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Abstract

This paper considers the large sample properties of the matrix exponential spatial specification (MESS)

and compares its properties with those of the spatial autoregressive (SAR) model. We find that the quasi-

maximum likelihood estimator (QMLE) for the MESS is consistent under heteroskedasticity, a property

not shared by the QMLE of the SAR model. For the MESS in both homoskedastic and heteroskedastic

cases, consistency is proved and asymptotic distributions are derived. We also consider properties of the

generalized method of moments estimator (GMME). In the homoskedastic case, we derive a best GMME

that is as efficient as the maximum likelihood estimator under normality and can be asymptotically more

efficient than the QMLE under non-normality. In the heteroskedastic case, an optimal GMME can be more

efficient than the QMLE asymptotically and the possible best GMME is also discussed. For the general

model that has MESS in both the dependent variable and disturbances, labeled MESS(1,1), the QMLE

can be consistent under unknown heteroskedasticity when the spatial weights matrices in the two MESS

processes are commutative. Also, properties of the QMLE and GMME for the general model are considered.

The QML approach for the MESS model has the computational advantage over that of a SAR model. The

computational simplicity carries over to MESS models with any finite order of spatial matrices. No parameter

range needs to be imposed in order for the model to be stable. Furthermore, the Delta method is used to

derive test statistics for the impacts of exogenous variables on the dependent variable. Results of Monte

Carlo experiments for finite sample properties of the estimators are reported. Finally, the MESS(1,1) is

applied to Belgium’s outward FDI data and we observe that the dominant motivation of Belgium’s outward

FDI lies in finding cheaper factor inputs.
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1. Introduction

The Matrix Exponential Spatial Specification (MESS) has been initially proposed by LeSage and Pace

(2007) as a substitute to the well-known spatial autoregressive (SAR) specification. The difference between

the two rests on the type of decay which characterizes the influence of space. The MESS uses an exponential

decay while the SAR specification is based on a geometrical decay. The motivation of these authors to use

the MESS is its computational simplicity. Indeed, in contrast to the SAR, the quasi-maximum likelihood

(QML) function of the MESS does not involve any Jacobian of the transformation and thus reduces to a

nonlinear regression estimation. This is so even for its extension to models with a finite number of spatial

weights matrices. A second advantage of the MESS is the absence of constraints on the parameter space of

the coefficient that captures interactions between observations since the reduced form of the MESS always

exists (see Chiu et al., 1996). Furthermore, no positivity constraint on the Jacobian of the transformation

needs be imposed as it does not appear in the quasi log-likelihood function. In Section 2, we nevertheless show

that MESS and SAR models cannot be seen as perfect substitutes since neither a one-to-one correspondence

between the parameters capturing interactions nor between impacts (except in some specific cases) can be

derived. Furthermore, a MESS model is always a stable spatial process, but a SAR model with strong

spatial interaction might be unstable.2

A third advantage of the MESS, proved in this paper, is that the quasi-maximum likelihood estimator

(QMLE) is consistent even in the presence of unknown heteroskedasticity, a feature not shared by the SAR

model (see Lin and Lee, 2010, p. 36). These two authors have, however, shown that a generalized method

of moments (GMM) estimator (GMME) with properly modified quadratic moment conditions in a SAR

specification could still be consistent in presence of unknown heteroskedasticity.3 Using quadratic moment

conditions similar to those in Lin and Lee (2010), we derive an optimal GMME consistent in presence

of unknown heteroskedasticity and also generally more efficient with respect to the QMLE (with either

normal or non-normal disturbances). The relative efficiency of the optimal GMME results from the optimal

weighting of the GMM estimation method which uses the same moments that the QMLE integrates. In

the homoskedastic case, we derive a best (optimal) GMME that is as efficient as the MLE under normality

and can be more efficient than the QMLE under non-normality.4 The best GMME takes a much simpler

2From this view, we may argue that the MESS would be useful only when observed outcomes do not show unstable
phenomena.

3Kelejian and Prucha (2010) also develop a GMME robust to the presence of heteroskedasticity but their main focus was
on spatial autocorrelation in the error terms.

4Lee (2007) derives the best optimal GMME for the SAR model with normal i.i.d. disturbances, which is as efficient as
the QMLE. Liu et al. (2010) considers the best optimal GMME for the SAR model with SAR disturbances that can be more
efficient than the QMLE under non-normality, which is extended to high order SAR models in Lee and Liu (2010).
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form than that for the SAR model and the optimal orthogonal conditions do not involve any estimated

parameters5.

Even though LeSage and Pace (2007) present the maximum likelihood and Bayesian estimations of the

MESS, not any asymptotic theory has been derived for this specification. In this paper, we focus our

attention on the general model where a MESS is present in both the dependent variable and in the error

terms (MESS(1,1) for short), and develop large sample properties for QML and GMM methods under both

homoskedastic and heteroskedastic cases.6 In the homoskedastic case, the best GMME for models with

normal disturbances or commutative spatial weights matrices in the MESS(1,1) is as efficient as the QMLE

but generally more efficient than the QMLE for other ones. In the (unknown) heteroskedastic case, the

QMLE for the MESS(1,1) model can be consistent only when the spatial weights matrices for the MESS in

the dependent variable and in disturbances are commutative, but it is less efficient than an optimal GMME.

If different variances in the heteroskedastic case could be estimated consistently, a best GMME could also

be implemented.7 We also perform Monte Carlo experiments to assess the small sample performance of our

proposed estimators.

Analysis of significance of determinants’ causal effects on the dependent variable is of great interest for

economists. In this paper, we derive a lemma allowing to perform inference on the matrix of impacts implied

by the reduced form of the MESS(1,1). The lemma is based on an adapted version of the Delta method

and can be used to test the significance of (functions of) impact’s matrix elements as long as the number of

constraints is not depending on the sample size. This lemma is valuable for applied economists since until

now, with the exception of LeSage and Pace (2009) who provide inference for scalar summaries of these

impacts in the SAR model, there does not exist any statistical test to assess the significance of (functions

of) impacts.

The developed estimators are finally applied to a modified gravity equation aimed at explaining Belgium’s

outward FDI. Blonigen et al. (2007) propose four different classifications of FDI which can be distinguished

based on the sign of spatial autocorrelation and market-potential of host countries. In addition to obtain-

ing significant and expected signs for the traditional variables included in the gravity model when spatial

autocorrelation is accounted for, namely GDP, population and bilateral distance, we find a significant neg-

ative spatial autocorrelation and a positive but non-significant market potential effect for hosts countries.

5See Lee (2003, 2007) for further details.
6Appendix A considers the QML estimation of a high order MESS, namely MESS(p,q), with p and q being the orders of

the MESS in the dependent variable and in the errors respectively. While the parameter spaces for high order SAR models
can be hard to find (Lee and Liu, 2010; Elhorst et al., 2012), high order MESS models have the advantage that the parameter
spaces are not restricted.

7For the SAR model under unknown heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME.
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Thus vertical FDI is the dominant type of outward FDI for Belgium. We however find that least squares

estimators (which do not account for spatial autocorrelation in FDI) are misleading. We further compare

MESS(1,1) and SARAR results and show that their economic conclusions in terms of impacts are very sim-

ilar. However, the MESS, for several reasons, namely computational, technical and statistical, can be more

appealing. Finally, statistical significance on impacts is analyzed through the application of the derived

lemma for inference.

The rest of the paper is organized as follows. Section 2 compares MESS and SAR models in a more

formal way. Section 3 derives the QML and GMM estimators under both homoskedasticity and unknown

heteroskedasticity. It also derives a lemma to perform inference on the elements of the matrix of impacts

of explanatory variables obtained from the reduced form of the MESS(1,1). Section 4 presents Monte Carlo

experiments while Section 5 presents the application of our estimators and applies the lemma for inference

on the determinants of Belgium’s outward FDI. Section 6 concludes. Some lemmas and proofs are collected

in the appendices.8

2. Comparison of MESS and SAR Specifications

The MESS in LeSage and Pace (2007) is

eαWnyn = Xnβ + εn, εn = (εn1, . . . , εnn)′, (1)

where n is the sample size, yn is the n-dimensional vector of observations on the dependent variable, Xn is

an n×k matrix of exogenous variables with corresponding coefficient vector β, Wn is an n×n spatial weights

matrix modeling interactions among observations (with zero diagonal elements), εni’s are independent with

mean zero, and α is the parameter measuring the intensity of interactions between observations. The matrix

exponential eαWn =
∑∞
i=0

αiW i
n

i! , where A0
n for an n × n square matrix An is defined as the n × n identity

matrix In, is always invertible, with its inverse being e−αWn (Chiu et al., 1996). As a result, the variance-

covariance (VC) matrix of yn which equals to e−α0Wn E (εnε
′
n) e−α0W

′
n with α0 being the true value of α, is

always positive definite. No restrictions on the parameter space of α should thus be imposed.

In this paper, we consider a general model that has MESS in both the dependent variable and the

disturbances that we label MESS(1,1) (which should be viewed as an analog of the SAR model with SAR

8Except the proof of Proposition 8 which is presented in Appendix C, proofs of remaining propositions are similar to those
in Lee (2004) and Lee (2007). Those proofs are provided in a supplementary file, which is available upon request.
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disturbances, i.e., SARAR model):

eαWnyn = Xnβ + un, eτMnun = εn, εn = (εn1, . . . , εnn)′, (2)

where Wn and Mn are n× n spatial weights matrices. The Mn may or may not be different from Wn. For

purposes of comparison and later reference, we put down the SARAR model with the same Wn, Mn, Xn,

yn and εn:

(In − λWn)yn = Xnβ + un, (In − ρMn)un = εn. (3)

The parameter spaces of λ and ρ should be restricted so that the VC matrix of yn, namely (In−λWn)−1(In−

ρMn)−1 E (εnε
′
n) (In−ρM ′n)−1(In−λW ′n)−1 exists. For the SARAR model with a row-normalizedWn matrix,

the parameter space for λ is typically considered to be (−1, 1).9

The quasi log likelihood function of the MESS(1,1) presented in (2), as if the εni’s were i.i.d. normal, is

Ln(θ) = −n
2

ln(2πσ2) + ln |eαWn |+ ln |eτMn | − 1

2σ2
(eαWnyn −Xnβ)′eτM

′
neτMn(eαWnyn −Xnβ),

where θ = (γ′, σ2)′ with γ = (α, τ, β′)′. Let θ0 be the true parameter vector. Since |eαWn | = eα tr(Wn) and

|eτMn | = eτ tr(Mn), as long as Wn and Mn have zero diagonals, the Jacobian of the transformation disappears

and the quasi log likelihood function is simplified to

Ln(θ) = −n
2

ln(2πσ2)− 1

2σ2
(eαWnyn −Xnβ)′eτM

′
neτMn(eαWnyn −Xnβ). (4)

By contrast, the quasi log likelihood function of the SARAR model shown in (3) involves the log determinant

of the Jacobian ln |(In − λWn)(In − ρMn)| = ln |In − λWn| + ln |In − ρMn|, which may make the QMLE

computationally intensive for large sample sizes.

Another difference between these two specifications is that one does not need to normalize the interaction

matrices in the MESS. In the SARAR model, the purpose of normalizing the interaction matrices is to

standardize the parameter spaces for λ and ρ so that they correspond to (−1, 1), which facilitates the

interpretation of these parameters. However, in the MESS, since no parameter constraint is involved, the

9See Kelejian and Prucha (2010) for a detailed discussion about the parameter space for λ. For high order SARAR models,
finding the parameter spaces can be hard. Elhorst et al. (2012) have outlined a procedure for finding the stationary region, but
the parameter spaces can be complicated even for a SAR model with two spatial weights matrices for the dependent variable.
By contrast, parameters in high order MESS models, labeled MESS(p,q), where p and q are the orders of the MESS in the
dependent variable and disturbances respectively, do not need to be restricted and the effort to find the parameter spaces is
saved. Appendix A considers the QML estimation of these high order MESS models.
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normalization of the interaction matrices may not play a special role.

LeSage and Pace (2007) present the MESS as a computationally simpler substitute for the SAR model.

Using a row-normalized interaction matrix Wn, they propose the approximated relation λ = 1 − eα. They

argue that this approximation is derived by equating the length of ||eαWn ||∞ and ||In−λWn||∞, with ||.||∞

being the maximum row sum matrix norm. However, this approximation is not always right since the matrix

norm should be taken over the absolute value of matrix elements. By contrast, if one turns to the impact

analysis, an equivalence between the two specifications can be traced back at least in some specific cases.

Before presenting this correspondence, it is important to discuss the features of impact analysis in spatial

autoregressive (SAR or MESS) regressions. Impact analysis, which is one of the main focuses for economists,

is based on the reduced form of the estimated econometric specification. For the MESS(1,1) case, the reduced

form is

yn = e−αWn(Xnβ + e−τMnεn). (5)

One then computes the matrix of impact for each regressor Xnk, k = 1, · · · , k, by calculating the partial

derivative of yn with respect to the concerned regressor. For a continuous regressor Xnk, this matrix is

ΞynXnk
=

∂yn
∂X ′nk

= βke
−αWn . (6)

The diagonal elements of this matrix contain the direct effects including own-spillover effects, which are

inherently heterogeneous in presence of spatial autocorrelation due to differentiated friction terms in the

interaction matrix. This is what Debarsy and Ertur (2010) call interactive heterogeneity. Off-diagonal

elements of this matrix represent indirect effects, meaning the impact of a change in explanatory variable

for individual j on the dependent variable for individual i. These direct and indirect effects are presented

in the following expressions:

∂yn,i
∂Xnk,i

≡
(
ΞynXnk

)
ii
, (7)

∂yn,i
∂Xnk,j

≡
(
ΞynXnk

)
ij
. (8)

For the SARAR model, its associated reduced form is

yn = (In − λWn)−1[Xnβ + (In − ρMn)−1εn], (9)
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and the implied impact matrix for regressor Xnk is

ΞynXnk
=

∂yn
∂X ′nk

= βk(In − λWn)−1. (10)

To summarize the information conveyed by these matrices of impacts, LeSage and Pace (2009) propose

extracting several scalar measures, as the average direct effect (mean of the diagonal elements), average

total effect (average of the row or column sums) and average indirect effect (average of the column or row

sums excluding the diagonal element).

Consider a row-normalized interaction matrix Wn in the MESS(1,1) model. Suppose that a shock of the

same magnitude ∆x is applied on the kth explanatory variable Xnk to all spatial units. The new explanatory

variable is now Xnk + ln∆x, with ln being the n-dimensional vector of ones. For the MESS(1,1), from its

reduced form (5), one calculates a total impact of ∆yn = e−αWn ln∆xβk. The average total effect is thus

equal to 1
n l
′
n∆yn = e−α∆xβk.10 Correspondingly, the average total impact of Xnk in the SARAR model is

1
n l
′
n∆yn = 1

1−λ∆xβk. Equating the two gives the relation α = ln(1 − λ) or λ = 1 − eα. Thus, there is a

negative relation between λ and α. At λ = 0, α = 0 and, when 0 < λ < 1, α will take on negative values

and vice-versa. For an interaction matrix Wn that is not row-normalized, there is no such a relation.

Even though a relation between λ and α can be found for a row-normalized Wn, we nevertheless cannot

consider that these two models as substitutes of each other. The underlying reason lies in the comparison

of parameter spaces. As mentioned above, for the SARAR model with row-normalized Wn, λ is usually

restricted to the range (−1, 1). However, in the MESS(1,1), α ∈ (−∞, ∞). So, in the case of row-

normalized Wn, while λ ≤ −1 is not allowed for a SARAR model, α ≥ ln(2) can be valid, meaning that

parameter spaces of α and λ do not correspond. So, for high negative spatial autocorrelation, we could

observe substantial difference between these two models.11 Furthermore, in a SAR model, if λ > 1, it would

be an unstable model, while unstability does not occur for the MESS with any finite value of α.

10As Wn is row-normalized, Wk
n ln = Wnln = ln, k ∈ N.

11For a non-negative and row-normalized interaction matrix Wn, the parameter space for λ may be taken as the interval
( 1
µmin,n

, 1) with µmin,n being the minimal real eigenvalue of Wn. However, it does not change the conclusions regarding the

difference between parameter spaces for λ and α.
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3. Estimations of the MESS(1,1) Model

We consider the QML estimation as well as the GMM estimation of the MESS(1,1) in this section. From

(4), it is apparent that the QMLE of γ is the minimizer of the function

Qn(γ) = (eαWnyn −Xnβ)′eτM
′
neτMn(eαWnyn −Xnβ). (11)

The derivatives of Qn(γ) with respect to α, τ and β at γ0 are, respectively,

∂Qn(γ0)

∂α
= 2(Xnβ0 + e−τ0Mnεn)′W ′ne

τ0M
′
nεn, (12)

∂Qn(γ0)

∂τ
= 2ε′nMnεn, (13)

∂Qn(γ0)

∂β
= −2X ′ne

τ0M
′
nεn. (14)

When εni’s are i.i.d. with mean zero and variance σ2
0 , as E(ε′nMnεn) = tr[Mn E(εnε

′
n)] = σ2

0 tr(Mn) = 0

and E(ε′ne
−τ0M ′nW ′ne

τ0M
′
nεn) = σ2

0 tr(W ′ne
τ0M

′
ne−τ0M

′
n) = σ2

0 tr(W ′n) = 0, the expected value of ∂Qn(γ0)
∂γ is

zero, which verifies that the minimizer of EQn(γ) can be γ0. When εni’s are independent with mean zero

but different variances σ2
ni’s, E(ε′nMnεn) = tr(MnΣn) = 0 since the diagonal elements of Mn are all zero,

and Σn = Diag(σ2
n1, . . . , σ

2
nn) is a diagonal matrix containing the different variances as diagonal elements.

In addition, E(ε′ne
−τ0M ′nW ′ne

τ0M
′
nεn) = tr(e−τ0M

′
nW ′ne

τ0M
′
nΣn), which may not be zero in general. But if

WnMn = MnWn, then W ′ne
τ0M

′
n = eτ0M

′
nW ′n and E(ε′ne

−τ0M ′nW ′ne
τ0M

′
nεn) = tr(W ′nΣn) = 0. Therefore,

when the matrix Wn in the spatial lag process can be commutative with the matrix Mn in the spatial error

process, the QMLE for γ, derived from the minimization of Qn(γ), can be consistent even under unknown

heteroskedasticity. This includes the special cases that there is no MESS process in the disturbances or that

Mn = Wn. This robustness of the QMLE for the MESS(1,0) and MESS(1,1) to unknown heteroskedasticity

is a nice feature not shared by the QMLE for the SARAR model.

The function to be minimized, namely (11), may be written as

Qn(γ) = (yn − e−αWnXnβ)′(e−αWne−τMne−τM
′
ne−αW

′
n)−1(yn − e−αWnXnβ).

Using the reduced form of the MESS(1,1), namely yn = e−α0Wn(Xnβ0 + e−τ0Mnεn), and assuming that

E(εnε
′
n) = σ2

0In, the VC matrix of yn is σ2
0e
−α0Wne−τ0Mne−τ0M

′
ne−α0W

′
n and the QMLE can be seen as a

continuously updating version of the generalized nonlinear least squares (GNLS). The similarity between
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the QML and GNLS is due to the special structure of the matrix exponential specification. By contrast,

there is no such a similarity for the SARAR model (3).12

In addition to the QML estimation, we may also consider the GMM estimation of the MESS(1,1) using

both linear and quadratic moments, as for the SARAR model. The linear moments would be of the form

F ′nεn(γ) = 0, where εn(γ) = eτMn(eαWnyn −Xnβ) and Fn is an n × kf matrix of instruments constructed

as functions of Wn and Xn, as in the two-stage least squares (2SLS) approach. The quadratic moments

have the form ε′n(γ)Pniεn(γ) = 0; i = 1, · · · , kp, where Pni has trace zero when εni’s are i.i.d., implying

that E[ε′n(γ0)Pniεn(γ0)] = σ2
0 tr(Pni) = 0. On the other hand, if the diagonal elements of Pni are all zero

when εni’s are independently distributed with possibly different variances, we get E[ε′n(γ0)Pniεn(γ0)] =

tr(PniΣn) = 0.

The basic regularity conditions for estimation are assumed below. The specific sets of hypotheses required

for both methods will be given subsequently.

Assumption 1. Matrices {Wn} and {Mn} are bounded in both row and column sum norms. The diagonal

elements of Wn and Mn are zero.

Assumption 2. Elements of Xn are uniformly bounded constants, Xn has full column rank, and besides,

limn→∞X ′nXn/n exists and is nonsingular.

Assumptions 1 and 2 follow from the literature, see, e.g., Kelejian and Prucha (1998) and Lee (2004).

3.1. QMLE

For the QMLE from (4), we may just investigate the minimizers of the functions {Qn(γ)}. For a fixed

φ = (α, τ)′, minimizing Qn(γ) yields

β̂n(φ) = (X ′ne
τM ′neτMnXn)−1X ′ne

τM ′neτMneαWnyn. (15)

Substituting β̂n(φ) into Qn(γ), we obtain a function of only φ:

Qn(φ) = y′ne
αW ′neτM

′
nHn(τ)eτMneαWnyn, (16)

12A function for the SARAR model with a structure similar to Qn(γ) is Q∗n(ψ) = [(In − λWn)yn −Xnβ]′(In − ρM ′n)(In −
ρMn)[(In − λWn)yn − Xnβ] with ψ = (λ, ρ, β′)′. At ψ0, E

( ∂Q∗n(ψ0)

∂λ

)
= −2σ2

0 tr[Wn(In − λ0Wn)−1] and E
( ∂Q∗n(ψ0)

∂ρ

)
=

−2σ2
0 tr[Mn(In − ρ0Mn)−1], where tr[Wn(In − λ0Wn)−1] 6= 0 and tr[Mn(In − ρ0Mn)−1] 6= 0 in general. Thus the minimizer

of Q∗n(ψ) is not expected to be a consistent estimator of ψ in the SARAR model (3).
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where Hn(τ) = In−eτMnXn(X ′ne
τM ′neτMnXn)−1X ′ne

τM ′n is a projection matrix. The function Qn(φ) can be

used for the analysis of the consistency of the QMLE. Although we may not need to restrict the parameter

space of φ in practice, φ should be bounded in analysis so that eαWn and eτMn would be bounded in both row

and column sum norms, since ||eαWn || = ||
∑∞
i=0

αiW i
n

i! || ≤
∑∞
i=0

|α|i||Wn||i
i! = e|α|·||Wn||, which is bounded if

α is bounded, and so is ||eτMn || if τ is bounded, where || · || denotes either the row or column sum matrix

norm.

Assumption 3. There exists a constant δ > 0 such that |α| ≤ δ, |τ | ≤ δ and the true φ0 is in the interior

of the parameter space Φ = [−δ, δ]× [−δ, δ].

For consistency of the QMLE, we need to show that the difference between Qn(φ)/n and some non-

stochastic function Q̄n(φ)/n converges to zero uniformly over the parameter space Φ.13 The Q̄n(φ) will have

different forms in the homoskedastic and heteroskedastic cases. By Assumptions 2 and 3, 1
nX
′
ne
τM ′neτMnXn

is bounded. The Qn(φ) is a well-defined function for large enough n if the limit of 1
nX
′
ne
τM ′neτMnXn exists

and is nonsingular. In addition, we require that the sequence of the smallest eigenvalues of eτM
′
neτMn be

bounded away from zero uniformly in τ , so that Hn(τ) is bounded in both row and column sum norms

uniformly in τ . As eτM
′
neτMn is positive definite, its smallest eigenvalue is positive. The condition further

limits all the eigenvalues to be strictly positive uniformly over the parameter space for all n.

Assumption 4. The limit limn→∞
1
nX
′
ne
τM ′neτMnXn exists and is nonsingular for any τ ∈ [−δ, δ], and the

sequence of the smallest eigenvalues of eτM
′
neτMn is bounded away from zero uniformly in τ ∈ [−δ, δ].

3.1.1. QMLE: Homoskedastic Case

In this part, we establish the consistency and asymptotic normality of the QMLE for the MESS(1,1)

with i.i.d. disturbances.

Assumption 5. The εni’s are i.i.d. with mean zero and variance σ2
0 and the moment E |εni|4+η for some

η > 0 exists.

Define Q̄n(φ) = minβ EQn(γ), then

Q̄n(φ) = (Xnβ0)′e(α−α0)W ′neτM
′
nHn(τ)eτMne(α−α0)WnXnβ0

+ σ2
0 tr(e−τ0M

′
ne(α−α0)W ′neτM

′
neτMne(α−α0)Wne−τ0Mn).

(17)

13The main purpose for Assumption 3 is to guarantee that uniform convergence of relevant objects is possible on a compact
parameter space.
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The identification of φ0 can be based on the minimum values of {Q̄n(φ)/n}. To ensure the identification

uniqueness, the following condition is assumed.

Assumption 6. Either (i) limn→∞ n−1(Xnβ0)′e(α−α0)W ′neτM
′
nHn(τ)eτMne(α−α0)WnXnβ0 6= 0 for any τ

and α 6= α0, and limn→∞ n−1 tr(e(τ−τ0)M ′ne(τ−τ0)Mn) > 1 for any τ 6= τ0, or

(ii) limn→∞ n−1 tr(e−τ0M
′
ne(α−α0)W ′neτM

′
neτMne(α−α0)Wne−τ0Mn) > 1 for any φ 6= φ0.

The identification of α0 can come from the first term on the r.h.s. of (17). As Hn(τ)eτMnXn = 0,

the first term at α0 is zero for any τ . Thus the first term is not sufficient to identify τ0. Given the

identification of α0, τ0 can be identified from the second term. As limn→∞ n−1X ′ne
τM ′neτMnXn is non-

singular, by the partition matrix formula, limn→∞ n−1(Xnβ0)′e(α−α0)W ′neτM
′
nHn(τ)eτMne(α−α0)WnXnβ0

is non-zero if and only if limn→∞ n−1(Xn, e
(α−α0)WnXnβ0)′eτM

′
neτMn(Xn, e

(α−α0)WnXnβ0) is nonsingular.

Thus, the first part of (i) in Assumption 6 relates to asymptotic non-multicollinearity of e(α−α0)WnXnβ0

with Xn. In the proof of Proposition 1, it is shown by the inequality of arithmetic and geometric means that

n−1 tr(e(τ−τ0)M ′ne(τ−τ0)Mn) ≥ 1 holds for any τ . The second part of (i) further requires n−1 tr(e(τ−τ0)M ′ne(τ−τ0)Mn)

to be strictly greater than 1 in the limit when τ 6= τ0. For a finite n, the arithmetic and geometric means

are equal if and only if all the eigenvalues of e(τ−τ0)M ′ne(τ−τ0)Mn are equal to each other, which implies

that e(τ−τ0)M ′ne(τ−τ0)Mn is proportional to In. This assumption rules out this possibility in the limit

whenever τ 6= τ0. The identification of φ0 can only come from the second term on the r.h.s. of (17),

which is given in (ii) of Assumption 6. This relates to the uniqueness of the VC matrix of yn, namely

σ2
0e
−α0Wne−τ0Mne−τ0M

′
ne−α0W

′
n , since

tr(e−τ0M
′
ne(α−α0)W ′neτM

′
neτMne(α−α0)Wne−τ0Mn)

= tr[e−α0Wne−τ0Mne−τ0M
′
ne−α0W

′
n(e−αWne−τMne−τM

′
ne−αW

′
n)−1].

It is obvious that Assumption 6 (i) fails to hold when β0 = 0. In this case, the identification will rely

solely on (ii). Another case of the failure of (i) even if β0 6= 0 occurs is when Xn contains only an intercept

term, i.e., Xn = ln, and Wn is row-normalized. In this case, Hn(τ)eτMn ln = 0. Other cases might be

due to very special structures on Wn or Mn. For example, elements of Wn and Mn except the diagonal

ones are all equal to a constant and Xn contains an intercept term. Let Wn = Mn = (n − 1)−1(lnl
′
n − In)

for instance. Then Hn(τ)eτMnW k
n = (−1)k(n − 1)−kHn(τ)eτMn . By the expansion form of e(α−α0)Wn ,

Hn(τ)eτMne(α−α0)WnXn = e(α0−α)/(n−1)Hn(τ)eτMnXn = 0. Thus the first part in (i) does not hold.

Furthermore, since the eigenvalues of Mn are (1−n)−1, . . . , (1−n)−1 and 1, it follows that Mk
n has eigenvalues
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(1− n)−k, . . . , (1− n)−k, 1. Hence, with this symmetric Mn,

1

n
tr(e(τ−τ0)M ′ne(τ−τ0)Mn) =

1

n
tr(e2(τ−τ0)Mn) =

1

n

∞∑
k=0

2k(τ − τ0)k tr(Mk
n)

k!

=
1

n

∞∑
k=0

2k(τ − τ0)k[1 + (n− 1)(1− n)−k]

k!

=
1

n
e2(τ−τ0) +

n− 1

n
e2(τ−τ0)/(1−n),

which is equal to 1 in the limit. Then the second part in (i) does not hold either. In this case, limn→∞
1
n Q̄n(φ)

is equal to σ2
0 for any φ. Looking into Qn(φ) directly, we have

Qn(φ) = e−2α/(n−1)y′ne
τM ′nHn(τ)eτMnyn,

which is monotonically decreasing in α. Then the QMLE of α will diverge to positive infinity, which is not

equal to α0.14

In general, (ii) in Assumption 6 would not hold as long as Wn and Mn are equal. When Mn = Wn,

tr(e−τ0M
′
ne(α−α0)W ′neτM

′
neτMne(α−α0)Wne−τ0Mn) = tr(e(α+τ−α0−τ0)W ′ne(α+τ−α0−τ0)Wn).

As long as α + τ = α0 + τ0, 1
n tr(e−τ0M

′
ne(α−α0)W ′neτM

′
neτMne(α−α0)Wne−τ0Mn) = 1. So for the case that

Mn = Wn, the parameter identification depends crucially on Assumption 6 (i). This situation is apparent

as the model becomes yn = e−α0WnXnβ0 + e−(α0+τ0)Wnεn. Thus, when there are no exogenous variables

and Wn = Mn in the MESS(1,1), α0 and τ0 cannot be identified.

With the identification uniqueness and uniform convergence of [Qn(φ)− Q̄n(φ)]/n to zero on the param-

eter space Φ, the consistency of the QMLE follows.

Proposition 1. Under Assumptions 1–6, the QMLE γ̂n of the MESS(1,1) is consistent.

The asymptotic distribution of γ̂n can be derived from applying a Taylor expansion to the first-order

condition ∂Qn(γ̂n)
∂γ = 0 at the true γ0:

∂Qn(γ̂n)

∂γ
= 0 =

∂Qn(γ0)

∂γ
+
∂2Qn(γ̃n)

∂γ∂γ′
(γ̂n − γ0),

14See Smith (2009) for a discussion of this special case in the SAR model.
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where γ̃n is between γ̂n and γ0. Thus

√
n(γ̂n − γ0) = −

( 1

n

∂2Qn(γ̃n)

∂γ∂γ′
)−1 1√

n

∂Qn(γ0)

∂γ
. (18)

Let Wn = eτ0MnWne
−τ0Mn and As = A + A′ for any square matrix A. Under some regularity conditions,

1
n
∂2Qn(γ̃n)
∂γ∂γ′ = Cn + oP (1), where

Cn = E
( 1

n

∂2Qn(γ0)

∂γ∂γ′
)

=
1

n


σ2

0 tr(Ws
nWs

n) + 2(Wne
τ0MnXnβ0)′(Wne

τ0MnXnβ0) ∗ ∗

σ2
0 tr(Ws

nM
s
n) σ2

0 tr(Ms
nM

s
n) ∗

−2(eτ0MnXn)′Wne
τ0MnXnβ0 0 2(eτ0MnXn)′(eτ0MnXn)

 .

As tr(AB) = vec′(A′) vec(B) for two conformable matrices A and B, where vec(·) denotes the vectorization

of a matrix, Cn may be written as Cn = 1
nC
′
1nC1n, where

C1n =

 σ0 vec(Ws
n) σ0 vec(Ms

n) 0
√

2Wne
τ0MnXnβ0 0 −

√
2eτ0MnXn

 . (19)

Thus Cn is positive semi-definite. The following assumption guarantees that Cn is nonsingular in the limit.

Assumption 7. limn→∞
1
n

(
(Wne

τ0MnXnβ0)′Hn(τ0)(Wne
τ0MnXnβ0)+

σ2
0

2 tr(Ms
nM

s
n)

(
tr(Ws

nWs
n) tr(Ms

nM
s
n)−

tr2(Ws
nM

s
n)
))
6= 0 and limn→∞

1
n tr(Ms

nM
s
n) 6= 0.

As Ms
nM

s
n in the above assumption is positive semi-definite but not a zero matrix, tr(Ms

nM
s
n) > 0.

Note that (Wne
τ0MnXnβ0)′Hn(τ0)(Wne

τ0MnXnβ0) ≥ 0, and tr(Ws
nWs

n) tr(Ms
nM

s
n) − tr2(Ws

nM
s
n) ≥ 0 by

the Cauchy-Schwarz inequality. The first-order derivatives of Qn(γ) at γ0 are

∂Qn(γ0)

∂α
= 2(Wne

τ0MnXnβ0)′εn + ε′nWs
nεn, (20)

∂Qn(γ0)

∂τ
= ε′nM

s
nεn, (21)

∂Qn(γ0)

∂β
= −2(eτ0MnXn)′εn, (22)

which have mean zero and are linear and quadratic functions of εn. Thus the central limit theorem for

linear-quadratic forms in Kelejian and Prucha (2001) is applicable. Let µ3 = E ε3ni, µ4 = E ε4ni, and vecD(A)
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be a vector containing the diagonal elements of the square matrix A. The VC matrix of 1√
n
∂Qn(γ0)
∂γ is

Ωn = E
( 1

n

∂Qn(γ0)

∂γ

∂Qn(γ0)

∂γ′

)
= 2σ2

0Cn + Ω1n, (23)

where

Ω1n =
1

n


(µ4 − 3σ4

0) vecD
′(Ws

n) vecD(Ws
n) + 4µ3(Wne

τ0MnXnβ0)′ vecD(Ws
n) 0 −2µ3 vecD

′(Ws
n)eτ0MnXn

0 0 0

−2µ3(eτ0MnXn)′ vecD(Ws
n) 0 0

 .

(24)

When εni’s are normal, µ3 = µ4 − 3σ4
0 = 0; when τ0 = 0 or Wn and Mn are commutative, vecD(Ws

n) =

vecD(W s
n) = 0 as Wn has a zero diagonal. These cases imply that Ω1n = 0 and Ωn simplifies to 2σ2

0Cn. As

Ωn is a VC matrix, it is positive semi-definite. We may also directly show that Ωn is positive semi-definite.

Note that E(ε2ni−σ2
0)2 E ε2ni ≥

(
E[(ε2ni−σ2

0)εni]
)2

, i.e. (µ4−σ4
0)σ2

0 ≥ µ2
3, by the Cauchy-Schwarz inequality.

In addition, tr(Diag(Ws
n) Diag(Ws

n)) = vecD
′(Ws

n) vecD(Ws
n), and tr(Diag(Ws

n)Ms
n) = 0 as Mn has a zero

diagonal, where Diag(A) for a square matrix A denotes a diagonal matrix whose diagonal is equal to that

of A. Then Ωn can be written as Ωn = 1
nΩ′2nΩ2n, where

Ω2n =

√2σ2
0 vec

(
Ws
n −Diag(Ws

n) +
√

σ2
0(µ4−σ4

0)−µ2
3

2σ6
0

Diag(Ws
n)
) √

2σ2
0 vec(Ms

n) 0

2σ0Wne
τ0MnXnβ0 + µ3

σ0
vecD(Ws

n) 0 −2σ0e
τ0MnXn

 .

Thus Ωn is positive semi-definite.

Proposition 2. Under Assumptions 1–7,
√
n(γ̂n − γ0)

d−→ N(0, limn→∞ C−1
n ΩnC

−1
n ). If εn ∼ N(0, σ2

0In);

τ0 = 0; or Wn and Mn are commutative, then
√
n(γ̂n − γ0)

d−→ N(0, 2σ2
0 limn→∞ C−1

n ).

When the disturbances εni’s are normal, the generalized information matrix equality holds, thus the

limiting distribution of the MLE γ̂n does not depend on moments of the disturbances higher than the

second order. Even when the disturbances εni’s are not normally distributed, if there is no MESS process

in the disturbances or the spatial weights matrices Mn and Wn are commutative, the limiting distribution

of the QMLE does not involve moments of the disturbances higher than the second order.

3.1.2. QMLE: Heteroskedastic Case when Wn and Mn are Commutative

When the disturbances εni’s are independent but may have different variances, the following assumption

is made about the disturbances.
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Assumption 8. The εni’s are independent (0, σ2
ni) and the moments E |εni|4+η for some η > 0 exist and

are uniformly bounded for all n and i.

As argued earlier, when Wn and Mn can commute, or τ0 = 0, the minimization of the function Qn(γ)

may yield a consistent estimator γ̂n of γ under unknown heteroskedasticity, since the first-order derivatives

of Qn(γ) at γ0 have zero expectation. In practice for some situations, one may use a single spatial weights

matrix Wn for both the main equation and the disturbance process. This case implies the commutative

property.

Assumption 9. Wn and Mn are commutative or τ0 = 0.

Define Q̄n(φ) = minβ EQn(γ). The identification of φ0 can be based on minimizers of {Q̄n(φ)}. Using

Assumption 9, we have Q̄n(φ) = Q̄1n(φ) + Q̄2n(φ), where

Q̄1n(φ) = (Xnβ0)′e(α−α0)W ′neτM
′
nHn(τ)eτMne(α−α0)WnXnβ0,

Q̄2n(φ) = tr(e(α−α0)W ′ne(τ−τ0)M ′ne(τ−τ0)Mne(α−α0)WnΣn).

It is obvious that Q̄1n(φ) ≥ 0 and Q̄1n(φ0) = 0. As Wn and Mn have zero diagonals and Σn is a diagonal

matrix, ∂Q̄2n(φ0)
∂α = tr[(W ′n + Wn)Σn] = 0 and ∂Q̄2n(φ0)

∂τ = tr[(M ′n + Mn)Σn] = 0. Thus φ0 is a stationary

point of Q̄2n(φ) and also Q̄n(φ). Using the commutative property of Wn and Mn, we have ∂2Q̄2n(φ)
∂α2 =

tr[Σ
1/2
n e(α−α0)W ′ne(τ−τ0)M ′n(W ′2n +W 2

n + 2W ′nWn)e(τ−τ0)Mne(α−α0)WnΣ
1/2
n ],

∂2Q̄2n(φ)

∂τ2
= tr[Σ1/2

n e(α−α0)W ′ne(τ−τ0)M ′n(M ′2n +M2
n + 2M ′nMn)e(τ−τ0)Mne(α−α0)WnΣ1/2

n ]

and

∂2Q̄2n(φ)

∂α∂τ
= 2 tr{Σ1/2

n e(α−α0)W ′ne(τ−τ0)M ′n [(W ′n +Wn)Mn]e(τ−τ0)Mne(α−α0)WnΣ1/2
n }

= tr{Σ1/2
n e(α−α0)W ′ne(τ−τ0)M ′n [(W ′n +Wn)Mn +M ′nWn +W ′nM

′
n]e(τ−τ0)Mne(α−α0)WnΣ1/2

n }.

If W ′nWn = WnW
′
n, then

∂2Q̄2n(φ)
∂α2 = tr[Σ

1/2
n e(α−α0)W ′ne(τ−τ0)M ′n(W ′n + Wn)2e(τ−τ0)Mne(α−α0)WnΣ

1/2
n ] ≥ 0; if M ′nMn = MnM

′
n, then

∂2Q̄2n(φ)
∂τ2 = tr[Σ

1/2
n e(α−α0)W ′ne(τ−τ0)M ′n(M ′n + Mn)2e(τ−τ0)Mne(α−α0)WnΣ

1/2
n ] ≥ 0; if M ′nWn = WnM

′
n, then

∂2Q̄2n(φ)
∂α∂τ = tr{Σ1/2

n e(α−α0)W ′ne(τ−τ0)M ′n(W ′n + Wn)(M ′n + Mn)e(τ−τ0)Mne(α−α0)WnΣ
1/2
n }. Thus, under the

conditions that W ′nWn = WnW
′
n, M ′nMn = MnM

′
n and M ′nWn = WnM

′
n, by the Cauchy-Schwarz inequality,

∂2Q̄2n(φ)
∂α2

∂2Q̄2n(φ)
∂τ2 ≥

(∂2Q̄2n(φ)
∂α∂τ

)2
. In this case, ∂2Q̄2n(φ)

∂φ∂φ′ is positive semi-definite and Q̄2n(φ) is a concave
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function. It follows that φ0 is a global minimizer of Q̄2n(φ) and Q̄n(φ). Hence, with some extra conditions

on Wn and Mn, it is possible that φ0 uniquely minimizes Q̄n(φ)/n in the limit.

It is also possible that φ0 is only a local minimizer of Q̄n(φ). For example, in the case that Wn = Mn,

∂2Q̄2n(φ0)
∂α2 = ∂2Q̄2n(φ0)

∂τ2 = ∂2Q̄2n(φ0)
∂α∂τ = tr[(W ′2n + W 2

n + 2W ′nWn)Σn], which is positive if elements of Wn are

non-negative. Then ∂2Q̄2n(φ0)
∂φ∂φ′ is positive semi-definite and Q̄2n(φ) is concave at φ0. Hence, φ0 is a local

minimizer of Q̄2n(φ) and Q̄n(φ). These considerations motivate the following identification condition.

Assumption 10. limn→∞
1
n [Q̄n(φ)− tr(Σn)] > 0 for any φ 6= φ0.

Proposition 3. Under Assumptions 1–4 and 8–10, the QMLE γ̂n is consistent for γ0.

Let

Dn =
1

n
E
(∂2Qn(γ0)

∂γ∂γ′

)

=
2

n


tr(W s

nWnΣn) + (Wne
τ0MnXnβ0)′(Wne

τ0MnXnβ0) ∗ ∗

tr(Ms
nWnΣn) tr(Ms

nMnΣn) ∗

−(eτ0MnXn)′Wne
τ0MnXnβ0 0 (eτ0MnXn)′(eτ0MnXn)

 ,

and

∆n =
1

n
E
(∂Qn(γ0)

∂γ

∂Qn(γ0)

∂γ′

)

=
2

n


tr(ΣnW

s
nΣnW

s
n) + 2(Wne

τ0MnXnβ0)′Σn(Wne
τ0MnXnβ0) ∗ ∗

tr(ΣnM
s
nΣnW

s
n) tr(ΣnM

s
nΣnM

s
n) ∗

−2(eτ0MnXn)′ΣnWne
τ0MnXnβ0 0 2(eτ0MnXn)′Σn(eτ0MnXn)

 .

Note that ∆n, being the VC matrix of a vector of linear-quadratic forms of disturbances, does not involve

higher than the second moments of disturbances, because Wn and Mn in the quadratic forms ε′nW
s
nεn and

ε′nM
s
nεn have zero diagonals (see Lee, 2007). We may write ∆n as ∆n = 1

n∆′1n∆1n, where

∆1n =

√2 vec(Σ
1/2
n W s

nΣ
1/2
n )

√
2 vec(Σ

1/2
n Ms

nΣ
1/2
n ) 0

2Σ
1/2
n Wne

τ0MnXnβ0 0 −2Σ
1/2
n eτ0MnXn

 ,

thus ∆n is positive semi-definite. To make sure that Dn is invertible for large enough n, we need the

following assumption.
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Assumption 11. limn→∞
1
n tr(Ms

nMnΣn) 6= 0 and limn→∞
1
n

(
(Wne

τ0MnXnβ0)′Hn(τ0)(Wne
τ0MnXnβ0) +

tr(W s
nWnΣn) tr(Ms

nMnΣn)−tr2(Ms
nWnΣn)

tr(Ms
nMnΣn)

)
6= 0.

When elements ofWn andMn are non-negative, tr(Ms
nMnΣn) > 0, tr(Ms

nWnΣn) ≥ 0 and tr(W s
nWnΣn) >

0, because Mn and Wn are not zero matrices and the diagonal elements of Σn are positive in general.

Proposition 4. Under Assumptions 1–4 and 8–11,
√
n(γ̂n − γ0)

d−→ N(0, limn→∞D−1
n ∆nD

−1
n ).

With the requirement of τ0 = 0 or commutativeness of Wn and Mn, in addition to the consistency, the

QMLE under unknown heteroskedasticity has an asymptotic distribution that does not involve higher than

the second moments of the disturbances, whether the disturbances are normal or not.

To make asymptotically valid inference using the QMLE γ̂n under unknown heteroskedasticity, we

need a consistent estimator for D−1
n ∆nD

−1
n . As in White (1980), we may have a consistent estimator

of D−1
n ∆nD

−1
n without being able to consistently estimate Σn, which has n unknown parameters. Let

Σ̂n = Diag(ε̂2n1, . . . , ε̂
2
nn), where ε̂n = (ε̂n1, . . . , ε̂nn)′ is the residual vector from the QML estimation. Con-

sistent estimators for Dn and ∆n can be, respectively, D̂n and ∆̂n, which are the matrices derived from

replacing Σn in Dn and Ωn by Σ̂n, and replacing γ0 by a consistent estimator γ̂n. The D̂n and ∆̂n can be

consistent because Dn and ∆n with fixed dimensions are estimated as whole terms.

Proposition 5. Under Assumptions 1–4 and 8–10, D̂n = Dn + oP (1) and ∆̂n = ∆n + oP (1).

3.2. GMME

We now consider the GMM estimation of the MESS(1,1). Let the moment vector be

gn(γ) =
1

n

(
ε′n(γ)Pn1εn(γ), . . . , ε′n(γ)Pn,kpεn(γ), ε′n(γ)Fn

)′
, (25)

where εn(γ) = eτMn(eαWnyn − Xnβ), the n-dimensional square matrices Pni’s for the quadratic moments

have zero traces when εni’s are i.i.d. and have zero diagonals when εni’s are independent but with different

variances, and the n × kf instrumental variable matrix Fn used in the 2SLS approach can consist of the

independent columns of Xn, WnXn, MnXn, W 2
nXn, M2

nXn and so on.15 The GMM objective function with

the weighting matrix ana
′
n is g′n(γ)ana

′
ngn(γ), where the full column rank (kp + kf ) × ka matrix an with

ka ≥ k + 2 converges to a full rank matrix a0 by design.

15For α and β, we may use only the linear instrument Fn and implement a 2SLS estimation, for which the objective function

is (eαWnyn−Xnβ)′Fn(F ′nFn)−1F ′n(eαWnyn−Xnβ) or (eαWnyn−Xnβ)′eτ̂nM
′
nFn(F ′nFn)−1F ′ne

τ̂nMn (eαWnyn−Xnβ) when
taking into account the MESS process in the disturbances, where τ̂n is an initial consistent estimator of τ . This is a nonlinear
2SLS that does not have a closed-form solution. Thus it does not have a computational advantage as the traditional 2SLS and
we do not discuss it separately.
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3.2.1. GMME: Homoskedastic Case

When the disturbances are i.i.d., the GMME can be consistent when the matrices Pni’s have zero traces

but not necessarily zero diagonals. The Pni’s are constructed from Wn and Mn, thus we may assume that

Pni’s are bounded in row and column sum norms.

Assumption 12. The n-dimensional square matrices Pn1, . . . , Pn,kp have zero traces and are bounded in

both row and column sum norms. Elements of Fn are uniformly bounded constants.

For any γ,

E[ε′n(γ)Pniεn(γ)] = (e(α−α0)WnXnβ0 −Xnβ)′eτM
′
nPnie

τMn(e(α−α0)WnXnβ0 −Xnβ)

+ σ2
0 tr(e−τ0M

′
ne(α−α0)W ′neτM

′
nPnie

τMne(α−α0)Wne−τ0Mn),

(26)

E[F ′nεn(γ)] = F ′ne
τMn(e(α−α0)WnXnβ0 −Xnβ). (27)

The identification of γ0 requires the unique solution of the limiting equations limn→∞ E gn(γ) = 0 at γ0.

When α = α0 and β = β0, E[F ′nεn(γ)] = 0 whatever τ is. Thus τ cannot be identified from the linear

moments E[F ′nεn(γ)] = 0, because it only plays a role as weighting. It is possible that α0 and β0 may be

identified from E[F ′nεn(γ)] = 0, and τ0 be identified from the quadratic moments E[ε′n(γ)Pniεn(γ)] = 0,

i = 1, . . . , kp. Let Fn = (F1n, F2n) such that limn→∞
1
nF
′
2ne

τMnXn is nonsingular for any τ ∈ [−δ, δ], which

is a part of a rank condition for valid IV’s. The E[F ′nεn(γ)] = 0 is equivalent to

F ′1ne
τMn(e(α−α0)WnXnβ0 −Xnβ) = 0, (28)

F ′2ne
τMn(e(α−α0)WnXnβ0 −Xnβ) = 0. (29)

From (29), we have β = (F ′2ne
τMnXn)−1F ′2ne

τMne(α−α0)WnXnβ0. With substitution, (28) becomes

F ′1nH1n(τ)eτMne(α−α0)WnXnβ0 = 0,

where H1n(τ) = In−eτMnXn(F ′2ne
τMnXn)−1F ′2n. It is apparent that when α = α0, F ′1nH1n(τ)eτMnXnβ0 =

0. So we just want to rule out the possibility that F ′1nH1n(τ)eτMneηWnXnβ0 = 0 for some η 6= 0. When

α = α0 and β = β0, (26) becomes σ2
0 tr(e(τ−τ0)M ′nPnie

(τ−τ0)Mn) = 0. Then for the identification of τ0, it

requires some matrix Pni such that limn→∞
1
n tr(e(τ−τ0)M ′nPnie

(τ−τ0)Mn) 6= 0 when τ 6= τ0. We thus make

the following identification assumption.
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Assumption 13. limn→∞
1
n [tr(e(τ−τ0)M ′nPn1e

(τ−τ0)Mn), . . . , tr(e(τ−τ0)M ′nPn,kpe
(τ−τ0)Mn)] 6= 0 for any τ 6=

τ0, and Fn may be written as Fn = (F1n, F2n) such that limn→∞
1
nF
′
2ne

τMnXn is nonsingular for any

τ ∈ [−δ, δ], and limn→∞
1
nF
′
1nH1n(τ)eτMneηWnXnβ0 6= 0 for any η 6= 0 and τ ∈ [−δ, δ].

As usual for nonlinear extremum estimators, we assume the compactness of the parameter space of γ

(Amemiya, 1985).

Assumption 14. The parameter space Γ of γ is compact and the true γ0 is in the interior of Γ.

Proposition 6. Under Assumptions 1, 2, 5 and 12–14, the GMM estimator γ̂n from the minimization of

g′n(γ)ana
′
ngn(γ) is a consistent estimator of γ0, and

√
n(γ̂n − γ0)

d−→ N
(
0, lim
n→∞

(G′nana
′
nGn)−1G′nana

′
nVnana

′
nGn(G′nana

′
nGn)−1

)
,

where

Vn = nE[gn(γ0)g′n(γ0)] =
1

n

σ4
0

2 ω
′
nωn + 1

4 (µ4 − 3σ4
0)ω′ndωnd

1
2µ3ω

′
ndFn

1
2µ3F

′
nωnd σ2

0F
′
nFn

 ,

and

Gn = E
∂gn(γ0)

∂γ′
=

1

n

 σ2
0

2 ω
′
n vec(Ws

n)
σ2
0

2 ω
′
n vec(Ms

n) 0

F ′nWne
τ0MnXnβ0 0 −F ′neτ0MnXn

 ,

with ωn =
(
vec(P sn1), . . . , vec(P sn,kp)

)
and ωnd =

(
vecD(P sn1), . . . , vecD(P sn,kp)

)
, under the condition that

limn→∞ a′nGn exists and has the full rank k + 2.

Within the GMM framework, with moments gn(γ), an optimum GMM will use V −1
n as the optimum

weighting in place of ana
′
n. The variance matrix Vn of gn(γ0) in the preceding proposition can be put into

a more informative form as a positive semi-definite matrix. Let ω#
n = (vec(P#s

n1 ), . . . , vec(P#s
n,kp

)), where

P#s
ni = 1

2

√
µ4 − σ4

0 −
µ2
3

σ2
0

Diag(P sni) +
√

2σ2
0

2 [P sni −Diag(P sni)], then

Vn =
1

n

 ω#
n 0

µ3

2σ0
ωnd σ0Fn


′ ω#

n 0

µ3

2σ0
ωnd σ0Fn

 .

Thus Vn is positive semi-definite. We require the non-singularity of Vn to formulate the feasible optimal

GMM, which is guaranteed by the following assumption.

Assumption 15. The limits of 1
nF
′
nFn and

σ4
0

2n (ω′nωn−ω′ndωnd)+ 1
4n (µ4−σ2

0−
µ2
3

σ2
0
)ω′ndωnd+

µ2
3

4nσ2
0
ω′ndHFn

ωnd

exist and are nonsingular, where HFn
= In − Fn(F ′nFn)−1F ′n.
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Note that ω′nωn−ω′ndωnd =
(
vec(P#s

n1 −Diag(P#s
n1 )), . . . , vec(P#s

n,kp
−Diag(P#s

n,kp
))
)′(

vec(P#s
n1 −Diag(P#s

n1 )),

. . . , vec(P#s
n,kp
−Diag(P#s

n,kp
))
)
≥ 0. When limn→∞

1
nF
′
nFn is nonsingular, the above assumption is satisfied

as long as one of the terms limn→∞
1
n (ω′nωn − ω′ndωnd), limn→∞

1
nω
′
ndωnd, and limn→∞

µ2
3

n ω
′
ndHFn

ωnd is

nonsingular. A consistent estimator V̂n for Vn may be obtained from replacing the σ2
0 , µ3 and µ4 in Vn by

their consistent estimators.

Proposition 7. Under Assumptions 1, 2, 5 and 12–15, the feasible optimal GMME γ̂n,o from the mini-

mization of g′n(γ)V̂ −1
n gn(γ) is a consistent estimator of γ0, and

√
n(γ̂n,o − γ0)

d−→ N
(
0, lim
n→∞

(G′nV
−1
n Gn)−1

)
.

As the selections of linear and quadratic moments via Fn and Pni’s are many, there is an issue on the

best design on those matrices. We shall show the existence of a best GMME within the class of GMMEs

with linear and quadratic moments, in the sense that it has the smallest VC matrix. For that purpose,

we follow Breusch et al. (1999) to show that additional linear and quadratic moments are redundant given

properly selected ones.16 If eτ0MnXn contains an intercept term due to the presence of an intercept term in

Xn, let X∗n be the submatrix of Xn with the intercept term deleted, so that eτ0MnXn = [eτ0MnX∗n, c(τ0)ln],

where c(τ0) is a scalar function of τ0.17 Otherwise, X∗n = Xn and eτ0MnX∗n = eτ0MnXn. Suppose that there

are k∗ columns in X∗n. Let X∗nl be the lth column of X∗n, η3 = µ3σ
−3
0 and η4 = µ4σ

−4
0 be the skewness and

kurtosis of the disturbances. Furthermore, let A
(t)
n = An − In tr(An)/n for any n × n matrix An, which is

the matrix An with its trace subtracted out from is diagonal. Thus A
(t)
n has zero trace.

Proposition 8. Suppose that Assumptions 1, 2, 5, and 12–15 hold. Let

g∗n(γ) =
1

n
(P ∗n1ε(γ), . . . , P ∗n,k∗+4ε(γ), F ∗n)′ε(γ),

where P ∗n1 = Wn, P ∗n2 = Diag(Wn), P ∗n3 = Diag(eτ0MnWnXnβ0)(t), P ∗n4 = Mn, P ∗n,l+4 = Diag(eτ0MnX∗nl)
(t)

for l = 1, . . . , k∗, and F ∗n = (F ∗n1, F
∗
n2, F

∗
n3, F

∗
n4) with F ∗n1 = eτ0MnX∗n, F ∗n2 = eτ0MnWnXnβ0, F ∗n3 = ln, and

F ∗n4 = vecD(Wn). Denote V ∗n = nE[g∗n(γ0)g∗
′

n (γ0)]. Then γ̂∗n = minγ g
∗′
n (γ)V ∗−1

n g∗n(γ) is the best GMME

within the class of GMMEs with linear and quadratic moments, and γ̂∗n has the asymptotic distribution that

√
n(γ̂∗n − γ0)

d−→ N
(
0, lim
n→∞

Λ∗−1
n

)
,

16This pursuit is motivated by that in Liu et al. (2010).
17If Mn is row-normalized and Xn contains an intercept term, eτ0Mn ln =

∑∞
j=0

1
j!
τ j0M

j
nln = eτ0 ln. In this case, c(τ0) = eτ0 .

Otherwise eτ0MnXn generally does not contain an intercept term.
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where Λ∗n = G∗
′

n V
∗−1
n G∗n with G∗n = E

∂g∗n(γ0)
∂γ′ .

The detailed proof of this proposition is in Appendix C. From the proof, Λ∗n has the following expression

Λ∗n =
1

n


tr(P ∗sαnWn) + σ−2

0 (eτ0MnWnXnβ0)′F ∗αn ∗ ∗

tr(P ∗sτnWn) tr(P ∗sτnMn) ∗

−σ−2
0 (eτ0MnXn)′F ∗αn 0 σ−2

0 (eτ0MnXn)′F ∗βn

 , (30)

where P ∗αn = P ∗n1 −
(η4−3)−η23
(η4−1)−η23

P ∗n2 −
σ−1
0 η3

(η4−1)−η23
P ∗n3, P ∗τn = Mn, P ∗βnl = P ∗n,l+4 for l = 1, . . . , k∗, F ∗αn =

η4−1
(η4−1)−η23

F ∗n2 −
η23

(η4−1)−η23
F ∗n3( 1

n l
′
ne
τ0MnWnXnβ0)− 2σ0η3

(η4−1)−η23
F ∗n4,

F ∗βn =
η4 − 1

(η4 − 1)− η2
3

F ∗n1 −
η2

3

(η4 − 1)− η2
3

F ∗n3(
1

n
l′ne

τ0MnX∗n)

if eτ0MnXn does not contain an intercept term; otherwise

F ∗βn =
η4 − 1

(η4 − 1)− η2
3

F ∗n1(Ik∗ , 0k∗×1) +
η4 − 1

(η4 − 1)− η2
3

c(τ0)F ∗n3e
′
kk −

η2
3

(η4 − 1)− η2
3

F ∗n3(
1

n
l′ne

τ0MnXn),

where ekj is the jth unit vector in Rk. From the proof, the best moments in Proposition 8 are equivalent

to the use of the following moments

1

n

(
P ∗αnεn(γ), P ∗τnεn(γ), P ∗βn1εn(γ) . . . , P ∗βnk∗εn(γ), F ∗αn, F

∗
βn

)′
εn(γ).

The above vector relates the moments to the skewness and kurtosis.

In the case of normal disturbances, as η3 = η4 − 3 = 0, the best moments can be simplified and are

equivalent to

1

n

(
Wnεn(γ),Mnεn(γ), P ∗βn1εn(γ) . . . , P ∗βnk∗εn(γ), eτ0MnWnXnβ0, e

τ0MnXn

)′
εn(γ).

Furthermore, the moments
(
P ∗βn1εn(γ) . . . , P ∗βnk∗εn(γ)

)′
εn(γ) can be shown to be redundant given

g#
n (γ) =

1

n

(
Wnεn(γ),Mnεn(γ), eτ0MnWnXnβ0, e

τ0MnXn

)′
εn(γ), (31)

by an argument similar to the proof of Proposition 8. This result can also be shown by using the generalized

Cauchy-Schwarz inequality, as in subsequent section.
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The Gn in Proposition 7 can be written as

Gn =
1

nσ2
0


√

2σ2
0

2 ωn 0

0 σ0Fn


′

G1n,

where

G1n =


√

2σ2
0

2 vec(Ws
n)

√
2σ2

0

2 vec(Ms
n) 0

σ0Wne
τ0MnXnβ0 0 −σ0e

τ0MnXn



=


√

2σ2
0

2 vec(Ws
n)

√
2σ2

0

2 vec(Ms
n) 0 0

0 0 σ0Wne
τ0MnXnβ0 σ0e

τ0MnXn




1 0 0

0 1 0

1 0 0

0 0 −Ik


.

(32)

When εni’s are normal, µ3 = µ4 − 3σ4
0 = 0. Furthermore, even under non-normal disturbances, if

Pn1, ..., Pn,kp are chosen to have zero diagonal, then ωnd = 0. For those cases, Vn in Proposition 7 re-

duces to

Vn =
1

n

σ4
0

2 ω
′
nωn 0

0 σ2
0F
′
nFn

 =
1

n


√

2σ2
0

2 ωn 0

0 σ0Fn


′
√

2σ2
0

2 ωn 0

0 σ0Fn

 .

Thus for those cases, G′nV
−1
n Gn ≤ Λn by the generalized Cauchy-Schwarz inequality, where Λn = 1

nσ4
0
G′1nG1n.

As Wn and Mn both have zero traces, when the moment vector is g#
n (γ) in (31), G′nV

−1
n Gn = Λn. Thus

the best moment vector is g#
n (γ) in (31) when εni’s are normal. When τ0 = 0 or Wn and Mn can com-

mute, Wn = Wn has a zero diagonal; and the best moment vector, with the restriction that Pni’s have zero

diagonals, is18

g#
n,d(γ) =

1

n

(
Wnεn(γ),Mnεn(γ), eτ0MnWnXnβ0, e

τ0MnXn

)′
εn(γ). (33)

By comparing (32) and (19), the asymptotic VC matrix Λ−1
n for the best GMME in the case of normal

disturbances is the same as that for the MLE of γ. It is of interest to note that, for the case with non-normal

disturbances, when τ0 = 0, or Wn and Mn can commute, the QMLE of γ happens to be asymptotically

efficient within the class of GMMEs with linear and quadratic moments where the quadratic matrices Pni’s

have zero diagonals.

18When τ0 = 0 or Wn = Mn, the moment 1
n
ε′n(γ)Mnεn(γ) should be deleted.
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Corollary 1. Suppose that Assumptions 1, 2, 5 and 12–15 hold.

(i) When the disturbances εni’s are normal, for the class of GMMEs with linear and quadratic moments

where the quadratic matrices Pni’s have zero traces, the best GMME is the optimal GMME with the

moment vector g#
n (γ) in (31);

(ii) When τ0 = 0, or Wn and Mn can commute, for the class of GMMEs with linear and quadratic moments

where the quadratic matrices Pni’s have zero diagonals, the best GMME is the optimal GMME with

the moment vector g#
n,d(γ) in (33).

The best moments in the case of normal disturbances are of interest to be compared with those for the

SARAR model. For the latter model, the best instruments are Rn[Xn,WnS
−1
n Xnβ0] and the matrices for

the best quadratic moments are RnWnS
−1
n R−1

n − In tr(WnS
−1
n )/n and MnR

−1
n − In tr(MnR

−1
n )/n, where

Rn = In − ρ0Mn and Sn = In − λ0Wn. Thus, in addition to Xn and WnXn, higher order spatially

lagged Xn, i.e., W 2
nXn, W 3

nXn, etc., will provide additional information. For the quadratic moments,

spatial weights matrices of higher order, namely, W 2
n , W 3

n , etc., from which the average of their diagonal

elements is subtracted from each diagonal element, can be used as additional orthogonal conditions. On

the other hand, the best instruments and quadratic moments for the MESS(1,1) rely simply on spatial

weights matrices of the first order, i.e., Wn and Mn. Note also that when there is no MESS process in

the disturbances, the moment vector for the best GMME in the case of normal disturbances can be simply

taken as 1
n [ε′n(γ)Wnεn(γ), ε′n(γ)(WnXn, Xn)IN ]′, where (WnXn, Xn)IN denotes the independent columns of

(WnXn, Xn).19 Thus it has a simple form which does not involve any unknown parameter. By contrast,

the moment vector for the best optimal GMME of the SAR model can be taken as 1
n [ε′n(γ)(WnS

−1
n −

In tr(WnS
−1
n )/n)εn(γ), ε′n(γ)(WnS

−1
n Xn, Xn)IN ]′, which involves the unknown parameter λ0 in the matrix

inverse S−1
n .

There exists a link between the MLE (or QMLE) and moment conditions. The first order conditions for

the MLE using the function Qn(γ) can be written as

∂Qn(γ)

∂α
= 2(eτMnWnXnβ)′εn(γ) + 2ε′n(γ)eτMnWne

−τMnεn(γ), (34)

∂Qn(γ)

∂τ
= 2ε′n(γ)Mnεn(γ), (35)

∂Qn(γ)

∂β
= −2(eτMnXn)′εn(γ). (36)

19If Wn is row normalized and Xn contains an intercept, as Wnln = ln, only one of the two intercepts should be included in
(WnXn, Xn).
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Thus the underlying moments integrated by the MLE are also the linear moments with instruments from

eτ0MnXn and eτ0MnWnXn, and the quadratic moments with the matrices Wn and Mn. The matrix eτ0Mn

in front of Xn and WnXn is a transformation for the MESS disturbances. When the likelihood function

is correctly specified under the normal disturbances, the combinations of linear and quadratic moments in

(34)–(36) are the efficient ones. But they might not be so when the likelihood function is only a quasi

one. The optimal GMME employs an optimal weighting matrix when using the moments g#
n (γ), but the

QMLE might not. Thus a best GMME within the class of linear and quadratic moments can be more

efficient asymptotically than the QMLE when the disturbances are non-normal, τ0 6= 0 or Wn and Mn

cannot commute. This can be shown analytically. Let

hn(γ) =
2

n

(
(eτ0MnWnXnβ0)′εn(γ) + ε′n(γ)Wnεn(γ), ε′n(γ)Mnεn(γ),−ε′n(γ)eτ0MnXn

)′
= Ag#

n (γ),

where

A = 2


1 0 1 0

0 1 0 0

0 0 0 −Ik

 . (37)

The hn(γ) and 1
n
∂Qn(γ)
∂γ have a similar structure: replacing τ0 in the components eτ0MnWnXnβ0 and eτ0MnXn

in hn(γ) by τ yields 1
n
∂Qn(γ)
∂γ . It is obvious that E ∂hn(γ0)

∂γ′ = 1
n E
(∂2Qn(γ0)

∂γ∂γ′

)
and E

(
nhn(γ0)h′n(γ0)

)
=

1
n E
(∂Qn(γ0)

∂γ
∂Qn(γ0)
∂γ′

)
. Thus, by Proposition 4, the asymptotic VC matrix for the QMLE of γ is equal to

limn→∞
(
E ∂hn(γ0)

∂γ′

)−1
E
(
nhn(γ0)h′n(γ0)

)(
E ∂hn(γ0)

∂γ

)−1
. Therefore,

(
E
∂hn(γ0)

∂γ′

)−1

E
(
hn(γ0)h′n(γ0)

)(
E
∂h′n(γ0)

∂γ

)−1

=
[(

E
∂h′n(γ0)

∂γ

)[
E
(
hn(γ0)h′n(γ0)

)]−1
(

E
∂hn(γ0)

∂γ′

)]−1

=
[
G#′

n (γ0)A′
[
AE

(
g#
n (γ0)g#′

n (γ0)
)
A′
]−1

AG#
n (γ0)

]−1

≥
[
G#′

n (γ0)
[
E
(
g#
n (γ0)g#′

n (γ0)
)]−1

G#
n (γ0)

]−1

,

(38)

by the generalized Cauchy-Schwarz inequality, where G#
n (γ0) = E

∂g#n (γ0)
∂γ′ . The last term above is the

asymptotic VC matrix of the feasible optimal GMME with the moment vector g#
n (γ). The inequality in

(38) becomes an equality if there is a matrix ∆gh such that G#
n (γ0) = E

(
g#
n (γ0)g#′

n (γ0)
)
A′∆gh. From
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Proposition 6, we have

G#
n (γ0) =

1

n


σ2

0 tr(Ws
nWn) σ2

0 tr(Ws
nMn) 0

σ2
0 tr(Ms

nWn) σ2
0 tr(Ms

nMn) 0

(eτ0MnWnXnβ0, e
τ0MnXn)′eτ0MnWnXnβ0 0 −(eτ0MnWnXnβ0, e

τ0MnXn)′eτ0MnXn


and

E
(
g#
n (γ0)g#′

n (γ0)
)
A′ =

2σ2
0

n
G#
n +

2

n2


(µ4 − 3σ4

0) vecD
′(Wn) vecD(Wn) + µ3 vecD

′(Wn)eτ0MnWnXnβ0 0 −µ3 vecD
′(Wn)eτ0MnXn

0 0 0

µ3(eτ0MnWnXnβ0, e
τ0MnXn)′ vecD(Wn) 0 0

 .

When τ0 = 0; Wn and Mn can commute; or µ3 = µ4 − 3σ4
0 = 0, we have ∆gh = n

2σ2
0
Ik+2. Except for those

cases, ∆gh may not exist. As g#
n (γ) in (31) is only a special case of linear and quadratic moments, the best

GMME in Proposition 8 can be more efficient asymptotically than the QMLE.

The best moment vector g∗n(γ) and the optimal weighting matrix V ∗−1
n involve unknown parameters.

In practice, g∗n(γ) and V ∗−1
n can be estimated using initial consistent estimates and a feasible best GMME

can be derived. The following proposition shows that such a feasible best GMME has the same asymptotic

distribution as the best GMME in Proposition 8.

Proposition 9. Suppose that Assumptions 1, 2, 5 and 12–15 hold. Let γ̂n, σ̂2
n, µ̂3n and µ̂4n be, respec-

tively,
√
n-consistent estimators of γ0, σ2

0, µ3 and µ4. The P̂ ∗n1, . . . , P̂ ∗n,k∗+4, F̂ ∗n , F̂ ∗1n, . . . , F̂ ∗n4 and

V̂ ∗n denote the matrices derived when the unknown parameters in P ∗n1, . . . , P ∗n,k∗+4, F ∗n , F ∗1n, . . . , F ∗n4

and V ∗n are replaced by the corresponding consistent estimators. Then the feasible best GMME γ̂∗n,f =

minγ ĝ
∗′
n (γ)V̂ ∗−1

n ĝ∗n(γ), where ĝ∗n(γ) = 1
n (P̂ ∗n1ε(γ), . . . , P̂ ∗n,k∗+4ε(γ), F̂ ∗n)′ε(γ), has the same asymptotic distri-

bution as γ̂∗n = minγ g
∗′
n (γ)V ∗−1

n g∗n(γ).

3.2.2. GMME: Heteroskedastic Case

When the disturbances are independent but may have different variances, the GMME can be consistent

when the matrices Pni’s have zero diagonals.

Assumption 16. The n-dimensional square matrices Pn1, . . . , Pn,kp have zero diagonals and are bounded

in both row and column sum norms. Elements of Fn are uniformly bounded constants.
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By taking into account variances of disturbances, the identification condition is similarly derived as that

in the homoskedastic case.

Assumption 17. limn→∞
1
n [tr(e(τ−τ0)M ′nPn1e

(τ−τ0)MnΣn), . . . , tr(e(τ−τ0)M ′nPn,kpe
(τ−τ0)MnΣn)] 6= 0 for any

τ 6= τ0, and Fn may be written as Fn = (F1n, F2n) such that limn→∞
1
nF
′
2ne

τMnXn is nonsingular for any

τ ∈ [−δ, δ], and limn→∞
1
nF
′
1nH1n(τ)eτMneηWnXnβ0 6= 0 for any η 6= 0 and τ ∈ [−δ, δ].

Proposition 10. Under Assumptions 1, 2, 8, 14, 16 and 17, the GMM estimator γ̂n from the minimization

of g′n(γ)ana
′
ngn(γ) is a consistent estimator of γ0, and

√
n(γ̂n − γ0)

d−→ N
(
0, lim
n→∞

(G′nana
′
nGn)−1G′nana

′
nVnana

′
nGn(G′nana

′
nGn)−1

)
,

where

Vn = nE[gn(γ0)g′n(γ0)] =
1

n

 1
2ω
′
nωn 0

0 F ′nΣnFn

 ,

and

Gn = E
∂gn(γ0)

∂γ′
=

1

n

 1
2ω
′
n vec(Σ

1/2
n (Σ−1

n Wn)sΣ
1/2
n ) 1

2ω
′
n vec(Σ

1/2
n (Σ−1

n Mn)sΣ
1/2
n ) 0

F ′nWne
τ0MnXnβ0 0 −F ′neτ0MnXn

 ,

with ωn =
(
vec(Σ

1/2
n P sn1Σ

1/2
n ), . . . , vec(Σ

1/2
n P sn,kpΣ

1/2
n )

)
, under the condition that limn→∞ a′nGn exists and

has the full rank k + 2.

The Vn does not involve the third and fourth moments of the disturbances, as the matrices in the

quadratic forms of disturbances in gn(γ0) have zero diagonals. An optimal GMME can also be formulated.

Assumption 18. The limits of 1
nω
′
nωn and 1

nF
′
nΣnFn exist and are nonsingular.

A consistent estimator for Vn is the matrix V̂n derived by replacing the Σn in Vn by Σ̂n = Diag(ε̂2n1, . . . , ε̂
2
nn),

where ε̂ni’s are the residuals from an initial GMM estimation. Under Assumption 18, the limiting inverse

of Vn exists. Then the objective function for the feasible optimal GMME is g′n(γ)V̂ −1
n gn(γ).

Proposition 11. Under Assumptions 1, 2, 8, 14 and 16–18, the feasible optimal GMME γ̂n,o from the

minimization of g′n(γ)V̂ −1
n gn(γ) is a consistent estimator of γ0, and

√
n(γ̂n,o − γ0)

d−→ N
(
0, lim
n→∞

(G′nV
−1
n Gn)−1

)
.
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Note that tr
(
ΣnP

s
niΣn(Σ−1

n Wn)s
)

= tr
(
ΣnP

s
niΣn

(
Σ−1
n (Wn − Diag(Wn))

)s)
as P sni has a zero diagonal

and Σn is a diagonal matrix, then Gn may be written as

Gn =
1

n


√

2
2 ωn 0

0 Σ
1/2
n Fn


′

G1n,

where

G1n =


√

2
2 vec

(
Σ

1/2
n

(
Σ−1
n (Wn −Diag(Wn))

)s
Σ

1/2
n

) √
2

2 vec(Σ
1/2
n (Σ−1

n Mn)sΣ
1/2
n ) 0

Σ
−1/2
n Wne

τ0MnXnβ0 0 −Σ
−1/2
n eτ0MnXn

 .

Thus G′nV
−1
n Gn ≤ Λn by the generalized Cauchy-Schwarz inequality, where Λn = 1

nG
′
1nG1n. When the

moment vector gn(γ) is equal to g∗n(γ) = 1
n

[
ε′n(γ)Σ−1

n (Wn − Diag(Wn))εn(γ), ε′n(γ)Σ−1
n Mnεn(γ), ε′n(γ)F ∗n

]′
with F ∗n = Σ−1

n [Wne
τ0MnXnβ0, e

τ0MnXn], G′nV
−1
n Gn = Λn. Therefore, if the variances σ2

ni’s can be con-

sistently estimated, e.g., when we have a parametric model for the variances, then we may have a feasi-

ble best optimal GMME.20 Let γ̂n be an initial consistent estimator of γ0, Ŵn = eτ̂nMnWne
−τ̂nMn and

F̂ ∗n = Σ̂−1
n [Ŵne

τ̂nMnXnβ̂n, e
τ̂nMnXn] with Σ̂n being a diagonal matrix containing consistent estimators for

the variances. Then the objective function for the feasible best optimal GMME is ĝ∗
′

n (γ)V̂ ∗−1
n ĝ∗n(γ), where

ĝ∗n(γ) = 1
n (ε′n(γ)Σ̂−1

n (Ŵn −Diag(Ŵn))εn(γ), ε′n(γ)Σ̂−1
n Mnεn(γ), ε′n(γ)F̂ ∗n)′ and

V̂ ∗n =
1

n


1
2 tr
[
Σ̂n
(
Σ̂−1
n

(
Ŵn −Diag(Ŵn)

))s
Σ̂n(Σ̂−1

n Ŵn)s
]

1
2 tr
[
Σ̂n(Σ̂−1

n Ŵn)sΣ̂n(Σ̂−1
n Mn)s

]
0

1
2 tr
[
Σ̂n(Σ̂−1

n Ŵn)sΣ̂n(Σ̂−1
n Mn)s

]
1
2 tr
[
Σ̂n(Σ̂−1

n Mn)sΣ̂n(Σ̂−1
n Mn)s

]
0

0 0 F̂ ∗
′

n Σ̂nF̂
∗
n

 .

If the elements of Σn cannot be consistently estimated, we do not have a feasible best GMME, e.g., for

the unknown heteroskedastic case, Σn with n parameters cannot be consistently estimated. However, we

may use the moment vector

ĝ#
n,d(γ) =

1

n
[ε′n(γ)(Ŵn −Diag(Ŵn))εn(γ), ε′n(γ)Mnεn(γ), ε′n(γ)[Ŵne

τ̂nMnXnβ̂, e
τ̂nMnXn]]′,

20For the SARAR model with heteroskedasticity, we have also found that the best instruments are Σ−1
n Rn[Xn,WnS

−1
n Xnβ0]

and the matrices for the quadratic moments are Σ−1
n [RnWnS

−1
n R−1

n − Diag(RnWnS
−1
n R−1

n )] and Σ−1
n [MnR

−1
n −

Diag(MnR
−1
n )]. For the SAR model with heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME

by the generalized Cauchy-Schwarz inequality as above.
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and implement a feasible optimal GMM estimation. A special case of interest is when τ0 = 0 or Wn and

Mn can commute, and the QMLE can be consistent. In that case, ĝ#
n,d(γ) reduces to

ĝ#
n,d(γ) =

1

n
[ε′n(γ)Wnεn(γ), ε′n(γ)Mnεn(γ), ε′n(γ)[Wne

τ̂nMnXnβ̂n, e
τ̂nMnXn]]′. (39)

It can be shown, as for the proof of Proposition 9, that the optimal GMME using the moment vector

ĝ#
n,d(γ) has the same asymptotic distribution as that using the moment vector g#

n,d(γ) in (33). As shown in

(34)–(36), the QMLE also integrates those moments in g#
n,d(γ). But the optimal GMME using the moment

vector g#
n,d(γ) is at least as efficient as the QMLE and can be more efficient than the QMLE asymptotically,

according to (38). For the QMLE to be as efficient as the optimal GMME, there must exist a matrix ∆gh

such that G#
n,d(γ0) = E

(
g#
n,d(γ0)g#′

n,d(γ0)
)
A′∆gh, where G#

n,d(γ0) = E
∂g#n,d(γ0)

∂γ′ and the matrix A is given in

(37). From Proposition 11, we have

G#
n,d(γ0) =

1

n


tr(ΣnW

s
nWn) tr(ΣnW

s
nMn) 0

tr(ΣnM
s
nWn) tr(ΣnM

s
nMn) 0

(eτ0MnWnXnβ0, e
τ0MnXn)′eτ0MnWnXnβ0 0 −(eτ0MnWnXnβ0, e

τ0MnXn)′eτ0MnXn

 ,

and

E
(
g#
n,d(γ0)g#′

n,d(γ0)
)
A′

=
1

n2


tr(ΣnW

s
nΣnW

s
n) tr(ΣnW

s
nΣnM

s
n) 0

tr(ΣnM
s
nΣnW

s
n) tr(ΣnM

s
nΣnM

s
n) 0

2(eτ0MnWnXnβ0, e
τ0MnXn)′Σne

τ0MnWnXnβ0 0 −2(eτ0MnWnXnβ0, e
τ0MnXn)′Σne

τ0MnXn

 .

Thus, under unknown heteroskedasticity, generally there does not exist such a ∆gh. Then the optimal

GMME using the moment vector ĝ#
n,d(γ) may in general be more efficient than the QMLE under unknown

heteroskedasticity because of the optimal weighting.

3.3. On the Inference of Elements in Impact Matrices

Assessing the statistical significance of the effect of a change in a regressor on the dependent variable

is one of the main objectives of applied economists. In spatial regressions, as shown in Section 2, one

first has to compute the reduced form of the specification and calculate the matrix of partial derivatives of

the dependent variable with respect to the concerned regressor in order to figure out the matrix of impacts.
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Inference regarding causal effects should then be based on this matrix, which, for regressor Xnk, is presented

in (6). All the elements of this impact matrix are possibly different from each other and performing inference

on them would be of value.

For the SAR model, LeSage and Pace (2009) propose a Bayesian Markov chain Monte Carlo approach to

produce inference on the scalar summary of effects, namely the average direct, indirect and total impacts. In

this paper, we take the classical approach based on the Delta method to perform inference on those elements

of the impact matrix. Statistical significance on differences of impacts can also be assessed. For instance,

one could be interested in testing if the effect of the kth regressor for observation i on yni will be the same

as of the lth regressor (with l possibly different from k) for individual j on ynj , with j possibly different

from i.

Let γ̂n be a
√
n-consistent estimator of γ, and eni be the ith column of In. The impact of xn,jp (pth

regressor for individual j) on yni is estimated to be e′nie
−α̂nWnenj β̂np, and the effect of xn,sq on ynr is

estimated to be e′nre
−α̂nWnensβ̂nq. Then, by the mean value theorem,

√
n[(e′nie

−α̂nWnenj β̂np − e′nre−α̂nWnensβ̂nq)− (e′nie
−α0Wnenjβ0p − e′nre−α0Wnensβ0q)]

= A1n

√
n(α̂n − α0, β̂np − β0p, β̂nq − β0q)

′ + oP (1)

d−→ N(0, lim
n→∞

A1nB1nA
′
1n),

(40)

where A1n = [−e′nie−α0WnWnenjβ0p + e′nre
−α0WnWnensβ0q, e

′
nie
−α0Wnenj ,−e′nre−α0Wnens] and B1n is the

asymptotic VC matrix of
√
n(α̂n−α0, β̂np−β0p, β̂nq −β0q)

′. To test whether the two impacts are equal, we

may use the asymptotically standard normal statistic
√
n(e′nie

−α̂nWnenj β̂np−e′nre−α̂nWnensβ̂nq)/(Â1nB̂1nÂ
′
1n)1/2

under the null hypothesis, where Â1n and B̂1n are, respectively, consistent estimates of A1n and B1n. An-

other example is in testing whether the average direct effect 1
n tr(eα̂nWn)β̂np is significantly different from

zero. It can be shown that

1√
n

tr(e−α̂nWn)β̂np −
1√
n

tr(e−α0Wn)β0p = A2n

√
n[α̂n − α0, β̂np − β0p]

′ + oP (1)

d−→ N
(
0, lim
n→∞

A2nB2nA
′
2n

)
,

(41)

where A2n = [− 1
n tr(e−α0WnWn)β0p,

1
n tr(e−α0Wn)] and B2n is the asymptotic VC matrix of

√
n[α̂n −

α0, β̂np − β0p]
′. Let Â2n and B̂2n be, respectively, consistent estimates of A2n and B2n.

Lemma 1.
√
n[(e′nie

−α̂nWnenj β̂np−e′nre−α̂nWnensβ̂nq)−(e′nie
−α0Wnenjβ0p−e′nre−α0Wnensβ0q)](Â1nB̂1nÂ

′
1n)−1/2 d−→

N(0, 1) and 1√
n

[tr(e−α̂nWn)β̂np − tr(e−α0Wn)β0p](Â2nB̂2nÂ
′
2n)−1/2 d−→ N(0, 1).
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Several applications of this lemma will be presented in Section 5 which is dedicated to the application

of the MESS to figure out the dominant type of outward FDI for Belgium. However, before turning to the

empirical application, we first present Monte Carlo experiments which assess the finite sample performance

of the MLEs, QMLEs and GMMEs.

4. Monte Carlo Simulations

The considered model is presented in (42).

eαWnyn = β1ln + β2Xn1 + β3Xn2 + un, eτWnun = εn. (42)

The interaction matrix Wn is defined as the 5 nearest neighbors21, yn is the n× 1 vector of the dependent

variable and α is the parameter capturing the intensity of interactions between observations. The first

explanatory variable is a constant term, Xn1 = [xn1,1, . . . , xn1,n]′ is an independent standard normal vector

while for the definition of Xn2, we follow Pace et al. (2011) and generate a spatially autocorrelated regressor.

Its specification is Xn2 = (I−0.7Wn)−1v, with v a standard multivariate normal random vector of dimension

n. In all the simulations, we keep the design space constant. Four different specifications for the error term

are considered and presented in Table 1. We first assume an ideal world with an homoskedastic normally

Table 1: Specifications for the error term

Homoskedasticity Heteroskedasticity
Normal εni = νni, εni = νni

√
zni,

νni ∼ N(0, σ2) νni ∼ N(0, σ2), zni = eXn1,i + eXn2,i

Non Normal εni =
(
νni−3√

6

)
σ, εni =

(
νni−3√

6

)√
zniσ,

νni ∼ χ2
3 νni ∼ χ2

3, zni = eXn1,i + eXn2,i

distributed error term (upper left panel of Table 1). The lower left panel still imposes homoskedasticity

but replaces the normality by a χ2
3 distributed disturbance. The third case, presented in the upper right

panel, assumes normal but heteroskedastic error term. Heteroskedasticity is assumed of exponential form,

but in the simulations, we treat it as of unknown form. Finally, the last case relaxes both normality and

homoskedasticity.

The value of σ2 is set to keep the signal-to-noise ratio, R2 in our notations, constant. This R2 is defined

21The weight matrix has been normalized by the spectral radius. However, due to its special structure, row-normalization
provides the same normalization.
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as the share of explained variance of y in the total variance and its expression is presented in (43).

R2 =
β′(X −X)′e−αW

′
ne−αWn(X −X)β

β′(X −X)′e−αW
′
ne−αWn(X −X)β + σ2 tr(e−(α+τ)W ′ne−(α+τ)Wn)

(43)

In these simulations, we maintain this signal-to-noise ratio equal to 0.8. Besides, three different sample

sizes are considered, n = 254, 589, 975, corresponding respectively to the number of counties in Texas,

municipalities in Belgium, and the number of counties belonging to the South States of USA22. Finally,

the values of α and τ vary from −1 to 1 by increment of 0.5 while β1, β2 and β3 are all set to 1. All the

experiments were replicated 1000 times. For these simulations, the GMM estimator is computed as a two

step feasible optimal GMM using the moment vector ĝ#
n,d(γ) in (39).23

Tables 2–5 summarize the results of the experiments. The sample has the moderate size of n = 254.24

We report the bias, root mean squared error (RMSE) (in italics) and standard errors (in bold) for both QML

and GMM estimators of α, τ , β1, β2 and β3. We look at the results for the different sample sizes. Tables 2

and 3 summarize QMLE results while Tables 4 and 5 present the results of the GMME. The 2 left panels

of each Table summarize output for the homoskedastic case while the two right panels are concerned with

heteroskedastic disturbances. We first observe that results in terms of bias, standard error and RMSE are

similar for QML and GMM estimators. Besides, the non-normality of the error term does not seem to affect

the results. When the DGP includes heteroskedasticity, we observe an increase in the standard errors and

RMSE of both estimators while their bias remains similar to the homoskedastic case. It is also worthwhile

to note that the bias of both estimators is relatively small even though the bias of α is a bit smaller than

that of τ , the parameter capturing spatial autocorrelation in the errors. It also seems that the results are

slightly better for β2 and β3 than for the constant, in terms of bias, standard errors and RMSE. Finally, we

do not observe any difference in the simulations results regarding the spatially autocorrelated explanatory

variable and the one directly drawn from a standard normal distribution.

22These States correspond to Alabama, Arizona, Arkansas, Florida, Georgia, Louisiana, Mississippi, New Mexico, North
Carolina, Oklahoma, South Carolina, Tennessee and Texas.

23In the first step, the weighting matrix of the GMM is assumed to be the identity matrix.
24The results of the experiments for n = 589 and n = 975 are similar. We observe that bias, standard errors and thus RMSE

are lower when the sample size becomes larger. These results are reported in the supplementary file.
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5. Application to Belgium’s outward FDI

To the best of our knowledge, with the recent exceptions of Coughlin and Segev (2000); Blonigen et al.

(2007); Baltagi et al. (2007, 2008) and Garretsen and Peeters (2009), the literature on FDI has overlooked

the third country effect as determinant of bilateral FDI. Coughlin and Segev (2000) consider inward FDI

for 29 Chinese provinces and found positive and significant spatially autocorrelated error terms (SEM spec-

ification). Blonigen et al. (2007) distinguish 4 different types of FDI that multinational enterprises (MNEs)

can undertake. These 4 cases are summarized in Table 6 (corresponding to Table 1 in Blonigen et al., 2007)

and can be identified based on the sign of the spatial lag parameter and of the surrounding-market potential

variable.25 MNEs can firstly embark in FDI for market access reasons and avoidance of high trade or tariff

Table 6: Expected sign for spatial lag and surrounding-market potential variables

FDI Motivation Sign of spatial lag Sign of surrounding-market
potential variable

Pure horizontal 0 0
Export-platform − +
Pure vertical − 0
Vertical specialization + 0
Source: Blonigen et al. (2007)

costs in a host country. This is horizontal FDI. If trade barriers between the parent country (where the

MNE is located) and host country (where the MNE would like to make its products available) are too high,

the MNE could decide to build a plant in the latter country to avoid export costs but at the expense of

building a new production plant. Blonigen et al. (2007) note that no spatial autocorrelation between FDI

should be observed since MNEs make independent decisions about serving a market either through exports

or affiliate sales. Besides, for this basic form of FDI, we do not expect any market potential effect of host

country since the MNE looks for access to the considered market only.

A second motivation for FDI occurs if trade barriers between a set of destination markets are lower

than trade frictions between these destination markets and the parent country. In that setup, a MNE could

decide to build a plant in a host country, export to other markets and facing lower trade costs only. This

type of FDI is called export-platform. As the MNE will not build a production plant in each host country,

we expect a negative spatial autocorrelation between neighboring FDI locations. However, we anticipate a

positive effect of the surrounding-market potential variable since the MNE will locate its new plant in the

host country which has access to the largest surrounding market.

25Since the data we have do concern countries and not MNEs, we can only observe the dominant type of MNE behavior in
terms of FDI, since the data may contain a mixture of the different motivations for FDI.
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MNEs will make vertical FDI if they want to access to cheaper factor inputs for their products. In

its simplest form, namely pure vertical, host countries are in competition in terms of input factor prices to

receive FDI. Hence, we expect a negative spatial autocorrelation between FDI. However, since the product is

shipped back to the parent country to be further processed, not any effect from surrounding-market potential

is foreseen. A more complex form of vertical FDI has been developed by Davies (2005) and Baltagi et al.

(2007). Within that framework, named vertical specialization, the MNE decides to split its vertical chain of

production among possibly several host countries, to benefit from the comparative advantage of the hosts.

In such a framework, according to Blonigen et al. (2007), we should observe positive spatial autocorrelation

due to possible agglomeration forces such as the presence of immobile resources, since the suppliers’ presence

in neighboring host countries is likely to increase FDI to a particular market. However, for the same reason

as in pure vertical FDI, we do not predict any surrounding-market effect.

Blonigen et al. (2007) use outbound US FDI to 35 countries over the period 1983 to 1998 to test the

dominant type of FDI which characterizes US MNEs. Even though they found a positive and significant

effect of surrounding-market potential on their full sample, the authors acknowledge the fragility of their

results with respect to the countries considered. Besides, they could not conclude to the presence of spatial

autocorrelation for the full sample when fixed effects are included in the specification. Garretsen and Peeters

(2009) also test the dominant motivation for FDI using outward Dutch FDI to 19 countries from 1984 to

2004. When analyzing their complete sample, they find a positive and significant market potential effect

but also positive and significant spatial autocorrelation among FDI.

Our contribution to this literature is threefold. Firstly, we analyze the dominant pattern of Belgium’s

outward FDI using a modified gravity equation which, in addition to traditional determinants found in

the literature, also captures effects of spatial interactions and market potential. We secondly compare

results using a MESS(1,1) and a SARAR specification and highlight the similarities in terms of economic

interpretations of these two models. We finally apply the lemma concerning inference to assess statistical

significance of elements of impact matrices of FDI’s determinants.

5.1. Data and empirical specification

This application concerns Belgium’s outward FDI into 35 countries in 2009. These 35 host countries

belong either to OECD or European Union and represent 94% of Belgium’s total outward FDI.26

26The countries considered are: Australia, Austria, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Ireland, Italy, Japan, South Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands,
New Zealand, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom
and United States of America.
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The modified gravity to be estimated is presented in (44).

LFDIi = β1 + β2 LGDPi + β3 LPOPi + β4 OECDi + β5 LDISi + β6 TARIFFSi + β7 MPi + εi. (44)

LFDIi is the stock of outward FDI (in logs) from Belgium to host country i. FDI stocks were extracted

from the OECD International Direct Investment Statistics. The set of regressors includes host GDP in

logs (LGDP ), host population in logs (LPOP ), an OECD dummy which captures an OECD effect, the

bilateral distance between Belgium and country i expressed in logs (LDIS) and a measure of trade costs

which corresponds to the weighted mean of applied tariffs on all products, as defined by the World bank

WDI database and labeled as TARIFFS. The last exogenous regressor is the surrounding-market potential

variable, MP . We follow a similar approach to Blonigen et al. (2007) in the definition of this variable. For

host country i, the market potential is computed as the sum of inverse-distance weighted log-GDPs of all

other k 6= i countries in the world for which we could obtain GDP data (this amounts to 183 countries). The

only difference with Blonigen et al. (2007) comes from their use of the log of the inverse-distance weighted

GDP instead. This difference in the position of the logarithm is motivated by the fact that as the host GDP

enters in logs, we believe the surrounding market variable should also be based on logged GDP.27 LGDP ,

LPOP and TARIFFS all come from the World Bank WDI database while bilateral distances and distances

used to construct the MP variable come from CEPII’s databases. Finally, all the concerned variables are

expressed in constant USD of 2000. Some descriptive statistics of the data are presented in Table 7.

Table 7: Descriptive statistics for the data

Mean Std dev Min Max
LFDI 8.3942 1.9970 4.4103 11.8510
LGDP 25.973 1.775 22.782 30.048
LPOP 16.390 1.450 13.118 19.542
OECD 0.857 0.355 0 1
LDIS 7.337 1.157 5.154 9.853

TARIFFS 1.877 1.369 0.990 8.930
MP 1.364 0.491 0.356 2.257

Accounting for spatial autocorrelation in FDI requires the setup of an interaction scheme, modeled

through the interaction (spatial weights) matrix Wn. In this application, we follow Blonigen et al. (2007)

and use an inverse arc-distance between capitals to model interactions between host countries. However,

we do not multiply the weights by the shortest distance between capitals as done in Blonigen et al. (2007)

27Garretsen and Peeters (2009) construct their surrounding-market potential variable in a different way since they only
consider the GDP of all host countries in the sample.
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since we do not row-normalize our weight matrix but instead use the spectral radius to standardize the

matrix.28 This approach is advocated by Baltagi et al. (2008) who argue that row-normalizing a distance

based interaction matrix converts absolute distance-based interactions to relative distance-based and thus

changes the information content of the interaction scheme.29 In addition, we control for the presence of

residual spatial autocorrelation in the error terms. We have the same interaction matrix for both MESS

processes. As shown in Section 3, the QMLE can be consistent in presence of unknown heteroskedasticity.

Table 8 summarizes the results of different econometric specifications which extend (44). Columns 2–8

present estimation results respectively for OLS (corrected for heteroskedasticity), homoskedastic SARAR

(by QML), homoskedastic MESS(1,1) (by QML), homoskedastic MESS(1,1) (by optimal GMM with the

moment vector ĝ#
n,d(γ) in (39)), heteroskedastic SARAR (by optimal GMM30), heteroskedastic MESS(1,1)

(by QML) and heteroskedastic MESS(1,1) (by optimal GMM with the moment vector ĝ#
n,d(γ) in (39)).

The first result being worth highlighting concerns the bias of the OLS estimator due to omission of spatial

autocorrelation. We observe a negative and significant (at the 10% threshold) estimated coefficient for the

surrounding-market potential variable, MP , while this estimated coefficient becomes positive but looses

its significance when spatial autocorrelation is accounted for.31 In terms of economic interpretation, least

squares estimates would imply a negative elasticity of market potential on FDI, a case which does not fit

in the considered economic theory. Besides, we also observe an estimated value of the OECD dummy twice

smaller in the least squares regressions compared to spatial regressions and this variable becomes significant

at the 10% level in the latter case, but we will come back on these interpretation later on. The parameter

of the population variable is also affected since its estimated value by least squares (−0.479) is on average

around 25% higher than in spatial models. These results provide thus strong arguments to account for

spatial autocorrelation in the specification. The rest of the discussion will thus focus on the 6 last columns

of Table 8, which rely on spatial econometrics’ methods.

Secondly, the quasi maximum likelihood and GMM estimation of the MESS(1,1) with homoskedastic

and heteroskedastic disturbances provide similar results for both estimated values and standard errors.

The last result we would like to pinpoint relates to the sign of spatial autocorrelation. We observe a

negative spatial autocorrelation for both SARAR specifications (homoskedastic and heteroskedastic) while

28As each weight will be multiplied by a common factor, the spectral radius will also be multiplied by this factor, implying
that the normalized matrix will be the same, no matter if the interaction matrix is initially rescaled or not.

29For further information concerning matrix normalizations, interested readers may consult Kelejian and Prucha (2010).
30In the moment vector, the instruments for the linear moments are R̂n[Xn,WnŜ

−1
n Xnβ̂n] and the matrices for the quadratic

moments are R̂nWnŜ
−1
n R̂−1

n −Diag(R̂nWnŜ
−1
n R̂−1

n ) and MnR̂
−1
n −Diag(MnR̂

−1
n ), where R̂n = In− ρ̂nMn, Ŝn = In− λ̂nWn

and (λ̂n, ρ̂n, β̂′n)′ is an initial GMME.
31A more rigorous analysis, based on impacts of explanatory variables computed from the reduced form of the spatial

regressions is presented later on.
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the MESS(1,1) provides a positive value for α. Thus, a negative spatial autocorrelation translates in a

positive α.32 Finally, we observe that there is not any significant spatial autocorrelation left in the error

terms.

The computation of matrices of impacts of changes in determinants on FDI is required to be able to

give conclusions regarding the dominant type of FDI characterizing Belgium. Indeed, as MESS(1,1) and

SARAR are estimated under implicit form (see (2) and (3)), we need to compute their associated reduced

form and then calculate the matrix of partial derivatives with respect to each explanatory variable to get

impact matrices. For the MESS(1,1), this impact matrix for regressor Xnk is shown in (6).

Table 8: Estimation results for different specifications

(1) (2) (3) (4) (5) (6) (7)
Cons. -1.745 -1.664 -3.021 -3.159 -1.266 -3.023 -2.989

(4.668) (4.628) (4.660) (4.671) (3.899) (4.288) (4.291)
LGDP 1.038∗∗∗ 1.093∗∗∗ 1.114∗∗∗ 1.121∗∗∗ 1.089∗∗∗ 1.113∗∗∗ 1.113∗∗∗

(0.265) (0.237) (0.246) (0.246) (0.220) (0.241) (0.241)
LPOP -0.479∗ -0.584∗∗ -0.585∗∗ -0.595∗∗ -0.591∗∗ -0.584∗∗ -0.584∗∗

(0.268) (0.239) (0.246) (0.246) (0.235) (0.254) (0.254)
OECD 0.542 1.024∗ 1.037∗ 1.081∗ 1.023∗ 1.037∗ 1.033∗

(0.702) (0.544) (0.551) (0.553) (0.605) (0.611) (0.611)
LDIS -1.162∗∗∗ -1.271∗∗∗ -1.199∗∗∗ -1.201∗∗∗ -1.293∗∗∗ -1.199∗∗∗ -1.200∗∗∗

(0.217) (0.237) (0.220) (0.220) (0.209) (0.200) (0.200)
TARIFFS 0.089 0.104 0.106 0.108 0.108 0.106 0.106

(0.078) (0.112) (0.113) (0.113) (0.084) (0.084) (0.084)
MP -0.786∗ 1.123 1.212 1.394 1.156 1.212 1.196

(0.407) (1.090) (1.105) (1.128) (1.147) (1.186) (1.185)
Spat auto - -0.326∗∗ 0.265∗∗ 0.286∗∗∗ -0.335∗ 0.265∗∗ 0.264∗∗

in y (0.157) (0.109) (0.110) (0.173) (0.121) (0.121)
Spat auto - 0.275 -0.004 -0.010 0.282 -0.004 0.001
in errors (0.439) (0.516) (0.516) (0.598) (0.419) (0.419)

n 35 35 35 35 35 35 35
Standard errors between brackets; (1) is OLS (with White correction), (2) is homoskedastic
SARAR, (3) is homo. MESS(1,1) by QML, (4) is homo. MESS(1,1) by GMM, (5) is heteroskedas-
tic SARAR, (6) is hetero. MESS(1,1) by QML and (7) is hetero. MESS(1,1) by GMM; ∗, ∗∗ and
∗∗∗ correspond to significance at the 10%, 5% and 1% respectively.

To compare MESS(1,1) and SARAR results, we report in Table 9 the average direct effect and the total

effect for each of the explanatory variables for heteroskedastic SARAR and MESS(1,1), estimated both by

QML and GMM. The average direct effect is computed as the average of diagonal elements of the impact

matrix 1
n tr(ΞynXnk

) while the total effect is defined as the sum of all of its elements l′nΞynXnk
ln. In terms of

impacts on the dependent variable, the main focus for economists, we observe a strong similarity of impacts

32This difference comes from the definition of these two models, as shown in Section 2.
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produced by the two specifications even though parameters capturing spatial autocorrelation are completely

different from each other.

Table 9: Comparison of average direct effects and total effects

Direct effects Total effects
SARAR MESS(1,1) MESS(1,1) SARAR MESS(1,1) MESS(1,1)

QML GMM QML GMM
LGDP 1.094 1.116 1.115 30.936 32.243 32.249
LPOP -0.595 -0.586 -0.585 -16.802 -16.926 -16.926
OECD 1.029 1.039 1.035 29.085 30.025 29.938
LDIS -1.300 -1.202 -1.202 -36.749 -34.720 -34.775

TARIFFS 0.109 0.107 0.106 3.070 3.076 3.074
M PO 1.163 1.215 1.198 32.854 35.094 34.659

Effects are computed from estimation results of heteroskedastic SARAR and
MESS(1,1) (estimated by QML and GMM)

The lemma derived in Section 3 allows performing inference on elements of the impact matrices of the

MESS(1,1). Table 10 summarizes inference results performed on different (functions of) elements of these

impact matrices, based on the heteroskedastic MESS(1,1) estimated by GMM. The first row analyzes the

significance of average direct effects. The results indicate a non-significant elasticity of surrounding-market

potential on FDI. This result, combined with a negative spatial autocorrelation, points to the dominance of

pure vertical type of FDI. To the best of our knowledge, this application is the first to indicate such a clear

cut result. One possible explanation of this result lies in the production costs faced by Belgian multinationals

in Belgium. Indeed, labor costs in Belgium are amongst the highest in Europe.33 Besides, determinants of

the traditional gravity equation have the expected sign. We observe a positive and significant elasticity of

GDP, which captures the wealth effect, while elasticities of population and bilateral distance are found to

be negative. The OECD dummy is found to be significant at the 10% level while least squares estimated

value was found to be non-significant. Finally, the tariffs variable is found to be non-significant which can

be explained by the homogeneity of the sample.

The second row presents inference on the indirect effect of Austria on Slovakia, (ΞynXnk
)SVK,AUT . In other

words, we analyze if a shock on a regressor in Austria will affect outward FDI from Belgium to Slovakia. We

observe a significant effect for the host GDP variable and bilateral distance but the effect is non-significant

for the four other regressors. For instance, increasing the GDP of Austria by 1% will reduce outward FDI

from Belgium to Slovakia by 0.147%. Finally, the last row of Table 10 studies significance of the difference

between the indirect effect of Mexico on the United-States and the indirect effect of Canada on United-

33See Eurostat database on labor costs.
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States ,(ΞynXnk
)USA,MEX − (ΞynXnk

)USA,CAN . We observe significant difference between those indirect effects

for GDP and bilateral distance. In other words, the effect of a variation of Mexican GDP on outward FDI

from Belgium to the United States will be statistically different from the effect of the same variation of

Canadian GDP on outward FDI from Belgium to the United States.

Table 10: Inference on elements of impact matrices

LGDP LPOP OECD LDIS TARIFF MP

1
n tr(ΞynXnk

)
1.115∗∗∗ -0.585∗∗ 1.035∗ -1.202∗∗∗ 0.106 1.198
(0.242) (0.255) (0.613) (0.200) (0.084) (1.183)

(ΞynXnk
)SVK,AUT

-0.147∗ 0.077 -0.137 0.159∗∗ -0.014 -0.158
(0.084) (0.058) (0.120) (0.075) (0.013) (0.226)

(ΞynXnk
)USA,MEX − (ΞynXnk

)USA,CAN
0.009∗ -0.005 0.008 -0.010∗∗ 0.001 0.010
(0.005) (0.004) (0.007) ( 0.005) (0.001) (0.016)

Standard errors are between brackets; AUT stands for Austria, CAN for Canada, MEX for Mexico, SVK
for Slovakia and USA for the United States; 1

n tr(ΞynXnk
) is the average direct effect, (ΞynXnk

)SVK,AUT is the
indirect effect between Austria and Slovakia; (ΞynXnk

)USA,MEX−(ΞynXnk
)USA,CAN is the difference between

the indirect effect of a change in x in Mexico on outward FDI in the United States and the indirect effect
of a change in x in Canada on outward FDI in the United States; ∗, ∗∗ and ∗∗∗ correspond to significance
at the 10%, 5% and 1% respectively.

To conclude this section, even though SARAR and MESS(1,1) provide similar impacts, it is important to

remark that the MESS is much easier to compute since there is no Jacobian of the transformation involved

and the parameter space for α is not constrained.

6. Conclusions

This paper firstly develops the asymptotic theory of the matrix exponential spatial specification (MESS)

in both the dependent variable and error terms. We show that the GMME is consistent and asymptotically

normal even in the presence of unknown heteroskedasticity as long as the interaction matrix has zero

diagonal elements. Besides we show that if the interaction matrices for the dependent variable and the

error terms commute, the QMLE may also be consistent and asymptotically normal in the presence of

unknown heteroskedasticity. In the homoskedastic case, we develop a best optimal GMME which is much

simpler than the best optimal GMME for the SAR specification since moment conditions do not depend

on estimated parameters. In case of non-normality, the homoskedastic best optimal GMME is shown to be

more efficient than the QMLE. In the heteroskedastic case, a best optimal GMME cannot be derived except

if we know the structure of heteroskedasticity. We thus develop an optimal GMME which is shown to be

more efficient than the QMLE. We also derive a lemma to perform inference on the elements, or functions of

them, of the impact matrices implied by the reduced form of the MESS, which is very important for applied
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economists. Monte Carlo experiments are conducted and show the good small sample properties of the

proposed estimators. Finally, we apply our estimators to show that outward FDI from Belgium are mainly

characterized by the vertical type. Results indicate that least squares estimation results are misleading. We

also compare SARAR and MESS(1,1) impacts and note that they are very similar, which pleads for the use

of the latter. When the spatial process is stable, the MESS has many advantages over the SAR model.

Appendix A. QML Estimation of a high order MESS [MESS(p,q)]

Consider the following high order MESS:

eαWnyn = Xnβ + un, eτMnun = εn, εn = (εn1, . . . , εnn)′, (A.1)

where αWn denotes α1Wn1 + · · ·+αpWnp for a vector α = (α1, . . . , αp)
′ and n×n spatial weights matrices

Wni’s, i = 1, . . . , p, and τMn denotes τ1Mn1 + · · · + τqMnq for τ = (τ1, . . . , τq)
′ and n × n spatial weights

matrices Mnj ’s, j = 1, . . . , q. Denote the model as MESS(p,q). We investigate the properties of the QMLE

for this model when the disturbances are i.i.d. as assumed in Assumption 5. The quasi log likelihood function

of the MESS(p,q), as if the εni’s were i.i.d. normal, is

Ln(θ) = −n
2

ln(2πσ2) + ln |eαWn |+ ln |eτMn | − 1

2σ2
(eαWnyn −Xnβ)′e(τMn)′eτMn(eαWnyn −Xnβ),

where θ = (γ′, σ2)′ with γ = (α, τ , β′)′. Let θ0 be the true parameter vector. Since |eαWn | = etr(αWn) and

|eτMn | = etr(τMn), as long as Wni’s and Mnj ’s have zero diagonals, the log Jacobians disappear and the

quasi log likelihood function is simplified to

Ln(θ) = −n
2

ln(2πσ2)− 1

2σ2
(eαWnyn −Xnβ)′e(τMn)′eτMn(eαWnyn −Xnβ). (A.2)

By contrast, for the high order SARAR model corresponding to (A.1),

(In − λWn)yn = Xnβ + un, (In − ρMn)un = εn, εn = (εn1, . . . , εnn)′,

where λ = (λ1, . . . , λp)
′ and ρ = (ρ1, . . . , ρq)

′, the quasi log likelihood function involves the log Jacobian

ln |(In − λWn)(In − ρMn)| = ln |In − λWn| + ln |In − ρMn|. The stationary regions of λ and ρ can be

hard to find and the Jacobian is computationally intensive (Elhorst et al., 2012).
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The MESS(p,q) (A.1) with the notations αWn and τMn resembles the MESS(1,1) presented in (2),

thus we have similar expressions for the QMLE. From (A.2), the QMLE of γ is the minimizer of

Qn(γ) = (eαWnyn −Xnβ)′e(τMn)′eτMn(eαWnyn −Xnβ). (A.3)

For fixed φ = (α′, τ ′)′, the QMLE of β is

β̂n(φ) = (X ′ne
(τMn)′eτMnXn)−1X ′ne

(τMn)′eτMneαWnyn. (A.4)

Substituting β̂n(φ) into Qn(γ), we obtain a function of only φ:

Qn(φ) = y′ne
(αWn)′e(τMn)′Hn(τ )eτMneαWnyn, (A.5)

where the projection matrix Hn(τ ) = In−eτMnXn(X ′ne
(τMn)′eτMnXn)−1X ′ne

(τMn)′ . The QMLE of φ can

be derived by the minimization of Qn(φ). Corresponding to Assumptions 1, 3 and 4, we make the following

assumptions.

Assumption A.1. Matrices {Wni} for i = 1, . . . , p and {Mnj} for j = 1, . . . , q are bounded in both row

and column sum norms. The diagonal elements of Wni’s and Mnj’s are zero.

Assumption A.2. There exists a constant δ > 0 such that |αi| ≤ δ for i = 1, . . . , p, |τj | ≤ δ for j = 1, . . . , q,

and the true φ0 is in the interior of the parameter space Φ = [−δ, δ]p+q.

Assumption A.3. The limit limn→∞
1
nX
′
ne

(τMn)′eτMnXn exists and is nonsingular for any τ ∈ [−δ, δ]q,

and the sequence of the smallest eigenvalues of e(τMn)′eτMn is bounded away from zero uniformly in τ ∈

[−δ, δ]q.

To find the identification condition for φ, define

Q̄n(φ) = min
β

EQn(γ) = (Xnβ0)′e−(α0Wn)′e(αWn)′e(τMn)′Hn(τ )eτMneαWne−α0WnXnβ0

+ σ2
0 tr(e−(τ0Mn)′e−(α0Wn)′e(αWn)′e(τMn)′eτMneαWne−α0Wne−τ0Mn).

(A.6)

The following condition is assumed for the identification uniqueness.

Assumption A.4. Either (i) limn→∞ n−1(Xnβ0)′e−(α0Wn)′e(αWn)′e(τMn)′Hn(τ )eτMneαWne−α0WnXnβ0 6=

0 for any τ and α 6= α0, and limn→∞ n−1 tr(e−(τ0Mn)′e(τMn)′eτMne−τ0Mn) > 1 for any τ 6= τ 0, or

(ii) limn→∞ n−1 tr(e−(τ0Mn)′e−(α0Wn)′e(αWn)′e(τMn)′eτMneαWne−α0Wne−τ0Mn) > 1 for any φ 6= φ0.
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The consistency of the QMLE follows from the uniform convergence of [Qn(φ)− Q̄n(φ)]/n to zero on the

parameter space Φ and the identification uniqueness. The proof of the following proposition is in Appendix

C.

Proposition A.1. Under Assumptions 2, 5 and A.1–A.4, the QMLE γ̂n of the MESS(p,q) in (A.1) is

consistent.

For the asymptotic distribution of γ̂n, a Taylor expansion of the first-order condition ∂Qn(γ̂n)
∂γ = 0 at the

true γ0 yields
√
n(γ̂n − γ0) = −

( 1

n

∂2Qn(γ̃n)

∂γ∂γ′

)−1 1√
n

∂Qn(γ0)

∂γ
, (A.7)

where γ̃n is between γ̂n and γ0. Under regularity conditions, 1
n
∂2Qn(γ̃n)
∂γ∂γ′ = Cn + oP (1) with Cn =

1
n E ∂2Qn(γ0)

∂γ∂γ′ . We assume that Cn is nonsingular in the limit.

Assumption A.5. The limit of Cn exists and is nonsingular.

The first-order derivatives of Qn(γ) at γ0 are

∂Qn(γ0)

∂αi
= 2(Xnβ0 + e−τ0Mnεn)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αi
e(τ0Mn)′εn, , i = 1, . . . , p, (A.8)

∂Qn(γ0)

∂τi
= 2ε′ne

−(τ0Mn)′ ∂e
(τ0Mn)′

∂τi
εn, i = 1, . . . , q, (A.9)

∂Qn(γ0)

∂β
= −2X ′ne

(τ0Mn)′εn, (A.10)

which are linear and quadratic functions of εn and have mean zero by verification. Thus we may apply the

central limit theorem for linear-quadratic forms in Kelejian and Prucha (2001). The proof of the following

proposition is in Appendix C.

Proposition A.2. Under Assumptions 2, 5 and A.1–A.5,
√
n(γ̂n − γ0)

d−→ N(0, limn→∞C−1
n ΩnC−1

n ),

where Cn = 1
n E ∂2Qn(γ0)

∂γ∂γ′ is a 3× 3 symmetric block matrix with the (i, j)th element for 1 ≤ i, j ≤ p in the

(1, 1)th block being

2

n
(Xnβ0)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αi
e(τ0Mn)′eτ0Mn

∂eα0Wn

∂αj
e−α0WnXnβ0 +

2σ2
0

n
tr
(
e−(α0Wn)′ ∂

2e(α0Wn)′

∂αi∂αj

)
+

2σ2
0

n
tr
(
e−(τ0Mn)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αi
e(τ0Mn)′eτ0Mn

∂eα0Wn

∂αj
e−α0Wne−τ0Mn

)
,

the (i, j)th element for 1 ≤ i ≤ p, 1 ≤ j ≤ q in the (1, 2)th block being

2σ2
0

n
tr
(
e−(τ0Mn)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αi

∂e(τ0Mn)′

∂τj

)
+

2σ2
0

n
tr
(
e−(τ0Mn)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αi
e(τ0Mn)′ ∂e

τ0Mn

∂τj
e−τ0Mn

)
,
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the ith row for 1 ≤ i ≤ p in the (1, 3)th block being −2(Xnβ0)′e−(α0Wn)′ ∂e(α0Wn)′

∂αi
e(τ0Mn)′eτ0MnXn, the

(i, j)th element for 1 ≤ i, j ≤ q in the (2, 2)th block being

2σ2
0

n
tr
(
e−(τ0Mn)′ ∂

2e(τ0Mn)′

∂τi∂τj

)
+

2σ2
0

n
tr
(
e−(τ0Mn)′ ∂e

(τ0Mn)′

∂τi

∂eτ0Mn

∂τj
e−τ0Mn

)
,

the elements in the (2, 3)th block being all zero, and the (3, 3)th block being 2
nX
′
ne

(τ0Mn)′eτ0MnXn, and

Ωn = Cn + Ω1n, where Ω1n is a symmetric 3 × 3 block matrix with the (i, j)th element for 1 ≤ i, j ≤ p in

the (1, 1)th block being

(µ4 − 3σ4
0) vecD

′(2e−(τ0Mn)′e−(α0Wn)′ ∂e
(α0Wn)′

∂αi
e(τ0Mn)′) vecD(2e−(τ0Mn)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αj
e(τ0Mn)′)

+ 2µ3(Xnβ0)′e−(α0Wn)′ ∂e
(α0Wn)′

∂αi
e(τ0Mn)′ vecD(2e−(τ0Mn)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αj
e(τ0Mn)′)

+ 2µ3(Xnβ0)′e−(α0Wn)′ ∂e
(α0Wn)′

∂αj
e(τ0Mn)′ vecD(2e−(τ0Mn)′e−(α0Wn)′ ∂e

(α0Wn)′

∂αi
e(τ0Mn)′),

the (i, j)th element for 1 ≤ i ≤ p, 1 ≤ j ≤ q in the (1, 2)th block being

(µ4 − 3σ4
0) vecD

′(2e−(τ0Mn)′e−(α0Wn)′ ∂e
(α0Wn)′

∂αi
e(τ0Mn)′) vecD(2e−(τ0Mn)′ ∂e

(τ0Mn)′

∂τj
)

+ 2µ3(Xnβ0)′e−(α0Wn)′ ∂e
(α0Wn)′

∂αi
e(τ0Mn)′ vecD(2e−(τ0Mn)′ ∂e

(τ0Mn)′

∂τj
),

the ith row for 1 ≤ i ≤ p in the (1, 3)th block being −2µ3 vecD
′(2e−(τ0Mn)′e−(α0Wn)′ ∂e(α0Wn)′

∂αi
e(τ0Mn)′)eτ0MnXn,

the (i, j)th element for 1 ≤ i, j ≤ q in the (2, 2)th block being

(µ4 − 3σ4
0) vecD

′(2e−(τ0Mn)′ ∂e
(τ0Mn)′

∂τi
) vecD(2e−(τ0Mn)′ ∂e

(τ0Mn)′

∂τj
),

the ith row for 1 ≤ i ≤ q in the (2, 3)th block being −2µ3 vecD
′(2e−(τ0Mn)′ ∂e(τ0Mn)′

∂τi
)eτ0MnXn, and the

elements of the (3, 3)th blocks being zero.

When µ3 = µ4 − 3σ4
0 = 0, Ω1n = 0.

Appendix B. Lemmas

Lemmas 2–5 can be found in, e.g., Lin and Lee (2010) and Jin and Lee (2012). The central limit theorem

in Lemma 5 is originated in Kelejian and Prucha (2010). Lemma 6 is Lemma A.6 in Lee (2007). They are

provided here for easy reference. Let UB stand for “bounded in both row and column sum norms”.
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Lemma 2. Suppose that n × n matrices {An} are UB. Elements of n × k matrices {Xn} are uniformly

bounded and limn→∞ n−1X ′nXn exists and is nonsingular. Let Mn = In − Xn(X ′nXn)−1X ′n. Then {Mn}

are UB and tr(MnAn) = tr(An) +O(1).

Lemma 3. Suppose that An = [an,ij ] and Bn = [bn,ij ] are two n×n matrices and εni’s in εn = (εn1, . . . , εnn)′

are independently distributed with mean zero (but may not be i.i.d.). Then,

(1) E(εn · ε′nAnεn) = (an,11 E(ε3n1), . . . , an,nn E(ε3nn))′, and

(2) E(ε′nAnεn · ε′nBnεn) =
∑n
i=1 an,iibn,ii[E(ε4ni)− 3σ4

ni] + tr(ΣnAn) tr(ΣnBn) + tr[ΣnAnΣn(Bn +B′n)],

where Σn = Diag(σ2
n1, . . . , σ

2
nn) with σ2

ni = E(ε2ni), i = 1, . . . , n.

Lemma 4. Suppose that n× n matrices {An} are UB, elements of the n× k matrices {Cn} are uniformly

bounded, and εni’s in εn = (εn1, . . . , εnn)′ are independent random variables with mean zero and variance σ2
ni.

The sequence {E(ε4ni)} is bounded. Then ε′nAnεn = OP (n), E(ε′nAnεn) = O(n), n−1[ε′nAnεn−E(ε′nAnεn)] =

oP (1) and n−1/2C ′nAnεn = OP (1).

Lemma 5. Suppose that {An} is a sequence of symmetric n×n matrices that are UB and bn = (bn1, . . . , bnn)′

is an n-dimensional column vector such that supn n
−1
∑n
i=1 |bni|2+η1 < ∞ for some η1 > 0. Further-

more, suppose that εn1, · · · , εnn are mutually independent with zero means and the moments E(|εni|4+η2)

for some η2 > 0 exist and are uniformly bounded for all n and i. Let σ2
cn be the variance of cn where

cn = ε′nAnεn + b′nεn − tr(AnΣn) with Σn being a diagonal matrix with E ε2ni’s on its diagonal. Assume that

n−1σ2
cn is bounded away from zero. Then cn

σcn

d−→ N(0, 1).

Lemma 6. Suppose that [Qn(γ) − Q̄n(γ)] converges in probability to zero uniformly in γ ∈ Γ which is a

convex set, and {Q̄n(γ)} satisfies the identification uniqueness condition at γ0. Let γ̂n and γ̂∗n be, respectively,

the minimizers of Qn(γ) and Q∗n(γ) in Γ. If Q∗n(γ)−Qn(γ) = oP (1) uniformly in γ ∈ Γ, then both γ̂n and

γ̂∗n converge in probability to γ0.

In addition, suppose that ∂2Qn(γ)
∂γ∂γ′ converges in probability to a well defined limiting matrix, uniformly in

γ ∈ Γ, which is nonsingular at γ0, and
√
n∂Qn(γ0)

∂γ = OP (1). If
∂2Q∗n(γ)
∂γ∂γ′ −

∂2Qn(γ)
∂γ∂γ′ = oP (1) uniformly in

γ ∈ Γ and
√
n
∂Q∗n(γ0)
∂γ −

√
n∂Qn(γ0)

∂γ = oP (1), then
√
n(γ̂∗n − γ0) and

√
n(γ̂n − γ0) have the same limiting

distribution.

For the best GMME in the homoskedastic case, we show that adding any other moments to the selected

ones cannot improve the asymptotic efficiency using the redundancy conditions in Breusch et al. (1999).

Suppose that we have a set of moment conditions E[g∗n(γ)] = 0 with the corresponding optimal GMME

being γ̂∗n. Adding some additional moment conditions E[gn(γ)] = 0 to E[g∗n(γ)] = 0, we have an optimal

GMME γ̂n using both sets of moment conditions. Then the moment conditions E[gn(γ)] = 0 are redundant

given E[g∗n(γ)] = 0 if the asymptotic variances of γ̂∗n and γ̂n are the same. Let V ∗n = nE[g∗n(γ0)g∗
′

n (γ0)],
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Vn,21 = nE[gn(γ0)g∗
′

n (γ0)], G∗n = E
∂g∗n(γ0)
∂γ′ and Gn = E ∂gn(γ0)

∂γ′ . The following two lemmas from Breusch

et al. (1999) give conditions for moment redundancy.

Lemma 7. The following statements are equivalent: (a) E[gn(γ)] = 0 is redundant given E[g∗n(γ)] = 0; (b)

Gn = Vn,21V
∗−1
n G∗n; and (c) there exists a matrix T such that G∗n = V ∗n T and Gn = Vn,21T .

Lemma 8. Let the set of moment conditions to be considered be E[gn(γ)] = E[g′1n(γ), g′2n(γ), g′3n(γ)]′ = 0,

or simply g = (g′1, g
′
2, g
′
3)′. Then (g′2, g

′
3)′ is redundant given g1 if and only if g2 is redundant given g1 and

g3 is redundant given g1.

The following Lemmas 9, 10 and 11 summarize relevant matrices of the MESS which possess the essential

UB property.34

Lemma 9. Suppose that n×n matrices {Mn1},. . . , {Mnq} are UB. The smallest eigenvalue of e(τMn)′eτMn

is bounded away from zero uniformly over the interval [−δ, δ]q for some finite δ > 0. Elements of the n× k

matrix Xn are uniformly bounded. The limit of 1
nX
′
ne

(τMn)′eτMnXn exists and is nonsingular for any τ ∈

[−δ, δ]q. Then eτMn , Xn(X ′ne
(τMn)′eτMnXn)−1X ′n and Hn(τ ) = In−eτMnXn(X ′ne

(τMn)′eτMnXn)−1X ′ne
(τMn)′

are UB uniformly in τ ∈ [−δ, δ]q.

Lemma 10. Let Wn1,. . . , Wnp, Mn1, . . . , Mnq, An and Bn be n × n matrices that are UB, bn be an

n-dimensional vector with uniformly bounded elements, Xn be an n × k matrix with uniformly bounded el-

ements, and εn = (εn1, . . . , εnn)′ be a random vector with independent elements that have mean zero and

variances σ2
ni’s. Assume that limn→∞

1
nX
′
ne

(τMn)′eτMnXn exists and is nonsingular for any τ ∈ [−δ, δ]q

and the sequence {E(ε4ni)} is bounded. Then 1
nb
′
ne

(αWn)′e(τMn)′Hn(τ )eτMneαWnAnεn = oP (1) uniformly

on the parameter space Φ = [−δ, δ]p+q, 1
nb
′
ne

(αWn)′e(τMn)′Bne
τMneαWnAnεn = oP (1) uniformly on

Φ, 1
n [ε′nA

′
ne

(αWn)′e(τMn)′Hn(τ )eτMneαWnAnεn − tr(A′ne
(αWn)′e(τMn)′Hn(τ )eτMneαWnAnΣn)] = oP (1)

uniformly on Φ, 1
n [ε′nA

′
ne

(αWn)′e(τMn)′Bne
τMneαWnAnεn − tr(A′ne

(αWn)′e(τMn)′Bne
τMneαWnAnΣn)] =

oP (1) uniformly on Φ, and 1
n tr(A′ne

(αWn)′e(τMn)′(In −Hn(τ ))eτMneαWnAnΣn) = o(1) uniformly on Φ,

where Hn(τ ) = In − eτMnXn(X ′ne
(τMn)′eτMnXn)−1X ′ne

(τMn)′ and Σn = Diag(σ2
n1, . . . , σ

2
nn).

Lemma 11. Let An be any n×n UB matrix and an = oP (1). Then ||eanAn − In||∞ = oP (1) and ||eanAn −

In||1 = oP (1).

Appendix C. Proofs

Proof of Proposition 8. To show that γ̂∗n is the best GMME within the class of GMMEs with linear and

quadratic moments, we prove that the moment condition E[gn(γ)] = 0, where gn(γ) is a set of arbitrary linear

34The detailed arguments to establish their UB properties are in a supplementary file available upon request.
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and quadratic moments in (25), is redundant given the moment conditions E[g∗n(γ)] = 0. By Lemmas 7 and

8, it is sufficient to show that there exists a matrix T such that Gn = E ∂gn(γ0)
∂γ′ = Vn,21T and G∗n = V ∗n T ,

where

Vn,21 = nE(gn(γ0)g∗
′

n (γ0))

=
1

n



σ4
0 tr(P sn1P

∗
n1) . . . σ4

0 tr(P sn1P
∗
n,k∗+4) µ3 vecD

′(Pn1)F ∗n
...

. . .
...

...

σ4
0 tr(P sn,kpP

∗
n1) . . . σ4

0 tr(P sn,kpP
∗
n,k∗+4) µ3 vecD

′(Pn,kp)F ∗n

µ3F
′
n vecD(P ∗n1) . . . µ3F

′
n vecD(P ∗n,k∗+4) σ2

0F
′
nF
∗
n



+
1

n
(µ4 − 3σ4

0)



vecD
′(Pn1) vecD(P ∗n1) . . . vecD

′(Pn1) vecD(P ∗n,k∗+4) 0

...
. . .

...
...

vecD
′(Pn,kp) vecD(P ∗n1) . . . vecD

′(Pn,kp) vecD(P ∗n,k∗+4) 0

0 . . . 0 0


by Lemma 3.

Let P ∗αn = P ∗n1 −
(η4−3)−η23
(η4−1)−η23

P ∗n2 −
σ−1
0 η3

(η4−1)−η23
P ∗n3, P ∗τn = Mn, P ∗βnl = P ∗n,l+4 for l = 1, . . . , k∗, and F ∗αn =

η4−1
(η4−1)−η23

F ∗n2−
η23

(η4−1)−η23
F ∗n3( 1

n l
′
ne
τ0MnWnXnβ0)− 2σ0η3

(η4−1)−η23
F ∗n4. If eτ0MnXn does not contain an intercept

term, let F ∗βn = η4−1
(η4−1)−η23

F ∗n1−
η23

(η4−1)−η23
F ∗n3( 1

n l
′
ne
τ0MnX∗n); otherwise, let F ∗βn = η4−1

(η4−1)−η23
F ∗n1(Ik∗ , 0k∗×1)+

η4−1
(η4−1)−η23

c(τ0)F ∗n3e
′
kk −

η23
(η4−1)−η23

F ∗n3( 1
n l
′
ne
τ0MnXn), where ekj is the jth unit vector in Rk. Then

ε′n(γ)(P ∗αnεn(γ), P ∗τnεn(γ), P ∗βn1εn(γ), . . . , P ∗βnk∗εn(γ)) = ε′n(γ)(P ∗n1εn(γ), . . . , P ∗n,k∗+4εn(γ))∆P ,

where

∆′P =


1 − (η4−3)−η23

(η4−1)−η23
− σ−1

0 η3
(η4−1)−η23

0 0

0 0 0 1 0

0 0 0 0 Ik∗

 .

If eη0MnXn does not contain an intercept term, (F ∗αn, F
∗
βn) = (F ∗n1, F

∗
n2, F

∗
n3, F

∗
n4)∆F1, where

∆′F1 =

 0 η4−1
(η4−1)−η23

− η23
(η4−1)−η23

( 1
n l
′
ne
τ0MnWnXnβ0) − 2σ0η3

(η4−1)−η23
η4−1

η4−1−η23
Ik∗ 0 − η23

(η4−1)−η23
( 1
n l
′
ne
τ0MnX∗n)′ 0

 ;
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otherwise, (F ∗αn, F
∗
βn) = (F ∗n1, F

∗
n2, F

∗
n3, F

∗
n4)∆F2, where

∆′F2 =

 0 η4−1
(η4−1)−η23

− η23
(η4−1)−η23

( 1
n l
′
ne
τ0MnWnXnβ0) − 2σ0η3

(η4−1)−η23
η4−1

η4−1−η23
(Ik∗ , 0k∗×1) 0 η4−1

(η4−1)−η23
c(τ0)ekk − η23

(η4−1)−η23
( 1
n l
′
ne
τ0MnXn)′ 0

 .

Let ∆PF =

∆P 0

0 ∆F1

 if eη0MnXn does not contain an intercept term and ∆PF =

∆P 0

0 ∆F2


otherwise. Then g∗

′

n (γ)∆PF = ε′n(γ)(P ∗αnεn(γ), P ∗τnεn(γ), P ∗βn1εn(γ), . . . , P ∗βnk∗εn(γ), (F ∗αn, F
∗
βn)). Let

∆′T =


σ−2

0 0 0 (σ−2
0 , 0)

0 σ−2
0 0 (0, 0)

0 0 b′ (0,−σ−2
0 Ik)

 ,

where b′ = (b′1, . . . , b
′
k∗) with bl =

σ−3
0 η3

(η4−1)−η23
e′kl. Define T = ∆PF∆T . We shall show that Gn = Vn,21T and

G∗n = V ∗n T for this T .

Let Jn = In− 1
n lnl

′
n and Pn be any n×n matrix with trace zero. The following identities are useful to show

the desired results: (a) vecD(P ∗αn) = 2
(η4−1)−η23

vecD(Wn) − σ−1
0 η3

(η4−1)−η23
Jne

τ0MnWnXnβ0; (b) vecD(P ∗βnl) =

Jne
τ0MnX∗nl; (c)

∑k∗

l=1 vecD(P ∗βnl)e
′
kl = Jne

τ0MnXn; (d) σ2
0F
∗
αn + µ3 vecD(P ∗αn) = σ2

0e
τ0MnWnXnβ0; (e)

F ∗βn −
η23

(η4−1)−η23

∑k∗

l=1 vecD(P ∗βnl)e
′
kl = eτ0MnXn; (f) vecD

′(Pn)F ∗βn = η4−1
(η4−1)−η23

vecD
′(Pn)eτ0MnXn; (g)

µ3 vecD
′(Pn)F ∗αn + σ4

0 tr(P snP
∗
αn) + (µ4 − 3σ4

0) vecD
′(Pn) vecD(P ∗αn) = σ4

0 tr(P snWn).

Since g∗
′

n (γ)∆PF = ε′n(γ)(P ∗αnεn(γ), P ∗τnεn(γ), P ∗βn1εn(γ), . . . , P ∗βnk∗εn(γ), F ∗αn, F
∗
βn) as shown above and
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P ∗βnl’s are diagonal matrices, we have

Vn,21∆PF = E[gn(γ0)(g∗
′

n (γ0)∆PF )]

=
1

n



σ4
0 tr(P sn1P

∗
αn) σ4

0 tr(P sn1P
∗
τn) σ4

0 vecD
′(P sn1)(vecD(P ∗βn1), . . . , vecD(P ∗βnk∗)) µ3 vecD

′(Pn1)(F ∗αn, F
∗
βn)

...
...

...
...

σ4
0 tr(P sn,kpP

∗
αn) σ4

0 tr(P sn,kpP
∗
τn) σ4

0 vecD
′(P sn,kp)(vecD(P ∗βn1), . . . , vecD(P ∗βnk∗)) µ3 vecD

′(Pn,kp)(F ∗αn, F
∗
βn)

µ3F
′
n vecD(P ∗αn) µ3F

′
n vecD(P ∗τn) µ3F

′
n(vecD(P ∗βn1), . . . , vecD(P ∗βnk∗)) σ2

0F
′
n(F ∗αn, F

∗
βn)



+
µ4 − 3σ4

0

n



vecD
′(Pn1) vecD(P ∗αn) vecD

′(Pn1) vecD(P ∗τn) vecD
′(Pn1)(vecD(P ∗βn1), . . . , vecD(P ∗βnk∗)) 0

...
...

...
...

vecD
′(Pn,kp) vecD(P ∗αn) vecD

′(Pn,kp) vecD(P ∗τn) vecD
′(Pn,kp)(vecD(P ∗βn1), . . . , vecD(P ∗βnk∗)) 0

0 . . . 0 0


.

The Vn,21T = (Vn,21∆PF )∆T is a (kp+1)×3 block matrix. By (g), the (j, 1)th block of Vn,21T for 1 ≤ j ≤ kp

is 1
nσ

2
0 tr(P snjWn); the (j, 2)th block of Vn,21T for 1 ≤ j ≤ kp is 1

nσ
2
0 tr(P snjMn); by (c) and (f), the (j, 3)th

block of Vn,21T for 1 ≤ j ≤ kp is 0; by (d), the (kp + 1, 1)th block of Vn,21T is 1
nF
′
ne
τ0MnWnXnβ0;

the (kp + 1, 2)th block of Vn,21T is 0; by (e), the (kp + 1, 3)th block of Vn,21T is − 1
nF
′
ne
τ0MnXn. Thus

Vn,21T = Gn.

Furthermore, as g∗n(γ) is a special case of gn(γ), G∗n = V ∗n T . Then Λ∗n = G∗
′

n V
∗−1
n G∗n = G∗

′

n T =

(G∗
′

n ∆PF )∆T = E
∂(g∗

′
n (γ0)∆PF )
∂γ0

∆T , which has the explicit expression in (30) by some computation. The

asymptotic distribution of γ̂∗n follows by Proposition 6. �

Proof of Proposition A.1. The consistency of the QMLE γ̂n will follow from the uniform convergence

that supφ∈Φ
1
n |Qn(φ)− Q̄n(φ)| = oP (1) and the identification uniqueness condition.

We first show the uniform convergence. As yn = e−α0Wn(Xnβ0 + e−τ0Mnεn),

1

n
[Qn(φ)− Q̄n(φ)] =

2

n
(Xnβ0)′e−(α0Wn)′e(αWn)′e(τMn)′Hn(τ )eτMneαWne−α0Wne−τ0Mnεn

+
1

n
ε′ne
−(τ0Mn)′e−(α0Wn)′e(αWn)′e(τMn)′Hn(τ )eτMneαWne−α0Wne−τ0Mnεn

− σ2
0

n
tr[e−(τ0Mn)′e−(α0Wn)′e(αWn)′e(τMn)′Hn(τ )eτMneαWne−α0Wne−τ0Mn ]

− σ2
0

n
tr{e−(τ0Mn)′e−(α0Wn)′e(αWn)′e(τMn)′ [In −Hn(τ )]eτMneαWne−α0Wne−τ0Mn}.

By Lemma 10, 1
n [Qn(φ)− Q̄n(φ)] = oP (1) uniformly on Φ.
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We now show that 1
n Q̄n(φ) is uniformly equicontinuous. By the mean value theorem, for φ,φ∗ ∈ Φ,

1

n
[Q̄n(φ∗)− Q̄n(φ)]

= 2

p∑
i=1

(Xnβ0)′e−(α0Wn)′e(α̃Wn)′e(τ̃Mn)′Hn(τ̃ )eτ̃Mn
∂eα̃Wn

∂αi
e−α0WnXnβ0(α∗i − αi)

+
2σ2

0

n

p∑
i=1

tr[e−(τ0Mn)′e−(α0Wn)′e(α̃Wn)′e(τ̃Mn)′eτ̃Mn
∂eα̃Wn

∂αi
e−α0Wne−τ0Mn ](α∗i − αi)

+
1

n

q∑
i=1

(Xnβ0)′e−(α0Wn)′e(α̃Wn)′e(τ̃Mn)′(2Hn(τ̃ )
∂eτ̃Mn

∂τi
+
∂Hn(τ̃ )

∂τi
eτ̃Mn)eα̃Wne−α0WnXnβ0(τ∗i − τi)

+
2σ2

0

n

q∑
i=1

tr[e−(τ0Mn)′e−(α0Wn)′e(α̃Wn)′e(τ̃Mn)′ ∂e
τ̃Mn

∂τi
eα̃Wne−α0Wne−τ0Mn ](τ∗i − τi),

where φ̃ is between φ∗ and φ. By Lemma 9, Hn(τ ), eαWn and eτMn are UB uniformly over their respective

parameter spaces. By the proof of Lemma 10, ∂eαWn

∂αi
, ∂eτMn

∂τi
and ∂Hn(τ )

∂τi
are UB uniformly over their

respective parameter spaces. Then there exists some constant c such that

1

n
|Q̄n(φ∗)− Q̄n(φ)| ≤ c(||α∗ −α||+ ||τ ∗ − τ ||).

Thus 1
n Q̄n(φ) is uniformly equicontinuous.

Finally, we show that the identification uniqueness condition holds. Let λ1, . . . , λn be the eigenvalues of

An(φ) = e−(τ0Mn)′e−(α0Wn)′e(αWn)′e(τMn)′eτMneαWne−α0Wne−τ0Mn . Since An(φ) is positive definite,

λi’s are all positive. Then by the inequality of arithmetic and geometric means,

1

n
tr(An(φ)) =

1

n

n∑
i=1

λi ≥ (

n∏
i=1

λi)
1/n = |An(φ)|1/n

= [e− tr(τ0Mn)e− tr(α0Wn)etr(αWn)etr(τMn)etr(τMn)etr(αWn)e− tr(α0Wn)e− tr(τ0Mn)]1/n

= 1,

because tr(αMn) = tr(τWn) = 0. In addition,

(Xnβ0)′e−(α0Wn)′e(αWn)′e(τMn)′Hn(τ )eτMneαWne−α0WnXnβ0 ≥ 0.

Thus, 1
n Q̄n(φ) ≥ σ2

0 . When φ = φ0, 1
n Q̄n(φ) = σ2

0 . Assumption 6 implies that whenever φ 6= φ0,

limn→∞
1
n Q̄n(φ) 6= σ2

0 . Thus the identification uniqueness condition holds.
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With the uniform convergence and identification uniqueness condition, the consistency of φ̂n follows.

The consistency of β̂n follows by plugging φ̂n into the function β̂n(φ) in (A.4). �

Proof of Proposition A.2. To obtain the asymptotic distribution, we use (A.7) for
√
n(γ̂n−γ0) derived

from a Taylor expansion of the first-order condition. We first show that 1
n
∂2Qn(γ̃n)
∂γ∂γ′ = 1

n
∂2Qn(γ0)
∂γ∂γ′ + oP (1) =

1
n E ∂2Qn(γ0)

∂γ∂γ′ + oP (1) = Cn + oP (1). Noting that for any α∗,α ∈ [−δ, δ]p, by expanding (α∗Wn)i =

[(α∗ −α)Wn + αWn]i, we have

||(α∗Wn)i − (αWn)i||∞ ≤
i∑

k=1

(
i

k

)
||αWn||i−k∞ ||(α∗ −α)Wn||k∞

= i||(α∗ −α)Wn||∞
i∑

k=1

1

k

(
i− 1

k − 1

)
||αWn||i−k∞ ||(α∗ −α)Wn||k−1

∞

≤ i||(α∗ −α)Wn||∞(||αWn||∞ + ||(α∗ −α)Wn||∞)i−1.

Then ||eα∗Wn − eαWn ||∞ ≤ ||(α∗ − α)Wn||∞||
∑∞
i=1

1
(i−1)! (||αWn||∞ + ||(α∗ − α)Wn||∞)i−1 = ||(α∗ −

α)Wn||∞e||αWn||∞+||(α∗−α)Wn||∞ ≤ ||α∗−α||max1≤j≤p ||Wnj ||∞e||αWn||∞+||(α∗−α)Wn||∞ . Thus ||eα̃nWn−

eα0Wn ||∞ = oP (1). With this result, we can show that 1
n
∂2Qn(γ̃n)
∂γ∂γ′ = 1

n
∂2Qn(γ0)
∂γ∂γ′ + oP (1).35 Further-

more, each element of 1
n
∂2Qn(γ0)
∂γ∂γ′ −

1
n E ∂2Qn(γ0)

∂γ∂γ′ is a linear-quadratic function of εn, then 1
n
∂2Qn(γ0)
∂γ∂γ′ =

1
n E ∂2Qn(γ0)

∂γ∂γ′ + oP (1) by Lemma 4. Hence, 1
n
∂2Qn(γ̃n)
∂γ∂γ′ = 1

n E ∂2Qn(γ0)
∂γ∂γ′ + oP (1). It follows that

√
n(γ̂n − γ0) = −C−1

n

1√
n

∂Qn(γ0)

∂γ
+ oP (1),

where each element of ∂Qn(γ0)
∂γ is a linear-quadratic form of εn as shown in (A.8)–(A.10). We now show that

E ∂Qn(γ0)
∂γ = 0. As εni’s are i.i.d. with mean zero, it remains to show that tr(e−(τ0Mn)′e−(α0Wn)′ ∂e(α0Wn)′

∂αi
e(τ0Mn)′) =

tr(∂e
α0Wn

∂αi
e−α0Wn) = 0 and tr(∂e

τ0Mn

∂τi
e−τ0Mn) = 0. W.l.o.g., we show that tr(∂e

α0Wn

∂αi
e−α0Wn) = 0. As

∂eα0Wn

∂αi
=
∑∞
j=1

∑j−1
k=0

1
j! (α0Wn)kWni(α0Wn)j−1−k, (α0Wn)je−α0Wn = e−α0Wn(α0Wn)j and tr(AB) =

tr(BA) for any two conformable square matrices A and B, we have

tr(
∂eα0Wn

∂αi
e−α0Wn) = tr

(
Wnie

−α0Wn

∞∑
j=1

1

j!

j−1∑
k=0

(α0Wn)j−1
)

= tr
(
Wnie

−α0Wn

∞∑
j=1

1

(j − 1)!
(α0Wn)j−1

)
= tr(Wni) = 0.

35Please see the proof of Proposition 2 in the supplement for a similar argument.
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Applying the central limit theorem in Lemma 5, we have

√
n(γ̂n − γ0)

d−→ N(0, lim
n→∞

C−1
n ΩnC−1

n ),

where Ωn = 1
n E
(∂Qn(γ0)

∂γ
∂Qn(γ0)
∂γ′

)
. The explicit expressions for Cn and Ωn can be derived by Lemma 3. �
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