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Abstract

In this paper we examine conditions under which optimal risk sharing may not fully insure individuals
against idiosyncratic shocks to their endowments or income, even when markets are complete. We analyze
the benchmark risk-sharing model, but allow for the possibility that idiosyncratic shocks can induce
fluctuations in aggregate resources, affecting in this way the Pareto optimal allocation of consumption.
In particular, we show that idiosyncratic shocks affect consumption under optimal risk-sharing, when
endowments are drawn from a class of power law distributions or when output is produced through
input supply networks with star-shape or scale-free architecture. Under these conditions, we document
two important features of optimal risk sharing. First, the effect of idiosyncratic risk on consumption
growth is heterogeneous, and depends on each agent’s contribution to the aggregate resource, and, second,
risk sharing involves an exposure to systemic risk that is composite of the undiversified components of
idiosyncratic shocks. Additionally, we show that the frequently used empirical tests of risk-sharing which
ignore the distributional aspects of income and the network structure of production, may suffer from
a specification bias when idiosyncratic shocks do not dissipate in the aggregate. We offer empirical
evidence to show that individual consumption growth is affected by a systemic component of risk, such
as, for example, the shocks to the top percentiles of the income distribution. Our results have important
implications for empirical studies of risk-sharing carried out at the individual, household and national
level, irrespective of the size of the reference group, be it the household, the village, or the country.
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1 Introduction

How effective are markets and institutions in fully insuring agents against idiosyncratic risk? Un-
der complete markets, individual consumption should respond only to aggregate risk and not to
idiosyncratic risk. This is the principal implication of full risk-sharing. The complete markets case,
therefore, provides a useful benchmark in assessing whether market imperfections play any role in
explaining consumption allocations (Mace 1991). Empirical tests based on the key implications of
risk-sharing (Mace 1991; Cochrane 1991; Townsend 1994) have relied heavily on this benchmark, so
that an empirical rejection of risk-sharing is taken to indicate the presence of market imperfections
and the absence of optimal risk sharing arrangements. In this paper we revisit this issue and show
that, under certain conditions, optimal risk sharing and full risk sharing are not equivalent, so that
a rejection of full risk sharing in the data may not indicate an absence of complete markets or
optimal risk-sharing.

We are primarily interested in evaluating one central aspect of the benchmark risk-sharing
model: the (asymptotic) restriction that aggregate idiosyncratic risk approaches zero as the size
of the risk sharing group tends to infinity. However, such an approximation property, essentially
implied by the law of large numbers, need not always hold even when idiosyncratic shocks are
exogenous and independent across agents. A recent literature on the microeconomic origins of
aggregate fluctuations has shown that in many cases aggregate shocks originate from idiosyncratic
shocks and that, in fact, idiosyncratic shocks do not necessarily die out in the aggregate. It is this
feature that appeals to us as an alternative to ‘imperfections’ as an explanation for the failure of full
risk sharing. The absence of a prior restriction on the aggregate behaviour of idiosyncratic shocks
may produce a fundamental identification problem such that the effect of an idiosyncratic shock on
consumption cannot be separately recovered empirically. The objective of our research is, therefore,
to characterize conditions under which the optimal risk sharing rule may not fully insure its agents
against idiosyncratic shocks to their endowments or income and derive empirical implications for
the same.

Our work is motivated by two observations. The first is that the share of income accruing to
the top percentiles of the income distribution is disproportionately large. In fact, as pointed out
by Alvaredo et al. (2013), “most of the action has been at the very top”. In the United States
alone, the authors estimate that the incomes of the top 1% earners account for approximately 22%
of the country’s total income. A consequence of this feature is that the pool of aggregate income
is extremely fragile to the perturbations at the higher end of the distribution so that the combined
volatility of aggregate income is proportional to the volatility of the top share holders. Our second
observation is that income production processes across sectors are typically interlinked, such that
producers are affected by the integrated risk of input providers.

Both of these insights have been developed and brought to attention, most recently, in the
macroeconomic context of firms and sectors by the works of Gabaix (2011) and Acemoglu et al.
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(2012). Gabaix (2011) shows that the distribution of firm sizes is fat-tailed in the United States and
demonstrates empirically that a significant part of aggregate fluctuations can be explained by shocks
to large firms which account for a disproportional share of total output. By examining the input-
output structure of the US economy, Acemoglu et al. (2012) offer a supplementary reason as to why
idiosyncratic shocks might not average out in the aggregate according to the law of large numbers.
More specifically, they show that inter-sectoral linkages may propagate sector, or firm, specific
shocks when, for example, there exist general purpose inputs that are used by many other sectors or
when general purpose inputs are provided by a few major suppliers. Early work by Jovanovic (1987)
has also found that, in specific contexts, strong strategic complementarities between agents’ efforts
as inputs into the production process can lead to the failure of the diversification of idiosyncratic
shocks in the aggregate. The contribution of sectoral shocks to output volatility has also been
emphasized by Horvath (1998).

One immediate implication of the fact that the volatility of aggregate income is affected by the
volatility of the income owned by the top share holders is that the aggregate resource portfolio is
subject to diversification constraints, even when the population of those contributing to it grows.
Ultimately, individual consumption volatility, which is driven by the volatility of the aggregate
resource under optimal insurance, is also as a result, exposed to the volatility of the income owned
by the top share holders. Building on this observation, our analysis demonstrates that consumption
growth under optimal insurance depends on a systemic, undiversifiable, component of risk, that is
equal to the weighted sum of individual income volatility, where the weights represent the share of
aggregate income contributed by each agent. Consider, for example, an agent holding 10% of total
income. This corresponds to her weight in the income pool. An idiosyncratic shock to the income
of this agent affects every other agent’s consumption growth including her own by a proportion of
10%, in spite of optimal insurance, precisely because the planner is unable to diversify away this
proportion.

Clearly, the empirical relevance of the risk-sharing model hinges crucially on the distributional
properties of the income portfolio. Extreme level of skewness in income shares can be found, for
instance, in power law distributions with exponents less than two (infinite variance). In comparison,
the maximum income share obtained from a Gaussian income distribution with a finite mean and
variance, are typically much smaller in magnitude, ranging between 0.1% and 2%. This illustrates
two aspects of our analysis. First, risk-sharing models that do not accommodate the role of idiosyn-
cratic shocks in affecting the aggregate are compatible with the latter characterization of income
shares rather than the former. In practice however, income distributions are often found to resemble
the former, exhibiting fat tails with power-law parameters ranging between 1.4-1.8 (Atkinson et al.
2011; Feenberg and Poterba 1993; Levy and Solomon 1997; Mandelbrot 1960). Second, we show
that there is an important distinction between full insurance and optimal insurance. Key features of
this result are that an idiosyncratic income shock can affect consumption growth heterogeneously,
even when risk is optimally shared, and that consumption growth under optimal risk sharing is
exposed to systemic risk arising from undiversified idiosyncratic shocks.
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In examining this issue, we combine two strands of literature. The first strand, which we have
discussed above, analyzes the nature and composition of aggregate fluctuations. The second develops
testable implications of risk sharing based on theoretical models that do not allow idiosyncratic
shocks to play any role in the aggregate in the presence of complete markets or other mechanisms
that ensure a full-information Pareto-optimal allocation1. These models account separately for
economy-wide aggregate uncertainty, but maintain that individual idiosyncratic shocks cancel out
in the aggregate. Based on this, a large empirical literature has developed and tested the key
theoretical implication of the risk sharing model across individuals, households, or even countries,
which is that idiosyncratic shocks should not affect individual consumption changes under optimal
insurance. The empirical design usually involves regressing a measure of idiosyncratic shock against
the change (or growth) in individual consumption and testing whether the coefficient of the shock
is equal to zero.

The first contribution of our paper is to examine the implications of the failure of large numbers
to lead to the full diversification of idiosyncratic risks under optimal risk sharing. We consider the
social planner’s problem of optimally allocating consumption in a series of models with complete
markets under various assumptions regarding the cross-sectional distribution of endowments and
the production network structure of the economy. First, we consider the case of endowments that
are distributed uniformly or with a finite variance across individuals in the economy. Our results
are in agreement with the ones obtained in the classic studies of risk-sharing, where idiosyncratic
shocks are not expected to induce changes in individual consumption under optimal consumption
insurance.

Next, we replace our assumption of narrow cross-sectional differences in the distribution of
endowments with the more factual assumption of endowments distributed as a power law. Under the
power law distribution assumption, we find that the law of large numbers may fail and idiosyncratic
shocks may affect aggregate consumption. Depending on the type of the power-law distribution
under consideration, we show that the partial effect of idiosyncratic shocks to the largest endowments
in the economy on the optimal consumption of any individual may decay at a rate that is much
slower than the one implied by the law of large numbers.

Subsequently, we relax the assumption of an endowment-based economy to consider a production
economy where the social planner allocates efficiently both consumption and production. We employ
various assumptions regarding the network asymmetries between different sectors in the input-
output structure of the economy. We find that idiosyncratic shocks to central sectors may lead to
fluctuations in aggregate production and consumption affecting in this way optimal consumption
allocations. This is the case for certain types of scale-free networks and star-type networks, where
some sectors are highly central, in that that they are major suppliers of the input used by other
sectors.

1The solution to the risk-sharing problem is derived from a model usually cast in the setting of a social planner who
maximizes a weighted sum of individual utilities. As emphasized in the early work by Wilson (1968) and Diamond
(1967), optimal resource allocation is achieved by pooling all individual endowments to obtain a distribution of the
aggregate endowment that equalizes the weighted marginal utilities across individuals.
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Our second contribution is to recast the optimal risk sharing solution into a tractable empirical
form that can be taken to the data. First, we show that a basic measurement error issue emerges
when idiosyncratic shocks cannot be fully diversified away. In such cases, the total idiosyncratic
shock represents a noisy measure of potentially insurable risk as it contains components of both
insurable and uninsurable risk. This results in a misspecified model that attenuates the estimates for
optimal insurance. We assess the extent of the specification bias in finite samples through a monte
carlo study. The magnitude of bias depends on the choice of the utility function; we find that, while,
the CRRA based specification performs well for any given value of the power-law parameter, the
CARA specification performs quite poorly, yielding extremely biased results for skewed distributions
(i.e., with power law parameters less than two) even over fairly large (risk-sharing) group sizes.

Finally, we provide empirical evidence to show that the consumption growth of any individual
is exposed to a systemic component of risk under optimal risk sharing, i.e., it is partially affected
by the weighted idiosyncratic shocks of other individuals in the risk sharing group. Using data on
household income (PSID) and US states’ output (BEA), we estimate the household and regional risk
sharing models, respectively. We decompose the aggregate component of the risk sharing model to
isolate the idiosyncratic shocks attributable to the the top share-holders of the distribution. We find
that a 1% increase in the income growth rate of the top 1% income earners increases consumption
growth rate by approximately 0.17 percentage points. This tentative evidence suggests that, at the
onset of the Great Recession, the 16.8% reduction in the income income growth rate of the top
1% reduced consumption growth (of all households in the USA) by approximately 3.7 percentage
points.

This paper is organized as follows. In Section 2 we consider the variants of the endowment
and production economies that we discussed in the introduction. Section 3 discusses the empirical
implications of our theoretical findings. Section 4 describes and tests the principal implications of
our analysis and Section 5 concludes.

2 Risk sharing model

Consider an economy with N infinitely lived agents and a single consumption good. Let cit (sτt)
be the consumption of agent i ∈ {1, ..., N} in the state sτt of the economy, where τ ∈ {1, ..., S}
indexes the event at date t. The agents share common information over the state variable sτt which
occurs with probability π (sτt) ∈ [0, 1] with ΣS

τ=1π (sτt) = 1, ∀t ∈ {0, ..., ∞}. The expected lifetime
utility function of agent i is:

∞∑
t=0

(ρi)t
S∑
τ=1

π(sτt)u [cit (sτt) , bit (sτt)] , (2.1)

where u (·) represents the time-separable utility function for the consumption good, bit (sτt) denotes
a preference shock and ρi ∈ (0, 1) is the rate of time preference.

Each agent is endowed with yit(sτt) units of the consumption good. The endowment yit is
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exogenously given2 and follows a stochastic growth process3:

∆yit+1
yit

= yit+1 − yit
yit

= σiεit+1, (2.2)

where σi is the variance of the shocks to agent’s i endowment and εit+1 is a random variable
with mean value E (εit+1) = 0 and variance V ar (εit+1) = 1. The aggregate endowment of the
consumption good at date t is given by:

Yt(sτt) =
N∑
i=1

yit(sτt), (2.3)

Combining (2.2) and (2.3), we can express the growth rate of the aggregate endowment of the
consumption good as:

∆ ln (Yt+1) ' ∆Yt+1
Yt

=
∑N
i=1 ∆yit+1
Yt

=
∑N
i=1 (yitσiεit+1)

Yt
. (2.4)

The social planner has the objective of allocating the consumption of the endowments available
in the economy in order to maximize the weighted sum of the expected utilities of the N agents
provided by:

N∑
i=1

λi

∞∑
t=0

(ρi)t
S∑
τ=1

π(sτt)u [cit (sτt) , bit (sτt)] , (2.5)

where λi ∈ (0, 1) is agent i′s Pareto weight in the planner’s utility function that satisfies ΣN
i=1λi = 1.

The resource constraint in the social planner’s problem is represented in (2.6), where the aggre-
gate consumption of the agents cannot exceed the level of the aggregate endowment:

N∑
i=1

cit (sτt) ≤ Yt (sτt) . (2.6)

The first order conditions for the consumption of agent i yield:

λi (ρi)t π(sτt)uC [cit (sτt) , bit (sτt)] = µt (sτt) , (2.7)

for all sτt, where µt is the Lagrange multiplier associated with the resource constraint (2.6) and uC (·)
denotes the partial derivative of the agent’s utility function with respect to consumption. Denote
κt (sτt) ≡ µt(sτt)

π(sτt) and suppress the state notation from now on, so that cit ≡ cit (sτt), bit ≡ bit (sτt)
and κt ≡ κt (sτt). The first order conditions in (2.7) can be rewritten as:

λi (ρi)t uC (cit, bit) = κt. (2.8)
2This assumption is modified in Section 2.4 which introduces an input supply network where the social planner is

allowed to optimally allocate both production and consumption across the agents in the economy.
3The stochastic growth specification for the income process in widely adopted in the literature on income dynamics

and consumption smoothing. See for example Banks et al. (2001) & MaCurdy (1982)
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Suppose that preferences are represented by the following Constant Relative Risk Aversion
(CRRA) or power utility4 function:

u (cit, bit) = bit
(cit)1−γ − 1

1− γ , (2.9)

where γ > 0 is the coefficient of relative risk aversion5.
Substituting the partial derivative of the CRRA utility function with respect to consumption

into the first order condition (2.8) and solving for cit we get:

cit =
(
bitλi (ρi)t

κt

) 1
γ

. (2.10)

Aggregating over the N agents of the economy, we have:

N∑
i=1

cit =
N∑
i=1

(
bitλi (ρi)t

κt

) 1
γ

⇒ Yt = (κt)−
1
γ

N∑
i=1

(
bitλi (ρi)t

) 1
γ , (2.11)

where the last equation follows from substituting the resource constraint (2.6).
The last equality can be used to obtain an expression for ln (κt):

ln (κt) = −γ ln (Yt) + γ ln
[
N∑
i=1

(
bitλi (ρi)t

) 1
γ

]
. (2.12)

Denote Θit ≡ bitλi (ρi)t and use equations (7.25) and (2.12) to obtain the following expression
for the logarithmic growth of optimal individual consumption:

∆ ln (cit+1) = −1
γ

∆ (ln κt+1) + 1
γ

∆ ln (Θit+1)

= ∆ ln (Yt+1)−∆ ln
[
N∑
i=1

(Θit+1)
1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi) . (2.13)

The logarithmic growth of total endowments in the expression above can be calculated based
4The power utility assumption is maintained throughout the main body of the paper and is relaxed in the appendix

where we examine other utility functions that belong to the Hyperbolic Absolute Risk Aversion (HARA) class, as well
as to the Constant Absolute Risk Aversion (CARA) class. Our main results remain robust to considering alternative
types of utility functions.

5In Appendix (7.3) we relax this assumption and consider the case where agent have heterogenous risk preferences.
We find that the asymptotic predictions are similar. The key difference is that the social planner will allocate
consumption according to individual preferences for risk. Proportional allocation is able to provide some insurance
against aggregate shocks. However, when aggregate shocks are themselves affected by idiosyncratic shocks, the
implication is that that consumption growth is affected less by the idiosyncratic shocks of risk averse agents and more
by the idiosyncratic shocks of risk loving agents.
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on equation (2.4) as follows:

∆ ln (Yt+1) ' ∆Yt+1
Yt

=
∑N
i=1 (∆yit+1)

Yt
=
∑N
i=1 (yitσiεit+1)

Yt
. (2.14)

Substituting (2.14) into (2.13), we get:

∆ ln (cit+1) =
∑N
i=1 (yitσiεit+1)

Yt
−∆ ln

[
N∑
i=1

(Θit+1)
1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi) . (2.15)

We demonstrate in what follows that idiosyncratic shocks dissipate in the aggregate, for large
enough group sizes, when the size of endowments is distributed uniformly across agents or with a
finite variance. However, when endowments are distributed with fat tails, idiosyncratic shocks affect
the aggregate pool of resources and, as a result, the consumption growth of each individual. In the
last subsection, we consider the case of a production economy, where the input supply network is
allowed to be balanced, star-like and scale free, and we provide conditions under which the network
structure matters for the lack of diversification of idiosyncratic shocks and, therefore, for optimal
risk sharing.

2.1 Identical-sized endowments

Assuming that yt = yit = (1/N)Yt for every agent i, then the logarithmic growth of total endow-
ments can be written as:

∆ ln (cit+1) = yt
Nyt

N∑
i=1

(σiεit+1)−∆ ln
[
N∑
i=1

(Θit+1)
1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi) . (2.16)

The partial derivative of the changes in the optimal consumption of individual i with respect to
the j-th agent’s idiosyncratic endowment shock, εjt+1, is equal to:

∂ (∆ ln (cit+1))
∂εjt+1

= σj
N
.

The partial effect of εjt+1 becomes 0 as N →∞.

2.2 Endowments distributed with finite variance

If endowments are distributed with a finite variance, then N−1∑N
i=1 (yit)

a.s.−→ E (yt) , where E (yt)
is a finite number. Thus, we can express total endowments Yt as follows:

Yt =
N∑
i=1

(yit) = NE (yt) .

The partial derivative of equation (2.15) with respect to the idiosyncratic endowment shock
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εjt+1 can, then, be written as:

∂ (∆ ln (cit+1))
∂εjt+1

= σjyjt
Yt

= σjyjt
NE (yt)

.

Under the finite variance assumption, the term σjyjt
E(yt) remains a positive real number and the

partial effect of εjt+1 becomes 0 as N →∞.

Combining the results of Sections 2.1 and 2.2, we derive the following proposition:

Proposition 1. Assuming CRRA preferences, the partial effect of an idiosyncratic shock to the j-th
agent’s endowment on the optimal consumption of the i-th individual becomes 0 as N → ∞ when:
(i) endowments are distributed uniformly across agents or (ii) endowments are distributed with a
finite variance across agents.

2.3 Endowments following a power law distribution

Denote P (·) the frequency distribution of endowment sizes in the economy. The size for endowments
is assumed in this section to follow a power law distribution according to which:

P (y) = cy−ζ ,

where c > 0 is a normalizing constant, y > c1/ζ , and ζ ≥ 1 denotes the exponent of the power law
distribution of endowments. Following Gabaix (2012: p.742), we normalize the constant so that
c = 1 and we note that the random variable y−ζ is uniformly distributed.6 We show in Appendix
(6.3) that, the j-th largest endowment in the population of N agents is approximately equal to:

yjt =
(
j

N

)− 1
ζ

. (2.17)

The size of aggregate endowments as the size of the economy grows large (i.e., N → ∞) will
depend on the value of parameter ζ.

• if ζ > 1, then the mean value of the endowment size takes a finite value, as the size of the
economy grows large (i.e., N−1∑N

i=1 (yit)
a.s.−→ E (yt)). Thus, for large N , total endowments Yt

can be expressed as Yt =
∑N
i=1 (yit) = NE (yt) and the logarithmic growth of total endowments

can be written as:

∆ ln (cit+1) = 1
NE (yt)

N∑
i=1

((
i

N

)− 1
ζ

σiεit+1

)
−∆ ln

[
N∑

i=1
(Θit+1)

1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi) .

(2.18)
6Heuristically, note that if y follows a power law distribution and c = 1, then P (y > x) = x−ζ . Thus, P

(
y−ζ > x

)
=

P
(
y > x

− 1
ζ

)
=
(
x
− 1
ζ

)
= x.
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The partial derivative of equation (2.18) with respect to the idiosyncratic endowment shock
εjt+1 is, then, equal to:

∂ (∆ ln (cit+1))
∂εjt+1

= 1

N
ζ−1
ζ

σj

j
1
ζE (yt)

.

Given that ζ > 1 and that σj

j
1
ζ E(yt)

remains a positive finite value, then the partial effect of

εjt+1 becomes 0 as N →∞.

• if ζ = 1, then yjt =
(
N
j

)
and the expected value of endowments (for a large N) is equal

to E (yt) =
´ N

1 yf (y) dy =
´ N

1 yy−2dy = lnN , where f (y) = y−2 is the probability density
function of the distribution of endowment sizes. Therefore, the aggregate endowment is equal
to Yt = NE (yt) = N lnN and the logarithmic growth of total endowments can be expressed
as:

∆ ln (cit+1) =
∑N
i=1

(
N
i σiεit+1

)
N lnN −∆ ln

[
N∑
i=1

(Θit+1)
1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi) . (2.19)

The partial derivative of equation (2.19) with respect to the idiosyncratic endowment shock
εjt+1 is equal to:

∂ (∆ ln (cit+1))
∂εjt+1

= σj
j lnN . (2.20)

Equation (2.20) leads to the following proposition:

Proposition 2. Assuming CRRA preferences, the partial effect of an idiosyncratic shock to the
j-th largest endowment on the optimal consumption of the i-th individual decays according to:

(i) 1
j lnN when the size of endowments follows a power-law distribution with ζ = 1 (i.e., a Zipf

distribution) and
(ii) 1

j
1
ζ N

ζ−1
ζ

when the size of endowments follows a power-law distribution with ζ > 1.

In contrast to Proposition (1), Proposition (2) suggests that idiosyncratic shocks may matter
for changes in optimal consumption. This result is also to be contrasted with the theoretical and
empirical literature on risk sharing which does not consider the possibility that idiosyncratic shocks
may not cancel out in the aggregate.

2.4 Networked production economy

In this section, we adopt the assumption that each agent is an entrepreneur that produces an
intermediate product xit which can be either used as an input in the production of the aggregate
consumption good Yt, or used in the production of the intermediate products of the other agents
in the economy. More specifically, it is assumed that entrepreneurs use a Cobb-Douglas production
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technology to produce their intermediate output:

xit = zαitl
α
it

N∏
j=1

x
(1−α)wijt
ijt , ∀ i ∈ {1, . . . , N} (2.21)

where zit denotes an idiosyncratic productivity shock to i′s production at time t, lit is the amount of
labor used, α ∈ (0, 1) is the relative share of labor in the production of xit, and wijt is the relative
share of input j in the total mix of intermediate inputs for the production of the i−th good.

The intermediate sectors in the economy are related through an exogenous input-output rela-
tionship represented in the matrix Wt = [wijt], according to which the output of agent j is used as
an input in the production of the intermediate good xi of agent i when wijt > 0.

Productivity shocks zi are assumed to be distributed independently across entrepreneurs and to
follow a stochastic growth process:

∆ (ln (zit+1)) w ∆zit+1
zit

= σiεit+1, (2.22)

where σi ∈ (σ, σ) denotes the variance of the shocks to entrepreneur’s i productivity (with 0 < σ <

σ) and εit+1 is a random variable with mean value E (εit+1) = 0 and variance V ar (εit+1) = 1.
Additionally, we assume constant returns to scale in the production function of each agent i so

that the input shares of all agents sum up to 1, i.e.,
∑N
j=1wijt = 1, in every time period t. Following

Acemoglu et al. (2012), we define the influence vector of the economy as the vector υ such that for
every i:

υit ≡
α

N
+ (1− α)

N∑
j=1

υjtwjit. (2.23)

The following feasibility constraint holds for every entrepreneur i:

yit +
N∑
j=1

xjit ≤ xit, ∀ i ∈ {1, . . . , N}

where yit is the amount of the intermediate good i that is used as an input in the production of the
aggregate consumption good Yt. The aggregate consumption good in the economy is also produced
using a Cobb-Douglas production technology:

Yt = At

N∏
i=1

(yit)
1
N , (2.24)

where At is an aggregate productivity shock and yit is the intermediate input for the production of
Yt that is provided by agent i. For simplicity, we assume that all agents participate equally in the
production of the aggregate consumption good.

Regarding the total amount of labor L available in the economy, we assume that every agent is
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endowed with an equal amount of labor units lei , which are supplied inelastically7 and which satisfy
the following equality:

N∑
i=1

leit = Lt.

The social planner’s problem in this section’s production economy is (i) to optimally allocate
the aggregate consumption good among the agents in the economy and (ii) to optimally choose the
intermediate production level xit, the quantity of labor lit, the quantity of intermediate inputs xijt
supplied to every agent j and the quantity of intermediate input yit supplied to the production of
the aggregate consumption good Yt. The social planner can achieve these objectives in a two-stage
process, by first choosing cit for every agent i at each point in time t to maximize the weighted sum
of the expected utilities of the N agents provided by (2.5). In the second stage, the social planner
maximizes the aggregate consumption good Yt via the optimal choice of inputs and production
for every entrepreneur i. The solution to the first stage optimization problem of the planner was
obtained in the introduction of section (2) where we derived the optimal allocation of consumption
for a given level of the aggregate consumption good. In this section, we obtain the planner’s
optimal conditions for maximizing the aggregate consumption good. In mathematical terms, the
second stage objective8 of the planner at each point in time t is:

max
{Yt, yit, xijt, xit, lit}

ln (Yt) ,

subject to the following technological and resource allocation constraints:

Yt = At

N∏
i=1

(yit)
1
N (2.25)

yit +
N∑
j=1

xjit ≤ zαitlαit
N∏
j=1

x
(1−α)wijt
ijt , ∀ i ∈ {1, . . . , N} (2.26)

N∑
i=1

lit ≤ Lt. (2.27)

Let µyit and µLt denote the Lagrange multipliers of the constraints provided in (2.26) and (2.27)
respectively. Substituting the technological constraint (2.25) into the objective function and taking
the first order conditions of the planner’s problem with respect to yit, xijt and lit, we obtain the
following equalities:

yit = 1
Nµyit

(2.28)

7The disutility of labor is ignored in the analysis of the social planner’s problem under the assumption that the
preferences of agents are additively separable between leisure and consumption.

8For analytical convenience, the objective of the planner is expressed in terms of the logarithm of the aggregate
consumption good, ln (Yt), where Yt = At

∏N

i=1 (yit)
1
N .
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xijt = (1− α)wijtxit
µyit
µyjt

(2.29)

lit = αxit
µyit
µLt
. (2.30)

Substituting (2.29) and (2.30) into the logarithmic transformation of agent i’s production func-
tion (2.21), we have:

ln (xit) = α ln (zit) + α ln (lit) + (1− α)
N∑
j=1

wijt ln (xijt)

⇒ ln (xit) = α ln (zit) + α ln
(
αxit

µyit
µLt

)
+ (1− α)

N∑
j=1

wijt ln
[
(1− α)wijtxit

µyit
µyjt

]
(2.31)

Rearrange (2.31) to obtain:

ln (µyit) = −α ln (zit) + α ln
(
µLt

)
−B − (1− α)

N∑
j=1

wijt ln (wijt) + (1− α)
N∑
j=1

wijt ln
(
µyjt

)
, (2.32)

where B ≡ α ln (α) + (1− α) ln (1− α).
Multiply (2.32) with the i-th element of the influence vector υ and sum over all agents to get:

− 1
N

N∑
j=1

ln
(
µyjt

)
=

N∑
i=1

(υi ln (zit)) + Ψt, (2.33)

where Ψt ≡ 1
αB + (1−α)

α

∑N
i=1

∑N
j=1 [υiwijt ln (wijt)] − ln

(
µLt

)
. The complete proof of (2.33) is

provided in the appendix and is based on Acemoglu et al. (2012).
Taking the logarithm of both sides of equation (2.24) and combining it with equations (2.28)

and (2.33) we obtain the following equivalent expressions:

ln (Yt) = ln
[
At

N∏
i=1

(yit)
1
N

]

= ln

At N∏
i=1

(
1

Nµyit

) 1
N


= ln (At)− ln (N)− 1

n

N∑
i=1

ln (µyit)

= ln (At)− ln (N) +
N∑
i=1

(υit ln (zit)) + Ψt, (2.34)

Equation (2.34) provides an expression for the maximal aggregate consumption good that the
social planner can reach by optimally organizing the production of all agents in the economy.

Substituting (2.34) in equation (2.13), we obtain an expression that relates the changes in
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optimal individual consumption to changes in the aggregate consumption good:

∆ ln (cit+1) = ∆ ln (Yt+1)−∆ ln
[

N∑
i=1

(Θit+1)
1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi)

=
N∑

i=1
[∆ (υit ln (zit+1))] + ∆ ln (At+1) + ∆Ψt+1 −∆ ln

[
N∑

i=1
(Θit+1)

1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi) .

(2.35)

The expression in (2.35) demonstrates that changes in optimal individual consumption may be
affected by idiosyncratic productivity shocks ln (zit+1) depending on the values that the elements
of the influence vector υi may take.

The degree dit of agent i in period t is defined as the share of agent i’s output in the intermediate
input supply of the economy normalized by (1− α):

dit ≡
N∑
j=1

wjit. (2.36)

The influence vector provided in (2.23) can be alternatively written in a matrix form, i.e.,

υ′nt ≡
α

N

[
I − (1− α)W ′nt

]−1 1. (2.37)

Given that the input shares of any agent in the economy are assumed to sum up to one, i.e.,∑N
j=1wijt = 1, then the inverse [I − (1− α)W ′nt]

−1 exists and υnt can be expressed into the following
convergent power series form:

υ′nt = α

N
1′
∞∑
k=0

(1− α)kW k
nt. (2.38)

From (2.38), we conclude that:

υ′nt ≥
α (1− α)

N
1′Wnt. (2.39)

The product 1′Wnt yields the vector of degrees d′nt ≡ [d1t d2t . . . dNt], given that the sum of
each column i of Wnt is the degree of agent j defined in equation (2.36) as dit =

∑N
j=1wjit. Thus,

(2.39) can be rewritten as:

υ′nt ≥
α (1− α)

N
d′nt. (2.40)

The effect of an idiosyncratic shock εjt+1 on aggregate output as the number of sectors becomes
infinitely large will depend on the asymptotic behaviour of υj which denotes the Bonacich centrality
of the j-th entrepreneur defined in (2.23). The following examples demonstrate cases in which the
partial effect of εjt+1 on ∆ ln (cit+1) does not vanish as N → ∞ or decays at a rate that is lower
than 1/

√
N .
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The following definitions will be used throughout this section: Consider two sequences of pos-
itive numbers {an}n∈N and {bn}n∈N. In what follows, (i) an = O (bn) holds when the two se-
quences satisfy lim supn→∞ (an/bn) < ∞, (ii) an = Ω (bn) holds when the two sequences satisfy
lim infn→∞ (an/bn) > 0, and (iii) an = Θ (bn) holds if an = O (bn) and an = Ω (bn) are satisfied
simultaneously.

In what follows, we document how idiosyncratic shocks may have a different impact on the
aggregate consumption good and its optimal allocation depending on the network structure of the
production economy. To simplify our exposition, we assume that the network structure and the
influence vector do not change over time.

2.4.1 Balanced networks

A balanced network is defined as follows:

Definition 1. A sequence of economies {En}n∈N is balanced if maxi∈{1,..., N} dni = Θ (1).

Applying the sup norm on both sides of (2.39), we have:

‖υn‖∞ ≥
α (1− α)

N
‖dn‖∞ , (2.41)

Note that maxi∈{1,..., N} di = ‖dn‖∞ = Θ (1) holds by definition under our assumption of a
balanced network. Thus, from inequality (2.41) we can conclude that the maximal element of the
influence vector of the economy tends to zero9 as N →∞.

More generally, according to (2.40), the following element-wise inequality holds:

υ′n ≥
α (1− α)

N
d′n

⇒ [υ1 υ2 υ3 . . . υn] ≥ α (1− α)
N

[d1 d2 d3 . . . dn] .

Thus, we conclude that asymptotically every element of the influence vector υn is not bounded
away from zero as N →∞.

Proposition 3. Assuming CRRA preferences and a balanced inter-sectoral production structure,
the partial effect of an idiosyncratic productivity shock to the j-th agent’s sector on the optimal
consumption of the i-th individual becomes 0 as N →∞.

2.4.2 Star type networks

Assume that entrepreneur j = 1 is the sole supplier of the intermediate input for production of the
rest of the agents in the economy so that wi1 = 1∀ i ∈ {1, . . . , N}. Then, the input-output network
structure takes a star shape.

9Note that α (1− α) is constant and that ‖dn‖∞ is asymptotically bounded away from zero and different than ∞.
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The influence vector in this case is υ′n = a
N 1′ + [(1− α) 0 . . . 0] and the Bonacich centrality

of agent 1 is υ1 = α
N + 1 − α, whereas the centrality of every other entrepreneur is υi = α

N ∀ i ∈
{2, . . . , N}. Consider how agent i′s optimal consumption is affected by the idiosyncratic shocks to
agent 1:

lim
N→∞

∂ (∆ ln (cit+1))
∂ε1t+1

= lim
N→∞

(υ1σ1)

= (1− α)σ1, ∀ i ∈ {1, . . . , N} . (2.42)

It is apparent from (2.42) that every agent’s optimal consumption is affected by the idiosyncratic
shocks to agent 1. Idiosyncratic shocks to agent 1 are propagated to the entire economy and matter
for the optimal allocation of consumption because this entrepreneurial activity occupies a central
position in the economy’s input-output network structure.

Denote ‖·‖∞ to be the sup-norm of a vector. Then, ‖υn‖∞ yields the largest element of the
influence vector in absolute value. We use the following definitions suggested by Acemoglu et al.
(2012):

Definition 2. A sequence of economies {En}n∈N has dominant entrepreneurs if ‖υn‖∞ = Θ (1).

Definition 2 implies that the largest share of output to be found in the economy is asymptotically
different from zero as the number of agents in the economy increases.

Definition 3. A sequence of economies {En}n∈N has a star-type network structure if maxi∈{1,..., N} di =
Θ (N), where di denotes the degree of agent i.

Using definitions 2 and 3, Acemoglu et al. (2010) have shown that dominant agents always exist
in economies characterized by a star-like structure.

Applying the sup norm on both sides of (2.39), we have:

‖υn‖∞ ≥
α (1− α)

N
‖dn‖∞ , (2.43)

Note that maxi∈{1,..., N} di = ‖dn‖∞ = Θ (N) holds by definition under our assumption of a
star-like network. Thus, from inequality (2.43) we can conclude that the maximal element of the
influence vector of the economy remains different from zero for all n ∈ N, as well as for N → ∞.
Given that ‖υn‖∞ 9 0 in a star-like network, we conclude that the idiosyncratic shocks to the
productivity of agents who occupy a central position in the input supply network will not cancel
out in the aggregate. Assuming that agent j = 1 is a central agent in the economy, then the optimal
allocation of consumption to any agent i in the economy is responsive to 1′s idiosyncratic shocks,
i.e.,

lim
N→∞

∂ (∆ ln (cit+1))
∂ε1t+1

= lim
N→∞

(υ1σ1) > 0.

This result leads to the following proposition.
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Proposition 4. Assuming CRRA preferences and a star-type inter-sectoral production structure,
the partial effect of an idiosyncratic productivity shock to the dominant sector on the optimal con-
sumption of the i-th individual remains different from 0 as N → ∞. The corresponding partial
effect of idiosyncratic productivity shocks to the non-dominant sectors of the economy converges to
zero as N →∞.

2.4.3 Scale free networks

Let P (·) be the frequency distribution of the degrees in the input supply network. Then, the
following definition characterizes power law networks:

Definition 4. A sequence of economies {En}n∈N has a scale free network structure if the degree
distribution in the degree sequence

{
d(n) = (d1, d2, , dn)

}
n∈N

follows a power-law distribution of
the following form:

P (d) = cd−ζ ,

where c > 0 is a normalizing constant, d > c1/ζ , and ζ ≥ 1. In what follows, we normalize the
constant to be equal to one, i.e., c = 1.

Under the assumption that degrees follow a power law distribution in scale free networks, the
j-th largest degree in the input supply network of N agents is approximately equal to:10

dj =
(
j

N

)− 1
ζ

. (2.44)

The asymptotic behavior of the elements of the influence vector υn as the size of the economy grows
large (i.e., N → ∞) will depend on the value of ζ, the exponent of the power law distribution of
degrees:

• if ζ > 1, then the degree of the most central agent, i.e., agent 1, is d1 ≡ maxi∈{1,..., N} di = N
1
ζ .

Thus, from inequality (2.40) we can conclude that:

‖υn‖∞ ≥ α (1− α)
N

‖dn‖∞

≥ α (1− α)

N
ζ−1
ζ

. (2.45)

In words, the maximal element of the influence vector of the economy decays to zero at a rate
that is at most N

ζ−1
ζ . More generally, shocks to any agent j′s productivity will asymptotically

have no influence on changes in the optimal consumption allocation of agent i:

lim
N→∞

∂ (∆ ln (cit+1))
∂εjt+1

= lim
N→∞

(υjσj) = 0, ∀ j ∈ {1, . . . , N} .

10See footnote 6 for a derivation of equation (2.44).

17



• if ζ = 1, then the degree of any agent j in the economy is dj = N
j . The degree of the most

central agent 1 is d1 ≡ maxi∈{1,..., N} di = N and from inequality (2.43) we can conclude that:

‖υn‖∞ ≥ α (1− α)
N

‖dn‖∞
≥ α (1− α)

> 0. (2.46)

According to (2.46) the largest element in the influence vector υn is bounded away from
zero as N → ∞. Therefore, the number of agents increases. More generally, the following
element-wise inequality holds, when dj = N

j :

υ′n ≥
α (1− α)

N
d′n

⇒ [υ1 υ2 υ3 . . . υn] ≥ α (1− α)
N

[d1 d2 d3 . . . dn]

⇒ [υ1 υ2 υ3 . . . υn] ≥ α (1− α)
N

[
N
N

2
N

3 . . .

]
.

Thus, we conclude that asymptotically every element of the influence vector υn is bounded
away from zero as N → ∞, the lower bound being a function of the ranking of each agent’s
degree in the input supply network of the economy. Hence, idiosyncratic shocks do not cancel
out in the aggregate and the optimal allocation of consumption to any agent i in the economy
is affected by the idiosyncratic productivity shock εjt+1 of agent j:

lim
N→∞

∂ (∆ ln (cit+1))
∂εjt+1

= lim
N→∞

(υjσj) > 0.

The discussion above can be summarized in the following proposition:

Proposition 5. Assuming CRRA preferences and a scale-free inter-sectoral production structure,
the partial effect of an idiosyncratic productivity shock to the j-th largest sector on the optimal
consumption of the i-th individual:

(i) decays to 0 at a rate that is slower than N
ζ−1
ζ as N →∞, when the degree of inter-sectoral

input supply connections follows a power-law distribution with ζ > 1 and (ii) remains different
from 0 as N →∞, when the degree of inter-sectoral input supply connections follows a power-law
distribution with ζ = 1 (i.e., a Zipf distribution).
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3 Empirical implications

3.1 Empirical Tests of Risk Sharing

In this section we assess the extent of mis-specification in frequently used tests of risk-sharing,
under different endowment or income generating processes. In developing our argument, we now
allow for the possibility that the agent is affected by an economy-wide aggregate shock η that is
common to all agents, in addition to the idiosyncratic shock εi. In effect, we assume the following
decomposition of the composite shock Φi to agent i′s income growth:

Φi = η︸︷︷︸
Aggregate

+ εi︸︷︷︸
Idiosyncratic

. (3.1)

The benchmark risk sharing model shows that under optimal risk sharing, agents are insured
up to the economy-wide aggregate shock, η, because the idiosyncratic shock εi can be diversified
away by pooling income resources together. Consider now the situation where a portion, si, of the
idiosyncratic shock εi does not dissipate in the aggregate, contributing in this way to an aggregate
shock

∑N
j=1 sjεj , as described in Sections (2.3) and (2.4). In this case, a further decomposition of

the shock to agent i′s income growth, as expressed in equation (3.1) can be made in terms of its
insurable and uninsurable components:

Φi = η + (siεi + (1− si)εi)

= η + siεi︸ ︷︷ ︸
Uninsurable

+ (1− si)εi︸ ︷︷ ︸
Insurable

. (3.2)

In words, the overall shock Φi to agent i′s income growth process comprises of an (i) economy-
wide shock, η, (ii) the systemic undiversifiable component of the idiosyncratic shock to agent i′s
income, siεi, and (iii) the diversifiable component of the idiosyncratic shock (1 − si)εi. Under
optimal consumption insurance, agents are only insured against the diversifiable component of the
idiosyncratic shock, (1− si)εi.

It is important to emphasize that while the common aggregate shock η can be absorbed by an
aggregate variable (such as a constant or a time fixed effect), thereby eliminating the ‘noise’ in the
measurement of the idiosyncratic shock, the undiversifiable component siεi of the composite shock
Φi persists within the idiosyncratic shock and cannot be tackled in a similar way11. One reason
for this is that the measurement error induced by this form of mis-specification is multiplicative
rather than additive. It is essential, therefore, to difference out this component from the measure
of idiosyncratic shocks, so that there is complete separability between the insured and uninsured
components of risk in any empirical specification that aims to test for risk-sharing.

11Ravallion and Chaudhuri (1997) have previously brought to attention the fact that the presence of an economy-
wide aggregate shock can add noise to the measurement of the idiosyncratic component, therefore biasing parameter
estimates. As a result, they propose the use of time fixed effects, rather than using demeaned consumption growth as
the dependent variable (as is the case in the specification employed, for example, by Townsend (1994)).
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The empirical test for optimal risk sharing is based on the following equation12, which has been
developed in Section 2:

∆ ln (cit+1) =
∑N
i=1 (yitσiεit+1)

Yt
−∆ ln

[
N∑
i=1

(Θit+1)
1
γ

]
+ 1
γ

∆ ln (bit+1) + 1
γ

ln (ρi) . (3.3)

To test for optimal risk sharing, the above equation suggests an empirical specification of the
form13:

∆ ln (cit+1) = β1

∑N
i=1 (yitσiεit+1)

Yt
+ β2

(
1− yitσi

Yt

)
εit+1 + uit+1, (3.4)

where β1 and β2 are the (population) coefficient parameters of the variables
∑N

i=1(yitσiεit+1)
Yt

and(
1− yitσi

Yt

)
εit+1, respectively. Note that the term

(
1− yitσi

Yt

)
εit+1 measures the component of

idiosyncratic shock that is optimally insurable by the social planner. As a result, β̃2 measures the
effect of an idiosyncratic shock on consumption growth after differencing out the contribution of
each individual shock on the aggregate pool of resources.

Commonly used empirical tests, on the other hand, employ an over-specification of equation
(3.3) and estimate instead14:

∆ ln (cit+1) = β̃1

∑N
i=1 (yitσiεit+1)

Yt
+ β̃2εit+1 + uit+1. (3.5)

It is evident that when, idiosyncratic shocks do not dissipate in the aggregate, the above spec-
ification does not allow for the full separability of the idiosyncratic shock such that its total effect
on consumption growth remains unidentified. This is because the shock does not only appear as a
separate variable, but also features as part of the aggregate endowment function under this spec-
ification. The econometrician will treat εit+1 as an idiosyncratic shock that can be insured by
the social planner, whereas we have shown that only a part of it can be optimally insured. The
estimated β̃2 = β2

(
1− yitσi

Yt

)
will underestimate the ‘true’ insurance parameter as it captures a

combination of (optimal) insurance and the granular fluctuation to aggregate resources. Thus, ig-
12Throughout this section, we consider preferences represented by the CRRA utility function, but our results extend

to utility functions that belong to the HARA class as well.
13We abstract away from the issue of measurement error in endowments or consumption. In principle, our main

results hold regardless of the presence of measurement error in these variables. Additionally, we only consider a single
risk sharing group. However, our suggested test can be implemented for multiple risk sharing groups using panel time
series estimators which allow for heterogeneous slope coefficients across groups (Pesaran 2006; Coakley et al. 2006).
The estimated parameters would, then, be group specific and can be viewed as estimates from panel regressions for
each group. An average parameter estimate, with the use of a group fixed effect, is typically not recommended as it
would be difficult to interpret.

14Note that the empirical specifications used in this section are based on aggregate income, rather than aggregate
consumption which is used more often in the empirical risk-sharing literature (see, though, Ravallion and Chaudhuri
(1997) for a notable exception). Optimal risk-sharing implies that the aggregate resource constraint (2.6) is binding.
Therefore, aggregate income and aggregate consumption can be used interchangeably. It is also possible to employ
time fixed effects (panel data) or a constant (cross-sectional data) that replaces and absorbs the aggregate endowment
variable. Further, the use of aggregate endowments rather than aggregate consumption ensures that all parameters
of our specification are structurally identified, while our specification does not suffer from the identification issue due
to ‘reflection’ as noted by Manski (1993).
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noring the distributional aspects of the income generating process in this case would imply that
these two components cannot be separately identified.

We now derive analytical expressions for the extent of bias that results from estimating equation
(3.5), rather than equation (3.4). Note that the specification takes the form akin to that of a non-
classical multiplicative measurement error in the explanatory variable.To derive the bias, we take
the example of a one-variable risk sharing model and suppress the constant and time subscripts for
convenience. In fact, it can be shown that the bias is further exacerbated by the correlation of the
mis-measured variable with the aggregate resources variable,

∑N

i=1(yitσiεit+1)
Yt

, included in equation
(3.5) as is or proxied by a constant or time fixed effects15.

Denote ε∗i ≡
(
1− yiσ

Yt

)
εi. Then, equation (3.4), the true data generating model under CRRA

preferences, can be written as:

∆ ln (ci) = β2ε
∗
i + ui. (3.6)

Consider the following mis-specified model:

∆ ln (ci) = β̃2εi + ui. (3.7)

The estimator β̃2 from the mis-specified model suffers from a measurement error that is mul-
tiplicative. Then, the least squares estimator based on the mis-specified model represents only a
proportion of the true parameter β2. The bias is approximately:

β̃2 = β2

(
σε∗,ε
σ2
ε

)
. (3.8)

The proportion by which the coefficient is biased is akin to the reliability ratio or signal-to-noise
ratio, where σε∗,ε, the covariance between the composite idiosyncratic shock ε and the diversifiable
component of the idiosyncratic shock ε∗ represents the quality of the ‘signal’. The bias from mis-
specification will be lower as the quality of the signal increases, i.e., as the covariance between the
composite idiosyncratic shock and the diversifiable component of the idiosyncratic shock increases.
In a relatively large economy where all agents have an equal share of the total output, it is easy to
see that this covariance will tend towards 1 and β̃2 will converge to the true parameter value β2.

In the appendix, we present results on the specification bias for different endowment and income
generating processes. As an example, we develop these results for the case in which the investigator
directly estimates equation (3.5) instead of equation (3.4) using cross-sectional data. However, the
main results continue to hold in principle, even with the use of panel data or when the aggregate
endowment is replaced and absorbed by the use of a constant or time fixed effect16. The results can
be summarized as follows:

Proposition 6. (i) When all endowments are identically sized or drawn from a distribution with
15This will also result in all coefficients representing the aggregate resource constraint to be inconsistent.
16For the specification where a constant or time fixed effect is used, the bias is amplified by a factor proportional

to the estimated constant or time fixed effect.
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finite variance, the bias decays to zero at 1/N , as N →∞.
(ii) Assuming CRRA preferences and that endowments follow a power-law distribution with

ζ ≥ 1, then the bias is approximately:

β̃2 − β2 ∼ β2

(−σ
N

)
.

In other words, the bias decays to zero at 1/N , as N →∞.
(iii) Assuming CRRA preferences and that income is generated through a network-production

structure with a scale free degree distribution, then the lower bound of the bias is approximately:

β̃2 − β2 ≥ β2

(
−σ
N

[
a

N

N∑
i=1

ε2
i + a

N
(1− a)

N∑
i=1

(
diε

2
i

)])
.

When the degree distribution follows a power law with ζ > 1, the bias decays to zero at 1/N , as
N → ∞. For ζ = 1 the bias decays to zero at lnN/N (slower than 1/N), as N → ∞. Finally,
when the degree distribution follows a power law with ζ < 1, the bias decays to zero at 1/N

(
2− 1

ζ

)
(slower than 1/N), as N →∞.

(iv) Assuming CARA preferences, then the bias is approximately:

β̃2 − β2 ∼ β2

(−σE[yi]
N

)
.

For ζ > 1, the bias decays to zero at 1/N as N → ∞. However, when ζ = 1, a correction by lnN
applies in the numerator (but not the denominator, as in the CRRA case) and the bias decays to
zero at lnN/N (slower than 1/N) as N →∞. Further, when endowments are distributed with finite
variance, or follow a power-law distribution with ζ < 1, then the bias is approximately:

N
2− 1

ζ (β̃2 − β2) d−→ β2(−σgζ),

where gζ is a random variable that follows a Lï¿œvy distribution with exponent ζ. The bias decays
to zero at 1/N

(
2− 1

ζ

)
(slower than 1/N), as N →∞.

3.2 Finite Sample Simulations

In this sub-section we conduct a small simulation study to assess the extent of the specification
bias in finite samples. In the first case, we consider the true data generating model under CRRA
preferences17:

∆ ln (cit+1) = β1

∑N
i=1 (yitσiεit+1)

Yt
+ β2

(
1− yitσi

Yt

)
εit+1 + uit+1, (3.9)

and evaluate the performance of the estimator β̃2 from the misspecified model:
17We simulate the model with two time periods, suppressing the constant.
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∆ ln (cit+1) = β̃1

∑N
i=1 (yitσiεit+1)

Yt
+ β̃2εit+1 + uit+1. (3.10)

We obtain draws for yit by simulating a power law distribution18 with the power-law exponent
ranging between 1.1 and 2.019. Both the iid shock εit+1 and measurement error uit+1 are drawn
from a normal distribution with mean 0 and standard deviation 1. For simplicity, we homogenize
the variance of the shocks to be common across all agents and set it equal to 0.6.

In the second case, we assume CARA preferences and consider the true data generating model:

∆ ln (cit+1) = β1

∑N
i=1 (yitσiεit+1)

N
+ β2

(
1− yitσi

N

)
εit+1 + uit+1, (3.11)

and evaluate the performance of the estimator β̃2 from the misspecified model:

∆ ln (cit+1) = β̃1

∑N
i=1 (yitσiεit+1)

N
+ β̃2εit+1 + uit+1. (3.12)

A total of 250 draws are obtained for the independent variables and error terms. The misspecified
model is estimated via OLS. In order to assess the quality of the estimators in the simulations, we
calculate the root mean squared error (RMSE) which is the square-root of the mean squared error20.

Tables 1 and 2 report results assuming three different values for the coefficient β2. More specif-
ically, we assume β2 = 0, β2 = 0.5 and β2 = 1 over parameter values governing the income
distribution in the range of ζ ∈ [1.1, 2]. It can be seen from Table 1 that the mis-specification bias
tends to be quite low for the CRRA specification for any given value of the power-law parameter.
Further, the extent of this bias declines rapidly as the size of the risk sharing group becomes larger.
On the other hand, Table 2 shows that the CARA specification performs quite poorly when the
income distribution exhibits fat tails, i.e., for the lowest values of ζ. The bias from mis-specification
is extremely large and persists even over fairly large (risk-sharing) group sizes.

4 Features of Optimal Risk Sharing and Implications for Full In-
surance

In Section 2 we have shown conditions under which optimal risk sharing may not result in perfect
or full insurance. Thus, under optimal risk sharing, agents are insured up to the systemic undiver-
sifiable factor siεi resulting from the uninsurable portion of the idiosyncratic shock to income, as

18While our Monte Carlo study simulates an endowment structure by varying the tail parameters of the distribution,
it is possible to also simulate an income distribution generated through a network production structure. This can be
done by first simulating a scale-free degree distribution for the network structure to obtain the centrality scores υit.
The risk sharing specification can then be based on equation (2.35).

19We set the minimum threshold of 20 for simulating the power law distribution
20The MSE for the parameter β is calculated is given by: MSE(β)=Σr (β̂r− ¯̂

β)2
R

+
[

Σr(βs−β̂r)
R

]2
, where β̂r is the

estimate in replication r, ¯̂
β is the mean of the estimate for all replications, βs is the true value of the parameter, and

R is the number of replications in the simulation experiment.
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well as any other economy-wide aggregate shock, η. Under partial risk sharing, there will be an
additional factor that induces changes in own consumption, which, for the case of agent i, arises
from the uninsured portion of the diversifiable component of i′s idiosyncratic risk, i.e., β2siεi, where
β2 ∈ [0, 1] denotes the extent of partial insurance. Denoting ΦUninsured

i the uninsured component
of the composite risk factor defined in equation (??), we have:

ΦUninsured
i = η + siεi + β2(1− si)εi.

Therefore, under partial risk sharing the following general specification holds:

∆ ln (cit+1) = η +
N∑
j=1

sjεj + β2(1− si)εij + uit+1

There are two main implications of this result. First, we can see that the effect of an idiosyncratic
income shock on consumption growth is heterogeneous. The total effect21 depends on the agent
specific undiversifiable factor si. The factor si can be related to the (inverse) rank of agent i in the
endowment distribution or her centrality in the income production network structure. To illustrate
the extent of heterogeneity, we measure the share of the maximal element (denote this agent by
m), ‖s‖∞ = maxi |si|, in a simulated income distribution with varying power law parameters, using
the procedure described in Section 3.2. Using this procedure, we calculate the partial effect of an
idiosyncratic shock to agent m on her own consumption given by22 δ∆c‖s‖∞

δε‖s‖∞
= ‖s‖∞+(1− ‖s‖∞)β2.

Table 3 reports results from this exercise for three coefficient values; β2 = 0, β2 = 0.5 and β2 = 1.
It can be seen that the total effect of an idiosyncratic shock to m’s consumption growth is higher
than what is expected from optimal insurance, as implied by β2. For example, with a power-law
distribution with ζ = 1.1, the δ∆c‖s‖∞

δε‖s‖∞
∼ 0.3 when β2 = 0, over all sample sizes. This means that

the idiosyncratic shock of an agent holding the maximum income share affects her consumption
growth by up to 0.3%, even when there is complete optimal risk-sharing. In contrast, when income
is distributed with ζ = 2 (finite variance), δ∆c‖s‖∞

δε‖s‖∞
∼ 0.08 and this effect decreases as sample size

increases. This discrepancy between optimal and full risk sharing varies proportionately with the
degree of partial insurance provided. For instance, when β2 = 0.9, the difference between the total
effect of an idiosyncratic shock and what is expected due to optimal insurance is only 0.03.

21The total effect of agent i’s idiosyncratic shock on her consumption growth is given by si + β2(1− si). Inference
on this test statistic is complicated by the fact that its distribution, which depends on the shape of the income
distribution, can be non-standard. For example in the power-law case, the test-statistic will depend on the power law
exponent ζ, which for values less than two, is non-gaussian. One possibility is to use simulation methods (Krinsky
and Robb 1991) to derive the distribution of the test statistic for inference. In the first step, we can estimate the
power law parameter ζ given the observed distribution of endowments yt. In the next step, one can use the given
empirical distribution of yt to estimate equation (3.4) to obtain a consistent estimate for β2. Given the mean and
variance of both parameters we can draw observations from a large bivariate sample, (β2, ζ)r where r = 1, ..., R is
drawn from a normal distribution for β2 and a normal Gaussian distribution for ζ. For each simulated draw we can
construct a measure of the test statistic. Finally, the quantiles of the sample of draws, for example, the 0.025th and
0.975th quantiles, can be used to estimate the boundaries of a confidence interval of the functions.

22The variable si is typically normalized by each agent’s standard deviation of volatility. In our simulations, we
have assumed this to be a constant equal to 0.6 for all agents.
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Secondly, optimal risk sharing involves an exposure to systemic risk that is composite of the
undiversifiable components of idiosyncratic shocks. This means that every agent i’s consumption
is affected by a proportion of agents j’s idiosyncratic shock. A consequence of this feature is that
shocks to the top 1% of the income distribution or the most central agents in the production process,
have economy-wide externalities affecting the consumption growth profile of every agent. To gauge
this effect, we calculate the partial effect of an idiosyncratic shock to agent m, on the consumption
of any other agent j, given by, δ∆cj

δε‖s‖∞
= (1 − β2)‖s‖∞. Table 3 shows that the effect of agent

m’s idiosyncratic shock on agent j’s consumption growth is non-negligible. For example, with a
power-law distribution with ζ = 1.1, the δ∆cj

δε‖s‖∞
∼ 0.3 when β2 = 0, over all sample sizes. This

means that the idiosyncratic shock of an agent holding the maximum income share affects every
other agent’s consumption growth by a proportion, 0.3, as a result of risk-pooling. In contrast, when
income is distributed with ζ = 2 (finite variance), δ∆cj

δε‖s‖∞
∼ 0.08 and this effect decreases as sample

size increases. The extent of exposure to systemic risk varies proportionately with the amount
of optimal insurance provided. For example, when β2 = 0.9, the effect of agent m’s idiosyncratic
shock to agent j’s consumption growth is relatively small, at approximately 0.033 for heavily skewed
income distributions.

In the next section, we provide empirical evidence on exposure to systemic risk using data from
two, conceptually different, risk sharing groups in the United States.

4.1 Testing Granularity in Data

4.1.1 Empirical Specification

In this section, we test whether individuals are exposed to a degree of systemic risk as a result
of risk-sharing. Borrowing terminology from Gabaix (2011), we term this exercise as a test for
‘granularity’. We have shown in the previous sections that under optimal risk-sharing every agent
i’s consumption is affected by a proportion of agents j’s idiosyncratic shock and that this proportion
depends inversely on the rank of agent j in the endowment distribution or her centrality in the
income production network structure. We use two different types of risk sharing groups to test our
hypothesis. Our first risk-sharing group is the set of US households (with N ∼ 3 × 106 members)
for which there has been evidence of a significant amount of risk-sharing. Our second risk-sharing
group is much smaller in membership size and consists of US regions/states (with N = 50 members).
In contrast to studies that have used household level data, Kalemli-Ozcan et al. (2003) show that
the extent of partial insurance is quite low, at approximately 0.5, in the case of risk sharing across
regions. To proceed with the analysis, we first present descriptive statistics to characterize the
distributional aspects of the income data, and then develop a specification that enables us to explore
the extent of systemic risk exposure.

As we have shown, when endowments are drawn from a power-law distribution, i.i.d shocks can
accumulate rather than dissipate in the aggregate. We now explore the distributional aspects of the
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endowment or income distribution in data. Figure 1 plots the distributions of household income
(Figures 2(a) and 2(b)), obtained from the PSID sample in 1996, and gross state product (Figures
2(c) and 2(d)), obtained from the US Bureau of Economic Analysis in 2006. Figures 2(a) and 2(c)
plot the histograms of the respective distributions, while Figures 2(b) and 2(d) plot their empirical
counter-cumulative distribution functions. We can see in both cases that the tail of the distribution
is well-approximated by a power law distribution, as shown by the approximate linear relationship
portrayed by the solid grey line. As an alternative, we also consider a log-normal distribution but
find that it fits the data poorly, as shown by the dashed grey line. Rough estimates for the shape
parameter based on the modified log rank-log size regression suggested by Gabaix and Ibragimov
(2011) are as follows: for the PSID sample of household income, we estimate ζ = 0.982, with a
standard error of 0.0002; for the gross state product of US states, we estimate ζ = 0.855, with a
standard error of 0.0142.

Our estimates for household income should be treated with caution as they are based on a
sample of households. There exists, however, a large literature that provides support for the power-
law distribution of individual incomes in different countries. The empirical investigation of whether
individual incomes satisfy a power-law dates back to Vilfred Pareto (1897) who showed that the
distribution of income in the upper tail has a ‘pareto’ or a power-law distribution. Feenberg and
Poterba (1993) calculate ζ for the United States, for the years between 1951 and 1990 and find that
the exponent ranges between 2.5 (1970) and 1.6 (1990). Atkinson, Piketty, and Saez (2011) update
this study and estimate the power law parameter for the top percentiles of the population income
distribution in the United States and find that it ranges between 1.4-1.67 for the most recent year of
200723. In fact, the authors find that there is a steady decline in the estimates of ζ through the years
and that inequality is increasing. Note, that although we have evaluated the risk-sharing model
treating the distribution of endowments as fixed, a more flexible model incorporating the dynamics
of the growth process and, thereby, the evolution of the income distribution, is likely to yield similar
results. For instance, Gabaix (1999) shows that even with some arbitrary initial distribution, the
distribution of endowments will converge to a power-law distribution if there exists a mechanism
that prevents each agent from becoming infinitesimally small (in terms of endowments). From a
practical viewpoint, there are many mechanisms that exist in society, for example social safety nets,
unemployment insurance, which prevent individual incomes from falling below a minimum threshold
level (such as, for example, a poverty line)24.

Although we do not explicitly calculate the centrality measures or plot the degree distributions
for the production network25, there is substantial support in the literature for the fact that many

23The estimate for the year 2007 is approximately 1.67 when capital gains are excluded and 1.4 when capital gains
are included

24Reed (2001) provides an alternative perspective. He argues that the distribution of time itself is stochastic and
follows an exponential distribution. As a result, the current distribution of incomes should be that of a geometric
Brownian motion observed after an exponentially distributed time T , leading to a double Pareto distribution.

25Our theoretical section assumes for analytical convenience that each agent represents a sector of production. In
practice, individual workers are employed in firms which belong to a certain sector and an overall production network.
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real-world networks are scale-free (see, for example, Barabási and Albert (1999)). Acemoglu et al.
(2012) provide extensive evidence to show that the degree distribution of the United States’ sectoral
production network follows a power law with the exponent ranging between 1.2 and 1.4. Finally,
note that we have shown that the centrality of each sector is equal to the sector’s sales ratio (see
Section 6.2). Consequently, in the empirical analysis below, we use the observed sales ratio of the
corresponding sector rather than its centrality score in the underlying network.

We now move on to describe our test for granularity. Our test involves decomposing the aggre-
gate component of equation (3.3) into two parts: the aggregate income growth of the top percentiles
of the income distribution and the aggregate income growth of the corresponding bottom percentiles,
both normalised by total income. For example, the equation below decomposes the aggregate com-
ponent into

∑100
i=1(yitσiεit+1)

Yt
, the normalised aggregate income growth of the top 100 income earners

in the PSID sample and
∑N−100

i=1 (yitσiεit+1)
Yt

, which denotes the normalised aggregate income growth
of the remaining income earners:

∆ ln (cit+1) = β1a

∑N−100
i=1 (yitσiεit+1)

Yt
+ β1b

∑100
i=1 (yitσiεit+1)

Yt
+ β2

(
1− yitσi

Yt

)
εit+1 + uit+1. (4.1)

Our hypothesis is that the consumption growth of any individual is exposed to a systemic com-
ponent of risk under optimal risk sharing, i.e., it is partially affected by the uninsured idiosyncratic
shocks of other individuals in the risk sharing group. The proportion by which the idiosyncratic
shock of each agent affects aggregate consumption growth depends on the specific utility function
assumed. In the above equation, we assume a CRRA utility function and allow for the aggregate of
the idiosyncratic shocks of, for example, the top 100 income earners (expressed as a ratio of total
income) to have a differential effect on the consumption growth of individuals not belonging to the
top 100.

In testing for this hypothesis, we allow for the possibility that the aggregate components contain
a covariate shock η, previously assumed away in the analysis26. Our test for granularity requires that
the covariate shock be differenced out from the aggregate income growth of the top income earners
so that we are left with a measure of their aggregate idiosyncratic shocks (which is independent
of the covariate shock). To achieve this, we undertake different demeaning schemes to difference
out the covariate shock from the income growth of each individual belonging to the top income
group and then aggregate the resulting demeaned measures. For instance, the demeaned measure
of
∑100

i=1(yitσiεit+1)
Yt

is obtained as:

In this case, the extent of insurance would also depend on how much each sector or firm is able to insure its employees
via the wage contract (Guiso et al. (2005) provide some estimates of the degree of insurance at the firm level). If, for
example, sector level shocks are fully passed on to the employees, then, their consumption volatility would be exactly
proportional to their sector’s volatility which ultimately depends on aggregate volatility under optimal risk sharing,
as we have shown in Section 2.4.

26All our theoretical results hold regardless of the inclusion of a covariate risk term.
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rt =
∑100
i=1

(
yit(git − ḡ100

t )
)

Yt
. (4.2)

Here rt represents the ‘granular residual’ as termed by Gabaix (2011). The term εit+1, which may
contain the covariate shock, has been replaced by (git− ḡ100

t ); where git refers to the income growth
of individual i (a measure of both idiosyncratic and covariate shocks) and ḡ100

t is the mean income
growth of the top 100 income earners. Other demeaning schemes include differencing using the
mean income growth of the top 1000 income earners.

We construct the granular residual based on both the aggregate income growth of top earners
in the PSID sample (the top 100 sample income earners) as well as the aggregate income growth of
the top 1, 0.5 and 0.1 percentiles of the US income distribution.

The general specification is the following:

∆ ln (cit+1) = β1a

∑N−T
i=1 (yitσiεit+1)

Yt
+ β1br

T
t + β2

(
1− yitσi

Yt

)
εit+1 + uit+1, (4.3)

where T is the relevant top income earners group (i.e., the top 100 of the income earners in the
sample, or the top 1%, 0.5%, 0.1% of the income earners in the population). Equation (4.3) is
estimated for the sample of individuals other than those that belong to the group defined as top
income earners. Note that β1a 6= β1b because the second part of the decomposition in equation (4.1)
is now demeaned to represent the granular residual.

We can conduct a similar analysis to test whether the shocks to the incomes of individuals
employed in the most central sector of the economy affect the consumption growth of other individ-
uals. This is the case when income is generated from a scale-free or star-type network production
structure as outlined in Section 2.4 The specification for this test is:

∆ ln (cit+1) = β1a

∑non-manf
i=1 (yitσiεit+1)

Yt
+ β1br

manf
t + β2

(
1− yitσi

Yt

)
εit+1 + uit+1, (4.4)

where rmanf
t is the granular residual representing the shocks of the manufacturing sector employees,

demeaned using the average income growth of employees that belong to the non-manufacturing
sector. The normalised aggregate income growth of the non-manufacturing sector employees is
denoted by

∑non-manf
i=1 (yitσiεit+1)

Yt
.

4.1.2 Results: Household Risk Sharing, N ∼ 3× 106

We use three data sources for our empirical analysis. The first dataset is the Panel Study of Income
Dynamics (PSID). We use data from the 1974-1996 waves of the PSID as the definitions of both the
income and consumption variables remained roughly consistent over this period. Additionally, since
the PSID primarily measured food consumption, we estimate the consumption risk sharing equations
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with respect to food consumption growth27. We follow Schulhofer-Wohl (2011) in constructing the
PSID variables: income is defined as the household’s total money income excluding aid (food stamps,
help from relatives etc.) and unemployment insurance. The income and food data is deflated using
the CPI and the food & beverages component of CPI respectively.

We use two additional sources of data to construct the aggregate components for our granular
hypothesis test. To measure the income growth of the population top percentiles of the US income
distribution, we use the Top Incomes Database (Alvaredo et al. (2014)). The Top Incomes Database
provides distributional statistics for top incomes in twenty-two countries. The distributional statis-
tics used to estimate the series for the USA are produced by the Statistics of Income Division of the
Internal Revenue Service. Income is defined as the sum of all income components reported on tax
returns (i.e., wages and salaries, pensions received, profits from businesses, capital income such as
dividends, interest, or rents, and realized capital gains) before individual income taxes. It excludes
government transfers such as Social Security retirement benefits or unemployment compensation.
Further details about the construction of the series can be found in Alvaredo et al. (2014).

Finally, we obtain the productivity growth rates for each sector in the US economy from the
World KLEMS database which includes data on U.S. productivity growth for the period 1947-2010.
The database uses the North American Industry Classification System (NAICS) to define sectors.

Table 5 presents regressions of consumption growth on the granular residual as defined in equa-
tion (4.2). The obtained estimates of these regressions are supportive of the granular hypothesis.
The first two columns show that adding the granular residual to a basic regression that regresses own
idiosyncratic shocks on consumption growth increases the adjusted R-square by 70%. Columns (3)
and (4) report results from the standard risk sharing specification together with the granular resid-
ual defined as the demeaned aggregate income growth of the top 1000 income earners in the sample.
As noted earlier, this specification is estimated for the sample of income earners excluding the top
100 to avoid the reflection problem. The results show that consumption growth is affected by the
granular residual. We first report results for the two information criterion (IC) based statistics, the
adjusted R-square and the Akaike Information Criteria (AIC) to assess the incremental explanatory
power of the granular residual. Comparing column (4) to column (3) we can see that the granular
residual adds significant explanatory power to the risk sharing equation, over and above what is
explained by the aggregate shock (proxied by the aggregate income growth of the sample excluding
the top 100 income earners). Column (5) reports similar results but demeans the aggregate income
growth of the top 100 using the mean income growth of the top 100 income earners. To interpret
the coefficient note that:

27Schulhofer-Wohl (2011) points out that while food may not be an ideal proxy for total consumption, it is more
likely to be time separable as assumed by the expected utility formulation. Similar to Schulhofer-Wohl (2011), we
also drop the years 1988 and 1989 when no food consumption data was collected. Further, we assume away any
measurement error associated with the consumption variable for convenience.
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δ (∆ ln (cit+1)) = β1b × δ
(∑100

i=1 (∆yit+1)
Yt

)
(4.5)

= β1b × δ


∑100
i=1 (∆yit+1)∑100

i=1 yit︸ ︷︷ ︸
Growth rate of top 100

·
∑100
i=1 yit
Yt︸ ︷︷ ︸

Share of top 100

 (4.6)

The average income share of the top 100 income earners in the PSID sample (over all time
periods) is 0.12. Our results indicate, therefore, that a 1% increase in the income growth rate of
the top 100 income earners increases consumption growth rate by approximately 0.12 percentage
points (Column 5).

Table 5 reports results from the same specification as described above, but uses the population
income growth of the top percentile of the income distribution as obtained from the Top Incomes
Database. Column (2) reports results for the effect of the granular residual on consumption growth,
when the granular residual is the aggregate income growth of the top 1% of population income
earners. In columns (3) and (4) the granular residual is constructed using the top 0.5% and 0.1%
of population income earners, respectively. All the results show that the addition of either form of
the granular residual, increases the explanatory power of the specification compared to the baseline
specification reported in column (1). The average share of the top 1% income earners during the
sample period was 0.16. Given this, we find that that a 1% increase in the income growth rate of
the top 1% income earners increases the average consumption growth rate by approximately 0.17
percentage points (column (2)). To gauge the significance of this effect, we perform some back
of the envelope calculations and extrapolate our results to the period between 2007-2008, when
the income growth of the top earners was most severely affected. Figures from the Top Incomes
Database indicate that the top 1% income earners in the USA witnessed a change of -26.49% in
their income growth rate between 2007-2008. In contrast, the bottom 99% saw their income growth
fall less severely, by -9.67%. We difference this figure from the growth rate estimates of the top 1%
to approximately account for the possibility of an aggregate shock. As a result, the lower bound
estimate for the total change in income growth of the top 1% due to pure idiosyncratic movements
is roughly about -16.8%. During the same period. the income share of the top 1%, stood at a stable
20%. Our regression results indicate that the a -16.8% decrease in the income income growth rate
of the top 1% decreased consumption growth (of all households in the USA) by approximately 3.7
percentage points at the onset of the Great Recession.

Finally, Table 5 shows how the shocks to the employees of the most central sector (manufactur-
ing) affect the consumption growth of the non-manufacturing sector employees. The table reports
results from constructing the granular residual using both the population and sample measures of
aggregate idiosyncratic shocks to the manufacturing sector. It also includes a specification control-
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ling for the aggregate income growth of the non-manufacturing sector. All the results indicate that
shocks to the manufacturing sector explain a significant proportion of fluctuations to the consump-
tion growth of the non-manufacturing households. The average share of the manufacturing sector
during the sample period was 0.21. Given this, we find that that a 1% increase in the income growth
rate of the manufacturing sector employees increases consumption growth rate by approximately
0.10 percentage points (Column 2).

4.1.3 Results: Regional Risk Sharing, N = 50

To test for granular effects in regional risk-sharing, we use state-level28 data on Gross State Product
(GSP) and personal income at current prices for the period 1963-2012 from the Bureau of Economic
Analysis (BEA). Data are transformed to fixed price using the United States national CPI.

Table 5 reports results from regressions of consumption (state personal income) growth on the
granular residual defined as GSP growth of the top percentiles of the GSP distribution. Column
(2) & (3) report results for the effect of the granular residual on consumption growth, constructed
using the aggregate GSP growth of the top 5% and 1% respectively. To begin with, we find that, in
contrast to the households, there is limited risk sharing across regions in USA. The extent of partial
insurance is approximately 0.5. Nevertheless, Our decomposition exercise shows that consumption
growth is substantially affected by the shocks to the top performing states29. The addition of the
granular residual in both columns, increases the explanatory power of the specification compared
to the baseline specification reported in Column (1) by approximately 6%30. The average share of
the top performing states (top 1% ) during the sample period was 0.12. Given this, we find that
that a 1% increase in the growth rate of top performing states increases state consumption growth
rate by approximately 0.08 percentage points (Column 3).

5 Conclusion

Perfect insurance is traditionally postulated as the outcome of a fully-enforced optimal risk-sharing
arrangement, such as under the complete markets paradigm, where consumption growth is perfectly
robust to the effects of idiosyncratic shocks. This view is based on the premise that the aggregate
resource constraint can be fully diversified against idiosyncratic risk when the size of the risk sharing
group is sufficiently large. In this paper, we have evaluated the validity of this premise. We have
examined conditions under optimal risk-sharing, whereby the asymptotic rate of decay of the shock’s
effect on consumption growth is significantly dampened. The maximum effect of an idiosyncratic
shock on consumption growth scales at lnN when income is drawn from a distribution with no

28We exclude Washington, DC, similar to Kalemli-Ozcan et al. (2003).
29The sates that comprise the top 5% are California, Illinois, New York and Texas. California and New York belong

to the top 1% of the state GSP distribution. Their status is fairly stable over time.
30Note that the increase in explanatory power for the regional risk-sharing specifications is smaller compared to

the household risk sharing specifications because the regions are much less insured compared to households. The
explanatory power of the aggregate variables are therefore proportional to the extent of insurable risk.
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finite moments compared to N when income is drawn from a distribution with a finite mean and
variance. As a consequence, the effects of idiosyncratic shocks are not necessarily mitigated even
at fairly large group sizes. We have shown that frequently used empirical tests of risk-sharing, can
suffer from a specification bias when idiosyncratic shocks do not dissipate in the aggregate. Further,
we find that the data supports our hypothesis that the consumption growth of any individual is
exposed to a systemic component of risk arising from undiversified idiosyncratic risks.

Altogether, our results indicate that the nature and composition of idiosyncratic shocks do
matter for income and consumption smoothing, even when risk-sharing arrangements are perfect. To
illustrate this result, we have relied on the existence of complete markets while it is true that in most
practical applications there appears to be a mix of formal and informal risk-sharing arrangements
ridden with enforcement and commitment issues (Dubois et al. 2008). Although our analysis has
highlighted the limited diversification constraints that arise under optimal risk-sharing, it would
be reasonable to expect that similar concerns may apply under other forms of formal and informal
insurance where information asymmetry, limited commitment, and other market imperfections hold.
In these cases, we envisage that our findings can also prove useful for comparing the efficiency of
different risk-sharing arrangements.
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Figure 1: Power Law fits of HH Income and State Output Distributions

(a) Histogram, PSID Sample Income (b) CDF, PSID Sample Income

(c) Histogram, US States GSP (d) CDF, US States GSP
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Table 4: Granularity Test, Household Risk Sharing - Top (100) Sample Income
Growth, stop100 = 0.12

Dep. variable: consumption growth

(1) (2) (3) (4) (5)

Agg. Income Growth of Sample 0.556*** 0.455*** 0.373***
(Excl. top 100) (0.050) (0.068) (0.062)

Agg. Income Growth (top 100) 1.416*** 0.673**
(demeaned using mean of top 1000) (0.252) (0.312)

Agg. Income Growth (top 100) 1.050***
(demeaned using mean of top 100) (0.160)

Income Growth 0.017*** 0.017*** 0.017*** 0.017*** 0.017***
(0.003) (0.003) (0.003) (0.003) (0.003)

N 58776 58776 58776 58776 58776
IC: Adjusted R-sq 0.00105 0.0017 0.0021 0.0022 0.0027
IC: AIC 74664.8 74626.6 74603.46 74598.14 74564.15
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Table 5: Granularity Test, Household Risk Sharing - Population top percentiles
Income Growth, stop1% = 0.16, stop0.01% = 0.07

Dep. variable: consumption growth

(1) (2) (3) (4)

Agg. Income Growth (bottom 99%) 0.111 0.061 0.069 0.076
(0.090) (0.094) (0.092) (0.091)

Agg. Income Growth (top 1%) 1.088**
(demeaned using top 5%) (0.553)

Agg. Income Growth (top 0.5%) 3.387**
(demeaned using top 1%) (1.506)

Agg. Income Growth (top 0.1%) 2.551**
(demeaned using top 0.5%) (1.221)

Income Growth 0.017*** 0.017*** 0.017*** 0.017***
(0.004) (0.004) (0.004) (0.004)

N 58776 58776 58776 58776
IC: Adjusted R-sq 0.00100 0.00106 0.00108 0.00106
IC: AIC 74097.82 74095.45 74094.31 74095.11
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Table 6: Granularity Test, Household Risk Sharing - Manufacturing (top) Sector
Growth, sManf. ∼ 0.21

Dep. variable: consumption growth

(1) (2) (3)

Agg. Income Growth (Non Manf.) 0.635*** 0.643*** 0.454***
(0.078) (0.078) (0.111)

Agg. Sample Manf. Income Growth 0.543**
(demeaned using sample Non-Manf.) (0.239)

Agg. Manf. Sector Growth 0.359**
(0.147)

Income growth 0.015*** 0.015*** 0.016***
(0.003) (0.003) (0.002)

N 49160 49160 49160
IC: Adjusted R-sq 0.0017 0.0018 0.0020
IC: AIC 63624.96 63622.33 59692.6
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Table 7: Granularity Test, Regional Risk Sharing - US States, stop5% = 0.25, stop1% =
0.125

Dep. variable: Consumption Growth

(1) (2) (3)

Agg. GSP Growth (bottom 95%) 0.342*** 0.409** 0.385***
(0.109) (0.093) (0.101)

Agg. GSP Growth (top 5%) 0.590**
(demeaned using top 10%) (0.242)

Agg. GSP Growth (top 1%) 0.844***
(demeaned using top 5%) (0.178)

Income Growth 0.544*** 0.543*** 0.549***
(0.083) (0.082) (0.081)

N 2160 2160 2304
IC: Adjusted R-sq 0.619 0.641 0.642
IC: AIC -10732.68 10838.82 -10865.97
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6 Proofs

6.1 Proof of equation (2.33)

The proof in this section is based on Acemoglu et al. (2012). According to equation (2.32), we have:

ln (µyit) = −α ln (zit) + α ln
(
µLt

)
−B − (1− α)

N∑
j=1

wij ln (wij) + (1− α)
N∑
j=1

wij ln
(
µyjt

)
, (6.1)

where B ≡ α ln (α) + (1− α) ln (1− α).
Multiplying (6.1) with the i-th element of the influence vector υ, we get:

υi ln (µyit) = αυi ln (zit)− αυi ln
(
µLt

)
+Bυi + (1− α) υi

N∑
j=1

wij ln (wij) + (1− α) υi
N∑
j=1

wij ln
(
µyjt

)
. (6.2)

Summing over all agents, we have:

N∑
i=1

[υi ln (µyit)] =
N∑
i=1

[α ln (zit) υi]−
N∑
i=1

[
α ln

(
µLt

)
υi
]

+
N∑
i=1

(Bυi)

+
N∑
i=1

(1− α) υi
N∑
j=1

wij ln (wij)

+
N∑
i=1

(1− α) υi
N∑
j=1

wij ln
(
µyjt

) . (6.3)
Note that the following equations hold:

N∑
i=1

(1− α) υi
N∑
j=1

wij ln (wij)

 = (1− α)
N∑
i=1

υi N∑
j=1

wij ln (wij)


= (1− α)

N∑
i=1

N∑
j=1

[υiwij ln (wij)] , (6.4)

N∑
i=1

(1− α) υi
N∑
j=1

wij ln
(
µyjt

) = (1− α)
N∑
i=1

N∑
j=1

[
υiwij ln

(
µyjt

)]

= (1− α)
N∑
j=1

[
ln
(
µyjt

) N∑
i=1

υiwij

]
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= (1− α)
N∑
j=1

[
ln
(
µyjt

) 1
1− α

(
υj −

α

n

)]

=
N∑
j=1

[
ln
(
µyjt

)(
υj −

α

n

)]

=
N∑
j=1

υj ln
(
µyjt

)
− α

n

 N∑
j=1

ln
(
µyjt

) . (6.5)

The transition from the second line to the third line in the last series of equation made use of the
definition of the influence vector υi ≡ α

N + (1− α)
∑N
j=1 υjwji.

Combining (6.3), (6.4) and (6.5), we get:

N∑
i=1

[υi ln (µyit)] = α
N∑
i=1

[ln (zit) υi]− α
N∑
i=1

[
ln
(
µLt

)
υi
]

+B
N∑
i=1

(υi)

+ (1− α)
N∑
i=1

N∑
j=1

[υiwij ln (wij)] +
N∑
j=1

υj ln
(
µyjt

)
− α

n

 N∑
j=1

ln
(
µyjt

) . (6.6)
Note31 that B

∑N
i=1 (υi) = B. Rearranging (6.6), we obtain the expression (2.33) that is used

in the main text:

− 1
n

N∑
j=1

ln
(
µyjt

)
=

N∑
i=1

(υi ln (zit)) + 1
α
B + (1− α)

α

N∑
i=1

N∑
j=1

[υiwij ln (wij)]− ln
(
µLt

)
.

6.2 Competitive equilibrium in the networked production economy

In this section, we characterize the competitive equilibrium of the economy presented in Section
2.4.

Definition 5. A competitive equilibrium with n sectors of intermediate goods and one sector of
final good in period t consists of the intermediate-goods prices p1t, . . . , pNt, the labour wage ht, the

31Using the definition of the influence vector:

N∑
i=1

(υi) =
∑N

i=1

[
α
N

+ (1− α)
∑N

j=1 υjwji

]
= α+ (1− α)

N∑
i=1

N∑
j=1

υjwji

= α+ (1− α)
N∑
j=1

(
υj

N∑
i=1

wji

)

= α+ (1− α)
N∑
j=1

υj

⇒
∑N

i=1 (υi) = 1.

44



quantity of the final good Yt, the quantities of inputs for the final good y1t, . . . , yNt, the quantities
of intermediate goods xijt, and the quantity of labour l1t, . . . , lNt, such that:

(i) consumers maximize their utility,
(ii) firms in the intermediate and final good sectors maximize their profit,
(iii) labour and commodity markets clear.

Each consumer i solves the following utility maximization problem:

E
[ ∞∑
t=0

(βi)t u (cit, bit)
]
, (6.7)

subject to:
cit ≤ htlit

0 ≤ lit ≤ leit.

We have assumed that consumers do not value consumption in their objective function (6.7)
and, therefore, they supply labour inelastically. In addition, we have assumed away the possibility
of savings. Thus, consumers optimally choose to consume all the income that they earn in each
period t, i.e., cit = htlit, ∀t ∈ {0, ..., ∞}.

The profit maximization32 for the producer of the final consumption good is:

max
{Yt, yit}

Yt −
N∑
i=1

(pityit) ,

subject to Yt = At
∏N
i=1 (yit)

1
N .

The first order conditions of this profit maximization problem yield:

yit = Yt
Npit

.

Let ht denote the labour wage in period t. Then, the profit maximization problem for the
producer of the intermediate good in sector i is:

max
{lit, xit, xi1t,..., xiNt}

pitxit −
N∑
j=1

pjtxijt − htlit

subject to xit = zαitl
α
it

∏N
j=1 x

(1−α)wijt
ijt .

The first order conditions yield:
lit = αpitxit

ht
(6.8)

32For simplicity, we treat the final consumption good as the numeraire good and normalize its price to unity.
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xijt = (1− α) pitwijtxit
pjt

. (6.9)

Under market clearing for the labour and commodity markets, the following equalities hold:

N∑
i=1

cit = Yt

yit +
N∑
j=1

xjit = xit (6.10)

N∑
i=1

lit = Lt

Substituting (6.8) and (6.9) into (6.10), we obtain:

Yt
Npit

+
N∑
j=1

[(1− α) pjtwjitxjt
pit

]
= xit.

Multiplying both sides by pit and denoting as ςit the value of sales of firm i at time t, we obtain
the following expression:

ςit = Yt
N

+ (1− α)
N∑
j=1

[wjitςjt] . (6.11)

In vector form, equation (6.11) can be re-written as:

ς ′t = Yt
N

1′ [I − (1− α)Wnt]−1

= Yt
α
υ′nt. (6.12)

The last line in the equation above follows from applying the definition of the influence vector.
The element-wise equalities implied by equation (6.12) can be used to obtain an expression for the
sales ratio of each sector:

ςit = Yt
α
υit (6.13)

⇒
N∑
i=1

ςit = Yt
α

N∑
i=1

υit = Yt
α
. (6.14)

Dividing (6.13) by (6.14), we obtain:

ςit∑N
j=1 ςjt

= υit
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Thus, the sales ratio for each sector is equal to the Bonacich centrality of the sector in the
networked production economy.

6.3 Order Statistics for Power Law Distributions

We consider a pareto-type power law distribution with c.d.f,

P (y) =
ˆ ∞
y

p(y′)dy′ = 1− cy−ζ (6.15)

The m-th moment E(yk,n)m of the k-th order statistic from this power law distribution is finite
for m < ζ(n− k + 1) and is given by (Nevzorov 2001, Assignment 6.2.),

E(yk,n)m =
n! · Γ

(
n− k + 1− m

ζ

)
(n− k)! · Γ

(
n+ 1− m

ζ

) (6.16)

with Γ(a), the standard Gamma function:

Γ(a) =
ˆ ∞

0
ta−1e−tdt

The first moment of the k-th order statistic is,

E(yk,n) =
n!
(
n− k − 1

ζ

)
!

(n− k)!
(
n− 1

ζ

)
!

(6.17)

It is easy to see that for Zipf’s law with ζ = 1, Equation (6.17) reduces to, E(yk,n) = n
n−k . For,

any ζ > 1, and for a large n and large k33 we can approximate the Γ-functions (and factorials) of
Equation (6.17) using Sterling’s formula,

E(yk,n) ∼
nn+ 1

2
(
n− k − 1

ζ

)n−k− 1
ζ

+ 1
2

(n− k)n−k+ 1
2
(
n− 1

ζ

)n− 1
ζ

+ 1
2

(6.18)

=
nn+ 1

2
(
n− k − 1

ζ

)n−k+ 1
2

(n− k)n−k+ 1
2
(
n− 1

ζ

)n+ 1
2
·
(
n− k − 1

ζ

n− 1
ζ

)− 1
ζ

∼
(
n− k
n

)− 1
ζ

=
(
j

n

)− 1
ζ

, where j is the rank (in descending order) of the observation in the sequence.
33The approximations can also be made with large n and a fixed value of k (for lower rank order statistics) with

similar results
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6.4 Limiting Distribution of the Bias

We first state Lévy’s Theorem (adapted from Durrett (1996)) which is a generalized version of the
central limit theorem that relaxes the assumption of the finiteness of the variance and identifies a
new family of limiting distributions.

Theorem 1. Lévy’s Theorem: Suppose that X1, X2, ... are i.i.d. with a distribution that satisfies (i)
l lim

x
∞−→ P(X1 > x)/P(|X1| > x) = θ ∈ [0.1] and (ii) P(|X1| > x) = x−ζL(x) with zeta ∈ (0, 2) and

L(x) slowly varying. Let sn =
∑∞
i=1Xi, an = inf{x : P(|X1| > x) ≤ 1/n}, and bn = nE[X11|X1|≤an ].

As n ∞−→, (sn−bn)/an converges in distribution to a nondegenerate random variable Y , which follows
a Lévy distribution with exponent ζ.

The true data generating model, given CRRA preferences and an endowment-based economy is
shown in Section (3) to be:

∆ ln (ci) = β1

∑N
i=1 (yiσεi)

Y
+ β2

(
1− yiσ

Y

)
εi + ui. (6.19)

Denote ε∗i =
(
1− yiσ

Yt

)
εi. Then, equation (6.20) can be written as:

∆ ln (ci) = β2ε
∗
i + ui. (6.20)

Consider the following misspecified model:

∆ ln (ci) = β̃2εi + ui. (6.21)

The estimator β̃2 from the misspecified model can be obtained from:

β̃2 =

N∑
i=1

%iεi

N∑
i=1

ε2i

=

N∑
i=1

(β2ε∗i+ui)εi

N∑
i=1

ε2i

= β2


N∑
i=1

ε∗i εi

N∑
i=1

ε2i

+

N∑
i=1

εiui

N∑
i=1

ε2i

The numerator of the first term (representing the bias) can be written as,
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N∑
i=1

(ε∗i εi) =
N∑
i=1

[(
1− yitσi

Y

)
ε2
i

]
(6.22)

=
N∑
i=1

ε2
i −

σ

Y

N∑
i=1

yiε
2
i

Since ε is normally distributed, the law of large number applies and the first term of the ex-
pression is equal to NE[ε2

i ] = N . For the second term, when ζ > 1, by the law of large numbers,

Y =
N∑
i=1

yi = NE [yi]. For,
N∑
i=1

yiε
2
i , observe that, for the variable yα1

i εα2
i ,

P(|yα1
i εα2

i | > x) =P

yi >
(

x

|εα2
i |

) 1
α1

 (6.23)

∼E
[
|εi|

ζα2
α1

]
x
−ζ
α1 (6.24)

Therefore, for ζ > 1, Lévy’s Theorem implies that,

1
N

1
ζE
[
|ε|2ζi

] ( N∑
i=1

yiε
2
i −NE(yiε2

i )
)

d−→ gζ (6.25)

where gζ is a random variable that follows a Lévy distribution with exponent ζ with aN =
N

1
ζE
[
|ε|2ζi

]
, bN = E(yiε2

i ) is the scaling factor as per Equation (6.23).
Assuming independence between yi and εi with E(ε2

i ) = 1, Equation (6.22) converges to to,

N∑
i=1

(ε∗i εi) −→N −
σ

NE [yi]
NE(yiε2

i ) (6.26)

−→N − σ

The limiting distribution of the bias in the estimate of β2 under the misspecified model can be
obtained as:

β̃2 − β2 =β2


N∑
i=1

ε∗i εi

N∑
i=1

ε2
i

− 1

+

N∑
i=1

εiui

N∑
i=1

ε2
i

(6.27)

We assume that εi and ui are independent which implies that the second term of the expression
converges in probability to zero. When ζ > 1:
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β̃2 − β2 =β2


N∑
i=1

ε∗i εi

N∑
i=1

ε2
i

− 1

+

N∑
i=1

εiui

N∑
i=1

ε2
i

(6.28)

−→β2

(
N − σ
N

− 1
)

+ 0

−→β2

(
− σ
N

)
For zipf’s law case, Lévy’s Theorem applied to ζ = 1, gives,

1
N

1
ζE
[
|ε|2ζi

] ( N∑
i=1

yiε
2
i −N lnN

)
d−→ gζ (6.29)

Applying the (lnN) correction to both numerator and denominator of Equation (6.22),

β̃2 − β2 −→β2

(
− σ
N

)
(6.30)

In contrast to the CRRA specification, one could also consider a CARA specification. In this
case, it is easy to see, based on the above, that with ζ > 1, the bias decays asymptotically, as
the size of the risk-sharing group increases, and is of order (1/N). However, with ζ = 1, a (lnN)
correction applies, but only to the numerator and the bias is or order (lnN/N). With ζ < 1, the
bias converges to a Lévy-distributed random variable, gζ with exponent ζ and scales at

(
1

N
2− 1

ζ

)
.

Instead of a distribution of endowments, we could also consider a production network structure.
It can be seen from the above analysis that the rate of convergence of the bias depends on the term

N−1
N∑
i=1

yiσε
2
i

Y . Note that in the network production case, the term
N∑
i=1

yiσε
2
i

Y is replaced by
N∑
i=1

υiσε
2
i ,

where υi denotes the centrality of each agent in the production network. This term can be expanded
as,

N∑
i=1

υiσε
2
i ≥σ

N∑
i=1

[
a

N
+ a

N
(1− a) di

]
ε2
i (6.31)

=σ
[
a

N

N∑
i=1

ε2
i + a

N
(1− a)

N∑
i=1

(
diε

2
i

)]
(6.32)

If the distribution of degrees is scale-free with a power-law distribution parameter ζ > 1, then,
as before, Lévy’s Theorem implies that

∑N
i=1 diε

2
i converges in distribution to gζ with exponent ζ

as per Equation (6.25). The second term scales at Op(N). As a result, we can see that the bias,
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which depends on the term N−1
N∑
i=1

υiσε
2
i , scales at Op

(
1
N

)
when income is generated from a scale

free network with parameter ζ > 1.

If the distribution of degrees is scale-free with a power-law distribution parameter ζ = 1 (zipf),
note that by Lévy’s Theorem,

∑N
i=1 diε

2
i converges in distribution to gζ with exponent ζ as per

Equation (6.29), i.e. with bn = lnN . As a result, the second term in Equation (6.31) scales

Op(N lnN). In this case, the bias, which depends on the term N−1
N∑
i=1

υiσε
2
i , scales at Op

(
lnN
N

)
when income is generated from a scale free network with parameter ζ = 1.

If the distribution of degrees is scale-free with a power-law distribution parameter ζ < 1, note
that by Lévy’s Theorem,

∑N
i=1 diε

2
i converges in distribution to gζ with exponent ζ as per Equation

(6.25) but with bn = 0. As a result, the second term in Equation (6.31) scales Op(N
1
ζ ). In this case,

the bias, which depends on the term N−1
N∑
i=1

υiσε
2
i , scales at Op

(
1

N
2− 1

ζ

)
when income is generated

from a scale free network with parameter ζ < 1.

7 Robustness checks

The risk-sharing literature has typically focused on three members of the family of hyperbolic
absolute risk aversion (HARA) utility functions. Similarly to these studies, we include in our
analysis all of these types of utility function to examine the effects of idiosyncratic shocks on the
optimal risk-sharing allocations

First, we consider the Constant Absolute Risk Aversion (CARA) utility which is obtained when
γ → −∞ and δ = −1. Then, we examine the Constant Relative Risk Aversion (CRRA) utility
function which is obtained when γ > 0 and δ = 0. Finally, by assuming that δ = 1 and a = γ > 0
we obtain the Decreasing Absolute Risk Aversion (DARA) preferences. The CARA and CRRA
utility functions were adopted in the classic risk-sharing models of Mace (1991), Cochrane (1991),
Townsend (1994) and Obstfeld (1995). DARA preferences was suggested by Ogaki and Zhang (2001)
and more recently, Mazzocco (2012) incorporate full heterogeneity in risk preferences.

7.1 Constant Absolute Risk Aversion (CARA)

The CARA or exponential utility function adopted in this section takes the form:

u (cit, bit) = −1
γ
e−γ(cit−bit). (7.1)
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Taking the partial derivative with respect to consumption, substituting into the first order condition
(2.8) and solving for cit we obtain:

cit = −1
γ

ln (κt) + 1
γ

ln
(
λi (βi)t

)
+ bit. (7.2)

Aggregating over the N agents of the economy, we get:

N∑
i=1

cit = −1
γ

N∑
i=1

ln (κt) + 1
γ

N∑
i=1

ln
(
λi (βi)t

)
+

N∑
i=1

bit

⇒ Yt = −N
γ

ln (κt) + 1
γ

N∑
i=1

ln
(
λi (βi)t

)
+

N∑
i=1

bit, (7.3)

where the last equation follows from substituting the resource constraint (2.6) and from exploiting
the fact that the (modified) Lagrange multiplier κt and the preference parameters are constant
across individuals. Solving for ln (κt), we get:

ln (κt) = − γ
N
Yt + 1

N

N∑
i=1

ln
(
λi (βi)t

)
+ γ

N

N∑
i=1

bit. (7.4)

Take the first difference between two points in time of the optimal consumption derived in (7.2):

∆cit+1 = −1
γ

∆ ln (κt+1) + 1
γ

∆ ln
(
λi (βi)t+1

)
+ ∆bit+1. (7.5)

Substituting for ln (κt) in the equation above, we have:

∆cit+1 = 1
N

∆Yt+1 −
1
Nγ

∆
[
N∑
i=1

ln
(
λi (βi)t+1

)]
+ 1
γ

∆ ln
(
λi (βi)t+1

)
− 1
N

∆
(

N∑
i=1

bit+1

)
+ ∆bit+1.

(7.6)
Equation (7.6) relates the pareto optimal changes in consumption to changes in total endowments

and, therefore, changes in total consumption. According to equation (2.4), the changes in aggregate
endowments can be written as:

∆Yt+1 =
N∑
i=1

∆yit+1 =
N∑
i=1

(yitσiεit+1) . (7.7)

Substituting the changes in total endowments into (7.6) and denoting Λit+1 ≡ λi (βi)t+1 we
have:

∆cit+1 = 1
N

N∑
i=1

(yitσiεit+1)− 1
Nγ

∆
[
N∑
i=1

ln (Λit+1)
]

+ 1
γ

∆ ln (Λit+1)− 1
N

∆
(

N∑
i=1

bit+1

)
+ ∆bit+1.

(7.8)
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In the following three subsections, we first derive the asymptotic result that idiosyncratic shocks
do not matter when the size of endowments is equal across the agents of the economy or when the
endowments are distributed with a finite variance. Nevertheless, we also show in the last subsection
that idiosyncratic shocks can cause aggregate fluctuations in total consumption when the initial
distribution of endowments follows a power law distribution.

7.1.1 Identical-sized endowments

Assume that endowments are equal across individuals so that yit = (1/N)Yt for every agent i. Then,
we can rewrite (7.8) as follows:

∆cit+1 = Yt
N2

N∑
i=1

(σiεit+1)− 1
Nγ

∆
[
N∑
i=1

ln (Λit+1)
]

+ 1
γ

∆ ln (Λit+1)− 1
N

∆
(

N∑
i=1

bit+1

)
+∆bit+1. (7.9)

Taking the partial derivative of the changes in the optimal consumption of individual i with
respect to any idiosyncratic endowment shock εjt+1 (including j = i), we get:

∂ (∆cit+1)
∂εjt+1

= σjyjt
N

= σj

(
Yt
N2

)
.

The partial effect of εjt+1 becomes 0 as N →∞.

7.1.2 Endowments distributed with finite variance

If endowments are distributed with a finite variance, then the partial derivative of equation (7.8)
with respect to the idiosyncratic endowment shock εjt+1 becomes equal to:

∂ (∆cit+1)
∂εjt+1

= σjyjt
N

.

Given the finite variance assumption, then yjt remains a positive real number and the partial
effect of εjt+1 becomes 0 as N →∞.

Combining the results of Sections 7.1.1 and 7.1.2 we derive the following proposition:

Proposition 7. Assuming CARA preferences, the partial effect of an idiosyncratic shock to the j-th
agent’s endowment on the optimal consumption of the i-th individual becomes 0 as N →∞ when:(i)
endowments are distributed uniformly across agents or (ii) endowments are distributed with a finite
variance across agents.
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7.1.3 Endowments following a power law distribution

Under the assumption that endowments follow a power law distribution, the j-th largest endowment
in the population of N agents is approximately equal to:

yjt =
(
j

N

)− 1
ζ

,

where ζ ≥ 1 denotes the exponent of the power law distribution of endowments (i.e., ζ is such that
P (y > x) = x−ζ). Substituting the above expression of the size of the endowment into equation
(7.8), we get:

∆cit+1 = 1
N

N∑
i=1

((
i

N

)− 1
ζ

σiεit+1

)
− 1
Nγ

∆
[

N∑
i=1

ln (Λit+1)
]

+ 1
γ

∆ ln (Λit+1)− 1
N

∆
(

N∑
i=1

bit+1

)
+ ∆bit+1.

(7.10)
Thus, the partial derivative of the changes in the optimal consumption of individual i with

respect to any idiosyncratic endowment shock εjt+1 becomes equal to:

∂ (∆cit+1)
∂εjt+1

= σj

 j
− 1
ζ

N
1− 1

ζ

 .
The effect of an idiosyncratic shock εjt+1 as the number of agents becomes infinitely large will

depend on the value of the parameter ζ.

• if ζ > 1 then:

∂ (∆cit+1)
∂εjt+1

= σj

 j
− 1
ζ

N
ζ−1
ζ


Therefore, the partial effect on changes in individual consumption is positive for small N , but
becomes 0 as N →∞. For example, the partial effect of εjt+1 on ∆cit+1 decays according to√
N if ζ = 2.

• if ζ = 1, then:

∂ (∆cit+1)
∂εjt+1

= σj

 j
− 1
ζ

N
1− 1

ζ

 = σj
j
> 0 (7.11)

Note that the above inequality holds asymptotically as N →∞.

The implications of the results obtained above are stated more formally in the following proposition:

Proposition 8. Assuming CARA preferences, the partial effect of an idiosyncratic shock to the
j-th largest endowment on the optimal consumption of the i-th individual:
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(i) remains positive when the size of endowments follows a power-law distribution with ζ = 1
(i.e., a Zipf distribution) and

(ii) decays according to 1

j
1
ζ N

ζ−1
ζ

when the size of endowments follows a power-law distribution

with ζ > 1.

7.2 Decreasing Absolute Risk Aversion (DARA)

The DARA or generalized Stone-Geary utility function that we consider in this section has the
following form:

u (cit, bit) = bit
(cit − δ)1+γ − 1

1 + γ
(7.12)

The expression above represents the case of Constant Relative Risk Aversion (CRRA) prefer-
ences, which have been examined by Mace (1991) and Cochrane (1991), when δ = 0. Okagi and
Zhang (2001) and Mazzocco and Saini (2012) have argued in favour of facilitating in the analysis of
risk-sharing the possibility that δ can take values different than zero. More specifically, for a positive
δ the utility function above exhibits Decreasing Relative Risk Aversion. In this case, the positive
parameter δ is often referred to as the subsistence level of consumption. Note that the marginal
utility of consumption tends to infinity when cit approaches δ. In the case of a negative-valued δ,
preferences exhibit Increasing Relative Risk Aversion and the individual is assumed to have a finite
marginal utility when cit = 0.

Substituting the partial derivative of the DARA utility function with respect to consumption into
the first order condition (2.8) and solving for the difference of cit from the ‘subsitstence’ parameter
δ, we get:

cit − δ =
(

κt

bitλi (βi)t

) 1
γ

. (7.13)

Aggregating over the N agents of the economy, we have:

N∑
i=1

cit − δN =
N∑
i=1

(
κt

bitλi (βi)t

) 1
γ

⇒ Yt − δN = (κt)
1
γ

N∑
i=1

(
bitλi (βi)t

)− 1
γ (7.14)

The last equality can be used to obtain an expression for ln (κt):

ln (κt) = γ ln (Yt − δN)− γ ln
[
N∑
i=1

(
bitλi (βi)t

)− 1
γ

]
. (7.15)

Denote Θit ≡ bitλi (βi)t and use equations (7.26), (7.15) and (2.14) to obtain the following
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expression for the logarithmic growth of optimal individual consumption:

∆ ln (cit+1 − δ) = 1
γ

∆ (ln κt+1)−∆ ln (Θit+1)

= ∆ ln (Yt+1 − δN)−∆ ln
[
N∑
i=1

(Θit+1)−
1
γ

]
− 1
γ

∆ ln (Θit+1) (7.16)

To be precise, the expression above represents the logarithmic growth of optimal individual
consumption when δ = 0. This is the case of Constant Relative Risk Aversion (CRRA) preferences
mentioned earlier, which has been extensively explored in the risk-sharing literature. For a positive
δ, the expression provides the logarithmic growth of the optimal consumption in excess of the
subsistence parameter δ, which is often the case explored in more recent studies.

The logarithmic growth of total endowments in the expression above can be calculated based
on equation (2.4) as follows:

∆ ln (Yt+1 − δN) ' ∆Yt+1
Yt − δN

=
∑N
i=1 (∆yit+1)
Yt − δN

=
∑N
i=1 (yitσiεit+1)
Yt − δN

. (7.17)

Substituting (7.16) into (7.17), we get:

∆ ln (cit+1 − δ) =
∑N
i=1 (yitσiεit+1)
Yt − δN

−∆ ln
[
N∑
i=1

(Θit+1)−
1
γ

]
− 1
γ

∆ ln (Θit+1) (7.18)

Similarly to Section 7.1, we demonstrate in what follows that when the size of endowments is
distributed uniformly across agents or with a finite variance, then the idiosyncratic shocks cancel out
in the aggregate. The idiosyncratic shocks are shown to matter for optimal consumption allocations
when the size of endowments follows the Zipf distribution.

7.2.1 Identical-sized endowments

Assuming that y = yit = (1/N)Yt for every agent i, then the logarithmic growth of total endowments
can be written as:

∆ ln (cit+1 − δ) = y

N (y − δ)

N∑
i=1

(σiεit+1)− ln
[
N∑
i=1

(Θit+1)−
1
γ

]
− 1
γ

∆ ln (Θit+1) . (7.19)

The partial derivative of the changes in the optimal consumption of individual i with respect to
the idiosyncratic endowment shock εjt+1 is equal to:

∂ (∆ ln (cit+1 − δ))
∂εjt+1

= yσj
N (y − δ) .

The partial effect of εjt+1 becomes 0 as N →∞.
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7.2.2 Endowments distributed with finite variance

If endowments are distributed with a finite variance, then N−1∑N
i=1 (yit)

a.s.−→ E (yt). Thus, we can
express total endowments Yt as follows:

Yt =
N∑
i=1

(yit) = NE (yt)

The partial derivative of equation (7.6) with respect to the idiosyncratic endowment shock εjt+1

can be written as:
∂ (∆ ln (cit+1 − δ))

∂εjt+1
= σjyjt
Yt − δN

= σjyjt
N (E (yt)− δ)

.

Given the finite variance assumption, then the term σjyjt
E(yt)−δ remains a positive real number and

the partial effect of εjt+1 becomes 0 as N →∞.

Proposition 9. Assuming DARA preferences, the partial effect of an idiosyncratic shock to the
j-th agent’s endowment on the optimal consumption of the i-th individual becomes 0 as N → ∞
when:

(i) endowments are distributed uniformly across agents or
(ii) endowments are distributed with a finite variance across agents.

7.2.3 Endowments following a power law distribution

Under the assumption that endowments follow a power law distribution, the j-th largest endowment
in the population of N agents is approximately equal to:

yjt =
(
j

N

)− 1
ζ

, (7.20)

where ζ ≥ 1 denotes the exponent of the power law distribution of endowments. The size of
aggregate endowments as the size of the economy grows large (i.e., N → ∞) will depend on the
value of parameter ζ.

• if ζ > 1, then the mean value of the endowment size takes a finite value, as the size of the
economy grows large (i.e., N−1∑N

i=1 (yit)
a.s.−→ E (yt)). Thus, for large N , total endowments Yt

can be expressed as Yt =
∑N
i=1 (yit) = NE (yt) and the logarithmic growth of total endowments

can be written as:

∆ ln (cit+1 − δ) = 1
NE (yt)−Nδ

N∑
i=1

((
i

N

)− 1
ζ

σiεit+1

)
−ln

[
N∑

i=1
(Θit+1)− 1

γ

]
− 1
γ

∆ ln (Θit+1) . (7.21)

The partial derivative of equation (7.21) with respect to the idiosyncratic endowment shock
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εjt+1 becomes equal to:

∂ (∆ ln (cit+1 − δ))
∂εjt+1

= 1

N
ζ−1
ζ

σj

j
1
ζ (E (yt)− δ)

.

Given that ζ > 1 and that σj

j
1
ζ (E(yt)−δ)

is a positive finite value, then the partial effect becomes

0 as N →∞.

• if ζ = 1, then yjt =
(
N
j

)
and the expected value of endowments (for a large N) is equal

to E (yt) =
´ N

1 yf (y) dy =
´ N

1 yy−2dy = lnN , where f (y) = y−2 is the probability density
function of the distribution of endowment sizes. Therefore, the aggregate endowment is equal
to Yt = NE (yt) = N lnN and the logarithmic growth of total endowments can be expressed
as:

∆ ln (cit+1 − δ) =
∑N
i=1

(
N
i σiεit+1

)
N lnN − δN − ln

[
N∑
i=1

(Θit+1)−
1
γ

]
− 1
γ

∆ ln (Θit+1) . (7.22)

The partial derivative of equation (7.22) with respect to the idiosyncratic endowment shock εjt+1

is equal to:
∂ (∆ ln (cit+1 − δ))

∂εjt+1
= σj
j (lnN − δ) . (7.23)

Equation (7.23) leads to the following proposition:

Proposition 10. Assuming CRRA preferences, the partial effect of an idiosyncratic shock to the
j-th largest endowment on the optimal consumption of the i-th individual decays according to:

(i) 1
j(lnN−δ) when the size of endowments follows a power-law distribution with ζ = 1 (i.e., a

Zipf distribution) and
(ii) 1

j
1
ζ N

ζ−1
ζ

when the size of endowments follows a power-law distribution with ζ > 1.

7.3 Heterogeneous risk preferences

In this section we consider the Constant Relative Risk Aversion (CRRA) with heterogeneous risk
preference parameters γi:

u (cit, bit) = bit
(cit)1−γi − 1

1− γi
. (7.24)

Substitute the partial derivative of the CRRA utility function with respect to consumption into
the first order condition (2.8) and solve for cit to obtain:

cit =
(
bitλi (ρi)t

κt

) 1
γi

. (7.25)
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Taking the logarithm of both sides yields:

ln cit = − 1
γi

ln κt + 1
γi

ln
(
bitλi (ρi)t

)
. (7.26)

The growth rate of individual consumption can be obtained by taking the first difference of the
equation above:

∆ ln (cit+1) = − 1
γi

∆ ln (κt+1) + 1
γi

∆ ln
(
bitλi (ρi)t

)
. (7.27)

The second term can be ignored under the assumption that bit is constant across time and
ρi = 1.

The change in the level of individual consumption, taking consumption from last period cit as
given, can be expressed as:

∆cit+1 ' cit∆ ln (cit+1) = −cit
γi

∆ ln (κt+1) .

Aggregating over the N agents of the economy, we obtain the following expression for the change
in aggregate consumption:

∆Ct =
N∑
i=1

(∆cit) = −
N∑
i=1

(
cit
γi

∆ ln (κt+1)
)
.

Using the binding aggregate resource constraint, we can express the change in aggregate income
as the change in aggregate consumption:

∆Yt = ∆Ct = −
N∑
i=1

(
cit
γi

∆ ln (κt+1)
)
.

Rearranging terms, we obtain:

∆ ln (κt+1) = − ∆Yt∑N
i=1

(
cit
γi

) . (7.28)

Substituting ∆ ln κt+1 into equation (7.27), we get:
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∆ ln (cit+1) = − 1
γi

∆ ln (κt+1)

= ∆Yt
γi
∑N
i=1

(
cit
γi

) . (7.29)

If we assume that the risk aversion parameter, γi (strictly greater than zero), is i.i.d. with finite
variance and, further, that it is independent of consumption, ci and endowments, yi (distributed
with ζ ≥ 1), then for the variable

(
cit
γi

)
,

P(|cit
γi
| > x) =P

(
cit >

(
x

| 1
γi
|

))
(7.30)

∼E
[( 1
|γi|

)ζ]
x−ζ (7.31)

Therefore, for ζ > 1,

N∑
i=1

(
cit
γi

)
= NE[cit]E

[( 1
γi

)]
(7.32)

>
NE[cit]
E[γi]

(7.33)

The last inequality follows from Jensen’s Inequality.
Then, we can rewrite (7.29) as:

∆ ln (cit+1) > ∆ (Yit)
γi

E[γi]NE[cit]
(7.34)

7.3.1 Endowments following a power law distribution

Under the assumption that endowments follow a power law distribution, the j-th largest endowment
in the population of N agents is approximately equal to:

yjt =
(
j

N

)− 1
ζ

, (7.35)

where ζ ≥ 1 denotes the exponent of the power law distribution of endowments. The size of
aggregate endowments as the size of the economy grows large (i.e., N → ∞) will depend on the
value of parameter ζ.
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• if ζ > 1, then the mean value of the endowment size takes a finite value, as the size of the
economy grows large (i.e., N−1∑N

i=1 (yit)
a.s.−→ E (yt)). Thus, for large N , total endowments

Yt can be expressed as Yt =
∑N
i=1 (yit) = NE (yt) and he partial derivative of equation (7.34)

with respect to the idiosyncratic endowment shock εjt+1 becomes equal to:

∂ (∆ ln (cit+1))
∂εjt+1

>
σj

N
ζ−1
ζ · j

1
ζ

(
γi

E[γi]E[cit]
) .

Given that ζ > 1 and that σj

j
1
ζ (E(yt)−δ)

is a positive finite value, then the partial effect becomes

0 as N →∞.

• if ζ = 1, then yjt =
(
N
j

)
and the expected value of endowments (for a large N) is equal

to E (yt) =
´ N

1 yf (y) dy =
´ N

1 yy−2dy = lnN , where f (y) = y−2 is the probability density
function of the distribution of endowment sizes. Therefore, the aggregate endowment is equal
to Yt = NE (yt) = N lnN and the partial derivative of equation (7.34) with respect to the
idiosyncratic endowment shock εjt+1 is equal to:

∂ (∆ ln (cit+1))
∂εjt+1

>
σj

lnN · j
(

γi
E[γi]E[cit]

) . (7.36)

Equation (7.36) leads to the following proposition:

Proposition 11. Assuming CRRA preferences, the partial effect of an idiosyncratic shock to
the j-th largest endowment on the optimal consumption of the i-th individual decays according
to:

(i) 1
j·lnN when the size of endowments follows a power-law distribution with ζ = 1 (i.e., a Zipf

distribution) and

(ii) 1

j
1
ζ N

ζ−1
ζ

when the size of endowments follows a power-law distribution with ζ > 1.

Apart from asymptotics, the difference in the effect of an i.i.d shock on consumption growth,
when allowing for risk heterogeneity (compare Eq. (7.34) to Eq. (2.20)), is that the denominator now
depends on the agent’s risk aversion coefficient γj relative to the mean E[γj ]. Therefore, the effect
of εjt+1 on ∆ ln (cit+1) is mitigated to an extent by the relative value of agent j’s risk aversion.
Extremely risk-averse agents, for example with γj > E[γj ], are affected less by their own shock
relative to risk-loving agents by being allocated a larger share of aggregate resources. Consistent
with Mazzocco (2012), the social planner pools resources with the view to optimally insure and then
allocates them according to agents’ preferences for risk. Note that in this case, the proportional
allocation is able to provide some insurance against aggregate shocks. When aggregate shocks are
themselves affected by idiosyncratic shocks, the implication is that that consumption growth is
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affected less by the idiosyncratic shocks of risk averse agents (those whose risk aversion is above the
mean) relative to the case when all agents have constant risk aversion. The counterpart, however,
is that consumption growth is affected more by the idiosyncratic shocks of risk loving agents (those
whose risk aversion is below the mean). Future research could extend the analysis with a flexible
model, that ties risk aversion of each agent to the amount of endowments they hold, to generate
predictions for the effect of redistributive policies.
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