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Abstract

We study the design of contests for specific innovations when there is learn-

ing: contestants’ beliefs dynamically evolve about both the innovation’s feasi-

bility and opponents’ success. Our model builds on exponential-bandit exper-

imentation. We characterize contests that maximize the probability of innova-

tion when the designer chooses how to allocate a prize and what information

to disclose over time about contestants’ successes. A “public winner-takes-all

contest” dominates public contests—those where any success is immediately

disclosed—with any other prize-sharing scheme as well as winner-takes-all con-

tests with any other disclosure policy. Yet, it is often optimal to use a “hidden

equal-sharing contest”.
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Contests or prize awards are practical and proven mechanisms to procure inno-
vations. In 1795, the French government offered 12,000 Francs for the development
of a reliable food preservation method that would allow Napoleon Bonaparte to
better feed his traveling army. After almost fifteen years of experimentation with
various methods, the confectioner Nicolas Appert claimed the prize in 1810. His so-
lution of heating food at elevated temperatures followed by airtight sealing remains
the basis of modern-day canning.

Recent decades have seen a surge in the use of innovation contests (McKinsey
& Company, 2009). The internet television company Netflix generated significant
buzz in 2006 by announcing a $1 million prize to induce a 10% improvement in
the accuracy of its movie recommendation algorithm. In the philanthropic domain,
there is an ongoing $30 million Google Lunar X Prize for landing a private spacecraft
on the surface of the Moon and sending “Mooncasts” back to Earth. In the public
sector, President Barack Obama signed the America COMPETES Reauthorization
Act in 2011 to grant U.S. government agencies the authority to conduct contests to
spur innovation. There have also been renewed calls to reform the patent system
by using prizes to avoid the ex-post deadweight losses of monopoly power (e.g.
Stiglitz, 2006).1

This paper studies the design of contests to procure specific innovations. Previ-
ous work on contest design has focused on settings in which there is no uncertainty
about the environment. By contrast, we emphasize endogenous learning about the
desired innovation. We are motivated by applications in which the viability or fea-
sibility of the innovation is uncertain at the outset. Agents update their beliefs over
time through their own experimentation—exerting costly effort and observing their
outcomes—and also based on what they learn about other agents’ outcomes. In such
contexts, how should one design a contest to maximize the probability of obtaining
the innovation?

The model we develop in Section 2 builds on the workhorse exponential-bandit
framework (Keller, Rady, and Cripps, 2005). A principal and a set of ex-ante ho-
mogenous agents (or contestants) share a common prior over a binary state of the
world. In the bad state, the innovation is infeasible. In the good state, an agent’s
instantaneous probability of obtaining the innovation—hereafter, synonymous with

1Debates about the merits of patents versus prizes (versus grants) to encourage innovation date
back to at least the nineteenth century. In 2011, the U.S. Senator Bernie Sanders proposed two bills
that together would create innovation prize funds of 0.57% of U.S. GDP—over $80 billion at the
time—for targeted medical research; the bills have not yet been put to vote in Congress.
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“a success”—depends on the agent’s effort. At a linear cost, each agent chooses how
much effort to covertly exert at each instant of time. Whether an agent succeeds or
not is only directly observed by that agent and the principal, not by any other agent.
All parties are risk neutral.

In our main specification, the principal has a fixed budget of prize money and
her objective is to maximize the probability of a success. That is, the principal sim-
ply values obtaining the innovation; multiple successes provide her no additional
benefit and she does not gain from saving any portion of the budget. While we
also discuss how to endogenize the prize, it may be helpful to have the follow-
ing interpretation in mind: innovation contests are now often funded by donors or
philanthropic organizations (McKinsey & Company, 2009). In such cases, the firm
designing the contest may not internalize the cost of prize money; rather, the firm
garners reputation and related benefits by successfully procuring the innovation.2

There are two available design instruments. First, the principal chooses a prize-
sharing scheme that specifies how the total prize will be divided amongst successful
agents, possibly as a function of when each agent succeeds and with some specified
deadline. For example, a “winner-takes-all” (WTA) contest awards the entire prize
to the first agent who succeeds, whereas an “equal-sharing” (ES) contest gives every
successful agent an equal share of the prize. Second, the principal also chooses
an information disclosure policy, which specifies what information she discloses over
time about agents’ outcomes. For example, a “public information” contest—or just
public contest for short—reveals publicly, at every point of time, whether each agent
has succeeded or not. A “hidden information” contest—or just hidden contest for
short—does not reveal any information until the contest deadline.

In light of the agents’ risk neutrality and the principal valuing only one success,
an intuitive solution to the design problem is to use a public WTA contest. After all,
sharing the prize in any other fashion lowers a contestant’s expected reward from
success, which should depress effort incentives. Not disclosing success immediately
would lead contestants to fear that another contestant may have already succeeded,
which should also lower incentives to exert effort. Consistent with this intuition, we
show that a public WTA contest dominates a public contest with any other sharing

2Even if the same organization furnishes the prize and designs the contest, internal organizational
structure and corresponding incentives may lead to similar considerations. There are also other
interpretations. For example, contestants’ incentives often stem from factors such as the publicity
received from recognition by the contest (cf. MacCormack, Murray, and Wagner, 2013, p. 27). Contest
design can control how the publicity is allocated amongst successful contestants. In a different setting
but with related motivation, Easley and Ghosh (2013) study a problem of “badge design”.
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scheme, as well as a WTA contest with any other disclosure policy.

However, we find that a hidden ES contest can dominate a public WTA contest.
The intuition turns on a tradeoff that arises in the current setting of experimenta-
tion. On the one hand, the principal wants to increase each agent’s expected reward
from success; this familiar force pushes in favor of using a public WTA contest. On
the other hand, the principal also wants to buttress agents’ beliefs about the inno-
vation’s feasibility; this force, which owes entirely to learning, pushes in favor of
hiding information—specifically, not disclosing the lack of success by other agents.
Crucially, though, the gains from hiding information can only be harnessed by also
sharing the prize.

We develop the above intuition in a simple two-period example in Section 1. Our
main results in Section 3 characterize the optimal contest within a class of informa-
tion disclosure policies. Among hidden and public information disclosure, the opti-
mal contest among all prize-sharing rules is either public WTA or hidden ES.3 More
generally, among simple information disclosure policies—policies that specify an arbi-
trary set of times at which the contest will publicly disclose whether each contestant
has succeeded up until that time—we prove that it is optimal to use a “mixture con-
test”. A mixture contest takes the form of public WTA until some pre-specified date,
at which point the contest switches to hidden ES (if no agent has yet succeeded).

Section 4 discusses some formal extensions and Section 5 concludes. The over-
arching message from our work is that when learning is important, the common
presumption in favor of WTA contests for innovation and R&D must be qualified.
We highlight that aside from learning, all other features of our model—e.g. seeking
only one success—are geared in favor of public WTA contests.

Related literature

A subset of the prior work on contest design concerns research contests rather than
innovation contests. The distinction is articulated well by Taylor (1995, p. 874): “in
a research tournament, the terminal date is fixed, and the quality of innovations
varies, while in an innovation race, the quality standard is fixed, and the date of
discovery is variable.” The research-contest literature includes both static (Fullerton

3To be more precise: our analysis imposes anonymity on the sharing rule and focuses, when
relevant, on symmetric equilibria. We view these as natural requirements. Dropping them would, if
anything, only strengthen our main points.
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and McAfee, 1999; Moldovanu and Sela, 2001; Che and Gale, 2003) and dynamic
models (Taylor, 1995). Our approach of studying contest design when the principal
has a fixed budget available has an antecedant in Krishna and Morgan (1998).4,5

There is a sizable literature on different aspects of innovation or patent races, pio-
neered by Loury (1979) and Dasgupta and Stiglitz (1980). The focus in this literature
is typically only on a winner-takes-all structure and much of it is without learning.
Design questions are addressed, for example, by Bhattacharya, Glazer, and Sapping-
ton (1990), Moscarini and Smith (2011) and Judd, Schmedders, and Yeltekin (2012);
see also the references therein.

Our work is more closely related to the following papers on innovation contests
with learning or experimentation: Choi (1991), Malueg and Tsutsui (1997), Mason
and Välimäki (2010), and Moscarini and Squintani (2010). All four papers share an
exponential-bandit formulation, like us, but they focus solely on winner-takes-all
contests rather than contest design.6 As Choi (1991) considers a multi-stage innova-
tion process (whereas the other three papers do not), he notes that learning about
the state through a competitor’s success has a “positive effect” of making a firm
more optimistic about the return to its own effort. Even though our setting is one
of a single-stage innovation, the same logic is also essential to why a hidden equal-
sharing contest can dominate a public winner-takes-all contest in our framework.

More broadly, the exponential-bandit framework has recently been used in many
papers to study multi-agent strategic experimentation. Keller et al. (2005), Keller
and Rady (2010), Klein and Rady (2011), and Murto and Välimäki (2011) feature
only an informational interdependence across agents; Bonatti and Hörner (2011)
and Cripps and Thomas (2014) also have a payoff interdependence, but both take a

4Some of the papers just cited (e.g. Taylor, 1995; Fullerton and McAfee, 1999) assume the principal
only values the best innovation, while others (Krishna and Morgan, 1998; Moldovanu and Sela, 2001)
assume the principal values the sum of all innovations or efforts. The latter assumption is standard
in tournament theory pioneered by Lazear and Rosen (1981). In our framework, innovation is a
binary variable—stochastically related to both effort and the underlying state—and the principal
only values obtaining one innovation.

5We also note that there is a literature characterizing equilibria or payoffs in all-pay contests (or
wars of attrition or all-pay auctions); see Siegel (2009) and the references therein. Kim and Lee (2014)
study costly information acquisition in a war of attrition. Besides focusing on contest design, our
framework differs in multiple ways from those typically considered in these papers; in particular,
the total prize money paid to the agents in our setting is not a constant because no agent receives a
reward when he does not obtain the innovation.

6Choi (1991) and Moscarini and Squintani (2010) effectively assume a linear cost of effort, like us,
whereas Malueg and Tsutsui (1997) and Mason and Välimäki (2010) consider a convex cost. Malueg
and Tsutsui (1997) assume that effort choices are publicly observed; Mason and Välimäki (2010)
assume covert effort, as we do.
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different form than the contests we study.7

Finally, questions about how much information a principal should disclose about
agents’ outcomes have been raised in various contexts. Regarding feedback in multi-
stage contests (albeit where there is no learning about an exogenous state), see Aoy-
agi (2010), Ederer (2010), Goltsman and Mukherjee (2010), and Wirtz (2013).8 Out-
side of contests, Che and Hörner (2013) and Kremer, Mansour, and Perry (2013)
study information disclosure when a designer wants to promote experimentation
by a sequence of short-lived agents; Bimpikis and Drakopoulos (2014) study infor-
mation disclosure to promote experimentation in a team setting.9

1 The Main Idea

This section explains the core intuition for our results in a simplified setting. A
principal wants to obtain a specific innovation. The innovation’s feasibility depends
on a binary state—either good or bad—that is persistent and unobservable. The
prior probability of the good state is p0 ∈ (0, 1). There are two periods, t ∈ {0, 1},
no discounting, and two risk-neutral agents. In each period each agent covertly
chooses whether to work or shirk. If an agent works in a period and the state is good,
the agent succeeds in that period with probability λ ∈ (0, 1); if either the agent shirks
or the state is bad, the agent does not succeed.10 Working in a period costs an agent
c > 0. Successes are conditionally independent across agents given the state and
observed only by the principal and the agent who succeeds. The principal wants
to induce both agents to work until at least one succeeds; an additional success
provides no extra benefit. The principal has a prize budget w to pay the agents.

In this illustrative setting, we consider four contests. They vary by whether the
entire prize is allocated to the first successful agent or divided equally among all

7Various authors have analyzed contracting in single-agent problems in the exponential-bandit
framework, including Bergemann and Hege (1998, 2005), Gomes, Gottlieb, and Maestri (2013), Halac,
Kartik, and Liu (2013), Kwon (2013), and Hörner and Samuleson (2014). Strulovici (2010) studies a
game of experimentation with multiple agents and both payoff and informational interdependence.

8Yildirim (2005), Gill (2008), Rieck (2010), and Akcigit and Liu (2014) address the incentives for
contestants to themselves disclose their outcomes to opponents. Campbell, Ederer, and Spinnewijn
(2014) consider related issues in a moral-hazard-in-teams setting.

9Lizzeri, Meyer, and Persico (2002) and Fuchs (2007) study how much feedback an agent should
get about his own performance in dynamic moral-hazard settings. Dynamic information disclosure
about an exogenous state variable is addressed by Ely, Frankel, and Kamenica (2013) and Ely (2014).

10Without loss, an agent who succeeds in the first period cannot—more precisely, will not—exert
effort in the second period. Whenever we refer to an agent working in the second period, it is im-
plicitly in the event that he has not succeeded in the first period.
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agents who succeed by the end of the second period, and by whether an agent’s
success in the first period is publicly disclosed or kept hidden.

Public winner-takes-all. Suppose the principal awards the entire prize w to the
first agent who obtains a success, and the principal publicly discloses all successes
at the end of each period. If both agents succeed simultaneously, the prize is equally
divided (or allocated to either agent with equal probability).11 In this mechanism,
neither agent will work in the second period if either succeeded in the first period.
Thus, in any period, if there has been no earlier success and the opponent is exerting
effort, an agent’s expected reward for success is ŵ := λw

2
+ (1 − λ)w. If p0λŵ > c, it

is a dominant strategy for an agent to work in the first period; assume for the rest
of this section that this condition holds. If neither agent succeeds in the first period,
both agents work in the second period if and only if

p1λŵ ≥ c, (1)

where p1 := p0(1−λ)2
p0(1−λ)2+1−p0 is the agents’ belief in the second period that the state is

good given that neither succeeded in the first period having exerted effort.

Hidden winner-takes-all. Suppose the principal still awards the entire prize w to
the first successful agent (and splits the prize in case of simultaneous success) but
now she does not disclose any information about first-period successes until the end
of the game. Plainly, an agent works in the first period if he is willing to work in
the second period. However, because first-period successes are hidden, an agent’s
second-period decision must now take into account the possibility that the opponent
may have already succeeded and secured the entire prize. When both agents work
in the first period, an agent i’s incentive constraint for effort in the second period
following his own lack of success in the first period is

Pr[j failed | i failed]p1λŵ ≥ c, (2)

where j denotes i’s opponent. Clearly, constraint (2) is more demanding than (1).
In other words, for any set of parameters, a public winner-takes-all (WTA) contest
dominates a hidden WTA contest in the sense that the latter cannot induce effort
by both agents in both periods when the former cannot; moreover, for some pa-

11Simultaneous success will be a moot issue in our general model, which is cast in continuous time.
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rameters, a public WTA contest induces effort by both agents in both periods while
hidden WTA does not.

Public equal-sharing. Suppose the principal discloses all successes at the end of
each period, but she now divides the prize w equally between the two agents if both
succeed by the end of the second period no matter their order of success (and con-
tinues to allocate the entire prize to an agent if he is the only one to succeed). If
an agent succeeds in the first period, the opponent is certain in the second period
that the state is good and, due to the shared-prize scheme, the opponent’s reward
for success is w

2
. It follows that when λw

2
< c, an agent does not work in the sec-

ond period if his opponent succeeds in the first period; in this case, the contest is
equivalent to public WTA. On the other hand, if λw

2
> c, an agent will work in the

second period if the opponent succeeds in the first period. This “duplication effort”
does not benefit the principal because she only cares about obtaining one success;
moreover, as compared to public WTA, agents’ incentives to work in the first period
can now be lower due to two reasons: free-riding—an agent may want to wait for
the other agent to experiment and reveal information about the state—and a lower
expected reward for first-period success due to the opponent’s duplication effort. In
any case, observe that if both agents work in the first period and neither succeeds,
the incentive constraint in the second period is still given by (1). Therefore, for any
set of parameters, a public WTA contest dominates a public equal-sharing (ES) con-
test; it can also be shown that for some parameters, a public WTA contest induces
effort by both agents in both periods while public ES does not.

Hidden equal-sharing. Suppose the principal uses the equal-sharing prize scheme
as above, but does not disclose any information about first-period successes until the
end of the game. Although the prize is shared, there is now no free-riding concern:
an agent cannot learn from his opponent’s success when that is not disclosed. In
fact, because there is nothing to be learned about the opponent after the first period,
it is without loss that an agent works in the first period if he works at all.12 Suppose
there is an equilibrium in which both agents work in the first period and consider an
agent’s incentive to work in the second period following his own lack of success in
the first period. The agent does not know whether the opponent succeeded or failed

12“Without loss” in the sense that if there is an equilibrium in which an agent works in the second
period (and possibly in the first period too), then there exists an outcome-equivalent equilibrium in
which this agent works in the first period (and possibly in the second period too).
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in the first period. In the event that the opponent succeeded, the agent’s posterior
belief that the state is good is one while his reward for success becomes half the
prize. On the other hand, in the event the other agent failed in the first period, the
agent’s posterior belief is p1 < 1 but the expected reward for success is ŵ > w

2
.

Hence, an agent i’s incentive constraint in the second period is

Pr[j succeeded | i failed]λ
w

2
+ Pr[j failed | i failed]p1λŵ ≥ c. (3)

It can be checked that there are parameters such that (3) holds while (1) does not. In
other words, there are parameters under which both agents work in both periods in
a hidden ES contest but not in a public WTA contest. For these parameters, a hidden
ES contest dominates public WTA.

What is the intuition behind why hidden ES can dominate public WTA although
neither hidden WTA nor public ES can? On the one hand, holding fixed an agent’s
belief about the state, it is clear that a WTA prize scheme maximizes effort incen-
tives. On the other hand, the nature of learning—specifically, failure is bad news—
implies that the principal would like to hide information about the opponent’s first-
period outcome to bolster an agent’s second-period belief in the only event that
matters to the principal, viz. when the opponent fails in the first period. Hiding
information but still using WTA is counter-productive, however, because when an
agent conditions on obtaining a reward in the second period, he deduces that the
opponent must have failed. Consequently, harnessing the benefits of hiding infor-
mation requires some sharing of the prize. On the flip side, sharing the prize while
maintaining public disclosure is not beneficial either because this change from pub-
lic WTA only alters second-period incentives when the principal does not value
additional effort, viz. when the innovation has obtained in the first period.

Regarding learning, it bears emphasis that public WTA would always be an opti-
mal contest were it certain that the state is good—if there is no learning, there is no
benefit to hiding information. Public WTA would also be always optimal if agents
did learn but only from their own outcomes and not from others’, i.e. if their exper-
imentation “arms” were uncorrelated.13

These intuitions in hand, we now turn to our main model and analysis.

13Regarding the gains from innovation: if the principal were to value obtaining a success by each
agent, then naturally even a public ES contest may dominate public WTA for some parameters.
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2 The Model

2.1 Setup

A principal wants to obtain a specific innovation. Whether the innovation is feasible
depends on the state of nature, θ ∈ {G,B}, where G represents “good” and B repre-
sents “bad”. This state is persistent and unobservable to all parties. There are N ≥ 1

agents who can work on the principal’s project. Time is continuous and runs from
0 up to some end date T ≥ 0, which is chosen by the principal. At every moment
t ∈ [0, T ], each agent i ∈ N := {1, 2, . . . , N} covertly chooses effort ai,t ∈ [0, 1] at
instantaneous cost cai,t, where c > 0. We let At := a1,t + ...+ aN,t. When an agent ex-
erts effort ai,t, he succeeds with instantaneous probability λθai,t, where λG > λB ≥ 0

are constants commonly known to all parties. Successes are conditionally indepen-
dent given the state. We assume that successes are observable only to the agent who
succeeds and to the principal; Section 4 discusses alternative scenarios. We assume
λB = 0 and denote λ := λG.14

When a success is obtained, the principal receives a lump-sum payoff v > 0; the
agents do not intrinsically care about project success. The principal values only one
success: additional successes have no social value. The agents are risk neutral, have
quasi-linear preferences, and are expected-utility maximizers. For tractability, we
assume no discounting.15

Let p0 ∈ (0, 1) be the prior probability that the state is good, commonly known
to all parties. Assume that the ex-ante expected marginal benefit of effort is larger
than the marginal cost: p0λv > c. This means that some experimentation is efficient,
even though conditional on the bad state the marginal benefit of effort is zero.

Denote by pt the posterior probability that the state is good when no agent has
succeeded by time t given a (measurable) effort profile {ai,t}i,t. We refer to pt as the
public belief. By Bayes’ rule,

pt =
p0e
−
∫ t
0 λAzdz

p0e
−
∫ t
0 λAzdz + 1− p0

. (4)

14The key consequence of assuming λB = 0 is that a single success fully resolves the fundamental
uncertainty about the innovation. This is a standard assumption in the exponential-bandit frame-
work; see Keller and Rady (2010) for an exception.

15In this exponential-bandit model, agents become more pessimistic about the state over time as
they experiment without success. This serves as an endogenous source of discounting, so payoffs
are well defined even without an explicit discount factor. Our result that the optimal public WTA
contest can be dominated by a hidden ES contest is robust to adding a small discounting friction.
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The evolution of this belief is governed by the differential equation16

ṗt = −pt (1− pt)λAt.

Let ati :=
∫ t
0
ai,zdz be the cumulative effort, or experimentation, by agent i up to

time t conditional on him not having succeeded by t, and At :=
∑

i a
t
i =

∫ t
0
Azdz the

aggregate cumulative effort up to t given no success by t. The (aggregate) probability of
success is

p0

(
1− e−λAT

)
. (5)

The principal does not internalize the cost of effort (nor payments to the agents, as
explained in more detail below), so her objective is simply to maximize the prob-
ability of obtaining a success, i.e. to maximize the expectation of (5). By (4), (5) is
equivalent to p0 − (1− p0) pT

1−pT
. Hence, as is intuitive:

Remark 1. For any set of parameters, the probability of success is increasing in aggre-
gate cumulative effort, AT . Moreover, for any prior belief p0, a lower public belief at
the deadline, pT , corresponds to a higher probability of success.

2.2 First best

Social welfare combines both the value of success and the total cost of effort. Since it
is socially optimal to never exert effort after a success has been obtained, the social
optimum is derived by maximizing∫ ∞

0

(ptλv − c)Ate−
∫ t
0 pzλAzdzdt.

To interpret this expression, note that e−
∫ t
0 pzλAzdz is the probability that no success is

obtained by time t, and pt is the probability that the state is good given no success
by t. Conditional on the good state, a success then occurs at t with probability λAt,
yielding a value v. Since the public belief pt is decreasing over time, a social-welfare
maximizing effort profile is ai,t = 1 for all i ∈ N if ptλv ≥ c, and ai,t = 0 for all i ∈ N

16The following heuristic derivation provides intuition: since the probability of not obtaining a
success conditional on the good state and effort levelAt in a small time interval [t, t+dt) is 1−λAtdt,
we have pt+dt =

pt(1−λAtdt)
pt(1−λAtdt)+1−pt , which, after some simplification, yields pt+dt−pt

dt = −pt(1−pt)λAt

1−ptλAtdt
.

Taking dt→ 0 yields the stated formula.
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otherwise. The first-best stopping (posterior) belief is given by

pFB :=
c

λv
. (6)

2.3 Contests and strategies

The principal has a budget w > 0 that can be used to incentivize the agents. We
assume limited liability, i.e. each agent must receive a non-negative payment, and
to avoid trivialities, p0λw > c. In general, a mechanism specifies a deadline T ≥ 0

and a vector of payments (w1, . . . , wN) ∈ RN
+ that, without loss, are made at T as

a function of the principal’s information at T (when each agent succeeded, if ever)
and subject to the ex-post constraint

∑
i∈N wi ≤ w. In addition, the principal chooses

an information disclosure policy, which in its most general form specifies for each
agent i and at each time t, a signal of the entire history of successes.

We are interested in a sub-class of mechanisms, which we call contests. With
regards to payments, we allow for any (deterministic) payment scheme subject to an
anonymity requirement. Formally, let si denote the time at which agent i succeeds;
by convention, si = ∅ if i does not succeed. We consider payment schemes defined
by a functionw(si, s−i), whose value specifies the payment to agent i as a function of
all agents’ success times.17 For any s, letW (s) denote the total payment made by the
principal. We impose the following constraints on w(·): (i) w(si, s−i) = w(si, σ(s−i))

for any permutation σ; (ii) w(∅, ·) = 0; and (iii) s 6= (∅, . . . , ∅) =⇒ W (s) = w.18

With regards to information disclosure, the principal specifies a set of times at
which the entire history of successes to date is publicly disclosed; at other times,
there is no information disclosed. Formally, let oi,t = 1 if agent i succeeds at time
t and oi,t = 0 otherwise. An information disclosure policy is an arbitrary set T ⊆
[0, T ] such that: (i) at any time t ∈ T , the principal sends a public message mt =

(o1,z, . . . , oN,z)z<t; (ii) at any time t 6∈ T , the principal sends a public message mt = ∅.
We refer to this class of policies as simple information disclosure policies, postponing

17As usual, bold symbols denote vectors. Note that an agent is paid the same regardless of whether
he succeeds once or more than once; recall that the principal only values obtaining one success.

18Restrictions (ii) and (iii) are without loss of generality: (ii) because of limited liability and (iii)
because the principal must satisfy the budget constraint and does not value unspent prize money.
Given a fixed set of agents, restriction (i) may entail some loss of generality, but we conjecture that it
would not if the principal can also specify the number of agents, which is a variation we discuss in
Subsection 3.3. In any case, relaxing (i) would, if anything, only strengthen the result that a public
winner-takes-all contest can be dominated by a hidden equal-sharing contest.

11



a discussion of more general policies to Section 4. A contest with T = [0, T ] is a
public contest—the principal immediately discloses any success—whereas a contest
with T = ∅ is a hidden contest—the principal discloses no information at all about
any success until the deadline.

Denote by hti := (mz, oi,z, ai,z)z<t the private history of agent i at time t; note that
it includes the public message. An agent i’s (pure) strategy is a measurable function
that specifies, for each history hti, a choice of effort at time t, ai,t. Without loss, we
interpret ai,t as agent i’s effort at t conditional on him not having succeeded by t,
as an agent never exerts effort after succeeding. Our solution concept is Nash equi-
librium.19 We restrict attention to symmetric equilibria (viz., equilibria in which all
agents use the same strategy); we will indicate subsequently where this restriction
is used (see, in particular, fn. 21). We say that an agent i uses a stopping strategy with
stopping time z if the agent exerts full effort until time z (so long as he has not learned
that any agent, including himself, has succeeded) followed by no effort.

3 Optimal Contests

We solve for the contest that maximizes the probability of success. Subsection 3.1
shows that a public winner-takes-all (WTA) contest is optimal among public con-
tests and Subsection 3.2 shows that a hidden equal-sharing (ES) contest is optimal
among hidden contests. We compare public WTA and hidden ES contests in Sub-
section 3.3. In Subsection 3.4, we show that an optimal contest (within the class
of simple information disclosure policies) is a mixture of public WTA and hidden
ES; we provide intuitive sufficient conditions for when the optimum is a degenerate
mixture, i.e. either public WTA or hidden ES.

3.1 Public contests

In a public contest, an agent’s success is immediately disclosed to all other agents.
Agents therefore update their beliefs based on their outcomes as well as their oppo-
nents’ outcomes, given the equilibrium strategies.

Consider a public contest with an arbitrary prize scheme w(si, s−i). Let A−i,z
denote (i’s conjecture of) the aggregate effort exerted by i’s opponents at time z so

19Our analysis would not be affected by imposing standard refinements such as (appropriately
defined versions of) subgame perfection or perfect Bayesian equilibrium.
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long as no agent has obtained a success by z. We denote by wi,t the expected reward
agent i receives if he is the first one to succeed at t, which depends on w(si, s−i) and
the continuation strategies of the opponents who may continue to exert effort and
share the prize. If some agent besides i is the first agent to succeed at t, we denote
agent i’s expected continuation payoff by ui,t. We suppress the dependence of the
relevant variables on the continuation strategy profile to save on notation. Agent i’s
problem can then be written as

max
(ai,t)t∈[0,T ]

∫ T

0

[(pi,tλwi,t − c) ai,t + pi,tλA−i,tui,t] e
−
∫ t
0 pi,zλ(ai,z+A−i,z)dzdt, (7)

where pi,t is i’s belief that the state is good at time t (so long as success has not been
obtained), given by the following analog of (4):

pi,t =
p0e
−
∫ t
0 λ(ai,z+A−i,z)dz

p0e
−
∫ t
0 λ(ai,z+A−i,z)dz + 1− p0

.

To interpret the objective (7), note that e−
∫ t
0 pi,zλ(ai,z+A−i,z)dz is the agent’s belief that

no success will obtain by time t. Conditional on the good state and no success by t,
the probability that the agent is the first to succeed at t is λai,t, and the probability
that an agent besides i is the first to succeed at t is λA−i,t.

Solving for equilibria in an arbitrary public contest is not straightforward; in-
stead, we take an indirect but also more insightful approach. First, observe that
agent i can ensure ui,t ≥ 0 (by shirking after t). It follows that the agent chooses
ai,t = 0 if pi,tλwi,t < c, and thus ai,t > 0 requires

pi,t ≥
c

λwi,t
≥ c

λw
, (8)

where the second inequality is because wi,t ≤ w by the principal’s budget constraint.
Hence, the lowest belief at which agent i is willing to exert positive effort in a public
contest is pi,t = c

λw
.

Consider now a public WTA contest, where the full prize is awarded to the first
agent that succeeds: wi,t = w and ui,t = 0 for all t ∈ [0, T ]. Since the agent’s belief pi,t
is decreasing over time, the unique solution to (7) in this case is ai,t = 1 if pi,t ≥ pPW

and ai,t = 0 otherwise,20 where
pPW :=

c

λw
. (9)

20Throughout, we break indifference in favor of exerting effort whenever this is innocuous.
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It follows that in a public WTA contest with deadline T , there is a unique equilib-
rium in which all agents exert full effort until either a success is obtained, or the
public belief, viz. expression (4) with At = N , reaches pPW (or the deadline T binds),
and they exert zero effort thereafter. To maximize experimentation, the deadline T
is optimal if and only if T ≥ T PW , where T PW is the time at which the public belief
reaches pPW given that all agents exert full effort, i.e.

p0e
−NλTPW

p0e−NλT
PW + 1− p0

=
c

λw
. (10)

Comparing with condition (8) above, we see that an optimal public WTA contest
induces effort by all agents until their belief reaches the lowest belief at which any
agent is willing to exert positive effort in a public contest. It follows that this contest
yields the maximum possible aggregate cumulative effort as a solution to program
(7), and thus maximizes the probability of success (see Remark 1). Hence, a public
WTA contest is optimal within the class of public contests.

Proposition 1. An optimal public winner-takes-all contest is optimal among public con-
tests. In an optimal public winner-takes-all contest, each agent uses a stopping strategy
with stopping time T PW defined by (10). T PW is increasing in p0 and w, decreasing in c

and N , and non-monotonic in λ. The probability of success is increasing in p0, w and λ,
decreasing in c, and independent of N .

(All proofs are in the Appendix.)

The non-monotonicity of T PW with respect to λ is due to two countervailing ef-
fects: on the one hand, for any given belief pi,t, the marginal benefit of effort is larger
if λ is higher; on the other hand, the larger is λ, the faster each agent updates his be-
lief down following a history of effort and no success (cf. Bobtcheff and Levy, 2010;
Halac et al., 2013). Nevertheless, the stopping belief, pPW , is decreasing in λ, as seen
immediately from (9), and as a result the probability of obtaining a success is in-
creasing in λ. It is also intuitive why pPW is independent of the number of agents:
the likelihood that multiple agents succeed at the same instant is second order, hence
the only effect of higher N on an agent’s incentives at time t (so long as no one has
succeeded yet) is to lower the public belief at t.

Remark 2. Comparing (6) and (9), it is clear that a public WTA contest can implement
the first-best solution if and only if w ≥ v.
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3.2 Hidden contests

In a hidden contest, an agent’s success is not disclosed until the deadline. Agents
therefore update their beliefs based on their own outcomes only.

Consider a hidden contest with an arbitrary prize scheme w(si, s−i). Denote by
wi,t the expected reward agent i receives if he succeeds at time t, which depends on
w(si, s−i) and the strategies of the opponents. Then agent i’s problem reduces to

max
(ai,t)t∈[0,T ]

∫ T

0

(
p
(1)
i,t λwi,t − c

)
ai,te

−
∫ t
0 p

(1)
i,zλai,zdzdt, (11)

where p(1)i,t is i’s belief that the state is good at time t given that he has not succeeded
by t, which is given by the following analog of (4):

p
(1)
i,t =

p0e
−
∫ t
0 λai,zdz

p0e
−
∫ t
0 λai,zdz + 1− p0

.

To interpret the objective (11), note that e−
∫ t
0 p

(1)
i,zλai,zdz is the agent’s belief that he will

not succeed by time t. Conditional on the good state and the agent not succeeding
by t, the agent succeeds at t and receives wi,t with probability λai,t.

Consider now a hidden ES contest, where the principal divides the prize equally
among all the agents who succeed by some deadline. That is, given a deadline T > 0,
agent i receives w

n
if he succeeds at any time t ∈ [0, T ] and a total of n ∈ {1, ..., N}

agents succeed by T . Since i’s expected reward for success, which we denotewHSi , is
independent of when he succeeds, it is immediate from (11) that an optimal strategy
for i in this case is a stopping strategy where ai,t = 1 if p(1)i,t λw

HS
i ≥ c and ai,t = 0

otherwise. Under a stopping strategy, p(1)i,t = p0e−λt

p0e−λt+1−p0 .

Let pHSi and THSi be the stopping belief and time respectively. Deadline T is opti-
mal if and only if T ≥ max

i∈N
THSi , in which case an agent i’s stopping belief satisfies

pHSi λwHSi = c, (12)

where

pHSi =
p0e
−λTHSi

p0e−λT
HS
i + 1− p0

. (13)

Consider symmetric equilibria. THSi and wHSi are then independent of i and can
be simply denoted THS and wHS . Should agent i succeed at any time, he learns that
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the state is good, in which event (i) the probability he ascribes to any opponent suc-
ceeding (resp., not succeeding) by THS is 1−e−λTHS (resp., e−λTHS ); and (ii) he views
opponents’ successes as independent. Thus, when all opponents use a stopping
time THS , an agent’s expected reward for success in a hidden ES contest is

wHS = w

[
N−1∑
n=0

1

n+ 1

(
N − 1

n

)(
1− e−λTHS

)n
e−(N−1−n)λT

HS

]
. (14)

The term in square brackets is the expected share of the prize that an agent receives
for success. It can be shown (see the proof of Proposition 2 in Appendix A) that this
expected-share expression simplifies to 1−e−NλTHS

(1−e−λTHS)N
. Substituting this expression

and (13) into (12) implicitly defines the equilibrium stopping time, THS , by

1− e−NλTHS(
1− e−λTHS

)
N

p0e
−λTHS

p0e−λT
HS + 1− p0

=
c

λw
. (15)

Each of the two terms on the left-hand side above is strictly decreasing in THS ;
hence, among symmetric equilibria in stopping strategies, there is a unique equilib-
rium. Moreover, it can be shown that any symmetric equilibrium must be outcome
equivalent to this one in the sense that the probability of success by each agent—
equivalently, the private belief reached by the deadline T by each agent, and hence
the public belief at T (see Remark 1)—is the same.21

Proposition 2. In any hidden equal-sharing contest, all symmetric equilibria are outcome
equivalent. In an optimal hidden equal-sharing contest, there is a symmetric equilibrium in
which each agent uses a stopping strategy with stopping time THS defined by (15). THS is
increasing in p0 and w, decreasing in c and N , and non-monotonic with respect to λ. The
probability of success is increasing in p0, w and λ and decreasing in c. An increase in N can
increase or decrease the probability of success.

21For T ≤ THS , the unique symmetric equilibrium is in stopping strategies with stopping time
T . Consider T > THS . Even though best responses always exist in stopping strategies, there will
be symmetric equilibria in which agents do not play stopping strategies. The reason is that there
are multiple strategies by which an agent can arrive at T with the private belief indicated in (15).
However, in any symmetric equilibrium, the cumulative effort by each agent must be THS ; this is
because an agent’s expected share of the prize from success is strictly decreasing in each opponent’s
cumulative effort, and his own private belief at T is strictly decreasing in his own cumulative ef-
fort. While we do not study asymmetric equilibria, we conjecture that they do generally exist here
because cumulative efforts are strategic substitutes. However, note that allowing for asymmetric
equilibria—combined with letting the principal select her preferred equilibrium—cannot decrease
experimentation in a hidden ES contest, and thus will only strengthen our message that hidden ES
can dominate public WTA (as under public WTA, the unique equilibrium is symmetric).
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The comparative statics in Proposition 2 are largely intuitive, so we only note
two points. First, the non-monotonicity of THS in λ owes to the same countervailing
forces that were noted after Proposition 1. Second, the probability of obtaining a
success may increase or decrease whenN increases because there are two competing
effects. On the one hand, holding fixed THS , conditional on at least one opponent
having succeeded (which reveals the state to be good), a larger number of opponents
having succeeded only lowers the expected benefit of effort for an agent at THS .
However, an increase inN also lowers THS , which by itself decreases the probability
that any opponent has succeeded by THS conditional on the good state. Figure 1
provides an example in which the probability of a success is non-monotonic in N .

æ

æ
æ æ æ æ æ æ æ æ

1 2 3 4 5 6 7 8 9 10 N0.87

0.88

0.89

0.90

Prob. of success

Figure 1 – Probability of success in an optimal hidden ES contest. Parameters are p0 =

0.9, c = 0.4, w = 1, and λ = 2; the maximum is obtained at N = 4.

Proposition 2 speaks to hidden equal-sharing contests. The principal may also
consider dividing the prize asymmetrically; for example, rewarding agents who
succeed earlier with larger shares of the prize. However:

Proposition 3. An optimal hidden equal-sharing contest is optimal among hidden contests.

Let us sketch the argument. There is an optimal hidden ES contest in which each
agent uses a stopping time THS ; each agent’s incentive constraint for effort binds at
THS (see (15)). Since an agent’s expected reward for success is independent of when
he succeeds in a hidden ES contest, the proof of Proposition 3 further shows that
each agent’s incentive constraint binds at each t ∈ [0, THS]; that is, at each moment
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before the stopping time, an agent is indifferent over how much effort to exert given
that he has exerted full effort in the past. Intuitively, shirking at time t precludes
success at t but increases the continuation payoff after t (as the private belief does
not decrease); these effects cancel when the reward for success is constant over time
(cf. Halac et al., 2013). It then follows that a hidden contest in which an agent’s
expected reward for success is not constant over [0, T ] cannot induce more experi-
mentation than the optimal hidden ES contest. To see why, suppose to the contrary
that some hidden contest admits a symmetric equilibrium where each agent’s cumu-
lative effort is T > THS ; for simplicity, suppose agents use a stopping strategy. The
principal’s budget constraint implies that the ex-ante expected reward for obtain-
ing success cannot be greater than wHS , the expected reward in the optimal hidden
ES contest. Thus, given a non-constant expected reward sequence, there is a time
t ≤ T such that an agent’s expected reward for success is strictly less than wHS at
t but no less than wHS at each t′ ∈ (t, T ]. But since the agent’s incentive constraint
binds given a constant reward wHS , the constraint must be violated at t under the
non-constant reward sequence, a contradiction.

3.3 Public winner-takes-all versus hidden equal-sharing

Proposition 1 shows that an optimal public WTA contest is optimal among all pub-
lic contests and Proposition 3 shows that an optimal hidden ES contest is optimal
among all hidden contests. To compare these two contests, it suffices to compare
their stopping times: the principal prefers hidden ES to public WTA if and only if
THS > T PW , where T PW is given by (10) and THS is given by (15). Since the left-
hand side of (10) and that of (15) are each decreasing as functions of T PW and THS

respectively, THS > T PW if and only if the left-hand side of (15) would be strictly
larger than its right-hand side were THS = T PW .

Proposition 4. The principal strictly prefers an optimal hidden equal-sharing contest to an
optimal public winner-takes-all contest if and only if

1− e−λNTPW

(1− e−λTPW )N

p0e
−λTPW

p0e−λT
PW + 1− p0

λw > c, (16)

where T PW is defined by equation (10).

18



To see the intuition behind (16), let

L :=
N−1∑
n=1

Pr[n opponents succeeded by T PW | G]

Pr[at least one opponent succeeded by T PW | G]

(
1

n+ 1

)
. (17)

In words, L is an agent’s expected share of the prize for success at T PW in a hid-
den ES contest given that all opponents use a stopping time T PW and at least one
opponent has succeeded. Inequality (16) is equivalent to, for any i ∈ N ,

c <Pr[some j 6= i succeeded by T PW | i did not]Lλw

+ Pr[no j 6= i succeeded by T PW | i did not] Pr[G | no success by T PW ]λw.

The definition of T PW in (10) implies that Pr[G | no success by T PW ]λw = c. Thus,
(16) is equivalent to just Lλw > c, or using (17), to

λw
N−1∑
n=1

Pr[n opponents succeeded by T PW | G]

Pr[at least one opponent succeeded by T PW | G]

(
1

n+ 1

)
> c. (18)

The intuition for (18) is as follows. Assume all opponents are using a stopping
time T PW in a hidden ES contest. At T PW , conditional on all opponents having
failed, agent i is indifferent over his effort (by definition of T PW ). So, he strictly
prefers to continue if and only if he strictly prefers to continue conditional on at least
one opponent having succeeded. The left-hand side of (18) is i’s expected benefit
from effort at T PW conditional on some opponent having succeeded (which implies
the state is good); the right-hand side is the cost.

When N = 2, condition (18) (and hence condition (16)) simplifies to

λ
w

2
> c. (19)

This condition is transparent: it says that an agent would continue experimenting if
he knew his only opponent had already succeeded, in which case he infers the state
is good but success will only earn him half the prize.

For N > 2, (19) is a necessary condition for the optimal hidden ES contest to
dominate the optimal public WTA contest, but it is not sufficient. Inspecting (18), a
simple sufficient condition is

λ
w

N
≥ c. (20)
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This condition says that an agent would continue experimenting if he knew that all
his opponents have succeeded. The example in Figure 1 shows that condition (20)
is not necessary, as there, hidden ES dominates public WTA for all N ∈ {2, . . . , 10}
even though (20) fails when N > 5. (Recall that, as shown in Proposition 1, the
probability of success in an optimal public WTA contest is independent of N ; hence,
it is equal to that under an optimal hidden ES contest when N = 1.)

How do changes in parameters alter the principal’s choice between hidden ES
and public WTA? An increase in p0 decreases the left-hand side of (16), making the
dominance of hidden ES less likely (in the sense of weakly shrinking the set of other
parameters for which the inequality holds).22 This reinforces the intuition that the
gains from using hidden ES stem from bolstering agents’ beliefs that the innovation
may be feasible despite their own failures, which is more important to the principal
when the prior is lower; were p0 = 1, in which case there would be no learning,
public WTA would be an optimal contest. Regarding parameters w, λ, and c, the
necessary and sufficient conditions (19) and (20) reveal that hidden ES will dominate
(resp., be dominated by) public WTA when c

λw
is sufficiently small (resp., large).

The discussion above assumes a fixed number of agents. If the principal can
instead choose the number of agents, then an optimal hidden ES contest always does
at least as well as any public WTA contest. This is because the principal can replicate
the public WTA outcome by setting N = 1 and using hidden ES. An implication of
Proposition 4 is that combining hidden ES with an optimally chosen N > 1 can
be strictly better than using public WTA with any N ; this is the case if and only if
condition (16) holds. Furthermore, as seen in Figure 1, it can be optimal to setN > 2;
this contrasts with a result of Che and Gale (2003) in a different contest environment.

3.4 Simple information disclosure policies

Moving beyond public and hidden disclosure, we next consider the class of contests
with simple information disclosure policies: the principal specifies T ⊆ [0, T ] such
that the full history of outcomes is disclosed at each t ∈ T and nothing is disclosed at

22To verify this, use (18): an increase in p0 increases TPW , which decreases the left-hand side of (18)
because of a first-order stochastically dominant shift of the relevant probability distribution. Note
that our analysis maintains the assumption that p0 < 1. However, the current comparative static
points to continuity with no learning: were p0 = 1, a public WTA contest would always be optimal,
as agents would work until a success is obtained; if condition (20) holds, then hidden ES would also
be optimal.
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t 6∈ T .23 The following result shows that an optimal contest in this class is a (possibly
degenerate) mixture of the optimal contests under public and hidden disclosure.24

Proposition 5. Among contests with simple information disclosure policies, an optimal
contest is a mixture contest that implements public winner-takes-all from time 0 until some
time tS and hidden equal-sharing from tS until some time T , with tS ∈ [0, T ]. Moreover,

1. If λw
N
> c, then tS = 0 and T = THS (so the contest is hidden equal-sharing),

2. If λw
2
< c, then tS = T = T PW (so the contest is public winner-takes-all).

An intuition for the form of the optimal mixture contest stems from the earlier
discussion about how changes in the prior alter the principal’s choice between pub-
lic WTA and hidden ES: the latter is more beneficial when the agents’ beliefs are
lower. The formal proof of Proposition 5 is constructive, as follows. Take any con-
test C = {w(·), T , T}, and let tC be the last time at which the principal discloses
information in C, i.e. tC := sup{t : t ∈ T }. As an agent’s belief at tC , call it ptC ,
corresponds to the public belief, we show that there is a public WTA contest that
induces experimentation until the public belief drops below ptC . Furthermore, be-
cause C has hidden disclosure from tC on, Proposition 3 implies that a hidden ES
contest starting with prior ptC induces more experimentation than contest C does
over [tC , T ]. Building on these two points, we construct a mixture contest that im-
plements public WTA until the public belief reaches ptC and hidden ES from then
on, and we show that this mixture contest dominates the original contest C.

Proposition 5 provides simple sufficient conditions for either public WTA or hid-
den ES to be optimal among contests with simple disclosure policies; these condi-
tions are intuitive given our discussion following Proposition 4 in Subsection 3.3.
Plainly, for N = 2 it is always optimal to use either public WTA or hidden ES. When
λw/c ∈ (2, N), the optimal mixture contest can have a deadline T and a strictly
interior switching time, tS ∈ (0, T ). The intuition turns on the tradeoff between in-
creasing an agent’s expected reward from success versus increasing his belief that
he can succeed: as tS increases, the agent’s belief about the innovation’s feasibility

23The results of this section also apply if the principal randomizes over disclosure times, so long
as randomization is independent of the history.

24A virtue of the present analysis is that the principal does not need commitment power to im-
plement an optimal contest. In particular, if an optimal mixture contest ends without success, the
principal cannot benefit from then running another contest. On the other hand, if restricted to only
use public or hidden contests, such “renegotiation” can be an issue.
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from tS on decreases, but his expected reward for success after tS increases because
in expectation the prize is shared with a smaller number of agents.

0 tS
* TPW tS

THS

TPW
T*

T

Figure 2 – Stopping time T as a function of switching time tS ∈ [0, T ] in a mixture
contest. Parameters are p0 = 0.9, c = 0.18, w = 1, λ = 0.4, and N = 3.

Figure 2 presents an example in which neither a public WTA nor a hidden ES con-
test is the optimal mixture contest. Given any switching time, tS , the graph shows
the (minimum) optimal deadline, T—equivalently, the agents’ stopping time—in a
mixture contest. When tS = T , the contest is public WTA (so T = T PW ), while tS = 0

corresponds to hidden ES (so T = THS). It is evident that for the given parameters,
the optimal mixture contest has a stopping time T ∗ > max{T PW , THS} and a strictly
interior switching time t∗S ∈ (0, T ∗).

4 Extensions

4.1 Other information disclosure policies

As a general matter, the principal can improve upon simple information disclosure
policies. This is true even if attention is restricted to disclosure that is non-stochastic
and common in the sense that all agents are provided with the same information.
Specifically, we demonstrate in the Supplementary Appendix that the principal can
sometimes induce more experimentation by using a “cutoff disclosure” policy: for
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some 1 ≤ m < N , the principal discloses at each time t ∈ [0, T ] only whether more
than m agents have succeeded by t.

The complexity of agents’ strategic interaction combined with learning precludes
us from providing results about optimal information disclosure in full generality.25

A plausible conjecture is that even allowing for an arbitrary disclosure policy, the
sufficient conditions of Proposition 5 generalize: if λw

N
> c, then hidden ES is an

optimal contest; if λw
2
< c, public WTA is an optimal contest.

Given the salience and widespread use of WTA contests, it is worth noting that:

Proposition 6. An optimal public winner-takes-all contest is optimal among winner-takes-
all contests with any disclosure policy.

The logic is as discussed earlier: the principal only cares about agents’ effort in-
centives following a history of no successes; hiding any information about this his-
tory in a WTA contest reduces effort incentives because when an agent conditions
on some opponent having succeeded, his expected reward for success is zero.

4.2 Observability of success

Our model has posited that a success is observable to both the agent who succeeds
and to the principal. We now consider what happens if only the principal or only
the agent directly observes a success and can choose whether and when to verifiably
reveal it to the other party. In both cases, we will see that a hidden ES contest domi-
nates a public WTA contest under the same conditions as in our baseline model. We
also discuss agents’ ability to verifiably reveal a success to their opponents and the
conditions under which our results continue to hold in this case.

25It may be tempting to suggest that stochastic disclosure can always be used to improve on hidden
ES, as follows. Suppose the sharing rule is ES and information is hidden until THS . At THS and
beyond, the principal randomizes such that a signal (common to all agents) is only sent with some
(non-stationary) probability when no-one has succeeded; if someone has succeeded, no signal is
sent. Then, observing no signal will increase agents’ beliefs and they would be willing to experiment
beyond THS . (Cf. Ely (2014).)

The problem, however, is that this reasoning overlooks the dynamic strategic interaction. Specifi-
cally, in a hidden ES contest, cumulative efforts are strategic substitutes; hence, anticipating that his
opponents may work longer than THS , an agent will not want to work early on because his expected
share of the prize from success before THS is now lower. Furthermore, the possibility of learning at
THS and beyond from his opponents’ outcomes will also reduce an agent’s incentive to exert effort
before THS , just as in a public contest with a shared prize scheme.
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Only principal observes success. Suppose that the principal observes an agent’s
success but the agent does not. The principal can choose when to reveal a success to
the agent. This scenario is relevant, for example, to the Netflix contest: there, con-
testants had to submit an algorithm whose performance was evaluated by Netflix
on a proprietary “qualifying dataset” to determine whether the 10% improvement
target had been achieved.26 We suppose that if a success is obtained, the principal
must reveal it by the end of the contest; she cannot harness the innovation’s benefits
without paying out the prize. We now interpret the arguments of the prize-sharing
scheme w(si, s−i) as the times at which the principal reveals agents’ successes.

It is readily seen that our results extend to this setting. As the principal only val-
ues one success and does not benefit from saving prize money, she has no incentive
to not reveal a success immediately to an agent who succeeds. At each time t, an
agent conditions on not having obtained a success by t unless the principal has re-
vealed otherwise. Consequently, the analysis of Section 3 applies without change.
Indeed, verifiable revelation by the principal is not essential: the same outcomes
can be supported even if the principal is only able to make cheap-talk or unverifi-
able statements about an agent’s success.

Only agent observes success. Suppose next that the principal does not observe
success directly; rather, any agent who succeeds can choose voluntarily when to
verifiably reveal his success to the principal. This assumption is obviously relevant
for many applications. The payments w(si, s−i) are now interpreted as a function of
the times at which agents reveal their success.

It is weakly dominant for an agent to immediately reveal his success in a WTA
contest. Immediate revelation to the principal is also optimal in a hidden ES contest,
as an agent’s expected reward for success is independent of when he reveals success.
Given the analysis in Section 3, it follows that in both public WTA and hidden ES
contests, there exist symmetric equilibria where agents follow stopping strategies
and reveal their successes immediately, inducing the same outcome as when both
the principal and the agent directly observe success. Naturally, verifiability is im-
portant here; the same outcome cannot be obtained with cheap talk by the agents.

26Netflix made available a “training dataset” for contestants’ use; we set aside considerations such
as a contestant updating about the likelihood of his algorithm succeeding on the qualifying dataset
based on its performance on the training dataset.
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Agents can reveal success to opponents. Lastly, suppose agents can verifiably re-
veal their success to other agents. Would they have the incentive to do so? While
the issue is moot in public contests, it is paramount in hidden contests, because such
an incentive would unravel the principal’s desire to keep successes hidden.

In a hidden ES contest, a successful agent wants to deter opponents from con-
tinuing experimenting so that he can secure a larger share of the prize. Revealing
a success has two opposing effects: it makes opponents more optimistic about the
innovation’s feasibility but decreases their expected prize shares from their own suc-
cess. An agent’s incentive to reveal that he has succeeded (so long as no other agent
has already done so) will thus generally involve a tradeoff,27 and the tradeoff’s res-
olution could potentially harm the principal. However, if condition (20) holds, the
resolution is unambiguous: revealing a success always increases experimentation
by other agents. Therefore, that sufficient condition for hidden ES to be optimal
also ensures that agents have no incentives to reveal their success to opponents, and
hence the principal can indeed implement hidden ES when (20) holds.

The foregoing discussion presumes that an agent can verifiably reveal a success
to his opponents without actually making the innovation available to them. In many
contexts, this would be difficult, however; for example, a contestant in the Netflix
contest could probably not prove that he has succeeded without sharing his algo-
rithm. Clearly, if verifiable revelation implies sharing the innovation, then an agent
would never reveal a success to his opponents in a hidden ES contest. Moreover,
revelation cannot be credibly obtained if messages are cheap talk.

4.3 Endogenizing the prize

We have studied contest design for a principal who has a fixed budget of prize
money and whose objective is to maximize the probability of a success: the principal
does not gain from saving any of the budget, or more broadly, does not value money.
Trivially, if the value of the innovation is larger than the principal’s budget, i.e. v ≥
w, our problem is equivalent to one where the principal does value money (quasi-
linearly, as usual) but is restricted to spend the whole budget w upon a success.

Suppose now the principal values money and can choose the size of the prize.

27Once an agent reveals success, all other successful agents will have strict incentives to reveal
too: with the uncertainty about the innovation’s feasibility resolved, the only effect of revelation is
to lower opponents’ expected prize shares.
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That is, w is now optimally chosen by the principal, but we maintain the assumption
that the full amount w must be paid to the agents if there is at least one success.
Formally, the principal chooses w and a contest to maximize (the expectation of)

(v − w)p0

(
1− e−λAT

)
. (21)

Plainly, this problem can be solved in two stages: first, for any given w, solve for
the optimal contest; second, given the optimal contest as a function of w, solve for
the optimal prize w. The analysis of Section 3 corresponds to the first stage and
shows that, for any prizew, the optimal contest (within the class of simple disclosure
policies) is a mixture contest. Analyzing the second stage yields:

Proposition 7. Fix any set of parameters {p0, λ, c, N}. When the value of the innovation,
v, is large (resp., small) enough, the principal maximizes (21) by choosing some prize w and
a hidden equal-sharing (resp., public winner-takes-all) contest.

The logic is simple: the larger is v, the larger the gains to the principal from
inducing more experimentation, and hence the larger is the prize the principal will
choose. For v large enough, the principal optimally chooses a prize w large enough
that λw

N
> c; for v small enough, the optimal prize is small enough that λw

2
< c. The

result then follows from Proposition 5.

5 Concluding Remarks

This paper has studied contest design for specific innovations in an environment
with learning, using the exponential-bandit framework of experimentation. In a
nutshell, our main result is that a winner-takes-all contest in which any successful
innovation is disclosed immediately (“public WTA”) is often dominated by a contest
in which no information is disclosed until a deadline at which all successful agents
equally share the prize (“hidden ES”). Within a class of salient disclosure policies,
an appropriately-crafted mixture of these two contests is always optimal; simple
sufficient conditions guarantee optimality of either public WTA or hidden ES.

Although our formal analysis is within the confines of a particular model, we be-
lieve the underlying intuition—a tradeoff between the reward an agent expects to
receive should he succeed and his belief about the likelihood of success—is valid
more generally. Our work suggests that the common default assumption (for the-
ory) or prescription (for policy) of using WTA schemes deserves further scrutiny
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when the feasibility of the innovation is uncertain and successful innovations are
not automatically public information. In particular, alternative patent schemes that
implement some version of “sharing the prize” may be warranted for certain kinds
of R&D. On the other hand, in contexts where innovations are publicly observable,
our analysis implies that a WTA contest is optimal; note though that the principal
would sometimes be willing to pay a cost to alter the observability structure.

We conclude with some additional observations.

Socially efficient experimentation. We have focused on contest design for a prin-
cipal who does not internalize agents’ effort costs. But our analysis also implies
that public WTA contests can be dominated by a hidden ES contest even for a social
planner who does internalize these costs. As noted in Remark 2, a public WTA con-
test can implement the first-best solution if and only if the social value of a success,
v, is no larger than the total prize available, w. Thus, when condition (16) holds—
so that an optimal hidden ES contest induces a later stopping time than any public
WTA contest—and when v is sufficiently larger than w, hidden ES will be preferred
to public WTA net of effort costs: even though hidden ES induces wasteful effort
after the innovation is first obtained, it increases agents’ incentives to experiment.
It is plausible—even likely—that in various circumstances, the social value of inno-
vation is substantially larger than the prize available to a contest designer, e.g. for
medical innovations or scientific discoveries.

Discounting. For tractability, our analysis has ignored discounting. From a ro-
bustness perspective, small discounting frictions would not qualitatively alter our
main points. More broadly, however, one advantage of public WTA contests is that
terminating the contest when the first success is obtained does not affect agents’
incentives; by contrast, hidden ES contests must be run until their deadline. This
suggests that if the principal cannot profit from an agent’s innovation until the
end of a contest, then discounting would introduce a force in favor of using public
WTA. A related point is that when there is discounting—or flow costs to prolonging
contests—hidden ES contests do rely on commitment power.

Multistage contests. Innovations sometimes require a sequence of successes. For
simplicity, suppose the principal only gains the profit v when an agent successfully
completes two tasks or stages: first I , for intermediate, and then F , for final. Success
in each stage k ∈ {I, F} is uncertain and determined as in our baseline model, but
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with a stage-specific state θk. The states are independently distributed (for simplic-
ity, but this can be relaxed) with respective prior probabilities pk0 := Pr(θk = G).

Our results can be applied to contest design in this two-stage setting. Specifically,
one can show that if pF0 is sufficiently large—large enough that it would be optimal
to use a public WTA contest were F the only stage (given any number of agents no
larger than N )—then there is an optimal contest that has the following form. The
principal initially runs a mixture contest during which agents can work on stage I
until some pre-specified time T ; at time T , at most one agent is selected to advance
and can work on stage F ; the entire prize w is given to this agent if he succeeds on
F . The advancing agent is either the first agent to succeed on I during the mixture
contest’s public disclosure phase, or, if no-one succeeded in that phase, the advanc-
ing agent is determined by a uniform randomization among the successful agents
in the hidden disclosure phase.28 Intuitively, the “continuation value” from being
selected for the second stage acts like the total prize for the first stage. As in our
baseline model, the optimal mixture contest for stage I may be degenerate: public
WTA or hidden ES. For further analysis of multistage settings, we refer readers to
the contemporaneous work of Bimpikis, Ehsani, and Mostagir (2014).

Endogenous entry. We have taken the number of contestants, N , to be fixed (or to
be specified by the principal). An alternative that may be more appropriate for some
contexts would be to consider a fixed entry cost—any contestant must incur some
cost to either register for the contest or to get started with experimentation—and
endogenously determine N through free entry. We suspect our main themes would
extend to such a specification, and hope this will be addressed by future research.
Naturally, the entry cost itself may also be set endogenously by the principal, even
if her objective is only to maximize the probability of a success.

Heterogeneity. It would also be interesting to incorporate heterogeneity among
agents into the current framework. For example, agents may be privately informed
about their “ability” (λ) or their cost of effort (c). While introducing the latter is
likely to have intuitive effects—agents with higher c stop experimenting sooner—
the former would be more subtle because of the countervailing effects on stopping
times discussed following Proposition 1.

28If no agent succeeded on stage I , then no-one advances.
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A Appendix: Proofs

A.1 Proof of Proposition 1

The first part of the result was proven in the text. The comparative statics of T PW

in the parameters are obtained through straightforward manipulation of equation
(10); see the Supplementary Appendix for derivations.

The probability of obtaining a success in an optimal public WTA contest is given
by expression (5) with ATPW = NT PW . By Remark 1, the comparative statics for the
probability of success follow immediately from the left-hand side (LHS, hereafter)
of (9) being increasing in c, decreasing in λ and w, and independent of p0 and N .

A.2 Proof of Proposition 2

The first part of the proposition is proven in the text (see the discussion in fn. 21 for
the first sentence of the proposition). We prove the comparative statics in four steps.

Step 1. For any κ ∈ [0, 1] and N ≥ 2, we claim
∑N−1

n=0

(
1

n+1

) (
N−1
n

)
(1− κ)n κN−1−n =

1−κN
(1−κ)N , which immediately implies that the expression in square brackets in (14) is

equivalent to 1−e−NλTHS

(1−e−λTHS)N
for any N ≥ 1. The claim is verified as follows:

N−1∑
n=0

(
1

n+ 1

)(
N − 1

n

)
(1− κ)n κN−1−n =

N−1∑
n=0

(N − 1)! (1− κ)n κN−1−n

(N − 1− n)!n!(n+ 1)

=
1

(1− κ)N

N−1∑
n=0

(
N

n+ 1

)
(1− κ)n+1 κN−(n+1)

=
1

(1− κ)N

(
1−

(
N

0

)
(1− κ)0 κN

)
=

1− κN

(1− κ)N
.

Step 2. Letting κ := e−λT
HS ∈ (0, 1) and q := 1−p0

p0
> 0, rewrite (15) as

1− κN

(1− κ)N

κ

κ+ q
=

c

λw
. (22)

We show that the LHS of (22) is increasing in κ. We compute
∂
(

1−κN
(1−κ)N

)
∂κ

= 1−κN−NκN−1(1−κ)
(1−κ)2N ,

which is positive if and only if

1 ≥ NκN−1 − (N − 1)κN . (23)
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Differentiation shows that the right-hand side (RHS, hereafter) of (23) is increasing

in κ since κ ∈ (0, 1). As (23) holds with κ = 1, it follows that
∂
(

1−κN
(1−κ)N

)
∂κ

> 0. Moreover,
κ
κ+q

is also increasing in κ because q > 0; hence the LHS of (22) is increasing in κ.

A similar argument establishes that the LHS of (22) is decreasing in N .

Step 3. Using Step 2, we now derive the comparative statics of THS . As the LHS of
(22) is increasing in κ and κ is decreasing in THS , the LHS of (22) is decreasing in
THS . Moreover, (i) the RHS of (22) is increasing in c and decreasing in w while the
LHS is independent of these parameters, and (ii) q is decreasing in p0 and thus the
LHS of (22) is increasing in p0, while the RHS is independent of this parameter. We
thus obtain that THS is increasing in p0 and w and decreasing in c. Similarly, because
the LHS of (22) is decreasing in bothN and THS and the RHS is independent of both
parameters, we obtain that THS is decreasing in N .

Lastly, we show that THS is non-monotonic with respect to λ by providing an
example. Let p0 = 1

2
and N = 2. Then (15) becomes

1− e−2λTHS

2
(
1− e−λTHS

) e−λT
HS

e−λTHS + 1
=

c

λw
,

which simplifies to THS = 1
λ

log
(
λw
2c

)
. Differentiating, ∂THS

∂λ
= 1

λ2

(
1− log

(
λw
2c

))
,

which is positive for small λ (i.e., p0λw ≈ c) and negative for large λ.

Step 4. We can now show the comparative statics for the probability of obtaining
a success. The probability of success in an optimal hidden equal-sharing contest is
given by expression (5) with AT

HS
= NTHS . The comparative static with respect

to c is immediate: as shown in Step 3, if c increases, THS decreases, which implies
that NTHS and thus the probability of success decreases. An analogous argument
shows that the probability of success is increasing in w and p0.

We next show that the probability of success increases with λ. From Step 3, THS

may increase or decrease when λ increases. However, note that λTHS must increase
when λ increases: if λTHS decreases, the LHS of (15) increases, while the RHS de-
creases when λ increases, leading to a contradiction. Therefore, λTHS increases with
λ, implying that the probability of obtaining a success increases with λ.

Finally, the ambiguous effect of an increase in N on the probability of success is
seen through the example reported in Figure 1.
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A.3 Proof of Proposition 3

We analyze symmetric equilibria of hidden contests. We will use the following:

Lemma 1. Take any symmetric equilibrium of a hidden contest with prize scheme w(si, s−i)

and optimal deadline T . If this equilibrium does not have full effort by all agents from 0 to T ,
there is another scheme w′(·) with an optimal deadline T ′ that has a symmetric equilibrium
in which each agent exerts full effort (so long as he has not succeeded) from 0 until T ′, and
where the aggregate cumulative effort is the same as under scheme w(·) and deadline T .

Proof. See the Supplementary Appendix.

We proceed in three steps.

Step 1. Consider a hidden contest with prize scheme w(si, s−i) and associated op-
timal deadline T as defined in Lemma 1. Given full effort from 0 to T , the contest
induces a sequence of expected rewards for success at each time t ∈ [0, T ] as shown
in the proof of Lemma 1. We show that any hidden contest that induces a constant
expected reward sequence is weakly dominated by an optimal hidden ES contest.
Note that for a constant expected reward sequence, the principal’s budget constraint
implies that for all t ∈ [0, T ],

wi,t = Es−iw (t, s−i) = En
[
w

n
|n ≥ 1, T

]
. (24)

Consider an optimal hidden ES contest. The induced sequence of expected rewards
for success is constant with wi,t = wHS = En

[
w
n
|n ≥ 1, THS

]
for all t ∈ [0, THS],

where
p0e
−λTHS

p0e−λT
HS + 1− p0

λwHS = c.

Note that THS and wHS are unique.

Suppose there exists a hidden contest with associated optimal deadline T (as de-
fined in Lemma 1) that induces a constant sequence of expected rewards and has
T > THS . By (24), the induced sequence must have wi,t = En

[
w
n
|n ≥ 1, T

]
for all

t ∈ [0, T ]. But then if T > THS , the expected number of successful agents given full
effort from 0 until T is larger than that under deadline THS , and hence the expected
reward for success is wi,t < wHS . It follows that pi,Tλwi,T < c, but then agents do not
exert effort continuously from 0 until T , a contradiction.
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Step 2. We show that in an optimal hidden ES contest, the agent’s incentive con-
straint for effort is binding at each time t ∈ [0, THS].

An agent i’s continuation payoff at any time t′ ∈ [0, T ] is

Ut′ := pi,t′

∫ T

t′
(wi,tλ− c) ai,te−

∫ t
t′ λai,zdzdt− (1− pi,t′) c

∫ T

t′
ai,tdt.

Consider the continuation payoff at t′ from a strategy ãi,t = 1 ∀t ∈ [0, T ] \ (t′, t′ + ε)

and 0 otherwise:

Ut′(ε) := pi,t′

∫ T

t′+ε

(wi,tλ− c) e−(t−t
′−ε)λdt− (1− pi,t′) c (T − t′ − ε) .

We compute

U ′t′ (ε) = pi,t′

[
− (wi,t′+ελ− c) +

∫ T

t′+ε

(wi,tλ− c) e−(t−t
′−ε)λλdt

]
+ (1− pi,t′) c,

U ′t′ (0) = − (pi,t′wi,t′λ− c) + pi,t′

∫ T

t′
(wi,tλ− c) e−(t−t

′)λλdt.

Note that Ut′ (0) ≥ Ut′ (ε) for any ε ≥ 0 and thus U ′t′ (0) ≤ 0 because of Nash equilib-
rium. If wi,t = wi for all t, the expression above simplifies to

U ′t′ (0) = − (pi,t′wiλ− c) + pi,t′

∫ T

t′
(wiλ− c) e−(t−t

′)λλdt

= − (pi,t′wiλ− c) + pi,t′ (wiλ− c)
(

1− e−(T−t′)λ
)

= c (1− pi,t′)− pi,t′ (wiλ− c) e−(T−t
′)λ.

In an optimal hidden ES contest, T = THS , wi = wHS , and pi,THSw
HSλ = c; hence

pi,t′e
−(THS−t′)λ (wHSλ− c) = c (1− pi,t′) .

Therefore, we obtain U ′t′ (0) = 0, showing that each agent’s incentive constraint is
binding at each time t′ ≤ THS in an optimal hidden ES contest.

Step 3. We show that any hidden contest that induces a non-constant sequence of
expected rewards is weakly dominated by hidden ES. Suppose {wi,t}t∈[0,T ] is non-
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constant. The incentive constraint for agent i at any z ∈ [0, T ] is given by

U ′z (0) = − (pi,zwi,zλ− c) + pi,zλ

∫ T

z

(wi,tλ− c) e−(t−z)λdt ≤ 0. (25)

Suppose, to contradiction, T > THS. For any z ≤ THS < T, rewrite (25) as

U ′z (0) = − (pi,zwi,zλ− c) + pi,zλ

[ ∫ THS
z

(wi,tλ− c) e−(t−z)λdt
+
∫ T
THS

(wi,tλ− c) e−(t−z)λdt

]
≤ 0. (26)

By Step 2, it holds that in an optimal hidden ES contest, U ′z(0) = 0 at any time
z ≤ THS . Subtracting this binding constraint from (26), we obtain for any z ≤ THS :

−pi,z
(
wi,z − wHS

)
λ+ pi,zλ

[ ∫ THS
z

(
wi,t − wHS

)
λe−(t−z)λdt

+
∫ T
THS

(wi,tλ− c) e−(t−z)λdt

]
≤ 0.

Define

t′ = sup

{
t :

{
z ∈

(
t− 1

m
, t

)
: wi,z ≤ wHS

}
has positive Lebesgue measure for any m > 0

}
.

Such a t′ is well-defined because otherwise wi,t > wHS almost everywhere, which
contradicts the budget constraint.

Consider first the case where t′ ≤ THS . Then for any m, consider any z ∈{
z ∈

(
t′ − 1

m
, t′
)

: wi,z ≤ wHS
}
. Define

∆z :=− pi,z
(
wi,z − wHS

)
λ+ pi,zλ

∫ t′

z

(
wi,t − wHS

)
λe−(t−z)λdt

+ pi,zλ

∫ THS

t′

(
wi,t − wHS

)
λe−(t−z)λdt+ pi,zλ

∫ T

THS
(wi,tλ− c) e−(t−z)λdt.

Note that −pi,z
(
wi,z − wHS

)
λ ≥ 0 and

∫ THS
t′

(
wi,t − wHS

)
λe−(t−z)λdt ≥ 0 by the defi-

nition of t′. Moreover,∣∣∣∣∣
∫ t′

z

(
wi,t − wHS

)
λe−(t−z)λdt

∣∣∣∣∣ ≤ 2λw (t′ − z)

because the budget constraint implies
∣∣wi,t − wHS∣∣ ≤ 2w. Finally, note that γ :=∫ T

THS
(wi,tλ− c) e−(t−z)λdt > 0, because the incentive constraint implies that for any

t, pi,twi,tλ− c ≥ 0, and pi,t < 1. Now take 1
m
< γ

2λw
. Then ∆z > 0, a contradiction.
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Consider next the case where t′ > THS. Then for m sufficiently large and z ∈{
z ∈

(
t′ − 1

m
, t′
)

: wi,z ≤ wHS
}

,

U ′z (0) = − (pi,zwi,zλ− c) + pi,zλ

∫ T

z

(wi,tλ− c) e−(t−z)λdt > 0.

The first term is strictly positive because pi,THSw
HSλ − c = 0, pi,z < pi,THS , and

wi,z ≤ wHS . The second term is strictly positive for the same reasons as before.
Thus, again, we reach a contradiction.

A.4 Proof of Proposition 4

Proposition 1 shows that in an optimal public WTA contest, agents follow a stopping
strategy with stopping time T PW given by (10). Proposition 2 shows that in an
optimal hidden ES contest, agents follow a stopping strategy with stopping time
THS given by (15). Hence, the principal strictly prefers hidden ES to public WTA if
and only if THS > T PW . Using (10) and (15), this condition is equivalent to (16) as
shown in the text.

A.5 Proof of Proposition 5

We proceed in two steps, first showing that a mixture contest is optimal and then
verifying the sufficient conditions for the optimality of public WTA and hidden ES.

Step 1. Consider an arbitrary contest C with prize scheme w(si, s−i), simple infor-
mation disclosure policy T , and deadline T . We focus on symmetric equilibria and,
without loss of generality, define the deadline T so that agents exert positive effort
at T given no success by T . The aggregate cumulative effort up to T induced by
contest C (given no success by T ) is AT . We want to show that there exist t∗S ≥ 0,
T ∗ ≥ t∗S , and a mixture contest that implements public WTA from 0 until t∗S and
hidden ES from t∗S until T ∗ such that the aggregate cumulative effort by T ∗ (given
no success by T ∗) induced by this contest is A∗ ≥ AT . This mixture contest will
therefore dominate C.

Suppose for the purpose of contradiction that A∗ < AT for all t∗S ≥ 0 and T ∗ ≥ t∗S .
This implies APW < AT and AHS < AT , where APW is the aggregate cumulative ef-
fort induced in an optimal public WTA contest and AHS is the aggregate cumulative
effort induced in an optimal hidden ES contest.

Let tC be the last time at which information is disclosed in contest C, i.e. tC =

max{t : t ∈ T }. Consider a history of no success. The agents’ belief at tC corresponds
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to the public belief; denote this belief by ptC . Since agents are willing to exert positive
effort at some point t ∈ [tC , T ] (recall that, without loss, T is defined so that agents
exert positive effort at T given no success by T ), and an agent’s reward for success at
any such point cannot be strictly larger thanw (by the principal’s budget constraint),
we must have ptC ≥ c

λw
. It follows that there exists a public WTA contest that induces

full effort by each agent until the public belief reaches pPW ≤ ptC . Let t∗ be the time
at which the belief reaches ptC in a public WTA contest and denote by ÃPW the
aggregate cumulative effort induced by this contest over [0, t∗].

Next, note that given the public belief ptC at tC , the continuation equilibrium
in contest C has hidden disclosure. Consider an optimal hidden ES contest starting
with a prior belief p0 = ptC and denote by ÃHS the total cumulative effort induced by
such a contest. By Proposition 3, ÃHS is weakly larger than the aggregate cumulative
effort induced by contest C over [tC , T ].

We show that a mixture contest with switching time t∗ induces aggregate cumu-
lative effort A∗ = ÃPW + ÃHS , and hence it dominates contest C. Let pi,t be agent
i’s belief at time t, where this belief is updated given public disclosure from time 0
until t∗ and hidden disclosure from t∗ on. Denote by w the agent’s expected reward
for success at any time t ≥ t∗ given no success by time t∗, and let A−i,z denote (i’s
conjecture of) the aggregate effort exerted by i’s opponents at time z so long as they
have not succeeded by z. The agent’s problem is:

max
(ai,t)t∈[0,T∗]

∫ t∗

0

(wpi,tλ− c) ai,te−
∫ t
0 pi,zλ(ai,z+A−i,z)dzdt

+ e−
∫ t∗
0 pi,zλ(ai,z+A−i,z)dz

∫ T ∗

t∗
(wpi,tλ− c) ai,te−

∫ t
t∗ pi,zλai,zdzdt.

The belief pi,t is decreasing and the expected reward for success is also (weakly)
decreasing because w ≤ w. Hence, an optimal strategy for agent i is a stopping
strategy where ai,t = 1 if wpi,tλ ≥ c and ai,t = 0 otherwise for t ≤ t∗, and ai,t = 1 if
wpi,tλ ≥ c and ai,t = 0 otherwise for t > t∗ (so long as the agent has not succeeded). It
follows that if a public WTA contest induces ÃPW until time t∗ given no continuation
game, it also induces ÃPW until time t∗ when the continuation game is a hidden ES
contest. Finally, starting from t∗, the continuation game is the same as that under
a hidden ES contest starting at time 0 with prior belief p0 = ptC . Therefore, this
mixture contest induces A∗ = ÃPW + ÃHS and dominates contest C.

Step 2. We show the sufficient conditions for the optimality of hidden ES and public
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WTA given in the proposition. Consider a mixture contest with switching time tS .
The stopping time T for any agent i is given by:

c

λw
=Pr[some j 6= i succ. in [tS , T ] | no one did by tS , i didn’t by T ]︸ ︷︷ ︸

α(tS)

L[tS ,T ]

+ Pr[no j 6= i succ. in [tS , T ] | no one did by tS , i didn’t by T ]︸ ︷︷ ︸
1−α(tS)

Pr[G | no succ. by T ],

where

L[tS ,T ] :=
N−1∑
n=1

Pr[n opponents succ. btw tS and T | at least one did, no succ. by tS ]
(

1

n+ 1

)
.

We can rewrite this condition as

c

λw
=
p0e
−NλtSe−λ(T−tS)

(
1− e−(N−1)λ(T−tS)

)
p0e−NλtSe−λ(T−tS) + (1− p0)︸ ︷︷ ︸

α(tS)

1−e−λ(T−tS)N(
1−e−λ(T−tS)

)
N
− e−λ(N−1)(T−tS)

1− e−λ(T−tS)(N−1)︸ ︷︷ ︸
L[tS,T ]

+

[
1−

p0e
−NλtSe−λ(T−tS)

(
1− e−(N−1)λ(T−tS)

)
p0e−NλtSe−λ(T−tS) + (1− p0)

]
︸ ︷︷ ︸

1−α(tS)

p0e
−NλT

p0e−NλT + (1− p0)︸ ︷︷ ︸
Pr[G | no success by T ]

. (27)

Note that α(tS) is decreasing in tS ; L[tS ,T ] is decreasing in T and increasing in tS ;
Pr[G | no success by T ] is decreasing in T ; and the RHS of (27) is decreasing in T .

Suppose first that λw
2
< c. Then for any tS and T , L[tS ,T ] <

c
λw

. Given T , it follows
that Pr[G | no success by T ] > c

λw
, as otherwise (27) would not hold with equality.

Consequently, if tS increases, (1 − α(tS)) and L[tS ,T ] increase and thus the RHS of
(27) increases. This implies that T must increase when tS increases (so that the RHS
decreases and remains equal to the LHS), and therefore setting tS = T is optimal.

Suppose next that λw
N
> c. Then for any tS and T , L[tS ,T ] >

c
λw

. Given T , it follows
that Pr[G | no success by T ] < c

λw
, as otherwise (27) would not hold with equality.

Note that a change in tS now causes two opposing effects on the RHS of (27): on the
one hand, reducing tS increases α(tS), which increases the RHS of (27), but on the
other hand it reduces L[tS ,T ], which reduces the RHS of (27). We show that if λw

N
> c,

the net effect of reducing tS to zero on the RHS of (27) is positive, which implies that
T must increase and therefore setting tS = 0 is optimal.

To show this, note that by (27), (1−α(tS)) Pr[G | no success by T ] = c
λw
−α(tS)L[tS ,T ],
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and hence α(0)L[0,T ] + (1− α(0)) Pr[G|no success by T ] is equal to

α(0)L[0,T ] +
1− α(0)

1− α(tS)

( c

λw
− α(tS)L[tS ,T ]

)
. (28)

We need to show that (28) is greater than c
λw

. (28) can be rewritten as

p0e
−λT

p0e−λT + 1− p0

(
1− e−λTN

(1− e−λT )N
− e−λT (N−1)

)
+
p0e
−λT−λt(N−1) + (1− p0)
p0e−λT + 1− p0

c

λw

− p0e
−λT−λt(N−1) + (1− p0)
p0e−λT + 1− p0

p0e
−λT−λt(N−1)

p0e−λT−λt(N−1) + (1− p0)

(
1− e−λN(T−t)

(1− e−λ(T−t))N
− e−λ(T−t)(N−1)

)
.

Some algebra then shows that (28) is greater than c
λw

if and only if

1− e−λTN

(1− e−λT )N
− e−λt(N−1)(1− e−λN(T−t))

(1− e−λ(T−t))N
− c

λw

(
1− e−λt(N−1)

)
≥ 0.

By assumption, c
λw

< 1
N

; thus, again doing some algebra, it suffices to show that

1− e−λTN

(1− e−λT )
− e−λt(N−1) − e−λNT+λt

(1− e−λ(T−t))
− 1 + e−λt(N−1) ≥ 0.

This inequality holds with equality when t = 0, and a routine computation verifies
that the derivative of the LHS with respect to t is non-negative for all N ≥ 2.

A.6 Proofs of Proposition 6 and Proposition 7

See the Supplementary Appendix.
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B Supplementary Material for Online Publication Only

B.1 Omitted proofs

B.1.1 Details for the proof of Proposition 1

The comparative statics of T PW with respect to c and w follow from the fact that the
RHS of (10) is increasing in c and decreasing in w, while the LHS is independent of
these parameters and decreasing in T PW . Similarly, the comparative statics of T PW

with respect to p0 and N follow from the fact that the LHS of (10) is increasing in
p0, decreasing in N and decreasing in T PW , while the RHS is independent of these
parameters. Finally, to compute the comparative static with respect to λ, note that
(10) gives

T PW =
1

λN
log

(
p0

1− p0

(
λw

c
− 1

))
,

and thus,

∂T PW

∂λ
=
λw − (λw − c) log

(
p0(λw−c)
c(1−p0)

)
λ2N(λw − c)

,

where the logarithm in the numerator is non-negative because p0λw ≥ c. Hence,
∂TPW

∂λ
is positive for λ small enough (i.e., p0λw ≈ c) and negative if λ is large.

B.1.2 Details for the proof of Proposition 3

We provide here a proof for Lemma 1.

First, without loss, take T = sup {t : ai,t > 0} . Next, suppose that each agent’s
effort ai,t is not constantly 1 over [0, T ] . Let each agent’s private belief at T be pi,T .
We choose a sub-interval [0, T ′] such that each agent’s private belief at T ′ conditional
on no success before T ′ and all agents exerting full effort for the whole sub-interval
is p′i,T ′ = pi,T .We find a prize scheme w′(·) such that exerting full effort for the whole
sub-interval [0, T ′] is a Nash equilibrium.

To this end, define a function τ : [0, T ]→ R+ by

τ (z) =

∫ z

0

ai,tdt. (29)

Note that τ is weakly increasing. Take T ′ = τ(T ). By convention, for any t ∈ [0, T ′],
we let τ−1(t) = inf{z : τ(z) = t}. Denote by p′i,t the private belief at time t ∈ [0, T ′]

under full effort. It is straightforward that for t ∈ [0, T ′], p′i,t = pi,τ−1(t).
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We find w′(·) such that for any t′, agent i’s payoff by following the new equilib-
rium, a′i,t = 1, over [t′, T ′] is the same as his payoff from following the old equilib-
rium over [τ−1 (t′) , T ] under w(·). The latter payoff is:

pi,τ−1(t′)

∫ T

τ−1(t′)

(wi,tλ− c) ai,te
−
∫ t
τ−1(t′) λai,zdzdt−

(
1− pi,τ−1(t′)

)
c

∫ T

τ−1(t′)

ai,tdt,

where wi,t is the expected reward if agent i succeeds at t given scheme w(·), i.e. sup-
pressing the dependence on equilibrium strategies,

wi,t = Es−iw (t, s−i)

=

∫
[0,T ]N−1

w (t, s1, ..., si−1, si+1, ..., sN)

(∏
j 6=i

aj,sj

)
λN−1e−λ

∑
j 6=i

∫ sj
0 aj,zdzds−i.

The former payoff is:

pi,t′

∫ T ′

t′

(
w′i,tλ− c

)
a′i,te

−
∫ t
t′ λa

′
i,zdzdt− (1− pi,t′) c

∫ T ′

t′
a′i,tdt,

where we find scheme w′(·) such that w′i,t = wi,τ−1(t):

w′i,t′ = Es−iw′
(
t′, s′−i

)
=

∫
[0,T ′]N−1

w′
(
t′, s′−i

)
λN−1e−λ

∑
j 6=i s

′
jds′−i

=

∫
[0,T ]N−1

w′
(
τ (t) , τ

(
s′−i
))(∏

j 6=i

τ ′ (sj)

)
λN−1e−λ

∑
j 6=i τ(sj)ds−i

=

∫
[0,T ]N−1

w′
(
τ (t) , τ

(
s′−i
))(∏

j 6=i

aj,sj

)
λN−1e−λ

∑
j 6=i τ(sj)ds−i,

where τ
(
s′−i
)

:= (τ (s1) , ..., τ (si−1) , τ (si+1) , ..., τ (sN)) . We want to find w′(·) such
that for any i and t,

∫
[0,T ]N−1

w′ (τ (t) , τ (s−i))

(∏
j 6=i

aj,sj

)
λN−1e−λ

∑
j 6=i τ(sj)ds−i

=

∫
[0,T ]N−1

w (t, s−i)

(∏
j 6=i

aj,sj

)
λN−1e−λ

∑
j 6=i

∫ sj
0 aj,zdzds−i. (30)
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Note that τ (sj) =
∫ sj
0
aj,zdz. Hence, (30) is equivalent to

∫
[0,T ]N−1

[
w′ (τ (t) , τ (s−i))− w (t, s−i)

]∏
j 6=i

aj,sj

 e−λ
∑
j 6=i

∫ sj
0 aj,zdzds−i = 0.

It thus suffices that for any t and s−i,

w′ (τ (t) , τ (s1) , ..., τ (si−1) , τ (si+1) , ..., τ (sN)) = w (t, s1, ..., si−1, si+1, ..., sN) .

This defines the contest w′(·).

We now argue that the full-effort profile, a′i,z, is optimal (i.e. a best response).
Suppose, per contra, that there is a strictly better strategy âi,z. Let us show that there
is a profitable deviation from the original equilibrium. For any z ∈ [0, T ], define

ãzi :=

∫ τ(z)

0

âi,tdt (31)

as the total amount of effort that agent i should exert by time z.

Note that
ãzi =

∫ z

0

ãi,tdt, (32)

where (29) and (31) imply that for any z ∈ [0, T ],

ãi,z :=
dãzi
dz

=
dτ (z)

dz
âi,τ(z) = ai,zâi,τ(z) ∈ [0, 1].

It follows from (31) and (32) that

for any t′, t ∈ [0, T ′]:
∫ t

t′
âi,zdz =

∫ τ−1(t)

τ−1(t′)

ãi,zdz. (33)

We claim that (33) implies that the payoff at any t ∈ [0, T ′] under âi,z and at
τ−1(t) ∈ [0, T ] under ãi,z are the same. This follows from the same argument as
before, because we have used the same τ(·) as before and hence, at any z, the to-
tal amount of effort by agents −i at z is also the same as that at τ−1(z), and, by
construction, agent i’s private belief and total effort at z is the same as that at τ−1(z).

Since âi,z is a profitable deviation from a′i,z, we conclude that ãi,z is a profitable
deviation from ai,z, a contradiction.
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B.1.3 Proof of Proposition 6

Consider a WTA contest C = {w(·), D, T}, where w(·) is the WTA prize scheme, D is
an arbitrary information disclosure policy, and T is the deadline. Denote by Ii,t the
information that the principal has disclosed to agent i by time t; if D is stochastic,
let Ii,t correspond to any given realization of D. Denote agent i’s belief at time t by
pi,t and his expected reward for success at time t by wi,t. We let (agent i’s conjecture
of) the aggregate cumulative effort up to t given no success by t be At.

At any time t, agent i can ensure a positive continuation payoff by shirking. The
agent thus chooses ai,t > 0 only if

c ≤ pi,tλwi,t. (34)

Let
αi,t := Pr[some j 6= i succeeded by t | i did not, Ii,t] ∈ [0, 1].

In a WTA contest, (34) is equivalent to

c ≤ (1− αi,t) Pr[G | no success, At]λw.

Consider now an optimal public WTA contest. As shown in Section 3, agent i
chooses ai,t = 1 if

c ≤ Pr[G | no success, At]λw.

It follows that, given aggregate cumulative effort At, if agent i exerts positive effort
in contest C, he exerts full effort in an optimal public WTA contest. Therefore, if
the aggregate cumulative effort induced by contest C is AT and that induced by an
optimal public WTA contest is APW , then APW ≥ AT .

B.1.4 Proof of Proposition 7

The principal choosesw and a contest,C = {w(·), T , T}, to maximize the expectation
of (21). Let C(w) be the optimal contest and AT (w) the aggregate cumulative effort
induced by this contest as a function of the prize w. By Proposition 5, C(w) is a mix-
ture contest that implements public WTA from time 0 until a switching time tS and
hidden ES from tS on. Hence, each agent follows a stopping strategy with stopping
condition given by (27) and, using this stopping condition, a routine computation
shows that aggregate cumulative effort is strictly increasing in w: dAT (·)

dw
> 0.
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Consider the principal’s payoff given an optimal prize w and induced aggregate
cumulative effort in an optimal contest AT (w), which we denote UP (w, v, λ, p0) :=

(v − w)p0

(
1− e−λAT (w)

)
. This payoff has strictly increasing differences in (v, w), as

UP
vw = p0λe

−λAT (w) dAT (w)
dw

> 0. Therefore, the optimal prize w is increasing in v. For
v large enough, the optimal prize w is large enough that λw

N
> c, so Proposition 5

implies that a hidden ES contest is optimal. Similarly, for v small enough, the opti-
mal prize w is small enough that λw

2
< c, so Proposition 5 implies that a public WTA

contest is optimal.

B.2 Beyond simple information disclosure

Proposition 5 showed that a mixture contest is optimal within the class of contests
with simple information disclosure policies. If λw

2
< c, the optimal mixture con-

test is public WTA, while if λw
N

> c, the optimal mixture contest is hidden ES. As
mentioned in Subsection 4.1, we conjecture that these conditions are sufficient for
the optimality of public WTA and hidden ES respectively when allowing for any
information disclosure policy.

Here we provide an example showing that if λw
N

< c < λw
2

and any disclosure
policy can be used, then a non-mixture contest can be optimal for the principal. In
particular, we show that the principal can improve upon mixture contests by using
“cutoff disclosure policies”.

ConsiderN = 3 and parameters such that (i) λw
3
< c and (ii) λw

2
> c. We construct

a contest C that dominates both public WTA and hidden ES. We show that any
mixture contest (i.e., any contest that implements public WTA until some point and
hidden ES from then on) is dominated by a mixture of public WTA and C.

Let the contest C = {w(·), D, T} be defined as follows. The prize scheme w(·) is
equal-sharing: if n agents succeed by the deadline T , each successful agent receives
a reward w

n
. The disclosure policy D is “two-agent cutoff disclosure”: at any time

t, the principal sends public message m2 if two agents have succeeded by t and she
sends public message m01 if either no agent or only one agent has succeeded by t.
Note that assumption (i) implies that if messagem2 is sent at t, no agent exerts effort
at z > t. Furthermore, this implies that each agent i will follow a stopping strategy,
and without loss we let T coincide with the stopping time in this strategy (as in our
analysis of Section 3, we focus on symmetric equilibria). Thus, each agent exerts
full effort until either he succeeds, or the principal sends message m2, or time T is
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reached. The stopping time T is then given by

c = p
(C)
T λw

[
2e−λT (1− e−λT )

1− (1− e−λT )2
1

2
+

e−2λT

1− (1− e−λT )2

]

=
p0e
−λT (1− (1− e−λT )2)

p0e−λT (1− (1− e−λT )2) + 1− p0
λw

[
2e−λT (1− e−λT )

1− (1− e−λT )2
1

2
+

e−2λT

1− (1− e−λT )2

]
.(35)

We first show that C dominates any hidden ES contest. In an optimal hidden ES
contest, each agent follows a stopping strategy with stopping time THS given by

c = p
(1)

THS
λw

[
(1− e−λTHS)2

1

3
+ 2e−λT

HS

(1− e−λTHS)
1

2
+ e−2λT

HS

]

=
p0e
−λTHS

p0e−λT
HS + 1− p0

λw

[
(1− e−λTHS)2

1

3
+ 2e−λT

HS

(1− e−λTHS)
1

2
+ e−2λT

HS

]
.

Note that by assumption (i), λw
3
< c; hence,

c <
p0e
−λTHS(1− e−λTHS)2

p0e−λT
HS + 1− p0

c+
p0e
−λTHS

p0e−λT
HS + 1− p0

λw

[
2e−λT

HS

(1− e−λTHS)
1

2
+ e−2λT

HS

]
,

which we can rewrite as

c <
p0e
−λTHS(1− (1− e−λTHS)2)

p0e−λT
HS(1− (1− e−λTHS)2) + 1− p0

λw

[
2e−λT

HS
(1− e−λTHS)

(1− (1− e−λTHS)2)

1

2
+

e−2λT
HS

(1− (1− e−λTHS)2)

]
.

(36)
Since the RHS of (35) and that of (36) are each decreasing in T and THS respectively,
it follows from these conditions that T > THS . Hence, since agents use stopping
strategies in both contests and they stop at a later time in C than in an optimal
hidden ES contest, we conclude that C dominates any hidden ES contest.

We next show that C dominates any public WTA contest. In an optimal public
WTA contest, each agent also follows a stopping strategy with stopping time T PW

given by
c = pTPWλw. (37)

Since the RHS of (35) and that of (37) are each decreasing in T and T PW respectively,
we have that T > T PW if and only if

c <
p0e
−λTPW (1− (1− e−λTPW )2)

p0e−λT
PW (1− (1− e−λTPW )2) + 1− p0

λw

[
2e−λT (1− e−λTPW )

1− (1− e−λTPW )2
1

2
+

e−2λT
PW

1− (1− e−λTPW )2

]
.
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We can rewrite this as, for any agent i,

c <Pr[some j 6= i succ. by T PW | i did not, not all j 6= i did]λ
w

2

+ Pr[no j 6= i succ. by T PW | i did not, not all j 6= i did] Pr[G | no success by T PW ]λw.

Since Pr[G | no success by T PW ]λw = c, this condition simplifies to:

c < λ
w

2
,

which is true by assumption (ii) above. Therefore, since agents use stopping strate-
gies in both contests and they stop at a later time in C than in an optimal public
WTA contest, we conclude that C dominates any public WTA contest.

We note that the results above are consistent with public WTA dominating hidden
ES as well as with hidden ES dominating public WTA. Hidden ES dominates public
WTA if and only if

c < λw

[
2(1− e−λTPW )e−λT

PW

1− e−2λTPW
1

2
+

(1− e−λTPW )2

1− e−2λTPW
1

3

]
,

which, under assumptions (i) and (ii), may or may not be satisfied depending on
parameters.

Finally, we show that any mixture contest that implements public WTA until a
time t∗ and hidden ES from t∗ on is dominated by a mixture contest that implements
public WTA until t∗ and contest C from t∗ on. Let T ∗ be the stopping time in the
public WTA-hidden ES mixture. If t∗ = 0 or t∗ = T ∗, the claim follows from the
analysis above. Suppose then that t∗ ∈ (0, T ∗). Note that in both contests agents
use a stopping strategy; moreover, it follows that if all agents exert full effort until t∗

in the public WTA-hidden ES mixture, they will do so as well in the public WTA-C
mixture. Thus, all we need to do is compare the continuation from t∗ on. Let pt∗ be
the public belief at t∗. Clearly, if C dominates hidden ES starting with a prior belief
p0 = pt∗ , then the public WTA-C mixture will dominate the public WTA-hidden ES
mixture. But note that the condition for C to dominate hidden ES is independent
of p0, and is simply given by (i), i.e. λw

3
< c (this is the only condition that we

used to obtain (36) above). Therefore, under this condition, C dominates hidden ES
starting at any prior, and consequently the public WTA-C mixture dominates the
public WTA-hidden ES mixture.
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