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The Problem
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Email Beeps

How do you maximize the time spent not checking email? (and instead
presumably being productive)
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Email Beeps: Model

Email arrives at Poisson rate λ.

Agent has beliefs at each time t whether an email has arrived.

As soon the probability is at least p∗ that an email is waiting, he
checks.

Email software is programmed to beep or not.
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No Beep

The probability that an email arrives by time t is

1− e−λt

When the beep is off this expression also represents the agent’s beliefs at
time t about whether there is an email waiting.
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No Beep
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No Beep

When the beep is off, the agent will work for a length of time t∗ given by

1− e−λt∗ = p∗

or

t∗ = − log(1− p∗)

λ

after which he will stop working and read email.
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Beep On

When the beep is on the agent learns immediately when an email arrives.
Let t̃ be the random time when an email arrives. Then the agents beliefs
are a step function.
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Beep On
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Beep On

With the beep on the agent checks precisely when an email arrives. The
expected time spent working is therefore

Et̃ = 1/λ
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Beep or No Beep?
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Beep or No Beep?

The beep should be turned on if and only if

t∗ ≤ Et̃

− log(1− p∗)

λ
≤ 1/λ

p∗ ≤ 1− 1/e

This is approximately 0.63

If you are easily tempted by email, turn your beeper on!

Not because you want to know when email arrives, but because you
want to know when it hasn’t.

Doesn’t depend on arrival rate of email.

Note: assuming no discounting.
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Random Beeps

When an email arrives, beep with probability z .

A hybrid of the previous two.

Conditional on a beep he checks.

Conditional on no beep his posterior increases, but more slowly than
no beeps.

If there is no beep for a sufficiently long time he will check.

Gives initial value
1− (1− p∗)−

z
z−1

λz

The payoff is not monotonic in z and typically an interior beep
probability is optimal.

In fact beep with probability 1 is never optimal.
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Other Ways To Beep

1 Beep with a delay

2 Beep with a random delay

3 Beep with variable volume

4 Random, delayed, variable volume beeps...
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Optimal Beeps: Model Overview

The principal continuously observes a stochastic process.

The agent knows the law of the process but doesn’t directly observe
its realizations.

The agent forms beliefs about the state of the process an
continuously takes actions.

The principal sends messages to the agent about the state of the
process.

In order to influence the agent’s action.

The principal has commitment power.

Dynamic extension of Kamenica and Gentzkow (2011)
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Examples

Fending off audits by the board.

Moral Hazard/performance reviews.

Selling a good of fluctuating/depreciating quality...
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The Stochastic Process

Finitely many states s ∈ S .

Conditional on being in state st ,
I State transitions occur at Poisson rate λ ≥ 0,
I When a transition occurs the new state is drawn from a distribution

Ms ∈ ∆S .

If µt ∈ ∆S is the probability over states at time t, then
I In continuous time,

µ̇t = λ
(
Mµ − µ

)
where Mµ = ∑s µ(s)Ms .

I In discrete time, µt+1 = f (µt) := Pt+1(· | µt)
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Timing

The agent has prior belief µ0 about the initial state s0.
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Timing

In each period t, the agent enters with a belief µt ∈ ∆S .
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Timing

The principal observes the current state st .
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Timing

The principal sends a message mt ∈ Mt .
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Timing

The agent updates to an interim belief νt ∈ ∆S and takes an action.
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Timing

Time passes and the agent updates his belief to

µt+1 = f (νt) := Pt+1(· | νt)
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Timing

The principal knows µt+1.
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Policy, Commitment

The Principal’s message mt can be an arbitrary function of the complete
prior history.

σ(ht) ∈ ∆Mt

The Principal commits to a policy σ(·).
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Indirect Utility

The agent’s action is chosen to maximize his payoff

at ∈ argmaxaEνtv(a, s)

And the Principal obtains (flow) indirect utility

u(at(νt))

Indeed we will take u(νt) as the primitive assuming only that it is bounded
and upper-semicontinuous.
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Principal’s Objective

The principal chooses a policy to maximize the expectation of

(1− δ)
∞

∑
t=0

δtu(νt)
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Beeps

S = {0, 1}. (no email, email waiting.)

µt , νt are probabilities that email has arrived.

u(ν) =

{
1 if ν ≤ p∗

0 otherwise

Policies
I Beep on: Mt = {0, 1}, σt(ht) = st .
I Random beeps: σt(st) ∈ ∆{0, 1}.
I Variable volume beeps: Mt = [0, 1].
I etc.
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The Obfuscation Principle

Lemma

Any policy σ induces a stochastic process (µt , νt) satisfying

1 E(νt | µt) = µt ,

2 µt+1 = f (νt).

Any stochastic process with initial belief µ0 satisfying these properties can
be generated by a policy σ which depends only on the current belief µt

and the current state st .
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Reformulate The Problem

The principal chooses the stochastic process (µt , νt) directly.

Given µt , the natural state variable, choose a random variable νt ,

Eνt = µt .

Then µt+1 = f (νt).

The principal is just telling the agent what his beliefs should be and the
principal’s payoff is the expected discounted value of u(νt).
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Discrete Time

Normalize the length of a “period” to 1 and let δ = e−r . Here is the value
function

V (µt) = max
p∈∆(∆S)
Ep=µt

Ep [(1− δ)u(νt) + δV (f (νt))]

Given the current state µt , the principal chooses a lottery p over his
current payoff u(νt) resulting in a transition to the new state f (νt) and
continuation value V (f (νt)).
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Geometric Version

V = cav [(1− δ)u + δ (V ◦ f )]
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Beep On

cav [(1− δ)u + δ (V ◦ f )]
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Beep On

cav [(1− δ)u + δ (V ◦ f )]
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Beep On
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Beep On

cav [(1− δ)u + δ (V ◦ f )]

Jeffrey Ely Beeps



Beep On
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Beep On
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Beep On
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Beep On
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Beep On
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Beep On
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Beep On
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Beep On
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Beep On

cav [(1− δ)u + δ (V ◦ f )]
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Beep On

V 6= cav [(1− δ)u + δ (V ◦ f )]
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Fixed Point

The value function is the unique fixed point of a contraction and therefore
can be found by iteration.
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Iteration
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Iteration
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Optimal Policy

Once we have a fixed point, the optimal policy can be easily inferred:

Where V and cav [(1− δ)u + δ (V ◦ f )] coincide:
I Any randomization along a linear segment is optimal. (Random

variable volume beeps.)
I At a kink point the null signal is uniquely optimal.

Where they don’t coincide,
I The value function must be linear there,
I The optimal policy jumps to the endpoints of the linear segment.
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Continuous Time Limit

As the period length shrinks.
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Continuous Time Limit

As the period length shrinks.
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Continuous Time Limit

The continuous time limit.
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Implementation

Inspecting the limit value function we see that:

Below p∗ it is uniquely optimal to send no message.

Above p∗ it is uniquely optimal to randomize between p∗ and 1.

At p∗?
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Differentiable

The value function is differentiable.

Obviously below and above p∗.

At p∗:
I The value function is left- and right-differentiable
I The left-hand slope must be no steeper than the right-hand (concavity)
I It cannot be strictly flatter.
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V ∗(p∗)

Differentiability allows us to calculate V ∗(p∗):

To the left of p∗ the agent is earning 1 and waiting for V ∗(p∗). This
gives value

V ∗(µ) =
∫ t(µ)

0
e−rtdt + e−rt(µ)V ∗(p∗)

where µ + (1− µ)(1− e−λt(µ)) = p∗

We can calculate the derivative with respect to µ.

To the right of p∗, the value function is linear with slope

−V ∗(p∗)
1− p∗

Differentiability says these must be equal at p∗.

Yields V ∗(p∗) = r/(r + λ).
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Implementation

r/(r + λ) is the expected discounted value of a flow payoff of 1 that
terminates with Poisson rate λ.

Therefore it is also the initial value (i.e. starting at µ = 0) of the
Beep On policy. A hint!

Consider a beep with a delay of length t∗ given by

1− e−λt∗ = p∗

(Recall that this is the time it takes to reach belief p∗ when the beep
is off.)
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Beep With Delay t∗ Is Optimal.
When the policy is to beep with delay t∗,

Before date t∗ there will be no beep for sure.
I Thus the policy is equivalent to sending no message, as is optimal.

At date t∗ (and after),
I His belief will be p∗.
I There will be a beep if and only if an email arrived exactly t∗ earlier.
I These beeps arrive with Poisson rate λ.
I After hearing a beep the belief moves to µ = 1.
I Consider the agent’s updated belief after no beep.

F He learns that no email has arrived more than t∗ periods ago.
F He learns nothing about whether an email has arrived at some point

later than that.
F It is therefore as if he has been in a Beep Off policy, starting with belief

µ = 0 for the past t∗ periods.
F His belief therefore remains pegged at p∗ and he does not check email.

Thus, at belief p∗ the principal earns a flow payoff of 1 until a beep
which arrives with Poisson rate λ. This implements the optimal value
function. (Beliefs between p∗ and 1 are never reached.)
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Coincidentally (?)

The optimal policy in continuous time coincides with the (a) static
optimum from Kamenica-Gentzkow.

cav u
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In Fact

Proposition

If u is

Concave,

Convex,

Or a step function with 2 steps

then the static optimal policy is also optimal in continuous time.
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Concave u Iteration

Concave u.
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Concave u Iteration

u ◦ f is still concave.
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Concave u Iteration

(1− δ)u + δ (u ◦ f )
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Concave u Iteration

(1− δ)u + δ (u ◦ f ) still concave.
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Concave u Iteration

Convex hull of a concave function is the function itself.
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Concave u Iteration

etc.
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Convex u Iteration

Convex u.
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Convex u Iteration

(1− δ)u + δ (u ◦ f ) still convex.
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Convex u Iteration

The convex hull of a convex function is linear.
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Convex u Iteration

etc.
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Intuition?

The expected value of the agent’s posterior at time t is independent
of the policy.

Indeed it equals the posterior in the null policy (beep off.)

So the choice of policy is just a gamble over paths whose “expected
value” is the no-beep path.

Wherever the function u is convex the principal is “risk-loving” over
paths.

Wherever it is concave he is “risk-averse”

Suggests that the continuous time optimum always coincides with the
static optimum.
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Counterexample

u(ν) =


1 if ν = 0

3/4 if ν ∈ (0, 1/2]

0 otherwise
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Ongoing Work

Solving the model directly in continuous time, HJB equation:

rV = cav

[
u + V ′ · df

dt

]
Extensions

I Long run agent (dynamic incentives)
I Multiple agents (higher-order beliefs)
I Action affects the state
I Action generates information
I Agent has private information
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