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Abstract

We construct a two-sided market model, in which consumers can only provide
a noisy signal of the type of product they want. Each signal functions as a plat-
form, to which (multi-homing) firms get access if they pay its competitive market
price. A "broad match" function, designed ex-ante by the search intermediary,
links signals to one another: a firm that attaches itself to one signal (by paying
its market price) can get access to the search pool of consumers who provide an-
other signal. We ask the following question: Is there a broad match function that
induces an effi cient market equilibrium, given the underlying search technology?
In the case of random sequential search, we provide a necessary and suffi cient
condition, in terms of the underlying joint distribution over consumers’ tastes
and signals - specifically, a simple inequality that involves the relative fractions
of consumers who like different products, and the Bhattacharyya/Hellinger dis-
tance between their conditional signal distributions. The same inequality turns
out to be the condition for joint implementability of effi ciency and full surplus
extraction under a general anonymous mechanism. The role that Bhattacharyya
distance plays in our analysis links our paper to the machine-learning literature
on recommender systems.
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1 Introduction

A search platform is a site that attract firms from one side of a market into a "search

pool" - a collection of firms with which consumers on the other side transact via some

search process. A search intermediary (SI henceforth) is a market institution that

provides such "search platforms". Real-life examples include human-resource or real-

estate agencies, classified directories and, more modernly, online search engines and

recommender systems.

The starting point of this paper is a simple theoretical observation: a horizontally

differentiated two-sided market in which firms compete for access to a single, undiffer-

entiated search platform can fail to achieve an effi cient outcome. To see why, imagine

that consumers can only survey a finite number of alternatives. Because firms’access

to the platform is governed by market competition, only firms with the highest will-

ingness to pay for access will get it. These are likely to be the firms that offer popular

products; competitive forces will crowd out firms that cater to minority tastes. In other

words, the SI will fail to serve the "long tail" of the consumer preference distribution

(to use the terminology of Anderson (2007)).

Of course, SIs often gather information about consumers’ preferences, in an at-

tempt to "personalize" their search pools. For instance, when a prospective employer

approaches an HR agency, he indicates the kind of worker he needs. In the case of

classified directories, consumers consult the index in order to focus their search on a

specific product category. Modern online platforms epitomize this tendency: search en-

gines enable the consumer to submit an arbitrarily refined search query; and additional

information about the consumer’s preferences (past purchases, navigation history) is

encapsulated in the "cookies" on his computer. Indeed, if the SI can obtain a perfect

signal about the consumer’s preferences, it can sort the two-sided market into homo-

geneous segments. In such a differentiated two-sided market, each signal functions as

a distinct search platform, potentially with its own access price.

However, consumers rarely provide perfect signals about their true wants. A con-

sumer’s past purchase is clearly a noisy signal: if he ordered a vacation to Paris last

summer, does this indicate that he likes big cities? Or will he want to diversify and try

a beach resort this summer? In the case of a classified directory, consumers may strug-

gle to fit what they look for into its rigid classification scheme. Even when consumers

can submit any free-text query, they are effectively restricted by a limited ability to

describe their wants. They may forget how to spell a name; they may be able to artic-

ulate only a general product category (e.g. movie genre); and their verbal descriptions
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may be vague, either due to inherent ambiguity (does "football" mean soccer or Amer-

ican football?) or because giving precise descriptions is hard ("the blonde singer who

sounds like Rihanna"). Signal imperfection means that when the supply of each type

of product is large, the differentiated two-sided market will experience the same market

failure we identified in undifferentiated ones - namely, neglect of the "long tail" of the

preference distribution associated with a given signal.

How do SIs cope with this predicament? A common practice is to take firms

that attach themselves to a search platform associated with one signal, and introduce

them into the search pool of consumers who are characterized by another signal. We

refer to this device as "broad matching", borrowing the terminology from online search

engines. Indeed, when a web user submits a query to an online search engine, he gets

a mixed collection of web links, which reflects the "semantic field" around the user’s

query, as well as an estimation of his underlying preferences. For instance, Googling

"ninth symphony" produces a variety of links, referring to ninth symphonies by various

composers, mostly Beethoven. Broad matching is common in "offl ine" settings as well.

If a prospective buyer asks a real-estate agent for apartments in Downtown Manhattan,

a sensible agent will provide properties listed by their owners only under "Nolita" (the

name of a specific downtown neighborhood). Similarly, when a prospective employer

asks an HR agent for a "junior sales manager", the agent may suggest a candidate who

listed himself as an "experienced sales person".

We pose the following question: Can a competitive, differentiated two-sided market

implement an effi cient outcome, under suitably designed broad matching? And when

it cannot, will another mechanism perform better? We construct a model of a two-

sided market, in which firms complete for access to search platforms on one side, and

consumers make search decisions on the other side. For most of the paper, we assume a

random sequential search technology (without recall). For ease of exposition, we adhere

to the concrete terminology of keyword search, such that a consumer’s noisy signal

represents his limited "vocabulary" for describing his wants, and the market for search

platforms becomes a "market for keywords". Although this is suggestive of online

search, our stylized model is not meant to be a faithful description of contemporary

online search engine (and our "offl ine" examples imply that the notion of a "market

for keywords" is not necessarily restricted to online search).1 We discuss possible

implications for other classes of search platforms in the concluding section.

1Our model departs from the current practice of online search engines in several dimensions. For
instance, in reality online advertisers can choose between narrow and broad matching, whereas in our
model the SI imposes the broad matching structure on market participants.
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1.1 An Illustrative Example: Mozart vs. Stravinsky

Before presenting the model, we illustrate some of our main ideas with the following

simple example. There are two products, Mozart and Stravinsky (denotedmoz and str),

each offered by a measure 1 of firms. Each consumer can provide a signal of his taste

by means of a search query. Specifically, there are three keywords, “Mozart”(MOZ),

“Stravinsky”(STR) and “Classical Music”(CL); and each consumer is characterized

by a pair (x,w), where x is the (only) product he likes and w is the (only) word he can

articulate in an attempt to describe what he is looking for. When a consumer transacts

with a firm that offers his favorite product, both parties get a payoff of 1; otherwise,

the transaction value is 0 for both parties.

The consumer type (moz,MOZ) (respectively, (str, STR)) is interpreted as some-

one who likes the music of Mozart (Stravinsky) and knows how to describe this taste.

In contrast, the type (moz,CL) (respectively, (str, CL)) is interpreted as someone who

likes the music of Mozart (Stravinsky) without realizing that this is his favorite com-

poser; while he can identify whether he likes a piece of music when he encounters it, all

he can say ex-ante is that he is interested in classical music. Let µ(x,w) be the fraction

of type (x,w) in the consumer population. Assume µ(moz, STR) = µ(str,MOZ) = 0

- that is, when a consumer can name a composer, then he must like his music. In addi-

tion, assume µ(moz,CL) > µ(str, CL) - that is, moz is the popular composer among

consumers whose vocabulary is CL. In this sense, moz is a “mass”product while str

is a “niche”product.

When a consumer chooses to enter the market, he submits a query consisting of

the single keyword he knows. The SI then provides him with a pool consisting of

measures of moz and str firms. The search technology available to the SI is limited:

it cannot impose an order of inspection on the elements in the consumer’s search pool

(in Section 2 we discuss justifications for this assumption). The consumer repeatedly

draws random products from the pool without recall, and checks whether he likes them.

Each draw - or “click”, to use online-search terminology - carries a cost c ∈ (0, 1). As

soon as the consumer finds a product he likes, he transacts with the firm that offers it

and terminates the search process; otherwise, he decides whether to continue searching.

How does the SI determine the composition of the consumer’s search pool? An

ideal centralized SI could directly identify the type of each firm. In contrast, Our

SI cannot assign a keyword to firms according to some known relation between their

products and the keyword’s natural meaning. Instead, it subjects firms’ access to

market forces: each keyword is offered at some price per draw ("per click", to use

search-engine terminology). Firms can pay for as many keywords as it wishes. Because
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consumer search is random without recall, firms compete for each draw independently,

such that the market equilibrium price per draw will equal the highest willingness-

to-pay (WTP) for it. The “meaning” of a keyword is determined endogenously in

market equilibrium, according to the bundles of keywords that each firm chooses to

pay for. We are interested in market equilibria that are "robust", in the sense that

small perturbations of the distribution µ would not upset the market allocation of

keywords to firms. This means that all firms of the same type must behave identically

in equilibrium.

As is customary (indeed, taken for granted) in the literature on two-sided markets,

suppose that the SI follows "narrow matching": a consumer who submits a query w

receives only the firms that paid the market price of w. Assume that all consumers

whose vocabulary is CL decide to search, and all firms of both types access CL as

well. A firm’s total WTP for CL is equal to the number of transactions it expects

from consumers who submit the query CL. (To obtain the firm’s WTP per draw, we

simply need to divide total WTP by the expected number of draws. Since the latter is

the same for all firms, regardless of their type, we can focus on the total WTP.) Since

there is a measure 1 of moz and str firms, total WTP for CL will be µ(moz,CL) for a

moz firm and µ(str, CL) for a str firm. And because µ(moz,CL) > µ(str, CL), moz

firms will win access to the draws of CL consumer, and crowd out str firms. It follows

that we cannot sustain a robust equilibrium in which both (moz,CL) and (str, CL)

are served.

When search costs are small, effi ciency requires all consumer types to be served. Yet

under narrow matching, the equilibrium with the highest social surplus allocates the

keyword CL to moz firms, and (str, CL) consumers opt out (the keywords MOZ and

STR are allocated to moz and str firms, respectively). The "market failure" of this

equilibrium is thus that (str, CL) consumers - the "long tail" of the preference distri-

bution associated with the keyword CL - do not get their desired product.

Can the SI use "broad matching" to overcome this market failure? Suppose that

when a firm pays for STR (respectively, CL), it enters the search pool associated

with the query CL with probability b(CL|STR) (respectively, b(CL|CL)). Access to

the search pools associated with MOZ and STR continues to be defined by "narrow

matching": a firm gets access to the search pool associated with any of these two words

if and only if it pays its market price. If moz firms are allocated to MOZ and CL,

and str firms are allocated to STR (just as in the original equilibrium under narrow

matching), a consumer who submits CL will get a search pool consisting of a measure

b(CL|CL) of moz firms and a measure b(CL|STR) of str firms. Let λ(x,w) denote the
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fraction of x firms in the search pool of consumers who submit the keyword w. Then,

λ(str, CL) =
b(CL|STR)

b(CL|STR) + b(CL|CL)
(1)

This would allow both types (moz,CL) and (str, CL) to find what they like in finite

time.

Recall that for small c, effi ciency requires that all CL consumers engage in search.

Moreover, an effi cient composition of their search pool will minimize total search time:

µ(moz,CL)

λ(moz,CL)
+
µ(str, CL)

λ(str, CL)

By first-order conditions, the socially optimal composition is

λ(str, CL) =

√
µ(str, CL)√

µ(str, CL) +
√
µ(moz,CL)

(2)

It follows that if we want the "broad matching" of CL consumers to induce an effi cient

outcome, we need to equate (2) and (1), thus obtaining the equation

b(CL|STR)

b(CL|CL)
=

√
µ(str, CL)√
µ(moz,CL)

(3)

Is this equation consistent with (robust) market equilibrium? It turns out that

the introduction of broad matching creates a new incentive problem that did not exist

under narrow matching. To see why, note that the broad-match link from STR to

CL means that if a moz firm pays for STR, it potentially gets access to consumers

who submit CL, and moz is the popular product among this group. As a result, moz

firms may have a higher WTP for the keyword STR than str firms. If this is the case,

competitive forces will lead moz firms to crowd out str firms from STR!

This is the essence of the incentive constraint pertaining to the design of a broad

match function that sustains an effi cient equilibrium in the market for keywords. On

one hand, broad matching addresses the "long tail" market failure resulting from con-

sumers’limited ability to describe their wants, and increases the variety of products

available to these consumers. Yet on the other hand, indiscriminate use of broad match-

ing may encourage firms selling mass-appeal products to overtake too many keywords,

thus exacerbating the "long tail" market failure.

To ensure that the original allocation of keywords to firms is consistent with market

equilibrium under broad matching, we need to check that no single moz firm would be
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able to afford the keyword STR. Let us first calculate the WTP of an individual moz

firm for STR. With probability b(CL|STR), the firm would get access to a measure

µ(moz,CL) of consumers who want the firm’s product. However, the firm will have

to share these consumers with a measure b(CL|CL) of moz firms that paid for CL. It

follows that the number of transactions that a single moz firm expects from STR is

b(CL|STR) · µ(moz,CL)

b(CL|CL)
(4)

Similarly, the number of transactions that a single str firm expects from STR is

b(STR|STR) · µ(str, STR)

b(STR|STR)
+
b(CL|STR) · µ(str, CL)

b(CL|STR)
= µ(str) (5)

where µ(x) =
∑

w µ(x,w). It follows that moz firms will not pay the market price of

STR in equilibrium if

µ(str) >
b(CL|STR) · µ(moz,CL)

b(CL|CL)
(6)

Inserting (3), condition (6) can be rewritten as√
µ(moz)

µ(str)
· µ(CL|moz) · µ(CL|str) < 1

Since µ(MOZ|str) = µ(STR|moz) = 0, this inequality is equivalent to

µ(moz)

µ(str)
·
(∑

w

√
µ(w|moz)µ(w|str)

)2
< 1 (7)

The second multiplicative term on the L.H.S of (7) is a conventional measure of sim-

ilarity between the conditional distributions µ(·|moz) and µ(·|str), known as "Bhat-
tacharyya similarity" (after Bhattacharyya (1943)). Thus, sustainability of the effi cient

outcome in market equilibrium may be obstructed by a large popularity gap between

moz and str, or by similar query distributions that characterize moz and str lovers

(which is the case if the vocabulary of many consumers is CL).

Although we arrived at the final inequality by assuming a special form of broad

matching (modifying narrowmatching by adding the terms b(CL|CL) and b(CL|STR))

and a particular allocation of keywords to firm types, this is in fact the general necessary

and suffi cient condition for market implementability of an effi cient outcome, for any
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X that contains moz and str, any W consisting of at least two keywords, and any µ

for which effi ciency requires λ(moz,w)λ(str, w) > 0 for some w. This will be our main

result in this paper.

1.2 Related Literature

Our paper is related to the literature on intermediation in two-sided markets (see Arm-

strong (2006), Caillaud and Jullien (2001,2003), Rochet and Tirole (2003) and Spiegler

(2000)). Some works within this tradition (e.g. Hagiu and Jullien (2011)) explicitly

address search platforms. Like much of this literature, we assume single-homing on the

consumers’side and multi-homing on the firms’side. Our key innovation in relation

to this literature is the introduction of broad matching, which is essentially formalized

as a "directed network of platforms". All the papers we are aware of implicitly assume

narrow matching; multiple platforms are considered only in the context of competition

among platforms, and interaction between a consumer and a firm invariably requires

that they are both attached to the same platform. The platform-network aspect of our

model also relates it to the literature on buyer-seller networks. In this literature (see

Kranton and Minehart (2001)), agents can only trade with linked partners. Typically

studied questions are which networks are effi cient and which networks emerge from

agents’strategic link-formation decisions.

Another related strand involved models of keyword pricing. This literature (e.g.

Edelman, Ostrovsky and Schwarz (2007)) mostly focuses on the mechanism-design

problem of auctioning multiple "sponsored links". Typically, the links are assumed

to have exogenous values to advertisers. Athey and Ellison (2011) explicitly model

how these values are determined by consumers’ endogenous search decisions. Chen

and He (2011) and Eliaz and Spiegler (2011a) model explicitly the interaction between

keyword and product prices (ignoring auction-theoretic considerations). Again, this

literature almost invariably assumes narrowmatching (see Dhangwatnotai (2011) for an

exception). Another important difference is that we assume a competitive environment

with many firms of each type, whereas most of the literature on search engine pricing

assumes small numbers of firms, such that auction-theoretic considerations become

relevant.

Finally, in the last decade there has been much writing, both academic and popular,

about the "long tail" phenomenon (see Brynjolfsson et al. (2006) or Anderson (2007)),

namely the fact that tastes for many kinds of products are highly differentiated, such

that a large segment of the consumer population belongs to a large number of small
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taste niches, and the observation that online commerce facilitates the flourishing of

firms that serve the "long tail" because it lowers barriers that characterize brick-and-

mortar commerce (such as storage costs). The key friction that remains (and possibly

gets magnified) in such environments seems to be consumers’ limited awareness of

products that cater to their particular tastes, and limited ability to describe such tastes

in order to locate relevant products on the internet. The "long tail" phenomenon means

that the welfare implications of well-designed broad matching can be large.

2 The Model

Products and words
Let X be a finite set of product types. Denote |X| ≥ 2. Let W be a finite set of

words, where |W | ≥ |X| (we use the terms "word" and "keyword" interchangeably).
There is a measure one of consumers. A consumer type is defined by the pair (x,w),

where x is the (only) type of product he is interested in, and w is the (only) word

he can use to express his wants. We refer to w as the type’s "vocabulary". Let

µ ∈ ∆(X ×W ) be the distribution of consumer types in the population. We assume

the marginals of µ on X andW have full support. As usual, denote µ(x) =
∑

w µ(x,w)

and µ(·|x) = (µ(w|x))w∈W . We sometimes refer to the latter as the conditional query

distribution that characterizes the preference type x.

A consumer of type (x,w) gets a payoff of 1 (0) with independent probability q

(1 − q) if he consumes a product of type x, and a sure payoff of 0 if he consumes a

product of type y 6= x. Products are "inspection goods": when a consumer sees a

product, he immediately recognizes the payoff it generates. For every x ∈ X, there is
a measure one of firms that offer only that product type (as many units as required).

A firm gets a payoff of 1 from any unit it sells (we abstract from product prices).

The parameter q captures idiosyncratic heterogeneity among consumers and firms.

Each consumer is interested in one type of product, but for each product of this type

there is an independent probability q that he will like it. This additional dimension of

differentiated taste also justifies why many firms offer the same type of product.

Let b : W ×W → [0, 1] be a weighted directed graph over words, referred to as the

"broad match function". This object is designed by the SI ex-ante. We use the following

notation: b(w|v) is the weight of the link from v to w (to avoid misunderstandings, we

do not require Σwb(w|v) = 1). When b(w|w) = 1 and b(w|v) = 0 for all w 6= v, we

refer to b as the narrow match function. When b(w|v) = 1 for all w, v, we refer to b as

the fully broad match function.
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Market equilibrium
Let f : W → X be an allocation of words to product/firm types, and denote nf (x) =

|f−1(x)|. Let a : X ×W → {0, 1} be a function that indicates the decision of each
consumer type whether to engage in active search. Every pair f, a is endowed with two

functions:

(i) πf,a(x,w) is the number of transactions that an individual x firm expects when it

gets access to consumers whose vocabulary is w;

(ii) tf,a(x,w) is the expected search time for consumer type (x,w) if he submits the

query w.

Consumers’search cost is c ∈ [0, q) per time unit. For now, we take the functions πf,a
and tf,a as primitives - later on we will give them a structure that reflects consumers’

search process.

Definition 1 The pair (f, a) is a market equilibrium if the following conditions

hold:

(i) For every (x,w) ∈ Supp(µ), a(x,w) = 1 if and only if c · tf,a(x,w) < 1.

(ii) If f(v) = x, then∑
w

b(w|v)πf,a(x,w) >
∑
w

b(w|v)πf,a(y, w)

for every y 6= x.

Condition (i) captures the individual rationality of search decisions: each consumer

engages in search if and only if the expected cost search is below the gross payoff

from finding a product he likes. Condition (ii) is a "market clearing" property: each

word w is allocated to the firm type that values it the most. The reason we impose

a strict inequality is that we want the equilibrium allocation to be stable w.r.t small

perturbations of µ.

Given a market equilibrium (f, a), we define the equilibrium access price of the

word v to be

p∗f,a(v) =
∑
w

b(w|v)πf,a(f(v), w) (8)

Thus, the equilibrium access price of a word is equal to the highest willingness to pay

for it, in line with the idea of a competitive market for keywords. Later on, we will be

interested in the equilibrium price-per-draw (or "price-per-click", to use the language

of online search engines) of each word.
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The search process: Defining πf,a and tf,a
Definition 1 is stated for arbitrary functions πf,a, tf,a. We will now define them in

terms of the primitives µ, b, in way that reflects a conventional random sequential

search technology. When a consumer submits a query, he gets access to a search pool.

He repeatedly draws independent random samples from this pool, and his search is

terminated as soon as he finds a product he likes. Let us now see how to derive

expressions for πf,a, tf,a from such a search process.

First, note that given a, the total measure of consumers who demand the product

x and submit the query w is

da(x,w) ≡ µ(x,w)a(x,w)

Given f and b, the total measure of x firms that are available to consumers who submit

w is

mf (x,w) ≡
∑

v∈f−1(x)

b(w|v) (9)

It follows that the fraction of x firms in the search pool associated with the query w is

λf (x,w) ≡ mf (x,w)∑
y∈X mf (y, w)

(10)

The stopping probability per draw of consumer type (x,w) is q ·λf (x,w). His expected

search time (where a unit of time is one draw) is the inverse of this expression, hence

tf,a(x,w) =

∑
y∈X

∑
v∈f−1(y) b(w|v)

q ·
∑

v∈f−1(x) b(w|v)
(11)

Because the consumer’s payoff is 1 if he gets a product he likes and 0 otherwise,

the consumer’s optimal search decision is simple: either he he searches until he finds

a product he likes, or he refrains from searching altogether. It follows every consumer

who likes x and submits w eventually transacts with some x firm in the search pool

associated with w. These consumers are equally shared by all x firms in the pool.

Hence, whenever mf (x,w) > 0, the number of transactions that an individual x firm

obtains in the pool is da(x,w)/mf (x,w). When mf (x,w) = da(x,w) = 0, we write

πf,a(x,w) = 0. Condition (i) in Definition 1 rules out the possibility that da(x,w) >

mf (x,w) = 0. It follows that

πf,a(x,w) =
µ(x,w)a(x,w)∑
v∈f−1(x) b(w|v)

(12)
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The functions tf,a and πf,a are thus defined by (11) and (12). If we plug these expres-

sions into Definition 1, we have a complete definition of market equilibrium in terms

of the exogenous elements X,W, µ, b, c, q.

Comment: The search technology
Our assumption of a random sequential search technology means that the SI is un-

able to impose an order of inspection on consumers’ search pools. This seems to fit

well environments in which inspection is done "offl ine". Consider our HR-agency ex-

ample; even if the HR agent is able to provide an ordered list of candidates for the

prospective employer, the eventual order of interviews is likely to be subjected to phys-

ical constraints beyond the SI’s control. Even in the case of online search, web users

may disobey the order in which links appear on their computer screen, for a variety

of reasons: advertisers may use "obfuscation" tactics to attract the user’s attention

away from the suggested order; some links may be slow or broken; and the user may

distrust the search engine’s suggested order (see Athey and Ellison (2011) for a related

discussion). From this point of view, our random-search assumption can be viewed as

an extreme, worst-case analysis for the SI (which is also computationally cheaper than

complete ordering of all the firms in the consumer’s search pool according to the firms’

market behavior). In Section 5 we examine the diametrically opposed case, in which

the SI can perfectly control the consumer’s order of inspection. The intermediate cases,

which are more realistic for contemporary online search, are left for future research.

The Bhattacharyya coeffi cient
For any pair of products x, y ∈ X, define:

S(x, y) ≡
(∑
w∈W

√
µ(w|x)µ(w|y)

)2

This is a measure of similarity between the two conditional query distributions µ(·|x)

and µ(·|y). Technically,
√
S(x, y) is the direction cosine between two unit vectors in

R|W |, (
√
µ(w|x))w∈W and (

√
µ(w|y))w∈W . The value of S(x, y) increases as the angle

between these two vectors becomes narrower; S(x, y) = 1 if and only if µ(·|x) = µ(·|y);

and S(x, y) = 0 if the two vectors are orthogonal. In the statistics literature,
√
S(x, y)

is known as the Bhattacharyya coeffi cient that characterizes the distributions µ(·|x)

and µ(·|y). A related concept is the Hellinger distance between distributions, given

by H2(x, y) = 1 −
√
S(x, y) (see Basu, Shioya and Park (2011) and Theodoris and

Koutroumbas (2008)). In the concluding section we discuss applications of this concept

in machine-learning models of recommender systems, and how these are related to our
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model.

The stochastic matrix (µ(·|x))x∈X is a signal function in Blackwell’s sense. This

leads to the following observation.

Remark 1 When (µ(·|x))x∈X is subjected to Blackwell garbling, S(x,w) weakly in-

creases for all x, y.

Proof. Denote µ(j|i) = βik, such that (βik) is a stochastic matrix with Σkβik = 1 for

every i. Let

δik =
∑
h

βihmhk

where (mhk) is a |W | × |W | bi-stochastic matrix. Thus, (δik) is a Blackwell garbling of

(βik). Fix i, j. Then,

∑
k

√
δikδjk =

∑
k

√√√√(∑
h

βihmhk

)(∑
h

βjhmhk

)

By the Cauchy-Schwarz inequality, this expression is weakly greater than∑
k

∑
h

√
βihmhkβjhmhk =

∑
h

√
βihβjh

∑
k

mhk =
∑
k

√
βikβjk

Since this inequality holds for every i, j, it follows that∑
i

∑
k

√
δikδjk ≥

∑
i

∑
k

√
βikβjk

which completes the proof.

Thus, as consumers’queries provide weaker signals of their preferences, the measure

S(x, y) weakly increases for all x, y.

Welfare
In order to explore the welfare limitations of the market for search platforms, we

assume that the SI is benevolent and aims to maximize social welfare (we discuss profit

maximization in Section 6). The domain of our social welfare function is (∆(X))W ,

namely the set of all possible collections of search pools to which consumers have access.

A search pool is characterized by its composition of firm types. Thus, an element in

the domain (∆(X))W is λ = (λ(x,w))x∈X ,w∈W , where λ(x,w) is the fraction of x firms

in the search pool associated with the query w. In our market model, λ is induced by

13



f, a via the formulas (9) and (10). However, the origin of λ is of course irrelevant for

the definition of social welfare.

Recall that in market equilibrium, the access price of a word is equal to the highest

willingness to pay for it; as a result, firms earn zero profits in equilibrium. Therefore,

we equate social welfare with consumer surplus, and define the social welfare function

U as follows:

U(λ) ≡
∑
w

∑
x

µ(x,w)uλ(x,w), (13)

where

uλ(x,w) =


0 if a(x,w) = 0

−∞ if a(x,w) = 1 and λ(x,w) = 0

1− c
q·λ(x,w) if a(x,w) = 1 and λ(x,w) > 0

is the net utility of consumer type (x,w) under (f, a). A market equilibrium (f, a) is

effi cient if λf,a, as defined by (10), maximizes social welfare.

Keyword prices
Condition (ii) in Definition 1 captures in a reduced form a (robust) competitive market

allocation of keywords to firms. It is essentially a zero-profit condition. A more con-

ventional definition would be based on an explicit description of the supply of "search

space" provided by the SI and the firms’demand for it, and it would include an explicit

market price for each word. The random-sequential-search search technology enables

such an account. Suppose (as in Section 1.1) that the search process is without recall.

Thus, every draw functions as an independent unit supply of "search space", which is

competed for by a large number of firms of each type. The equilibrium price-per-draw

clears the market when it is equal to the highest WTP per draw among firms. Because

all firms face the same number of draws in each pool (conditional on getting access it),

this is equivalent to our Condition (ii).

The following is an alternative scenario, which does not require the assumption of

no recall. Imagine that access to search platforms is subjected to a physical capacity

constraint: the maximal measure of firms that can be admitted to any w is less than

1. The market price of w (a lump-sum payment for access, as opposed to a price-per-

draw) is p(w). On the demand side, each x firm demands a bundle of words A ⊆ W

to maximize its total profit

∑
v∈A

[∑
w∈W

b(w|v)π(x,w)− p(v)]

]

14



where π(x,w) is the number of transactions it expects in the search pool associated

with w, given market agents’equilibrium behavior. In competitive equilibrium, p(w)

equates the supply and demand at every w (given the consumers’individually rational

search decisions). If we require the equilibrium to be robust to small perturbations

in µ, each word must be allocated to exactly one type of firms. As a result, this

elaborate definition of market equilibrium boils down to Definition 1. It also justifies

our definition of equilibrium access price given by (8).

Comment: Multi-product firms. The assumption that each firm sells one type of

product is not essential. We could allow firms to sell multiple product types, as long as

there are no search externalities between them. That is, a consumer’s encounter with

a product does not affect the probability of encountering another product offered by

the same firm. In reality, firms sometimes use products as "baits" to lure the consumer

into browsing through their entire product line (see Eliaz and Spiegler (2011b) for a

stylized model of competitive marketing that captures this aspect).

Comment: Rational expectations. Condition (i) in Definition 1 assumes that

consumers have rational expectations. This may seem strange: if the consumer is

unable to express what he wants, how can he figure out the duration of searching for

it? However, note that consumers often use the same generic word for many queries.

Imagine that you heard a nice song on the radio, and the only thing you can say about

it is that it is an R&B song. Therefore, this is the only keyword you can use to look for

it on YouTube. Previous cases in which you submitted the query "R&B" on YouTube

have enabled you to form an estimate of the expected search time. It is possible to

relax the rational-expectations assumption, and simply assume that a consumer of

type (x,w) submits the query w automatically, without performing any cost-benefit

analysis. From a positive point of view, this would be equivalent to the case of c = 0 in

our model. For the normative analysis, however, this alternative assumption raises the

question of whether minimizing expected search time is a "legitimate" social welfare

criterion, from a revealed-preference point of view.

3 Analysis

In this section we analyze market equilibria in our model, with particular emphasis on

whether socially optimal outcomes can be sustained in market equilibrium for some

broad match function. Our main results are in Section 3.2, where we characterize

effi cient outcomes under c > 0, and provide a necessary and suffi cient condition for
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their market implementability.

3.1 The Limitations of Narrow and Fully Broad Match

Let us first examine the welfare implications of market equilibrium under the two

extreme broad match functions: narrow and fully broad match.

Proposition 1 (optimal equilibrium under narrow match) Let b(w|w) = 1 and

b(w|v) = 0 for all w 6= v. Then, for generic µ, the maximal social welfare that can be

sustained in market equilibrium is

(1− c

q
)
∑
w∈W

(
max
x∈X

µ(x,w)

)

Proof. First, we construct a market equilibrium (f, a) that implements this level of

social welfare. Let f(w) = arg maxx∈X µ(x,w). For generic µ, this is a well-defined

function. Let a(x,w) = 1 if and only if x = f(w). It is easy to see that both conditions

of the definition of market equilibrium are satisfied. Moreover, the expected search

time for consumers who choose to enter is 1
q
, which is the shortest possible. Hence

their payoff is 1− c
q
.

Now suppose there is another equilibrium (f, a). For each word w, let X(w) be the

set of products for which a(x,w) = 1. Then, the firm type with the highest WTP for

w is arg maxx∈X(w) µ(x,w). For generic µ, this is a singleton, hence also f(w). But this

means that condition (i) in Definition 1 is satisfied only if X(w) consists of a single

element x(w), such that social welfare is

(1− c

q
)
∑
w∈W

µ(x(w), w) ≤ (1− c

q
)
∑
w∈W

(
max
x∈X

µ(x,w)

)

which completes the proof.

Thus, under narrow match, it is impossible to do better than serving the largest

preference niche among consumers who share a given vocabulary. When X ⊆ W and

µ(x|x) = 1 for all x - i.e. when consumers always know the name of the product they

want - narrow matching enables the effi cient equilibrium outcome. Narrow matching

is also optimal when c is suffi ciently close to q, such that serving the largest preference

niche at each keyword is effi cient.

Let us now turn to the diametrically opposed case of fully broad matching.
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Proposition 2 (optimal equilibrium under fully broad match) Let b(w|v) = 1

for all w, v. Then, for generic µ, the maximal social welfare that can be sustained in

market equilibrium is (1− c
q
) maxx∈X µ(x).

Proof. Under fully broad match, the model becomes equivalent to a specification
(W ′, µ′, b′), where W consists of a single word w, µ′(x,w) = µ(x), and b′ is a narrow

match function. By Proposition 1, the maximal social welfare that can be sustained in

market equilibrium in this case is (1− c
q
) maxx∈X µ(x).

The maximal social welfare that is implementable in market equilibrium is weakly

lower under fully broad match than under narrow match. Narrow matching neglects

the "long tail" of the preference distribution conditional on the consumer’s vocabulary.

However, going all the way to fully broad matching throws the baby with the bathwater,

because it leads to a wholesale neglect of the long tail of the unconditional preference

distribution.

3.2 Effi cient equilibrium under c > 0

When c > 0, the social welfare function can be written as

U(λ) =
∑
w

∑
x|λ(x,w)>0

µ(x,w)[1− c

q · λ(x,w)
] (14)

Our first task is to characterize the collection of search pools λ∗ = (λ∗(x,w))x∈X,w∈W

that maximizes U . We perform this task in four steps.

First, it is immediately clear from (14) that we can calculate (λ∗(x,w))x∈X inde-

pendently for each w.

Second, observe that if λ∗(x,w) > 0, then λ∗(x,w) > c
q
. The reason is as follows.

Recall that by assumption, c < q. Imagine that λ∗(x,w) ≤ c
q
, and suppose that

we deviated by removing all x firms and all consumers of type (x,w) from the pool

associated with w. This would weakly increase the payoff earned by (x,w) consumers.

In addition, it would eliminate the negative search externality that x firms in the pool

exert on consumers who like other products. It follows that if λf,a = λ∗, then (f, a)

must satisfy condition (i) in Definition 1.

Third, first-order conditions imply the following whenever λ∗(x,w)λ∗(y, w) > 0:

λ∗(x,w)

λ∗(y, w)
=

√
µ(x,w)

µ(y, w)
(15)
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Since
∑

x∈X λ
∗(x,w) = 1, we obtain that whenever λ∗(x,w) > 0,

λ∗(x,w) =

√
µ(x,w)∑

y|λ∗(y,w)>0
√
µ(y, w)

(16)

The fourth and last step characterizes the set of products x for which λ∗(x,w) > 0.

We begin by noting the following property of effi cient search pools.

Lemma 1 If λ∗(x,w) = 0 and µ(y, w) < µ(x,w), then λ∗(y, w) = 0.

Proof. Assume the contrary, namely that there exist w, x, y such that µ(y, w) <

µ(x,w) but λ∗(y, w) > λ∗(x,w) = 0. Consider switching from λ∗ to λ′, where the only

difference is that λ′(y, w) = 0 and λ′(x,w) = λ∗(y, w). This changes social welfare by

the following amount

[µ(x,w)− µ(y, w)][1− c

qλ∗(y, w)
]

Since λ∗(y, w) > c
q
, the change is positive, a contradiction.

This lemma has the following implication. For each word w, order the products in

decreasing order of popularity, and denote µi = µ(i, w), such that µ1 ≥ µ2 ≥ · · · ≥ µ|X|.

(Accordingly, denote λ∗(i, w) = λ∗i .) The effi cient λ
∗ has the property that for each w,

there exists a cutoff type m∗ such that λ∗i > 0 for i ≤ m∗ and λ∗i = 0 for i > m∗. The

effi cient cutoff type is characterized as follows.

Lemma 2 The cutoff m∗ is the highest m ∈ {1, ..., |X|} for which

√
µm >

2c

q − c

m−1∑
i=1

√
µi (17)

Proof. Total consumer surplus among consumers whose vocabulary is w can be written
as follows:

V (m) ≡
m∑
i=1

µi(1−
c

q
·
∑m

j=1
√
µj√

µi
)

For any m ∈ {1, . . . , |X|},

V (m)− V (m− 1) = µm(1− c

q
)− 2c

q

√
µm

m−1∑
i=1

√
µi (18)

Type m is the cutoff type if V (i)−V (i−1) > 0 for every i ≤ m and V (i)−V (i−1) < 0

for every i > m. Notice that as m increases, µm decreases while
∑m−1

i=1

√
µi increases.
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Hence, if the R.H.S. is negative for somem, it is also negative for anym′ ≥ m. It follows

that there exists a maximal index m ∈ {1, . . . , |X|} for which V (m)− V (m − 1) > 0.

By (18), this index, denoted m∗, satisfies that for any consumer type with µm ≥ µm∗ ,

√
µm >

2c

q − c

m−1∑
i=1

√
µi

while this inequality is reversed for any consumer type with µm < µm∗.

Equation (18) illustrates the negative search externality that consumer types exert

on each other. The first term on the R.H.S represents the welfare gain for consumers

who like product type m, when this type is added to the search pool. The second term

represents the welfare loss due to the search costs incurred by the marginal consumer

as well as the added search costs that he inflicts on other consumers (they now search

longer since sometimes they draw m products).

Having characterized the effi cient collection of search pools, our task now is to

examine its implementability in market equilibrium. Recall that a market equilibrium

(f, a) is effi cient if λf = λ∗. Our next result provides a necessary and suffi cient condition

for the existence of a broad match function that induces an effi cient equilibrium.

Proposition 3 (necessary and suffi cient condition for effi cient equilibrium)
There exists a broad match function b∗ that induces an effi cient market equilibrium

(f, a) if and only if
µ(x)

µ(y)
S(x, y) < 1 (19)

for every pair of distinct products x, y for which λ∗(x,w)λ∗(y, w) > 0 for some w ∈ W .
In particular, f can be any function whose image is ∪w∈W{x ∈ X | λ∗(x,w) > 0}, and
b∗ can be defined by

b∗(w|v) =


√
µ(f(v),w)

nf (f(v))
if λ∗(f(v), w) > 0

0 if λ∗(f(v), w) = 0
(20)

Proof. Assume there is a broad match function b that induces an effi cient equilibrium
(f, a). Recall that if an individual x firm pays for v, it receives the following number

of transactions: ∑
w

b(w|v)µ(x,w)a(x,w)∑
v′∈f−1(x) b(w|v′)
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where words w for which
∑

v′∈f−1(x) b(w|v′) = 0 are ignored in the summation. When∑
v′∈f−1(x) b(w|v′) > 0, we have λf (x,w) > 0, and we have already noted that in this

case, a(x,w) = 1. It follows that we can assume w.l.o.g that a(x,w) = 1 for every w

in the summation. Condition (ii) in Definition 1 can thus be written as follows. For

every v ∈ W and every y 6= f(v) = x,

∑
w

b(w|v)µ(x,w)∑
v′∈f−1(x) b(w|v′)

>
∑
w

b(w|v)µ(y, w)∑
v′∈f−1(y) b(w|v′)

(21)

Summing Inequality (21) over all v ∈ f−1(x), we obtain

∑
v∈f−1(x)

∑
w

b(w|v)µ(x,w)∑
v′∈f−1(x) b(w|v′)

>
∑

v∈f−1(x)

∑
w

b(w|v)µ(y, w)∑
v′∈f−1(y) b(w|v′)

This simplifies into

µ(x)

µ(y)
>
∑
w

(∑
v∈f−1(x) b(w|v)∑
v∈f−1(y) b(w|v)

)
µ(w|y) (22)

whenever f(v) = x. Similarly, we obtain

µ(y)

µ(x)
>
∑
w

(∑
v∈f−1(y) b(w|v)∑
v∈f−1(x) b(w|v)

)
µ(w|x) (23)

whenever f(v) = y. Now, we can plug the definition of λf (x,w) given by (9)-(10) and

the necessary condition for effi ciency given by (16) in inequalities (22) and (23), and

obtain that the following inequalities must hold for every pair of distinct products x, y

in the image of f :

µ(x)

µ(y)
>

√
µ(x)

µ(y)

∑
w∈W

√
µ(w|x)µ(w|y)

µ(y)

µ(x)
>

√
µ(y)

µ(x)

∑
w∈W

√
µ(w|x)µ(w|y)

By the definition of S(x, y) these inequalities may be rewritten as

max(
µ(y)

µ(x)
,
µ(x)

µ(y)
) · S(x, y) < 1

which implies the desired condition (19).
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For the suffi ciency part of the proof, note that by construction, the pair f, b∗ yields

the optimal λ∗. We have already noted that this immediately implies Condition (i) in

Definition 1. Plugging the definition of b∗ into (21) establishes Condition (ii).

Condition (19) captures in a succinct way the key considerations highlighted in

Section 1.1. A high S(x, y) captures an environment in which consumers’queries are

weak indicators of their true wants. Broad matching is meant to address this problem,

by giving consumers a diversified search pool. However, since words are allocated

to firms via market competition, broad matching may increase the risk that a mass-

appeal product will crowd out a niche product. This risk goes up as the popularity

gap between the two products, captured by µ(x)/µ(y), gets farther away from one.

Comment: Canonical b, f

Suppose that we impose the natural restrictionX ⊆ W - that is, the name of each prod-

uct is itself a keyword. Then, it is also natural to impose two additional restrictions:

f(x) = x and b(x|x) = 1. The first restriction is w.l.o.g. Recall that by Proposition

3, we can select f to be any function whose image is ∪w∈W{x ∈ X | λ∗(x,w) > 0}.
If λ∗(x,w) > 0 for some w, setting f(x) = x is consistent with this qualification. If

λ∗(x,w) = 0 for all w, we can set f(x) = x and b(w|x) = 0 for every w, and design f, b

as if x were excluded from both X and W . The second restriction, however, carries a

loss of generality: the condition for effi ciency implies that setting b(v|v) = 1 may force

the value of b(w|v) to be greater than one for some w, a contradiction.

3.2.1 Equilibrium Keyword Prices

We now turn to a characterization of the access price of keywords in market equilibria.

For simplicity, we make two restrictions. First, we assume that the broad match

function is symmetric, in the sense that it does not discriminate between keywords that

are allocated to the same product - i.e., f(v) = f(v′) implies b(w|v) = b(w|v′). The
function b∗ satisfies this property. Second, we focus on equilibria with full consumer

participation: a(x,w) = 1 whenever µ(x,w) > 0. This property holds in effi cient

equilibrium as long as c is suffi ciently small.

Note that the L.H.S of condition (ii) of Definition 1 coincides with the definition

of p∗f,a(v) given by (8). It follows that under our simplifying restrictions,

p∗f,a(v) =
µ(f(v))

nf (f(v))
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This characterization of keyword prices does not rely on the effi ciency of market equi-

librium; it is a simple consequence of the feature that consumers in our model search

until they find a product they like.

The characterization of equilibrium keyword prices turns out to be more interesting

when we consider the average price-per-draw - or "per click", to use the terminology

of online search. In some settings (e.g. online search), the SI can record consumers’

visits at each firm, and thus charge firms per visit. (This method of payment may be

preferable to lump-sum pricing when consumer traffi c is uncertain - however, our model

abstracts from this consideration.) Our reduced-form definition of market equilibrium

does not involve an explicit notion of a market price of keywords, and it accommodates

both methods of payment as consistent interpretations. When keyword prices are lump-

sum payments for access, the notion of a price-per-draw is a fictitious "accounting"

number.

The number of draws that any firm obtains in the search pool associated with w is

Lf,a(w) ≡
∑

x∈X
da(x,w)
q·λf (x,w)∑

y∈X mf (y, w)
=

1

q

∑
x∈X

πf,a(x,w)

The reasoning behind this expression is as follows. Since the stopping probability per

draw of a consumer of type (x,w) is q · λf (x,w), he contributes 1/qλf (x,w) draws in

expectation. The total number of draws by consumers is thus equal to the sum of

da(x,w)/qλf (x,w) over all products x ∈ X. These draws are uniformly distributed

over all the firms in the pool, hence each firm gets a fraction 1/
∑

y∈X mf (y, w) of the

total number of draws.

Define the conversion rate of firm type x from the word v, induced by (f, a), as

follows:

CRf,a(x, v) =

∑
w b(w|v)πf,a(x,w)∑
w b(w|v)Lf,a(w)

=
q ·
∑

w b(w|v)πf,a(x,w)∑
y∈X

∑
w b(w|v)πf,a(y, w)

To understand this expression, note that when an individual x firm is among the firms

that were allocated the word v, it potentially enters multiple pools w, mediated by the

broad match function. For each such pool, we can calculate the number of draws and

transactions the firm can expect. The conversion rate is the ratio between the total

(aggregated over all the search pools) numbers of transactions and draws.
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Given a market equilibrium (f, a), the price-per-draw of the word v is defined as

PPD∗(v) = CRf,a(f(v), v)

Proposition 4 Suppose that b is symmetric, and consider an effi cient market equilib-
rium with full consumer participation. Then, for every w ∈ W ,

PPD∗(v) =
q∑

y

√
µ(y)

µ(f(v))
S(f(v), y)

Moreover, this expression decreases when the matrix (µ(·|x))x∈X undergoes Blackwell

garbling.

Proof. Fix b, f, a. By definition, the price-per-draw of v is

PPD(v) =
q ·
∑

w b(w|v)π(f(v), w)∑
w b(w|v)

∑
y π(y, w)

Also by definition,

π(x,w) =
µ(x,w)a(x,w)∑
v∈f−1(x) b(w|v)

λf (x,w) =

∑
v∈f−1(x) b(w|v)∑

y

∑
v∈f−1(y) b(w|v′)

By assumption, µ(x,w) > 0 implies a(x,w) = 1 and λf (x,w) > 0. Thus, whenever

µ(x,w)µ(y, w) > 0, the above identities imply

λ(x,w)

λ(y, w)
=

∑
v∈f−1(x) b(w|v)∑
v∈f−1(y) b(w|v′)

=
µ(x,w)

µ(y, w)
· π(y, w)

π(x,w)

Effi ciency implies (15). It follows that whenever µ(x,w)µ(y, w) > 0, we can write

π(y, w)

π(x,w)
=

√
µ(y, w)

µ(x,w)

We can now plug the identities we have arrived at into the definition of PPD(v),
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invoking the assumption that for any y, b(w|v) = b(w|v′) for all v, v′ ∈ f−1(y):

PPD(v) =
q ·
∑

w
µ(f(v),w)
nf (f(v))∑

w

∑
y

µ(f(v),w)π(y,w)
π(f(v),w)nf (f(v))

=
q · µ(f(v))∑

w

∑
y µ(f(v), w) π(y,w)

π(f(v),w)

=
q · µ(f(v))∑

w

∑
y µ(f(v), w)

√
µ(y,w)

µ(f(v),w)

=
q · µ(f(v))∑

w

∑
y

√
µ(f(v))µ(y)µ(w|f(v))µ(w|y)

=
q∑

y

√
µ(y)

µ(f(v))
S(f(v), y)

By Remark 1, PPD∗(w) decreases when (µ(·|x))x∈X is subjected to a Blackwell

garbling.

Thus, when search costs are small, the equilibrium price—per-draw of keywords de-

creases as consumers’queries become less informative of their true wants.2 To illustrate

the comparative statics, suppose that X = W and µ(x) = 1
|X| for all x. Consider two

extreme cases. First, suppose that µ(x|x) = 1 for all x - i.e., consumers can perfectly

describe their wants. Then, PPD∗(w) = 1 for every w under the effi cient equilibrium

induced by b∗. Second, suppose that µ(w|x) ≈ 1
|X| for every w, x (an exact equality

would be inconsistent with the condition for an effi cient equilibrium). In this case,

there is virtually no correlation between consumers’favorite product and their query,

and we have PPD∗(w) ≈ 1
|X| for every w.

3.3 Effi cient Equilibrium under c = 0

The maximal social welfare when c = 0 is 1, because every consumer type should end

up getting the product he likes, and the duration of his search does not matter. Thus,

a necessary and suffi cient condition for (f, a) to induce an effi cient outcome is that

λf (x,w) > 0 and a(x,w) = 1 whenever µ(x,w) > 0.

2If we dropped the full consumer participation assumption, such that λ∗(x,w) = 0 for some (x,w)
in the support of µ, the formula for PPD∗ would be somewhat messier, because the summation over
w and y would not be universal.
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Proposition 5 There exists a broad match function b∗ that induces an effi cient market
equilibrium (f, a) if and only if µ(·|x) 6= µ(·|y) for every distinct x, y. In particular, we

set f to be any onto function, and set b∗ to be

b∗(w|v) =
µ(f(v))

√
µ(w|f(v))

nf (f(v))
(24)

Proof. Any (f, a) that maximizes social welfare automatically satisfies condition (i)

in Definition 1. In particular, note that f is onto, since µ(x) > 0 for every x. The

question is whether there exist such (f, a) that will also satisfy condition (ii).

Let us prove necessity first. Assume that µ(·|x) = µ(·|y) for some distinct x, y.

Inequalities (22) and (23) are necessary conditions for market equilibrium, because

they are implied by condition (ii) in Definition 1. Rearranging these inequalities, and

writing µ(w|x) = µ(w|y) = β(w) for every w, we can see that the problem is to find a

collection of real coeffi cients (ψ(w))w∈W such that∑
w

β(w)ψ(w) < 1

∑
w

β(w)

ψ(w)
< 1

where

ψ(w) =
µ(x)

∑
v∈f−1(y) b(w|v)

µ(y)
∑

v∈f−1(x) b(w|v)

To see why this is impossible, add the two inequalities:

∑
w

β(w)

[
ψ(w) +

1

ψ(w)

]
< 2

But ψ(w) + 1/ψ(w) attains a minimum at ψ(w) = 1, and since Σwβ(w) = 1, we obtain

a contradiction.

Let us turn to suffi ciency. Suppose that µ(·|x) 6= µ(·|y) for every distinct x, y. Fix

some onto function f . By the definition of b∗, b∗(w|v) = b∗(w|v′) whenever f(v) = f(v′).

It suffi ces to show that Inequality (21) can be satisfied. This inequality is simplified

into
µ(x)

nf (x)
>
∑
w

b∗(w|vx)µ(y)µ(w|y)

nf (y)b∗(w|vy)

25



whenever f(vx) = x, f(vy) = y. Now plug the definition of b∗ as described in the

statement of the proposition, and obtain the inequality∑
w

√
µ(w|x)µ(w|y) =

√
S(x, y) < 1

This inequality indeed holds whenever µ(·|x) 6= µ(·|y).

The key argument in the proof of necessity is that the Bhattacharyya coeffi cient of

two identical distributions (µ(·|x) = µ(·|y)) cannot be lower than one. The suffi ciency

argument exploits the property that S(x, y) < 1 whenever µ(·|x) 6= µ(·|y), which

implies a slack in the equilibrium requirement that each keyword is allocated to the

firm type with the highest WTP. This slack gives us enough freedom in selecting an

appropriate broad match function.

These arguments also reveal that if we did not require condition (ii) in Definition

1 to involve strict inequalities, it would be possible to construct a broad match func-

tion that implements an effi cient equilibrium for all µ, simply by setting b(w|v) =

µ(x)/nf (x) whenever f(v) = x, such that ψ(w) = 1 for all w. This would imply that

all firm types get a conversion rate of 1/ |X| from all words. However, any slight per-

turbation in µ would upset condition (ii) in Definition 1, hence this equilibrium is not

robust.

Finally, observe that when all products are equally popular (i.e., µ(x) = 1
|X| for all

x) and c is small, the necessary and suffi cient conditions for market implementability

of effi cient outcomes under c = 0 and c > 0 coincide.

3.3.1 Example: Misinformation about Product Names

The following example illustrates the optimal broad match function under c = 0. Per-

haps the simplest example of a gap between consumers’wants and their ability to

describe them is when they are misinformed about the name of their desired prod-

uct. In this case, broad matching can be viewed as a partial substitute for correcting

misinformation. Let X = W = {x, y}. Assume

µ(x, x) = α(1− ε)
µ(x, y) = αε

µ(y, y) = (1− α)(1− ε)
µ(y, x) = (1− α)ε
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where α > 1
2
and ε < 1

2
. The story is that the names of x and y are similar and thus

easily confused with one another; α is the fraction of consumers who like product x;

and ε is the (independent) probability that consumers are misinformed about product

names.

The "rational expectations" aspect of condition (i) in Definition 1 means that the

consumer’s error cannot be interpreted as an accidental typo: the consumer type (x, y)

genuinely believes that the name of the product he is looking for is y, and he does not

reconsider this belief even after taking many unsuccessful draws from his search pool.3

This is admittedly an extreme assumption, which shows the importance of extending

the model to allow for consumer learning and multiple queries.

Under narrow matching, the equilibrium that maximizes social welfare is the fol-

lowing: for every z ∈ X, f(z) = z, a(x, x) = a(y, y) = 1, a(x, y) = a(y, x) = 0. That is,

only consumers who know the correct name of their desired product engage in search,

while the others give up on search. Social welfare is 1− ε. That is, only well-informed
consumers are served. To take the opposite extreme, the following equilibrium max-

imizes social welfare under fully broad matching. Both words are allocated to the

product x, and only consumer types who like x engage in search. Social welfare is α.

That is, only consumers who like the popular product x are served. These extreme

broad match functions illustrate the basic tension that our model captures. On one

hand, narrow matching means that misinformed consumers are not served. Yet trying

to resolve this market failure by fully broad matching causes a bigger market failure,

whereby the product with mass appeal takes over the entire market and crowds out

the "niche" product.

Let us now find an optimal broad match function. Because c = 0, effi ciency re-

quires that all consumer types engage in active search and eventually find their desired

product. W.l.o.g, suppose that f(z) = z for both z = x, y. If b(z|z′) > 0 for all z, z′,

condition (i) in Definition 1 is satisfied. Let us turn to condition (ii):

b(x|x) · πf,a(x, x) + b(y|x) · πf,a(x, y) > b(x|x) · πf,a(y, x) + b(y|x) · πf,a(y, y)

b(y|y) · πf,a(y, y) + b(x|y) · πf,a(y, x) > b(y|y) · πf,a(x, y) + b(x|y) · πf,a(x, x)

3To take a highly realistic example, think of an academic who Googles "Milgram" (respectively,
"Milgrom") in search of material on a famous auction theorist (respectively, social psychologist).
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Plugging the definition of π given by (12), we obtain

α(1− ε) + αε >
b(x|x)(1− α)ε

b(x|y)
+
b(y|x)(1− α)(1− ε)

b(y|y)

(1− α)(1− ε) + (1− α)ε >
b(y|y)αε

b(y|x)
+
b(x|y)α(1− ε)

b(x|x)

Thus, we need to set two parameters:

r1 =
b(x|x)(1− α)

b(x|y)α

r2 =
b(y|x)(1− α)

b(y|y)α

that satisfy the inequalities

1 > r1ε+ r2(1− ε)

1 >
1

r1
(1− ε) +

1

r2
ε

Now, if we set

r1 =
1

r2
=

√
1− ε
ε

both inequalities reduce to ε(1 − ε) < 1
4
, which necessarily holds. Thus, any broad

match function that satisfies the following equations sustains an effi cient outcome in

market equilibrium:

b(y|x)

b(y|y)
=

α

1− α

√
ε

1− ε
b(x|y)

b(x|x)
=

1− α
α

√
ε

1− ε

It is easy to see that the function b∗ given by (24) meets this requirement.

4 Mechanism Design

We return to the case of c > 0. Our analysis so far established necessary and

suffi cient conditions for implementing the effi cient collection of search pools λ∗ =

(λ∗(x,w))x∈X,w∈W as a competitive equilibrium of the market for keywords. This

raises the question of whether the first-best can be achieved under weaker conditions,

if the allocation of firms to consumers’search pools is done via some general incentive-
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compatible mechanism. We conceive of a mechanism as a game form in which the

players are the firms; consumers make their individually rational search decisions given

the firms’equilibrium behavior in the mechanism-induced game.

More specifically, we consider direct anonymous mechanisms for allocating firms

to search pools. Each firm reports a type x̂ ∈ X. Given the profile of reports, each
firm is assigned a pair (T, p), where T is a monetary transfer to the intermediary, and

p ∈ ∆(2W ) is a probability distribution over subsets ofW , where p(V ) is the probability

that the set of search pools to which the firm gets access is V . The restriction to direct

mechanism follows from the revelation principle; anonymity means that the mechanism

treats identically firms that submit the same report. This means that when all firms

report truthfully, a certain fraction of the x firms, denoted px(V ), enters each of the

search pools in V , and each x firm pays a certain transfer denoted Tx.

Given a truth-telling Nash equilibrium, we can define the probability that a firm

reporting x enters the search pool associated with a given w :

q(x,w) ≡
∑

V⊆W |w∈V

px(V ) (25)

The probability that a consumer of type (x,w) will find a firm x in the pool w is

λ(x,w) =
q(x,w)∑
y q(y, w)

(26)

It follows that for every pair of products x and y that are assigned to the search pool

w,
λ(x,w)

λ(y, w)
=
q(x,w)

q(y, w)

The problem facing the mechanism designer thus boils down to choosing a collection

(Tx, px)x∈X that maximizes social welfare as defined in (13), where the dependence of

λ(x,w) on px is given by (25) and (26), subject to the incentive-compatibility constraint

that for every x, y ∈ X,

∑
V⊆W

px(V ) ·
∑
w∈V

µ(x,w)a(x,w)∑
V⊆W |w∈V px(V )

−Tx >
∑
V⊆W

py(V ) ·
∑
w∈V

µ(x,w)a(x,w)∑
V⊆W |w∈V px(V )

−Ty (27)

where a satisfies condition (i) in Definition 1 - that is, consumers choose to search if

and only if their expected search cost is below 1. Note that we adopt here a strict

inequality, as in our definition of market equilibrium. Since we do not impose any

constraints on the mechanism designer’s budget at this stage, we can ignore the firms’
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participation constraint.

Lemma 3 A mechanism defined by (Tx, px)x∈X implements λ
∗ in truth-telling (strict)

Nash equilibrium if and only if

µ(x)−
√
µ(x)µ(y)S(x, y) > Tx − Ty (28)

for every distinct x, y for which λ∗(x,w)λ∗(y, w) > 0 for some w.

Proof. We begin by rewriting the incentive constraint (27) in terms of q(x,w) :

∑
w∈W

q(x,w) · µ(x,w)a(x,w)

q(x,w)
− Tx >

∑
w∈W

q(y, w) · µ(x,w)a(x,w)

q(x,w)
− Ty (29)

First, note that for any x,w for which λ∗(x,w) = 0, we can design px such that

q(x,w) = 0, and so consumer type (x,w) will choose a(x,w) = 0. If λ∗(x,w) > 0, then

it must be the case that a(x,w) = 1 in equilibrium, following the same argument as

in Section 3. It follows that w.l.o.g, we can ignore the term a(x,w) in inequality (29),

which is thus reduced to

µ(x) > Tx − Ty +
∑
w

q(y, w)

q(x,w)
µ(x,w) = Tx − Ty +

∑
w

λ(y, w)

λ(x,w)
µ(x,w) (30)

Whenever λ∗(x,w)λ∗(y, w) > 0, we have

λ∗(y, w)

λ∗(x,w)
=

√
µ(y, w)√
µ(x,w)

This means that λ∗ satisfies (30) if and only if

µ(x) > Tx − Ty +
∑
w

√
µ(y, w)√
µ(x,w)

· µ(x,w)

= Tx − Ty +
∑
w

√
µ(y, w) · µ(x,w)

= Tx − Ty +
∑
w

√
µ(y)µ(w|y) · µ(x)µ(w|x)

= Tx − Ty +
√
µ(x)µ(y)S(x, y)

which completes the proof.
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The next result establishes that whenever different preference types have different

conditional query distributions, the first-best is implementable by some anonymous

direct mechanism.

Proposition 6 Suppose that µ(·|x) 6= µ(·|y) for every distinct x, y. Then, there is an

anonymous direct mechanism that implements the effi cient outcome.

Proof. Fix some x, y for which λ∗(x,w)λ∗(y, w) > 0 for some w. By Lemma 3, the

relevant IC constraint that prevents type x from pretending to be y, denoted IC(x, y),

is given by the inequality,

µ(x)−
√
µ(x)µ(y)S(x, y) > Tx − Ty (31)

Let θ(x, y) denote the L.H.S. of (31), and rewrite the constraint IC(x, y) as θ(x, y) >

Tx−Ty. Since µ(·|x) 6= µ(·|y), we have S(x, y) < 1, and hence, for any cycle of products

(x1, x2, . . . xm, x1),

θ(x1, x2) + · · ·+ θ(xm, x1) >
m∑
i=1

(
µ(xi)−

√
µ(xi)µ(x(i+1)modm)

)
≥

m∑
i=1

(
µ(xi)−

µ(xi) + µ(x(i+1)modm)

2

)
= 0

Consider a complete weighted directed graph, whose set of nodes is X, and the

weight on the link from the node x to the node y is θ∗(x, y) = θ(x, y)− ε, where ε > 0

is suffi ciently small such that the sum of weights along any cycle is strictly positive.

Define the weight of a link from x to itself as θ∗(x, x) = 0. A path from x to y is a

sequence of nodes that begin with x and end with y. Define the length of a path to be

the sum of the weights on the links along the path. Let δ(x, y) be the distance from

x to y, namely the length of the shortest path from x to y. Since the sum of weights

along any cycle is strictly positive, the distance is always well-defined and it satisfies

the triangle inequality: for any x, y, z, δ(x, z) ≤ δ(x, y) + δ(y, z).

Now, fix some x∗ ∈ X. For any x ∈ X, define Tx = δ(x, x∗).4 By the triangle

inequality,

θ∗(x, y) + δ(y, x∗) ≥ δ(x, x∗)

4We thank Yossi Azar for suggesting the shortest-path method for finding T
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for any x, y. Since θ∗(x, y) < θ(x, y), this implies that for any pair of distinct products

x, y, θ(x, y) > Tx − Ty, which is equivalent to IC(x, y).

The proof of Proposition 6 relies on a formal analogy to the problem of finding

shortest paths in a weighted directed graph. The set of nodes in the graph is X, and

every weighted link represents a potential IC constraint: the weight on the link from

x to y is the gross utility loss for an x firm pretending to be a y firm (this loss can be

negative, of course). The structure of λ∗ implies that the sum of these weights along

any cycle is strictly positive. This means that the notion of a distance from one node to

another is well-defined and satisfies the triangle inequality (see Cormen et. al. (2001)).

If we define the transfer Tx as the distance from x to some reference node x∗, the IC

constraints are essentially restatements of triangle inequalities.

Thus, as long as there are no restrictions on the transfers that the SI can administer,

the first-best is implementable for generic consumer type distributions. However, note

that the competitive market for keywords had the additional feature that firms’surplus

was fully extracted. This raises the following question. Suppose that we are interested

in both effi ciency and full surplus extraction; can we design an anonymous direct

mechanism that implements these twin objectives when the market mechanism fails?

The answer turns out to be negative.

Proposition 7 There exists an anonymous direct mechanism that induces an effi cient
Nash equilibrium in which firms earn zero profits, if and only if there exists a broad

match function that induces an effi cient equilibrium in the market for keywords.

Proof. Consider the constraint IC(x, y), as given by (28). In order for x firms and

y firms to earn zero profits in equilibrium, we must have µ(x) − Tx = µ(y) − Ty = 0.

Thus, IC(x, y) and IC(y, x) are reduced to

µ(y) >
√
µ(x)µ(y)S(x, y)

µ(x) >
√
µ(x)µ(y)S(x, y)

which is equivalent to the condition that

µ(x)

µ(y)
S(x, y) < 1

for both x, y. This is precisely the necessary and suffi cient condition for implementing

the first-best constraint in market equilibrium.
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To see why the latter result is not obvious a priori, note that in general, the IC

constraint (27) does not coincide with condition (ii) in Definition 1, even if we ignore

the transfers. First, the conditions superficially look different. The former requires that

x firms prefer the distribution px over collections of search pools to the distribution

py, for any y 6= x. Thus, both sides of the constraint show how an x firm evaluates

distributions over collections of search pools. In contrast, the corresponding condition

for market equilibrium requires that the value of a keyword v to a firm of type f(v) be

strictly higher than the value of that keyword to any other firm type. Thus, each side

of the constraint displays the value of a keyword to a different firm type.

The two conditions can be written in ways that clarify their essential difference.

As the proofs of Lemma 3 and Proposition 7 show, the IC constraint in the direct

mechanism (coupled with the zero-profit requirement) can be written as follows:

µ(x) >
∑
w

λ(y, w)

λ(x,w)
µ(x,w)

In contrast, if we sum the inequalities given by condition (ii) of Definition 1 over all

words v ∈ f−1(x), and then plug (10), we obtain the following necessary condition:

µ(x) >
∑
w

λ(x,w)

λ(y, w)
µ(y, w)

The R.H.S of these two inequalities are clearly different. However, the first-order

conditions that characterize λ∗ - specifically, the key identity (15) - imply that at the

first-best, the R.H.S of the two conditions do coincide. Whether this coincidence has a

deeper significance is an interesting question for future research.

5 Ordered search

In this section we consider a competitive market for keywords in which the SI can

perfectly control the order by which consumers inspect search results. Thus, instead of

having the consumer draw firms at random from a search pool, the SI now optimally

chooses which firm type the consumer will encounter at each draw, as a function of his

search history.

An ideal centralized SI would use its direct knowledge of firms’types to fix the exact

order. The sequence of product types that maximizes the total surplus of consumers

who submit a given query w is determined according to a simple maximum-likelihood

calculation. For expositional simplicity, suppose that c is suffi ciently low, such that
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effi ciency would require full consumer participation.

The first product type to be displayed, denoted x1(w), is most likely to be the con-

sumer’s favorite product conditional on his vocabularyw - i.e., x1 ∈ arg maxx∈X µ(x,w).

(When some consumer types do not search, the likelihood is calculated for the set of

participating consumer types.) In general, the product type displayed in the k-th po-

sition of a w consumer’s list, denoted xk(w), will be the product type that is most

likely to be preferred by such a consumer, conditional on him not transacting with any

of the k − 1 firms whose types are x1(w), . . . , xk−1(w). (When q tends to zero, the

k-th product type on the list will simply be the k-th most popular product among w

consumers.)

In contrast to this omniscient SI, our market-based SI will determine the sequence

according to the firms’equilibrium market behavior - namely, the keywords they choose

to pay for. We need to adapt the notion of broad matching to environments with

ordered search. For every w, v ∈ W , b(w|v) denotes a probability distribution over

positions 1, 2, 3, ... in the search pool associated with the query w. That is, bk(w|v)

is the probability with which a firm that pays for v gets access to the k-th position

on the list that is displayed to a consumer who submits the query w. The firm that

eventually appears in this position will be randomly drawn from the collection of all

the firms that were granted access to it via the broad match function. The consumer

will inspect a firm in the k-th position if and only if he does not transact with any

of the first k − 1 firms on his list. Armed with this extended definition of b, we can

calculate the number of transactions that each firm expects when it pays for a word,

and this is the firm’s WTP for the word. The definition of market equilibrium can be

extended accordingly: f should allocate each word to the firm type with the highest

WTP.

Consider the following broad match function. Let f be an arbitrary onto function.

For every w, v ∈ V :

bk(w|v) =


1

nf (f(v))
if f(v) = xk(w)

0 if f(v) 6= xk(w)

Thus, the k-th position on the list of a w consumer will be randomly allocated among

all the firms that pay for the words that are allocated to the firm type xk(w).

Let us now show that under this broad match function, f is consistent with market

equilibrium (recall that we assume low search costs, such that full consumer participa-

tion is consistent with both effi ciency and individual consumer rationality). Suppose
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that an x firm considers paying for a word that f allocates to y firms. This will give

him access to positions on various lists, which are meant to be allocated to y firms.

By construction, the consumer is more likely to want y rather than x, conditional on

reaching each of these positions. Moreover, the nf -normalization in the definition of

b ensures that the total measure of firms that get access to any position on any con-

sumer’s list is 1. It follows that x firms will have a lower WTP for the positions that

are meant for y firms, in accordance with the requirement of market equilibrium.

Note that from a mechanism-design point of view, there is a natural indirect mecha-

nism that implements the effi cient outcome in truth-telling Nash equilibrium: for each

keyword independently, the SI can sequentially auction off each position on the list.

The lesson from this section is perhaps that the problem of implementing an ef-

ficient search environment as an equilibrium outcome in a "market for keywords" is

somewhat trivial when the SI can fully determine the order in which consumers inspect

alternatives. It appears that interest in broad matching in markets for search platforms

arises when the SI has only an imperfect ability to control the order of inspection (for

reasons that were listed in Section 2 - see the comment on search technology).

6 Profit Maximization

Throughout this paper, we assumed that the SI benevolently maximizes social surplus,

because our objective was to explore the welfare properties of a competitive market for

search platforms when consumers provide noisy signals of their preferences. How would

our analysis change if we assumed alternatively that the SI maximizes its profits?

First, consider the case of small c, where the socially optimal collection of search

pools λ∗ has the feature that λ∗(x,w) > 0 whenever µ(x,w) > 0. If λ∗ can be sustained

in market equilibrium, then every consumer ends up transacting. Since firms surrender

their entire surplus to the SI in market equilibrium, the SI’s total profit is 1, which is

as high as it can get. It follows that if λ∗ implies full consumer participation and can

be sustained in market equilibrium, our analysis is consistent with maximization of the

search engine’s profit. When c is large, there may be a conflict between maximizing

welfare and maximizing the SI’s profit, because the latter does not take negative search

externalities into account. It is easy to construct examples in which full consumer

participation will be consistent with market equilibrium but not with maximizing social

welfare. A profit maximizing SI would opt for the former.

The observation that a monopolistic profit-maximizing SI may have an incentive to

degrade the quality of consumer search has been made in the literature in various con-
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texts (see, for example, Eliaz and Spiegler (2011a) and Hagiu and Jullien (2011)). The

source of this tension in the present paper is that consumers with different preferences

may share the same signal, which generates negative search externalities among them

that a profit-maximizing search engine neglects. We are not aware of previous papers

that addressed this particular source.

7 Conclusion

This paper addressed the following general question: under what conditions is a decen-

tralized competitive market effi cient in helping individuals find objects they need, where

the objects of trade in the market are noisy signals of the individuals’ needs? Our

leading example considered consumers who search for products by submitting queries

that only partially describe what they are looking for. In this context, our question

could be rephrased as follows: suppose that a benevolent search intermediary switches

from a centralized matching algorithm to a pure market system of "sponsored search";

will search quality deteriorate as a result?

However, our framework accommodates a wider range of environments including

ones which have yet to establish an organized marketplace for assigning objects to

search pools. For example, online recommender systems assign search pools to individ-

uals according to their past behavior (including purchases, web browsing, search history

and mail content), which serves as an imperfect signal of the individuals’needs. In

contrast to search engines, recommender systems no not purely rely on queries initiated

by the web user. For instance, Netflix automatically displays movie recommendations

for its subscribers on its homepage; when a consumer buys a particular product on

Amazon, the checkout screen displays recommended products, even though the con-

sumer was not actively searching for these products; and when a researcher views a

scholarly article on ScienceDirect, the side panel displays recommended articles.

To see how our model accommodates the recommendation-system interpretation,

suppose that W represents a set of possible past purchase profiles of the consumer. In

particular, we can setW = XK , where K is the number of past purchase opportunities

the consumer had. A profile of past purchases serves as a platform for "personalized

advertising", which is augmented by our notion of "broad matching". Thus, when an

advertiser pays for a particular profile of past purchases, he gets probabilistic access to

some set of profiles. In this context, our question can be rephrased as follows: suppose

that a recommender system such as Netflix abandons its centralized recommendation

algorithm in favor of a "market for sponrored recommendations"; will the quality of
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its recommendations deteriorate as a result? Our main result suggests that in the

presence of small popularity gaps or strong correlation between past purchases and

present tastes, a market-based recommendation system can theoretically mimic an ideal

centralized recommendation algorithm. The same insight holds for the interpretation

of w as a set of "cookies", namely passive indicators of the consumer’s preferences (e.g.

navigation history).5

The algorithms used by centralized recommender systems often rely on so-called

"topic models", which are statistical tools employed by machine-learning specialists for

inferring a latent abstract “topic”or “theme”that characterizes objects in a certain

class (for a survey of these models see Blei and Lafferty (2009)).6 For instance, suppose

that an object is a scientific paper, the description of which is reduced to its frequency

distribution of words. The idea is that different topics tend to generate different word

distributions - e.g., a decision-theory paper will tend to have a greater frequency of

the cluster of terms "utility", “Independence”and “Hausdorff”. However, the topics

are latent and implicit (unlike our model, where W is the set of keywords explicitly

used by consumers); the machine-learning problem is to estimate a joint distribution

µ over X × W , where X is the set of papers (reduced to their word frequencies)

and W is a set of latest topics (whose size is fixed a priori; unlike our model, here

|W | � |X|). After estimating the distribution, the recommender system often applies

the Bhattacharyya/Hellinger measure of similarity in order to evaluate whether two

papers have similar conditional topic distributions, and uses this judgment to make

recommendations ("if you were interested in paper x, you might also be interested in

paper y"). We find it interesting that the same measure of similarity arises in our

models from entirely different considerations: minimizing consumers’search costs and

satisfying firms’market incentives.
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