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Abstract

This paper analyzes an explicit protocol of contract negotiation between a principal who has

all the bargaining power and an agent with a privately known type, and provides a foundation

for renegotiation-proof contracts in such environments. The model extends the framework of

the Coase conjecture to situations in which the seller and buyer must determine the quantity or

the quality of the good being sold. All equilibria converge to the same outcomes as renegotiation

frictions become negligible. Those contracts are separating, efficient, and easily characterized.

1 Introduction

In the standard model of the durable-good monopolist, any sale is efficient and definitive: buyer and

seller cannot both benefit from modifying the price of the sale. In richer contractual environments,

however, a signed contract may be inefficient. For example, the parties may benefit from increasing

the quantity of the good initially sold, or by agreeing on a different quality of that good.

This issue is particularly important when the buyer holds private information, because his willing-

ness to sign some contract is informative of his type, and may thus reveal some inefficiency of the
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contract just signed. This, in turn, prompts the seller to propose a new contract, and may distort

the buyer’s ex ante incentives to accept any given contract.

Contract renegotiation with a privately informed agent has traditionally been studied from two

different angles. The first approach is axiomatic, and focuses on “renegotiation-proof” contracts.1

It essentially assumes that renegotiation leads to an efficient contract, even when one party holds

private information. The second approach focuses on simple renegotiation protocols, in which the

principal gets a single shot at renegotiating the contract, by making a take-it-or-leave-it offer. This

approach typically results in inefficient contracts.2

The second approach seems incomplete: what, in reality, should prevent the principal from propos-

ing a new contract after learning the inefficiency of the current contract? Such restriction amounts

to a strong form of commitment power for the principal, and can even result in full commitment

outcomes. For example, imposing any finite number k of negotiation opportunities results in the

full commitment outcome as the friction parameter η goes to zero: the principal simply passes the

first k − 1 opportunities to negotiate the contract, and then proposes the full commitment allo-

cation. Similarly, Wang (1998) has shown that the principal can implement the full commitment

allocation if renegotiation stops as soon as the agent accepts an offer.3

This paper studies, instead, a more flexible negotiation protocol in which the principal can propose

a new contract whenever he desires to do so, and in particular after learning any new informa-

tion regarding the agent’s type. Put differently, the principal cannot commit not to renegotiate

a contract. While such flexibility seems necessary, as argued above, to guarantee efficient out-

comes, establishing this result raises complex issues. To appreciate the difficulty, consider again

the standard durable-good monopolist. Efficiency, in that context, means that the good is sold

without delay, and was established by Gul, Sonnenschein, and Wilson (1986) as the discount rate,

1See Dewatripont (1989), Maskin and Tirole (1992), Battaglini (2007), Maestri (2012), and Strulovici (2011, 2013).

A similar approach has been used to study renegotiation in repeated games with complete information by Bernheim

and Ray (1989) and Farrell and Maskin (1989).
2See Hart and Tirole (1988) and Fudenberg and Tirole (1990). Wang (1998) considers a more flexible protocol, in

which the principal proposes contracts until an agreement is reached. Such protocol leaves a high commitment power

to the principal, since he cannot renegotiate any agreement. Indeed, Wang’s main result is that, with this protocol,

the principal achieves the full commitment allocation, which is also ex post inefficient.
3In Wang’s model, the principal can repeatedly propose menus over quality–wage contracts but renegotiation stops

as soon as the buyer has accepted a contract. Beaudry and Poitevin (1993) obtain a similar result if renegotiations

break down as soon as a new proposal is rejected. In Beaudry and Poitevin, the informed party has the bargaining

power and proposes a single new contract at each round. Renegotiation stops in the first round at which the

other party refuses the new contract. In a different setting with moral hazard, Matthews (1995) considers one-shot

renegotiation by the informed party and obtains ex post efficiency.
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or breakdown probability, goes to zero.4 The proof is sophisticated even in this simple contrac-

tual environment, where each contract amounts to a single posted price. The key question is to

determine whether the seller can benefit from distorting the allocation of the low-valuation buyer

by inefficiently delaying the sale, in order to extract some rent from the high-valuation buyer. In

richer environments, the question is more complex because i) the signature of any contract may be

followed by further negotiations (e.g., contractual covenants, increases in quantities or qualities),

ii) the principal may benefit from proposing multiple new contracts at each round instead of single

one,5 iii) each type of the agent can randomize over all such contracts, and iv) in many contracting

problems, the utility of the agent need not be linear or even separable in the contract components.

This paper analyzes a flexible negotiation protocol with the following properties. At each round,

the principal can propose a menu of contracts (round zero starts with a default contract, which may

correspond to the absence of a prior relationship, some status quo, or some unmodeled previous

play). The agent then chooses a contract from that menu, or holds on to the last accepted contract.

At the end of each round, negotiations exogenously break down with a fixed probability η, in which

case the last accepted contract is implemented. The breakdown probability captures negotiation

frictions: when it is equal to 1, the protocol reduces to full commitment, and the principal typically

distorts the allocation of some type of the agent, creating some ex post inefficiency. The model

focuses on a binary type structure, which satisfies a standard single-crossing condition. As a result,

there is common knowledge of gains from renegotiation: as long as the types of the agent have not

been fully separated, there is a strictly positive surplus to be extracted.

The main theorem of the paper is that, as η goes to zero, all PBE outcomes converge to the same

separating and efficient contracts. The outcome of negotiation is therefore renegotiation-proof

in the sense that P could not benefit from renegotiating the contract even if he were given an

extra opportunity to do so after negotiations have broken down. As a result, flexible renegotiation

provides a dynamic implementation, without commitment, of efficient allocations. The type-specific

contracts to which all PBE outcomes converge are straightforward to characterize and determine

4The result is shown for the “gap” case and the “no gap” case under some Lipschitz condition on the distribution

of types, for weak Markov equilibria (see also Sobel and Takahashi (1983) and Fudenberg, Levine, and Tirole (1985)).

Ausubel and Deneckere (1989) show that the conjecture can fail when more general equilibria are allowed. The

analysis of the Coase conjecture has been extended to various environments: interdependent values (Deneckere and

Liang (2006)), incoming flow of new buyers (Fuchs and Skrzypacz (2010)), and outside options for the buyer (Board

and Pycia (2013)). Skreta (2006) takes a mechanism design approach and shows the optimality price posting. All

these models focus on the case in which the buyer can only buy one unit of the good, and a single quality of the good

is available.
5For example, the principal may propose one contract for each type of the agent, or propose multiple almost

identical contracts as a communication device to emulate cheap talk.
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graphically. Unlike the full commitment case, these contracts are independent of the initial belief

that the principal holds about the type of the agent. The contract space can be divided in three

regions. In the “No-Rent” region, the principal extracts all surplus of renegotiation. Intuitively,

this happens because no type of the agent cannot gain anything from mimicking the other type,

and private information provides no leverage in the negotiation. While intuitive, even that case is

nontrivial as there could a priori be equilibria where both types of the agent delay revealing their

information until getting some rent. In the other two regions, there is a region-specific type that

gains nothing from negotiation, leaving all the surplus to the principal. The other type, say H,

gets a positive rent that depends on how inefficient the initial contract is for the other type, L.

The more inefficient the initial contract is for L, and the more rent H can extract. Even in that

case, though, the principal extracts positive surplus from negotiating with H above and beyond the

surplus that he extracts from L. This stands in stark contrast with the standard Coase conjecture

where the contracts that are efficient for one type (namely, immediate sale) are also the contracts

that are efficient for the other type.

The fact that almost efficient contracts are proposed immediately implies that, in equilibrium,

renegotiation plays a relatively minor role, even though the possibility of renegotiation has a major

impact on the the outcome. This suggests that, empirically, one should not infer that renegotiation

is impossible or difficult in practice just because the observed renegotiation activity seems negligible.

Instead, it may well be that negotiation is feasible and cheap, but finds its expression in the very

first contracts that are proposed.

Another contribution of the paper is to establish the existence of a PBE for a negotiation game with

a (relatively) rich contract space. In the present setting, backward induction techniques cannot be

applied. Instead, the proof takes a two-step approach: first, prove the existence of an equilibrium

in an auxiliary game of perfect information between the principal and the high type of the agent,

based on Harris (1985). Second, use that equilibrium to construct an equilibrium of the negotiation

game with private information.

Finally, the paper is related to the literature on reputation, in which some players are trying to

determine whether other players have a “commitment” type.6 Compared to this literature, the

present analysis differs in several ways: i) the “actions” of the players (the types) are endogenous,

because the principal chooses which contracts the agent chooses from in each round, ii) the state

space is large, because it includes the last accepted contract, in addition to the principal’s belief,

and iii) all types of the agent are strategic. The richer state space, in particular, requires specific

6See in particular Fudenberg and Levine (1989), Schmidt (1993), Abreu and Gul (2000), Cripps et al. (2005), and

Atakan and Ekmekci (2012).
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tools, and the use of a number of inequalities which combine the nonlinear geometry of the problem

(as captured by the agent’s and the principal’s utility over the contract space) with the incentives

of the players.7

2 Setting and Overview of the Results

There are two players, a principal (P) and an agent (A) who negotiate a contract lying in some

compact and convex subset C of R2, whose components are denoted x1 and x2.

The agent has a utility function uθ : C → R where θ ∈ {L,H} denotes his type, and P has a

cost function Q : C → R. It is assumed throughout that uL, uH and Q are twice continuously

differentiable and have strictly positive derivatives with respect to x1 and x2, that the functions

uL and uH are concave, and that Q is convex.

A contract C = (x1, x2) ∈ C is θ-efficient if it is the cheapest contract in C providing θ with some

given utility level. For each θ, let Eθ denote the set θ-efficient contracts in the interior of C; θ’s
iso-utility curve and P’s iso-cost curve are tangent at any such contract. To rule out pathological

cases, it is assumed that the efficiency curves EL, EH are smooth and upward sloping and that, given

any contract C on Eθ, P’s isocost curve going through C and θ’s isoutility curve going through C

do not both have a zero curvature at C.8

The functions uL and uH are required to satisfy a standard single-crossing condition: iso-utility

curves of L are steeper than those of H at their intersection point. This implies that the efficiency

curve EL lies to the lower right of EH . C can therefore be partitioned into three regions separated

by EL and EH . Contracts in the inner region are said to be in the ‘No Rent’ configuration, while

contracts below EL (above EH) are in the ‘H-Rent’ (‘L-Rent’) configuration. The set of contracts

in the H-Rent configuration will be denoted by H. This setting is represented on Figure 1 in the

context of a trade application (other applications are described later in this section). C represents

an Edgeworth box, delimited by the sum of endowments of the agent and the principal. Each

contract C represents the a final allocation for the agent, the efficiency curve Eθ is the ‘contract

curve’ corresponding to type θ, and the status quo R0 represents the endowment of the agent before

any trade.

7Some of these differences can formally be incorporated into the standard reputation framework. For example,

the action space of the agent can be assumed to be fixed by setting a default value if the agent chooses anything

outside of the principal’s proposed set. Such formal similarity does not affect the substantive differences between the

settings.
8This guarantees that the two curves take off cleanly from each other as one moves away from C. That property

is used in Lemma 12 in order to compute a lower bound on the inefficiency of some contracts.
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Figure 1: Setting (trade interpretation)

The Negotiation Game

The game unfolds as follows. First, the agent privately observes his type θ; P has a prior char-

acterized by the probability β0 = Pr(θ = H). The game starts with an initial contract R0 ∈ C,
which may represent some status quo, the absence of a prior relationship, or the result of some

unmodeled earlier play. There are countably many potential rounds, indexed by n ∈ N. At each

round n, P can propose a menu Mn of contracts in C. The number of contracts in Mn is bounded

by some constant G ≥ 2 that is arbitrary but fixed throughout the game.9 The agent chooses a

contract in Mn or holds on to the last accepted contract, Rn. Any mixed strategy over the choice

set Mn ∪ {Rn} is allowed; as in the standard Coase conjecture and in reputation models, mixing

plays a key role in the analysis. The contract Rn+1 that is selected by the agent becomes the new

reference. At the end of each round, renegotiation breaks down with probability η ∈ (0, 1] and the

last accepted contract, Rn+1, is implemented. Otherwise, negotiations move on to the next round.

9There is no guarantee that proposing only two contracts at each round is without loss of generality. As Bester

and Strausz (2001) have shown, the set of implementable outcomes can require more “messages” (or contracts)

than the number of types of the agent, even in a two-period setting. While their modified revelation principle

without commitment implies that incentive efficient contracts may require only 2 messages, here one must consider

all possible continuation equilibria, including incentive inefficient ones (indeed, an inefficient continuation equilibrium

may provide incentives at earlier stages of the game). Since C is a continuum, one could also imagine that P exploits

a higher G by proposing several almost identical contracts as a ‘cheap’ way of communicating with the agent.
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Letting {Rn} denote the stochastic process of contracts entering each round n, the agent’s expected

utility is equal to

Vθ = E





∑

n≥0

(1− η)nηuθ(Rn+1)



 ,

while P’s expected cost is

Q = E





∑

n≥0

(1− η)nηQ(Rn+1)



 .

The parameter η represents the negotiation friction of the game.10 The objective of this paper is to

characterize the PBEs of the game as the friction η goes to zero. Existence of a PBE is guaranteed

by Theorem 1, whose proof is in Appendix A.

Theorem 1 For each η ∈ (0, 1], there exists a PBE of the negotiation game.

For any contract R ∈ C, let EH(R) and EL(R) denote the cheapest pair of H- and L-efficient

contracts such that each type θ 6= θ′ weakly prefers Eθ(R) to Eθ′(R) and to R. That pair is

well defined for each possible configuration of R.11 Figure 2 represents these concepts for the

case of CRRA utility functions and a linear cost function, and where C is the Cartesian product

[0, x̄1]× [0, x̄2].

The proof of Theorem 2, below, exploits the inefficiency stemming from both types of the agent

getting the same contracts at the time of a breakdown. To guarantee that such inefficiency actually

does arise, one needs to rule out situations in which contracts lying at the boundary at the contract

space arise in equilibrium, since such contracts may be efficient for both types.12

Accordingly, say that a contract R0 is regular if it is in the No-Rent configuration or if it satisfies

the following condition, stated when R0 lies in H (the L-Rent case is defined analogously): for any

R′ ∈ H,

uH(EL(R
′)) ≥ uH(R0) ⇒ EL(R

′) 6= EH(R′) (1)

10There is another interpretation of the setting where η is the discount rate and the parties receive payoffs at each

period of the on going relationship. This interpretation is discussed at the end of Section 5.
11If R is in the No-Rent configuration, Eθ(R) is simply the θ-efficient contract that gives θ the same utility as R. If

R is in the H-Rent configuration, then EL(R) is similarly defined, while EH(R) is the H-efficient contract that gives

H the same utility as EL(R). Because that contract gives a strictly higher utility to H than the initial contract R, H

must be getting a positive rent in any equilibrium, hence the name of that configuration. A symmetric construction

obtains if R is instead in the L-Rent configuration.
12At the boundary, even the strict single crossing property is ineffectual in separating efficient contracts: even if the

isoutility curves for the low and high types have different slopes for a contract lying at the boundary, that contract

may be efficient for both types.
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Figure 2: Renegotiation outcomes

This condition works because starting from R0, any contract R′ ∈ H which may arise in equilibrium

must satisfy uH(EL(R
′)) ≥ uH(R0), as shown by Proposition 1, part iv) and thus satisfies the

premise of Condition 1.

Even in situations where regularity does not hold, it is easy to slightly perturb the agent’s utility

function so as to satisfy it. This technique is illustrated in Section 4, which recovers the standard

Coase conjecture as a limit case of the present setting. Another way to guarantee regularity is to

expand the contract space.13 The regularity condition then rules out only those initial contracts

giving such a low utility to the agent that one may reach along the equilibrium path some efficient

contracts hitting the lower boundaries of C. In Figure 2 all contracts are regular except for the

origin.

Theorem 2 Consider any regular contract R0 and belief β0, and fix any ε > 0. There exists

η̄(ε) > 0 such that the following statements hold for any η ≤ η̄(ε) and corresponding PBE:

A: The expected utility of each type θ is bounded below by uθ(Eθ(R0))− ε.

13If the utility and cost functions are defined on some upper orthant O = [ℓ1,+∞) × [ℓ2,+∞) containing C

(regardless of its shape), one can always expand C to the smallest rectangle C′ containing C and such that EL (resp.

EH) hits the boundary of C′ on its right (resp. upper) edge.
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B: The probability that each type θ gets a contract within a distance14 ε of Eθ(R0) when renegotiation

breaks down is greater than 1− ε.

Statement B implies that the outcomes of renegotiation must get arbitrarily close to ex-post effi-

ciency as the renegotiation friction η goes to zero, since each contract Eθ(R0) is θ-efficient. That

statement is a relatively straightforward consequence of Statement A, to which the quasi-totality

of the proof is devoted.

Theorem 2 implies that P always gets some surplus from negotiation. When the contract is in the

No-Rent configuration, P extracts, in fact, all the surplus regardless of the agent’s type. When R0

is in the H-Rent configuration, P extracts all the surplus from negotiating with L, and extracts

some additional surplus in case he is facing H (the surplus obtained by moving from EL(R0) to

EH(R0)).

Applications

1. Durable Good Monopolist. The agent, A, is a buyer with quasi-linear utility uθ(C) =

θū(x2) + x1, where x2 is the quantity of the good sold by P, x1 is A’s wealth, and u is A’s concave

utility function.15 The initial contract, R0, is equal to (x̄1, 0) where x̄1 is A’s initial wealth. P’s cost

is Q(x1, x2) = cx2 + x1, where c > 0 is the marginal cost for producing the good and x2 captures

how much wealth “P leaves to A”.16

2. Labor Contract. P is a potential employer and A is a worker. −x2 represents A’s effort and x1
is his wage. A gets utility uθ(C) = θψ(−x2) + x1, where ψ is a common component of the agent’s

cost of effort, increasing in its argument, and θ is a worker-specific factor entering the cost of effort.

The status quo R0 = (0, 0) represents unemployment, while P’s profit is Π(x1, x2) = −Q(x1, x2) =

−x2p− x1, where p > 0 is the unit price of the good.

3. Consumption Smoothing and Insurance. There are two periods and a single good. The

dimensions of C represent A’s consumption in each period. P is a social planner or a bank who can

help the agent smooth his consumption. The type θ may be a privately known patience/discount

factor, or a distribution parameter that describes how likely the agent is to value the good in

the second period. For example u(x1, x2) = v(x1) + θv(x2) or u(x1, x2) = v(x1) + E[w(x2, ρ̃)|θ]
where ρ̃ is a taste shock whose distribution FOSD increases in θ, and w is supermodular, so that

14The statement holds for any norm on R
2.

15The iso-level curves of uθ have positive curvature as long as the second derivative ū is strictly negative, as is

easily checked. A similar observation applies to ψ in the labor contract application.
16P’s profit is Π(t, x2) = t − cx2, where t is how much the agent pays P. Letting t = x̄1 − x1, we obtain the

formulation in terms of the cost function Q.
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E[∂w/∂x(x2, ρ̃)|θ] is increasing in θ.17 R0 is A’s autarkic income stream. Q(x1, x2) = p1x1 + p2x2,

where pt is the market price for the good in period t.

4. Trade. More generally, the model describes a trade environment in which the dimensions of

C represent distinct goods, with xi denoting the quantity of good i consumed by A. Type L cares

more about the first good than the second, relative to H. P (like A) has convex preferences, and

Q is the negative of a utility function representing his preferences. R0 denotes the agent’s initial

holdings of the goods.

3 Overview of the Arguments

This section provides a roadmap of the key steps and ideas used to establish Theorem 2. Most

arguments and concepts are purposely simplified; all proofs are in the appendix. When the pre-

sentation of these steps and arguments could not be self-contained, precise pointers to the actual

proofs have been included.

Preliminaries

When P assigns probability 1 to either type of the agent, or when the last accepted contract is

in the No-Rent configuration, it is comparatively easy to show that there is a unique continuation

PBE: P immediately extracts all the rent from negotiation and efficiency obtains (Proposition 1).

The most challenging part of the analysis is to prove the theorem when R0 is in the H-Rent or

L-Rent configuration; this section focuses on the former case, without loss of generality.

With R0 in the H-Rent configuration, one may show that, along any PBE, L accepts only contracts

in the H-Rent configuration (Lemma 3). Without loss, a PBE looks like this: P proposes at each

round an H-efficient contract, Cn, and some contracts in the H-Rent configuration. H mixes over

all contracts, while L mixes over all contracts but Cn.

“Jump” deviation: P can, at any round n, propose the efficient contracts EH(Rn) and EL(Rn)

and have them accepted by their respective types (Lemma 2). This deviation is feasible in any

equilibrium and thus provides a key upper bound on P’s expected cost.

Main question The objective of the proof is to show that P cannot do any better than the jump

deviation as η goes to zero. It suffices to show that P must leave to H a utility arbitrarily close to

uH(EH(R0)); the other claims of Theorem 2 follow relatively easily from that statement.

17This application is explored in detailed by Strulovici (2013).
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Contradiction hypothesis and block construction

The proof proceeds by contradiction. Fixing some ε > 0, suppose one may find some arbitrar-

ily small η and associated PBE for which P extracts a rent of at least ε from H, compared to

uH(EH(R0)). To fix ideas, let uH(0) denote H’s expected utility at the beginning of round 0, and

suppose that uH(0) = uH(EH(R0))− ε.18

The contradiction argument starts by constructing blocks of rounds delimited by continuation-utility

thresholds for H, denoted û0 = uH(0) < û1 < û2 < · · · , and an equilibrium sequence of contract

offers and choices along which P’s assigned probability of facing H is guaranteed to drops by at

least some factor q < 1 across each block.

The thresholds are defined inductively by the equation

ûk+1 − ûk
êk − ûk

=
1

t
< 1 (2)

for block k + 1 (the first block has index 1), where ê0 = uH(EH(R0)) and, for k ≥ 1, we have19

• êk = uH(EH(Rnk
)) where nk is the last20 round of block k, and

• t > 1 is a factor that will be defined shortly.

These thresholds are chosen so as to generate a geometric sequence for {êk − ûk}. Proceeding by

backward induction on k, as explained below, that geometric sequence is used to compute an upper

bound on ê0 − û0.
21 This bound is of obvious interest because ê0 − û0 = uH(EH(R0)) − uH(0) is

exactly the quantity which must be shown to be less than ε in the contradiction hypothesis above.

It is easily shown that H’s continuation utility at the beginning of round n, uH(n), increases by

steps of order at most η between consecutive rounds. In fact, H’s Bellman equation implies that

uH(n) = ηuH(Rn+1) + (1− η)uH(n+ 1) (3)

for any contract Rn+1 chosen by H with positive probability, which implies the η bound on uH(n+

1)−uH (n). Therefore, each block k contains at least in the order of (ûk−ûk−1)/η rounds. Since each

round is followed by a breakdown with probability η, this puts a lower bound, of order ûk− ûk−1 on

the probability of a breakdown within block k. Moreover, each breakdown creates an inefficiency,

18In general, uH(0) is strictly less than uH(EH(R0)) − ε. However, this distinction can be easily addressed by an

initialization phase. See Lemma 4.
19The actual definition of êk is more complicated and involves the entire history of play.
20Lemma 14 shows that H ’s continuation utility must eventually exceed ûk in finite time, so that the final round

nk is well-defined.
21Precisely, one can show that ê0 − û0 ≤ t

t−1

k
(êk − ûk) for any relevant k. See the argument preceding (22).
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conditional on facing H, that is bounded below by some constant D > 0.22 Given this inefficiency,

the only reason for P to proceed with the equilibrium instead of directly jumping to the efficient

contracts EH(Rn) and EL(Rn) is to extract some rent from H. That rent is bounded above by

êk − ûk, because êk is what P would leave to H if he gave up on rent extraction, while ûk is H’s

continuation utility if P goes on with the equilibrium. This puts an upper bound a(êk − ûk) on the

cost reduction that P can hope to get through rent extraction, where a is a constant “translating”

any upper bound on utility increments for H into an upper bound on the corresponding cost

increment for P .

Taken together, these observations imply an upper bound on the probability µk that H rejects the

rent-extracting contracts at block k:

µk ≤ a

a+D

êk − ûk
ûk+1 − ûk

= t−1 < 1. (4)

where the equality comes from (2) and from choosing the factor t =
√

a+D
a

. Since H’s probability

of accepting only contracts in H is bounded above by (4), while L accepts contracts in H with

probability 1, P’s posterior probability of facing H conditional of facing these contracts must go

down by at least some factor related the bound provided by (4), at least for some choice sequences

of contracts in H. Letting β̂k denote P’s assigned probability of facing H at the end of block k,

this implies that

β̂k ≤ gβ̂k−1

for some factor g < 1 independent of η.

Adapting backward induction to an infinite horizon

The construction is interrupted at the first block K for which the difference êK − ûK is less than

W̄η, where W̄ is chosen high enough to guarantee that êK − ûK lies above some threshold W
¯
η, for

some W
¯

∈ (0, W̄ ). This lower bound of order η is guaranteed to exist and plays an important role

in establishing the contradiction, as explained below.

The remainder of the analysis hinges on the value of the posterior β̂K at the end of block K. To

see this, consider the standard Coase conjecture with 2 types. In that simpler setting, there exists

a belief threshold β̂ below which the seller immediately sets the price at the low-buyer valuation,

completely giving up on rent extraction. If such a threshold existed in our problem, then because

β̂k ≤ gkβ0, this would put a fixed bound on the number of blocks until β̂ is reached. Proceeding

22The existence of such a constant hinges on the geometric assumption of regularity, as explained before stating

Theorem 2. See also Lemma 16.
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backward on the utility thresholds, this would imply that the initial difference uH(EH(R0)) −
uH(0) = ê0 − û0 is also of order η. This, for η small enough, would yield the desired contradiction.

Unfortunately, such belief threshold does not exist here. Unlike the gap case of the Coase con-

jecture, where the “no sale” outcome generates first-order inefficiency, here the default contract

Rn varies over time and asymptotically becomes L-efficient. Instead of jumping to an L-efficient

contract when βn becomes small enough, the principal makes active proposals yielding ever smaller

improvements of the contract until negotiations exogenously break down. As a result, the relatively

simple backward induction argument in the standard Coase conjecture must be modified. The key

is to establish the next proposition.

Proposition (Belief Bound) For any d > 0, there exists an upper threshold η̄(d) > 0 such that

β̂K > ηd for all PBEs corresponding to any η < η̄(d) .

Define ρ > 0 by g−ρ = t
t−1 and set d = 1

2 min{1
ρ
, 1} ∈ (0, 1/2]. Proceeding by backward induction

on the constructed blocks and applying the above proposition to that value of d, one may easily

show (see (22)) that ê0 − û0 is of order
√
η, which yields the desired contradiction. Proving this

proposition is challenging, however, and takes up most of the proof.

The basic intuition for the proposition is – deceivingly – simple: if β̂K were smaller than ηd, for

η arbitrarily small, then P would be willing to sacrifice almost all rent extraction from type H,

who is extremely unlikely anyway, in order to avoid any inefficiency on type L. This, it turns out,

would imply that the rent extraction êK − ûK is of order η1+d and contradict, for η small enough,

its lower bound of W
¯
η, which was mentioned above. The actual argument is complex because we

are comparing arbitrarily small rent extraction gains and inefficiency losses. Making things worse,

as Rn gets arbitrarily close to the efficiency curve EL, the inefficiency loss on L is one order of

magnitude smaller than the rent extraction on H.

Deriving the belief bound for β̂K

The idea for proving the proposition is to transform (beyond recognition!) H’s Bellman equation (3)

into the following dynamic belief equation:

βn+2

βn+1
≥ βn+1

βn
− c
√

βn+1. (5)

This transformation requires a number of conceptual and technical steps, outlined below, and

involves the observation that, for n large and η small, one can set without loss of generality

awn

ηD
=
βn+1

βn
, (6)

13



where wn = uH(EH(Rn)) − uH(n) is the rent extraction index. As shown by Proposition 2, wn

must converge to zero as n goes to infinity. Intuitively, the probability βn of facing H converges to

zero and Rn converges to an L-efficient contract as n goes to infinity. This implies that EH(Rn)

gives roughly the same utility to H as Rn does for n large (see Figure 2) or, in other words, that

wn converges to zero. It turns out however (Lemma 9) that if β̂K = βnK
is too small (in particular,

below the belief bound that we are trying to establish), then no solution to the dynamic equation (5)

is such that βn+1/βn converges to zero. From (6), this implies that wn cannot converge to zero as

n goes to infinity, yielding the desired contradiction.

Transforming H’s Bellman equation into the dynamic belief equation (5)

The transformation of H’s Bellman equation is based on P’s IC constraint. One may consider, at

each round n, P’s incentive to jump to EH(Rn), EL(Rn) instead of pursuing active negotiations

(this jump deviation is always available to P, as mentioned earlier). This IC condition yields the

equation

wnaβn ≥
∑

Rn+1∈(Mn∪{Rn})∩H

[

βnµ
H
n (Rn+1)ηD + (1− βn)µ

L
n(Rn+1)η(Q(Rn+1)−Q(EL(Rn)))

]

, (7)

where µθn(Rn+1) is type θ’s probability of accepting any given contract Rn+1 of H that lies in the

menu Mn ∪Rn of available contracts. The left-hand side is an upper bound on P’s gain, as in the

block construction described earlier. The right-hand side consists of the loss on the high and low

types, respectively, for each possible chosen contract Rn+1. Rewriting (7) as

wnaβn ≥
∑

Rn+1∈(Mn∪{Rn})∩H

µLn(Rn+1)

[

βn
µHn (Rn+1)

µLn(Rn+1)
ηD + (1− βn)η(Q(Rn+1)−Q(EL(Rn)))

]

, (8)

the right-hand side may now be seen as a convex combination of these losses, weighted by L’s

probability µLn(Rn+1) of choosing each contract Rn+1. Therefore, there must exist a contract Rn+1,

chosen with positive probability, for which23

wnaβn ≥ µnβnηD + (1− βn)η(Q(Rn+1)−Q(EL(Rn))), (9)

where µn = µH
n (Rn+1)

µL
n(Rn+1)

. That condition is then broken up into two weaker conditions24

wna

ηD
≥ µn, (ICLL

n )

23Some “loss” terms may be nonpositive, but very slightly so. The argument and the breakup into the two weaker

conditions ICLL and ICLH can be adapted to account for this, as shown in the appendix.
24Some of the terms can be negative, but only very slightly so. This complication does not change the gist of the

analysis, as shown in the appendix.
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and

βnwna ≥ (1− βn)η(Q(Rn+1)−Q(EL(Rn))) (ICLH
n )

This establishes the existence of a sequence {Rn} of on-equilibrium-path contracts such that the

coupled inequalities ICLL
n and ICLH are satisfied for all n large enough. The posterior βn associated

with that sequence satisfies in good approximation βn+1 = βnµn. It turns out that, starting

from some given round n, µn can be increased so as to satisfy ICLL
n as an equality, yielding

βn+1

βn
∼ µn = wna

ηD
, without violating any other relevant inequality for indices m ≥ n. This change

makes the analysis more tractable. Moreover, it has no impact on the contracts involved in these

inequalities. Therefore, if one can show that these contracts violate some equilibrium property (in

particular, asymptotic convergence to efficiency), this will establish a contradiction, irrespective of

the fact that the beliefs were modified to establish that violation.

Subtracting uH(EH(Rn)) from both sides of H’s Bellman equation (3) and rearranging (also re-

calling that wn = uH(EH(Rn))− uH(n)) yields

wn+1 = wn−η(uH(EH(Rn))−uH(Rn+1))+ηwn+1+(1−η)(uH(EH(Rn+1))−uH(EH(Rn))). (10)

The last two terms can be shown to be negligible, resulting in the simpler equation

wn+1 = wn − η(uH(EH(Rn))− uH(Rn+1)). (11)

One can further show, by exploiting ICLH
n and some geometric inequalities (Lemma 12) that H’s

utility difference in (11) is of order
√

βn+1 (see (39)). Since wn is proportional to η βn+1

βn
, as explained

above, (11) can then be turned into (5).

Bridging blocks and the dynamic belief equation

The previous paragraphs have naturally made abstraction from a number of complications arising

in the actual proof. One intermediary step must be mentioned here, however, as it takes up

almost a third of the actual proof. The dynamic belief equation and the non-convergence to zero

that it implies only work as long as βn remains small during all the rounds following block K.

Unfortunately, however, one cannot guarantee that βn remains small: Even though, on average, L

is more likely than H to choose contracts in H (since H can also choose the H-efficient contract

Cn), there may be contracts in the menu Mn ∩H that are chosen with much higher probability by

H than L, resulting in a spike up of the posterior βn. And, at least in principle, one cannot rule

out the possibility that those contracts creating the spike are precisely the contracts chosen in P’s

IC constraint (8) to get the simpler condition (9).
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Fortunately, this issue does not arise if wn is small enough (precisely, below ηD
2a ), because in that

case µn can be shown to be smaller than 1, implying that βn must be decreasing. But the last block

K ended up with the condition wn ≤ ηW̄ , and the constant W̄ could a priori be well above D
2a .

To address this difficulty, the idea is to insert a number of intermediary blocks, following block K,

and build a hybrid argument drawing on the arguments used along the blocks constructed earlier

and the arguments used to derive the dynamic belief equation. Along those new blocks, wn is

guaranteed to decrease until it drops below ηD
2a , but not too fast, as it must remain exactly of order

η: remember that, in the above contradiction argument, we used the fact ŵK = êK − ûK was

greater than ηW
¯

for some fixed W
¯
> 0. Moreover, these intermediary blocks are built so that βn

remains of order ηd. The dynamic belief equation argument can then be applied at the end of those

intermediary blocks.

4 Relation to the standard Coase conjecture

Theorem 2 does not exactly cover the standard Coase conjecture, in which a contract amounts

to a unit sale. However, it is possible to recover the conjecture as a limit of Theorem 2. To see

this, suppose that the first contractual dimension represents the agent’s wealth, while the second

dimension represents the probability that the agent gets the good (alternatively, it could represent

the quantity, between 0 and 1, of a divisible good). The initial contract is (W, 0), where W is

the agent’s initial wealth. The principal incurs a cost c for the good (or marginal cost c, in the

divisible-good interpretation), resulting in linear isocost curves. To bridge the two settings, we

fix an arbitrarily small constant δ and define the agent’s utility as follows. The agent’s utility is

quasilinear25 for x2 < 1 − 2δ, given by u(x1, x2; θ) = θx2 + x1 with θH > θL > c; the iso-utility

curves are then kinked for x2 > 1− 2δ as depicted on Figure 3, so as to guarantees that all efficient

contracts for H (L) involve a fixed probability x2 = 1−δ (1−2δ) of getting the good. The red (blue)

curves represent the iso-utility curve of the high (low) type. The boundary of regular contracts is

shown on the left of the figure. All contracts of H lying to the right of that boundary, including

R0, are regular.

This situation approximates, for δ arbitrarily small, the setting of the Coase conjecture, in which

it is always efficient to sell the good to the agent. For any δ > 0, however, it also satisfies the

25The paper assume a nonzero curvature condition for isoutility curves. However, the curvature can be arbitrarily

close to zero, so that the quasilinear case can be approximated arbitrarily well, and this can be done simultaneously

as δ is taken to zero. Moreover, the Coase conjecture really concerns the value of the agent for zero and one unit of

the good. It doesn’t have to be linear for intermediary quantities of the good, though this restriction is natural if one

think of the “quantity” as being the probability of that the agent gets the good.
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Figure 3: Recovering the standard Coase conjecture

assumptions of Theorem 2. In particular, the efficiency curves of the types are separated.

The Coase conjecture is then recovered as follows: if P were sure to face H, he would move to the

contract CH appearing on Figure 3. With uncertainty about the buyer’s type, however, Theorem

2 implies that the outcome is given by the contracts EH(R0), EL(R0), which converge to the same

contract as δ goes to zero. Both types of the buyer obtain essentially the same outcome, which is

the (almost) sure sale of the good at the same price. The high type gets a rent corresponding to

the distance between EH(R0) and CH , while L gets no rent.

It must be emphasized that the standard Coase conjecture is not representative of the general

situation. In particular, the similarity completely breaks down when the efficiency curves of H and

L lie far away from each other. The principal then extracts some rent from H above and beyond

the contract that L gets in equilibrium.

Moreover, the stark discontinuity arising in the standard Coase conjecture between the gap and no

gap cases does not arise here. In that setting with two types, H’s rent increases as L’s valuation

vL (and hence the equilibrium price) becomes lower. However, when L’s valuation reaches P’s

marginal cost c, turning into the “no gap” case, H’s rent suddenly drops to zero and P ’s profit

leaps up from zero to β0(vH − vL). Consider a similar exercise in the setting of Theorem 2, where

L’ efficiency curve is lowered until it goes through R0. The surplus that P extracts from H then

varies continuously, until EL goes exactly through R0 and P extracts all surplus from H.26

26The principal’s rent extraction does not have to be monotonic through the change of EL, but it evolves continuously
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5 Conclusion

Whether it concerns trade, production, employment, finance, or other economic activities, contract

negotiation is central to economic analysis and has been widely studied from both pure and applied

perspectives. However, much remains to understand when i) contracts are more complex than

binary sales or divisions of a given “pie”, ii) some parties hold private information, and iii) negotia-

tion is not limited to a single take-it-or-leave-it-offer. In this common situation, private information

is endogenously revealed through negotiation, even in the absence of any exogenous information

arrival, and this information affects ongoing negotiations, providing a dynamic interaction between

beliefs and contracts.

I have taken the view that parties should be able to react to this endogenous flow of information,

particularly when it reveals some inefficiency of the current agreement, instead of being stuck with

this agreement. This view captures the idea of unconstrained negotiation, and seems essential

to generate a foundation for renegotiation-proof contracts.27 While the analysis has focused on a

specific negotiation protocol (just like foundations of the Nash bargaining solution and of the Coase

conjecture), it would be useful to explore, in future research, more general protocols of negotiation.

A natural conjecture is that contract negotiation should lead to efficient outcomes under these more

general protocols as long as it is unconstrained in the above sense and does not entail additional

frictions, such as explicit renegotiation costs.28

In the present setting, where the efficiency “gap” is endogenous, varies over time, and converges

to zero, it is perhaps surprising that ex post efficiency should obtain for all equilibria – including

non-stationary ones – of the negotiation game, as frictions vanish. It would be natural to study

extensions of these results to more than two types or contract dimensions and to independent

values imposed on the model.29 While those extensions do not seem straightforward, the techniques

developed here should prove helpful to analyze them. When the agent has more than two types,

one may conjecture that renegotiation will similarly lead to ex post efficiency, and it is actually

easy to guess the limit contracts in that case.30

and reaches its maximum as EL goes through R0.
27For instance, Wang (1998) shows that when the first signed contract is always implemented, outcomes can be ex

post efficient. In fact, those outcomes are, in his model, identical to the full commitment outcome.
28See, e.g., Brennan and Watson (2013).
29Deneckere and Liang (2006) provide an in-depth analysis of the interdependent value case, for a binary sale.
30With three types, H,M,L, for instance the contracts {Eθ(R0)}θ∈{H,M,L} would the cheapest θ-efficient contracts

that are incentive compatible. The conjecture extends trivially to finitely many types and can also be extended to

a differential equation characterizing {Eθ(R0)}θ∈Θ for a continuum of types, although proving in that case seems

particularly challenging.
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Allowing shared bargaining power between the principal and the agent is also natural,31 although

this extension is not needed to provide a foundation for the renegotiation-proof contracts, most

common in the literature,32 that are proposed by the principal. In fact, any negotiation protocol in

which the bargaining power is shared by the parties should typically not yield the renegotiation-

proof contracts that are optimal for the principal. That point is straightforward to see in the case

of symmetric information.

The analysis has focused on a single “delivery” time, at which the contract is implemented. To

provide a foundation for multi-period renegotiation-proof contracts, one should consider a general

model with multiple “physical” events, i.e., times at which payments, efforts are made, or exogenous

information arrives (e.g., if the type of the agent is persistent but not constant). A renegotiation

protocol like the one studied in this paper could be inserted between physical events, and negotiation

would pertain to continuation contracts for the remaining horizon. For example, if good deliveries or

monetary transfers occur at integer times t = 1, 2, . . ., the renegotiation rounds between dates t− 1

and t would occur at times τ tn = t− 1
2n , for n ≥ 1. This double time scale is natural in many contexts

where physical deliveries have a particular calendar structure (e.g., monthly wage, weekly delivery,

quarterly report, etc.), but parties’ ability to negotiate has no reason to be thus constrained.33

Finally, there is a formal equivalence between the model presented here and a model in which η

is a discount rate, rather than a breakdown probability, and the contract chosen in period n is

implemented in that period, generating payoffs for both players. With that interpretation, the

principal and the agent are in an ongoing relationship that yields payoffs at all rounds, and the

same contract is implemented over and over again unless players decide to renegotiate it. This

interpretation is similar to an infinite horizon version of one of the models analyzed by Hart and

Tirole (1988) where, also, players’ value functions are not constrained to be quasilinear. Reinter-

preted as such, the results say, first, that there exists an equilibrium of this infinite horizon game

(Theorem 1) and, second, that the players converge almost immediately (relative to the discount

factor) to separating and efficient contracts in all equilibria of the game (Theorem 2).34

31Ausubel and Deneckere (1992) analyze a model with shared bargaining power. In that model, the informed party

(buyer) is getting all the surplus, even when the seller is making all the offers. When given the opportunity to make

offers, therefore, the buyer does not lose anything by remaining silent. In the present setting however, the agent does

not get all the surplus and it is clear that, even in the absence of private information, sharing bargaining power would

affect the equilibrium allocation of surplus. The key question is whether shared bargaining power would create some

efficiency loss.
32See, e.g., Dewatripont (1989), Maskin and Tirole (1992), and Battaglini (2007).
33The time structure described here allows unrestricted renegotiation between physical events, as there are infinitely

many renegotiation rounds, and could in principle also be captured by a continuous-time model, in which the principal

can propose new contracts at any instant between physical events occurring one a discrete time set.
34This result echoes Maestri (2013) who considers an infinite horizon version of Hart and Tirole (1988) and,
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Appendices

A Proof of Theorem 1 (Existence of a PBE)

It suffices to prove the result for R0 in the H-Rent configuration and β0 ∈ (0, 1): the degenerate prior and

No-Rent cases obtain as direct consequences of Proposition 1 below, which proves (independently of this

section) the existence and uniqueness of an equilibrium in those cases, while the L-Rent case obtains by

symmetry of the H-Rent case. The proof proceeds in two steps:

• Step 1 - Prove the existence of an equilibrium in an auxiliary game played between P and H .

• Step 2 - Construct a strategy profile of the original game based on the equilibrium established in

Step 1, and verify that it defines a PBE of the original game.

Step 1: Auxiliary game

The game starts with a contract R0 ∈ H in the H-Rent configuration and a parameter β ∈ (0, 1). For this

auxiliary game, β is just a parameter affecting the payoff functions and is devoid of its interpretation as a

belief.

The auxiliary game is a dynamic game with infinitely many rounds. At each round n, starting in state Rn,

P proposes new contracts Rn+1 ∈ H and Cn ∈ EH subject to the constraints

uL(Rn+1) ≥ uL(Rn) (12)

uL(Rn+1) ≥ uL(Cn) (13)

uH(Cn) ≥ uH(Rn). (14)

H then chooses a number µn ∈ [0, 1]. The interpretation of this choice is that H accepts Rn+1 with

probability µn and Cn with probability (1 − µn). For this auxiliary game, however, µn is simply an action

deterministically affecting payoffs.

The principal’s cost, for strategies {Rn+1, Cn} and {µn}, is given by

Q({Rn+1, Cn}, {µn}) =
∑

n≥0

Q(Cn)β(1 − η)n(1− µn)

n−1
∏

k=0

µk

+
∑

n≥0

Q(Rn+1)

(

β(1 − η)nη

n
∏

k=0

µj + (1− β)(1 − η)nη

)

, (15)

introducing a concept of renegotiation-proofness suitable for infinite-horizon models with private information, shows

that all renegotiation proof equilibria must result in efficient contracts as the discount rate goes to zero. By contrast,

one of the main motivations and contributions of the present paper, using the interpretation of the main text, is to

show that contracts must be renegotiation-proof as the discount rate goes to zero.
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while H ’s payoff is

V({Rn+1, Cn}, {µn}) =
∑

n≥0

uH(Cn)(1− η)n(1− µn)

n−1
∏

k=0

µk +
∑

n≥0

uH(Rn+1)(1− η)nη

n
∏

k=0

µn. (16)

These payoffs correspond to the expected cost and utility that P and H would obtain in an equilibrium of

the original game in which P proposes two contracts at each round, the breakdown probability is η, {µn} is

the mixing strategy of H , L always accepts Rn+1, and the initial probability of facing H is equal to β.

Lemma 1 For any initial R0 and β ∈ (0, 1), there exists a perfect equilibrium of the auxiliary game

Proof. The result is direct consequence of Theorem 1 in Harris (1985). We check Assumptions 1–5 of that

theorem. The payoff function of the principal is simply the negative of his cost, Q. P’s (unconstrained)

action set in round n is SPn = H× EH , while H ’s action space is SHn = [0, 1] which are both compact and

Hausdorff spaces. Hence, Assumptions 1 and 2 are satisfied. P’s feasible set at each round n, as defined by

the constraints (12) and (14), is closed and depends continuously on the current state. Therefore, the set

Sf of feasible sequences is closed in S = ×n(SPn × SHn) endowed with the product topology, and the set

of feasible actions in round n depends continuously on past play. Thus, Assumptions 3 and 4 are satisfied.

Finally, the payoffs −Q and V are clearly continuous on their domain Sf , so Assumption 5 is satisfied as

well. The result follows. �

Remark 1 We can similarly define an auxiliary game and equilibrium when instead R0 is in the L-Rent

configuration. This equilibrium yields an expected utility for H, as a passive player of the auxiliary game,

given, by

VH(β) =
∑

n≥0

(1− η)nηuH(Rn+1). (17)

This equilibrium and payoff is used to define H’s strategy, off the equilibrium path, in the PBE construction

for the original game.

Step 2: Equilibrium of the original game

Starting from R0 ∈ H and a belief β0 ∈ (0, 1), the equilibrium strategies are defined as follows:

At each round n:

• P proposes the sequence of contracts {Cn, Rn+1} corresponding to the auxiliary game started at

(R0, β0)

• L accepts Rn+1 with probability 1, while H accepts Rn+1 with probability µn and Cn with probability

(1 − µn), where µn is H ’s equilibrium choice in the auxiliary game. If Rn+1 6= Rn and the agent

accepts Rn, P assigns probability 1 to H , so the continuation play is trivially defined in that case, by

Proposition 1 (whose proof is independent of Theorem 1).

• If P proposes, at some round n, a menu Mn that does not correspond to the pair of contracts defined

by the auxiliary game, let R̄n+1 denote the contract of Mn ∪ {Rn} that maximizes L’s utility and
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C̄n denote the contract of Mn ∪ {Rn} that maximizes H ’s utility.35 By construction, R̄n+1 and C̄n

satisfy (12)–(14). Let R̂n+1 denote the L-efficient contract that gives L the same utility as R̄n+1 and Ĉn

denote the H-efficient contract that gives H the same utility as C̄n. There are three cases to consider:

a) uH(Ĉn) ≥ uH(R̂n+1) and uL(R̂n+1) ≥ uL(Ĉn), b) uH(Ĉn) < uH(R̂n+1) and uL(R̂n+1) ≥ uL(Ĉn),

and c) uH(Ĉn) ≥ uH(R̂n+1) and uL(R̂n+1) < uL(Ĉn). Because of the single-crossing property, the

fourth and last logical case cannot occur, as is easily checked.

Continuation play is then defined as follows, according to each case.

a) L chooses R̄n+1 with probability 1, H chooses C̄n with probability 1. If the agent chooses any

other contract R in Mn ∪ {Rn}, then the principal assigns probability 1 to a type θ of the agent

such that the other type θ′ 6= θ cannot benefit from choosing that contract if the principal put

probability 1 on θ.36 There always exists at least one such type, as is easily checked.

b) Case b) can occur only if R̄n+1 is in the H-Rent configuration. Continuation play is defined

by the continuation equilibrium of the auxiliary game in which, following Rn, P proposes R̄n+1

and Ĉn, but replacing Ĉn by C̄n.
37 In particular, L accepts R̄n+1 with probability 1, and H

randomizes between the contracts C̄n and R̄n+1 according to the probability µn of coming from

the auxiliary equilibrium if C̄n is replaced by Ĉn. If the agent picks any contract other than

R̄n+1 and C̄n, P assigns probability 1 to one type according to the same rule as in Case a).

Continuation for rounds m ≥ n+ 1 is also determined by the equilibrium of the auxiliary game.

c) Case c) is symmetric to Case b), and can only occur if C̄n is in the L-Rent configuration. The

continuation equilibrium is defined by the continuation equilibrium, from period 1 onwards (see

Remark 1) of the auxiliary game starting in period 0 with belief β̃0 = 1− βn (since L now plays

the role of H and vice versa) and at some fictitious contract R̃ in the L-Rent configuration such

that R̂n+1 and C̄n satisfy equations (14) and (12), respectively (the inequalities are reversed,

because the equilibrium is in the L-Rent configuration).

This construction defines the continuation strategies after any possible history. We now verify that the strat-

egy profile forms an equilibrium, using the one-shot deviation principle, which applies since the breakdown

probability η has the effect of discounting the utility of future rounds at a geometric rate.

Consider first L’s strategy, assuming that P follows the prescribed sequence of contracts. From (13), L

cannot benefit from picking Cn: indeed, doing so causes βn jumps to 1, and L to be stuck with utility

uL(Cn), which is (weakly) lower than uL(Rn+1) and hence lower than his continuation utility if he chooses

Rn+1.
38 Similarly, if Rn+1 6= Rn and L chooses Rn, then βn jumps to 1, and L’s continuation utility is

bounded above39 by uL(Rn), which is weakly dominated by accepting Rn+1 by (12) (guaranteeing that L’s

35If there are several maximizers, the equilibrium selects any of them. There must be at least one maximizer,

because the menu is finite.
36That is, θ′ prefers the contract that he is supposed to take with probability 1 in equilibrium (e.g., C̄n if θ′ = H)

to the θ-efficient contract that gives θ the same utility as R.
37By construction, R̄n+1 ∈ H, Ĉn is H-efficient, and the contracts satisfy conditions (12), (13), and (14), so the

contract pair is feasible for the auxiliary games.
38That utility is always weakly higher than uL(Rn+1), since L can always hold on to Rn+1.
39Indeed, P then proposes the H-efficient contract R that gives H utility uH(Rn), and uL(R) ≤ uL(Rn) by the

single-crossing property and the fact that Rn is in the H-Rent configuration.

22



continuation utility is bounded below by uL(Rn+1).

Let us now consider the optimality of H ’s strategy. From (14), uH(Cn) ≥ uH(Rn). Therefore, if H holds

on to Rn, his continuation utility is equal to uH(Rn), which is weakly dominated by taking Cn. Moreover,

given that H randomizes between Cn and Rn+1, his expected payoff is given by (16), and by perfection of

the auxiliary equilibrium, the strategy {µn} is a best response to the sequence of contracts.

Consider now the agent’s strategy after a deviation by P. In Case a), if L chooses C̄n, his utility is bounded

above by max{uL(C̄n), uL(Ĉn)}, which is less than uL(R̄n+1), by definition of Case a). Similarly, if L picks

any other contract R, then either P puts probability 1 on L, in which case L gets utility uL(R), which is less

than uL(R̄n+1), by definition of R̄n+1, or P puts probability 1 on H , but in this case L cannot benefit from

this erroneous belief. The same reasoning applies to H : it is optimal for that type to choose C̄n.

In Case b), L prefers R̄n+1 over any other contract in Mn ∪ {Rn}, by an argument similar to Case a). Now

consider H ’s response to P’s deviation. First, H cannot benefit from choosing a contract R other C̄n and

R̄n+1, for the reason explained in Case a). Moreover, given the continuation play, which is defined by the

auxiliary equilibrium, randomizing according the probability µn coming from the auxiliary equilibrium in

which R̄n+1 and Ĉn are proposed is optimal.40

Case c) is similar to Case b).

There remains to show that P’s strategy is optimal. By construction of the auxiliary equilibrium, P’s

strategy is optimal among all strategies that propose contracts (Rn+1, Cn) satisfying (12), (13), and (14).

As shown by Lemma 3 (whose proof is independent of Theorem 1), P can never benefit from any deviation

in which L accepts a contract that is not in the H-Rent configuration. Moreover, any contract R accepted

by H with positive probability and that is not in the H-Rent configuration immediately results, at the next

round, in an H-efficient contract that gives H the same utility as R and is less costly to P than R. We

can therefore, without loss of generality, consider deviations in which P proposes one H-efficient contract,

C̄n, and a number of contracts in the H-Rent configuration, among which R̄n+1 maximizes L’s utility, and

such that uL(C̄n) ≤ uL(Rn+1). Given the agent’s strategy, the menu is equivalent to just proposing C̄n and

R̄n+1, which is a feasible strategy in the auxiliary equilibrium and thus has to be weakly dominated by the

equilibrium menu, by subgame perfection of that menu in the auxiliary game.

B Results holding for all friction levels

B.1 Statements

Proposition 1 The following holds for any PBE and η:

i) If the prior β puts probability 1 on some type θ, P immediately proposes the θ-efficient contract that

leaves θ’s utility unchanged and θ accepts it.

ii) If R0 is θ-efficient, P immediately proposes Eθ′(R0) (θ
′ 6= θ), and θ′ accepts it.

40Because uH(Ĉn) = uH(C̄n), H gets exactly the same utility as in the auxiliary equilibrium, even though the

contract C̄n is not in the H-Rent configuration.
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iii) If R0 is in the No-Rent configuration, P immediately proposes EL(R0) and EH(R0), and each type θ

accepts Eθ(R0).

iv) If R0 is in the H-Rent (L-Rent) configuration, H’s (L’s) expected utility is bounded above by uH(EH(R0))

(uL(EL(R0))).

The next result is crucial for the analysis: for any PBE and round n, P can always propose the contracts

EH(Rn) and EL(Rn) and have them accepted by types H and L, respectively. This deviation puts an upper

bound on P’s continuation cost as a function of the current contract Rn. The deviation will henceforth

simply be referred to as the “jump.”

Let βn denote the probability, at the beginning of round n, that P assigns to type H .

Lemma 2 (Jump) If Rn is in the H-Rent configuration and P proposes the contracts EH(Rn) and EL(Rn),

with EH(Rn) augmented by an arbitrarily small amount ε > 0, then H accepts EH(Rn) with probability

1 and L accepts EL(Rn) with probability 1. Therefore, P’s continuation cost is bounded above by Q̄n =

βnQ(EH(Rn)) + (1− βn)Q(EL(Rn))

Proof. The result follows from Part iv) of Proposition 1: EH(Rn) plus any small amount gives a strictly

higher utility to H than what he can get under any continuation utility, and also gives him strictly more

utility than EL(Rn). Therefore, H accepts the contract with probability 1. Because L strictly prefers

EL(Rn) to EH(Rn) in the H-Rent configuration, and because the agent’s type is revealed in round n unless

L takes the strictly suboptimal contract EH(Rn), it is optimal for L to accept EL(Rn). �

Lemma 3 If R0 is in the H-Rent configuration, then in any PBE, L accepts only contracts that are in the

H-Rent configuration.

Given any PBE, any contract sequence {Rn} that is accepted by L with positive probability (until the

exogenous negotiation breakdown) will be called a choice sequence. When R0 is in the H-Rent configu-

ration, choice sequences will play a particular role: we will see that, without loss of generality, any accepted

contract sequence is a choice sequence, until H accepts an H-efficient contract. Moreover, choice sequences

have several important properties. First, as indicated by Lemma 3, any choice sequence consists of contracts

that are in the H-Rent configuration. Other properties are described by the following proposition.

Proposition 2 Suppose that R0 is in the H-Rent configuration. Along any choice sequence {Rn}, i) βn
converges to zero and ii) Rn converges to an L-efficient contract, denoted C̄L.

B.2 Proofs

Proof of Proposition 1

Part i) Let ū denote the agent’s supremum over his expected utility, given his type θ, over all possible

continuation PBEs starting from R0 at which P puts probability 1 on type θ, and let u = uθ(R0). Suppose

by contradiction that ū > u. By time homogeneity, ū will be the same in the next round if the agent rejects

new offers from P in round 0 and P continues to assign probability 1 on facing type θ. In such case, the
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agent’s continuation payoff is bounded above by ũ = ηu + (1 − η)ū < ū. Consider any PBE that gives

θ an expected utility u0 ∈ (ũ, ū) (such PBE must exist, by definition of ū). Suppose that the principal

deviates by proposing the θ-efficient contract C that give θ a utility level u′ in (ũ, u0). By definition of a

PBE,41 P continues to assign probability 1 to type θ after his own deviation. If the agent accepts C with

probability 1, the deviation is strictly profitable to P since C is the cheapest way of providing utility u′ < u0

to the agent. If the agent rejects the offer with positive probability, then by Bayes rule, P must continue to

assign probability 1 to type θ, which implies that his continuation utility is bounded above by ū. Therefore,

the agent’s rejection is strictly suboptimal, implying that the agent must accept C with probability 1 and

the deviation is profitable.42 Let Q
¯
denote the cost of the θ-efficient contract, C

¯
, that provides utility u to

θ. Clearly, any PBE must cost exactly Q
¯
, otherwise P has a profitable deviation which is to propose the

θ-efficient contract that gives θ slightly more than u and costs less than following the PBE. Moreover, the

only way of achieving Q
¯
is to propose C

¯
in the first round and have it accepted with probability one.

Part ii) Suppose without loss that θ = L (the opposite case is treated identically). Let uL = uL(R0) and

uH = uH(R0). Also let ūH(β) denote the supremum utility that H can achieve over any continuation PBE

starting from R0 when P assigns probability β toH , and let ūH = supβ∈[0,1] ūH(β). Suppose by contradiction

that ūH > uH . Then, for any small ε > 0, there exists β̄ and an associated PBE for which H ’s continuation

utility is above ūH − ε > uH . For that PBE, because L gets at least uL and C is L-efficient, Q̄L ≥ Q, where

Q = Q(R0), and Q̄L is P’s expected cost in that PBE conditional on facing θL. Since not proposing any

new contract is always feasible for P, and costs Q, the continuation cost Q̄H conditional on facing H must

satisfy Q̄H ≤ Q to offset the weakly higher cost conditional on facing L. Suppose that P deviates from that

PBE by proposing the H-efficient contract that gives θH utility ūH − ε− ǫ, for arbitrarily small ǫ. Because,

for small enough ε and ǫ, ūH − ε− ǫ > ηuH +(1− η)ūH , H accepts this proposal with probability 1. For any

strategy that θL chooses and continuation equilibrium, this proposal strictly reduces P’s expected cost (since

Q̄H ≤ Q), yielding a contradiction. This shows that ūH(β) = uH for all β.43 To conclude, suppose that

P proposes the H-efficient contract that gives H utility uH + ǫ̃, for ǫ̃ arbitrarily small. From the previous

observation, H must accept that contract regardless of L’s strategy. This shows that P can and, hence, does

achieve the full-commitment optimal cost under any PBE. This proves Part ii).

Part iii) Suppose without loss that QL ≥ QH , where Qθ = Q(Eθ(R0)) (the opposite case is proved

symmetrically). Let Q̄ denote the maximal expected cost incurred by P over all PBEs and beliefs β ∈ [0, 1],

starting from R0.

We start by showing that Q̄ ≤ QL. Suppose by contradiction that Q̄ > QL and consider any PBE that

achieves Q̄.44 Now suppose that P deviates by proposing the pair C̃L, C̃H of contracts such that C̃θ is efficient

for θ and costs Q̄ − ε for some ε arbitrarily small compared to η. Those contracts maximize each type’s

utility subject to costing P at most Q̄ − ε. Because these contracts are efficient and incentive compatible,

41See Fudenberg and Tirole (1991), part iii) of the definition.
42The continuation play after P’s deviation must be a PBE of the corresponding continuation game. Therefore, if

θ’s continuation strategy, after P’s deviation, is to reject the proposed deviation with positive probability, Bayes rule

applies. I am grateful to Marcin Peski for proposing the current version of this argument.
43If β = 0, P does not propose anything new, from i) and L-efficiency of R0, and the result trivially holds in that

case too.
44If the supremum Q̄ is not achieved, the argument below can easily be adapted by considering a PBE whose

expected cost is arbitrarily close to Q̄.
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Part ii) guarantees that no type ever chooses the contract meant for the other type. Moreover, no matter

what belief and continuation PBE follows rejection of these contracts, P’s continuation cost must be less

than Q̄, by definition of Q̄. But this latter bound implies that there must be at least one type θ of the

agent who is getting a lower payoff if he rejects C̃θ than if he accepts it: conditional on rejection P has to be

spending weakly less on at least one type of the agent than under C̃θ (up to ε, which is negligible compared

to η). Moreover, the contract C̃θ maximizes that type’s utility subject to P spending less than C̃θ. Since

rejection leads to a renegotiation breakdown with a probability η, which gives that type a strictly lower

utility than C̃θ, accepting C̃θ is strictly more profitable than rejection for that type, and thus he accepts

C̃θ with probability 1. As a result, a rejection fully reveals that the agent is of the other type. From Part

i), that agent gets uθ(C) after rejection, which is strictly less than the utility he gets from C̃θ (since that

contract maximizes the agent’s utility subject to a higher cost than what P incurs with C). Therefore, both

types accept their contract, and this reduces the cost of the principal strictly below Q̄, showing that this is

a profitable deviation. Thus, necessarily, Q̄ ≤ QL.

Since L cannot get utility less than uL(R0), under any PBE, and QL is the cheapest cost of providing that

utility, this means that in all PBEs starting with β ∈ (0, 1), P must spend weakly less than Q̄ on the high

type, in order to guarantee that Q̄ ≤ QL. Let ūH denote the supremum expected utility that H gets over all

PBEs and beliefs β > 0. Since P spends less than QL on H , ūH is bounded by the utility ûH obtained from

the H-efficient contract ĈH that costs QL. We will show that ūH = uH(EH(R0)). Suppose by contradiction

that ūH > uH(EH(R0)), and consider a PBE that achieves ūH .45 The expected cost Q from that PBE must

be above βQ(C̄H) + (1 − β)QL, where C̄H is the H-efficient contract that gives utility ūH to H . Suppose

that P deviates by proposing the contracts C̃L, C̃H such that C̃L is L-efficient and gives utility uL(C) + ε2

to L and C̃H is H-efficient and gives utility ūH − ε to H , for ε small compared to η. H accepts C̃H , since

rejection leads to a continuation utility bounded above by ūH and to a strictly lower payoff in case of a

breakdown. Given that, L also accepts, since rejection will reveal his type, and, by Part i), result in a utility

of uL(EL(R0)). The cost reduction on the high type is of order ε compared to Q(C̄H), while the cost increase

on the low type is of order ε2, compared to QL. Therefore, this deviation is strictly profitable for ε small

enough. This shows that ūH = uH(EH(R0)). Proceeding as in the end of the proof of Part i), this shows

that L’s maximal utility across all PBEs for β ∈ (0, 1) is uL(EL(R0)).

Part iv) The argument is similar to the proof of Part iii). Let Q̄ denote P’s maximal expected cost over

all PBEs and beliefs, starting from R0. We will start by showing that Q̄ ≤ Q(EL), where EL = EL(R0).

Suppose by contradiction that Q̄ is strictly greater than Q(EL) and achieved for some PBE and belief,46 and

consider the following deviation: P proposes the contracts C̃θ that are efficient for each type and cost Q̄− ε

for ε arbitrarily small. It is easily shown that these contracts are IC, and by a similar argument as in Part

iii), rejecting those contracts is always a strictly dominated strategy for one of the two types, and hence for

both types. This is a strictly profitable deviation for P, yielding a contradiction. Hence, Q̄ ≤ Q(EL). Since L

gets an expected utility of at least uL(R0) in all PBEs, and providing that utility costs at least QL = Q(EL)

to P, this means that P spends at most QL on H , in all PBEs, and for all initial beliefs β > 0. This implies

that H ’s expected utility is bounded above by the utility it achieves with the H-efficient contract that costs

QL. We now show that H ’s expected utility is bounded above by uH(EL). Suppose not, and consider a PBE

45Again, the proof is easily adapted if the supremum is not achieved, by considering a PBE that gets very close to

providing ūH .
46As before, one can use a PBE that yields a cost arbitrarily close to Q̄, in case it is not exactly achieved.
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that gives H its highest utility, across PBEs and beliefs, denoted ūH > uH(EL). The expected cost Q from

that PBE must be above βQ(C̄H)+ (1−β)QL, where C̄H is the H-efficient contract that gives utility ūH to

H . Suppose that P deviates by proposing the contracts C̃L, C̃H such that C̃L is L-efficient and gives utility

uL(C) + ε2 to L, and C̃H is H-efficient and gives utility ūH − ε to H , for ε arbitrarily small. Because C̃H

gives strictly more to H than ūH , H will accept C̃H and, hence L will accept C̃L. Repeating the proof of

Part iii), one can show that this deviation is strictly profitable, establishing the desired contradiction. The

only difference with that earlier proof lies in showing that the proposed contracts are incentive compatible.

This is indeed true, for ε small enough, because ūH > uH(EL) so H does not want to mimic L.47

Proof of Lemma 3

Consider any PBE starting with R0 in the H-Rent configuration. Consider, by contradiction, the first round

n such that i) Rn is the H-Rent configuration and ii) L accepts with positive probability a contract Rn+1

that is in a different configuration. Suppose that Rn+1 is in the No-Rent configuration. Then uL(n) =

uL(Rn+1), by Part iii) of Proposition 1. This immediately implies that uL(Rn) ≤ uL(Rn+1): Rn+1 is on

a weakly higher iso-utility curve of uL than Rn. Moreover, because H can always accept Rn+1, uH(n) ≥
uH(Rn+1) > uH(EH(Rn)), where the strict inequality comes from the fact that uH is increasing along the

iso-utility curve of uL in the direction of EH .48 This implies that the continuation cost for P is strictly above

βnQ(EH(Rn)) + (1− βn)Q(EL(Rn)), which contradicts Lemma 2. Now suppose that Rn+1 is in the L-Rent

configuration. Part iv) of Proposition 1 applied to the L-Rent configuration implies that, by choosing Rn+1,

L gets a continuation utility of at most uL(EL(Rn+1). Therefore, uL(EL(Rn+1) must be weakly greater

than uL(Rn). This, along with the single-crossing property, implies that uH(Rn+1) is strictly greater than

uH(EH(Rn)) and contradicts Part iv) of Proposition 1 applied to H . �

Proof of Proposition 2

i) Observe, first, that negotiation cannot end endogenously at a finite round N in the sense that βn = βN > 0

and Rn = RN ∈ H for all n ≥ N . If that were the case, P could strictly reduce his cost at round N by

proposing the H-efficient contract EH(RN ) and have it accepted by H with probability 1, by Part iv) of

Proposition 1. Hence, consider the case in which P keeps proposing new contracts until renegotiation is

exogenously interrupted, and suppose by contradiction that there is a choice sequence with an associated

belief subsequence {βn(k)}k∈N that converges to β∗ > 0. Let u∗H = sup{uH(Rn)} where the supremum is

taken among all contracts in the choice sequence. For H to accept Rn with positive probability infinitely

often, uH(Rn) must converge to u∗H for any subsequence, including along the subsequence {n(k)}.49 However,

that implies that proposing the H-efficient contract CH that gives u∗H to H is a strictly profitable deviation

as βn(k) gets arbitrarily close to β∗: it does not change P’s cost conditional on facing L but it strictly reduces

P’s expected cost by an amount arbitrarily close to β∗[Q(CL)−Q(CH)], where Cθ is the θ-efficient contract

47It is straightforward to show that L does not want to mimic H , since P spends less on H than on L, and L is

already getting his maximal utility given the cost that P incurs conditional on facing L.
48More explicitly, we have uH(Rn+1) > uH(EL(Rn+1)) ≥ uH(EL(Rn)) = uH(EH(Rn)).
49Otherwise, there must exist a subsequence of rounds for which uH(Rm+1) is bounded above away from u∗

H by

some constant δ > 0. However, H ’s continuation utility, uH(m), is nondecreasing and becomes arbitrarily close to u∗
H .

(Monotonicity comes from the fact that H can always hold on to the last accepted contract and is proved formally

in Lemma 5.) When H ’s continuation gets within εη of u∗
H for some ε arbitrarily small, this implies that accepting

Rm+1 causes a loss of order ηδ, due to the probability of an immediate breakdown, and contradicts the fact that

uH(m) is within εη of u∗
H .
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that provides H with utility u∗H .50

ii) Suppose that there exists ε > 0 and a subsequence of rounds, indexed by m, for which Q(Rm) −
Q(EL(m)) ≥ ε. For m large enough, βm converges to zero, from part i), and is thus bounded above by
ηε

2∆Q
, where ∆Q = maxC∈C Q(C)−minC∈C Q(C). Therefore, P can deviate by proposing EL(m), EH(Rm),

which are respectively accepted by L and H . This deviation yields an immediate gain of ηε on L and a loss

of at most ηε
2 on H , given the upper bound on βm, and is thus strictly profitable. This shows that the limit

points of {Rn} are all L-efficient. Let u∗L = sup{uL(Rn)}. There is a subsequence m̃ for which uL(Rm̃)

converges to u∗L. Moreover, since L can always hold on to any contract Rn along the choice sequence, and

thus in particular for contracts occurring along the subsequence {m̃}, uL(Rn) must converge to u∗L for all

subsequences. Combining these observations, {Rn} must converge to the L-efficient contract C̄L such that

uL(C̄L) = u∗L. �

C Proof of Theorem 2

Without loss of generality, it suffices to prove the theorem when R0 is in the H-Rent configuration: Proposi-

tion 1 already addresses the case in which R0 is in the No-Rent configuration, and the L-Rent configuration

can be proved by symmetry. Let us thus assume that R0 ∈ H. From Lemma 3, L accepts only contracts in

H. Moreover, any contract Cn that is accepted only by H in equilibrium can be replaced by an H-efficient

contract C̃n that gives H the same utility, without affecting anyone’s incentive (assuming that H accepts

C̃n with the same probability as the one with which he was accepting Cn in the initial equilibrium) and

reduces P’s cost. Therefore, we can without loss of generality focus on PBEs in which P only proposes, at

each round, a number of contracts in H, and the H-efficient contract that gives H his continuation utility.

This assumption is maintained throughout the analysis.

Organization of the proof

The proof of Theorem 2 (Statement A) proceeds by contradiction. We will suppose that there exists ε > 0, a

decreasing sequence {ηm}m∈N of breakdown probabilities converging to zero, and a PBE associated to each

ηm for which H ’s expected utility uH(0) at round 0 is below uH(EH(R0))−ε. Throughout, uθ(n) will denote
θ’s continuation utility at the beginning of round n.

In what follows, we focus entirely on that sequence of η’s and corresponding PBEs. The expression “as η

goes to zero” will refer to the elements of that sequence and corresponding PBEs.51

The difference w0 = uH(EH(R0))−uH(0) can be thought of as a rent extraction index for type H . It defines

how much rent P is extracting from H , relative to the immediate jump: uH(0) is H ’s continuation utility

while uH(EH(R0)) is the maximal utility that P can give H in any equilibrium, as shown by Proposition 1,

part iv).

The proof consists of the following steps.

50Since uH(Rn) gets arbitrarily close to u∗
H and Rn lies in H, Q(Rn) becomes arbitrarily close to (or above) Q(CL)

as n gets large.
51Without loss of generality, we focus on ε small enough so that the constant D(2ε) defined by (57) is strictly

positive.
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Step 1: For each PBE of the sequence, show that one can construct a choice sequence ending at some finite

round Ñ for which the augmented rent extraction index,

w̄Ñ = max
m≤Ñ

{uH(EH(m̃))} − uH(Ñ),

is of order η, and there exists d > 0 such that either

a) βÑ ≥ ηd and w0 ≤ ŵ
√
η, where ŵ > 0 is exogenous, or

b) βÑ < ηd.

Proving that step is the object of Part I below. Of course, Case a) above implies that w0 could not have

been greater than ε, for η small enough. Therefore, it suffices to rule out Case b).

Step 2: Show that, in Case b), there must exist a round N ≥ Ñ for which w̄N ≤ ηD
2a but w̄N ≥ w

¯
η and

βN ≤ ηd, for some exogenous constants a,D,w
¯
. This is done in Part II.

Step 3: Show that at round N , one must have w̄N ≤ w̄η1+d for some w̄ > 0. This contradicts, for η small

enough, the inequality of Step 2 involving w
¯
, which rules out Case b). (Part III).

To avoid cluttering the exposition, the longest proofs for each of these parts are given in separate appendices

(Appendix E for Parts I and II and Appendix F for Part III). Several of these proofs are based on geometric

inequalities and other inequalities based on incentive constraints which are collected in Appendix D. Once

Statement A of Theorem 2 has been proven, showing Statement B is relatively straightforward; the proof is

provided in Appendix G.

Part I: Block Construction

The strategy of the proof is to build a sequence of blocks (each consisting of finitely many rounds), and a

choice sequence going through these blocks, with the following properties: i) within each block, for the PBE

to be profitable to P compared to an immediate jump, H must accept H-efficient contracts with a high

enough probability, which drives the posterior β closer to zero, by a controlled amount, ii) P’s potential gain,

conditional on facing type H , shrinks geometrically across blocks. This construction ends at some terminal

block, K, such that P’s maximal potential gain on H is of order η, and the posterior β̂K is bounded above

by gKβ0 for some factor g < 1. When β̂K > ηd for some power d > 0 that is judiciously chosen, this yields

an upper bound on the number K of blocks which, by using the geometric series backwards, implies that

the initial gain on H must have been small as well, for η small enough, contradicting the existence of a

sequence {ηm} and corresponding PBEs for which the initial rent index w0 always exceeds the constant ε.

The ulterior parts (Parts II and III) of the proof establish that β̂K > ηd is the only possible case, provided

that η is small enough.

For any round n and choice sequence up to round n, let ēn = max{uH(EH(Rm)) : m ≤ n} and w̄n =

ēn − uH(n).

Notation Throughout the analysis, variables with upper bars, such as w̄n, refer to specific rounds, while

variables with hats, such as ŵk, refer to specific blocks.

We begin the proof by the following observation.
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Lemma 4 If uH(0) < uH(EH(R0))− ε, there exists a choice sequence and a round n0 such that i) βn0
≤ β0

and ii) w̄n0
∈ [ε/2, ε].

Block 1 starts after the choice sequence and round n0 coming from Lemma 4. At round n0, one has by

construction w̄n0
= ēn0

− uH(n0) ∈ (ε/2, ε). Let û0 = uH(n0), ê0 = ēn0
, and β̂0 = βn0

≤ β0. The last round

of Block 1 is determined as follows: let û1 be defined by the equation

ê0 − û0
û1 − û0

= t > 1

where t > 1 is a fixed threshold to be determined shortly and let n1 = inf{n : uH(n) ≥ û1} denote the first

round at which H ’s continuation utility exceeds the threshold û1. We set the last round of Block 1 equal to

n1. Because û1 < ê0, Lemma 14 (Appendix E) guarantees that n1 is finite with probability 1.52

To get a control on how much β must have dropped within Block 1, let µ0 denote the probability, evaluated

at round n0, that H accepts only contracts in H until round n1 (i.e., the probability that H does not fully

reveal himself during Block 1). Lemma 15 (Appendix E) shows that there must exist a pushdown choice

sequence such that, upon observing that sequence up until H ’s utility passes û1, the posterior probability

β̂1 of facing H satisfies

β̂1 ≤ β̂0µ0

β̂0µ0 + (1− β̂0)
. (18)

At round n0, P can always implement the jump to the contracts (EH(Rn0
), EL(Rn0

)), by Lemma 2. For that

deviation to be suboptimal, the net gain from extracting some rent from H , compared to the jump, must

outweigh the net loss resulting from a negotiation breakdown at an inefficient contract. In the argument

below, it suffices to exploit the inefficiency loss on H . (The loss on L is exploited later in the proof of

Theorem 2.)

We now compute an upper bound on this gain and a lower bound on the loss. Comparing these bounds will

yield an upper bound on P’s posterior belief of facing H after the first block, following the pushdown choice

sequence. The following lemma will be helpful to derive these bounds, as well as in later parts of the proof.

Lemma 5 Along any choice sequence, H’s continuation utility at the beginning of round n, denoted uH(n),

is nondecreasing in n and satisfies

uH(n+ 1)− uH(n) ≤ η∆H ,

where ∆H = maxC∈C uH(C)−minC∈C uH(C).

Proof. Given the current contract Rn at round n, let Rn+1 denote any contract chosen by H with positive

probability among Rn ∪ {Mn}. H ’s utility satisfies the dynamic equation53

uH(n) = ηuH(Rn+1) + (1− η)uH(n+ 1). (19)

52Indeed, uH(Rn) must eventually exceed any utility level below max{uH(EH(Rm)) : m ≤ n0}, along any choice

sequence, as n gets large enough.
53More generally, H ’s utility satisfies the Bellman equation uH(n) = maxR∈{Rn}∪Mn{ηuH(R)+ (1− η)uH(n+1)}.

Equation (19) then follows for all contracts that are optimal for H in round n.
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Therefore, uH(n) is a convex combination of uH(Rn+1) and uH(n + 1). Because H can hold on to Rn+1

in all rounds m ≥ n + 1, uH(n + 1) is bounded below by uH(Rn+1). Combining these observations yields

uH(n) ≤ uH(n + 1). Since uH(n + 1)− uH(n) = η(uH(n+ 1)− uH(Rn+1), the second claim of the lemma

follows. The intuition is simple: if the utility jump was higher between two rounds, H would prefer to wait

until the next round rather than accept any contract today. �

The net gain, between rounds n0 and n1, is bounded above by β̂0(1 − µ0)a(ê0 − û0) for some Lipschitz

constant a > 0. Indeed, β̂0(1 − µ0) is the probability that the agent is of type H and that he accepts some

H-efficient contract at some round of the first block. Because H accepts only H-efficient contracts that give

him at least his continuation utility,54 and because that continuation utility is nondecreasing, by Lemma 5,

the smallest utility that H when choosing H-efficient contract within that first block is û0. By contrast,

ê0 ≥ en0
is an upper bound on the utility that P provides to H if he chooses the immediate jump. Therefore,

the maximum rent that P can extract from H is ê0 − û0. The constant a is a Lipschitz constant that

“translates” utility differences for H along EH into cost differences for P, and is derived in the “Inequalities”

section of the appendix (Lemma 10).

Similarly, the expected net gain made after round n1, but seen from round n0, is bounded above by β̂0µ0a(ê0−
û1), because β̂0µ0 is the probability of facing H and reaching round n1, and û1 is the smallest utility that P

must provide to H at any round following n1.

To get a lower bound on the net loss, the intuition is that, as long as H accepts contracts in H, he is getting

contracts that are inefficient, and hence costly to P relative to the immediate jump to EH(Rn0
). Lemma 16

shows that this inefficiency cost must be greater than some constant D > 0 whenever the rent extraction

index at the beginning of a block is less than 2ε, which holds without loss of generality (see Remark 3 in

Appendix E). This cost is only incurred in case of a breakdown. To compute the probability of a breakdown

between rounds n0 and n1, the key is to observe that H ’s utility jumps, at each round, by at most η∆H ,

by Lemma 5. Therefore, there must be at least n
¯
(1) = ⌊(û1 − û0)/η∆H)⌋ steps to get to û1, for any choice

sequence.

This implies that the breakdown probability is bounded below by55

1− (1 − η)n¯
(1) = 1− exp (n

¯
(1) ln(1− η)) ≥ −n

¯
(1) ln(1− η)− 1

2
n
¯
(1)2(ln(1− η))2. (20)

Because the gain is of order ε, which is small, while the loss conditional on a breakdown is of order D, the

probability of a breakdown must be (at most) of order ε, which means that n
¯
(1) ln(1−η) must also be small.

The quadratic term of (20) is therefore negligible. Moreover, because we are focusing on the case where η is

54Indeed, by accepting such contract, H reveals his type, and his continuation utility is exactly the one provided

by the last accepted contract, by Proposition 1, Part i).
55The inequality comes from the standard inequality 1 − exp(x) ≥ −x − x2/2, valid for all x ≤ 0, which may be

shown as follows. The function x 7→ exp(x) − 1 − x− x2

2
vanishes at 0, as do its first and second derivatives. Since

its third derivative is positive (equal to exp(x)), its first derivative is convex and, from the previous observations,

must have a minimum at zero. This implies that the function itself is increasing and, since it vanishes at 0, that it is

negative for x ≤ 0.

31



small, ln(1 − η) can be approximated by −η. Combining these bounds on gains and losses yields56

βa[(ê0 − û0)(1 − µ0) + (ê0 − û1)µ0] ≥ βµ0D
û1 − û0
∆H

. (21)

Recall that û1 was defined in terms of an arbitrary threshold t. We now define t precisely by the following

equation57

t2 =
a+D/∆H

a
> 1.

With this value of t, we have

µ0 ≤ a

a+D/∆H

ê0 − û0
û1 − û0

= t−1.

Combining this inequality with (18) implies that, upon observing the constructed pushdown choice sequence

until round n1, the posterior β̂1 satisfies

β̂1 ≤ µ0β̂0

µ0β̂0 + (1− β̂0)
≤ β̂0

t−1

β̂0t−1 + (1 − β̂0)
= gβ̂0.

where g = t−1

β0t−1+(1−β0)
and we used the inequality β̂0 ≤ β0. Because t

−1 < 1, g is strictly less than 1. This

achieves the goal of guaranteeing that the posterior β̂1 drops by some fixed factor along the first block, for

some choice sequence.

To initiate the second block, we use the value û1 that was defined as part of Block 1.58 Note that the

actual value of uH(n1) may be slightly above û1, but by no more than ∆Hη, by Lemma 5. This observation

is useful to bound below the number of rounds in each block. The level ê1 = maxm≤n1
{uH(EH(Rm))} is

the maximum value that H gets if P jumps at any round m ≤ n1 along the particular choice sequence

constructed so far. Having defined û1 and ê1, we define û2 ∈ (û1, ê1) by

ê1 − û1
û2 − û1

= t.

Let µ1 denote the probability, seen from round n1 and following the pushdown choice sequence used for

Block 1, that H takes a contract in H at all rounds n ≥ n1 until û2 is reached. Repeating the previous

analysis, there exists a pushdown choice sequence for Block 2 such that, upon observing that sequence up

to û2, the probability β̂2 of facing H satisfies β̂2 ≤ β̂1µ1

β̂1µ1+(1−β̂1)
. Let n2 denote the round at which û2 is first

exceeded. Repeating the analysis used for the first block, we have

β̂2 ≤ µ1β̂1

µ1β̂1 + (1 − β̂1)
≤ β̂1

t−1

β̂1t−1 + (1− β̂1)
≤ g2β̂0.

The value of ê2 is determined by the pushdown sequence of the second block, by ê2 = maxm≤n2
{uH(EH(Rm))}.

By induction, this defines a sequence of blocks indexed by k. To each block k corresponds a terminal

round, nk, as well as values ûk, êk and β̂k = βnk
, which is P’s belief at the end of the kth block following

56For expositional simplicity, the “floor” operator is dropped. This change is negligible because n
¯
(1) is large, since

û1 − û0 = 1
t
(ê0 − û0) ≫ η∆H , for η small. That observation applies to each block k; see Footnote 59.

57D is defined independently of t (and of this entire block construction), so there is no circularity in the definition.
58The next block is defined only following the pushdown choice sequence that we constructed in Block 1: what

matters to us is to understand what happens along a particular choice sequence constructed by piecing together

pushdown sequences constructed for each block.
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the successive pushdown sequences. The potential overshoot of uH(nk) above ûk, ∆Hη is negligible when

computing the lower bound on number of blocks, because we stop the block construction when ûk+1 − ûk

is still large relative to ∆Hη, as explained in the next paragraph. Upon observing the pushdown choice

sequence across blocks 1 to k, we get

β̂k ≤ gkβ̂0 ≤ gkβ0.

The construction stops at the first block, K, such that êk − ûk < W̄η for some constant W̄ such that

W̄ > max{ t−1
t (1 + ∆H), Ŵ+∆H

t∆H
}, where Ŵ is an arbitrarily large constant.59 Such a block must exist,

because ŵk = êk − ûk converges to zero, as shown in Part ii) of Lemma 14. Let ρ be defined by g−ρ = t
t−1 .

Since the ratio is greater than 1 and g < 1, ρ is strictly positive. Also let d = 1
2 min{ 1

ρ , 1} ∈ (0, 1/2].

As explained earlier, the key to showing Theorem 2 is the following proposition, whose proof is the object

of Parts II and III.

Proposition 3 There exists η̃ > 0 such that β̂K > ηd for all η < η̃.

It must be emphasized that the proposition holds for any d > 0. However, we only need it for the value of d

defined above. Taking Proposition 3 as given for now, we compute an upper bound on the initial rent, by

backward induction. For each block k ≤ K, we have

êK − ûk = (êK − ûk+1) + (ûk+1 − ûk) ≤ (êK − ûk+1) +
1

t− 1
(êk − ûk+1) ≤

t

t− 1
(êK − ûk+1).

By construction, moreover, êK − ûK ≤ W̄η, which implies that

êK − û0 ≤
(

t

t− 1

)K

W̄η. (22)

Since β̂K ≥ ηd and β̂K ≤ gK β̂0 < 1, we must also have

1

gK
ηd ≤ 1.

Combining these inequalities yields

êK − û0 ≤
(

t

t− 1

)K

W̄η = W̄η

(

1

g

)ρK

≤ ηW̄η−ρd ≤ W̄η1/2.

Since êK ≥ ê0, this shows that ê0 − û0 = O(η1/2), which contradicts the existence of the sequence of {ηm},
converging to zero, and corresponding PBEs for which ê0 − û0 ∈ (ε/2, ε).

59The number of rounds in each block k ≤ K is bounded below by
ûk−ûk−1−∆Hη

∆Hη
≥ 1

t∆Hη
(êk−1 − ûk−1 −∆Hη) ≥

W̄η−∆Hη

tη∆H
> Ŵ , which can be made arbitrarily large by choosing Ŵ appropriately. The reason for also requiring that

W̄ > t−1
t
(1 + ∆H) is explained at the beginning of Part II.
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Part II: Bridging Argument

The objective of Parts II and III is to prove Proposition 3. Suppose, by contradiction, that β̂K < ηd. By

definition of K, the previous block K − 1 must satisfy êK−1 − ûK−1 > W̄η. This implies that60

ŵK = êK − ûK ≥W
¯
η (23)

whereW
¯

= t−1
t W̄ . Since we chose W̄ > t

t−1 (1+∆H), we haveW
¯
> 1+∆H . Combining this with Lemma 5,

we obtain, for the augmented index evaluated at round nK ,61

ŵK = êK − uH(nK) ≥ (W
¯

−∆H)η ≥ η. (24)

Part III (Proposition 5) establishes that if ŵK ≤ Dη
2a , then ŵK ≤ ŵη1+d, which contradicts (24) for η small

enough.

Unfortunately, nothing guarantees that ŵK lies below Dη
2a . The purpose of Part II is to bridge Parts I and III

when ŵK ∈
(

Dη
2a ; W̄η

)

. We will analyze the dynamics of βn and w̄n along some appropriate choice sequence

between the levels ŵK and ηD
2a , and establish the following result.

Proposition 4 (Bridge) Suppose that β̂K < ηd. Then, letting N ≥ nK denote the first round for which

w̄N ≤ ηD
2a , there exists a choice sequence such that

1. w̄N ≥ ηD
2a − o(η)

2. βN = O(ηd).

Thus, if β̂K < ηd, there must exist a choice sequence and a round N to which the contradiction argument of

Part III can be applied.

To construct a choice sequence that yields the two conclusions of Proposition 4, we start by exploiting P’s

IC constraint, similarly to what was done in Part I. This time, however, there are no blocks: the equation

is used at every single round n, and exploits the losses on both types. For each Rn+1 ∈ Mn ∪ {Rn}, let
µθ
n(Rn+1) denote the probability that θ accepts Rn+1. Because P can always jump to EL(Rn), EH(Rn) (cf.

Lemma 2), P’s IC constraint implies as explained below that

wnaβn ≥
∑

Rn+1∈(Mn∪{Rn})∩H
βnµ

H
n (Rn+1)ηD + (1− βn)µ

L
n(Rn+1)η(Q(Rn+1)−Q(EL(Rn))) (25)

=
∑

Rn+1∈(Mn∪{Rn})∩H
µL
n(Rn+1) [βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(Rn)))] , (26)

where µn(Rn+1) = µH
n (Rn+1)/µ

L
n(Rn+1) and D is the lower bound on the loss on H given in Lemma 11.62

60This inequality comes the fact that êK−1 − ûK−1 = t(ûK − ûK−1), by construction of the blocks in Part I, and

the fact that êK ≥ êK−1.
61The reason for using uH(nK) instead of ûK is that H ’s continuation utility at round nK need not be exactly

equal to ûK : it lies between ûK and ûK +∆Hη.
62We can assume without loss of generality that µL

n(Rn+1) is strictly positive for all Rn+1 ∈ (Mn ∪ {Rn}) ∩ H:

first, if any contract in that set is not chosen with any probability, we can construct an equilibrium in which those
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The left-hand side of (25) is an upper bound on the gain, relative to the immediate jump, made on the high

type: given his continuation utility uH(n), the lowest achievable cost that provides this utility is the cost

of the H-efficient contract that gives uH(n). From Lemma 11 of Appendix D, this gain is bounded above

by a(uH(EH(Rn))− uH(n)) = awn (that bound is computed using a ‘best-case scenario’ for P, in which H

accepts with probability 1 the H-efficient contract Cn providing uH(n)).63 The first term of the right-hand

side is the net loss on H if he accepts a contract in the H-Rent configuration and, hence, far from efficient,

in case a breakdown occurs at the end of round n. This loss is bounded by D as long as wn ≤ 2ε, which

will be true along the choice sequence that we consider. The last term is the net loss on L in case of such a

breakdown.

To establish Proposition 4, we introduce the variable yn = uH(EH(Rn))−uH(Rn+1), i.e., H ’s utility gap, for

any choice Rn+1, between the immediate jump and his utility in case of a negotiation breakdown at round n

(the breakdown occurs after the agent has chosen the new contract, Rn+1, which explains the index). This

quantity yn is important for the analysis, because it provides a control on the decrements of wn and makes

sure that we do not overshoot the threshold ηD
2a by too much. Indeed, subtracting uH(EH(Rn)) from (19)

and rearranging (and recalling that wn = uH(EH(Rn))− uH(n)) leads, along any choice sequence, to

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH(EH(Rn+1))− uH(EH(Rn))).

These concepts are represented on Figure 4

Proposition 4 is based on the following lemma, which is proved in Appendix E. Fix a positive integer N̄ ,

positive constants β̄ and w̄, and a small positive constant ε̄.

Lemma 6 Suppose that negotiations reach a round n̄ such that βn̄ ≤ β̄ηd and wn̄ ≤ w̄η. There exist functions

W̄ (N̄) and k(N̄) of N̄ (only) such that the following holds. Let S denote the event that the agent chooses at

all rounds n ∈ {n̄+ 1, . . . , n̄ + N̄} contracts such that yn = O(ηd/4), βn ≤ βn̄ε̄
−(n−n̄), and wn ≤ W̄ (N̄)η.

For η small enough, the probability of S is greater than 1− k(N̄)ε̄.

We now modify the analysis of Part I to study blocks consisting of N̄ rounds, indexed by n̄ + 1 to n̄+ N̄ ,

where N̄ will be determined shortly. The first such block starts with n̄ = nK , the second of these blocks

starts with n̄ = nK + N̄ , etc. These blocks are different from those of Part I, because the number N̄ of

rounds in each block is fixed and, unlike the blocks of Part I, H ’s utility at the end of each block is not

precisely controlled.

The analysis of Part I is modified as follows. First, notice that P’s IC constraint at round n̄, looking ahead

over the next N̄ rounds, implies that

βn̄a
{

(1− µn̄)(en̄ − uH(n̄)) + µn̄(en̄ − E[uH(n̄+ N̄)])
}

≥ βn̄µn̄DηN̄ − βn̄δQk(N̄)ε̄,

where µn̄ is the probability, seen from round n̄, that H rejects all H-efficient contracts between rounds n̄ and

n̄+ N̄ . The argument for this equation is the same as in Part I, the only difference being that we are now

contracts are removed. And if any contract R′
n+1 in that set is chosen only by H with positive probability, then

Proposition 1 implies that H gets the H-efficient contract C that gives him the same utility as R′
n+1, so that the

equilibrium can be modified by having P propose C instead of R′
n+1. That change reduces P’s cost and does not

affect incentives.
63This is an upper bound on the gain, since Cn is the cheapest way of providing H with his continuation utility.
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Figure 4: Rent extraction concepts (contracts are in black, utilities are in purple)

taking the expectation of uH(n̄+ N̄) because we do not know its value (before, we had precisely defined the

end of the block as the first time that uH crosses some level, but now N̄ is exogenous). The lower bound D

on the loss is valid with probability 1 − k(N̄)ε because conditional on S occurring, wn is small throughout

the block by Lemmas 6 and the lower bound on the loss follows from Lemma 16. On the complement of S,
whatever cost is incurred by P conditional on facing H is bounded above by some constant, by compactness

of the contract space. The difference between D and that constant is captured by δQ > 0 (last term of the

above equation), which is independent of η, N̄ , and ε̄.

This implies that

µn̄ ≤ a(en̄ − uH(n̄)) + δQk(N̄)ε̄

a(E[uH(n̄+ N̄)]− uH(n̄)) +DηN̄
≤ aW̄ + δQk(N̄)ε̄

DN̄
,

where the second inequality comes from i) the fact that uH(n) is nondecreasing across all paths which

implies, taking expectations, that EuH(n̄ + N̄) ≥ uH(n̄) and ii) w̄n̄ = en̄ − uH(n̄) ≤ W̄η (this inequality

holds for all blocks of Part II, without loss of generality, see Remark 2 below). Now let µS
n̄ (resp. µB

n̄)

denote the probability that H rejects all H-efficient contracts, conditional on event S (resp. conditional on

its complement, B), and let pS (resp. pB) the probability of S (B). We have µn̄ = pSµS
n̄ + pBµB

n̄ . Since

pS ≥ 1− k(N̄)ε̄, we conclude that

µS
n̄ ≤ (aW̄ + δQk(N̄)ε̄)(1 + k(N̄)ε̄)

DN̄
. (27)

We now choose ε̄ and N̄ so that this ratio is less than 1
2 : first choose N̄ so that aW̄

DN̄
< 1

8 , then choose ε̄ so

that k(N̄)ε̄ < 1 and δQk(N̄)ε̄ < aW̄ so that the numerator of (27) is less than 4aW̄ .
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Proceeding as in Part I, there must exist a pushdown choice sequence contained in event S such that the ex

post probability that H has not chosen an H-efficient contract is weakly less than µS
n̄ . Along that sequence,

i) yn is of order O(ηd/4), and ii) βn̄+N̄ ≤ βn̄

2 . We have thus built a choice sequence over N̄ rounds, starting

from n̄, such that yn and βn stay small, and βn ends up smaller than at the beginning of the block.64

Starting from round nK , we build a sequence of N̄ -sized blocks as described above. Because w̄n converges

to zero (by part ii) of Lemma 14), it will eventually cross Dη
2a . Let N denote the first round at which w̄N

drops below that threshold. From (52) of Lemma 11 (Appendix D), we have wn+1(1 − bβn+1) ≥ wn − ηyn,

or

wn+1 − wn ≥ bβn+1wn+1 − ηyn. (28)

The blocks were constructed in such a way that yn = O(ηd/4) and βn = O(ηd) at each round of each block.

Applying these observations to (28) at round N − 1, we obtain

wN − wN−1 ≥ −o(η).

Finally, we have

w̄N − w̄N−1 = (wN − wN−1) + (max{ek : k ≤ N} − eN )− (max{ek : k ≤ N − 1} − eN−1)

≥ −o(η)− (eN − eN−1),

since the different of maxima is nonnegative. From (48), the difference eN − eN−1 is bounded above by
αβN−1

1−βN−1
wN−1 which is o(η). Since w̄N−1 >

ηD
2a by definition of N , we conclude that

w̄N ≥ w̄N−1 − o(η) ≥ ηD

2a
− o(η) ≥ ηD

3a
.

This concludes the proof of Proposition 4 and implies that we have reached a round N such that i) w̄N

is above ŵη, for some ŵ = D
3a > 0 independent of η, and ii) βN = O(ηd). Part III will show that this is

impossible.

Remark 2 It is a priori possible that w̄n goes above W̄η at the end of some block. If that happens, the

bound D = D(2ε) need not be valid for the next block. At the end of such block, should it occur, βn is of

order ηd ≤ β0. We can restart the blocks of Part I as if n were the initial round. Since β decreases along the

blocks of Part I, we have to reach again a round at which w̄n drops below W̄η. At that point, we necessarily

have βn ≤ ηd. Because w̄n converges to zero along any sequence (by Lemma 14), and thus also along the

sequences constructed through Parts I and II, the back and forth between blocks of Part I and Part II has to

stop in finite time at some round N of the type above, i.e., with w̄N ∈ (ŵη, ηD2a ) and βN ≤ ηd. The logic of

the argument is explained in more detail in Remark 3.

64Notice that βn can increase up to βn̄ε̄
−N̄ along such a block. However, because N̄ is fixed, it still remains of

order O(ηd) along the sequence, and drops in any case below βn̄/2 when round n̄+ N̄ is reached, for the pushdown

sequence.
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Part III: Asymptotic Level

The purpose of this section is to establish the following proposition:

Proposition 5 There exist a constant w̌ > 0 and a threshold η̌ > 0 such that the following holds for all

η < η̌: if one reaches a round N for which βN ≤ ηd and w̄N ≤ ηD
2a , then w̄N ≤ w̌η1+d.

The proof proceeds in three steps:

1. Show, starting from round N , that one can build a choice sequence along which βn is decreasing and,

at each round, a simplified version of P’s ex ante IC constraint (before the agent chooses Rn+1) is also

satisfied ex post (after Rn+1 is chosen). This step is achieved by Lemma 7;

2. Show that along such a sequence, one must necessarily have wn ≤ ĉηβn for all n ≥ N , where ĉ > 0 is

independent of η (Proposition 6);

3. Show that w̄N − wN = O(η1+2d) (Proposition 7).

Combining these steps (with 2. applied to n = N) along with the fact that βN ≤ ηd then proves Proposi-

tion 5.65

To express P’s IC constraint, recall from Part II that

wnaβn ≥
∑

Rn+1∈(Mn∪{Rn})∩H
µL
n(Rn+1) [βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(Rn)))] (29)

where µn(Rn+1) = µH
n (Rn+1)/µ

L
n(Rn+1) and D is the lower bound on the loss on H obtained in Lemma 11.

In particular, the RHS of (29) is a convex combination of terms indexed by Rn+1, and there must exist

Rn+1 ∈ (Mn ∪ {Rn}) ∩H such that

wnaβn ≥ βnµn(Rn+1)ηD + (1 − βn)η(Q(Rn+1)−Q(EL(Rn))). (30)

Therefore, there exists a choice sequence that satisfies (30) for all n ≥ N . In what follows we entirely focus

on that sequence, which will be called a regular choice sequence.

We have Q(Rn+1)−Q(EL(Rn)) ≥ Q(EL(Rn+1))−Q(EL(Rn)) ≥ −kβn+1wn+1, where the second inequality

comes (50) of Lemma 11 (Appendix D). Letting µn = µn(Rn+1), (30) implies that

βnwna ≥ βnµnηD − ηkβn+1wn+1,

which may be re-expressed as

µn ≤ wna

ηD
+ k

βn+1

βnD
wn+1. (31)

The first step, in order to exploit this equation, is to show that βn remains small for all n ≥ N . This is

achieved by the following lemma, which guarantees that βn is actually decreasing along the regular sequence

(see Appendix F for the proof).

65Indeed, we have w̄N ≤ wn +O(η1+2d) ≤ ĉηβN +O(η1+2d) ≤ ĉη1+d +O(η1+2d), where the first inequality comes

from Step 3., the second comes from Step 2. applied to n = N , and the third one comes from the assumption that

βN ≤ ηd. Taking w̌ slightly above ĉ then yields the proposition.
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Lemma 7 There exist η̂ > 0 and ŵ > 0 such that, for η < η̂ i) βn is decreasing in n, ii) µn ≤ 3/4 for all

n ≥ N , and iii) wn ≤ ŵη for all n ≥ N .

Part ii) of Lemma 7 implies that the second term in the right-hand side of (31) is of order wn+1 (since

βn+1 ∼ βnµn from Bayes rule, see (38)) and is thus negligible compared to the first term, of order wn

η ,

because wn+1 is bounded above by wn

(

1 + αβn

1−βn

)

(see (49) in Appendix D) and η ≪ 1. Therefore, by

slightly increasing a, whose specific value does not matter in any case for the proof, we get

µn ≤ wna

ηD
, (ICLL

n ) (32)

Moreover, (30) also implies that

βnwna ≥ (1− βn)η(Q(Rn+1)−Q(EL(Rn))) (ICLH
n ) (33)

Relaxation

The previous arguments have shown that any PBE must entail, given the assumptions of Proposition 5, a

regular choice sequence satisfying (32) and (33) for all n ≥ N . Moreover, Appendix D contains a list of

inequalities which must also be satisfied at all these rounds. Finally, wn converges to zero along that regular

sequence, by Proposition 2.

From now on, we entire focus on all these inequalities, which arise along the regular sequence. Those

inequalities involve the contracts chosen along that sequence as well as the beliefs βn’s and likelihood ratios

µn’s for n ≥ N . We work with these inequalities in complete isolation from the rest of the PBE. The

objective here is to prove some properties of the contracts involved in this sequence by modifying the beliefs

βn and likelihood ratios µn.

The transformation works as follows. Starting with round N , one increases the likelihood ratio µN so as to

satisfy (32) as an equality. The interpretation of this change is that H becomes relatively more likely than

before the change, conditional on observing the contract RN+1 arising in the regular sequence. We maintain

standard Bayesian updating, but applied to this new likelihood ratio, so that βN+1 is given by

βN+1 =
βNµN

βNµN + (1 − βN)
.

With only that change, the posteriors βn’s at all rounds n ≥ N + 1 of the regular sequence are weakly

increased as a result of Bayesian updating. Therefore, the inequality (33) at all rounds n ≥ N + 1 is

preserved (in fact, looser) along the regular sequence. After this is done, one can increase the likelihood

ratio µN+1 pertaining to the contract RN+2 chosen in the regular sequence at round N + 1, so as to make

ICLL
N+1 tight. All beliefs βn for n ≥ N + 2 are then weakly increased as a result of Bayesian updating. This

preserves the inequalities (33) for n ≥ N + 2 and does not perturb (33) and (32) at round N . Increasing µn

inductively for all n ≥ N along the regular choice sequence, the new {µn}n≥N and {βn}n≥N+1 satisfy (33)

as well as

µn =
wna

ηD
. (34)
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Moreover, because all the posteriors βn’s have been weakly increased compared to the initial belief sequence,

while the contracts involved in the regular sequence are left completely intact by the transformation, all the

inequalities appearing in Appendix D still hold, because they only get looser for higher values of βn.
66

The above transformation has thus led to a new sequence of beliefs and likelihood ratios which, along with

the contracts of the regular sequence satisfy all the previous inequalities and now satisfy (32) as equality (34).

Because the contracts have not been changed, moreover, wn must still converge to zero. From (32), this

implies that the sequence of µn’s must also goes to zero and, hence, that βn goes to zero even after the

relaxation.

We are now ready to perform the Steps 2 and 3 needed to prove Proposition 5. In Appendix D (Lemma 11),

it is shown that

uH(EH(Rn+1)− uH(EH(Rn))) ≥ −b̂βn+1wn+1 (35)

for some constant b̂ > 0. As in Part II, we also use the the following relation between wn and wn+1 (see (54)

for the proof):

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH(EH(Rn+1))− uH(EH(Rn))).

Combining this with (35) yields

(1− η)wn+1 ≥ wn − ηyn − b̂βn+1wn+1. (36)

Multiplying both sides of (36) by a
ηD and using (34), we obtain for n ≥ N

µn+1 ≥ (1− η)µn+1 ≥ µn − a

D
yn − b̃βn+1 (37)

for some constant b̃ > 0. (To get b̃ in the last term, the derivation used the inequality wn ≤ ŵη for n ≥ N ,

from Part iii) of Lemma 7.)

The Bayesian updating equation

βn+1 =
βnµn

βnµn + (1− βn)

implies that67

βn+1

βn
≥ µn ≥ βn+1

βn
− µnβn + µnO(β

2
n) ≥

βn+1

βn
− βn+1 + o(βn+1). (38)

Lemma 17 of Appendix F shows that y2n ≤ Āβn+1

1−β0
. Intuitively, this equation means that the loss on L in

round n, which is of order ηy2n, must be smaller than the gain on H , which is of order βnwn (i.e., the

probability of facing H times the maximum gain).68

66The only inequality which does not get looser is (52). However, this inequality was only used in Part II, is not

involved in the derivation of any other inequality of Appendix D and does not appear anywhere in the analysis of

regular sequences.
67We have

βn+1

βn
= µn

1
1−βn(1−µn)

= µn(1 + βn(1− µn)) + µnO(β2
n). Rearranging yields the second inequality.

68Dividing by η, we get y2n ≤ Cβnwn/η for some constant C. Since wn/η is proportional to µn and µnβn is roughly

equal to βn+1, which provides some intuition for how the equation was derived.
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Combining this upper bound for y2n with (37) and (38), we obtain the following dynamic equation for βn,

for all n ≥ N :
βn+2

βn+1
≥ βn+1

βn
− c
√

βn+1 − (1 + b̃)βn+1 (39)

where c = a
D

√

Ā
1−β0

. For βn+1 small enough, the last term is negligible compared to the penultimate term.

Therefore, by slightly increasing the value of c, whose precise value does not affect the proof, we obtain

βn+2

βn+1
≥ βn+1

βn
− c
√

βn+1. (40)

Let, for all n, qn = βn+1

βn
. We have

∏n
0 qk = βn+1

β0
and (40) may be rewritten as

qn+1 ≥ qn − c′
√

Πn
0 qk (41)

where c′ =
√
β0c. Note that because qn is proportional to µn and hence wn, it must converge to zero as n

goes to infinity.

Proposition 6 Along the regular choice sequence, we have wn ≤ ĉηβn for all n ≥ N .

Proof. The proposition is based on the following two lemmas, proved in Appendix F.

Lemma 8 Suppose that there exists a round N̂ > N such that

βN̂+1 ≥ 4c2β2
N̂
, (42)

β
1/4

N̂
≤ 1

2
√
c
, (43)

Then,

liminf
n→+∞

qn+1

qn
≥ 1.

Lemma 9 Suppose that {qn} is a strictly positive sequence such that

qn − qn+1 ≤ c′
√

Πn
0 qk

and lim infn
qn+1

qn
≥ 1. Then, {qn} does not converge to zero.

To conclude the proof of Proposition 6, suppose by contradiction that there exists N̂ ≥ N such that wN̂ >

ĉηβN̂ . From (34), this implies that µN̂ > a
D ĉβN̂ , and from the first inequality of (38) this implies, using the

definition of ĉ, that (42) holds for N̂ . Moreover, from Lemma 7, βN̂ clearly satisfies (43), for η small enough.

Therefore the hypotheses of Lemma 8 are satisfied and, hence, lim infn→+∞
qn+1

qn
≥ 1. Combining this with

Lemma 9 then implies that wn cannot converge to zero, which contradicts Proposition 2, since wn converges

to zero along any choice sequence. �

Proposition 7 There exist ŵ > 0 and η̄ > 0 such that w̄N − wN ≤ ŵη1+2d for all for η ≤ η̄.
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Proof. Recalling the definition of C̄H as the H-efficient contract that provides H with its asymptotic utility

limn uH(n) (see Proposition 2), we have

uH(C̄H)− uH(EH(RN )) =
∑

n≥N

uH(EH(Rn+1))− uH(EH(Rn)) ≤ 2α
∑

n≥N

βnwn,

where the last inequality comes from (48). From Proposition 6, we have wn ≤ ĉηβn for all n ≥ N . Therefore,

uH(C̄H)− uH(EH(RN )) ≤ K̃η
∑

n≥N

β2
n,

where K̃ = 2αĉ.

We have βn+1 ≤ 2µnβn = 2awn

Dη , by (34). Using again the inequality wn

η ≤ ĉβn, which holds for all n ≥ N ,

we have, letting K̂ = 2aĉ
D ,

βn ≤ βN

n−1
∏

k=N+1

(K̂βk) ≤ βN (K̂βN )n−N .

For βN < 1√
2K̂

, this implies that

∑

n≥N

β2
n ≤

∑

n≥N

2−(n−N)β2
N = 2β2

N .

We then obtain

uH(C̄H)− uH(EH(RN )) ≤ 2K̃ηβ2
N ≤ 2K̃η1+2d, (44)

where the last inequality comes from the fact that βN ≤ ηd.

To conclude, note that w̄N − wN = max{ek : k ≤ N} − eN = max{uH(EH(k)) : k ≤ N} − uH(EH(RN )).

Since max{uH(EH(k)) : k ≤ N} ≤ uH(C̄H), by an argument that is similar to the proof of Lemma 14), (44)

yields the result. �

D Inequalities

Lemma 10 (Regularity Bounds) There exist positive constants a
¯
, a, b

¯
, b such that for any C, Ĉ ∈ EH

such that uH(C) < uH(Ĉ), we have

a
¯
(uH(Ĉ)− uH(C)) ≤ Q(Ĉ)−Q(C) ≤ a(uH(Ĉ)− uH(C)) (45)

b
¯
(Q(D̂)−Q(D)) ≤ Q(Ĉ)−Q(C) ≤ b(Q(D̂)−Q(D)), (46)

where D (resp. D̂) is the L-efficient contract that gives H the same utility as C (resp. Ĉ).

Proof. Consider two contracts C and Ĉ on EH ordered as in the statement of the lemma. The efficiency

curve EH can be parameterized by a univariate parameter λ such that, letting C(λ) = (x1(λ), x2(λ)) denote

the H-efficient contract corresponding to parameter λ, the map λ 7→ C(λ) is continuous, one-to-one, and onto

from the parameter set Λ (a compact interval of R) to EH . We can assume without loss that Λ contains [0, 1]
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and that C(0) = C and C(1) = Ĉ. We choose the parametrization to be regular, i.e., such that λ 7→ C(λ),

seen as a function from Λ to R
2, is smooth and does not go “too slow” or “too fast” along EH .69 We have

Q(Ĉ)−Q(C) =

∫ 1

0

dQ(x1(λ), x2(λ))

dλ
· dC(λ)

=

∫ 1

0

(

∂Q(C(λ))

∂x1

dx1
dλ

+
∂Q(C(λ))

∂x2

dx2
dλ

)

dλ.

Similarly, we have

uH(Ĉ)− uH(C) =

∫ 1

0

duH(x1(λ), x2(λ))

dλ
· dC(λ)

=

∫ 1

0

(

∂uH(C(λ))

∂x1

dx1
dλ

+
∂uH(C(λ))

∂x2

dx2
dλ

)

dλ.

By assumption, the partial derivatives of Q and uH are strictly positive and continuous on the compact

domain C, and hence bounded below away from zero as well as bounded above. Therefore, there exist

positive constants a
¯
< a such that a

¯
∂uH

∂xi
≤ ∂Q

∂xi
≤ a∂uH

∂xi
for i = 1, 2. Using these inequalities into the

previous integral representations of Q(Ĉ)−Q(C) and uH(Ĉ)− uH(C) then shows (45).

For the second part of the lemma, consider the parameterizations of EH and EL for which the parameter

corresponds to the utility that each contract gives to H (thus, uH(C(λ)) = λ), with elements C(λ) =

(xH1 (λ), xH2 (λ)) for EH and D(λ) = (xL1 (λ), x
L
2 (λ)) for EL. Because the partial derivatives of uH are strictly

positive on the compact domain C and because the curves Eθ are both nondecreasing in C, that parameter-

ization is well defined and regular (in the sense of the previous paragraph) for both curves. Consider two

contracts C and Ĉ of EH with provide H with utilities uH < ûH and let D and D̂ denote the contracts of

EL corresponding to utilities uH and ûH . Repeating the argument of the previous paragraph, we have

Q(Ĉ)−Q(C) =

∫ ûH

uH

(

∂Q(C(λ))

∂x1

dxH1
dλ

+
∂Q(C(λ))

∂x2

dxH2
dλ

)

dλ

and

Q(D̂)−Q(D) =

∫ ûH

uH

(

∂Q(D(λ))

∂x1

dxL1
dλ

+
∂Q(D(λ))

∂x2

dxL2
dλ

)

dλ.

Because the paramaterizations are regular and the curves are nondecreasing, there must exist positive con-

stants x
¯
< x̄ such that 0 < x

¯
max{dxH1 /dλ, dxH2 /dλ} ≤ max{dxL1 /dλ, dxL2 /dλ} ≤ x̄max{dxH1 /dλ, dxH2 /dλ}.

Moreover, since Q has strictly positive derivatives, bounded below away from zero and bounded above, there

also exist positive constants q
¯
< q̄ such that q

¯
∂Q(C(λ))/∂xi ≤ ∂Q(D(λ))/∂xi ≤ q̄∂Q(C(λ))/∂xi for all

λ ∈ [uH , ûH ] and i = 1, 2. Combining these inequalities with the previous integral representations implies,

as is easily checked, that there exist positive constants b
¯
< b such that

b
¯
(Q(D̂)−Q(D)) ≤ Q(Ĉ)−Q(C) ≤ b(Q(D̂)−Q(D)),

which concludes the proof. �

For the next result, let Qθ denote P’s expected continuation cost at the beginning of round n, conditional

on facing type θ. (We omit dependence on n for simplicity).

69Formally, this means that the norm of the gradient of the function λ 7→ C(λ) is uniformly bounded below and

above by strictly positive constants.
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Lemma 11 (Incentive Bounds) Given any PBE and choice sequence {Rn}, there exist positive constants

α, γ, b̂, and b, such that

QL ≤ Q(EL(Rn)) +
βn

(1− βn)
awn, (47)

uH(EH(Rn+1))− uH(EH(Rn)) ≤
αβn

1− βn
wn, (48)

wn+1 ≤ wn

(

1 +
αβn

1− βn

)

, (49)

uL(Rn)− uL(Rn+1) ≤ γβn+1wn+1, (50)

uH(EH(Rn+1)− uH(EH(Rn))) ≥ −b̂βn+1wn+1, (51)

wn+1(1− bβn+1) ≥ wn − ηyn. (52)

Proof. Lemma 2 implies that

βnQH + (1 − βn)QL ≤ βnQ(EH(Rn)) + (1− βn)Q(EL(Rn)).

Moreover, QH is bounded below by the cost of the H-efficient contract CH(n) that provides utility uH(n)

to H , since that is the cheapest way of providing H with his continuation utility (by convexity of the cost

function Q). This implies thatQL ≤ Q(EL(Rn))+
βn

1−βn
(Q(EH(Rn))−Q(CH(n)). The contractsEH(Rn) and

CH(n) both lie on EH . Equation (45) implies thatQ(EH(Rn))−Q(CH(n)) ≤ a(uH(EH(Rn))−uH(n)) = awn.

This shows (47).

From (47), Rn+1 cannot give L a utility greater than the L-efficient contract that costs Q(EL(Rn))+
aβn

1−βn
wn.

This implies thatQ(EL(Rn+1))−Q(EL(Rn)) is bounded above by aβn

1−βn
wn. Combining this with (46) yields70

Q(EH(Rn+1))−Q(EH(Rn)) ≤
abβn
1− βn

wn.

This, along with the first part of (45) yields (48). We have

wn+1 = uH(EH(Rn+1))− uH(n+ 1) = [uH(EH(Rn+1))− uH(EH(Rn))] + uH(EH(Rn))− uH(n+ 1)

≤ [uH(EH(Rn+1))− uH(EH(Rn))] + uH(EH(Rn))− uH(n)

≤ wn

(

αβn
1− βn

+ 1

)

where the first inequality comes from the monotonicity of uH(n) in n, and the second inequality comes

from (48). This shows (49).

Because L can hold on forever to Rn, his continuation utility uL(n) is bounded below by uL(Rn). At

round n+ 1, P’s expected cost conditional on facing L is bounded above by Q(EL(Rn+1)) +
βn+1

1−βn+1
awn+1,

from (47) applied to round n + 1. By the same argument that yielded (45), there exists αL > 0 such that

uL(E)−uL(E′) ≤ αL(Q(E)−Q(E′)) for all E,E′ ∈ EL. Therefore, the highest utility which may be achieved

70Equation 46 applies if Q(EH(Rn+1))−Q(EH(Rn)) ≥ 0. In the opposite case, the inequality holds trivially since

the left-hand side is negative and the right-hand side is positive.
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at that cost is bounded above by uL(Rn+1) + âβn+1/(1 − βn+1)wn+1, for some proportionality constant â,

and

uL(Rn) ≤ uL(n) ≤ uL(n+ 1) ≤ uL(Rn+1) + âβn+1/(1− βn+1)wn+1,

which yields (50).

In general, uH(EH(Rn+1)− uH(EH(Rn))) may be negative. To provide a lower bound for that case, we use

the relations

uL(EL(Rn))− uL(EL(Rn+1)) = uL(Rn)− uL(Rn+1) ≤ âβn+1/(1− βn+1)wn+1, (53)

where the equality simply comes from the definition of EL(Rn) and EL(Rn+1) and the inequality comes

from (50). Replicating the argument that yielded (45), but using EL instead of EH and the pair of functions

(uH , uL) instead of (uH , Q), we get

uH(EL(Rn))− uH(EL(Rn+1)) ≤ α̃ [uL(EL(Rn))− uL(EL(Rn+1))]

for some positive constant α̃. Since uH(EL(Rn)) = uH(EH(Rn)) and uH(EL(Rn+1)) = uH(EH(Rn+1)), the

previous equation combined with (53) proves (51).71

For the last equation, subtracting uH(EH(Rn)) from (19) and rearranging (recalling that wn = uH(EH(Rn))−
uH(n)) leads, along any choice sequence, to

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH(EH(Rn+1))− uH(EH(Rn))). (54)

Combining this with (51) yields

wn+1 − wn ≥ ηwn+1 − ηyn − bβn+1wn+1

and hence (52). �

Lemma 12 (Geometric Bound) There exists q
¯
> 0 such that for any C on EL and R in H such that

uL(R) = uL(C),

Q(R)−Q(C) ≥ q
¯
(uH(C)− uH(R))2.

Proof. Fix some C ∈ EL and consider the referential centered at C whose x-axis is the common tangent

of uL and Q at C, oriented towards H, and whose y-axis is the normal vector pointing northeast in C. The
components of a contract, in this referential, are denoted xt and xn, respectively, with C being the origin.

71Intuitively, that equation comes from two observations. First, L’s utility from the current contract, Rn, cannot

decrease by too much between consecutive rounds. Indeed, recall that βn+1 is the probability of facing H in round

n + 1, while wn+1 is a measure of the maximum rent that P can extract from H at round n + 1. If the product

βn+1wn+1 is small, it means that, comes round n + 1, P has very little incentive to extract rents from H , which

implies, intuitively, that his continuation strategy must be similar to what he would do if he only faced L, namely

to jump to the L efficient contract EL(Rn+1), which gives L utility uL(Rn+1). Anticipating this, however, L is

willing to forgo the current contract Rn only if Rn+1 gives him a utility that is not much lower than Rn. The second

observation is that the H-efficient contracts EH(Rn) and EH(Rn+1) are constructed based on the utility that L gets

from Rn and Rn+1. Using a suitable Lipschitz relation between utility differences then yields (35).
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We parameterize the contract set UL(C) = {R ∈ C : uL(C̃) = uL(C)} in terms of xt: {C(xt) = (xt, xn(xt))}.
With this parameterization, we have C(0) = C and C(xt) ∈ H if and only if xt ≥ 0.72

Let Q(xt) = Q(C(xt)) and uH(xt) = uH(C(xt)) denote the cost and utility of H along UL(C), as a function

of the parameter xt. By L-efficiency of C, we have Q′(0) = 0.73 Because uL is concave and Q is convex, the

iso-utility curve of uL going through C is convex and corresponds to positive values of xn, while the isocost

curve going through C is concave and corresponds to negative values of xn. Moreover, by assumption at least

one of these curves has a nonzero curvature at C. In the (xt, xn) space, this means that either d2uL/dx
2
t > 0

or d2Q/dx2t < 0. We wish to show the existence of a constant q̂ > 0 such that Q(xt) − Q(0) ≥ q̂x2t for xt

in a right neighborhood of 0. Suppose first that d2uL/dx
2
t > 0. This implies that xn(xt) ≥ qxx

2
t for some

qx > 0 and xt in a neighborhood of zero. Therefore, Q(xt) ≥ Q(0) + qx‖∇Q(C)‖x2t for that neighborhood.

Now suppose that d2Q/dx2t < 0. In that case, let D(xt) denote the contract of the isocost curve with

x-value xt in the new referential (hence, just below C(xt) in the new referential), so that Q(D(xt)) = Q(C)

for all xt. By tangency of the curves, we have ‖C(xt) − D(xt)‖ = o(xt). Moreover, Q(xt) = Q(C(xt)) =

Q(D(xt) +∇Q(D(xt)) · (C(xt) − D(xt)) + O(‖C(xt) −D(xt)‖2) by a standard Taylor expansion. Finally,

for xt in a neighborhood of 0, ∇Q(D(xt)) = ∇Q(C) + O(‖D(xt) − C‖) = ∇Q(C) + o(xt). Combining

this, we get Q(xt) = Q(D(xt)) +∇Q(C) · (C(xt)−D(xt)) + o(xt)(‖C(xt) −D(xt)‖ + ‖D(xt)− C‖). Since

d2Q/dx2t < 0, the y-value of D(xt) in the new referential satisfies xDn (xt) ≤ −q̂xx2t for some q̂x > 0. Hence,

∇Q(C) · (C(xt) −D(xt)) ≥ q̃x(xn(xt) − xDn (xt)) ≥ q̌xx
2
t for some positive constants q̃x, q̌x. Combining all

this implies that

Q(xt) ≥ Q(C) + q̂x2t + o(x2t ), (55)

proving the result for that case too.

By compactness and convexity of UL(C), moreover, q̂ may be chosen small enough so that the inequality

Q(xt)−Q(0) ≥ q̂x2t

holds for all nonnegative xt. Since uH has bounded derivatives, there must exists ū > 0 such that |uH(xt)−
uH(0)| ≤ ūxt (the single-crossing property between uH and uL imply that uH(xt) ≤ uH(0) for all xt ≥ 0

and that ∇uH(C) · (C(xt)−C) 6= 0 for xt in a neighborhood of 0). Combining these inequalities, there exists

q
¯
(C) > 0 such that

Q(Cλ)−Q(C) ≥ q
¯
(C) (uH(C)− uH(Cλ))

2
.

Moreover, q
¯
(C) can clearly be chosen to vary continuously in C ∈ EL.74 By compactness of EL, q

¯
=

minC∈EL q
¯
(C) is strictly positive and yields the desired inequality. �

Lemma 13 There exist positive constants k2 and k3 such that

y2n ≤ k2[Q(Rn+1)−Q(EL(Rn))] + k3(max{(βnwn/(1− βn))
2, (βn+1wn+1)

2}+ βn+1wn+1) (56)

72The parameterization is well defined, because UL(C) can only have one point for each xt, by strict monotonicity

of uL in the original coordinates (x1, x2) and the fact that increasing xn corresponds to increasing both x1 and x2

and at least one of these increases is strict, since the normal vector defining xn points northeastwards.
73Formally, we have Q′(xt) =

∂Q

∂x1

dx1

dxt
+ ∂Q

∂x2

dx2

dxt
. Since C is L-efficient, Q and uL are tangent at C. This implies

that the tangent vector (dx1/dxt, dx2/dxt) is orthogonal to the normal vector (∂Q/∂x1, ∂Q/∂x2) at C.
74Indeed, all the constants involved in the previous steps are based on the curvature of the isoutility and isocost

curves at C, which only involve the second derivative of the utility and cost functions at C. These functions were

assumed to be C2 over C.
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Proof. We have

y2n = [(uH(EH(Rn))− uH(EH(Rn+1))) + (uH(EH(Rn+1))− uH(Rn+1))]
2

≤ 2[uH(EH(Rn))− uH(EH(Rn+1))]
2 + 2[uH(EH(Rn+1))− uH(Rn+1)]

2

≤ k1 (max{βnwn/(1− βn), βn+1wn+1})2 + 2[uH(EH(Rn+1))− uH(Rn+1)]
2

≤ k1 max{(βnwn/(1− βn))
2, (βn+1wn+1)

2}+ k2[Q(Rn+1)−Q(EL(Rn+1))]

= k1 max{(βnwn/(1− βn))
2, (βn+1wn+1)

2}+ k2[Q(EL(Rn))−Q(EL(Rn+1))] + k2[Q(Rn+1)−Q(EL(Rn))].

The first inequality is standard ((a+b)2 ≤ 2a2+2b2). The second inequality comes from (48) and (51), which

taken together imply an upper bound on |uH(EH(Rn) − uH(EH(Rn+1))|. The third inequality comes from

the equality uH(EH(Rn+1)) = uH(EL(Rn+1)) and Lemma 12 applied to the contracts C = EL(Rn+1) and

R = Rn+1. The difference Q(EL(Rn))−Q(EL(Rn+1)) is bounded above in proportion to uL(Rn)−uL(Rn+1)

(by a simple transposition to EL of the proof of (45)), and that latter difference is bounded above by

γβn+1wn+1, from (50). This shows that

y2n ≤ k2[Q(Rn+1)−Q(EL(Rn))] + k3(max{(βnwn/(1− βn))
2, (βn+1wn+1)

2}+ βn+1wn+1)

which yields the result. �

E Proofs for Parts I and II

Proof of Lemma 4 Fix any choice sequence and let n0 denote the first round along that sequence such

that w̄n0
≤ ε. By construction, w̄n0−1 > ε. From Lemma 5 (whose proof, in the main text, is independent

of this lemma), we have uH(n0) ≤ uH(n0 − 1) + η∆H . Therefore,

w̄n0
≥ w̄n0−1 + uH(n0 − 1)− uH(n0) ≥ ε− η∆H .

Since we can always select a choice sequence along which βn is weakly decreasing, we also get βn0
≤ β0. �

Lemma 14 i) For any round n0, ε̌ > 0, and choice sequence, there exists a round n > n0 such that uH(Rn) ≥
max{uH(EH(Rm)) : m ≤ n0}− ε̌. ii) The augmented rent index w̄n = max{uH(EH(Rm)) : m ≤ n}−uH(n)

converges to zero as n goes to infinity, along any choice sequence.

Proof. i) Fix ε̌ > 0. Proposition 2 guarantees that, along any choice sequence, Rn converges to an L-efficient

C̄L. Continuity of uH(·) implies that there exists a round ň such that uH(Rn) ≥ uH(C̄L)− ε̌ for all n ≥ ň.

Therefore, it suffices to show that uH(C̄L) ≥ max{uH(EH(Rm)) : m ≤ n0} for all n0. Equivalently, we must

show that uH(C̄L) ≥ max{uH(EL(Rm)) : m ≤ n0} for all n0 since, by construction, EH(R) and EL(R) give

the same utility to H for any R ∈ H. For contracts C,C′ on the L-efficiency curve EL, uH(C) ≤ uH(C′)

if and only if uL(C) ≤ uL(C
′). Therefore, it suffices to show that uL(C̄L) ≥ maxm∈N{uL(EL(Rm))}. By

construction, uL(EL(R)) = uL(R) for all R ∈ H, since EL(R) is the L-efficient contract that gives L the

same utility as R. Therefore, we have reduced the problem to showing that

uL(C̄L) ≥ max
m∈N

{uL(Rm)}.
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We recall that for all n, uL(n) ≥ uL(Rn) since holding on to Rn is always a feasible strategy for L, and that

uL(n) is nondecreasing in n for all choice sequences (see Lemma 5; the argument also there applies to L).

Since Rn converges to C̄L, uL(n) must converge to uL(C̄L). Finally, because uL(n) is nondecreasing, we get

uL(Rn) ≤ uL(n) ≤ uL(C̄L),

which concludes the proof of i). To prove ii), it suffices to notice that max{uH(EH(Rm)) : m ≤ n} and

uH(Rn) both converge to uH(C̄L), from the previous reasoning. �

Lemma 15 There exists a pushdown sequence at Block 1.

Proof. Let µθ({R̃n}) denote the probability, conditional on facing type θ, of observing choice sequence

{R̃n} until û1 is reached. By definition, summing over all choice sequence with elements in H and truncated

at the first round at which H ’s continuation utility reaches û1, we have
∑

{R̃n} µ
H({R̃n}) = µ0. Because L

always chooses contracts in H, we also have
∑

{R̃n} µ
L({R̃n}) = 1. These two equations immediately imply

that there exists a choice sequence {R0
n} such that µH({R0

n})/µL({R0
n}) ≤ µ0. Conditional on observing

that choice sequence, the posterior is given by Bayesian updating

β̂1 =
µH({R0

n})β̂0
µH({R0

n})β̂0 + µL({R0
n})(1− β̂0)

.

Dividing by µL({R0
n}) and using that µH({R0

n})/µL({R0
n}) ≤ µ0 yields the result. �

Let u
¯H

= uH(R0) and, for any ǫ̃ ≥ 0,

D(ǫ̃) = inf{Q(C)−Q(E) : C ∈ H, E ∈ EH : u
¯H

≤ uH(E) ≤ uH(EH(C)) + ǫ̃}. (57)

D(ǫ̃) is nonincreasing in ǫ̃, as a higher ǫ̃ merely increases the set of (C,E) pairs over which the objective is

minimized. Because R0 is regular, the contracts C arising in (57) are bounded away from EH for ǫ̃ small

enough, and this implies that D(ǫ̃) is strictly positive for ǫ̃ small enough. Intuitively, C and E must provide

almost the same utility to H , and E is a strictly cheaper way than C of doing so. For such values of ǫ̃, D(ǫ̃)

defines a lower bound on the inefficiency of contracts in H conditional on facing H .

Lemma 16 If at the beginning of any block k, wnk−1
≤ ε, then for all rounds n of block k,

Q(Rn) ≥ Q(EH(Rn(k−1))) +D(ε)

Proof. Let C denote the L-efficient contract that gives H utility uH(nk−1). Since uH(n) is nondecreasing,

we have for any round n of block k, uH(nk−1) ≤ uH(n). From part iv) of Proposition 1, this implies that Rn

must cost weakly more than C: otherwise, we would have uL(EL(Rn)) < uL(C) and hence uH(EH(Rn)) <

uH(EH(C)), which would imply that uH(n) ≤ uH(EH(Rn)) < uH(EH(C)) = uH(nk−1), a contradiction.

By assumption, we have uH(EH(Rn(k−1))) − uH(C) = wnk−1
≤ ε. By definition of D(ε), this implies that

Q(C) ≥ Q(EH(Rnk−1
)) +D(ε). Since Q(Rn) ≥ Q(C), this proves the lemma. �

We will consider ε such that D(2ε) > 0, we let D = D(2ε) denote the lower bound on the loss that is used

throughout the proof.
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Remark 3 In principle, one could reach a block k for which wk−1, and hence ŵk−1, is greater than 2ε,

which would imply that the lower bound D on the loss is not guaranteed to hold for that block. If that is

the case, however, Lemma 4 guarantees that one can find a later round n for which w̄n lies in (ε/2, ε), and

one can restart the analysis from that round (i.e., this is our new “n0”). Moreover, β̂k−1 ≤ β0, so the two

conclusions of Lemma 4 hold. Re-starting Part I from the new round n0, one may encounter a block for

which this problem arises again, in which case one re-initialize the analysis again, starting from a yet later

round. Since w̄n converges to zero along any choice sequence as n goes to infinity, by Lemma 14, there

can only be finitely many such initializations: there must exist a round n0 such that i) w̄n0
∈ (ε/2, ε), ii)

βn0
≤ β0, and iii) ŵk remains below 2ε for all blocks constructed from n0.

75

Proof of Lemma 6

Consider any round n and contract Rn+1 in Mn ∪ {Rn}. If µL
n(Rn+1) ≥ ε̄, then µn(Rn+1) ≤ 1

ε̄ and, hence,

βn+1 ≤ βn

ε̄ , since βn+1 ∼ µn(Rn+1)βn by Bayesian updating (see (38); the term βn+1βn can be neglected).

The set of contracts Rn+1 for which µL
n(Rn+1) < ε̄ has probability at most Gε̄, where G is the upper bound

on the size of the menu. Therefore, with probability at least 1−Gε̄,

βn+1 ≤ βn
ε̄

At round n̄, we have βn̄ ≤ ηd and wn̄ ≤ w̄η. Therefore, βn̄+1 ≤ ηd/ε̄ with probability at least 1 − Gε̄.

From (49), wn+1 ≤ wn

(

1 + αβn

1−βn

)

. Therefore, we also have wn̄+1 ≤ k1η for some constant k1. This implies

that with probability at least 1−Gε̄, the lower bound D = D(2ε) on the loss is valid for round n̄+1, because

wn+1 ≤ 2ε. The previous reasoning can be applied by induction to rounds n = n̄, . . . , n̄+ N̄ − 1. It implies

that with probability 1− k(N̄)ε̄, we have

βn ≤ (ε̄)−N̄ β̄ηd (58)

wn ≤ W̄ (N̄)η (59)

for all n ∈ {n̄, . . . , n̄+ N̄}, for some constants k(N̄) and W̄ (N̄) independent of ε̄ and η.

Consider any choice sequence such that βn and wn satisfy the above inequalities throughout the block,

which occur with probability 1 − k(N̄)ε̄. There remains to show the claim that yn = O(ηd/4) throughout

the block for such sequences. We begin by showing the result for round n = n̄. The first step is to show that

Q(Rn+1)−Q(EL(Rn)) must be of order O
(

βn

µL
n (Rn+1)

)

for that round. If each term in the sum entering P’s

IC constraint (26) is nonnegative, this result comes from the inequality76

wnaβn ≥ µL
n(Rn+1)[βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(Rn)))]

which implies that

Q(Rn+1)−Q(EL(Rn)) ≤
awn

η(1− βn)

βn
µL
n(Rn+1)

. (60)

In general, while some terms

µL
n(Rn+1)(1− βn)η(Q(Rn+1)−Q(EL(Rn))) (61)

75Indeed, the contrapositive is that there exists a choice sequence such that for all n, there is a round n′ > n for

which wn′ ≥ 2ε, which clearly contradicts the convergence of wn to zero along all choice sequences.
76The inequality holds because each term in the sum is nonnegative, and wnaβn is bigger than the sum.
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involved in the sum of (26) may be negative, they can only be very slightly so: indeed, we have

Q(Rn+1)−Q(EL(Rn)) ≥ Q(EL(Rn+1))−Q(EL(Rn)) ≥ −kβn+1wn+1, (62)

where the second inequality comes (50) of Lemma 11. Moreover, wn+1 ≤ wn

(

1 + αβn

1−βn

)

, from (49), and

µL
n(Rn+1)βn+1 is of order βn. Therefore, the lower bound of (60) is of order wnβn, and hence each negative

term which may arise in (26) are of order ηwnβn. Since there are at most G of them, we conclude that (60)

holds up to a term of order ηβn, which is negligible compared to the first term.

From (60), we see that for all Rn+1 such that µL
n(Rn+1) ≥

√
βn, the difference Q(Rn+1) − Q(EL(Rn))

is at most of order
√
βn. By Lemma 13 of the Appendix, this implies that yn is O(ηd/4): Indeed, y2n is

bounded above by terms proportional to Q(Rn+1)−Q(EL(Rn)) and a term proportional to max{(βnwn/(1−
βn))

2, (βn+1wn+1)
2}+βn+1wn+1. The first term is of order

√
βn = O(ηd/2), while the latter is of order βnη,

and is thus negligible compared to the first. Moreover, the set of contracts Rn+1 for which µL
n(Rn+1) <

√
βn,

is negligible: it arises with probability at most G
√
βn. Since

√
βn = O(ηd/2) is small compared to ε̄, for η

small enough, we conclude that with probability 1 − O(ε̄), βn = O(ηd), wn = O(η) and yn = O(ηd/4) for

round n̄ and, by induction, for all rounds of the block. �

F Proofs for Part III

Proof of Lemma 7

By assumption, βN ≤ ηd so βN becomes arbitrarily small as η gets small. We recall equation (49) from

Lemma 11:

wn+1 ≤ wn

(

1 +
αβn

1− βn

)

, (63)

where α > 0. From Bayesian updating, we have βn+1 = µnβn

µnβn+(1−βn)
. Since βN is arbitrarily small, the

denominator is arbitrarily close to 1 for n = N . More generally we have

βn+1 ≤ µnβn(1 + ǫ) (64)

where ǫ is a small positive constant, as long as βn remains small. At N , we have βN ≤ ηd and wN =

eN − uN ≤ ēN − uN ≤ ηD
2a , which implies from (63) that wN+1 ≤ ηD

2a (1 + αβn/(1 − βn)). From (31), this

implies that µN ≤ 1
2 +O(η) ≤ 3

5 .

Consider the first roundM > N for which µM ≥ 3/4. The probability βn is decreasing77 until at least round

M . Proceeding by induction, from round N to round M , the previous inequalities imply that

wN+m ≤ wN

m
∏

i=1

(1 + α(1 + ε)βN+i) (65)

and

βN+i ≤ βN

i−1
∏

j=0

(µN+j(1 + ǫ)) , (66)

77This comes from the Bayesian updating equation βn+1 = µnβn
µnβn+(1−βn)

, which is nondecreasing in µn. Taking

µn = 1 shows that βn+1 ≤ βn as long as µn ≤ 1.
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and hence also that (64) is valid for all rounds n ∈ {N, . . . ,M}. From (66), we have

βN+i ≤
(

3(1 + ǫ)

4

)i

βN

Therefore, (65) implies that

wM ≤ wN

M−N
∏

i=1

(

1 + α(1 + ε)ηd
(

3(1 + ǫ)

4

)i
)

The product
∞
∏

i=1

(

1 + α(1 + ε)ηd
(

3(1 + ǫ)

4

)i
)

(67)

is finite for η small enough, and converges to 1 as η goes to zero.78 Therefore, for η small, wM is bounded

above by 5
4wN ≤ 5ηD

8a . From (31), this implies that µM is bounded above by 5/8+O(η) < 3/4, so M cannot

be finite. This shows that for η below some threshold η̂, µn is bounded above by 3/4 for all n ≥ N and,

from (64), that βn is decreasing. Since wn is bounded above by 3
2wN and wN ≤ ηD

2a , the last claim follows

easily. �

Lemma 17 There exists a positive constant Ā such that

y2n ≤ Āβn+1

1− β0
(68)

Proof. Equation (33) implies that Q(Rn+1)−Q(EL(Rn)) ≤ βnwna
η(1−β0)

, since βn ≤ β0. This, along with (34),

yields79

Q(Rn+1)−Q(EL(Rn)) ≤
Dβn+1

1− β0
.

Combining this inequality with Lemma 13, we get

y2n ≤ k2
Dβn+1

1− β0
+ k3(max{(βnwn/(1− βn))

2, (βn+1wn+1)
2}+ βn+1wn+1).

Since wn+1 ≤ ηD
2a ≪ 1, the last term is negligible compared to βn+1. Taking Ā slightly greater than k2D

proves the lemma. �

Proof of Lemma 8

Taking the square root of (42) and multiplying the result by

√
βN̂+1

βN̂
, we get

βN̂+1

βN̂
≥ 2c

√

βN̂+1.

78Indeed, taking the logarithm of that product, we obtain a sequence that is approximately geometric with geometric

factor 3/4 and, hence converges, uniformly in η. Moreover, each term of the sequence is of order ηd, which converges

to 0 as η goes to zero. This implies that all partial sums converge to zero and, by uniform convergence, that the

sequence converges to zero as well. By continuity of the exponential function, the product itself thus converges to 1

as η goes to zero.
79We are using βn+1 ≥ µnβn, which comes from the first inequality of (38).
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Combining this with (40) yields
βN̂+2

βN̂+1

≥ c
√

βN̂+1.

Taking the square root of this expression and dividing both sides by
√

βN̂+1, we get

√

βN̂+2

βN̂+1

≥
√
c

β
1/4

N̂+1

(69)

Combining this with (43) (and using that βN̂+1 ≤ βN̂ ) shows that (42) holds at round N̂ + 1. Since βn is

non-increasing in n for n ≥ N̂ and hence satisfies (43) for all n ≥ N̂ , we can apply the previous argument

by induction to conclude that (42) and (69) hold for all n ≥ N̂ . Multiplying (40) by βn

βn+1
, we obtain

qn+1

qn
≥ 1− cβn

√

βn+1

.

From (69) applied to round n (instead of N̂ + 1), the last term is bounded above by
cβ1/4

n√
c
, which converges

to zero as n goes to infinity. �

Proof of Lemma 9

Suppose by contradiction that {qn} converges to zero. This along with the second assumption of the lemma

implies the existence, for any fixed ε > 0, of an integer N̄ such that i) qn+1

qn
≥ 1− ε and ii) qn ≤ qN̄ ≤ ε for

all n ≥ N̄ .80 Convergence of {qn} to zero also implies that maxN ΠN
0 qk is bounded above by some constant

Π̄. Letting ε̃ =
√
qN̄ , we have ΠN̄+k

N̄+1
qk ≤ ε̃2k for all integers k ≥ 1. Therefore, for any integer K ≥ 1, we

have

qN̄+K = qN̄+K − q∞ =
∑

n≥N̄+K

(qn − qn+1) ≤ c̃ε̃K
∑

k≥0

ε̃k,

where c̃ = c′
√
Π̄ and the last inequality comes from the first hypothesis of the lemma. Taking K = 3 and

using that
∑

k≥0 ε̃
k = 1/(1− ε̃), this yields

qN̄+3 ≤ c′

1− ε̃
q
3/2

N̄
≤ 2c′q3/2

N̄
. (70)

Applying inequality i) above to n = N̄ , N̄ + 1, and N̄ + 2, yields

qN̄+3 ≥ qN̄ (1− ε)3. (71)

Combining (70) and (71), we get(1−ε)3 ≤ 2c′q1/2
N̄

≤ 2c′ε1/2, which is impossible if we choose ε small enough.

This yields the desired contradiction. �

G Proof of Theorem 2, Statement B

Fix an initial belief β0 ∈ (0, 1) and suppose without loss that R0 ∈ H. We start by showing that the

probability pH that H ends up with a contract in H converges to zero as η goes to zero. Let Q̂(u, p)

80Indeed, there exist N1 such that i) holds for all n ≥ N1 and N2 such that qn ≤ ε for all n ≥ N2. Letting

N = max{N1, N2}, any N̄ ∈ argmaxn≥N{qn} satisfies conditions i) and ii).
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denote the minimal expected cost of providing an expected utility u to H with a contract distribution

that puts probability at least p on contracts lying in H. We have Q̂(uH(EH(R0)), 0) = Q(EH(R0)), and

Q̂(uH(EH(R0)), p) is strictly increasing for p in a neighborhood of zero because contracts in H are inefficient

for H .81 Statement A of Theorem 2 guarantees that H must get a utility arbitrarily close to uH(EH(R0))

and that the cost to P conditional on facing H must be arbitrarily close to Q(EH(R0)) as η goes to zero.82

For any ε > 0, this implies that there exists a threshold η̃(ε) such that pH < ε for all PBEs corresponding

to any η < η̃(ε).

For the remainder of the proof, we fix some small83 ε > 0 and focus on η’s below the threshold η̃ = η̃(ε4), so

that pH ≤ ε4.

From Statement A, there exists a threshold η̂ such that θ’s expected utility at the beginning of the game

is bounded below by vθ(ε) = uθ(Eθ(R0)) − ε4 for all η’s below that threshold.84 Moreover, the cheapest

contract Eθ(vθ(ε)) that provides this utility costs Q(Eθ(R0)) − O(ε4) and lies within ε4 of Eθ(R0). We

also recall from Lemma 2 that P’s expected cost is bounded above by β0Q(EH(R0)) + (1 − β0)Q(EL(R0))

for any η and PBE. Fix a PBE associated with some η ≤ min{η̂, η̃} and let Qθ denote P’s expected cost

conditional on facing θ and uθ denote θ’s expected utility in that PBE. The previous observations imply

that |Qθ −Q(Eθ(R0)| = O(ε4) (see Footnote 82).

Let Eε denote the L-efficient contract that gives H a utility of uH(vH(ε)). That contract lies within O(ε4) of

EL(R0). Part iv) of Proposition 1 implies that H never accepts a contract R′ such that uH(R′) < uH(Eε).

Moreover, L as well would reject such a contract since it would reveal his type and lead to a lower utility,

from Part i) of Proposition 1. Thus, such a contract does not arise in equilibrium. Let C(ε) = {R′ ∈ C :

uH(R′) ≥ uH(Eε)} denote the set of contracts which may arise in equilibrium. Also let B(θ) denote the

ε-ball of R2 centered at Eθ(R0).

The set of contracts which θ may end up with can be split between B(θ) and its complement C(θ) =

C(ε) \B(θ). Let pθ denote the probability that θ ends up with a contract in C(θ), and let uBθ and uCθ denote

the expected probabilities of θ conditional on ending up with a contract in B(θ) and C(θ), respectively. Our

objective is to establish that pθ ≤ ε for η small enough.

From above, we already know that pH = O(ε4). Consider the probability p that H ends up with a contract in

D(H) = C(H)\H. We show that p is of order ε2. Because these contracts lie in C(ε)\H, they must provide

H with utility at least uH(R0) − ε4. However, because they are outside of B(H), they must cost at least

Q(EH(R0))+qHε
2+O(ε4) from Lemma 12 (again, applying it to EH instead of EL) where qH > 0. Therefore,

the expected cost Q̃H conditional on contracts being in D(H) is bounded below by QH + qHε
2 + O(ε4).

Moreover, the expected cost Q̂H conditional on the contracts being in B(H) is bounded below by QH−O(ε4).
Let QH denote P’s expected cost conditional on the joint event that θ = H and that H ends up with a

81In fact, Lemma 12 (which can be reproduced for EH instead of EL) already implies this for contracts that must

lie outside of any fixed ball centered at EH(R0).
82Indeed, each type gets a utility arbitrarily close to uθ(Eθ(R0)) but P’s expected cost is bounded above by

β0Q(EH(R0)) + (1− β0)Q(EL(R0)), from Lemma 2. Since Eθ(R0)’s are efficient, the claim follows.
83It suffices to show the claim for all ε small enough, as it immediately implies that claim for higher values of ε.
84We have proved the result for θ = H , and the result is also trivially true for L, without the ε4, since uL(EL(R0)) =

uL(R0) is a lower bound on L’s utility.
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contract in H. From QH = pQ̃H + pHQH + (1 − p− pH)Q̂H we get

p =
QH − Q̂H + pH(QH − Q̂H)

Q̃H − Q̂H

Since the numerator is bounded above by O(ε4) while the denominator is bounded below by a factor ε2, we

conclude that p = O(ε2) and, hence, that pH = p+ pH ≤ kHε
2 for some kH > 0.

There remains to show the result for pL. We repeat the argument of the previous paragraph. Any contract

in C(ε) provides L with utility at least uL(EL(R0))−O(ε4). However, because contracts in C(L) lie outside

of B(L), they must cost at least Q(EL(R0))+ qLε
2 +O(ε4). Therefore, the expected cost Q̃L conditional on

contracts being in C(L) is bounded below byQL+qLε
2+O(ε4) where qL > 0. Moreover, the expected cost Q̂L

conditional on the contracts being in B(L) is bounded below by QL−O(ε4). From QL = pLQ̃L+(1−pL)Q̂L

we get

pL =
QL − Q̂L

Q̃L − Q̂L

Since the numerator is bounded above by O(ε4) while the denominator is bounded below by a factor ε2, we

conclude that pL ≤ kLε
2 for some kL > 0.

For ε small enough, max{kLε2, kHε2} ≤ ε. The threshold min{η̃, η̂} delivers the conclusions of Statement B.

H Notation

• uθ(n): type θ’s continuation utility at the beginning of round n.

• Eθ(R): If R is the H-Rent configuration, EL(R) is the L-efficient contract that gives L the same utility

as R and EH(R) is the H-efficient contract that gives H the same utility as EL(R) (see the definition

preceding Theorem 2).

• wn = uH(EH(Rn))− uH(n).

• w̄n = max{uH(EH(m)) : m ≤ n} − uH(n).

• yn = uH(EH(Rn))− uH(Rn+1).

• C̄θ = limn→+∞ uθ(n).

54



References

Abreu, D., Gul, F. “Bargaining and Reputation,” Econometrica, Vol. 68, pp. 85–117.

Atakan, A., Ekmekci, M. (2012) “Reputation in Long-Run Relationships,” Review of Economic Studies,

Vol. 79, pp. 451–480.

Ausubel, L., Deneckere, R (1989) “Reputation in bargaining and durable goods monopoly,” Economet-

rica, Vol. 57, pp. 511–531.

Battaglini, M. (2007) “Optimality and Renegotiation in Dymamic Contracting,” Games and Economic

Behavior, Vol. 60, pp. 213–246.

Beaudry, P., Poitevin, M. (1993) “Signalling and Renegotiation in Contractual Relationships,” Econo-

metrica, Vol. 61, pp. 745–782.

Bernheim, B.D., Ray, D. (1989) “Collective Dynamic Consistency in Repeated Games,” Games and

Economic Behavior, Vol. 1, pp. 295–326.

Bester, L., Strausz, R. (2001) “Contracting with Imperfect Commitment and the Revelation Principle:

The Single Agent Case,” Econometrica, Vol. 69, pp. 1077–1098.

Brennan, J., Watson, J. (2013) “The Renegotiation-Proofness Principle and Costly Renegotiation,”

Working Paper, UCSD.

Board, S., Pycia, M. (2013) “Outside Options and the Failure of the Coase Conjecture,” Forthcoming,

American Economic Review.

Cripps, M., Dekel, E., and W. Pesendorfer (2005) “Reputation with Equal Discounting in Repeated

Games with Strictly Conflicting Interests,” Journal of Economic Theory, Vol. 121, pp. 259–272.

Deneckere, R., Liang, M-Y (2006) “Bargaining with Interdependent Values,” Econometrica, Vol. 74,

pp. 1309–1364.

Dewatripont, M. (1989) “Renegotiation and Information Revelation over Time: The Case of Optimal

Labor Contracts,” Quarterly Journal of Economics, Vol. 104, pp. 589–619.

Farrell, J., Maskin, E. (1989) “Renegotiation in Repeated Games,” Games and Economic Behavior,

Vol. 1, pp. 327–360.

Fuchs, W., Skrzypacz, A. (2010) “Bargaining with Arrival of New Traders,” American Economic Review,

Vol. 100, pp. 802-836.

Fudenberg, D., Levine, D., and J. Tirole (1985) “Infinite Horizon Models of Bargaining with One-Sided

Incomplete Information,” in Game Theoretic Models of Bargaining, ed. by A. Roth. Cambridge University

Press, Cambridge, UK.

Fudenberg, D., Levine, D. (1989) “Reputation and Equilibrium Selection in Games with a Patient

Player,” Econometrica, Vol. 57, pp. 759–778.

55



Fudenberg, D., Tirole, J. (1990) “Moral Hazard and Renegotiation in Agency Contracts,” Econometrica,

Vol. 58, No. 6, pp. 1279–1319.

Fudenberg, D., Tirole, J. (1991) Game Theory, MIT Press.

Gromb D. (1994) “Renegotiation in Debt Contracts,” Working Paper, London Business School.

Gul, F., Sonnenschein, L., and R. Wilson (1986), “Foundations of Dynamic Monopoly and the Coase

Conjecture,” Journal of Economic Theory, Vol. 39, pp. 155–190.

Harris, C. (1985) “Existence and Characterization of Perfect Equilibrium in Games of Perfect Information,”

Econometrica, Vol. 53, No. 3, pp. 613–628.

Hart, O., Tirole, J. (1988) “Contract Renegotiation and Coasian Dynamics,” Review of Economic Stud-

ies, Vol. 55, No. 4, pp. 509–540.

Maestri, L. (2012) “Dynamic Contracting under Adverse Selection and Renegotiation,” Working Paper,

Toulouse School of Economics.

Maskin, E., Tirole, J. (1992) “The Principal-Agent Relationship with an Informed Principal, II: Common

Values,” Econometrica, Vol. 60, pp. 1–42.

Matthews, S. (1995) “Renegotiation of Sales Contracts,” Econometrica, Vol. 63, pp. 567–590.

Rubinstein, A., Wolinsky, A. (1992) “Renegotiation-Proof Implementation and Time Preferences,”

American Economic Review, Vol. 82, pp. 600-614.

Schmidt, K. (1993) “Reputation and Equilibrium Characterization in Repeated Games with Conflicting

Interests,” Econometrica, Vol. 61, pp. 325–351.

Skreta, V. (2006) “Sequential Optimal Mechanisms,” Review of Economic Studies, Vol. 73 , pp. 1085–1111.

Sobel, J., Takahashi, I. (1983) “A Multistage Model of Bargaining,” Review of Economic Studies, Vol. 50,

pp. 411–426.

Strulovici, B. (2011) “Renegotatiation-Proof Contracts with Moral Hazard and Persistent Private Infor-

mation,” Working Paper, Northwestern University.

Strulovici, B. (2013) “Renegotiation and Persistent Information,” Working Paper, Northwestern Univer-

sity.

Wang, G.H. (1998) “Bargaining over a Menu of Wage Contracts,” Review of Economic Studies, Vol. 65,

pp. 295–305.

56


	Introduction
	Setting and Overview of the Results
	Overview of the Arguments
	Relation to the standard Coase conjecture
	Conclusion
	Proof of Theorem 1 (Existence of a PBE)
	Results holding for all friction levels
	Statements
	Proofs

	Proof of Theorem 2
	Inequalities
	Proofs for Parts I and II
	Proofs for Part III
	Proof of Theorem 2, Statement B
	Notation

