time in the social optimum and allows to better control for infection in the longer run.
Accounting for the endogenous social cost of infection, we show that the socially optimal
steady-state level of antibiotic efficacy is always lower than under open access. We also
provide a taxation/subsidy policy allowing to correct these distortions.

Keywords: Antibiotic management; Non-renewable resource; Open access; Social optimum;
Public health.
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1 Introduction

There is a growing scientific consensus that antibiotic use to cure infectious diseases has

the undesirable effect of causing the rise of resistant bacteria in hospitals and outpatient

settings, entailing important economic costs via higher morbidity and mortality rates (see

for instance, Holmberg et al., 1987; Phelps, 1989; Gersovitz and Hammer, 2004; Center for

Disease Dynamics and Policy, 2011; World Health Organization, 2014). Economic research

has looked at the positive and normative aspects of antibiotic use and modelled antibiotic

treatment efficacy as a desirable natural resource and infection as an desirable or undesirable

one depending on whether the industry’s or society’s point of view is adopted (for a review,

see, Herrmann and Laxminarayan, 2010).

The price charged for antibiotics plays a crucial role in determining their use at a macro

level.1 In particular, the market power of the pharmaceutical industry to set antibiotic prices

depends on whether substitute drugs are available, and whether the entry of generic firms in

the market place has already occurred (Fisher Ellison et al., 1997; Scherer, 2000; Wiggins and

Maness, 2004). Fisher Ellison and Snyder (2010) show how negotiation power between the

pharmaceutical industry, health insurance companies and hospital or commercial retailers

affects price.

In the context of bacterial resistance it is crucial to understand whether antibiotic drugs

(or their biological formula) are linked to separate or common pools of antibiotic treatment

efficacy as this influences the possible substitution between them. Most bio-economic re-

search has abstracted from potential connections between pools or existence of a common

pool which becomes relevant when antibiotics belong to the same family or class.2 Epidemi-

ological evidence indeed shows that antibiotic treatment efficacy can be lost at the class level

1 At a micro level, antibiotic use is determined in a complex interaction between patients who demand
them, physicians who prescribe them, and pharmacists who may substitute between brand and generic
versions when both options are available. Hospitals and health organizations may also control which drugs
are prescribed by their affiliated doctors. The analysis of these interactions lies outside the scope of this
paper.

2The first, and well-known, out of around 20 antibiotic classes is penicillin. Others are cephalosporins,
macrolides and quinolones.
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(Coates et al., 2011; Prieto et al., 2002), as is demonstrated, e.g., by cephalosporin-resistant

N. gonorrhoea or macrolide-resistant S. pneumonia.

The purpose of this paper is to examine how bacterial resistance evolves, when prices,

and thus antibiotic use, are determined in a setting where antibiotic producers have open

access to a common pool of antibiotic efficacy. We design a bio-economic framework where

antibiotic use unavoidably leads to a decrease of treatment efficacy at the class level and

where substitute drugs belonging to the same class are sold by a generic industry. Firms

in such an industry have open access to the biological formulae of the drug and thus to the

common pool of treatment efficacy, which leads to a complete dissipation of the economic

rent. Although the assumed non-renewable character of treatment efficacy and the particular

industry structure might seem restrictive at first sight, it represents a useful benchmark

for addressing an era where more and more antibiotics go off patent and where it may

become impossible to develop new classes (Coates et al., 2011; Becker et al., 2006). As

in Laxminarayan and Brown (2001), Wilen and Msangi (2003) and Herrmann and Gaudet

(2009) we build on an epidemiological model to address the spread of infection and rise of

resistance. In contrast to these contributions, (i) antibiotics are connected to a common pool

of antibiotic efficacy, (ii) endogenous substitution between antibiotics is considered from a

positive and normative point of view and (iii) a regulatory tool inciting firms to produce in

a socially optimal way is proposed.

The endogenous substitution between antibiotics affects critically the evolution of antibi-

otic efficacy and infection. The intertemporal substitution depends on producer character-

istics, the gross quality (efficacy level) of the antibiotic class, as well as on the antibiotics’

intrinsic quality defined by the additional recovery rate they procure to infected individu-

als. More precisely, our results indicate that when two drugs are in use, patients with high

valuations of being in good health start using the high quality drug, while those with low

valuations use the low quality drug. As the common pool of antibiotic efficacy decreases, the

high quality drug loses its comparative advantage, such that the high quality drug is grad-
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ually abandoned and patients turn to the low-quality drug. We also derive the conditions

on bioeconomic parameters when either drug is dominated and not produced in the market

equilibrium.

As in the open-access allocation, the low-quality drug is dominated and should never be

used in the social optimum, when antibiotic quality per unit cost of production is greater for

the high-quality drug. The socially optimal order of antibiotic use is identical to the open-

access equilibrium, however the intensity of antibiotic use and the timing of abandoning an

antibiotic differ. In particular, we determine the critical level of socially optimal economic

viability of each antibiotic which depends on the social cost of infection and shadow price

of the antibiotic class’s treatment efficacy. Accounting also for the social cost of infection,

we find that inter-temporal antibiotic use is such that the socially optimal steady-state level

of antibiotic efficacy is lower than in the open-access allocation. Our numerical simulations

indicate that a more parsimonious use of antibiotics is operated initially, while a more inten-

sified use (and thus, better control of the prevalence of infection) occurs in the long run. We

provide an economic instrument, which in addition to induce the socially optimal allocation,

balances the social benefit of preserving antibiotic efficacy and the social cost of infection.

Our paper builds on theoretical bio-economic models developed by natural resource

economists who address antibiotic efficacy as a natural resource, which may be – depending

on the epidemiological specification – renewable or non-renewable.3 The seminal paper by

Laxminarayan and Brown (2001) examines the optimal use of two antibiotics, each having its

own, seperate, pool of antibiotic efficacy. Considering antibiotic efficacy as a non-renewable

resource, they find, among other things, that when unit costs of production are equal, it

may exist an initial phase where only one antibiotic is used. Once the levels of antibiotic

efficacy are equal, both antibiotics are used simultaneously. Herrmann and Gaudet (2009)

concentrate on one antibiotic only with renewable efficacy when firms have open access to

3Empirical research on the economic cost of antibiotic resistance remains limited. An interesting contri-
bution related to our work is Howard (2004) who estimates the increase in antibiotic spending to cure otitis
media due to the rise of penicillin resistance as physicians turn to newer, more expensive antibiotics.
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the resource pool of antibiotic efficacy. As firms do not account for the shadow prices of

antibiotic efficacy and infection, antibiotic use necessarily differs from the social optimum

leading to a steady-state level of antibiotic efficacy that may be greater or lower than its

socially-optimal level, depending on the crucial bio-economic parameters of production cost

and additional recovery.

Other contributions on antibiotic resistance and market structure relate to a monopolist

selling an antibiotic. Mechoulan (2007) finds that while it may be socially optimal to erad-

icate the disease, it is not profit-maximizing for the monopolist to do so because infection

represents its market size, a valuable asset. Herrmann (2010) shows that when the monop-

olist faces a finite patent life, his price dynamic is similar to that of a myopic monopolist

as the end of the patent approaches. Both authors find conditions under which it is socially

desirable to extent the duration of the patent.

The remainder of the paper is organized as follows. In Section 2, we present the biological

and economic model. Section 3 examines antibiotic use under open access. Section 4 focuses

on the socially optimal use of antibiotics. Section 5 contrasts the equilibrium trajectories

obtained under open access with the socially optimal outcome. We conclude in Section 6.

2 The bio-economic model

We start by presenting the epidemiological constraints which will later be combined with an

economic model of antibiotic use.

2.1 The SIS model

This section adapts an SIS epidemiological model to examine the use of two antibiotics

i = 1, 2, which belong to the same antibiotic class. We assume that the total population

N is constant and consists of healthy individuals S(t), who are susceptible to infection and

individuals who are infected I(t). As we assume bacterial resistance to be class dependent,

an infected individual is either susceptible or resistant to both antibiotic treatments. The

infected population is thus constituted of individuals who are infected with a drug-susceptible
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strain, Iw(t), and those infected with a drug resistant strain, Ir(t). It follows that, at any

instant t, I(t) = Iw(t) + Ir(t) = N − S(t).

Infection spreads at a transmission rate β between infected and healthy individuals, such

that βS(t)(Iw(t)+ Ir(t)) = βS(t)I(t) is the total number of individuals becoming infected at

time t. The infected individuals may recover naturally. However, this may occur at different

rates. Let rr and rw represent, respectively, the natural rate of recovery from the drug-

resistant and drug-susceptible strain. The difference ∆r = rr − rw is referred to the fitness

cost incurred by drug-resistant strains and the bioeconomic literature generally assumes

∆r ≥ 0, a hypothesis which we will discuss shortly. Note that additional recovery due

to antibiotic treatment occurs only when the individual is infected with a drug-susceptible

strain. Treatment with antibiotic i then implies an increase in the recovery rate to rw + ri,

while the recovery rate remains at its natural level, rr, for individuals suffering from a drug-

resistant strain. We assume without loss of generality that antibiotic 1 has a relatively higher

recovery rate as compared to antibiotic 2, r1 > r2, i.e. antibiotic 1 has higher intrinsic quality

than antibiotic 2.4

Denote by fi ∈ [0, 1] the fraction of the infected population being treated with antibiotic

i. Recovery from the drug-susceptible infection is given by rw+f1r1+f2r2, such that the total

infected population decreases at the rate rrIr(t) + (rw + f1r1 + f2r2)Iw(t). The population

dynamics are then given by

Ṡ = −İ = −İr − İw,

İw = (βS − rw − f1r1 − f2r2)Iw,

İr = (βS − rr)Ir.

As in Laxminarayan and Brown (2001), we define w = Iw/I as the level of antibiotic efficacy.

4The additional recovery rate of an antibiotic is an empirical measure, which may differ from the ther-
apeutical value for a particular patient (Garrod, 1960). Following this author, the therapeutical value is
related to the antibacterial activity of the drug, which is tested for in vitro, and can indeed differ between
antibiotics belonging to a given class, like penicillin.
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Making use of the definition of antibiotic efficacy, these equations can be transformed to

ẇ = w(1− w)(∆r − f1r1 − f2r2), (1)

İ = (β(N − I)− rr)I + wI(∆r − f1r1 − f2r2). (2)

Note that when ∆r > 0, antibiotic efficacy replenishes if both antibiotics are not used too

intensively (f1r1 + f2r2 < ∆r). As stated in Andersson and Hughes (2010), experimental

studies support these theoretical findings, “but other processes, such as compensatory evo-

lution and genetic co-selection complicate the picture and make reversibility [of antibiotic

resistance] less probable in real-life settings (p.260).”5 Based on this evidence, we will re-

strict our attention as in Laxminarayan and Brown (2001) to benchmark situations where

the fitness cost is equal to zero (i.e. rr = rw = r), and hence, antibiotic treatment efficacy

of the class is a non-renewable resource. Laws of motion (1) and (2) then become:

ẇ = −w(1− w)(f1r1 + f2r2), (3)

İ = βI(N − I)− I(r + w(f1r1 + f2r2)), (4)

As r1 > r2, increasing marginally the treatment with antibiotic 1, f1, decreases more in-

tensively antibiotic efficacy as compared to treatment with antibiotic 2. The evolution of

infection is now easily determined by two opposite forces. The contagious effect is given by

the first right-hand-side term of (4), while its second right-hand-side term is the recovery

effect, consisting of natural and additional recovery due to antibiotic use. Infection can

increase or decrease depending on which of both effects outweighs the other. Given our

hypothesis that r1 > r2, note that the prevalence of infection is better controlled when

marginally increasing the treatment with antibiotic 1 as compared to antibiotic 2.

5See Andersson and Hughes (2010) for a critical review on when experimental evidence suggests a positive
fitness cost as a potential mechanism for reversing antibiotic resistance and when it is less clear. For
economists comprehensible definitions of other biological patterns, such as compensatory evolution and co-
selection are also provided by these authors.

6



2.2 Endogenous demands of antibiotics

Antibiotic resistance has been modeled in the economic literature as affecting in an ad-hoc

manner antibiotic demand via the backstop price (Elbasha, 2003). Howard (2004) and Her-

rmann and Gaudet (2009) derive antibiotic demand on the grounds of a utility maximization

problem, in which a patient knows the probability with which the antibiotic will be effective.

In this paper as in those contributions, patients have full information about the level of

antibiotic treatment efficacy. This can be motivated by the fact that the modeled antibiotic

demand is induced by an altruistic physician who prescribes the drug and knows about its

efficacy.

Let θ denote an individual’s valuation to be in good health which is distributed according

to the distribution function F (θ) over the total population N . When infected, each individual

decides whether or not to purchase the antibiotic i at price pi. We assume that an individual

cannot be treated simultaneously with both antibiotics and that an infected individual does

not know from which type of infection (resistant or susceptible) he is suffering.6

Following Herrmann and Gaudet (2009), the infected individual attributes probability

Ir
I

= 1 − w of being infected with the resistant strain, and probability Iw
I

= w of being

infected with the drug-susceptible strain, implying an expected natural rate of recovery

given by π(w) = (1 − w)rr + wrw = r, as we have assumed a zero fitness cost. Taking an

antibiotic increases the chance of recovery of the individuals who are suffering from the drug-

susceptible strain. Since there is a probability w that the bacterial strain is susceptible, the

additional expected recovery rate of an individual is given by wri when he takes antibiotic i.

We write the following gross expected utility function for an individual of type θ

v(θ) =


θ, if in good health;

π(w)θ, if infected and not taking any antibiotic ;

[π(w) + riw]θ, if infected and taking antibiotic i.

(5)

This is a model of vertical differentiation (Tirole, 1989). Since antibiotic 2 is of low quality

6Testing for the type of infection is possible in principle, but may be difficult, time consuming and costly
depending on the type of infection. However, a physician may request testing when the prescribed antibiotic
does not deliver any results and high morbidity costs are involved.
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as compared to antibiotic 1, it will never be purchased if it is sold at the same price or is

more expensive than antibiotic 1. Hence, in equilibrium, we will necessarily have p1 > p2.

Denote by θ̃12 the infected individual who is indifferent between buying either antibiotic

1 or antibiotic 2 and θ̃i the individual who is indifferent between buying antibiotic i and

nothing at all when infected. The value of θ̃12 is the solution of the equation

[π(w) + r1w]θ12 − p1 = [π(w) + r2w]θ12 − p2,

from which we obtain

θ̃12 =
p1 − p2

w∆rf
. (6)

where ∆rf = r1 − r2 > 0 is the differential of additional recovery rates. The value of θ̃i

satisfies π(w)θ̃i = [π(w) + r2w]θ̃i − pi, and hence

θ̃i = pi/(wri), i = 1, 2. (7)

In order to derive the demand for each antibiotic, first assume that r1/p1 ≥ r2/p2 (that is,

the “antibiotic quality per dollar” for antibiotic 1 is greater). In this case we have θ̃2 ≥ θ̃1

so that individuals with θ ∈ [θ̃1, θ̃2] will buy antibiotic 1 while individuals with θ ≥ θ̃2 will

buy either antibiotic 1 or antibiotic 2. However, as shown in the appendix, individuals with

θ ≥ θ̃2 always prefer antibiotic 1 to antibiotic 2. Hence, all infected individuals with θ ≥ θ̃1

buy only antibiotic 1. The fraction of infected individuals who are willing to buy antibiotic

2 is equal to zero, while [1 − F (θ̃1)] represents the fraction of those who are willing to buy

antibiotic 1. Since individual demand is unitary, the total demand for antibiotic 1 in this

case is Q1 = I[1− F (θ̃1)].

The more interesting situation occurs when antibiotic 2 is not “dominated”: r2/p2 >

r1/p1. In this case, while individuals with θ ≥ θ̃12 will buy antibiotic 1, those with θ ∈ [θ̃2, θ̃12]

will buy antibiotic 2 and the remaining individuals will not buy any of the two antibiotics.

The fraction of infected individuals who are willing to buy antibiotic 2 is [F (θ̃12) − F (θ̃2)],

whereas the proportion [1 − F (θ̃12)] of individuals is willing to buy antibiotic 1. Unitary
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demand then implies

Q1 = I[1− F (θ̃12)] and

Q2 = I[F (θ̃12)− F (θ̃2)],

where I is the potential market size for treatment with antibiotic i.

As in Herrmann and Gaudet (2009) and Herrmann (2010), in the present paper, we

restrict attention to a uniform distribution of θ across the population with support [0, 1].

Having assumed unitary demand, the quantity fi = Qi/I is the fraction of infected individ-

uals treated with antibiotic i. Thus, when antibiotic 2 is not “dominated” (r2/p2 > r1/p1),

inverse demand functions for antibiotics can be rewritten in terms of f1 and f2 as

p1(f1, f2) = w[r1(1− f1)− r2f2], (8)

p2(f1, f2) = wr2[1− f1 − f2]. (9)

When antibiotic 2 is dominated, inverse demand for antibiotic 1 is merely the restriction

of (8) to f2 = 0. Notice that these inverse demand functions are linear in treatment rates,

and that their choke prices depend on both, the intrinsic and class’s quality, as well as the

fraction of individuals purchasing its antibiotic substitute.7

3 Antibiotic use under open access

We assume that firms operating in the industry have open access to the common pool of

antibiotic efficacy. This represents a benchmark analysis of a generic industry, in which the

biological formulae of antibiotics are common knowledge and antibiotics are produced in a

competitive environment. As in Laxminaryan and Brown (2001), Herrmann and Gaudet

(2009) and Herrmann (2010), we consider a linear cost structure, given by Ci(Qi) = ciQi,

where the production of Qi units of antibiotic i by a firm occurs at a unit cost ci > 0.

7As in the related literature (e.g., Laxminaryan and Brown, 2001; Herrmann and Gaudet, 2009), we
abstract from health insurance here. However, if health insurance were to cover a part of the patient’s drug
spendings, antibiotic demand derived in our settings would correspond to the residual willingness-to-pay of
patients for antibiotic drugs, once they have paid for their insurance plan.
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In particular, we abstract from fixed costs incurred in the research and development of

antibiotics, which are supposed to be sunk. Furthermore, we assume ri > ci for both drugs

to allow for a possibly positive economic value in each market when antibiotic efficacy is

sufficiently high.

Antibiotic producers will enter until the economic rent gets dissipated in each market.

Hence, at the open-access equilibrium, we must have

[pi − ci]fi = 0, 0 ≤ fi ≤ 1 and pi ≤ ci, i = 1, 2. (10)

In order to derive the open-access equilibrium, it is helpful to distinguish two cases

depending on the relative magnitude of the unit cost (and thus price) as compared to recovery

rates. Consider first the case where r2/c2 > r1/c1. That is, antibiotic quality per unit cost

is greater for antibiotic 2. In this situation, condition (10) along with (8) and (9) allow us

to derive the fraction of the infected population that buys antibiotic 1. It is given by

f∞1 (t) =

{
1− c1−c2

w(t)∆rf
if w(t) > c1−c2

∆rf
;

0 otherwise ,
(11)

where the superscript ∞ stands for the open-access equilibrium. Likewise, the fraction of

the infected population treated with antibiotic 2 is:8

f∞2 (t) =


1

w(t)r2∆rf
(r2c1 − r1c2) if w(t) > c1−c2

∆rf
;

1− c2
w(t)r2

if c2
r2
< w(t) ≤ c1−c2

∆rf
;

0 otherwise .

(12)

Consider now the case where antibiotic quality per unit cost is greater for antibiotic 1,

i.e. r1/c1 ≥ r2/c2. In this situation, antibiotic 2 is dominated such that f∞2 (t) = 0 for all

t ≥ 0.9 Using this in combination with conditions (10) and (8), we get:

f∞1 (t) =

{
1− c1

w(t)r1
if w(t) > c1

r1
;

0 otherwise .
(13)

8Notice that the inequality (c1− c2)/∆rf > c2/r2 holds if and only if r2/c2 > r1/c1, which is our working
hypothesis here.

9If antibiotic 2 was not dominated at date t, we would have f∞2 (t) > 0. This is not possible. Indeed,
when r1/c1 ≥ r2/c2 the interval [ c2r2 ,

c1−c2
∆rf

] is empty. Hence, (12) indicates that f∞2 (t) cannot be positive in

such a case.
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Three points merit discussion here, which will be used for a later complete character-

ization of antibiotic use in equilibrium. First, open-access treatment rates f1 and f2 do

not depend explicitly on the stock of infected individuals (the market size). This result is

intuitive because firms under open access behave as if they were myopic (they are unable

to gain any rent from production). Second, there exists a critical level of antibiotic efficacy,

below which no antibiotic is produced in the open-access equilibrium. This level of economic

viability is given by min(c1/r1, c2/r2). Third, depending on the current level of antibiotic

efficacy and model parameters, one of four possible regimes of antibiotic use, denoted by

D,F and Ai, i = 1, 2, prevails. In regime D, both antibiotics are produced simultaneously,

in regime F no individual buys an antibiotic and in regime Ai, only antibiotic i is produced.

3.1 The steady state under open access

The critical level of antibiotic efficacy, given by min(c1/r1, c2/r2), below which antibiotic use

becomes uneconomical, suggests the existence of a steady state in the open-access equilib-

rium. Setting f∞1 = f∞2 = 0 into equation (2) gives İ = (β(N−I)−r)I. Solving this equation

for İ = 0 yields the steady state for the stock of infected individuals: I∞ = (βN − r)/β.

Therefore, the steady state in the open-access equilibrium is

(fS∞1 , fS∞2 , I∞, w∞) =

(
0, 0,

βN − r
β

,min

(
w0,

c1

r1

,
c2

r2

))
, (14)

where w0 is the initial value of antibiotic efficacy. In particular, we have w∞ = w0 in the case

where the initial value of antibiotic efficacy is too low to sustain any antibiotic production

over time such that antibiotic efficacy stays at its initial level.

3.2 The equilibrium dynamics under open access

In this section, we charaterize the evolution of the open-access equilibrium up to convergence

to the steady state of the economy. We assume that the initial stock of infected population

is I(0) = I0 ∈ (0, N) and the initial efficacy level is w(0) = w0 ∈ (0, 1). Since ẇ(t) ≤ 0

and w(t) ≥ 0, antibiotic efficacy decreases and converges to its steady state. Also note that,
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having assumed r1 > r2, we always have

c1 − c2

∆rf
>
r2c1 − r1c2

r2∆rf
. (15)

As we will show, condition (15) and the particular structure of antibiotic use given in (11)

and (12) suggest the existence of four possible cases for the dynamic behavior of the model.

In the first case, the initial level of antibiotic efficacy satisfies w0 > (c1 − c2)/∆rf , while

additional recovery rates and unit costs satisfy r2/c2 > r1/c1. In this case, treatment rates

defined in (11) and (12) indicate that regime D prevails and that antibiotic efficacy lies

above (c1 − c2)/∆rf during the time interval [0, t1). Notice that t1 is finite and defined by

w(t1) = (c1 − c2)/∆rf . To see this, note that over the interval (0, t1), f∞1 > 0 and f∞2 > 0.

Using (11) and (12) along with (3), we get ẇ = (1− w)(c1 − r1w). Integration yields

w(t) =
−c1(1− w0) + (c1 − r1w0)et(c1−r1)

−r1(1− w0) + (c1 − r1w0)et(c1−r1)
, 0 ≤ t ≤ t1. (16)

Now, set h(t) = w(t) − (c1 − c2)/∆rf , which is a continuous function. We have h(0) =

w0−(c1−c2)/∆rf > 0 and limt→+∞ h(t) = c1/r1−(c1−c2)/∆rf < 0.10 Since w is monotone,

so is h. Therefore, there exists a unique t1 ∈ (0,∞) such that w(t1) = (c1 − c2)/∆rf .

Equations (11)-(12) and (15) suggest that at instant t1, regime A2 starts. Suppose that

this regime ends at t2, which is characterized by w(t2) = c2/r2. Recall that in A2, we have

f∞1 = 0 and f∞2 > 0, the efficacy dynamic is ẇ = −w(1−w)r2f
∞
2 = −(1−w)(r2w−c2), with

the boundary condition w(t1) = (c1− c2)/∆rf . Using a similar reasoning as for regime D, it

can be shown that A2 has a finite length. Since we have w(t2) = c2/r2, (11) and (12) show

that regime F prevails from t2 on. Since in regime F , f∞1 = f∞2 = 0, the level of antibiotic

efficacy remains constant and is given by w(t) = c2/r2 for all t ≥ t2.

These consecutive regimes of antibiotic use are illustrated in Figure 1. As antibiotic

efficacy tends to decrease, patients switch from antibiotic 1 to antibiotic 2, which provides

relatively greater antibiotic quality per unit cost, r2/c2 > r1/c1. This pattern continues until

antibiotic 1 loses its economic viability. After this instant, the fraction of individuals using

10Since r2c1 − r1c2 > 0, we have c1
r1
− (c1−c2)

∆rf
= − r2c1−r1c2

r1∆rf
< 0. So, the sign of h changes over (0,+∞).
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antibiotic 2 decreases until the level of antibiotic efficacy becomes too small rendering the

use of antibiotic 2 economically nonviable. The switch from the antibiotic of high intrinsic

quality to the one of low intrinsic quality occurs because prices in the open-access equilibrium

cannot adjust (p1 = c1 and p2 = c2 and c1 > c2). As the overall quality of the antibiotic

class decreases, individuals with a relatively high valuation of being in good health (high θ)

are less willing to pay a premium for the high quality drug, as the intrinsic quality per price

ratio is better for the antibiotic of low intrinsic quality (r2/c2 > r1/c1). From the consumers’

point of view, the antibiotic with high intrinsic quality loses its comparative advantage in

treating infected individuals.

The second case applies for an initial efficacy level w0, satisfying (c1 − c2)/∆rf ≥ w0 >

c2/r2, and r2/c2 > r1/c1. In this situation, regime A2 prevails initially. Let t3 denote its

length, which is characterized by w(t3) = c2/r2. Since in A2 we have f∞1 = 0 and f∞2 > 0, (3)

indicates that the antibiotic efficacy dynamic is ẇ = −w(1−w)r2f
∞
2 = −(1−w)(r2− c2w),

with the boundary condition w(0) = w0. A similar reasoning as for the first case allows us

to find that t3 is finite. Since we have w(t3) = c2/r2, (11) and (12) suggest that regime

F prevails from t3 forever. Recall that in regime F , we have f∞1 = f∞2 = 0 so that w is

constant. Therefore, we have w(t) = c2/r2 for all t ≥ t3.

The third case is for w0 > c1/r1 and r1/c1 ≥ r2/c2. Recall that in this case, antibiotic 2

is dominated, which implies (f∞2 = 0). Consequently, (3) and (13) show that the antibiotic

efficacy dynamic is: ẇ = (1 − w)(c1 − r1w). Using a similar method as for the first case,

it can be shown that antibiotic efficacy approaches its steady state ws = c1/r1 asymptoti-

cally. The fraction of infected individuals treated with antibiotic 1 decreases and converges

asymptotically to a state where no individual buys antibiotic 1.

The fourth case corresponds to the situation where c1/r1 > c2/r2 ≥ w0 or c2/r2 ≥ c1/r1 ≥

w0. Since antibiotic efficacy cannot replenish, (11), (12) and (13) show that in this case, the

two antibiotics are not economically viable (f∞1 = f∞2 = 0). Consequently, (3) suggests that

the level of antibiotic efficacy remains constant and is equal to its initial value.
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Summarizing, the above results suggest four possible orders of use of antibiotics. (i) if

w0 > (c1 − c2)/∆rf and r2/c2 > r1/c1, then the sequence of use is D → A2 → F . (ii) if

(c1 − c2)/∆rf ≥ w0 > c2/r2 and r2/c2 > r1/c1, then the order of use is A2 → F . (iii) if

w0 > c1/r1 and r1/c1 ≥ r2/c2, then regime A1 prevails forever. (iv) if c1/r1 > c2/r2 ≥ w0 or

c2/r2 ≥ c1/r1 ≥ w0, then regime F prevails forever.

Having derived so far the evolution of antibiotic treatment rates and antibiotic efficacy,

we will next show in (I, w)-space, the evolution of antibiotic efficacy as function of the stock

of infected individuals. Since antibiotics are not used in the fourth case described above,

the stock of infected individuals evolves along a horizontal line up to convergence (in the

(I, w)-space). In addition, for f1 = f2 = 0, (4) indicates that İ T 0, if and only if I S I∞.

Hence, when starting below the biological steady state I∞, the stock of infected individual

rises monotonically and converges to I∞ defined in (14).

The dynamics of the open-access equilibrium for the first case as described above is

illustrated in space (I, w) in Figure 2.11 When initially located to the left of the isocline

İ = 0, the contagious effect dominates the recovery effect, such that the stock of infected

individuals rises and converges to the biological steady state given in (14). However, when

initially located to the right of the isocline İ = 0, the stock of infected individuals evolves

non-monotonically: it decreases and even falls below its steady-state level when the recovery

effect dominates the contagious effect, before it starts to increase again up to convergence

to its steady-state level.12

11 The second and the third case have similar (I, w)-space representation as the first one.
12Note that the İ = 0 isocline is non stationary and moves in a similar way as in Herrmann and Gaudet

(2009).
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4 Socially optimal use of antibiotics

This section examines the optimal use of antibiotics 1 and 2. The instantaneous social welfare

is the sum of gross expected surplus of individuals minus production costs. It is given by

W (f1, f2, w, I) = N

∫ 1

0

v(θ)dθ − (c1f1 + c2f2)I

= (N − I)

∫ 1

0

θdθ + I

∫ θ̃2

0

π(w)θdθ + I

∫ θ̃12

θ̃2

[(π(w) + r2w)θ − p2]dθ

+I

∫ 1

θ̃12

[(π(w) + r1w)θ − p1]dθ + (p1 − c1)f1I + (p2 − c2)f2I,

where θ̃12 and θ̃2 are defined in expressions (6) and (7). Notice that these expressions depend

on antibiotic prices p1 and p2, given in (8) and (9), and which are now to be interpreted

at the optimum as efficient prices. We thus implicitly assume efficient rationing and that

the set fi, i = 1, 2 and pi, i = 1, 2 can be used interchangeably to characterize the social

optimum. Integration yields

W (f1, f2, w, I) =
1

2
(N − I) +

1

2
rI + I[

1

2
r2w(θ̃12 + θ̃2)− p2](θ̃12 − θ̃2)

+I[
1

2
r1w(1 + θ̃12)− p1](1− θ̃12) + (p1 − c1)f1I + (p2 − c2)f2I

=
1

2
(N − I) +

1

2
rI +

I

2
r2w(2− 2f1 − f2)f2

+
I

2
r1w(2− f1)f1 − c1f1I − c2f2I, (17)

where the last equality follows by making use of inverse demand functions (8) and (9) in

combination with (6) and (7). In particular, we characterize the critical consumers as θ̃2 = 1−

f1−f2 and θ̃12 = 1−f1. The first term in equation (17) corresponds to the average, expected

surplus of the healthy population, the second one corresponds to the expected surplus of

infected individuals recovering naturally, while the third and fourth terms correspond to the

additional expected surplus accruing to infected individuals when buying antibiotic 1 or 2,

and the last two terms are the production costs of antibiotics.

The social optimum is determined by treatment paths 0 ≤ f1 ≤ 1 and 0 ≤ f2 ≤ 1
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maximizing ∫ +∞

0

e−ρtW (f1(t), f2(t), w(t), I(t))dt, (18)

subject to (3), (4), w(0) = w0, I(0) = I0, where W (f1, f2, w, I) is defined by (17) and where

ρ is the social discount rate. The Hamiltonian in current value for this optimization problem

is

H =
1

2
(N − I) +

1

2
rI +

I

2
r2w(2− 2f1 − f2)f2 +

I

2
r1w(2− f1)f1

− c1f1I − c2f2I − λ[w(1− w)(f1r1 + f2r2)] + µ[(β(N − I)− r)I − wI(f1r1 + f2r2)],

where λ and µ are costate variables associated to antibiotic efficacy and infection, respec-

tively. As antibiotic efficacy is a desirable resource for society, we conjecture that λ is positive

and reflects the shadow price of antibiotic efficacy. This contrasts with µ, which represents

the shadow cost of infection for society, and should be non-positive.13

Necessary conditions for maximizing (18) require for antibiotic i = 1, 2

∂H
∂fi
≤ 0, fi ≥ 0,

∂H
∂fi

fi = 0, or
∂H
∂fi
≥ 0, fi ≤ 1,

∂H
∂fi

(1− fi) = 0, (19)

where

∂H
∂f1

= [w(1− f1)r1 − wf2r2 − c1]I − wr1[λ(1− w) + µI],

∂H
∂f2

= [wr2(1− f1 − f2)− c2]I − wr2[λ(1− w) + µI],

as well as

λ̇− ρλ = −I
2
r2(2− 2f1 − f2)f2 −

I

2
r1(2− f1)f1

+(f1r1 + f2r2)(λ(1− 2w) + µI), (20)

µ̇− ρµ =
(1− r)

2
− r2

2
w(2− 2f1 − f2)f2 −

r1

2
w(2− f1)f1

+c1f1 + c2f2 − µ[β(N − 2I)− r − w(f1r1 + f2r2)], (21)

lim
t→+∞

e−rtλ(t)w(t) = 0 and lim
t→+∞

e−rtµ(t)I(t) = 0. (22)

13Numerical simulations confirm our conjecture as will be shown later.
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Let f ∗1 and f ∗2 denote the socially optimal treatment rates. For an interior solution, static

efficiency in (19) implies

w(1− f ∗1 )r1 − wr2f
∗
2 = c1 + r1ν(w, I, λ, µ) ≡ ĉ1, (23)

w(1− f ∗1 − f ∗2 )r2 = c2 + r2ν(w, I, λ, µ) ≡ ĉ2, (24)

with ν(w, I, λ, µ) ≡ w[λ
I
(1−w) + µ] and where ĉi is defined as the augmented marginal cost

of treatment with antibiotic i. The left-hand sides of (23) and (24) can be interpreted as

the price allowing for efficient rationing of antibiotic drug i, and is noted for later reference

p∗i . Hence, conditions (23) and (24) state that when in use, antibiotic i’s price should be

equal to its augmented marginal cost of treatment. Note that the shadow price of antibiotic

efficacy adds to the augmented marginal cost, as antibiotic use involves a negative externality:

current antibiotic use implies forgone efficacy in the future. However, there is also a positive

externality related to antibiotic use as it allows to control for future prevalence of infection,

diminishing the augmented marginal cost of antibiotic treatment. The term ν(w, I, λ, µ)

accounts for these two externalities and may either be positive or negative.

It can be shown that antibiotic 2 should never be produced when the antibiotic intrinsic

quality per unit cost is greater for antibiotic 1 (i.e. r1/c1 ≥ r2/c2). To see this, dividing (23)

and (24) respectively by r1 and r2 results in two equations, which subtracting side by side

yield

p∗1
r1

− p∗2
r2

=
r2c1 − r1c2

r1r2

,

which is negative as long as r2c1 − r1c2 ≤ 0 (i.e. r1/c1 ≥ r2/c2). This finding implies that

antibiotic 2 is always dominated (r1/p
∗
1 ≥ r2/p

∗
2 or equivalently f ∗2 = 0) when r1/c1 ≥ r2/c2.

In particular, antibiotic 2 should never be used when antibiotics have the same unit cost of

production (i.e. c1 = c2).

Notice that, given our specification, antibiotics are in a common pool of antibiotic efficacy.

By contrast, Laxminarayan and Brown (2001) propose a separate pool of antibiotic efficacy.

In the latter, the authors show that when unit costs of production are identical, there may
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exist a phase characterized by simultaneous use of the two antibiotics as the socially-optimal

outcome. This does not hold in our context as the low-quality antibiotic is then necessarily

dominated.

4.1 The socially optimal steady state

The socially optimal steady state is characterized by µ̇ = λ̇ = ẇ = İ = 0. Given w0 ∈ (0, 1)

and ẇ = −w(1 − w)(r1f1 + r2f2), antibiotic treatment rates must satisfy f1 = f2 = 0 in

steady state where ẇ = 0. Using this in equations (20) and (21) allows us to determine the

shadow prices of antibiotic efficacy and infection: λs = 0 and µs = −(1− r)/2(ρ+Nβ − r),

which, combined with (19) allows us to derive the steady-state level of antibiotic efficacy. It

is given by the minimum of w0 and the socially optimal viability level of each antibiotic,

ws = min(w0, ĉ1/r1, ĉ2/r2) = min(w0, (c1/r1)/(1− µs), (c2/r2)/(1− µs)), (25)

or, explicitly,

ws = min

(
w0,

2c1(ρ+Nβ − r)/r1

2(Nβ + ρ− r) + (1− r)
,

2c2(ρ+Nβ − r)/r2

2(Nβ + ρ− r) + (1− r)

)
. (26)

Finally, given the evolution of infection in (4) and setting İ = 0 with f1 = f2 = 0 yields the

steady-state level of infection Is = (βN − r)/β.

Hence, the steady state in the social optimum is

(f s1 = 0, f s2 = 0, Is, ws). (27)

Conditions (26) and (27) suggest that the steady-state level of antibiotic efficacy is given by

the initial level w0, whenever this lies below the minimum level of socially optimal economic

viability.14 The more interesting case arises when the steady-state level of antibiotic efficacy

is endogenous and depends on initial antibiotic use, such that ws < w0.

Suppose that antibiotic 2 has the minimum level of socially optimal antibiotic viability,

i.e. ĉ1/r1 > ĉ2/r2. A higher production cost, c2, increases the minimum level of viability,

14Note that in this case, any of the two antibiotics should be used over the whole planning horizon.
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while a higher additional recovery rate, r2, decreases it. Clearly, a more costly antibiotic

cannot sustain too low levels of antibiotic efficacy, while a more effective antibiotic can.

Furthermore, the higher the social cost of infection (high values of |µs|), the lower is the

minimum level of antibiotic efficacy which can be sustained in steady state. Note that an

increase in the social discount rate and disease transmission rate decreases the social cost

of infection in steady state, as the future is less valued and less infection can be avoided in

steady state (see later discussion on Figure 5). This, in turn, increases the minimum value

of socially optimal antibiotic viability which can be sustained in steady state.15

4.2 The socially optimal dynamics

Given the complexity of the static and dynamic efficiency conditions (19)-(21), we run nu-

merical simulations in order to address the dynamics of the socially optimal treatment rates,

of antibiotic efficacy and infection, as well as their shadow values. As in Laxminarayan and

Brown (2001), we consider a discrete time version of the model presented above and assume

a finite horizon T = 100.16 Note that the finite horizon impacts on the dynamics of all

variables. However, for a sufficiently long time horizon, we find that dynamics exhibit the

turnpike pattern, which represents a good characterization of the infinite horizon problem.

We observe numerical convergence of the dynamic system to the steady state defined in (27).

In particular, shadow prices of infection and antibiotic efficacy approach their steady-state

levels before satisfying appropriate transversality conditions (λ(T ) = µ(T ) = 0, see the

appendix).

Unless specified differently, we use baseline parameter values ρ = 0.04; c1 = 0.004; c2 =

0.001; r1 = 0.17; r2 = 0.154; r = 0.2; β = 0.7;N = 1;w0 = 0.8 and I0 = 0.8. Given this set

of parameters, r2/c2 > r1/c1, such that antibiotic 2 is not dominated. Treatment fractions

f ∗1 and f ∗2 are shown in Figure 6 (ignore, for now, the trajectories corresponding to the open

15The effect of natural recovery rate, r, on the social cost of infection is ambiguous and depends on the
disease transmission rate and the social discount rate. For low values of β and ρ, the natural recovery rate
has the opposite effect on the social cost of infection as has the disease transmission rate.

16Conditions for optimality of the discrete time version with a finite horizon of this model are presented
in the appendix.
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access). Initially, antibiotic 1 should be used more intensively as compared to antibiotic 2,

as it procures a higher additional recovery rate (r1 > r2) to individuals. As the level of

antibiotic efficacy decreases, treatment with antibiotic 1 is reduced, while treatment with

antibiotic 2 is intensified. Since antibiotic 2 reduces antibiotic efficacy less and is also less

costly, its social desirability is increasing over time. The socially optimal level of economic

viability is reached first for antibiotic 1, and later on for antibiotic 2 (because ĉ1/r1 > ĉ2/r2).

When I0 = 0.5 (graph not shown), the contagious effect dominates the recovery effect up

to convergence to steady state. As a result a more intensive use is made of antibiotics, in

particular of antibiotic 1, as compared to the case described above where the recovery effect

initially dominates. The qualitative evolution of substitution between antibiotics is however

similar to the case described above where I0 = 0.8.

The robustness of the qualitative evolution of our dynamic system can be addressed via

a comparative dynamic analysis. Higher values of r1 imply a decrease of the critical level of

economic viability for antibiotic 1, whereas the one associated with antibiotic 2 tends to rise.

While this causes the use of antibiotic 1 to last longer, it reduces the extraction duration for

antibiotic 2. These results are illustrated in Figure 3.

We also examine the effects of the infection transmission rate on treatment rates. In

response to an increase in β, treatment rates decrease, which leads to a slow depletion of

antibiotic efficacy during an initial phase allowing to sustain a high level of treatment rates

later on. Moreover, such an increase of β leads to a longer lasting exploitation of antibiotic

efficacy as illustrated in Figure 4.

We have also investigated the evolution of the shadow prices of infection and antibiotic

efficacy, µ and λ. In particular, we find a negative relation between the level of infection

and the shadow cost of infection as shown in Figure 5 for various values of the transmission

rate β. Consider the baseline parameter case with β = 0.7. In the left panel of Figure 5,

we have I0 = 0.5 and as infection moves towards its steady-state level, the shadow cost

of infection decreases. At the margin, an additional infected individual causes less social

20



cost, the smaller the gap between the current and the unavoidable, steady-state level of

infection. Also note that the higher the transmission rate of infection, the lower is the

social cost of infection. While this result may appear counterintuitive at first sight, it is due

to the fact that the infection can be controlled at a lesser extent, such that an additional

infected individual causes relatively less social cost. The right panel of Figure 5 shows the

evolution of the social cost of infection, whenever the initial value of infection is relatively

high (I0 = 0.8). Its evolution is now non-monotonic, reflecting the pattern of undershooting

below the steady-state level of infection. Notice that in both panels, the shadow price (social

cost) of infection shows the turnpike pattern: it remains close to its steady-state level, before

converging to zero satisfying the transversality condition µ(T ) = 0.

With respect to the shadow price of antibiotic efficacy, numerical simulations (graph not

shown) suggest a positive relationship between antibiotic efficacy and λ. As the level of

antibiotic efficacy decreases, the inverse demand function pivots inside (antibiotic consump-

tion is less valued), which is reflected by a decreasing shadow price of antibiotic efficacy. In

particular, we also find that the higher the initial level of infection, the higher will be the

shadow price of antibiotic efficacy.

5 Comparing the open-access equilibrium with the social optimum

This section compares in order, the steady state and the trajectories of the open-access

equilibrium with the socially optimal allocation.

5.1 Comparing steady states

Consider the case where w0 is sufficiently high to warrant antibiotic production in the open-

access and socially optimal allocation, such that w∞ < w0 and ws < w0. For ρ <∞, it can

be shown by comparing (14) and (25) that the steady-state level of antibiotic efficacy under

open access is always greater than in the social optimum.17 In both cases, the steady-state

17For the limiting case ρ = ∞, the level of antibiotic efficacy in steady state is identical in the open-
access socially optimal allocation. This occurs because no weight is attributed to future welfare in the
social optimum, such that socially optimal and open-access allocation collapse into one and the same. When
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level of antibiotic efficacy corresponds to the respective level of economic viability, which in

the social optimum accounts for the social cost of infection. When w0 lies below the respective

level of economic viability, no antibiotic will be used under either allocations. This implies

that the steady-state antibiotic treatment rates necessarily coincide in the socially optimal

and open-access allocation. Note that the steady-state levels of infection always coincide.

5.2 Comparing dynamics

When both drugs are simultaneously used, it can be shown that the socially optimal treat-

ment fraction with antibiotic 2 coincides with the open-access equilibrium at the initial date

t0 = 0 regardless of the parameter values i.e., f ∗2 (0) = f∞2 (0). Indeed, combining (23) and

(24), we can eliminate f ∗1 and obtain: f ∗2 (0) = (r2ĉ1 − r1ĉ2)/(w0r2∆rf ). Substituting for

the augmented marginal cost of antibiotic use yields the desired result. However, treatment

fractions of antibiotic 1 do not coincide under both allocations, i.e. f ∗1 (0) 6= f∞1 (0). Since

θ̃12 = 1−f1 and θ̃2 = 1−f1−f2, individuals characterized by θ buying either antibiotic differ

even at the initial date. Furthermore, when c1/r1 > c2/r2, antibiotic 2 is not dominated and

we also have ĉ1/r1 > ĉ2/r2. This result implies that antibiotic 1 always has a higher critical

level of economic viability. In other words, when the two drugs are initially in use, the

production of antibiotic 1 lasts less than that of antibiotic 2 under both the open-access and

socially optimal allocation. Numerical simulations confirm the validity of these analytical

results.

Figure 6 shows the evolution of treatment fractions in the open-access equilibrium and

social optimum when I0 = 0.8, while Figure 7 shows the evolution of the state variables,

(I, w) for initial state I0 = 0.5 and I0 = 0.8. Although the smallest level of infection

prevalence is obtained in the open-access equilibrium, because more intensive use is made of

antibiotics initially as compared to the social optimum, the prevalence of infection is lower

in the long run in the social optimum as can be seen from Figure ??.

ρ =∞, we need the shadow prices to be equal to zero for the dynamic efficiency conditions to hold in steady
state.
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The numerical results described here are robust for a large range of parameter values

when both antibiotics are produced initially. After this phase, only antibiotic 2 is produced.

In particular, both antibiotics tend to be used on a longer time scale in the social optimum

as compared to the open access. It also turns out that the use of both antibiotics tends to be

higher initially under open access as compared to the social optimum, whereas the opposite

tends to hold later on as can be seen in Figure 6. The above results suggest that open access

creates a social distortion of antibiotic efficacy, antibiotic use and infection. We will next

provide an incentive mechanism allowing to correct such a distortion.

Given the particular structure of conditions given in (10), (19), (23), and (24) the

tax/subsidy scheme τi = riν(w∗, I∗, λ∗, µ∗), i = 1, 2, allows to correct the distortion caused

under open access. θ defined in (23) accounts for externalities (positive and negative) asso-

ciated with antibiotic use along the socially optimal allocation. Whenever ν > 0, the social

benefit of preserving antibiotic efficacy outweighs the social cost of infection. In this case,

since r1 > r2, we have τ1 > τ2 > 0 such that a tax should be applied to both antibiotics and

the tax rate levies on antibiotic 1 should be greater. The contrary holds when ν < 0.

6 Conclusion

This paper has addressed the management of antibiotics belonging to the same class used to

fight an infection. While antibiotics may have different recovery rates (intrinsic qualities),

they are linked to a common resource pool of antibiotic efficacy, which is endogenously

determined by antibiotic use over time. We model the demand system for two antibiotics

which are substitutes in fighting a given infection. The combination of the economic model

with a biological model of disease transmission allows us to capture the evolution of bacterial

resistance (a non-desirable bio-economic resource). While a full dynamic solution of the open-

access equilibrium could be derived, we relied on numerical simulations to illustrate certain

results for the social optimum as analytical solutions were not tractable. When antibiotic

quality per unit cost is greater for the high-quality antibiotic, the low-quality antibiotic

23



should never be used under both, the open access and social optimum. However, when at

least one antibiotic is initially used, open access leads to a long-run level of antibiotic efficacy,

which is greater than the socially optimal level. This is the case because in the longer run, the

socially optimal treatment rates are greater which allows to fight the undesirable infection.

When both antibiotics are used initially, the level of economic viability of the high quality

antibiotic is reached first such that the exploitation of the low-quality antibiotic lasts longer.

In this context, we also find that the initial treatment rate with the low-quality antibiotic

under the open-access equilibrium is socially optimal. We derive a tax/subsidy mechanism

correcting potential distortions caused by open access to the resource of antibiotic efficacy.

Our results shed new light on the socially optimal order of use of antibiotics as compared

to Laxminarayan and Brown (2001). When each antibiotic has its own pool of antibiotic

efficacy (separate antibiotic ”classes” or resource pools), the findings of these authors suggest

that antibiotics may be produced simultaneously when they have the same unit cost of

production. In a common class however, we have shown analytically the non validity of that

result. In particular, our model suggests that in a common class of antibiotic efficacy, when

antibiotic unit production costs are equal, it is not socially optimal to use the low-quality

antibiotic.

We should mention that our findings are obtained under particular assumptions concern-

ing the market structure. Other interesting considerations include a Stackelberg-type market

structure where a leader produces a “brand” antibiotic and a competitive fringe provides the

rest of the market with a generic version after observing the leader’s production level. Fur-

thermore, in many situations, patients have the possibility to purchase an insurance coverage

which may help them buying drugs if they are infected. Incorporating these features in our

model might affect the antibiotics’ prices and treatment rates and ultimately, the evolution

of antibiotic efficacy. How exactly these features would influence the results is however a

matter for future research.
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Appendix

• Proof that antibiotic 2 is dominated when r1/p1 ≥ r2/p2

Assume that r1/p1 ≥ r2/p2.

{[π(w) + r1w]θ − p1} − {[π(w) + r2w]θ − p2}

= p1(
θr1w

p1

− 1)− p2(
θr2w

p2

− 1)

≥ (p1 − p2)(
θr2w

p2

− 1),

which is positive if θ ≥ p2/wr2 ≡ θ̃2.

• Discrete time numerical analysis

In a discrete time framework with a finite horizon T , given I0 and w0, optimality condi-

tions for (18) require

∂H
∂f1

≤ 0, f1 ≥ 0,
∂H
∂f1

f1 = 0, or
∂H
∂f1

≥ 0, f1 ≤ 1,
∂H
∂f1

(1− f1) = 0,

∆λ− ρλ = −I
2
r2(2− 2f1 − f2)f2 −

I

2
r1(2− f1)f1 + (f1r1 + f2r2)(λ(1− 2w) + µI),

∆µ− ρµ =
(1− r)

2
− r2

2
w(2− 2f1 − f2)f2 −

r1

2
w(2− f1)f1 + c1f1 + c2f2

− µ[β(N − 2I)− r − w(f1r1 + f2r2)],

∆w = −w(1− w)(f1r1 + f2r2),

∆I = [β(N − I)− r − w(f1r1 + f2r2)]I,

λ(T ) = 0; µ(T ) = 0.

where ∆µ(t) = µ(t + 1) − µ(t), ∆w(t) = w(t + 1) − w(t), ∆I(t) = I(t + 1) − I(t) and

∆λ(t) = λ(t+ 1)− λ(t) for t = 0, 1, ...T − 1.
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Figure 1: Treatment rates in open access when w0 > (c1 − c2)/∆rf and r2/c2 > r1/c1.
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ẇ = 0
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Figure 3: Effects of varying r1 on the socially-optimal treatment rates
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Figure 4: Effects of varying β on the socially-optimal treatment rates
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Figure 5: Effects of varying β on the evolution of (I,−µ).
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Figure 6: Comparing socially optimal and open-access treatment rates for I0 = 0.8.
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Figure 7: Comparing socially optimal and open-access evolution of (I, w).
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