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Abstract

I introduce and study dynamic persuasion mechanisms. A princi-
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1 Introduction

In long-run relationships the control of information is an important instru-
ment for coordinating and incentivizing actions. In this paper I analyze
the optimal way to filter the information available to an agent over time in
order to influence the evolution of her beliefs and therefore her sequence
of actions.

A number of important new applications can be understood using this
framework. For example, we may consider the interaction between a CEO
who is overseeing the day-to-day operations of a firm and the board of
directors which obtains information only through periodic reports from
the CEO. Absent any recent reporting the board will become pessimistic an
order an audit. Audits are costly and so the CEO must choose the optimal
timing of reports in order to manage the frequency of audits.

A seller of an object which is depreciating stochastically over time must
decide what information to disclose to potential buyers about the current
quality. A supervisor must schedule performance evaluations for an agent
who is motivated by career concerns.1 A planner may worry that self-
interested agents experiment too little, or herd too much and can use fil-
tered information about the output of experiments to control the agent’s
motivations. 2

The common theme in all such applications is that messages that mo-
tivate the agent must necessarily be coupled with messages that harm fu-
ture incentives. If the seller can credibly signal that the depreciation has
been slow, then in the absence of such a signal the buyers infer that the ob-
ject has significantly decreased in value. If performance evaluations con-
vince the worker that she has made some progress but she is not quite
ready for promotion, then in the absence of such a report she will infer
either that she is nearly there and can coast to the finish line, or that suc-
cesses have been sufficiently rare that promotion is out of reach. In either
case she works less hard. If the new technology looks promising to the
principal or seems to be the unanimous choice of isolated agents, a policy
of making this information public entails the downside that silence will
make the next agent too pessimistic to engage in socially beneficial exper-
imentation.

1Cite Orlov.
2Cite Che-Horner, Gershkov-Kremer-Perry

2



I develop a general model to analyze the costs and benefits of dynamic
information disclosure. Formally the model is a dynamic extension of the
Bayesian Persuasion model of ?. A principal privately observes the evolu-
tion of a stochastic process and sends messages over time to an agent. The
agent takes actions in each period based on her beliefs about the state of
the process and the principal wishes to influence the agent’s action. Rel-
ative to the static model of ?, dynamics add several interesting dimen-
sions to the incentive problem. The state is evolving so even if the prin-
cipal offers no independent information, the agent’s beliefs will evolve
autonomously. Messages that persuade the agent to take desired actions
today also alter the path of beliefs in the future. There is thus a tradeoff
between current persuasion and the ability to persuade in the future.

To illustrate these ideas consider the following example which will be
used throughout the paper. A researcher is working productively at his
desk. Nearby there is a computer and distractions in the form of email
are arriving stochastically over time. When an email arrives his computer
emits a beep which overwhelms his resistance and he suspends productive
work to read email and subsequently waste time surfing the web, reading
social media, even sending email. Fully aware of his vulnerability to dis-
traction how can he avoid this problem and remain productive for longer?

One possibility is to disable the beep. However, there is no free lunch:
if he knows that the beep is turned off then as time passes he will become
increasingly certain that an email is waiting and he will give in to temp-
tation and check.3 To formalize this let’s suppose that the researcher’s
degree of temptation is represented by a threshold belief p∗ such that once
such a time is reached that his posterior belief exceeds p∗, he will stop
working. Then, assuming email arrives at Poisson rate λ, turning the beep
off affords him an interval of productivity of a certain length

t∗ = − log(1− p∗)
λ

as the latter is the time it takes for the first-arrival probability 1− e−λt to
reach p∗.

By contrast, when the beep is on, the time spent working without dis-
tractions is random and given by the arrival time t̃ of the first beep which

3Even if he checks and sees that in fact there is no email there he will still get distracted
by the other applications on his computer and lose just as much productivity.
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causes his posterior to jump discontinuously past p∗ to 1. The expected
time4 before the first beep is given by Et̃ = 1/λ. The comparison between
these two signal technologies is represented in the figure below where the
vertical axis measures expected time working as a function of the thresh-
old on the horizontal axis.5

Interestingly, a researcher who is easily distracted (represented by a
low p∗) should nevertheless amplify distractions by turning the beep on.
This is because in return for the distraction, unlike when the beep is off he
is able to remain at his desk arbitrarily long when his email beep happens
to be silent. The end result is more time on average spent being produc-
tive. On the other hand, a researcher who is not so easily tempted is better
off silencing her email and benefiting from the relatively long time it takes
before she can’t resist.6

4The calculations below focus on expected waiting times and thus ignore discount-
ing and possibly non-constant marginal productivity of work over time. Discounting is
explicitly included in the general analysis to come. Other sources of non-linearity are
interesting extensions to be explored in further work.

5Note that the arrival rate of email plays no role in the comparison. This can be un-
derstood by considering an innocuous change of time units. A sixty-fold increase in λ is
equivalent to rescaling time so that it is measured in minutes rather than seconds. But
clearly this won’t change the real waiting times nor any comparison between signaling
technologies. On the other hand as we will show below the precise details of the optimal
mechanism will be tailored to λ.

6The precise turning point is the threshold that satisfies 1 = log(1 − p∗) which is
1− 1/e, roughly .63.
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Once we observe that filtering information can control the behavior
even of an agent who knows he is being manipulated and rationally up-
dates beliefs over time we are naturally led to consider alternative signal-
ing technologies and ultimately the optimal mechanism.

Consider a random beep. In particular suppose that when an email
arrives the email software performs a randomization and with probability
z ∈ (0, 1) emits a beep. Similar to beep-on (which is equivalent to z =
1) she will be induced to check as soon as the first beep sounds. And
similar to beep-off (z = 0) after a sufficiently long time without a beep she
will succumb to temptation and check. It would seem that an interior z
combines the worst of both mechanisms but as we have seen any negative
incentive effect is coupled with a potentially compensating positive effect.
Indeed, the expected waiting time can be calculated as follows.

1− (1− p∗)−
z

z−1

λz

For most values of p∗, this expression is non-monotonic in z and hence an
interior z is preferred.7

Is a random beep optimal among all policies? The random beeps con-
sidered above are special because they have false negatives but no false
positives. In general it may be optimal to fine tune the randomizations to
yield differential false positives and false negatives to achieve a broader
set of possible beliefs. Beeps with continuously variable volumes chosen
judiciously as a function of history can calibrate beliefs even finer. And in
a dynamic framework there are many more candidate policies to consider.
Email software could be programmed to use a beep with a delay, perhaps
a random delay, perhaps a random delay that depends on intricate details
of the prior and future history.

7Indeed z = 1 or beep-on is never optimal. Intuitively this follows from an envelope
theorem argument. Consider a z very close to 1. Then if the researcher is lucky there will
be no beep and she will work very long, call it t(z) before checking. This however has
low probability and the average waiting time puts most of the weight on stopping due to
a beep. Now when we reduce z marginally, the researcher’s optimal stopping rule is un-
changed. She stops when there’s a beep or when there is no beep before t(z). So the effect
on average stopping time is due to the direct effect of the shift in total probabilities of the
two scenarios. A reduction in z shifts weight toward the preferred no-beep scenario. It
also increases the expected time before a beep which further adds to the expected work-
ing time.
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To characterize the optimal mechanism it would be intractable to opti-
mize over the enourmous set of feasible information policies. Fortunately,
building on ideas from ?, ?, ?, we can appeal to the obfuscation principle and
capture the full set of feasible policies by a tractable family of simple, direct
obfuscation mechanisms. Here is the logic. The principal’s payoff depends
on the agent’s sequence of actions which in turn depend on the realized
path of the agent’s beliefs. Any information policy induces a stochastic
process for those beliefs. However the process necessarily satisfies two
constraints. First, by the law of total probability, the updated belief νt of
the agent after observing a message at time t must be distributed in such
a way that its expectation equals the belief µt held before observing the
message. Second, after updating based on the message, the agent’s belief
evolves autonomously with the passing of time because the agent under-
stands the underlying probability law, in this case the arrival process of
email. For example, if the principal sends a message that leads the agent
to assign probability νt to the presence of an email, the passage of time will
cause this belief to trend upward because the agent is aware that email is
arriving stochastically even if he doesn’t directly observe its arrival.

We can express these properties as follows.

1. E(νt | µt) = µt,

2. ν̇t = λ (1− νt).

The obfuscation principle, proven for the general model below, asserts
that in fact given any stochastic process for the agent’s beliefs satisfying
the two conditions there is an information policy that induces it. Indeed
to find such a policy it is enough to suppose that the principal tells the
agent directly what his beliefs should be after every history. As long as the
sequence of recommendations follows a probability law that verifies the
conditions above, the agent will always rationally accept the principal’s
suggested belief.8

This enables us to reformulate the problem and solve it using dynamic
programming, using µt as a state variable and explicitly incorporating the

8Similar to the revelation principle, these direct obfuscation mechanisms represent a
canonical way to induce a chosen stochastic process but often the next step is to find a
natural, intuitive, or practical indirect mechanism that also implements it. For the beeps
problem we will indeed find an attractive indirect implementation.
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two constraints. I show for the general model below how to character-
ize the principal’s value function using a series of operations that have a
tractable geometric representation, building on concavification arguments
in ? and ?. For the email beeps problem the optimal value function I obtain
is depicted below.

Having derived the value function I then show how to infer the prin-
cipal’s optimal policy. To begin with, recall that in continuous time the
constant arrival rate of email implies that the agent’s beliefs are drifting
monotonically upward to 1. Initially, when the agent’s beliefs are below
p∗, the value function shows that the principal’s continuation value is de-
caying exponentially as this occurs. We can infer that the optimal policy
for the principal is beep-off to the left of p∗. The principal enjoys the ben-
efits of the agent working and allows the agent’s beliefs to drift upward
until the agent is just on the verge of abandoning work and checking email.

On the other hand, when µt is to the right of p∗, the linearity of the
value function tells us that the optimal policy is a random beep assigning
the agent two possible interim beliefs, namely νt = p∗ and νt = 1. This
gives the principal the weighted average value associated with those two
beliefs with the weights being defined by the requirement in item 1 that the
average belief equal µt, hence the linearity over this interval. In this region
the principal is resigned to the fact that the agent cannot be dissuaded from
checking email with probability 1. In light of this a random beep is chosen
to maximize the probability of false negatives which induce the agent to
continue working.
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Each of the above are familiar strategies of information management
from the static analysis in ?. Roughly speaking when the agent’s current
beliefs induce him to choose the preferred action without intervention,
do nothing. When intervention is required, maximize the probability of
moving the agent back into the desired region. Neither in the beep-on
region, nor the random beep region does the optimal policy need to make
special use of the dynamic nature of the problem.

However, it’s when the agent is right at the threshold p∗ that the dy-
namics play a crucial role.9 Beep-off is no longer optimal because the
agent’s beliefs will cross p∗ and he will check with probability 1. However,
a random beep is not optimal either. With beliefs exactly equaling p∗, the
only feasible lottery over interim beliefs p∗ and 1 is a degenerate lottery
assigning probability 1 to p∗. But a degenerate lottery is also equivalent to
beep-off. Thus, the principal must be doing something qualitatively differ-
ent when the agent is right at p∗. Indeed, I show that the unique demands
at p∗ in fact give rise to a simple history-dependent optimal policy that can
be applied globally, i.e. not just when the agent reaches p∗.

Consider a beep with a deterministic delay.10 We will set the length of
the delay, t∗, to solve

1− e−λt∗ = p∗.

In particular, t∗, is the time it takes for the agent’s beliefs to reach p∗when
the beep is off. Let’s track the agent’s beliefs when the beep is programmed
to sound after a delay of length t∗. Starting at µ0 = 0 the belief begins
trending upward. If an email arrives the beep will only sound t∗ moments
later and therefore it’s as if the beep-off policy is in effect for the initial
phase up to time t∗. By construction, at the end of the initial phase the
agent assigns exactly p∗ probability to the presence of an email, just low
enough to keep him working.

Now consider what happens in the very next instant. If the beep sounds
it indicates that an email has arrived (at time zero), the belief jumps to 1,
and the agent checks. Suppose instead that when the agent is at the thresh-
old p∗, no beep is heard. He learns that an email has not arrived at any
time equal to or earlier than t∗ moments ago, and he learns nothing more

9And note that under the dynamics induced by the optimal policy, beliefs will hit the
point p∗ an unbounded number of times. Indeed once µt passes p∗ the principal will
repeatedly send the agent back to p∗ with positive probability.

10Toomas Hinnosaar first suggested this policy.
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than that. In particular the agent obtains no information about arrivals in
the immediately preceding t∗-length time period. It is as if he has been
under the beep-off protocol during that period. By construction, knowing
for sure that there was no email t∗ ago and applying beep-off since then
keeps the beliefs pinned at p∗ for as long as this state of affairs continues,
i.e. until the first beep.

Following a literature review below, in the remainder of this paper I
outline the general principal-agent model with arbitrary Markov process,
action space, and payoffs of which email beeps is a special case. I show a
series of geometric operations that derive the optimal value function for
the principal and I show how to infer from it the optimal policy. Each of
the problems I discuss have an analogous static model and I discuss the
connection between the dynamic optimum and the static optimum char-
acterized by ?. I then consider various extensions and discuss ongoing
work.

1.1 Related Literature

2 Model

A principal privately observes the evolution of a stochastic process. An
agent knows the law of the process but does not directly observe its real-
izations. She continuously updates her beliefs about the state of the pro-
cess and takes actions. The principal has preferences over the actions of the
agent and continuously sends messages to the agent in order to influence
her beliefs and hence her actions. The principal commits to an information
policy and the agent’s knowledge of the policy shapes her interpretation
of the messages.

Formally, there is a finite set of states S and the principal and agent
share a prior distribution over states given by µ0. State transitions occur
in continuous time and arrive at rate λ > 0. Conditional on a transition at
date t, the new state is drawn from a distribution Ms ∈ ∆S where s is the
state prior to the transition. Absent any information from the principal,
the agent’s beliefs will evolve in continuous time according to the law of
motion

µ̇t = λ
(

Mµ − µ
)

where Mµ = ∑s µ(s)Ms.
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We will begin with an analysis in discrete time and obtain continuous
time results by on the one hand taking limits as the period length short-
ens, and on the other hand solving the dynamic optimization directly in
continuous time. In discrete time with a given period length, this process
gives rise to a Markov chain with transition matrix M̃ and a law of motion
for beliefs given by

µt+1 = µt · M̃
which for notational convenience we represent by the (linear) map µt+1 =
f (µt).

The principal sends messages to the agent in order to influence the
evolution of beliefs. The timing is illustrated below.

The agent begins each period t with a posterior belief µt. Then the
principal observes the current state st and selects a message mt to send
to the agent from the set of messages Mt. Next the agent updates to an
interim belief νt and takes an action. Finally, time passes before the next
date t + 1 and the agent, knowing that the process is evolving behind the
scenes, further updates to the posterior µt+1. A key observation is that
because the principal controls all information available to the agent, he
always knows the posterior µt and hence the agent’s posterior is a natural
state variable to be used in a dynamic programming characterization of
the optimal mechanism.

The agent selects an action at in order to maximize the expected value
of a flow state-dependent utility function v:

at ∈ argmaxaEνt v(a, s).

The principal’s payoff u(a) also depends on the agent’s action and there-
fore indirectly depends on the agent’s interim belief u(ν) = u(a(ν)). In-
deed we can take the indirect utility function to be the primitive of the
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model and avoid getting into details about the agent’s action space and
payoff function. Henceforth we will assume that

u : ∆S→ R

is a bounded upper semi-continuous payoff function for the principal11

and that the principal is maximizing the expected value of his long-run
average payoff

(1− δ)
∞

∑
t=0

δtu(νt). (1)

A policy for the principal is a rule

σ(ht) ∈ ∆Mt

which maps the principal’s complete prior history ht into a probability
distribution over messages. The message space Mt is unrestricted. The
principal’s history includes all past and current realizations of the process,
all previous messages, and all actions taken by the agent.

The space of policies is unwieldy for purposes of optimization. The
following lemma allows us to reformulate the problem into an equivalent
one in which instead of choosing a policy, the principal is directly specify-
ing a stochastic process for the agent’s beliefs.12

Lemma 1 (The Obfuscation Principle). Any policy σ induces a stochastic pro-
cess (µt, νt) satisfying

1. E(νt | µt) = µt,

2. µt+1 = f (νt).

11When the agent is maximizing the expected value of v, there will be interim beliefs at
which the agent is indifferent among multiple actions. As is standard, when we optimize
the principal’s payoff we will assume that these ties are broken in such a way as to render
the principal’s optimal value well-defined. This is captured in reduced-form by upper
semi-continuity of u. In particular if the principal can approach a payoff be a converging
sequence of interim beliefs, then he can in fact secure at least that payoff by implementing
the limit belief.

12The obfuscation principle is conceptually different from the revelation principle. The
revelation principle shows that any feasible mechanism can be replaced by a direct rev-
elation mechanism. With the obfuscation principle we don’t know in advance that the
stochastic process is feasible. We show the feasibility by constructing an appropriate di-
rect obfuscation mechanism.
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Conversely any stochastic process with initial belief µ0 satisfying these properties
can be generated by a policy σ which depends only on the current belief µt and the
current state st, i.e. σ(ht) = σ(µt, st).

The familiar intuition was given in the introduction. The proof, which
has to contend with potentially infinite message spaces and histories, pro-
ceeds somewhat indirectly and is in ??. There is a subtlety which is worth
expanding upon. First of all, notice that the principal’s objective function
can be expressed entirely in terms of the beliefs of the agent, and the con-
straint set can be reduced to a choice of stochastic process for those beliefs.
As a result the underlying state st of the stochastic process plays no role
in the optimization. In particular we can treat the principal’s continuation
value at date t as if it depends only on the current beliefs µt and not on
the current state st. This may be surprising because if the policy affects the
agent’s beliefs, it must be st-dependent. Two distinct current states imply
distinct distributions over subsequent states, and therefore distinct con-
tinuation policies for the principal. These continuations can indeed affect
long-run payoffs and therefore generate st-dependent optimal messages
in the current period. However, because the goal is obfuscation and the
principal has commitment power he refuses to respond to state-dependent
long-run incentives.

With these preliminaries in hand, we can now solve the principal’s op-
timization problem. Formally, the principal chooses a stochastic process
for (µt, νt) satisfying item 1 and item 2 and he earns the expectation of
Equation 1 calculated with respect to the chosen process. He chooses the
process to maximize that expectation. As we argued previously, µt is a
natural state variable for a dynamic programming approach to optimiza-
tion. When the agent enters period t with belief µt, the principal informs
the agent what his interim belief νt should be and the principal earns the
flow payoff u(νt). Then the agent updates to a posterior µt+1 = f (νt) and
the principal earns the associated discounted optimal continuation value.
The Bellman equation is as follows.

V(µt) = max
p∈∆(∆S)
Ep=µt

Ep [(1− δ)u(νt) + δV( f (νt))]

Following ? and ?, the particular form of the constraint set (Eνt = µt)
implies that the right-hand side maximization, and therefore the value
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function, can be expressed geometrically as the concavification of the func-
tion in brackets. The concavification is the pointwise smallest concave
function which is pointwise no larger than the function being concavi-
fied.13 We obtain the following functional equation.

V = cav [(1− δ)u + δ (V ◦ f )] . (2)

The novelty that arises in a dynamic optimization is that the value
function itself enters into the bracketed formula. Fortunately this fixed-
point problem can be solved in a conceptually straightforward way when
we make two observations. First, the right-hand side can be viewed as a
functional operator mapping a candidate value function into a re-optimized
value function. By standard arguments this operator is a contraction and
therefore has a unique fixed point which can be found by iteration. Sec-
ond, the set of operations on the right-hand side all have convenient geo-
metric interpretations (composition, convex combination, concavification)
making this iteration easy to visualize and interpret. As an illustration,
below we solve several examples with just a series of diagrams.

2.1 Beeps

In discrete time the email beeps example can be described as follows. The
set of states is S = {0, 1} indicating whether or not an email has arrived
to the inbox. The discrete time transition probability from state 0 to 1 is
the probability within a period of length ∆ that at least one email arrives
and is given by M = 1− e−λ∆ yielding the following law of motion for the
agent’s beliefs when uninformed:

f (νt) = νt + (1− νt)M

The principal’s indirect utility function is

u(ν) =

{
1 if ν ≤ p∗

0 otherwise

13Equivalently it is the pointwise infimum of all pointwise larger concave functions.
Geometrically, one can identify a function with its epigraph. Then the concavification
is the epigraph that is obtained by the convex hull of the original epigraph. Rockafeller
calls it... FXIME
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and he maximizes his expected discounted utility where the discount fac-
tor is e−r∆ given a continuous time discount rate r.

In the appendix I derive the value function and optimal policy analyt-
ically. Here we will follow a sequence of diagrams to visualize the deriva-
tion and gain intuition. Refer to the Bellman equation in Equation 2. Con-
sider as an initial guess, a linear V. We can trace through the operations on
the right-hand side. The first step is to compose V with the transition map-
ping f . Since f is linear and f (ν) > ν, this composition has the effect of
flattening V by rotating its graph to the left as illustrated in the following
figure.

Next, we take the convex combination with the step function u yielding
the discontinuous decreasing function below.

14



Lastly, we concavify the resulting function as illustrated in the next figure,

and we have the first iteration of the right-hand side operator. Notice
that the function obtained differs from the initial candidate value function
which is therefore not a fixed point and not the optimal value. In fact, since
the beep-on mechanism discussed in the introduction yields a linear value
function, we have shown that beep-on is not an optimal mechanism.14

14We did not discuss how to interpret beep-on when the agent begins with a prior
greater than zero. A fitting story is the following. The agent arrives to his office in the
morning with a belief µ0 that there is an email already there waiting for him. If indeed
there is an email it will beep when his computer boots up, i.e. with probability µ0. If it
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Let us take stock of this first iteration and its implications for the op-
timal policy. Recall that the concavification represents the optimal lottery
over interim beliefs, i.e. the optimal message distribution. At beliefs along
a segment where the concavification differs from the underlying function,
the optimal policy is to randomize between the beliefs at the endpoints
of the segment. Thus in the interval (p∗, 1], the principal wants to send
the agent to either µ = p∗ or µ = 1 with the appropriate probabilities. At
beliefs along a segment where the concavifcation and the underlying func-
tion coincide it is optimal to send no message, as is here between µ = 0
and µ = p∗.

The kink at p∗ is a remnant of the discontinuity in the flow payoff u.
It is easy to see that this kink will re-appear at every step of the iteration,
as well as the linear segment from p∗ to 1. What subsequent iterations
add are additional kinks, first at the point f−1(p∗) in the second iteration,
then at f−2(p∗), etc. This occurs when we compose the drift mapping f
with the previous iteration, shifting the kinks successively leftward. As
we continue to iterate these are the qualitative features of the fixed point
to which we converge.15 The optimal value function is represented below.

Now consider what happens to the optimal value function when we
shorten the period length. In the shorter time interval the belief moves
less between periods and f approaches the identity mapping. This has
two implications. First, the number of kinks multiplies and in the limit the
value function is smooth to the left of p∗. Second, the slope of the linear
segment just to the left of p∗ approaches the slope of the linear segment
from p∗ to 1. In the limit therefore, the value function is differentiable at
p∗ and indeed at every belief.

does not, then his belief jumps to 0 and beep-on continues from there. Thus, the value at
µ0 is just (1− µ0)V(0).

15The number of kinks will be the maximum index k such that f k(0) ≤ p∗.
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Figure 1: The optimal value function for the Beeps problem.

It follows that to the left of p∗, it is uniquely optimal to send no message.
In the discrete-time approximation, the linear segments between kinks al-
lowed for a multiplicity of optimal policies ranging from randomization
across the whole segment to no message at all. In continuous time, the
strict concavity implies that any non-degenerate lottery is suboptimal. To
the right of p∗, it remains optimal to randomize between p∗ and 1. We
have already discussed in the introduction that a delayed beep is optimal
when the beliefs are exactly p∗, and now we can elaborate further.

17



We can use the differentiability at p∗ to compute the limiting value

V∗(p∗) ≡ lim
∆→0

V(p∗).

Indeed, at beliefs µ to the left of p∗, the value is given by

V∗(µ) =
∫ t(µ)

0
e−rtdt + e−rt(µ)V∗(p∗)

where µ + (1− µ)(1− e−λt(µ)) = p∗. That is the principal collects a flow
payoff of 1 for a duration of t(µ) after which his belief reaches p∗ where-
upon his continuation value is V∗(p∗). When we differentiate this expres-
sion with respect to µ and evaluate it at p∗ we obtain the left-derivative
of V∗(p∗). The right derivative is simply the slope of the linear segment
which is

−V∗(p∗)
1− p∗

.

Using the fact that these one-sided derivatives are equal we can solve for
V∗(p∗) and we obtain

V∗(p∗) = r/(r + λ).

Notice that r/(r + λ) is the discounted average value of receiving a
flow payoff of 1 until a termination date which arrives at Poisson rate λ.
Indeed that is exactly the initial (i.e. starting at µ = 0, not at µ = p∗)
discounted value from the beep-on policy. In the optimal mechanism the
principal obtains this value when the agent’s beliefs are already at p∗, i.e.
when t∗ time has already passed during which he has been collecting a
payoff of 1. Clearly this is accomplished by a beep of delay t∗. Moreover
we can quantify the profit to the principal from using the optimal policy
rather than beep-on. He is afforded an additional certain t∗-length dura-
tion in which the agent is working.

2.2 Ergodic Process

In the beeps example the state s = 1 is absorbing. When on the other hand
the process is ergodic a new issue must be addressed. If the agent’s belief
reaches µ = 1, it will begin to drift back to the interior, enabling further
information revelation by the principal. How does the principal optimally
incorporate this possibility?
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To address this, consider now full-support transition probabilities so
that the process admits a unique invariant distribution µ∗ and let’s assume
µ∗ > p∗.16

With µ∗ as the invariant distribution, the law of motion for beliefs is
no longer monotonic. Beliefs greater than µ∗ move downward and beliefs
below µ∗ move upward. The mapping f crosses the 45-degree line at µ∗:

To aid the analysis, it helps to make a general observation about ab-
sorbing sets of beliefs. Say that an interval I ⊂ [0, 1] is absorbing under f if
f (µ) ∈ I for all µ ∈ I . According to the following lemma, if u is linear
over an interval that is absorbing under f , then the value function must
also be linear over that interval.

Lemma 2. Suppose that I is absorbing under f , and that u is linear over I . Then
V is also linear on I .

Proof. Consider any candidate value function W which is linear over I .
Since f is linear and u is linear over I , the formula

(1− δ)u + δ (W ◦ f ) (3)

16If µ∗ ≤ p∗ the problem is simpler and less interesting. Eventually the beliefs will
reach p∗. Once there the principal can cease sending messages and the agent will remain
at p∗ and work forever. The only problem to solve is how to get the agent to start work-
ing as quickly as possible when he begins away from p∗. It can be shown that this is
accomplished by following exactly the strategy from the original beeps example.
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must be linear over I because it is the convex combination of two func-
tions which are linear over that interval. (That the composition is linear
follows from the assumption that I is absorbing and W is linear on I .)

The concavification of Equation 3 must be linear over I . Thus, iteration
starting with W must always stay within the set of functions which are
linear over I , i.e. the set of such functions is invariant under the value.
Since the value mapping is a contraction, iteration converges globally to a
fixed point, the fixed point must belong to any invariant set of functions.

When µ∗ > p∗ the interval(p∗, 1) is absorbing under f . Therefore the
value function is linear there. It follows that the value function has the
same shape as in the original problem. The optimal policy is therefore
identical. In terms of implementation there is only one novelty: at µ = 1
beliefs are now trending downward, i.e. the agent knows that eventually
there will be a transition from state 1 to state 0. According to the optimal
policy, the instant beliefs move into the interior the principal is random-
izing between the two endpoints p∗ and 1. This is achieved by a random
message that reveals state changes but with false positives. As soon as
a transition occurs the message is sent, but also each instant a transition
does not occur the message is still sent but with a probability less than 1
calibrated so that the message induces interim belief p∗. Since the message
has false positives but not false negatives, the agent remains at µ = 1 as
long as no message is heard.

In particular, the value V(1) is positive now because the agent will
periodically switch back to working when his beliefs jump down to p∗.

2.3 Three States

When there are three states, S = {0, 1, 2} and two actions, the threshold
is no longer a point but a line segment through the simplex of beliefs ∆S.
One one side of the line the agent takes action 0 and on the other side he
takes action 1. The belief dynamics operate in a 2-dimensional simplex and
can therefore be significantly more complicated. In this section I analyze a
simple extension of the beeps problem to 3 states to illustrate.17

17This example is special because the belief dynamics have a monotonicity property.
Once the beliefs leave the region where the agent takes a given action they never return
(absent information from the principal). With two states the belief dynamics always have
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Consider a variation of the email problem in which the agent wishes to
check as soon as the probability is sufficiently large, at least p∗, that there
are at least two emails to read. Let s ∈ S = {0, 1, 2} denote the number of
unread emails currently in the inbox, where s = 0 and s = 1 indicate the
exact number and s = 2 indicates 2 or more. Maintain the assumption that
email arrives at rate λ. The following diagram illustrates the situation. The
simplex is the set of possible beliefs for the agent and the line depicts the
threshold above which the agent checks. The arrows show the flow of the
agent’s beliefs when the principal withholds information. The constant
arrival of email implies that the beliefs move up and to the right.

This analysis of this problem follows similar lines as the two-state email
beep problem. In the diagram below the lines represent points which
lead by iterations of f to the threshold line. If we begin with a candi-
date value function which is linear and equal to zero at the s = 2 vertex,
iterations lead to a piecewise linear value function with kinks along these
segments.18 The continuous time limit value function will therefore be lin-
ear along these line segments but strictly concave along rays toward the

this property. With three states the beliefs may cycle and move up and down the steps
of the principal’s payoff function u on their path toward the invariant distribution. Such
problems are considerably more complex to solve. Jerome Renault, Eilon Solan, Nicolas
Vielle, in concurrent work are analyzing the three state problem in more detail (private
communication.)

18These are not the level sets. As we will show below, the value declines as we move to
the right along the p∗ line. This pattern will thus be preserved at all of its inverse images
under f .
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s = 2 vertex in the region below the threshold. It will be linear above
the threshold and equal to zero at the s = 2 vertex. Thus, the optimal
mechanism is a delayed beep signaling a past arrival of the second email.

The novelty that arises with three states concerns the evolution of beliefs
and continuation values along the threshold. At the threshold the princi-
pal’s policy is designed to maximize the probability that the agent contin-
ues working. As usual this is accomplished by sending the agent either
to the threshold or to the most distant point in the shirk region (with the
appropriate probability), in this case the vertex (0, 0, 1) where the agent
is certain that two emails are waiting. This signal allows the agent to in-
crease his belief that a single email has arrived and thus as long as the
agent remains at the threshold, this belief will continue to trend upward,
converging toward the right face of the simplex. Note that the right face,
where the agent is certain that at least 1 email is waiting, is isomorphic
to the original 1-dimensional beeps problem because the agent is simply
waiting to find out if one more email arrives.

The following diagram shows the path of the agent’s beliefs. The be-
liefs will follow this path until they reach the threshold, then remain on
the path until a beep sounds. As long as there is no beep the beliefs will
converge asymptotically to the right face.
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It follows that the length of the optimal delay must change as time
passes. To see this, first consider the delay length at the point a where
the beliefs first touch the threshold. Let’s determine the delay length that
keeps the agent on the threshold. Let ta denote the length of time it takes
for beliefs to reach ta from the vertex (1, 0, 0). If the beep has delay ta then
when the agent is at a and hears no beep his updated beliefs continue to
attach probability p∗ to the presence of 2 emails. The absence of a beep
tells the agent that a second email did not arrive ta moments ago. The key
question is what does this information tell the agent about the conditional
distribution over the remaining states s = 0, s = 1. At that point in the
past he was at the point (1, 0, 0). In particular he is certain that not even
the first email had arrived. Learning that a second email did not arrive
at that moment gives him no information about the other states since the
simultaneous arrival of two emails has probability zero.

Thus, the absence of a beep tells him that his beliefs at the time ta ago
were correct, and thus that his current beliefs should be updated from
those prior beliefs based only on the information that a time period of
length ta has passed during which he learns nothing about arrivals. By
construction that updated belief assigns exactly p∗ to s = 2.

By contrast, consider a point like b, further to the right. At this point
he attaches higher probability to the presence of a single email. Suppose
the principal continued to use a beep with delay ta. What does the agent
believe conditional on hearing no beep? He learns that as of ta ago, the
second email had not arrived. At that point in the past he assigned pos-
itive probability to the arrival of the first email. Of course the absence of
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the second email is information: it makes it less likely that the first email
arrived. But nevertheless he will continue to assign positive probability
to the event that a first email had arrived ta ago. To obtain his current
beliefs he will update that posterior based on knowing that ta time has
passed. His updated belief that a second has arrived during that time will
be larger when starting from a positive probability of a first email than
when starting with probability zero. The latter starting point would lead
him to p∗, so using the delay length ta would put him above p∗.

Therefore, in order to keep the agent on the threshold, the delay length
must be shorter the more time has passed. In particular if the second email
arrives at time t′ then the delay before beeping must be shorter than if the
second email arrived at time t < t′. What happens to this delay length
asymptotically as time increases? Since the beliefs are approaching prob-
ability 1 that exactly 1 email is waiting, the length of time it takes for the
probability of a second email to equal p∗ converges to the length of time it
would take if the agent were certain at the outset that the first email had
already arrived. This is just the length of time for the arrival of a single
email and that is the length t∗ from the 1-dimensional problem.

We can understand in these terms why the continuation value must
decline as we move toward the right face. Because the delay is shortening
but the arrival rate of email is constant, it follows that beeps are arriving
more quickly and thus the agent is jumping sooner on average to the upper
vertex.

2.4 Three Actions

The solutions for each of the examples considered thus far are special in
at least two senses. First, as we will show in the next section, the dynamic
optimum is nearly identical to the optimal mechanism in a static version
of the problem. Second, the optimal policy is monotonic in that there is an
intitial phase of silence leading eventually to a phase of random messages.
These features are typical of problems with two states and two actions. In
this subsection I consider the simplest 3 action problem in which the opti-
mal mechanism is very different than the static problem and in particular
consists of an early phase of messages followed by a duration of silence
and then ultimately a final message phase.
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Consider the following indirect utility function with 3 steps:

u(ν) =


5/4 if ν = 0
1 if ν ∈ (0, 1/2]
0 otherwise

(4)

Here is a story that goes with it. When the agent is certain there is no email
waiting he can work with full concentration. When there is a small chance
of an email he is tempted to check but he resists the temptation. The effort
spent on willpower makes him somewhat less productive. Finally when
his beliefs cross the threshold (here p∗ = 1/2) he succumbs to temptation
and stops working.

The interval (1/2, 1] is absorbing and u is linear there and so by Lemma 2
the value function has the familiar linear segment and the optimal mech-
anism randomizes between 1/2 and 1 when the beliefs are anywhere in
between. To analyze the interval [0, 1/2) note that one feasible mechanism
for the principal is to use the optimal mechanism from the basic beep ex-
ample. That would yield a value function which is differentiable at the
threshold 1/2. Even though this is not optimal for the present problem, it
places a lower bound on the optimal value function. In particular, the op-
timal value function cannot have a kink at 1/2. As we will show below it
is in fact smooth and strictly concave over some interval (p∗∗, 1/2] so that
no message is optimal there. However, unlike the original beeps problem,
p∗∗ 6= 0 and on the interval [0, p∗∗] the value function is again linear. Intu-
itively, randomizing between 0 and p∗∗ allows the principal to stay at the
point 0, earning the high flow payoff of 1 for some duration, whereas fol-
lowing the original beeps solution the beliefs would spend only an instant
there. (To complete the argument we must show that the gain from paus-
ing at µ = 0 for some time is not outweighed by the loss from having to
move quickly to p∗∗. The formal argument below takes care of this point.)

As we will show below, this solution differs from the static solution on
the interval (p∗∗, 1/2). Another distinguishing feature of this example is
that the optimal policy uses both false negatives and false positives. In
the initial phase, the signals that move from 0 to p∗∗ are false positives:
conditional on the agent receiving this signal he changes his behavior but
there is a probability 1− p∗∗ that this signal was received even if no email
arrived. On the other hand, once the agent reaches µ = 1/2 the optimal
policy reverts to the false negatives from the original email problem.
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3 Continuous Time Analysis

Up to this point I have analyzed each example by first considering a discrete-
time optimization and then taking continuous-time limits. In many cases
it is more convenient to conduct the analysis directly in continuous time.
Let r denote the continuous time discount rate and recall that µ̇ is the
continuous-time law of motion for the agent’s beliefs absent any further
information for the principal. In the appendix I derive the Hamilton-
Jacobi-Bellman (HJB) equation which we can express as a functional equa-
tion as follows:

rV = cav
[
u + V′ · µ̇

]
.

Like in the discrete-time version the concavification operator facilitates a
useful geometric representation, but now the optimal value function is
expressed in terms of its first derivative and the continuous time law of
motion.

In this section I will demonstrate the usefulness of the continuous-time
formulation by solving the 3-action email problem through a series of di-
agrams. For convenience let’s normalize the discount rate r to 1. To begin
with, let’s verify that the continuous-time limit value function from the
email beep problem verifies the HJB equation. Recall that the optimal pol-
icy is to wait until the agent’s belief reaches p∗ before sending messages
and after that to send messages that randomize the agent’s beliefs between
p∗ and 1. This yields the following value function in continuous time

V∗(µ) =

{∫ t(µ)
0 e−tdt + e−t(µ)V∗(p∗) for µ ≤ p∗

(1− µ)V∗(p∗)

where t(µ) is the time required for beliefs to evolve from µ to p∗,

µ + (1− µ)(1− e−λt(µ)) = p∗.

and V(p∗) is the continuation value at the threshold which we previously
calculated to be 1/(1 + λ) < 1.

To calculate the right-hand-side of the HJB equation we need to com-
pute V′ · µ̇. The simplest way to do this is via a change of variables express-
ing the value function in terms of time rather than beliefs. Let t∗ = t(0) be
the total time it takes for the agent’s beliefs to first reach p∗, and for all t∗:

W(t) =
∫ t∗−t

0
e−sds + e−(t

∗−t)W(t∗)
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Then V′ · µ̇ is just the derivative with respect to t:

dW
dt

(t) = e−(t
∗−t) [W(t∗)− 1]

(As time passes, the continuation value falls because the point in time
draws closer when the principal will stop earning flow payoff 1 and in-
stead earn continuation value W(t∗) = V(p∗) < 1.)

Since t∗ − t = t(µ), to the left of p∗, the expression u + V′ · µ̇ = u +
dW
dt (t) is given by

(1− e−t(µ)) + e−t(µ)V(p∗)

and to the right, since the value function is linearly decreasing and the
flow payoff is zero, V′ · µ̇ is proportional to −µ̇ = −λ(1− µ). Thus, the
bracketed expression on the right-hand side of the HJB equation has the
following shape,

and when we concavify we indeed recover the value function as the HJB
equation requires. Moreover we see that the geometry of the HJB equa-
tion reveals the optimal mechanism in the same was as we saw for the
concavification of the discrete-time Bellman equation.

With these observations in hand we can now show formally how the
optimal mechanism changes in the three action version. Indeed, if we take
V as a candidate continuous-time value function for the three-action prob-
lem, the HJB equation tells us to compute its time-derivative and add it to
the three-step u in Equation 4. We obtain exactly the same graph except
that the height at µ = 0 jumps up by 1/4. When we concavify:
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We see that we do not recover V but instead there is now a linear segment
over an initial interval. This gives us a hint that the optimal value function
will have a similar shape. And indeed we can reduce the functional fixed-
point problem in the HJB equation to a parametric equation with a single
unknown p∗∗. For suppose we pick a threshold p∗∗ where the mechanism
switches from randomizing to silence. Knowing that the value function
will be smooth at that point tells us what the slope of the initial linear
segment must be. It must be the slope of the email value function at p∗∗,
namely V′(p∗∗). This therefore tells us a candidate value for V(0):

V(p∗∗) + p∗∗V′(p∗∗)

Now when we take the resulting candidate value function and feed it
into the right-hand side of the HJB equation we obtain a new value for
V(0):

u(0) + V′(p∗∗)λ

We can solve the model by picking the p∗∗ that equates these and thus
produces a fixed point.

V(p∗∗) + p∗∗V′(p∗∗) = 5/4 + V′(p∗∗)λ
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4 Connection With Static Problems

5 Extensions

5.1 Long-Run/Strategic Agent

5.2 Principal’s payoff depends on the state

When the principal’s payoff depends on the state s as well as the agent’s
action a,

u(a, s)

the nature of the incentive problem changes but it can be analyzed without
a change to the basic structure. Indeed we can express the indirect utility
function as follows

u(ν) = Eνu(a(ν), s) (5)

since the agent’s preferred action is still a function of his belief a(ν) and
conditional on the agent’s belief being ν it follows that the probability dis-
tribution over states s is exactly ν. This latter point deserves emphasis
because of course the principal knows the true state and only the agent
has beliefs ν. Indeed the principal’s preferences over the agent’s beliefs
are s-dependent since his preferences over a are s-dependent. However,
an immediate extension of the ideas19 behind the obfuscation principle
justifies the reduced-form above.

Lemma 3. All policies that generate a given stochastic process (µt, νt) generate
the same stochastic process over the larger space (µt, νt, st). Indeed, in any t for
any state s, and for any measurable set of interim beliefs B ∈ ∆(S),

Prob(B× {s} | µt) = Prob(B | µt)
∫

ν∈B
ν(s)dσµt(B)

where σµt is the total probability distribution over νt induced by the policy at a
time t history in which the agent’s belief is µt.

This lemma is immediate because ν(s) is the conditional probability of
s given a history which leads the agent to interim belief ν. It implies that
the principal chooses directly a stochastic process for (µt, νt, st) satisfying

19See the discussion following Lemma 1.
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1. Eνt = µt

2. µt+1 = f (νt)

3. Prob(s | µt, νt) = νt(s) for all s ∈ S,

and since the third condition identifies exactly one extended stochastic
process associated with each process on the smaller domain (µt, νt), the
feasible set for the principal is unchanged: the set of processes satisfying
the first two conditions.

We can thus express the principal’s optimization problem exactly as
before, noting only that the indirect utility function u is now derived as in
Equation 5.

5.3 Actions affect states

5.4 Actions generate information

5.5 Principal is learning over time

A The Obfuscation Principle

Given any stochastic process (µt, νt) satisfying item 1 and item 2, we will
construct a policy which generates it and which depends only on the cur-
rent belief µt and the current state st. Fix t and let Z denote the conditional
distribution of νt given µt. The policy is a direct obfuscation mechanism in
which the principal tells the agent directly what his beliefs should be. To
that end, let the message space be Mt = ∆(S). Let σs ∈ ∆(M) denote the
lottery over messages when the current belief is µt and the current state is
st = s. The probability σs is defined by the following law: for measurable
B ⊂ ∆(M),

σs(B) =
∫

ν∈M

ν(s)
µt(s)

dZ(ν). (6)

That is, σs is defined to be absolutely continuous with respect to Z with
Radon-Nikodym derivative equal to ν(s)

µt(s)
: ∆(S) → R. So defined, σs is

a probability because it is non-negative, countably additive and for any
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measurable B ⊂ ∆(M),∫
ν∈B

ν(s)dZ ≤
∫

ν∈∆(M)
ν(s)dZ = Eν(s)

and the latter is equal to µt(s) by item 1. Thus, the right-hand side of
Equation 6 is less than or equal to 1 and equal to 1 when B = ∆(M).

From the point of view of the agent, who does not know the current
state s but knows that the policy is σs and has beliefs µt about s, the total
probability of a set B ∈ M is

∑
s

µt(s)σs(B) = ∑
s

µt(s)
∫

ν∈B

ν(s)
µt(s)

dZ(ν) = ∑
s

∫
ν∈B

ν(s)dZ(ν) =
∫

ν∈B
1dZ(ν) = Z(B)

Thus, the policy generates the desired conditional distribution over mes-
sages. It remains to show that when the principal uses the policy and the
agent observes message ν his posterior beliefs about st are indeed equal to
ν. Fix a state s, consider the probability space (∆(S), Z) and defined over
it the random variable given by

y(ν) = ν(s).

By construction, for all B ∈ ∆(S),∫
ν∈B

y(ν)dZ(ν) = µt(s)σs(B) = Prob({s} × B)

so that y is a version of the conditional probability of s. FIXME CITE
BILLINGSLEY Thus, y(ν) = ν(s) is the Bayesian posterior probability of
state s upon receiving the message ν as desired.

B Optimal Mechanism For The Beeps Example

The value function is as follows.

V(µ) = (1− δ)

[
n(µ)−1

∑
s=0

δs + δn(µ)

(
1− f n(µ)(µ)

1− p∗

(
1 +

δ(1− p∗∗)
1− p∗ − δ(1− p∗∗)

))]
where

n(µ) = min{n ≥ 0 : f n(µ) > p∗}.
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We will now prove that V so defined is the value associated with the
mechanism described above and that it satisfies the optimality condition
in Equation 2. Let

Z(µ) = (1− δ)u(µ) + δV( f (µ)).

According to Equation 2, to show that V is the optimal value function
we must show that V is the concavification of Z. The latter is defined
as the concave function which is the pointwise minimum of all concave
functions that are pointwise no smaller than Z.

First note that V as defined is a concave function. It consists of n(0)
linear segments with decreasing slope to the left of p∗, followed by a linear
segment from p∗ to 1. See Figure 1. We next show that for µ ≤ p∗,

V(µ) = Z(µ).

To do this, write µ+ = f (µ). Since u(µ) = 1 when µ ≤ p∗,

(1−δ)u(µ) + δV(µ+)

= (1− δ) + δ (1− δ)

n(µ+)−1

∑
s=0

δs + δn(µ+)

(
1− f n(µ+)(µ+)

1− p∗

(
1 +

δ(1− p∗∗)
1− p∗ − δ(1− p∗∗)

))
= (1− δ)

1 + δ

n(µ+)−1

∑
s=0

δs + δn(µ+)

(
1− f n(µ+)(µ+)

1− p∗

(
1 +

δ(1− p∗∗)
1− p∗ − δ(1− p∗∗)

))
= (1− δ)

n(µ+)

∑
s=0

δs + δn(µ+)+1

(
1− f n(µ+)+1µ

1− p∗

(
1 +

δ(1− p∗∗)
1− p∗ − δ(1− p∗∗)

))
= V(µ)

where the last equality follows because n(µ) = n(µ+) + 1.
So far we have shown that V is concave and coincides with Z for all

µ ≤ p∗. Since the optimal value function is the convex hull of Z which
is defined as the pointwise minimum of all concave functions that are no
smaller than Z, we have shown that V(µ) is the optimal value for all µ ≤
p∗.

Now consider µ ∈ (p∗, 1]. First observe that V(1) = 0 = Z(1). We will
now show that any concave function which is pointwise no smaller than
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Z must also be pointwise no smaller than V for all µ ∈ (p∗, 1]. Let Y be
any concave function such that Y(p∗) ≥ Z(p∗) and Y(1) ≥ Z(1). Then by
concavity, for µ = αp∗ + (1− α)1 for α ∈ (0, 1),

Y(µ) ≥ αZ(p∗) + (1− α)Z(1) = αV(p∗) + αV(1)

and the latter is exactly V(µ) since V is linear over µ ∈ [p∗, 1].
This concludes the proof that V is the optimal value function. Next

we show that V is the value function for the specified mechanism. First
consider the belief p∗∗. The mechanism specifies that the principal ran-
domizes over two interim beliefs, p∗ and 1. Let α be the probability of
interim belief p∗. By the martingale property

αp∗ + (1− α) = p∗∗

so that
α =

1− p∗∗

1− p∗
.

Thus, if the mechanism generates value function W, then

W(p∗∗) = α [(1− δ) + δW( f (p∗))]

because with probability α, the principal staves off email checking for one
period after which the belief is updated to f (p∗) (and with the remaining
probability the agent checks email and the game ends.) Since p∗∗ = f (p∗),

W(p∗∗) =
(1− δ)(1− p∗∗)

1− p∗
(1 + W(p∗∗))

implying that

W(p∗∗) =
(1− δ)(1− p∗∗)

1− p∗ − δ(1− p∗∗)
(7)

and plugging p∗∗ into V verifies that V(p∗∗) equals the right-hand side.
Moreover, for any µ > p∗, the mechanism yields value

(1− δ)(1− µ)

1− p∗
(1 + V(p∗∗))

which is V(µ). Finally if µ ≤ p∗ the mechanism delays checking for n(µ)
periods after which a belief above p∗ is reached and hence the value is
V(µ).
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Continuous Time Limit Consider the continuous time limit as ∆ → 0.
First, note that the discrete time transition probability, f from state 0 to
state 1 is 1− e−λ∆. Consider the belief p∗∗. Rewrite Equation 7 as follows

V(p∗∗) =
(1− δ)1−p∗∗

1−p∗

1− δ
1−p∗∗
1−p∗

.

Since
p∗∗ = p∗ + (1− p∗)(1− e−λ∆)

we have
1− p∗∗ = (1− p∗)e−λ∆

so
1− p∗∗

1− p∗
= e−λ∆

which yields

V(p∗∗) =
(1− e−r∆)e−λ∆

1− e−r∆e−λ∆

and applying l’Hopital’s rule ,

lim
∆→0

V(p∗∗) = lim
∆→0

e−λ∆ − e−(λ+r)∆

1− e−(λ+r)∆

=
−λ + r + λ

r + λ

=
r

r + λ

Note that r/(r + λ) is equal to the average discounted value of a mech-
anism which immediately notifies the user when an email arrives.20 To see
this, note that the latter value is equal to the expected discounted waiting

20Multiplying by r in the formulas below normalizes payoffs in the same way that
multiplying by (1− δ) does in discrete time.
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time before the first email arrival, i.e.∫ ∞

0

∫ t

0
re−rsdsλe−λtdt =

∫ ∞

0

[
e−rs|s=t

s=0
]

λe−λtdt

=
∫ ∞

0
(1− e−rt)λe−λtdt

= 1−
∫ ∞

0
e−rtλe−λtdt

= 1−
∫ ∞

0
e−(r+λ)tdt

= 1−
[

λ

−(r + λ)
e−(r+λ)t|∞0

]
= 1 + 0− λ

r + λ

=
r

r + λ

Now p∗∗ → p∗ as ∆ → 0. Thus, in the limit V(p∗) equals the initial
value of a mechanism that notifies the user immediately when an email
arrives. It follows that V(p∗) can also be attained by a mechanism which
only notifies the user whether an email had arrived t∗ units of time in the
past where

1− e−λt∗ = p∗,

i.e. exactly the amount of time it takes for the cumulative probability of
an email arrival to reach the threshold p∗. Indeed we will now show that
the limiting value function at all beliefs below p∗ is identical to the value
function of such a mechanism.

When the principal delays notification for t∗ units of time, no infor-
mation is revealed to the agent until time t∗, at which point the agent’s
belief is p∗. When the agent’s belief at some time t equals p∗ and there is
no email beep the agent learns that no email arrived prior to time t − t∗

and obtains no information about any arrival in the most recent t∗-length
interval of time. By the definition of t∗, the probability of an arrival dur-
ing that period is exactly p∗. Thus, in the absence of any beep, the agent’s
belief remains constant at p∗.

This means that a belief µ < p∗ occurs exactly once; namely at the time
τ < t∗ such that

1− e−λτ = µ.

35



Beginning at time τ, the principal’s payoff is 1 until time t∗, after which he
obtains continuation value V(p∗). This yields discounted expected value(

1− e−rt∗
)
+ e−rt∗V(p∗).

And since
lim
∆→0

f n(µ)(µ) = p∗

we have
lim
∆→0

V(µ) =
(

1− e−rt∗
)
+ e−rt∗V(p∗).

C Deriving The HJB Equation

Let us approximate the optimized continuous time discounted payoff for
the principal by discretizing the time dimension into ∆ intervals and the
summation

J(t, µt) = E
∞

∑
s=0

e−r(t+s∆)u(µt+s∆) · ∆ + O(∆2).

Here J(t, µt) gives the principal’s maximal expected total discounted con-
tinuation payoff beginning at time t when the agent’s beliefs at instants
{t + s∆}s≥0 are given by µt+s∆. By the principal of optimality

J(t, µt) = max
p∈∆(∆S)
Ep=µt

[
e−rtu(νt)∆ + e−rt J(t + ∆, f (νt))

]
+ O(∆2).

where p denotes a lottery whose realization is νt. The optimal policy is
stationary so J(t, µ) = J(t′, µ) and we can write

J(t, µ) = e−rtV(µ)

and

e−rtV(µt) = max
p∈∆(∆S)
Ep=µt

Ep

[
e−rtu(νt)∆ + e−r(t+∆)V( f (νt))

]
+ O(∆2).

Dividing through by e−rt,

V(µt) = max
p∈∆(∆S)
Ep=µt

Ep

[
u(νt)∆ + e−r∆V( f (νt))

]
+ O(∆2).
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Now a first-order approximation

e−r∆V( f (νt)) = e−r∆ [V(νt) + V′(νt)ν̇t∆
]
+ O(∆2),

so

V(µt) = max
p∈∆(∆S)
Ep=µt

Ep

{
u(νt)∆ + e−r∆ [V(νt) + V′(νt)ν̇t∆

]}
+ O(∆2).

I claim that at an optimum p∗ of the maximization above, Ep∗V(νt) =
V(µt). To see why, for each ν ∈ ∆(S), let p∗(ν) be a maximizer for the
optimization that defines V(ν). Then we have

u(ν)∆+ e−r∆V( f (ν)) ≤ Ep∗(ν)

[
u(ν′)∆ + e−r∆V( f (ν′))

]
= max

p∈∆(∆S)
Ep=ν

Ep

[
u(ν′)∆ + e−r∆V( f (ν′))

]
since the left-hand side is a feasible value for the right-hand side optimiza-
tion, taking p to be the degenerate lottery. Therefore

V(µ) = Ep∗
[
u(ν)∆ + e−r∆V( f (ν))

]
≤ Ep∗Ep∗(ν)

[
u(ν′)∆ + e−r∆V( f (ν′))

]
= Ep∗V(ν)

but also
V(µ) ≥ Ep∗V(ν)

since the compound lottery in the middle expression above is feasible for
the optimization that defines V(µ). We can thus re-arrange as follows(

1− e−r∆
)

V(µt) = max
p∈∆(∆S)
Ep=µt

Ep

[
u(νt)∆ + e−r∆V′(νt)ν̇t∆

]
+ O(∆2).

Dividing through by ∆ and then taking ∆ → 0 we obtain by l’Hopital’s
rule ,

rV(µt) = max
p∈∆(∆S)
Ep=µt

Ep
[
u(νt) + V′(µt)µ̇t

]
or

rV = cav
[
u + V′µ̇

]
.
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