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Abstract

We study a novel mechanism design model in which agents each

arrive sequentially and choose one action from a set of actions with

unknown rewards. The information revealed by the principal a¤ects

the incentives of the agents to explore and generate new information.

We characterize the optimal disclosure policy of a planner whose goal

is to maximize social welfare. One interpretation of our result is the

implementation of what is known as the "wisdom of the crowd". This

topic has become increasingly relevant with the rapid spread of the

Internet over the past decade.
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1 Introduction

The Internet has proven to be a powerful channel for sharing information

among agents. As such it has become a critical element in implementing

what is known as the "wisdom of the crowd." Hence it is not that surprising

that one of the most important recent trends in the new Internet economy

is the rise of online reputation systems that collect, maintain, and dissemi-

nate reputations. There are now reputation systems for such things as high

schools, restaurants, doctors, travel destinations, and even religious gurus. A

naive view is that perfect-information sharing through the Internet allows for

favorable learning and supports the optimal outcome. We argue that this is

not the case because one of the important characteristics of these new mar-

kets is the feedback e¤ect where users are consumers as well as generators of

information. Information that is revealed today a¤ects the choices of future

agents and as a result a¤ects the new information that will be generated.

A policy that ignores this e¤ect and simply provides the most accurate cur-

rent recommendation will lead in the long run to insu¢cient exploration and

hence a suboptimal outcome. In this paper, we take a …rst step toward char-

acterizing an optimal policy of information disclosure when agents behave

strategically and, unlike the planner, are myopic.

To this end, we study a novel mechanism design problem in which agents

arrive sequentially and each in turn chooses one action from a …xed set of

actions with unknown rewards. The agent’s goal is to maximize his ex-

pected rewards given the information he possesses at the time of arrival.

Only the principal, whose interest is to maximize social welfare, observes all

past outcomes and can a¤ect the agent’s choices by revealing some or all

of his information. The principal’s challenge is to choose an optimal disclo-

sure/recommendation policy while taking into account that agents are self-

interested and myopic. Clearly, a policy not to reveal any information would

cause all agents to select the a priori better action, and hence would lead

to an ine¢cient outcome. Nevertheless, a policy of full transparency is not
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optimal either because it does not address the incentives of sel…sh agents,

and hence does not allow for enough exploration. Information is a public

good and as such one needs to be careful to provide proper incentives to an

agent to explore and produce new information. Note that contrary to what

is commonly assumed, in our setup the principal is the one who possesses

the information, which he reveals optimally through the chosen mechanism.

The new "Internet Economy" provides several related examples for which

our model is relevant, and perhaps the …rst to come to mind is TripAdvisor.

TripAdvisor operates within the travel industry, one of the world’s largest

industries accounting for 11.7% of world GDP and 8% of employment. As

its name suggests, TripAdvisor is a website that o¤ers travel advice to its

users. It does so by soliciting reviews from users and providing rankings of

hotels and restaurants around the world. The company’s rankings are based

on their own metric called “the Popularity Index,” which is a proprietary

algorithm. Note that while the individual reviews are also available to users,

it is obvious to anyone familiar with TripAdvisor that they are of secondary

importance to the rankings, simply because of the overwhelming numbers of

properties and reviews. A typical user, then, mostly relies on the rankings

and reads only a few reviews to re…ne his search.

The company is by far the dominant source in the hospitality space,

with more than 75 million reviews generated by some 40 million visitors per

month.1 Indeed, the data speaks for itself: the closer a property is to a

number-one ranking in its given market, the more numerous its direct online

bookings. For example, a property ranked #1 sees 11% more booking per

month than the one ranked #2.2 This di¤erence is striking given that in

1See Jeacle and Carter (2011).
2The information breaks down as follows: Properties ranked #20 in their market see

10% more booking per month than those ranked #40; properties ranked #10 in their
market see 10% more booking per month than those ranked #20; properties ranked #5 in
their market see 9% more booking per month than those ranked #10; properties ranked
#2 in their market see 7% more booking per month than those ranked #5; properties
ranked #1 in their market see 11% more booking per month than those ranked #2 (see
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most cases, the di¤erence between similarly ranked hotels is minor.

TripAdvisor’s revenue is generated through advertising, and as a result

the company’s main concern is the volume of visitors to its site. We note,

however, that high volume is achieved when the utility of the average cus-

tomer is maximized. It follows that the company’s goal is akin to that of

a benevolent social planner. TripAdvisor’s Popularity Index is a company

secret, yet it is apparent that its exact strategy di¤ers from just a simple

aggregation. In this paper, we point to one important aspect of optimality

that the company needs to consider.

Another interesting example is a company called Waze-Mobile, which

developed a GPS navigation software based on the wisdom of the crowd.

Waze’s popularity in the West coast is second only to Google Maps, whereas

in developing markets such as Brazil, Uruguay, and Indonesia it has surpassed

Google by far.3 Waze is a social mobile application that provides free turn-

by-turn navigation based on real-time tra¢c conditions as reported users.

The greater the number of drivers who use this software, the more bene…cial

it is to its customers. When a customer logs in to Waze with his smartphone,

he continuously sends information to Waze about his speed and location and

this information, together with information sent by others, enables Waze to

recommend to this driver as well as all other drivers an optimal route to their

destination. However, in order to provide good recommendations, Waze must

have drivers on every possible route. Indeed, as Waze’s own president and

cofounder admitted,4 Waze sometimes recommends a particular route to a

driver despite (indeed, because of) the absence of information on that route.

The information transmitted by this driver is then used to better serve future

Digital Compass by MICROS eCommerce on April 25, 2013).
A similar study about the Travelocity website illustrates that if a hotel increases its

score by 1 point on a 5-point scale, the hotel can raise its price by 11.2 percent and still
maintain the same occupancy or market share. See Anderson (2012).

3Waze, with a user base above 45 millions, was recently bought by Google for roughly
$1.1 billion.

4http://www.ustream.tv/recorded/21445754

4



drivers. However, in order not to deter drivers from using the system, Waze

must be very careful about how often they "sacri…ce" drivers to improve the

experience of others. Our model sheds some light on exactly this trade-o¤.

TripAdvisor and Waze are just two fascinating examples of the rapid

growth in the number of rankings and league tables published in recent years

and they may well be the face of things to come. Internet evaluations of

goods and services are now commonplace. In‡uential websites provide rat-

ings for activities as diverse as the relative merit of various books and CDs

and the teaching prowess of university professors. As we argue in this paper,

the managers of these Web sites are facing a non-trivial task as there is a

con‡ict between gathering information from users and making good recom-

mendations to the same users.

Our model also relates to the recent controversy over the health care

report-card system. This system entails a public disclosure of patient health

outcomes at the level of the individual physician. Supporters argue that the

system creates powerful incentives for physicians to improve the quality of

health care and also provides patients with important information. Skeptics

counter that report cards may encourage physicians to “game” the system

by avoiding sick patients, accepting healthy patients, or both. We look at

this problem from a di¤erent angle by asking how the information available

can be optimally revealed to maximize social welfare while taking account of

the users’ incentives.5

With no pretensions to providing a comprehensive solution to this prob-

lem, the present paper should be seen as a …rst small step in this direction.

Indeed, the model presented in Section 2 is the simplest one possible that

allows us to study the interaction between an informed planner and agents,

as described above. In the model the set of actions contains only two de-

5A striking example is the recent Israeli court order that the government reveal the
performance of child liver transplants in public hospitals. Although the evidences was
far from statistically signi…cant, parents overwhelmingly preferred to seek the operation
abroad and the activity in Israel was virtually stopped.
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terministic actions with unknown rewards. We …rst assume that agents are

fully informed about their place in line. For this case the principal’s optimal

policy is characterized in Section 3. In the optimal policy agent one always

chooses the action with the higher mean and we denote his reward by 1 If

1 2   then agent  is the …rst agent to whom the principal recommends

trying the other action, while for all agents 0   the recommendation is the

better of the two actions. We show that the sets fg2 are given by an

increasing sequence of thresholds fg2 where   = (¡1 ) and that the

number of agents who choose a suboptimal action is bounded independently

of  . Consequently, as the number of agents increases, the social welfare

converges to the …rst-best welfare in the unconstrained mechanism.

The informational assumption is relaxed in Section 4, where we assume

that agents know only the block to which they belong (say, before, during, or

after rush hour) and show that the optimal policy is also a threshold policy.

The coarser the partition of the blocks is, the closer the outcome is to the

…rst best, which is obtained in the extreme when all agents belong to the

same block.

It is worth noting that in the blocks model, agents have incentives to

spend resources to obtain information about their location. If this is a rel-

evant concern, a planner may choose to implement the policy that assumes

that agents know their exact location so as to eliminate agents’ incentives

to waste resources on …nding their location. Thus, in such a situation one is

led to consider the problem in which the agents know their exact location in

line.

In Section 5, we describe a model where the realized payo¤ of each action

is stochastic. We show that our mechanism naturally extends to this case

and yields a near optimal performance. Solving for the …rst-best mechanism

in the stochastic setting is di¢cult and remains an open problem.

We conclude in Section 6 by arguing that a planner who can use monetary

transfers will make the best use of his resources by spending it all on relaxing
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the IC constraint of the second agent so as to keep the mechanism intact for

all other agents.

1.1 Related Literature

The literature on informational cascades that originated with the work of

Bikhchandani, Hirshleifer, and Welch (1992) is probably the closest to the

model presented here. An informational cascade occurs when it is optimal

for an individual who has observed the actions of those ahead of him to

follow their behavior without regard to his own information. Our problem is

di¤erent as agents are not endowed with private signals. Instead we examine

a social planner who can control the information received by each individual

while implementing the optimal informational policy.

The agents in the model considered here must choose from a set of two-

armed bandits (see the classical work of Rothschild 1974). But unlike the

vast early work on single-agent decision-making, our work considers strategic

experimentation where several agents are involved, along the lines of more

recent work by Bolton and Harris (1999) and Keller, Rady, and Cripps (2005),

to name just a few. The major departure from the single-agent problem is

that an agent in a multi-agent setting can learn from experimentation by

other agents. Information is therefore a public good, and a free-rider problem

in experimentation naturally arises. It is shown that because of free-riding,

there is typically an ine¢ciently low level of experimentation in equilibrium

in these models. In contrast, in our model, free-riding is not a problem as

agents have only one chance to act, namely, when it is their turn to move.

Our contribution is in approaching the problem from a normative, mechanism

design point of view.

Another related paper is Manso (2012) which studies an optimal contract

design in a principal-agent setting in which the contract motivates the agent

to choose optimally from a set of two-armed bandits. Yet, while in Manso’s

setup there is one agent who works for two periods, in our setup there are
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multiple agents who choose sequentially.

Mechanism design without monetary transfers has been with us from

the early days when the focus of interest was the design of optimal voting

procedures. One such model that shares the sequential feature of our model

is that of Gershkov and Szentes (2009) who analyze a voting model in which

there is no con‡ict of interest between voters and information acquisition is

costly. In the optimal mechanism the social planner asks voters randomly

and one at a time to invest in information and to report the resulting signal.

In recent years, the interest in this type of exercise has gone far beyond

voting, as for example in the paper of Martimort and Aggey (2006) which

considers the problem of communication between a principal and a privately

informed agent when monetary incentives are not available.

Also relevant and closely related to our work are the papers by Kamenica

and Gentzkow (2011) and Rayo and Segal (2010). These two papers consider

optimal disclosure policies where a principal wishes to in‡uence the choice

of an agent by sending the right message. A version of our model with two

agents only, is very similar to what they consider. Our contribution is in

our consideration of the dynamic aspects of the problem, the real action

beginning from the third agent onward.

Finally, two recent papers that examine disclosure of information in a

dynamic setup that is very di¤erent from ours are Ely, Frankel, and Kamenica

(2013) and Horner and Skrzypacz (2012). Ely, Frankel, and Kamenica (2013)

consider the entertainment value of information in the media. They examine

how a newspaper may release information so as to maximize the utility that

readers derive from surprises and suspense. Horner and Skrzypacz (2012)

examine a dynamic model in which an agent sells information over time.
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2 Model

We consider a binary set of actions  = f1 2g The reward  of ac-

tion  is deterministic but ex ante unknown. We assume that each  is

drawn independently from a continuous distribution  that has full sup-

port and is common knowledge, and we let  be the joint distribution Let

 = » [] and assume without loss of generality that 1 ¸ 2.

There are  agents who arrive one by one, choose an action, and realize

their payo¤. Agents do not observe prior actions and payo¤s. We start

by assuming that agents know their exact place in line. In Section 4 we

show that the main ingredients of the optimal policy remain the same when

this assumption is relaxed and agents receive only a noisy signal about their

position. The planner, on the other hand, observes the entire history, which

consists of his recommendations to the agents as well as their choices and

rewards. Let  denote a particular history of length  where   stands for the

set of histories of length  The planner commits to a message (disclosure)

policy, which in the general setup is a sequence of functions f ~ g=1

where ~  :  ¡1 !   is a mapping from the set of histories  ¡1 to the set

of possible messages to agent 6 Finally, a strategy for agent  is a function

 :  ! 

The goal of agent  is to maximize his expected payo¤ conditional on his

information, while the goal of the planner is to maximize the expected average

reward, i.e., [ 1


P
=1

]. An alternative objective for the planner would

be to maximize the discounted payo¤, [
P

=1 
], for some discounting

factor  2 (0 1). We focus on the average payo¤ as it is more suitable to

our setup, but a similar result holds if the planner wishes to maximize the

discounted payo¤.

6Restricting the planner to pure strategies is done for the sake of simplicity only. It
is easy to see that each of the arguments in the following sections holds true when the
planner is also allowed to use mixed strategies, and that the resulting optimal strategy of
the planner is pure.
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Before we proceed to characterize the optimal solution we note that one

can generalize our model so that the distribution of payo¤s does not have

full support. The distribution does not even need to be continuous. These

assumptions are made to simplify the exposition. However, it is important

that when 1 ¸ 2 there be a positive probability that the …rst action’s payo¤

is lower than 2 that is, that Pr(1  2)  0 holds when we assume full

support. If, however, Pr(1  2) = 0 then all the agents will choose the

…rst action regardless of any recommendation policy. This follows as every

agent knows that everyone before him chose the …rst action simply because

any payo¤ of the …rst action exceeds the mean of the second action. In such

a setup a planner will …nd it impossible to convince agents to explore.

3 The Optimal Mechanism

Let us …rst give an overview of the mechanism and the proof. We start

by providing a simple example that illustrates the main properties of the

optimal mechanism. Then in Section 3.2 we present some basic properties

of incentive-compatible mechanisms. In particular, we establish a revelation

principle and show that without loss of generality, we can concentrate on rec-

ommendation mechanisms that specify for each agent which action to perform

(Lemma 1). We show that once both actions are sampled, the mechanism

recommends the better action and stays incentive compatible (Lemma 2). In

Section 3.3 we explore the incentive-compatible constraint of the agents.

Section 3.4 develops the optimal mechanism. We …rst show that initially

the optimal mechanism explores as much as possible (Lemma 4). We then

show that any value of the better a priori action that is lower than the

expectation of the other action causes the second agent to undertake an

exploration (Lemma 5). The main ingredient in our proof is that the lower

realizations are better incetives for exploration than the higher realizations

(Lemma 6). Finally, there is some value of the better action that realizations

10



above it deter the principal from undertaking any exploration.

This result implies that the optimal incentive-compatible mechanism is

rather simple. The principal explores as much as he can (given the incentive-

compatible mechanism) up to a certain value (depending on  ) for which he

does not perform any exploration.

3.1 Example

To gain a better intuition of what follows, consider an example in which the

payo¤ of the …rst alternative, 1 is distributed uniformly on [¡1 5] while

the payo¤ of the second alternative, 2 is distributed uniformly on [¡5 5]

For simplicity, suppose that the principal wishes to explore both alternatives

as soon as possible7

Consider …rst what would happen in the case of full transparency. The

…rst agent will choose the …rst action. The second agent will choose the

second alternative only if the payo¤ of the …rst alternative is negative, 1 · 0.

Otherwise, he and all the agents after him will choose the …rst alternative,

an outcome that is suboptimal.

Now consider a planner who does not disclose 1 but instead recommends

the second alternative to the second agent whenever 1 · 1. The agent will

follow the recommendation because he concludes that the expected value

of the …rst alternative is zero, which is equal to the expected value of the

second alternative. This implies that the outcome under this policy allows

more exploration as compared to the policy under full transparency. Hence,

we can already conclude that full transparency is suboptimal.

But we can do even better. Consider the more interesting case, the rec-

ommendation for agent three. Suppose that the planner’s policy is such that

he recommends that agent three use the second alternative if one of the fol-

lowing two cases obtains: () the second agent has been recommended to

7The decision to explore depends on both the realization of 1 and of  However for
large  the planner would like to explore for almost all values of 1
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test the second action (1 · 1) and based on the experience of the second

agent the planner knows that 2  1 or () the third agent is the …rst to

be recommended to test the second alternative because 1  1 · 1 +  (to

be derived below). Note that conditional on () the agent strictly prefers to

follow the recommendation, while conditional on () he prefers not to, and

the higher  is, the less attractive the recommendation is. In the appendix

we show that for  = 223 the agent is just indi¤erent.

The computation for the fourth agent is similar, and here we get that this

agent will explore (i.e., be the …rst to test 2) for the remaining values of

1  5. The better of the two actions is recommended to all the remaining

agents.

The rest of the paper is devoted to showing that this logic can be ex-

tended to form the optimal policy and that the number of exploring agents

is bounded.

3.2 Preliminary

We start the analysis with two simple lemmas that, taken together, establish

that it is possible without loss of generality to restrict attention to a spe-

cial class of mechanisms in which the principal recommends an action to the

agents, and once both actions are sampled, the better of the two is recom-

mended thereafter. The …rst lemma is a version of the well-known Revelation

Principle.

De…nition 1 A recommendation policy is a mechanism in which at time ,

the planner recommends an action  2  that is incentive compatible. That

is, [ ¡ j
 =  ] ¸ 0 for each  2 . We denote by ̂ the set of

recommendation policies.

Note that the above expectation [ ¡ j
 = ] implicitly assumes

that the agent knows the mechanism. Hence, from now on, whenever we refer
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to a mechanism as incentive compatible, we assume that the agent knows the

mechanism and takes it as given.

Lemma 1 For any mechanism  , there exists a recommendation mecha-

nism that yields the same expected average reward.

The above lemma is a special case of Myerson (1988) and consequently

the proof is omitted.

Thus, we can restrict our attention to recommendation policies only. The

next lemma allows us to focus the discussion further by restricting attention

to the set of partition policies. A partition policy has two restrictions. The

…rst is that the principal recommends action 1 to the …rst agent. This is

an essential condition for the policy to be IC. The second restriction is that

once both actions are sampled, the policy recommends the better one.

De…nition 2 A partition policy is a recommendation policy that is described

by a collection of disjoint sets fg
+1
=2 . If 1 2   for  ·  then agent  is

the …rst agent for whom  = 2 and for all 0   we have 
0
= maxf1 2g.

If 1 2 +1 then no agent explores. If   = ; then agent  never explores.

Lemma 2 The optimal recommendation mechanism, is a partition mechanism

Proof: Note …rst that since 1 ¸ 2 the …rst agent will always choose

the …rst action. Also, since the principal wishes to maximize the average

reward, [ 1


P
=1

] it will always be optimal for him to recommend the

better action once he has sampled both actions. Clearly, recommending the

better of the two actions will only strengthen the IC of the agent to follow

the recommendation. Hence, for each agent  ¸ 2 we need to describe the

realizations of 1 that will lead the planner to choose agent  to be the …rst

agent to try the second action. ¤

We next show that the optimal partition is a threshold policy.
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3.3 Incentive-Compatibility (IC) Constraints

Agent  …nds the recommendation  = 2 incentive compatible if and only

if

(2 ¡1j
 = 2) ¸ 0 

Note that this holds if and only if

Pr( = 2) ¤ (2 ¡ 1j
 = 2) ¸ 0 

We use the latter constraint, since it has a nice intuitive interpretation re-

garding the distribution, namely,

Z

=2

[2 ¡ 1] ¸ 0 

For a partition policy the above constraint can be written as

Z

12[ 21

[2 ¡1] +

Z

12

[2 ¡1] ¸ 0  (1)

The …rst integral represents exploitation, which is de…ned as the bene…t for

the agent in the event that the principal is informed about both actions, i.e.,

1 2 [ 
. Obviously this integrand is positive. The second integral, the

exploration part, represents the loss in the case where the principal wishes

to explore and agent  is the …rst agent to try the second action. We show

that in the optimal mechanism this integrand is negative. Alternatively (1)

can be expressed as

Z

12[ 21

[2 ¡ 1] ¸

Z

12

[1 ¡ 2] 

The following lemma shows that it is su¢cient to consider the IC of action

2.
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Lemma 3 Assume that the recommendation  = 2 to agent  is IC. Then

the recommendation  = 1 is also IC.

Proof: Let  = f(1 2)j
 = 2g be the event in which the recom-

mendation to agent  is  = 2. If  = ; then the lemma follows since

[1¡2]  0. Otherwise  6= ; and because the recommendation  = 2

is IC we must have [2¡1j
] ¸ 0. Recall, however, that by assumption

[2 ¡1] · 0.

Now, since

[2 ¡1] = [2 ¡ 1j
] Pr[] + [2 ¡ 1j:

] Pr[:] · 0

it follows that [2 ¡ 1j:
] · 0 which in particular implies that recom-

mending  = 1 is IC in the case of :. ¤

3.4 Optimality of the Threshold Policy

De…nition 3 A threshold policy is a partition policy in which the sets   are

ordered intervals. Formally, 2 = (¡1 2],   = (¡1 ].

Note that if ¡1 =  then   = ; and agent  never explores.

The following simple claim establishes that in every period, the planner

will undertake as much exploration as the IC condition allows.

Lemma 4 Let ¤ be an optimal partition policy and assume that in ¤

agent  + 1 ¸ 3 explores with some positive probability (i.e., Pr[ +1]  0).

Then agent  has a tight IC constraint.

Proof: Assume by way of contradiction that agent  does not have a tight

IC constraint. Then we can “move” part of the exploration of agent  + 1

to agent , and still satisfy the IC constraint. The average reward will only

increase, since agent +1, rather than exploring in this set of realizations of
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1, will choose the better of the two actions. To be precise, assume that the

IC condition for agent  does not hold with equality. That is,

Z

12

[1 ¡ 2] 

Z

12[ 21

[2 ¡ 1] (2)

Recall that   consists of those values 1 for which agent  is the …rst to

explore action 2 when 1 = 1. By assumption we have Pr[ +1]  0. Note

that the RHS of (2) does not depend on  . Therefore, we can …nd a subset

̂ ½ +1 where Pr[̂]  0 and then replace the set   with  0 =   [ ̂ and

the set  +1 with  0+1 = +1 ¡ ̂ and still keep the IC constraint. The only

change is in the expected rewards of agents  and + 1

Before the change, the expected sum of rewards of agents  and  + 1

conditional on 1 2 ̂  was [1j1 2 ̂]+2, while the new sum of expected

rewards (again conditional on 1 2 ̂  ) is 2+[maxf1 2gj1 2 ̂], which

is strictly larger (since the prior is continuous). The IC constraint of agent

 holds by construction of the set ̂  while the constraint for agent  + 1

holds because his payo¤s from following the recommendation increased since

we removed only exploration. None of the other agents is a¤ected by this

modi…cation. Therefore, we have reached a contradiction to the claim that

the policy is optimal. ¤

Lemma 5 In the optimal partition policy, agent 2 explores for all values

1 · 2 Formally

2 ¶ f1 : 1 · 2g

Proof: Assume that policy  0 is a partition policy and let  include the

values of the …rst action that are below the expectation of the second action,

and are not in 2 i.e.,8

 = f1 : 1 · 2 1 2 2g

8Recall that we assume that Pr[1  2]  0.
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If Pr[]  0 then a policy  00 which is similar to  0 except that now  02 =

 [ 2 and 
0 =   ¡ for  ¸ 3, is a recommendation policy with a higher

expected average reward. Consider the policy 
0
and let  = \  for  ¸

3. Because  0 is a recommendation policy, agent  …nds it optimal to follow

the recommendations and in particular to use action 2 when recommended.

Next consider the policy  00 and observe that the incentives of agent  to

follow the recommendation to use action 2 are stronger now because for

1 2  his payo¤ in  0 is 2 while in  00 it is maxf1 2g. The agents

 between 3 and  have a stronger incentive to follow the recommendation,

since now in the event of 1 2  we recommend the better of the two

actions rather than 1. Because 1  2 it is immediate that expected

average rewards in  00 are higher than in  0. For agent 2 we have only

increased the IC, since [2 ¡1j1 2 ] ¸ 0. ¤

The discussion so far allows us to restrict attention to partition policies

in which: (i) once both 1 and 2 are observed, the policy recommends

the better action, (ii) the IC constraint is always tight, and (iii) the set

2 ¶ (¡1 2] Next, we argue that we should also require the policy to be

a threshold policy. Note that if a partition policy fg
+1
=2 is not a threshold

policy (up to measure zero events) then there exist indexes 2  1 and sets

1 µ  1and 2 ½  2 such that: sup2  inf 1 and Pr[1]Pr[2]  0

A useful tool in our proof is an operation we call swap, which changes a

policy  0 to a policy  00.

De…nition 4 A swap operation is a modi…cation of a partition policy. Given

two agents 1 and 2  1 and subsets 1 ½  1, 2 ½  2 where sup2 

inf 1 swap constructs a new partition policy such that  0
1 =  1 [2 ¡1

and  0
2 =  2 [ 1 ¡ 2, while other sets are unchanged, i.e.,  0


=   for

 2 f1 2g.
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De…nition 5 We say that a swap is proper if 9

Z

121

[2 ¡ 1] =

Z

122

[2 ¡1]

Lemma 6 The optimal recommendation policy is a threshold policy.

Proof: Let  be a recommendation policy that is not a threshold policy.

Following the discussion above one can construct a proper swap. Let  0 be

the resulting recommendation policy. Consider a proper swap operation.

First we show that the swap does not change the expected reward of agent 1

conditional on a recommendation to choose action 2 From the perspective of

agent 1, the change is that in the case where 1 2 1 the action recommended

to him at  0 is 1 rather than the action 2 recommended to him at  , and

in the case where 1 2 2 it is 2 (at  0) rather than 1 (at ). Since the

swap operation is proper, his IC constraint at  0 can be written as

Z

12[1
 21

[2 ¡ 1] +

Z

121

[2 ¡ 1] (3)

+

Z

122

[2 ¡1] ¡

Z

121

[2 ¡1]

=

Z

12[1
 21

[2 ¡ 1] +

Z

121

[2 ¡1] ¸ 0

Therefore the swap does not change the expected reward of agent 1 and  0

satis…es IC for this agent.

Next consider all agents except agents 2 and 1 Observe …rst that all

agents   1 and   2 do not observe any change in their incentives (and

rewards) and we are left with agents  where 1    2 The expected

rewards of these agents can only increase because the e¤ect of the swap is

9A proper swap always exists when a swap operation exists due to our assumption on
no mass points.
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only on the …rst integral
R

12[ 21

[2¡1] of the IC constraint (see

(3)) which increases as a result of the swap because instead of the set [


we now have [
 [ 2 ¡1 and sup2  inf 1.

Thus, it is left for us to analyze the incentives and rewards of agent 2 (and

only when 2 · ¹ ) to follow the recommendation to choose action 2. First

observe that if 1 62 1 [ 2 then  and  0 are identical, and hence the

only case to consider is when 1 2 1 [ 2. The expected reward under 

conditional on 1 2 1 [ 2 is

1

Pr[1 [2]

2

6
4

Z

12121

[2 ¡ 1] +

Z

122

[2 ¡1]

3

7
5 

and the expected reward under  0 is

1

Pr[1 [2]

2

6
4

Z

12221

[2 ¡ 1] +

Z

121

[2 ¡1]

3

7
5 

We would like to show that

Z

12121

[2¡1]+

Z

122

[2¡1] 

Z

12221

[2¡1]+

Z

121

[2¡1]

which is equivalent to showing that (recall that the swap is proper)

Z

121

Z

21

[2 ¡1] 

Z

122

Z

21

[2 ¡1]

Since (¡1 2] µ 2 and inf 1  sup2 we conclude that Pr[2]  Pr[1]which

implies the last inequality. This again implies that the IC constraint is sat-

is…ed for this agent and that the swap operation increases his rewards.
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We now show that the proper swap operation increases the expected

payo¤. First consider agent 1. His net change in expected payo¤ is

Z

122

[2 ¡ 1] +

Z

121

[1 ¡2] = 0

where the equality follows since it is a proper swap. Next consider agents 

where 1    2. The net change in expected payo¤ of agent  is

Z

122

Z

2

maxf2 1g ¡1 ¡

Z

121

Z

2

maxf2 1g ¡ 1 =

Z

12221

[2 ¡1]  ¡

Z

12221

[2 ¡ 1]  ¸ 0

The last inequality, similar to (3), follows from the fact that Pr(2)  Pr(1)

and that sup(1j1 2 2)  inf(1j1 2 1) .

Finally, we consider agent 2, where the net change in expected payo¤s

is,

Z

122

Z

2

maxf2 1g ¡2 ¡

Z

121

Z

2

maxf2 1g ¡ 2 =

Z

122

Z

2

maxf2 1g ¡1 ¡

Z

121

Z

2

maxf2 1g ¡ 1 =

Z

12221

[2 ¡1]  ¡

Z

12221

[2 ¡ 1]  ¸ 0

where the …rst equality follows from the fact that it is a proper swap, and

the inequality follows as in (3). ¤

Lemma 6 implies that an optimal policy must be a threshold policy. That

is, the sets f g2 ¹ are restricted to being sets of intervals. Moreover, the

IC constraint is tight for any agent  · ¹ provided that there is a positive
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probability that agent + 1 will be asked to explore.

Note that with a …nite number of agents there always exist high enough

realizations of 1 after which exploration is suboptimal. The next section

solves for the optimal policy that accounts for this e¤ect.

3.5 The Optimal Threshold Policy

Consider …rst the case where  is in…nite. In this case exploration is max-

imized as the planner wishes to explore for any realized value of the …rst

action, 1. The optimal policy is de…ned by an increasing sequence of thresh-

olds 21  31 where for  = 2

21Z

1=¡1

[1 ¡ 2] = 0

For   2 as long as 1  1 we have

+11 = sup

8
><

>:
j

Z

1·21

[2 ¡ 1] ¸

Z

1=1

[1 ¡ 2]

9
>=

>;


If 1 = 1 then we de…ne 
01 = 1 for all 0 ¸ . Note that if +11  1

then the above supremum can be replaced with the following equality:

Z

1·21

[2 ¡ 1] =

+11Z

1=1

[1 ¡ 2] (4)

Consider the case where  is …nite. As we shall see, the planner will ask fewer

agents to explore. Consider the -th agent. The RHS is the expected loss

due to exploration by the current agent. The expected gain in exploitation,

if we explore, is ( ¡ )[maxf2¡ 1 0g]. We set the threshold  for agent
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 to be the maximum 1 for which it is bene…cial to explore. Let  be the

solution to

( ¡ )[maxf2 ¡  0g] =  ¡ 2

When considering agent  there are  ¡+1 agents left; then  is the highest

value for which it is still optimal to explore. Note that  is increasing in 

Our main result is:

Theorem 7 The optimal policy,  is de…ned by the sequence of thresh-

olds

 = minf1 g

where  is the minimal index for which 1  .

Next we argue that even when  is arbitrarily high, exploration is limited

to a bounded number of agents where the bound doesn’t depend on either

the number of agents or the realizations of 1 and 2 This implies that the

memory required by the planner to implement the optimal policy is bounded

by a constant.

Theorem 8 Let ¤ = minfj = 1g; then ¤ · 1¡2


where

 =

Z

1·221

[2 ¡ 1]

¸ Pr[2 ¸ 2] ¢ Pr[1  2] ¢ ([2j2 ¸ 2]¡ [1j1  2]) 

Since ¤ is …nite, the principal is able to explore both actions after ¤ agents.

The proof appears in the appendix but we can provide the intuition here.

Consider (4): the LHS represents the gain agent  expects to receive by

following the recommendation of the principal who has already tested both

alternatives. It is an increasing sequence as the planner becomes better

informed as  increases. This implies that these terms can be bounded from
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below when we consider agent  = 2. The RHS represents the expected loss

the agent expects to experience when he is the …rst agent to try the second

alternative. The sum of the RHS over all  is 1 ¡ 2 The proof is based on

these two observations when we sum the LHS and the RHS.

The above theorem has important implications. Consider the …rst-best

outcome in which the principal can force agents to choose an action. The

above theorem implies that for any  the aggregate loss of the optimal mecha-

nism as compared to the …rst-best outcome is bounded by (1¡2)
2


As a result

we conclude that:

Corollary 9 As  goes to in…nity the average loss per agent as compared to

the …rst-best outcome converges to zero at a rate of 1 . Apart from a …nite

number of agents, ¤ all other agents are guaranteed to follow the optimal

action.

4 Imperfect Information about Location

In this section we relax the assumption that agents are perfectly informed

about their location in line and study the consequences of this uncertainty.

Indeed, if agents have no information about their location and assign equal

probability to every possible position, then it is easy to see that the planner

can implement the …rst-best outcome. This is simply because there is no con-

‡ict of interests between the agent and the planner who wishes to maximize

the utility of the average agent. In what follows we examine an intermedi-

ate case in which agents do not know their exact location but know to which

group of agents they belong location-wise. For example, in the context of the

real-time navigation problem, it is reasonable to assume that while drivers

are not perfectly aware of their exact place in order, they do know whether

it is before, during, or after the rush hour.

Thus, consider a sequence of integers 1 = 1  2   =  + 1 such

that if   ·  ·  +1 ¡ 1 then agent  believes that his location is uniformly
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distributed between  and  +1 ¡ 1 To simplify the exposition we assume

that the …rst agent knows his location (i.e.,  2 = 2) and therefore always

chooses action one. We assume that this sequence is commonly known and

refer to the set of agents   ·  ·  +1 ¡ 1 as block . Note that when the

number of blocks is  we are in the model of Section 2 while when there is

only one block the agents are uninformed and the …rst best is implementable.

We …rst argue that our main result of Section 3 also holds in this model

and the planner’s optimal strategy is a recommendation-based threshold pol-

icy. Indeed, the steps leading to the conclusion that the optimal policy is a

partition policy are exactly the same as in Section 3. Therefore, it su¢ces

to show that the swap operation, which is the key step in our proof of the

optimality of a threshold policy, is still valid.

Assume that the planner follows a partition policy. Given the information

agents have about their position, their IC constraint now becomes:

1

 +1 ¡  

X+1¡1

=

2

4
Z

12[ 21

[2 ¡ 1] +

Z

12

[2 ¡1]

3

5 ¸ 0

(5)

As before, consider a non-threshold partition policy and recall that if a parti-

tion policy fg
+1
=2 is not a threshold policy then there exist indexes 2  1

and sets 1 µ 1and 2 ½  2 such that

sup2  inf 1  Pr[1]Pr[2]  0

and Z

121

[2 ¡1] =

Z

122

[2 ¡ 1]

and we can construct a new partition policy  0 such that ̂ 1 =  1 [2¡1

and ̂2 =  2 [ 1 ¡ 2, while the other sets are unchanged, i.e., ̂  =  

for  2 f1 2g. Recall from the proof in Section 3.4 that following a proper
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swap, the terms

Z

12[ 21

[2 ¡ 1] +

Z

12

[2 ¡1]

weakly increase for all agents . This implies that also the term

1

 +1 ¡  

X+1¡1

=

2

4
Z

12[ 21

[2 ¡1] +

Z

12

[2 ¡1]

3

5

weakly increases. We conclude that the IC constraint remains the same for

some agents and becomes stronger for others and that, following a proper

swap, the sum of agents’ payo¤s strictly increases. We thereby conclude that

the optimal policy is a threshold policy, that is, a policy in which the sets  

are ordered intervals   = (¡1 ]. Next we argue that in a given block only

the …rst agent explores.

Lemma 10 In the optimal policy, for every block  = 1   we have 

=

(
¡1 


] and   = ? for       +1

Proof: Consider an arbitrary threshold policy and a speci…c block .

Suppose we ask only the …rst agent in the block to explore, and only when

1 2 (
¡1 

+1¡1
] i.e., whenever someone in the block explores in the orig-

inal policy. Then the aggregate loss from exploration in the IC constraint

(see (5)) remains the same for everyone in the block. However, we improve

the expected payo¤ from exploitation for all agents. Hence, the IC becomes

stronger and the expected welfare higher. ¤

Note that in the above lemma we may have slack in the IC constraint

and the planner can even induce more exploration from the …rst agent in the

block. Speci…cally, we can calculate the optimal threshold 
+1

by replacing

(4) with
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Z

1·
¡1

21

[2 ¡ 1] +
¡
 +1 ¡  ¡ 1

¢
Z

1·

21

[2 ¡1]

=




Z

1=
¡1

[1 ¡ 2]

The next theorem summarizes the discussion above.

Theorem 11 The optimal policy in the blocks model is given by a sequence

of thresholds fg such that only the …rst agent in block  explores when

1 2 (¡1 ]. That is action 2 is recommended to all the other agents only

when it is known that 2  1

Finally, we argue that as the information that agents have about their

location becomes coarser, the policy that the planner can implement is closer

to the …rst best. We de…ne a block structure to be coarser if it is constructed

by joining adjacent blocks. As in the proof of the lemma above, in the optimal

policy only the …rst agent in this new block explores and he explores for a

bigger set of realizations. Clearly, this results in a more e¢cient outcome.

Theorem 12 If block structure B1 is coarser than block structure B2 then

the optimal policy in B1 is more e¢cient

5 The Stochastic Case

Our main goal in this section is to show that we can essentially extend the

optimal mechanism in the deterministic case to the stochastic model, and

achieve a near optimal expected average reward. The optimal stochastic

mechanism will have thresholds like the optimal deterministic mechanism,

and at the high level we keep the same structure.
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5.1 Model

The stochastic model, like the deterministic model, has a binary set of actions

 = f1 2g. There is a prior distribution  over all possible distributions

of payo¤s for action , which is common knowledge. From  a distribution

 is drawn before the process starts, and is unknown. The reward  of

action  is drawn independently from the distribution  for each agent, and

we denote by 
 the reward of action  to agent . The a priori expected

reward of action  is

 = ([])

and as before we assume w.l.o.g. that 1  2 and that Pr[[1]  2]  0;

otherwise exploration is impossible. For simplicity, we assume that the range

of any realized  is [0 1]. (However, the result can be extended to many

other settings.)

Note that in the stochastic model there are two sources of uncertainty.

One is the distribution that is selected from the prior . The second is due

to the variance in the realizations of 
 that are drawn from the distribution

.

5.2 Threshold Algorithm for the Sstochastic Model

We de…ne a mechanism  for the planner that guarantees near optimal

performance. The parameter of mechanism  is a sequence of thresholds

(1 2   ). We partition the agents to  blocks of  agents each, where

the -th block includes agents ( ¡ 1)+ 1 until . All the agents in each

block will receive an identical recommendation.

To the agents in block 1, the …rst  agents,  recommends action 1.

Given the realizations, it computes

̂1 =
1



X

=1


1
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Note that ̂1 is …xed, and never changes and does not necessarily re‡ect all

the information that is available to the planner.

For blocks  ¸ 2 mechanism  does the following:

1. If ̂1 2 (¡1 ], then  recommends action 2. The agents in block

 will be the …rst to explore action 2. Given the realizations of the

rewards, we set ̂2 =
1


P
=(¡1)+1


2 and de…ne  = 1 if ̂1 ¸ ̂2

and otherwise  = 2.

2. If ̂1 · ¡1 then  recommends action .

3. If ̂1   then  recommends action 1.

5.3 Setting the Thresholds

As before, the planner needs to balance exploration and exploitation to guar-

antee the IC constraint. First, we set 21 for block  = 2, as the solution to

the following equality:

0 = [2 ¡ 1j̂1 · 21]

Then, consider the expected loss, assuming that block  ¸ 3 was the …rst to

explore action 2.

(¡1 ) = [1 ¡ 2j̂1 2 (¡1 ]] Pr[̂1 2 (¡1 ]]

Next we consider the expected gain, assuming that action 2 was already

sampled and that  = 2.

(¡1) = [2 ¡ 1j̂1 · ¡1  = 2] Pr[̂1 · ¡1  = 2]
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We set 1 inductively. After we set 1 for   , we set 1 such that

(¡11) = (¡111). Let  be the solution to

( ¡ )2 [maxf[2]¡  0g] = ( ¡ 2)

We set the threshold to be  = minf 1g.

5.4 Analysis

The following theorem establishes that as the number of agents  increases,

the average loss per agent goes to zero, as compared to the case where the

planner knows the distributions of payo¤s. Note that this represents a better

performance than that of a planner who is not subject to the IC constraint

as there is no need for explorations. The following theorem establishes the

near optimal performance of .

Theorem 13 The mechanism  is IC and, when we set  =  23 ln , it

has an average expected reward of at least

12 [maxf1»1 [1] 2»2 [2]g]¡ 
ln

 13


where the constant  depends only on 1 and 2.

The theorem follows from the observation that, by the Hoe¤ding inequal-

ity, j̂ ¡ []j ¸  with probability at most  · 2¡2
2. For  = ¡13,

since  =  23 ln , we have  · 2¡2. This implies that we have three

sources of loss as compared with always playing the better actiom. The …rst

source of loss is due to the exploration, which spans a constant number of

 blocks, and depend only on the priors. Since each block is of size  this

contributes at most  to the average loss. The second source of loss

is the fact that [] is only approximated; this loss is at most  = ¡13

per agent. Finally, there is a small probability  · 2¡2 that our estimates
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are incorrect which contributes at most ¡1 to the expected loss per agent.

Summing the three sources of loss yields the above theorem. A formal proof

is available in the working paper version that can be found on our personal

websites.

6 Concluding Remarks: Monetary Transfers

We have focused on mechanisms in which the planner is not allowed to use

monetary transfers. An interesting extension is to consider the case where

the planner can use cash to provide incentives to agents to explore. It is

straightforward that in our setup the planner will exercise this option only

with the second agent and leave the mechanism intact for all other agents.

Thus, if the planner has a large enough budget, then he can obtain the

…rst-best by convincing the second agent (or even the …rst agent) to explore

whenever this is required by the …rst-best. Otherwise, then all the planner’s

resources should be used to increase the set 2 in which agent 2 explores.

This also holds in the more realistic case where the budget is raised through

taxation and taxation distorts e¢ciency.
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A Appendix

Detailed calculation of the example: When calculating the bene…t from

choosing the second alternative, agent three considers two cases:

: 1 · 1 2  1 : In this case the third agent is certain that the

second alternative has already been tested by the second agent and was found

to be optimal; this implies that 2  ¡1 When computing the expected

gain conditional on this event, one can divide it into two sub-cases:  :

2  1  : 2 2 [¡1 1] The probability of these two events (conditional on

case ) are

Pr(j) =
Pr(2  1 1 · 1 2  1)

Pr(2  1 1 · 1 2  1) + Pr(2 2 [¡1 1] 1 · 1 2  1)

=
04 ¤ 13

04 ¤ 13 + 02 ¤ 13 ¤ 12
= 08

Pr(j) = 1¡ Pr(j) = 02

The gain conditional on () is: (2 ¡ 1j) = (2j2  1) ¡

(1j1  1) = 3 ¡ 0 = 3 The gain conditional on  is (2 ¡ 1j) =

(2 ¡1j1 2 2 [¡1 1] 2  1) = 23. Hence, the gain conditional on

 is given by:

(2 ¡ 1j) =
08 ¤ 3 + 02 ¤ 23

08 + 02
=
38

15


The relative gain from following the recommendation when we multiply

by the probability of  is

Pr() ¤ (2 ¡ 1j) =
2

2 + 
¤
38

15


 : 1  1 · 1+: Conditional on this case our agent is the …rst to test
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the second alternative. The expected loss conditional on this event is

(1¡2j) =  [1j1 2 [1 1 + ])]¡(2) =
1 + (1 + )

2
¡0 =

2 + 

2


When we multiply this by the probability of this event we get

Pr() ¤ (2 ¡1j) =


2 + 
¤
2 + 

2
=



2


Equating the gain and the loss yields  = 223. This implies that if the

second action is recommended to agent  = 3 when  : 1 · 1 and the planner

has learned that the second action is optimal or when  : 1  1 · 323

then agent  = 3 will follow the recommendation.

Proof of Theorem 8: Given our characterization it is su¢cient to focus

on the case where  =1 Consider the summation of the RHS in (4):

1X

=2

+11Z

1=1

[1 ¡ 2] = lim
!1

1Z

1=21

[1 ¡ 2]

Since
21R

1=¡1

[1 ¡ 2] = 0 and since
R

1·

[1 ¡ 2] is increasing in 

we conclude that

1X

=2

+11Z

1=1

[1 ¡ 2] · lim
!1

Z

1·

[1 ¡ 2] = 1 ¡ 2

Looking at the summation of the LHS

1X

=2

Z

1·21

[2 ¡ 1]

we note that
R

1·21

[2 ¡ 1] is increasing in  The fact that  is
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increasing in  implies that if we let

 ´

Z

1·221

[2 ¡ 1]

we then have

 ·

Z

1·21

[2 ¡ 1]

Hence, this sum can be bounded from below by ¤, which implies the claim.

¤
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