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Abstract

This paper considers the large sample properties of the matrix exponential spatial specification (MESS)
and compares its properties with those of the spatial autoregressive (SAR) model. We find that the quasi-
maximum likelihood estimator (QMLE) for the MESS is consistent under heteroskedasticity, a property
not shared by the QMLE of the SAR model. For the MESS in both homoskedastic and heteroskedastic
cases, consistency is proved and asymptotic distributions are derived. We also consider properties of the
generalized method of moments estimator (GMME). In the homoskedastic case, we derive a best GMME
that is as efficient as the maximum likelihood estimator under normality and can be asymptotically more
efficient than the QMLE under non-normality. In the heteroskedastic case, an optimal GMME can be more
efficient than the QMLE asymptotically and the possible best GMME is also discussed. For the general
model that has MESS in both the dependent variable and disturbances, labeled MESS(1,1), the QMLE
can be consistent under unknown heteroskedasticity when the spatial weights matrices in the two MESS
processes are commutative. Also, properties of the QMLE and GMME for the general model are considered.
The QML approach for the MESS model has the computational advantage over that of a SAR model. The
computational simplicity carries over to MESS models with any finite order of spatial matrices. No parameter
range needs to be imposed in order for the model to be stable. Furthermore, the Delta method is used to
derive test statistics for the impacts of exogenous variables on the dependent variable. Results of Monte
Carlo experiments for finite sample properties of the estimators are reported. Finally, the MESS(1,1) is
applied to Belgium’s outward FDI data and we observe that the dominant motivation of Belgium’s outward
FDI lies in finding cheaper factor inputs.
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1. Introduction

The Matrix Exponential Spatial Specification (MESS) has been initially proposed by LeSage and Pace
(2007) as a substitute to the well-known spatial autoregressive (SAR) specification. The difference between
the two rests on the type of decay which characterizes the influence of space. The MESS uses an exponential
decay while the SAR specification is based on a geometrical decay. The motivation of these authors to use
the MESS is its computational simplicity. Indeed, in contrast to the SAR, the quasi-maximum likelihood
(QML) function of the MESS does not involve any Jacobian of the transformation and thus reduces to a
nonlinear regression estimation. This is so even for its extension to models with a finite number of spatial
weights matrices. A second advantage of the MESS is the absence of constraints on the parameter space of
the coefficient that captures interactions between observations since the reduced form of the MESS always
exists (see Chiu et al., 1996). Furthermore, no positivity constraint on the Jacobian of the transformation
needs be imposed as it does not appear in the quasi log-likelihood function. In Section 2, we nevertheless show
that MESS and SAR models cannot be seen as perfect substitutes since neither a one-to-one correspondence
between the parameters capturing interactions nor between impacts (except in some specific cases) can be
derived. Furthermore, a MESS model is always a stable spatial process, but a SAR model with strong
spatial interaction might be unstable.?

A third advantage of the MESS, proved in this paper, is that the quasi-maximum likelihood estimator
(QMLE) is consistent even in the presence of unknown heteroskedasticity, a feature not shared by the SAR
model (see Lin and Lee, 2010, p. 36). These two authors have, however, shown that a generalized method
of moments (GMM) estimator (GMME) with properly modified quadratic moment conditions in a SAR
specification could still be consistent in presence of unknown heteroskedasticity.®> Using quadratic moment
conditions similar to those in Lin and Lee (2010), we derive an optimal GMME consistent in presence
of unknown heteroskedasticity and also generally more efficient with respect to the QMLE (with either
normal or non-normal disturbances). The relative efficiency of the optimal GMME results from the optimal
weighting of the GMM estimation method which uses the same moments that the QMLE integrates. In
the homoskedastic case, we derive a best (optimal) GMME that is as efficient as the MLE under normality

and can be more efficient than the QMLE under non-normality.? The best GMME takes a much simpler

2From this view, we may argue that the MESS would be useful only when observed outcomes do not show unstable
phenomena.

3Kelejian and Prucha (2010) also develop a GMME robust to the presence of heteroskedasticity but their main focus was
on spatial autocorrelation in the error terms.

4Lee (2007) derives the best optimal GMME for the SAR model with normal i.i.d. disturbances, which is as efficient as
the QMLE. Liu et al. (2010) considers the best optimal GMME for the SAR model with SAR disturbances that can be more
efficient than the QMLE under non-normality, which is extended to high order SAR models in Lee and Liu (2010).
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form than that for the SAR model and the optimal orthogonal conditions do not involve any estimated
parameters5 .

Even though LeSage and Pace (2007) present the maximum likelihood and Bayesian estimations of the
MESS, not any asymptotic theory has been derived for this specification. In this paper, we focus our
attention on the general model where a MESS is present in both the dependent variable and in the error
terms (MESS(1,1) for short), and develop large sample properties for QML and GMM methods under both
homoskedastic and heteroskedastic cases.® In the homoskedastic case, the best GMME for models with
normal disturbances or commutative spatial weights matrices in the MESS(1,1) is as efficient as the QMLE
but generally more efficient than the QMLE for other ones. In the (unknown) heteroskedastic case, the
QMLE for the MESS(1,1) model can be consistent only when the spatial weights matrices for the MESS in
the dependent variable and in disturbances are commutative, but it is less efficient than an optimal GMME.
If different variances in the heteroskedastic case could be estimated consistently, a best GMME could also
be implemented.” We also perform Monte Carlo experiments to assess the small sample performance of our
proposed estimators.

Analysis of significance of determinants’ causal effects on the dependent variable is of great interest for
economists. In this paper, we derive a lemma allowing to perform inference on the matrix of impacts implied
by the reduced form of the MESS(1,1). The lemma is based on an adapted version of the Delta method
and can be used to test the significance of (functions of) impact’s matrix elements as long as the number of
constraints is not depending on the sample size. This lemma is valuable for applied economists since until
now, with the exception of LeSage and Pace (2009) who provide inference for scalar summaries of these
impacts in the SAR model, there does not exist any statistical test to assess the significance of (functions
of) impacts.

The developed estimators are finally applied to a modified gravity equation aimed at explaining Belgium’s
outward FDI. Blonigen et al. (2007) propose four different classifications of FDI which can be distinguished
based on the sign of spatial autocorrelation and market-potential of host countries. In addition to obtain-
ing significant and expected signs for the traditional variables included in the gravity model when spatial
autocorrelation is accounted for, namely GDP, population and bilateral distance, we find a significant neg-

ative spatial autocorrelation and a positive but non-significant market potential effect for hosts countries.

5See Lee (2003, 2007) for further details.

6 Appendix A considers the QML estimation of a high order MESS, namely MESS(p,q), with p and ¢ being the orders of
the MESS in the dependent variable and in the errors respectively. While the parameter spaces for high order SAR models
can be hard to find (Lee and Liu, 2010; Elhorst et al., 2012), high order MESS models have the advantage that the parameter
spaces are not restricted.

"For the SAR model under unknown heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME.
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Thus vertical FDI is the dominant type of outward FDI for Belgium. We however find that least squares
estimators (which do not account for spatial autocorrelation in FDI) are misleading. We further compare
MESS(1,1) and SARAR results and show that their economic conclusions in terms of impacts are very sim-
ilar. However, the MESS, for several reasons, namely computational, technical and statistical, can be more
appealing. Finally, statistical significance on impacts is analyzed through the application of the derived
lemma for inference.

The rest of the paper is organized as follows. Section 2 compares MESS and SAR models in a more
formal way. Section 3 derives the QML and GMM estimators under both homoskedasticity and unknown
heteroskedasticity. It also derives a lemma to perform inference on the elements of the matrix of impacts
of explanatory variables obtained from the reduced form of the MESS(1,1). Section 4 presents Monte Carlo
experiments while Section 5 presents the application of our estimators and applies the lemma for inference
on the determinants of Belgium’s outward FDI. Section 6 concludes. Some lemmas and proofs are collected

in the appendices.®

2. Comparison of MESS and SAR Specifications

The MESS in LeSage and Pace (2007) is

eaW"yn :Xn6+€n7 €n = (€n1a---7€nn)/a (1)

where n is the sample size, y,, is the n-dimensional vector of observations on the dependent variable, X, is
an n X k matrix of exogenous variables with corresponding coefficient vector 3, W, is an n x n spatial weights
matrix modeling interactions among observations (with zero diagonal elements), €,;’s are independent with

mean zero, and « is the parameter measuring the intensity of interactions between observations. The matrix

exponential e®"n = PO =, where AY for an n x n square matrix A, is defined as the n x n identity

matrix I,,, is always invertible, with its inverse being e=*"» (Chiu et al., 1996). As a result, the variance-
covariance (VC) matrix of y,, which equals to e=*"Wn E (e,¢,,) e=*Wn with aq being the true value of «, is
always positive definite. No restrictions on the parameter space of a should thus be imposed.

In this paper, we consider a general model that has MESS in both the dependent variable and the
disturbances that we label MESS(1,1) (which should be viewed as an analog of the SAR model with SAR

8Except the proof of Proposition 8 which is presented in Appendix C, proofs of remaining propositions are similar to those
in Lee (2004) and Lee (2007). Those proofs are provided in a supplementary file, which is available upon request.



disturbances, i.e., SARAR model):
eaWnyn = Xnﬁ + Un, eTM"un = €n, €n = (Enla teey enn)/a (2)

where W,, and M,, are n x n spatial weights matrices. The M,, may or may not be different from W,. For
purposes of comparison and later reference, we put down the SARAR model with the same W,,, M,,, X,,
Yn and €,:

(In - /\Wn)yn = X8+ up, (In - pMn)un = €n. (3)

The parameter spaces of A and p should be restricted so that the VC matrix of y,,, namely (I,, — AW,,)~*(I,, —
pM,) "L E (en€),) (In—pM]) " (L, —AW])~! exists. For the SARAR model with a row-normalized W,, matrix,
the parameter space for \ is typically considered to be (—1,1).%

The quasi log likelihood function of the MESS(1,1) presented in (2), as if the €,;’s were i.i.d. normal, is

n !
L,(0) = —3 In(270?) + In |e®Wn | + In |e™Mn| — (eWny, — X, 8) e™Mne™Mn(eoWny, — X, B),

1
202
where 0 = (7/,02) with v = (a,7,8")". Let 6y be the true parameter vector. Since |e®Wn| = et (Wn) and
le™Mn| = €7 tr(Mn) a5 long as W, and M, have zero diagonals, the Jacobian of the transformation disappears

and the quasi log likelihood function is simplified to

L.(0) = —g In(270?) — (eWny,, — XnB)'eTM':LeTM" (eWny, — X,.5). (4)

1
202
By contrast, the quasi log likelihood function of the SARAR model shown in (3) involves the log determinant
of the Jacobian In|(I, — A\W,,)(I, — pM,)| = ln |1, — AW, | + In|I,, — pM,,|, which may make the QMLE
computationally intensive for large sample sizes.

Another difference between these two specifications is that one does not need to normalize the interaction
matrices in the MESS. In the SARAR model, the purpose of normalizing the interaction matrices is to
standardize the parameter spaces for A and p so that they correspond to (—1,1), which facilitates the

interpretation of these parameters. However, in the MESS, since no parameter constraint is involved, the

9See Kelejian and Prucha (2010) for a detailed discussion about the parameter space for A. For high order SARAR models,
finding the parameter spaces can be hard. Elhorst et al. (2012) have outlined a procedure for finding the stationary region, but
the parameter spaces can be complicated even for a SAR model with two spatial weights matrices for the dependent variable.
By contrast, parameters in high order MESS models, labeled MESS(p,q), where p and ¢ are the orders of the MESS in the
dependent variable and disturbances respectively, do not need to be restricted and the effort to find the parameter spaces is
saved. Appendix A considers the QML estimation of these high order MESS models.
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normalization of the interaction matrices may not play a special role.

LeSage and Pace (2007) present the MESS as a computationally simpler substitute for the SAR model.
Using a row-normalized interaction matrix W,,, they propose the approximated relation A = 1 — e®. They
argue that this approximation is derived by equating the length of ||e®V» ||, and ||, — AW, ||, With ||.||co
being the maximum row sum matrix norm. However, this approximation is not always right since the matrix
norm should be taken over the absolute value of matrix elements. By contrast, if one turns to the impact
analysis, an equivalence between the two specifications can be traced back at least in some specific cases.

Before presenting this correspondence, it is important to discuss the features of impact analysis in spatial
autoregressive (SAR or MESS) regressions. Impact analysis, which is one of the main focuses for economists,
is based on the reduced form of the estimated econometric specification. For the MESS(1,1) case, the reduced

form is

y’n = 67&Wﬂ (X’YL/B + 67TMne’n.)' (5)

One then computes the matrix of impact for each regressor X,x, k = 1,--- ,k, by calculating the partial

derivative of y,, with respect to the concerned regressor. For a continuous regressor X,,x, this matrix is

—Un OYn —aW,
T T (6)

The diagonal elements of this matrix contain the direct effects including own-spillover effects, which are
inherently heterogeneous in presence of spatial autocorrelation due to differentiated friction terms in the
interaction matrix. This is what Debarsy and Ertur (2010) call interactive heterogeneity. Off-diagonal
elements of this matrix represent indirect effects, meaning the impact of a change in explanatory variable
for individual j on the dependent variable for individual . These direct and indirect effects are presented

in the following expressions:

ayn7i — (=Yn
Xk (:g("’“)“’ (@)
8yn’i — (=Yn
aXnk,j = (“‘g(nk)zj (8)

For the SARAR model, its associated reduced form is

Yn = (In - AWn)il[XnB + (In - pMn)ilfn]v (9)



and the implied impact matrix for regressor X, is

—un _ OUn

_ —1
= 330 = Br(L, — AW,) . (10)

To summarize the information conveyed by these matrices of impacts, LeSage and Pace (2009) propose
extracting several scalar measures, as the average direct effect (mean of the diagonal elements), average
total effect (average of the row or column sums) and average indirect effect (average of the column or row
sums excluding the diagonal element).

Consider a row-normalized interaction matrix W,, in the MESS(1,1) model. Suppose that a shock of the
same magnitude Az is applied on the kth explanatory variable X, to all spatial units. The new explanatory
variable is now X,x + l,,Ax, with [,, being the n-dimensional vector of ones. For the MESS(1,1), from its
reduced form (5), one calculates a total impact of Ay, = e~ *Wr[, Azf;,. The average total effect is thus
equal to %l;Ayn = e *AzfB;.'° Correspondingly, the average total impact of X,,; in the SARAR model is
L1l Ay, = 755 AxB),. Equating the two gives the relation v = In(1 — X) or A = 1 — e®. Thus, there is a
negative relation between A and a. At A =0, a = 0 and, when 0 < A < 1, « will take on negative values
and vice-versa. For an interaction matrix W,, that is not row-normalized, there is no such a relation.

Even though a relation between A and « can be found for a row-normalized W,,, we nevertheless cannot
consider that these two models as substitutes of each other. The underlying reason lies in the comparison
of parameter spaces. As mentioned above, for the SARAR model with row-normalized W,,, A is usually
restricted to the range (—1,1). However, in the MESS(1,1), @ € (—o0, o). So, in the case of row-
normalized W,,, while A < —1 is not allowed for a SARAR model, o > In(2) can be valid, meaning that
parameter spaces of a and A do not correspond. So, for high negative spatial autocorrelation, we could

observe substantial difference between these two models.!! Furthermore, in a SAR model, if A > 1, it would

be an unstable model, while unstability does not occur for the MESS with any finite value of a.

10As W,, is row-normalized, W,]fln = Whnln =1ln, k € N.
HFor a non-negative and row-normalized interaction matrix W,,, the parameter space for A may be taken as the interval
( L 1) with ftmin,n being the minimal real eigenvalue of W,,. However, it does not change the conclusions regarding the

Fmin,n

difference between parameter spaces for A and a.




3. Estimations of the MESS(1,1) Model

We consider the QML estimation as well as the GMM estimation of the MESS(1,1) in this section. From

(4), it is apparent that the QMLE of + is the minimizer of the function
Qn(7) = (g = XpB) e Mnem™ M (e Wy, — X, ). (11)

The derivatives of @Q,,(y) with respect to o, 7 and § at 7o are, respectively,

oQn, /

76280(70) = 2(X,, 00 + e ToMne YW eToMue, | (12)

oQn

w = 2¢ Myen, (13)

anéPYO) _ 72X,/1€T0M;‘6n. (14)
When ¢,;’s are i.i.d. with mean zero and variance 03, as E(e, My¢,) = tr[M,, E(en€))] = o tr(M,) = 0

and E(e,e ™MW/ e™oMue, ) = o2 tr(W/e™Mne= M) = g2 tr(W/) = 0, the expected value of %yg) is

zero, which verifies that the minimizer of E @, (v) can be 79. When ¢,;’s are independent with mean zero

2

but different variances o7,’s, E(e), Mpe,) = tr(M,%,) = 0 since the diagonal elements of M,, are all zero,

2
nn

and X,, = Diag(c?,,...,02,) is a diagonal matrix containing the different variances as diagonal elements.
In addition, E(e,e ™MW’ e™Mne,) = tr(e"™MaW/ e™Mn3,), which may not be zero in general. But if
WnM, = M,W,, then W/e™Mn = ¢mM ! and B(e,e™MaW! e™Mne,) = tr(W!%,) = 0. Therefore,
when the matrix W, in the spatial lag process can be commutative with the matrix M, in the spatial error
process, the QMLE for v, derived from the minimization of @, (7), can be consistent even under unknown
heteroskedasticity. This includes the special cases that there is no MESS process in the disturbances or that
M,, = W,,. This robustness of the QMLE for the MESS(1,0) and MESS(1,1) to unknown heteroskedasticity
is a nice feature not shared by the QMLE for the SARAR model.

The function to be minimized, namely (11), may be written as
Qn('y) _ (yn N efaWanB)/(efaW,Leer,,Leer:lefaW;)fl(yn o eiaW"Xnﬂ).

Using the reduced form of the MESS(1,1), namely y, = e~*Wn (X, 8y + e 7Mn¢,), and assuming that
E(enel,) = 021, the VC matrix of y,, is o2e=®0Wne=70Mne=m0M, c=a0W, and the QMLE can be seen as a

continuously updating version of the generalized nonlinear least squares (GNLS). The similarity between



the QML and GNLS is due to the special structure of the matrix exponential specification. By contrast,
there is no such a similarity for the SARAR model (3).'?

In addition to the QML estimation, we may also consider the GMM estimation of the MESS(1,1) using
both linear and quadratic moments, as for the SARAR model. The linear moments would be of the form
Flen(v) = 0, where €,(7) = e™n (e®Wny,, — X,,8) and F, is an n x k; matrix of instruments constructed
as functions of W,, and X, as in the two-stage least squares (2SLS) approach. The quadratic moments
have the form €, (y)Pnien(y) = 0; @ = 1,--- , kp, where P,; has trace zero when €,,’s are i.i.d., implying
that E[€/,(Y0) Pri€n(70)] = 03 tr(P,i) = 0. On the other hand, if the diagonal elements of P,; are all zero
when €,;’s are independently distributed with possibly different variances, we get E[e] (7o) Pri€n(70)] =
tr(P,;2,) = 0.

The basic regularity conditions for estimation are assumed below. The specific sets of hypotheses required

for both methods will be given subsequently.

Assumption 1. Matrices {W,} and {M,} are bounded in both row and column sum norms. The diagonal

elements of W,, and M, are zero.

Assumption 2. FElements of X,, are uniformly bounded constants, X, has full column rank, and besides,

lim,, oo X, X, /0 exists and is nonsingular.

Assumptions 1 and 2 follow from the literature, see, e.g., Kelejian and Prucha (1998) and Lee (2004).

3.1. QMLE

For the QMLE from (4), we may just investigate the minimizers of the functions {Q,(v)}. For a fixed

¢ = (o, 7)’, minimizing @, () yields
Bn(¢) _ (X;LSTM;eTMan)le;leTM;leTMneaWnyn. (15)

Substituting /3, (¢) into Q, (), we obtain a function of only ¢:

Qn(¢) _ yileaW,/L eTM,’L Hn(T>6TM”€aW”yn, (16)

12A function for the SARAR model with a structure similar to Qy () is Q% (¥) = [(In — AWn)yn — Xn B8] (In — pM~) (I, —
PM)[(In — AWa)yn — Xnf] with & = (\,p, 8. At v, B(Z4850) = 202 tx[Wi (I — AgWn)~'] and B(225(0)) =

—20'(2) tr[ My (In — poMn)*l], where tr[W, (I, — )\OWn)*l} # 0 and tr[My (In — poMn)*l] # 0 in general. Thus the minimizer
of Q7 () is not expected to be a consistent estimator of ¢ in the SARAR model (3).



where H, (1) = I, —e™n X, (X! e™Mnem™n X, ) =1 X! ¢™Mu is a projection matrix. The function @, (¢) can be
used for the analysis of the consistency of the QMLE. Although we may not need to restrict the parameter
space of ¢ in practice, ¢ should be bounded in analysis so that e*"» and e™™~ would be bounded in both row

and column sum norms, since ||e*Vn|| = || 3272 alZV:L 1<, w = elellWnll which is bounded if

TMn||

« is bounded, and so is ||e if 7 is bounded, where || - || denotes either the row or column sum matrix

norm.

Assumption 3. There exists a constant 6 > 0 such that |a] < 9§, |7] < § and the true ¢g is in the interior

of the parameter space ® = [—6,0] x [—6,0].

For consistency of the QMLE, we need to show that the difference between @, (¢)/n and some non-
stochastic function Q,,(¢)/n converges to zero uniformly over the parameter space ®.'* The Q,(¢) will have
different forms in the homoskedastic and heteroskedastic cases. By Assumptions 2 and 3, %X,’LBTML e Mn X,
is bounded. The Q,(¢) is a well-defined function for large enough n if the limit of %X;LeTMv/l e™Mn X, exists
and is nonsingular. In addition, we require that the sequence of the smallest eigenvalues of e™Mnem™Mn he
bounded away from zero uniformly in 7, so that H,(7) is bounded in both row and column sum norms

TM;eTM

uniformly in 7. Ase n is positive definite, its smallest eigenvalue is positive. The condition further

limits all the eigenvalues to be strictly positive uniformly over the parameter space for all n.

Assumption 4. The limit lim,,_, oo %X;LeTM; e™Mn X, exists and is nonsingular for any T € [—4, 6], and the

TM

sequence of the smallest eigenvalues of e™Mnem™Mn s bounded away from zero uniformly in T € [—4, d].

3.1.1. QMLE: Homoskedastic Case
In this part, we establish the consistency and asymptotic normality of the QMLE for the MESS(1,1)

with i.i.d. disturbances.

Assumption 5. The €,;’s are i.i.d. with mean zero and variance 08 and the moment E \em|4+” for some

n > 0 exists.

Define Q,,(¢) = ming E Q,,(7), then

Qn(¢) _ (Xnﬂo)/e(afao)W:lGTMT/IHn(T)eTM,,Le(afao)W,LXnﬁO

’ ! ’
+ 0_3 tI‘(e_ToM“'e(a_ao)W”' eTMn 6TM”'€(Q_QO)W”’€_T0M”').

13The main purpose for Assumption 3 is to guarantee that uniform convergence of relevant objects is possible on a compact
parameter space.
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The identification of ¢ can be based on the minimum values of {Q,(¢)/n}. To ensure the identification

uniqueness, the following condition is assumed.

Assumption 6. Either (i) lim, o n~ (X, 80) e @ 0)Wne™Mn [ (7)e™Mnele—co)Wn X 80 £ 0 for any T
and o # ag, and lim, oo n " tr(e(T_TO)Mfte(T_TO)M”) > 1 for any T # 19, or

(it) 1im,, s 00 n~ " tr(e”T0Mnel@—a0) Wy oMy o7 Mn g(a—00)Wn o=70Mn) > 1 for any ¢ # .

The identification of ag can come from the first term on the r.h.s. of (17). As H,(r)e™»X,, = 0,
the first term at «q is zero for any 7. Thus the first term is not sufficient to identify 5. Given the
identification of g, 79 can be identified from the second term. As lim, . n’lX;LeTMT,LeTM"Xn is non-
singular, by the partition matrix formula, lim,, . nil(Xnﬁg)'e(a’o‘“)wfll6TM7§Hn(T)eTM"e(a*ao)W"Xnﬂo
is non-zero if and only if lim,, . 71 (X, e(a*”“’)W"Xnﬂo)'eTM;eTM" (X, e(o‘*ao)W"Xnﬂo) is nonsingular.
Thus, the first part of (i) in Assumption 6 relates to asymptotic non-multicollinearity of e(®=*0)W= X, 3
with X,,. In the proof of Proposition 1, it is shown by the inequality of arithmetic and geometric means that
n~ tr(e(m=T0) M e(T=70)Mn) > 1 holds for any 7. The second part of (i) further requires n =1 tr(e(7=70)Mn g(T=70)Mn)
to be strictly greater than 1 in the limit when 7 # 7¢. For a finite n, the arithmetic and geometric means
are equal if and only if all the eigenvalues of (T M, o(T=T0)M: are equal to each other, which implies
that e(™=70)M,(T=m0)M: g proportional to I,,. This assumption rules out this possibility in the limit
whenever 7 # 79. The identification of ¢y can only come from the second term on the r.h.s. of (17),
which is given in (ii) of Assumption 6. This relates to the uniqueness of the VC matrix of y,, namely

’ / .
o2em@0Wne=T0Mn oM, o —a0W,, gince

tr(efroM;,e(ozfozo)l/V;l e'rM,’l GTM"G(aiao)WneiToM")

— tr[e—OzoWne—‘f'oMne—TOM;Le_aowr/z (e_O‘W”e_TM TA/I?IL €_aW’/‘)_1} .

ne_

It is obvious that Assumption 6 (i) fails to hold when Sy = 0. In this case, the identification will rely
solely on (ii). Another case of the failure of (i) even if Sy # 0 occurs is when X,, contains only an intercept
term, i.e., X,, = l,, and W,, is row-normalized. In this case, H,(7)e™=l, = 0. Other cases might be
due to very special structures on W,, or M,,. For example, elements of W,, and M, except the diagonal
ones are all equal to a constant and X,, contains an intercept term. Let W,, = M,, = (n — 1)"1(1,,l!, — I,,)
for instance. Then H, (7)e™ Wk = (=1)k(n — 1)"*H,, (1)e™~. By the expansion form of e(®=@0)Wn,
H,(1)e™Mrelo—an)Wn x - — glao—a)/(n=) [ (7)e™™n X, = 0. Thus the first part in (i) does not hold.

Furthermore, since the eigenvalues of M, are (1—n)~%,...,(1—n)~! and 1, it follows that M} has eigenvalues
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(1—n)"% ..., (1 —n)~F 1. Hence, with this symmetric M,

1 , 1 1 = 28(1 — 7o)k tr(MF)
- (t—710)M,, ,(T—T0)MpY\ _ — 2(r—70)Mpy\ _ — 0 n
ntr(e 0) My, (770 )_ntr(e 0 )_nz )
k=0
1= 25(r — 1)1+ (n — 1)(1 — n)~¥]
“n kz k!
=0

Lm0y L P2 ar—ro)/-m)
n n

i

which is equal to 1 in the limit. Then the second part in (i) does not hold either. In this case, lim, o ~Qn(¢)

is equal to of for any ¢. Looking into Q,,(¢) directly, we have
Qn(¢) _ 672a/(n71)y;l67—M7l‘Hn(T)GTM"yn,

which is monotonically decreasing in «. Then the QMLE of « will diverge to positive infinity, which is not
equal to ag.14

In general, (ii) in Assumption 6 would not hold as long as W,, and M,, are equal. When M,, = W,,,

tr(e_TOMﬁle(a_“‘J)Wé eTM,:L e‘rMne((x—ao)Wne—To]V[n) — tr(e((x-‘rT—ao—To)W:Le((X+T—a0—To)Wn).

As long as a + 7 = ag + 70, %tr(e’TUMT,Le(o‘*"“’)erbeTM;eTM"e(a’ao)w’be*ToM") = 1. So for the case that
M,, = W, the parameter identification depends crucially on Assumption 6 (i). This situation is apparent
as the model becomes y, = e~ *Wn X, By + e~ (@0+70)Wn¢ — Thus, when there are no exogenous variables
and W,, = M, in the MESS(1,1), ap and 79 cannot be identified.

With the identification uniqueness and uniform convergence of [Q,,(#) — Q. (¢)]/n to zero on the param-

eter space ®, the consistency of the QMLE follows.

Proposition 1. Under Assumptions 1-6, the QMLE #%,, of the MESS(1,1) is consistent.

The asymptotic distribution of 4;,, can be derived from applying a Taylor expansion to the first-order

condition wb‘iﬁ") = 0 at the true ~y:
0Qn (n 0Qn *Qn(n) , .
Gu) _ o 99u00) | #QuGu) o
oy oy OO0y

14See Smith (2009) for a discussion of this special case in the SAR model.
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where 7,, is between %,, and 9. Thus

l82Qn(5’n))fliaQn(70) (18)

Let W,, = e™Mnl}, e~ 70Mn and A% = A + A’ for any square matrix A. Under some regularity conditions,

1&9n(n) — ¢ 4 0p(1), where

n = 0y
TR
o2 tr(WEWe) + 2(W,emoMn X, By) (W,e™Mn X, By) * *
= % ol tr(Ws M3) o2 tr(M2 M) *
—2(e™Mn X, YW, e™Mn X, B, 0 2(emoMn X, ) (eToMn X, )

As tr(AB) = vecd' (A”) vec(B) for two conformable matrices A and B, where vec(-) denotes the vectorization

of a matrix, C,, may be written as C,, = %C’{,LCM, where

oo vec(W? oo vec(M? 0
Cin = oveelWs) o vee(Mr) . (19)
V2W,e™Mn X, By 0 —V/2emoMn X

Thus C), is positive semi-definite. The following assumption guarantees that C,, is nonsingular in the limit.

Assumption 7. lim, . + ((WneTﬂM"Xn,Bo)’Hn(To)(WneTDM" XnBo)+ W‘%‘M) (tr(WsW3) tr(MsM5) —
trZ(W;M;))) £0 and lim, o  tr(MSMS) # 0.

As M:M?$ in the above assumption is positive semi-definite but not a zero matrix, tr(M:M$) > 0.
Note that (W,e™M» X, B0) H,(10)(W,e™M~ X, 35) > 0, and tr(WW*)tr(MSM?3) — tr?(Ws M2) > 0 by

the Cauchy-Schwarz inequality. The first-order derivatives of @, () at o are

0Q(0)

— = 2(W,e™Mn X, B) €, + €, Wse,, (20)
aQn('YO) I oags

87’ - 671]\4n€na (21)
aQn(’YO) _ ToMy, !
oy~ A e, (22)

which have mean zero and are linear and quadratic functions of €,. Thus the central limit theorem for

linear-quadratic forms in Kelejian and Prucha (2001) is applicable. Let u3 = E€>,, 4 = E€t. and vecp(A)
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£l 0Qx (v0) is

be a vector containing the diagonal elements of the square matrix A. The VC matrix o NORRE

o 1 8Qn(70) 8Qn(70) 9.2
2. =B(, o oy ) = 208C0 + Q. (23)
where
(‘LL4 - 303) VeCD/(WfL) vecD(WfL) + 4#3(Wn€TONI"XnBO), VeCD(Wi) 0 72,“’3 VeCD/(sz)eTOMnX"
1
an = — 0 0 0
n
—2uz(e™Mn X,,) vecp (W) 0 0

(24)
When €,;’s are normal, u3 = pg — 30§ = 0; when 70 = 0 or W,, and M,, are commutative, vecp(W?$) =
vecp (W) = 0 as W, has a zero diagonal. These cases imply that €1, = 0 and Q,, simplifies to 202C,,. As
Q, is a VC matrix, it is positive semi-definite. We may also directly show that €, is positive semi-definite.
Note that E(e2; —0})?Ee2; > (E[(e2; — Ug)em])Q, ie. (ug—o0g)od > u3, by the Cauchy-Schwarz inequality.
In addition, tr(Diag(W? ) Diag(W$)) = vecp’ (W) vecp(W2), and tr(Diag(Ws)MS) = 0 as M,, has a zero
diagonal, where Diag(A) for a square matrix A denotes a diagonal matrix whose diagonal is equal to that

of A. Then Q,, can be written as €, = %Q’Qann, where

[ V208 ve (W, — Diag(Ws,) + /TG Diag(Ws,)) V203 vee(M;) 0

QZn -
20’0WneToManﬁ() =+ %ﬁ VeCD(WZ) 0 _20-06T0M"Xn

Thus 2, is positive semi-definite.

Proposition 2. Under Assumptions 1-7, \/n(¥m — 7o) 4 N(0,limy, 0o C; 12, C0 Y. If €, ~ N(0,021,);

70 = 0; or W, and M, are commutative, then \/n(, — o) LN N (0,202 lim,, 00 C;;1).

When the disturbances ¢,;’s are normal, the generalized information matrix equality holds, thus the
limiting distribution of the MLE %, does not depend on moments of the disturbances higher than the
second order. Even when the disturbances €,;’s are not normally distributed, if there is no MESS process
in the disturbances or the spatial weights matrices M,, and W,, are commutative, the limiting distribution

of the QMLE does not involve moments of the disturbances higher than the second order.

3.1.2. QMLE: Heteroskedastic Case when W,, and M, are Commutative

When the disturbances €,;’s are independent but may have different variances, the following assumption

is made about the disturbances.
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Assumption 8. The €,;’s are independent (0,02,) and the moments E |e,;|*T" for some n > 0 exist and

are uniformly bounded for all n and 7.

As argued earlier, when W,, and M,, can commute, or 7o = 0, the minimization of the function @, ()
may yield a consistent estimator 4,, of v under unknown heteroskedasticity, since the first-order derivatives
of @, (7) at o have zero expectation. In practice for some situations, one may use a single spatial weights
matrix W,, for both the main equation and the disturbance process. This case implies the commutative
property.

Assumption 9. W,, and M,, are commutative or 19 = 0.

Define Q,,(¢) = ming EQ, (). The identification of ¢y can be based on minimizers of {Q,(¢)}. Using

Assumption 9, we have Q,(¢) = Q1n(¢) + Q2n(¢), where

an(¢) — (Xnﬁo)/e(a—ao)W;L eTM;L Hn (T)eTM"G(a_aO)W"XnBQ,

QQn(d)) _ tr(e(afag)WT/l e(T*To)M,/le(T*To)Mne(Oz*Oto)Wn En)

It is obvious that Q1,(¢) > 0 and Q1,(¢) = 0. As W, and M,, have zero diagonals and ¥,, is a diagonal

matrix, % = tr[(W,), + W,)E,] = 0 and % = tr[(M], + M,,)X,] = 0. Thus ¢o is a stationary
9*Q2n(9) _

2n
da?

point of Qo,(¢) and also Q,(¢). Using the commutative property of W, and M,, we have
tr[E}L/Qe(a—ao)WT/"e(T—To)M:L (Wr/L2 + WrQL + 2Wr/LWn)€(T_TO)M"€(a_a0)W"2711/2]’

9 A
0 %2g(¢) _ tr[zrll/Ze(a—ozo)WT/Le(T—ﬂ;)M{1 (M;l2 + M’Z + QMT/LMH)B(T—TU)MHe(a—ao)anrll/Q]
T

and

9°Qan(9) 1/2 (a—ag)W' (r—70) M’ , (A (a0 W ol /2
Thagr 2B helT ML (W) 4 W) My el 00 e "1/}

= tr{Z}/Qe(a—ao)Wée(T—"'o)Mfl [(W! 4+ W, )M, + MW, + W M ]e(T=70)Mnla—a0)Wns31/21

It W, w,, =W, W/ then

P2u(0) — r[s/2 el 0)Wa (=m0 My () 4 W, )2e(7=70)Mnelo=00)Was31/2] > 0 if M) M,, = M, M}, then
LGl0) — prlyy/Pelamen Wi e(T=mMi (A, 4 M, )2e(T—0)Mn lemeoWo /2] > 07 if MW, = WM}, then
% = tr{E}/Q@(aﬂ‘“)W’;6(T7T“)M; (W, + W,)(M], + Mn)e(T*TO)M"e(a’O‘“)W"2711/2}. Thus, under the
conditions that W/ W,, = W, W/ M/ M, = M, M) and M)W, = W, M/ by the Cauchy-Schwarz inequality,

2 A 2 A 2 A 2 A —
o %Zgw) o %ig(d’) > (8 (%59))2. In this case, 08%28"¢(,¢) is positive semi-definite and @2, (¢) is a concave
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function. It follows that ¢q is a global minimizer of Q2,(¢) and Q,,(¢). Hence, with some extra conditions
on W, and M,, it is possible that ¢y uniquely minimizes @Q,(¢)/n in the limit.

It is also possible that ¢g is only a local minimizer of Q,,(¢). For example, in the case that W, = M,,,
62%2(;2(%) = 82@32:;¢0) = 82?2’5(7%) = tr[(W/2 + W2 + 2W/W,,)¥,.], which is positive if elements of W,, are

2 A —
non-negative. Then %&(f“) is positive semi-definite and Q2,(¢) is concave at ¢o. Hence, ¢q is a local

minimizer of Qa,(¢) and Q,,(¢). These considerations motivate the following identification condition.

Assumption 10. lim, . 2[Qn(¢) — tr(,)] > 0 for any ¢ # .

Proposition 3. Under Assumptions 1-4 and 8-10, the QMLE #,, is consistent for 7.

Let

2
D= 5(T)

tr(WEW,X,) + (Wye™Mr X, By) (Wye™Me X, By) * *
2
== tr(MEW,3,,) tr(M2 M, %,,) % ,
_(eToMan)/WneTOManBO 0 (eTgMan)/(eTOJVIan)

and

A, = l E(aQn(’YO) aQn(’YO))

n 0y oy’
tr(S, WES, W) 4 2(W,e™Mn X, 50)' S, (Wye™Mn X, B5) * *
= % tr(S, M2, W?) tr(D, MES, M) *
—2(e™Mn X V%, We™Mn X, B, 0 2(emoMn X, V'3, (eT0Mn X )

Note that A,, being the VC matrix of a vector of linear-quadratic forms of disturbances, does not involve
higher than the second moments of disturbances, because W,, and M,, in the quadratic forms e/, W3¢, and

e, M3e, have zero diagonals (see Lee, 2007). We may write A, as A, = 2A} Ay, where

A V2vec(SPWERY?) V2vee(SH MDY ?) 0
1n = y
2N AW, e Mn X, By 0 —oxnl/ZeroMn x|

thus A,, is positive semi-definite. To make sure that D,, is invertible for large enough n, we need the

following assumption.
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Assumption 11. lim,, %tr(MfL'MnEn) # 0 and lim,, o %((WneToM”XnB())/Hn(To)(WneToM"Xnﬂ()) +

tr(WoWnXn) tr(MfLMnEn)—tﬁ(MfLWnEn) ) 7& 0
tr(MEMpXy) .

When elements of W,, and M,, are non-negative, tr(M;3M,%,) > 0, tr(M:W,%,) > 0and tr(W: W, %,,) >

0, because M,, and W,, are not zero matrices and the diagonal elements of 3, are positive in general.
Proposition 4. Under Assumptions 1—4 and 8-11, v/n(3n — Y0) 4 N(0,limy, 00 D, 1A, DY),

With the requirement of 79 = 0 or commutativeness of W,, and M,,, in addition to the consistency, the
QMLE under unknown heteroskedasticity has an asymptotic distribution that does not involve higher than
the second moments of the disturbances, whether the disturbances are normal or not.

To make asymptotically valid inference using the QMLE 4, under unknown heteroskedasticity, we
need a consistent estimator for D, 'A, D, 1. As in White (1980), we may have a consistent estimator
of D;YA, Dt without being able to consistently estimate X,,, which has n unknown parameters. Let
3, = Diag(é2,,...,é2,), where &, = (én1,...,énn)’ is the residual vector from the QML estimation. Con-
sistent estimators for D,, and A, can be, respectively, D,, and An, which are the matrices derived from

replacing ¥, in D,, and §2,, by f]n, and replacing vo by a consistent estimator #,,. The D,, and A,, can be

consistent because D,, and A,, with fixed dimensions are estimated as whole terms.

Proposition 5. Under Assumptions 1-4 and 8—10, D, =D, + op(1) and A, =A, + op(1).

3.2. GMME

We now consider the GMM estimation of the MESS(1,1). Let the moment vector be

gn(y) = %(GZ(W)Pnlen(v), e (M) Py en(7)s €0 (N FR) (25)

where €, () = e™Mn(e2Wny, — X, 3), the n-dimensional square matrices P,;’s for the quadratic moments

have zero traces when ¢,;’s are i.i.d. and have zero diagonals when ¢,;’s are independent but with different

variances, and the n x ky instrumental variable matrix F;, used in the 2SLS approach can consist of the

independent columns of X,,, W, X,,, M, X, WT%Xm M,%Xn and so on.'> The GMM objective function with
'

the weighting matrix a,al, is g, (7v)ana,gn(y), where the full column rank (k, + kf) X k, matrix a,, with

ko > k + 2 converges to a full rank matrix ag by design.

I5For o and 8, we may use only the linear instrument F,, and implement a 2SLS estimation, for which the objective function
~ ! ~
is (W — X B) o (F},Fn) ~ F4 (€2 Wy — X 8) or (2Wn iy — X B e Mo By () F) = e M (e2Wny, — X, 8) when
taking into account the MESS process in the disturbances, where 7, is an initial consistent estimator of 7. This is a nonlinear
2SLS that does not have a closed-form solution. Thus it does not have a computational advantage as the traditional 2SLS and
we do not discuss it separately.
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3.2.1. GMME: Homoskedastic Case
When the disturbances are i.i.d., the GMME can be consistent when the matrices P,,;’s have zero traces
but not necessarily zero diagonals. The P,;’s are constructed from W,, and M,,, thus we may assume that

P,;’s are bounded in row and column sum norms.

Assumption 12. The n-dimensional square matrices Py1, .. -y Pak, have zero traces and are bounded in

both row and column sum norms. Elements of F,, are uniformly bounded constants.

For any ~,

E[E/ (V)Pnlen(’}/)] = (e(a_OLO)WanﬁO - Xnﬁ)/eTM;LPnieTMn (e(a_ao)WHXnﬁO - Xnﬁ)

n

! ! !
+ 0_(2) tr(efrgMne(afao)Wn eTMn PnieTM,,Le(afao)Wnef‘roM,,L)’

E[F e, (7)] = Fle™Mn (eloma0Wn X 30 — X,.5). (27)

The identification of 7y requires the unique solution of the limiting equations lim,, o E g,(y) = 0 at .
When o = ap and 8 = By, E[F}en(y)] = 0 whatever 7 is. Thus 7 cannot be identified from the linear
moments E[F e, (7)] = 0, because it only plays a role as weighting. It is possible that oy and Sy may be
identified from E[F)e,(y)] = 0, and 7y be identified from the quadratic moments E[e,, (v)Ppien(v)] = 0,
i=1,...,kp. Let F, = (Fip, F2,) such that lim,,_, %FéneTM" X, is nonsingular for any 7 € [, ¢], which

is a part of a rank condition for valid IV’s. The E[F) e, (y)] = 0 is equivalent to

Fllne‘rMn(e(Oéfao)WnXm@O - X,8) =0, (28)

FjemMn(elemeoWn X, gy — X, 8) = 0. (29)
From (29), we have 8 = (F},e™n X,,) 1 F} e™Mnelo—a0)Wn X 3 With substitution, (28) becomes
FllnHln(T)STMne(aiao)WanﬂO =0,

where Hy,(7) = I,, —e™» X, (Fy ™™ X,,)~1F} . Tt is apparent that when o = ap, F}, Hy,(7)e™n X, 8y =
0. So we just want to rule out the possibility that F}, Hy,(7)e™nem™n X, By = 0 for some 1 # 0. When
a = ag and 8 = By, (26) becomes o2 tr(e(T_TO)M;Pme(T_TU)M") = 0. Then for the identification of 7y, it
requires some matrix P,; such that lim,, %tr(e“‘mwﬂ1 Pme(T_TU)Mn) # 0 when 7 # 179. We thus make

the following identification assumption.

18



Assumption 13. lim,,_, %[tr(e(T_TO)M'r/LPnle(T_TO)M"), . ,tr(e(T_TO)M;LPn,kpe(T_TO)M”)] #0 for any T #

7o, and F, may be written as F,, = (Fin, Fay,) such that lim, %FéneTM" n 15 monsingular for any

€ [=0,6], and lim,, o0 L F{, Hip(7)e™nem™n X, 80 # 0 for any n # 0 and T € [—6,].

As usual for nonlinear extremum estimators, we assume the compactness of the parameter space of v

(Amemiya, 1985).
Assumption 14. The parameter space I' of v is compact and the true g is in the interior of T.

Proposition 6. Under Assumptions 1, 2, 5 and 12-14, the GMM estimator 7, from the minimization of

gn(V)anal,gn () is a consistent estimator of vy, and

V(3 —70) 4, N (0, nanéo(G;Lana;Gn)71G’nana;Vnana;Gn(G’nana’nGn)fl),

where \
1 [ Rwhwn + 3 (pa — 300w ywnd 53wl Fn
Vi = nElgn (o (r0)] = = [ 2 ¥ Al 7370 hna - ghsha
33y wng o3 F}F,
and
2 2
O —E dgn(0) 1 Fwy, vec(Ws)  Zew), vec(M;) 0
T n\ Fw,enMe X, B 0 Ry, |
with w, = (vec(Ps), .. -, vec(Py )) and wyq = (vecp(Psy), ... ,vecD(Pikp)), under the condition that

lim,,_, o a), Gy, exists and has the full rank k + 2.

Within the GMM framework, with moments g,(7), an optimum GMM will use V,~! as the optimum

weighting in place of anal,. The variance matrix V,, of g, (7o) in the preceding proposition can be put into
a more informative form as a positive semi-definite matrix. Let w# = (vec(P¥?),... ,vec(]—jgﬁé ,‘::p)), where
Pi* =3\ —of 43 Dlag(Pii) + Y24 [P3; — Diag(P3,)], then
/
v — 1 wi 0 wi 0
n So-Wnd 00k So-Wnd 00k

Thus V,, is positive semi-definite. We require the non-singularity of V,, to formulate the feasible optimal

GMM, which is guaranteed by the following assumption.

2
4n<72 WndHF Wnd

2
Assumption 15. The limits of LF|F, and 3¢ (w Wy — ;dwnd)Jrﬁ(,uz;fagf%) W W+ 7
0

exist and are nonsingular, where Hp, = I,, — F,,(F' F,) " F".
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Note that w],wy, —w!, jwnd = (Vec(PﬁS—Diag(P,ﬁs)), . ,VQC(P:L%ZP —Diag(ijZp)))/(Vec(Pfls—Diag(Pfls)),
e ,Vec(ij 2,, - Diag(Pf zp))) > 0. When lim,, o L F,F,, is nonsingular, the above assumption is satisfied
as long as one of the terms lim,,_, %(w;wn — W) gWnd), 1My, 00 %w;dwnd, and lim,,_, o %gw;Ldenwnd is
nonsingular. A consistent estimator v, for V, may be obtained from replacing the o2, us and p4 in V,, by

their consistent estimators.

Proposition 7. Under Assumptions 1, 2, 5 and 12-15, the feasible optimal GMME 4, , from the mini-

mization of g\, (Y)V,; Ygn(7) is a consistent estimator of vo, and
. d : _ _
V(o = 70) = N (0, lim (G,V,7'G)7").

As the selections of linear and quadratic moments via F,, and P,;’s are many, there is an issue on the
best design on those matrices. We shall show the existence of a best GMME within the class of GMMEs
with linear and quadratic moments, in the sense that it has the smallest VC matrix. For that purpose,
we follow Breusch et al. (1999) to show that additional linear and quadratic moments are redundant given

properly selected ones.!6 If oM

» X,, contains an intercept term due to the presence of an intercept term in
X, let X* be the submatrix of X,, with the intercept term deleted, so that e™M» X, = [e7oMn X* ¢(79)1,,],
where ¢(7p) is a scalar function of 79.!7 Otherwise, X = X,, and e™M» X* = ™M X, . Suppose that there
are k* columns in X;;. Let X, be the Ith column of X}, ns = u3053 and ny = N4054 be the skewness and

kurtosis of the disturbances. Furthermore, let Agf ) — A, — I, tr(4,)/n for any n X n matrix A,,, which is

the matrix A, with its trace subtracted out from is diagonal. Thus Agf ) has zero trace.

Proposition 8. Suppose that Assumptions 1, 2, 5, and 12-15 hold. Let

* 1 * * *
gn(V) = E(Pn1€(7)7 R Pn,k:*+4€(7)7 Fn)le(y)’

where Pjy =W, P}, = Diag(W,), B3 = Diag(e™" W, X,,60)"), Piy = M, P}, ,, = Diag(e™M» X))
forl=1,....k* and Ff = (F', Fy, Fi5, F¥,) with FYy = ™Mo X* ¥, = e Mol X, By, F¥y =1, and
E¥, = vecp(W,,). Denote V' = nE[gX(70)g’ (y0)]. Then 4% = min,, g ()V;*"1gi(v) is the best GMME
within the class of GMMEs with linear and quadratic moments, and 75 has the asymptotic distribution that

Vi(3E =) & N (0, lim A%,

n—oo

16 This pursuit is motivated by that in Liu et al. (2010).
Y71f M,, is row-normalized and X, contains an intercept term, e™0Mn [, = e %Tg Mjl, = €1, In this case, ¢(19) = €70.
Otherwise e™0Mn X, generally does not contain an intercept term.
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where Af, = G Vi~ Gy, with G, = B 2500

The detailed proof of this proposition is in Appendix C. From the proof, A} has the following expression

tr(PrSW,,) + oy 2(e™Mn W, X, 80) F,,

* *
. 1
AL =— tr(PrW,,) tr(Pr M,,) * ; (30)
—og (€™M X, ) P, 0 oq (M X) F,

* _ * (77 *3)*772 * 0'717]‘ * * * _ * _ * * _

WherePan—Pnl—mPn2—mpn3, PT’rL_M'f“ P,Bnl_Pn,l+4 forl—l,...,k‘,Fom—
na—1 x n3 « (111 oM, _ __ 2007 *

(774,41)7775 Fn2 (774*13)*7]:%, Fn3(nln€ 0 Wanﬁo) (774*;’)i77§ nd»

* 77471 * 77[’% * 1/ 70 M, *
Fn: Fn - Fn (7lne 0 an)
=)= (u=1)—n3 "n

if eoM» X, does not contain an intercept term; otherwise

Fim Ml G O+ o) Frye — B (et ),
(na —1) —m3 (na — 1) —n;3 (na — 1) —n3 n

where ey; is the jth unit vector in RF. From the proof, the best moments in Proposition 8 are equivalent
to the use of the following moments

1 * * * * * *
ﬁ (Panen(V)ﬂ P‘rnen(’Y)a Pﬁnlen(’y) e 7P5nk* En("}/), Fomv Fﬁn)len('y)'

The above vector relates the moments to the skewness and kurtosis.

In the case of normal disturbances, as 3 = 14 — 3 = 0, the best moments can be simplified and are
equivalent to

1 * * T T !
E(Wnen(v),Mnen(v)f@men(v) e P en (), €M WL X0 Bo, €™M X ) € ()

Furthermore, the moments (Pgnlen (V) Pl en('y))/en () can be shown to be redundant given

1
g# (’Y) = E (Wnen(7)7 Mnen(rY)v emoMn W XnBo, eTOMan)len (7) (31)

by an argument similar to the proof of Proposition 8. This result can also be shown by using the generalized

Cauchy-Schwarz inequality, as in subsequent section.
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The G,, in Proposition 7 can be written as

V202
1 w 0
Gn = "3 2 " Gln;
90 0 ook,
where
o ‘/520‘2’ vec(Ws) ‘/520(2’ vec(M) 0
1n —
ooW,e™Mn X, 5, 0 —oge™Mn X,
1 0 O (32)
2 2
V290 voe(Ws) Y270 vec(M?) 0 0 01 0
0 0 UowneT[)N[”Xnﬁo JoeToM”Xn 1 0 0
0 0 —Ig
When €,;’s are normal, us ha — 303 = 0. Furthermore, even under non-normal disturbances, if

Ppi,..., Py, are chosen to have zero diagonal, then w,q = 0. For those cases, V, in Proposition 7 re-

duces to ,

4 2 2
oh V2o V20
1 | TWpWn 0 1 5 Wn 0 5 Wn 0
V’ﬂ = — = —

" 0 02F'F, " 0 ooF, 0 o0F,

Thus for those cases, G,V 'G,, < A, by the generalized Cauchy-Schwarz inequality, where A,, = —1;

no

As W,, and M,, both have zero traces, when the moment vector is g7 (v) in (31), G, V,71G,, = A,,. Thus

/
<Gl G

the best moment vector is g7*(v) in (31) when ¢,;’s are normal. When 79 = 0 or W,, and M,, can com-
mute, W, = W,, has a zero diagonal; and the best moment vector, with the restriction that P,;’s have zero
diagonals, is'®

1
gid(’)/) = ﬁ (Wnen (’Y)a Mnen(’Y)v emoMn Wi X0 B0, eTOM"Xn)/En(rY)' (33)

By comparing (32) and (19), the asymptotic VC matrix A, ! for the best GMME in the case of normal
disturbances is the same as that for the MLE of . It is of interest to note that, for the case with non-normal
disturbances, when 79 = 0, or W), and M,, can commute, the QMLE of «+ happens to be asymptotically
efficient within the class of GMMEs with linear and quadratic moments where the quadratic matrices P,,;’s

have zero diagonals.

8When 79 = 0 or W, = M,,, the moment %eﬁl(v)Mnen(v) should be deleted.
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Corollary 1. Suppose that Assumptions 1, 2, 5 and 12-15 hold.

(i) When the disturbances €n;’s are normal, for the class of GMMEs with linear and quadratic moments
where the quadratic matrices P,;’s have zero traces, the best GMME is the optimal GMME with the

moment vector git (v) in (31);

(ii) When 1o =0, or W,, and M,, can commute, for the class of GMMEs with linear and quadratic moments
where the quadratic matrices Pp;’s have zero diagonals, the best GMME is the optimal GMME with

the moment vector gid(’y) in (33).

The best moments in the case of normal disturbances are of interest to be compared with those for the
SARAR model. For the latter model, the best instruments are R,[X,, W, S, X,530] and the matrices for
the best quadratic moments are R, W, S, 1R;! — I, tr(W,S;1)/n and M, R, — L, tr(M,R;;)/n, where
R, = I, — poM,, and S, = I, — A\gW,,. Thus, in addition to X, and W, X,, higher order spatially
lagged X, ie., W2X,, W3X,, etc., will provide additional information. For the quadratic moments,
spatial weights matrices of higher order, namely, W2, W3, etc., from which the average of their diagonal
elements is subtracted from each diagonal element, can be used as additional orthogonal conditions. On
the other hand, the best instruments and quadratic moments for the MESS(1,1) rely simply on spatial
weights matrices of the first order, i.e., W,, and M,,. Note also that when there is no MESS process in
the disturbances, the moment vector for the best GMME in the case of normal disturbances can be simply
taken as %[eﬁl NWhen (), €, (V) (W, Xy, X0 )1n]', where (W, X, X)) 1n denotes the independent columns of
(WpnXpn, X,).1? Thus it has a simple form which does not involve any unknown parameter. By contrast,
the moment vector for the best optimal GMME of the SAR model can be taken as X[, (v)(W,S, ! —
Ly tr(W, S, /n)en (), €, () (WSt X, X)) 1n]’, which involves the unknown parameter g in the matrix
inverse S, 1.

There exists a link between the MLE (or QMLE) and moment conditions. The first order conditions for

the MLE using the function @, () can be written as

0Qn(7y)

B 2™ Wy X0 B) €n(7) + 26, (V)™ Wyem ™M e (), (34)
0Qy ,

Q@T(v) = 26, (7)Mnen(7), (35)
aQa"éV) = —2(eTM"Xn)'en('y). (36)

191f W, is row normalized and X, contains an intercept, as Wyl, = ln, only one of the two intercepts should be included in
(WnXn, Xn).

23



Thus the underlying moments integrated by the MLE are also the linear moments with instruments from
e™Mn X and e™M» W, X,,, and the quadratic moments with the matrices W,, and M,,. The matrix e™Mn
in front of X,, and W, X,, is a transformation for the MESS disturbances. When the likelihood function
is correctly specified under the normal disturbances, the combinations of linear and quadratic moments in
(34)—(36) are the efficient ones. But they might not be so when the likelihood function is only a quasi
one. The optimal GMME employs an optimal weighting matrix when using the moments g7 (), but the
QMLE might not. Thus a best GMME within the class of linear and quadratic moments can be more
efficient asymptotically than the QMLE when the disturbances are non-normal, 79 # 0 or W,, and M,

cannot commute. This can be shown analytically. Let

2 /
hn(7) = n ((6T0ManXn60)/€n(ﬁY) =+ Eln(’Y)Wnen('Y)v 621(7)Mn6n(7)a _E/n(rY)eTOMan) = AQ#(V),

where
1 0 1 0
A=210 10 o |- (37)
0 0 0 —I
The h,,(y) and %%7(") have a similar structure: replacing 7o in the components e™ W, X,, By and e~ X,

in hy(y) by 7 yields %&Q#(W). It is obvious that Eahgiw = %E(%) and E(nhy(v0)h,,(70)) =

%E(‘?Qgiyo)a%"iyo)). Thus, by Proposition 4, the asymptotic VC matrix for the QMLE of « is equal to

litny, o0 (B 25020) ™ B (ks (10) 1, (v0)) (B 25290) ™! Therefore,

(E Ohun ( o))_1 E (hn(70)h1,(70)) (E M) B

oy oy
_ oh;, (7o) / —1 /e Ohp(y0)\]71
= [(E & )[E(hn(vo)hn(%))] (E oy )] )
= [GF () ATAE (g (30)g (0) 4]~ AGE ()]
, , _ -1
> (61 () [E(gf (o)aif ()] "G (0)]
by the generalized Cauchy-Schwarz inequality, where G#(yy) = E aggyo). The last term above is the

asymptotic VC matrix of the feasible optimal GMME with the moment vector g7 (). The inequality in

(38) becomes an equality if there is a matrix Ay, such that G# () = E(g#(fyo)g#' (70))A’Agp,. From
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Proposition 6, we have

ol tr(WsW,,) o2 tr(Ws M,,) 0
1
Gif(v0) = — o2 tr(MEW,,) o2 tr(M:M,,) 0
(eTOM"Wanﬁ)Oa eTOMan)/eTOM"WanBO 0 _(eTOM" Wi X0 B0, eToMﬂ’Xn)leTOM"Xn

and

# #' ,_ 208 #
(pa — 303) veep' (W,,) veep (W,,) + s veep’ (W, )e™Me W, X,,80 0 —p3veep’ (W, )e™Mn X,
— 0 0 0
ps(e™MaW, X, By, e™Mn X ) veep (W,,) 0 0

When 19 = 0; W,, and M,, can commute; or us = fg — 303 =0, we have Ay, = %'gIkJrQ. Except for those
cases, Ay, may not exist. As g7 (7) in (31) is only a special case of linear and quadratic moments, the best
GMME in Proposition 8 can be more efficient asymptotically than the QMLE.

The best moment vector g (y) and the optimal weighting matrix V,*~! involve unknown parameters.
In practice, g () and V,;7~! can be estimated using initial consistent estimates and a feasible best GMME
can be derived. The following proposition shows that such a feasible best GMME has the same asymptotic

distribution as the best GMME in Proposition 8.

Proposition 9. Suppose that Assumptions 1, 2, 5 and 12-15 hold. Let ¥, 62, i3, and fis, be, Tespec-

tively, \/n-consistent estimators of Yo, 03, ps and py. The 15,’{1, ceey ]57T7k*+4, ﬁ‘;, an, ..., Fry and

v * o s o * * * * *
V., denote the matrices derived when the unknown parameters in Pyy, ..., Py .4, Fy, Ff,, ..., Fyy

and V' are replaced by the corresponding consistent estimators. Then the feasible best GMME %y , =
min,, 3 (7)VF 155 (v), where g5 () = %(}5;16(')/), cee p:,k*+46(7)» E*)'e(7), has the same asymptotic distri-

bution as 4}, = min, g (V)V, " 1gk(v).

3.2.2. GMME: Heteroskedastic Case
When the disturbances are independent but may have different variances, the GMME can be consistent

when the matrices P,;’s have zero diagonals.

Assumption 16. The n-dimensional square matrices Py, . . ., Pk, have zero diagonals and are bounded

in both row and column sum norms. Elements of F,, are uniformly bounded constants.
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By taking into account variances of disturbances, the identification condition is similarly derived as that

in the homoskedastic case.

Assumption 17. lim,, %[tr(e(T_TO)MfLPnle(T_TO)M"Zn), . ,tr(e(T_TO)M'r/LPn,kpe(T_T‘))M“ )] # 0 for any

My,

T # 70, and F, may be written as F,, = (Fi,, Fay,) such that lim,_ %Féne n 18 monsingular for any

T € [=4,6], and limy, o0 LY, Hyp (7)e™ne™n X, 8y # 0 for any n # 0 and T € [—6,6].

Proposition 10. Under Assumptions 1, 2, 8, 14, 16 and 17, the GMM estimator %, from the minimization

of gh(v)anal,gn(7) is a consistent estimator of vy, and

V(G —0) 5 N(0, lim (G}anal,Gr) " Glanal, Vaanal,Gu(GhanalGa) ™),

n— oo

where
, 1 [ 3whwn 0
Vi = nE[gn(70)95(v0)] = —~
n\ o F!S,F,
and
G —E dgn(r0) 1 2w, vec( i/Z(ZT_Lan)sEi/Q) Tw!, vec( 71L/2(Z;1Mn)52}/2) 0
' o FWy,eMn X, By 0 —FleroMuy, |

with w, = (vec(Z}/QleZ}/Q), e ,vec(Z}l/2P;7kpZ,{b/2)), under the condition that lim, . a, G, exists and

has the full rank k + 2.

The V,, does not involve the third and fourth moments of the disturbances, as the matrices in the

quadratic forms of disturbances in g,(79) have zero diagonals. An optimal GMME can also be formulated.

Assumption 18. The limits of %w;wn and %FT’LEnFn ezist and are nonsingular.

A consistent estimator for V;, is the matrix V;, derived by replacing the X, in V,, by ,, = Diag(é2,,...,é2,),
where €,;’s are the residuals from an initial GMM estimation. Under Assumption 18, the limiting inverse

of V,, exists. Then the objective function for the feasible optimal GMME is ¢/, (7)V,  gn (7).

Proposition 11. Under Assumptions 1, 2, 8, 14 and 16-18, the feasible optimal GMME %, , from the

minimization of ¢, (v)V; tgn(7) is a consistent estimator of v, and

V(o —70) & N(0, lim (G, V,1G,) 7).

n—oo
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Note that tr(X, P55, (5, W,)*) = tr(S, P55, (5,1 (W, — Diag(Wn)))S) as P7, has a zero diagonal

and ¥, is a diagonal matrix, then G,, may be written as

1 @wn 0

"\ o =R,
where

G Y2 vee (S0 (£, (W,, — Diag(W,,))) " S/?) L2 vee(S/ (5,1 M,,)* S/ ?) 0
1n —
Yo AW, e M X, B, 0 _y2eroMn x|

Thus GV, 'G,, < A, by the generalized Cauchy-Schwarz inequality, where A, 1G'1nG1n. When the
moment vector g, (7) is equal to g () = 2 [e),(7)X, (W, — Diag(W,))en (), €, (1) S5 ' Myen (7). € ('y)Frf]/
with Ff = S HW,e™Mn X, By, e™Mn X, ], GIV,71G,, = A,,. Therefore, if the variances ¢2,’s can be con-
sistently estimated, e.g., when we have a parametric model for the variances, then we may have a feasi-
ble best optimal GMME.?? Let 4, be an initial consistent estimator of 7q, Wn = e™mMnly, e~ TnMn gnd
F;f = f); 1[Wne%"M" Xan eﬁLMan] with fln being a diagonal matrix containing consistent estimators for

the variances. Then the objective function for the feasible best optimal GMME is X (v)V:*~1§% (), where
35 (7) = H(e,(NET (W, — Diag(Wa))ea(7), €, (1) 25 Muen(7), €,(7) ) and

3t [3n (251 (W, — Diag(W,))) S (25 W) 3 e[S, (351 W,,) 2 (25 M) 0
Vo =+ e[S, (51 W, )58, (5,1 M,,)°] L[S (B M) 8, (3,1 M,,)f] 0
0 0 J I

If the elements of 3J,, cannot be consistently estimated, we do not have a feasible best GMME;, e.g., for
the unknown heteroskedastic case, ¥, with n parameters cannot be consistently estimated. However, we

may use the moment vector

7 4(1) = - eh ) (W~ Diag(Wa))en (1), € (1) M (1), € (3) W0 X, B, 740 X, ]

20For the SARAR model with heteroskedasticity, we have also found that the best instruments are Z Rn [Xn, WnS Xn Bo]
and the matrlces for the quadratic moments are En [RnWn Sy R71 — Diag(RnWn Sy R )] and X, [MnR7 —
Diag(Mn Ry ')]. For the SAR model with heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME
by the generalized Cauchy-Schwarz inequality as above.
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and implement a feasible optimal GMM estimation. A special case of interest is when 79 = 0 or W,, and

M,, can commute, and the QMLE can be consistent. In that case, gid(’y) reduces to
- 1 0 M, A M,
aran) = Slen(MWaen(7)s €0 (7) Muen(3); €.(7) [Wae "M X By €™M X)) (39)

It can be shown, as for the proof of Proposition 9, that the optimal GMME using the moment vector
g;ﬁf 4(7) has the same asymptotic distribution as that using the moment vector gjf 4(7) in (33). As shown in
(34)—(36), the QMLE also integrates those moments in gfj 2(7)- But the optimal GMME using the moment
vector gZ’E) 4(7) is at least as efficient as the QMLE and can be more efficient than the QMLE asymptotically,
according to (38). For the QMLE to be as efficient as the optimal GMME, there must exist a matrix Agy,
such that Gf’d('yo) = E(gid(’yo)gi;l(’yo))A’Agh, where Gﬁd(%) =E %&SW) and the matrix A is given in

(37). From Proposition 11, we have

tr(2, WEW,) tr(X, W2 M,) 0
1
GT 4(70) = - tr (S, MSW,,) tr (X, M:sM,) 0 :
(eTOan WanBO; eTOMan)/eTOMn WanﬁO 0 _(eTOMn Wan507 eTOMﬂ’Xn)leTOMan
and
E(g7 1(10)g 4(v0)) A’
tr(X, WS, Ws) tr(8, WEE, M?) 0
1
=3 tr(X, MY, Ws) tr(8, M5%, M?) 0
2(e™Ma W, X, B, e™0Mn X, )5, eTo M W X 3, 0 —2(e™Mn W, X, By, eTMn X, )/ 53, eToMn X,

Thus, under unknown heteroskedasticity, generally there does not exist such a Ag,. Then the optimal
GMME using the moment vector Qf 4(7) may in general be more efficient than the QMLE under unknown

heteroskedasticity because of the optimal weighting.

3.3. On the Inference of Elements in Impact Matrices

Assessing the statistical significance of the effect of a change in a regressor on the dependent variable
is one of the main objectives of applied economists. In spatial regressions, as shown in Section 2, one
first has to compute the reduced form of the specification and calculate the matrix of partial derivatives of

the dependent variable with respect to the concerned regressor in order to figure out the matrix of impacts.
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Inference regarding causal effects should then be based on this matrix, which, for regressor X,,;, is presented
in (6). All the elements of this impact matrix are possibly different from each other and performing inference
on them would be of value.

For the SAR model, LeSage and Pace (2009) propose a Bayesian Markov chain Monte Carlo approach to
produce inference on the scalar summary of effects, namely the average direct, indirect and total impacts. In
this paper, we take the classical approach based on the Delta method to perform inference on those elements
of the impact matrix. Statistical significance on differences of impacts can also be assessed. For instance,
one could be interested in testing if the effect of the kth regressor for observation i on y,; will be the same
as of the Ith regressor (with [ possibly different from k) for individual j on y,;, with j possibly different
from q.

Let 4, be a y/n-consistent estimator of v, and e,; be the ith column of I,,. The impact of Znjp (pth

w,

regressor for individual j) on y,, is estimated to be e];e” """ e,;B,p, and the effect of z, 5 On Yy, is

w,

estimated to be e/,.e~ % "emBnq. Then, by the mean value theorem,

\/ﬁ[(e;ie_é‘"w" 6njBnp - eiwe_dnwnensénq) - (e;ne—aoWn €njBop — egwe—aoWn ensBog)]
- Aln\/ﬁ(@n — O, Bnp - 501}7 Bnq - ﬂOq)/ + OP(]-) (40)

i) N(O, lim Ay, Bin lln)7
n— o0

_ I —aoW, I —aoW, I —aoW, /
where Ay, = [—e€],e” V"W e, Bop + €60V " WhensPog, ehe” " re,;, —e

e Wae 1 and By, is the

asymptotic VC matrix of /n(&, — ay, Bnp — Bop, Bnq — Bog)’- To test whether the two impacts are equal, we
may use the asymptotically standard normal statistic v/n(e/,;e = Ve, Bnp—€hre ™ W e o Bng) | (Arn Bin A7, )1/
under the null hypothesis, where Aln and Bln are, respectively, consistent estimates of Ay, and By,. An-
other example is in testing whether the average direct effect %tr(eé‘"W")Bnp is significantly different from

zero. It can be shown that

tr(e_aown)ﬂOp = A2n\/ﬁ[dn — (o, Bnp - ﬁOp]/ + OP(l)

Sl-

(41)
d . /
5 N(O,nlgr;o AgnBay Al),

where Ay, = [—Ltr(e=®WrW,,)Bo,, L tr(e*W=)] and Ba, is the asymptotic VC matrix of v/n[d, —
o, Bnp — Bop|’- Let Ay, and B, be, respectively, consistent estimates of A, and Ba,.

_A 5 _ 5 _ _ 2 ~ ~ _ d
Lemma 1. /n|(e);e a"W"anﬂnp_e%re Q"W”'ensﬁnq)_(e;ne aOWnenjBOp_e/nre aOW"ensBOq)](AlnBlnA/ln) 1z 5

N(0,1) and —=[tr(e=%Wn)B,, — tr(e=2"Wn) By, |(Asn Ban Ab,) /2 5 N(0,1).
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Several applications of this lemma will be presented in Section 5 which is dedicated to the application
of the MESS to figure out the dominant type of outward FDI for Belgium. However, before turning to the
empirical application, we first present Monte Carlo experiments which assess the finite sample performance

of the MLEs, QMLEs and GMMEs.

4. Monte Carlo Simulations

The considered model is presented in (42).

6awnyn = Pilp + B2 Xn1 + B3 X2 + U, 67W"Un = €n. (42)

The interaction matrix W,, is defined as the 5 nearest neighbors?!, y,, is the n x 1 vector of the dependent
variable and « is the parameter capturing the intensity of interactions between observations. The first
explanatory variable is a constant term, X,,1 = [€p1,1,-..,Zn1,») is an independent standard normal vector
while for the definition of X3, we follow Pace et al. (2011) and generate a spatially autocorrelated regressor.
Its specification is X2 = (I—0.7 Wn)_lv, with v a standard multivariate normal random vector of dimension
n. In all the simulations, we keep the design space constant. Four different specifications for the error term

are considered and presented in Table 1. We first assume an ideal world with an homoskedastic normally

Table 1: Specifications for the error term

Homoskedasticity Heteroskedasticity
Normal €ni = Uni, €ni = Vniv/Zni,
Vni ™~ N(0702) VUng ™~ N(O’ 0—2), Zni = eXnii + eXn2.i
Vni—3 _ [ vpi—3
Non Normal | €,; = ( v ) o €ni = ( G Zni0,
2 2 — nil,i Xn2,i
Vni ™~ X3 Uni ~ X3, Zni = €" b0 4 e

distributed error term (upper left panel of Table 1). The lower left panel still imposes homoskedasticity
but replaces the normality by a x3 distributed disturbance. The third case, presented in the upper right
panel, assumes normal but heteroskedastic error term. Heteroskedasticity is assumed of exponential form,
but in the simulations, we treat it as of unknown form. Finally, the last case relaxes both normality and
homoskedasticity.

The value of 02 is set to keep the signal-to-noise ratio, R? in our notations, constant. This R? is defined

21The weight matrix has been normalized by the spectral radius. However, due to its special structure, row-normalization
provides the same normalization.
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as the share of explained variance of y in the total variance and its expression is presented in (43).

ﬂ'(X B Y)/efaw,;efawn (X _ Y)ﬂ

R? = — —
B(X — X)e eWie=oWn(X — X)B + o2 tr(e(@FT) Wi e—(atm)Wn)

(43)

In these simulations, we maintain this signal-to-noise ratio equal to 0.8. Besides, three different sample
sizes are considered, n = 254, 589, 975, corresponding respectively to the number of counties in Texas,
municipalities in Belgium, and the number of counties belonging to the South States of USA?2. Finally,
the values of a and 7 vary from —1 to 1 by increment of 0.5 while 31, B2 and (3 are all set to 1. All the
experiments were replicated 1000 times. For these simulations, the GMM estimator is computed as a two
step feasible optimal GMM using the moment vector gj‘jf 4(v) in (39).%3

Tables 2-5 summarize the results of the experiments. The sample has the moderate size of n = 254.%4
We report the bias, root mean squared error (RMSE) (in italics) and standard errors (in bold) for both QML
and GMM estimators of «, 7, 81, B2 and S3. We look at the results for the different sample sizes. Tables 2
and 3 summarize QMLE results while Tables 4 and 5 present the results of the GMME. The 2 left panels
of each Table summarize output for the homoskedastic case while the two right panels are concerned with
heteroskedastic disturbances. We first observe that results in terms of bias, standard error and RMSE are
similar for QML and GMM estimators. Besides, the non-normality of the error term does not seem to affect
the results. When the DGP includes heteroskedasticity, we observe an increase in the standard errors and
RMSE of both estimators while their bias remains similar to the homoskedastic case. It is also worthwhile
to note that the bias of both estimators is relatively small even though the bias of « is a bit smaller than
that of 7, the parameter capturing spatial autocorrelation in the errors. It also seems that the results are
slightly better for S and B3 than for the constant, in terms of bias, standard errors and RMSE. Finally, we
do not observe any difference in the simulations results regarding the spatially autocorrelated explanatory

variable and the one directly drawn from a standard normal distribution.

22These States correspond to Alabama, Arizona, Arkansas, Florida, Georgia, Louisiana, Mississippi, New Mexico, North
Carolina, Oklahoma, South Carolina, Tennessee and Texas.

231n the first step, the weighting matrix of the GMM is assumed to be the identity matrix.

24The results of the experiments for n = 589 and n = 975 are similar. We observe that bias, standard errors and thus RMSE
are lower when the sample size becomes larger. These results are reported in the supplementary file.
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5. Application to Belgium’s outward FDI

To the best of our knowledge, with the recent exceptions of Coughlin and Segev (2000); Blonigen et al.
(2007); Baltagi et al. (2007, 2008) and Garretsen and Peeters (2009), the literature on FDI has overlooked
the third country effect as determinant of bilateral FDI. Coughlin and Segev (2000) consider inward FDI
for 29 Chinese provinces and found positive and significant spatially autocorrelated error terms (SEM spec-
ification). Blonigen et al. (2007) distinguish 4 different types of FDI that multinational enterprises (MNEs)
can undertake. These 4 cases are summarized in Table 6 (corresponding to Table 1 in Blonigen et al., 2007)
and can be identified based on the sign of the spatial lag parameter and of the surrounding-market potential
variable.?> MNEs can firstly embark in FDI for market access reasons and avoidance of high trade or tariff

Table 6: Expected sign for spatial lag and surrounding-market potential variables

FDI Motivation Sign of spatial lag Sign of surrounding-market
potential variable

Pure horizontal 0
Export-platform —
Pure vertical —
Vertical specialization +
Source: Blonigen et al. (2007)

o o+ o

costs in a host country. This is horizontal FDI. If trade barriers between the parent country (where the
MNE is located) and host country (where the MNE would like to make its products available) are too high,
the MNE could decide to build a plant in the latter country to avoid export costs but at the expense of
building a new production plant. Blonigen et al. (2007) note that no spatial autocorrelation between FDI
should be observed since MNEs make independent decisions about serving a market either through exports
or affiliate sales. Besides, for this basic form of FDI, we do not expect any market potential effect of host
country since the MNE looks for access to the considered market only.

A second motivation for FDI occurs if trade barriers between a set of destination markets are lower
than trade frictions between these destination markets and the parent country. In that setup, a MNE could
decide to build a plant in a host country, export to other markets and facing lower trade costs only. This
type of FDI is called export-platform. As the MNE will not build a production plant in each host country,
we expect a negative spatial autocorrelation between neighboring FDI locations. However, we anticipate a
positive effect of the surrounding-market potential variable since the MNE will locate its new plant in the

host country which has access to the largest surrounding market.

25Gince the data we have do concern countries and not MNEs, we can only observe the dominant type of MNE behavior in
terms of FDI, since the data may contain a mixture of the different motivations for FDI.
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MNEs will make vertical FDI if they want to access to cheaper factor inputs for their products. In
its simplest form, namely pure vertical, host countries are in competition in terms of input factor prices to
receive FDI. Hence, we expect a negative spatial autocorrelation between FDI. However, since the product is
shipped back to the parent country to be further processed, not any effect from surrounding-market potential
is foreseen. A more complex form of vertical FDI has been developed by Davies (2005) and Baltagi et al.
(2007). Within that framework, named vertical specialization, the MNE decides to split its vertical chain of
production among possibly several host countries, to benefit from the comparative advantage of the hosts.
In such a framework, according to Blonigen et al. (2007), we should observe positive spatial autocorrelation
due to possible agglomeration forces such as the presence of immobile resources, since the suppliers’ presence
in neighboring host countries is likely to increase FDI to a particular market. However, for the same reason
as in pure vertical FDI, we do not predict any surrounding-market effect.

Blonigen et al. (2007) use outbound US FDI to 35 countries over the period 1983 to 1998 to test the
dominant type of FDI which characterizes US MNEs. Even though they found a positive and significant
effect of surrounding-market potential on their full sample, the authors acknowledge the fragility of their
results with respect to the countries considered. Besides, they could not conclude to the presence of spatial
autocorrelation for the full sample when fixed effects are included in the specification. Garretsen and Peeters
(2009) also test the dominant motivation for FDI using outward Dutch FDI to 19 countries from 1984 to
2004. When analyzing their complete sample, they find a positive and significant market potential effect
but also positive and significant spatial autocorrelation among FDI.

Our contribution to this literature is threefold. Firstly, we analyze the dominant pattern of Belgium’s
outward FDI using a modified gravity equation which, in addition to traditional determinants found in
the literature, also captures effects of spatial interactions and market potential. We secondly compare
results using a MESS(1,1) and a SARAR specification and highlight the similarities in terms of economic
interpretations of these two models. We finally apply the lemma concerning inference to assess statistical

significance of elements of impact matrices of FDI’s determinants.

5.1. Data and empirical specification

This application concerns Belgium’s outward FDI into 35 countries in 2009. These 35 host countries

belong either to OECD or European Union and represent 94% of Belgium’s total outward FDI.?%

26The countries considered are: Australia, Austria, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Ireland, Italy, Japan, South Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands,
New Zealand, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom
and United States of America.
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The modified gravity to be estimated is presented in (44).

LFDI; = ﬁ1 + ﬁg LGDP; + ﬁg LPOP; + ﬂ4 OECD; + ﬂ5 LDIS; + ﬁe TARIFFS; + ﬁ7 MP; + €;. (44)

LFDI; is the stock of outward FDI (in logs) from Belgium to host country i. FDI stocks were extracted
from the OECD International Direct Investment Statistics. The set of regressors includes host GDP in
logs (LGDP), host population in logs (LPOP), an OECD dummy which captures an OECD effect, the
bilateral distance between Belgium and country ¢ expressed in logs (LDIS) and a measure of trade costs
which corresponds to the weighted mean of applied tariffs on all products, as defined by the World bank
WDI database and labeled as TARIF'F'S. The last exogenous regressor is the surrounding-market potential
variable, M P. We follow a similar approach to Blonigen et al. (2007) in the definition of this variable. For
host country i, the market potential is computed as the sum of inverse-distance weighted log-GDPs of all
other k # i countries in the world for which we could obtain GDP data (this amounts to 183 countries). The
only difference with Blonigen et al. (2007) comes from their use of the log of the inverse-distance weighted
GDP instead. This difference in the position of the logarithm is motivated by the fact that as the host GDP
enters in logs, we believe the surrounding market variable should also be based on logged GDP.2” LGDP,
LPOP and TARIFFS all come from the World Bank WDI database while bilateral distances and distances
used to construct the M P variable come from CEPII’s databases. Finally, all the concerned variables are
expressed in constant USD of 2000. Some descriptive statistics of the data are presented in Table 7.

Table 7: Descriptive statistics for the data
Mean Std dev  Min Max

LFDI 8.3942  1.9970 4.4103 11.8510
LGDP 25.973 1775 22,782 30.048
LPOP 16.390 1.450 13.118  19.542
OECD 0.857 0.355 0 1
LDIS 7.337 1.157 5.154 9.853
TARIFFS | 1.877 1.369 0.990 8.930
MP 1.364 0.491 0.356 2.257

Accounting for spatial autocorrelation in FDI requires the setup of an interaction scheme, modeled
through the interaction (spatial weights) matrix W,,. In this application, we follow Blonigen et al. (2007)
and use an inverse arc-distance between capitals to model interactions between host countries. However,

we do not multiply the weights by the shortest distance between capitals as done in Blonigen et al. (2007)

27Garretsen and Peeters (2009) construct their surrounding-market potential variable in a different way since they only
consider the GDP of all host countries in the sample.
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since we do not row-normalize our weight matrix but instead use the spectral radius to standardize the
matrix.?8 This approach is advocated by Baltagi et al. (2008) who argue that row-normalizing a distance
based interaction matrix converts absolute distance-based interactions to relative distance-based and thus
changes the information content of the interaction scheme.?? In addition, we control for the presence of
residual spatial autocorrelation in the error terms. We have the same interaction matrix for both MESS
processes. As shown in Section 3, the QMLE can be consistent in presence of unknown heteroskedasticity.
Table 8 summarizes the results of different econometric specifications which extend (44). Columns 2-8
present estimation results respectively for OLS (corrected for heteroskedasticity), homoskedastic SARAR
(by QML), homoskedastic MESS(1,1) (by QML), homoskedastic MESS(1,1) (by optimal GMM with the
moment vector gj‘jf 4(7) in (39)), heteroskedastic SARAR (by optimal GMM?°), heteroskedastic MESS(1,1)
(by QML) and heteroskedastic MESS(1,1) (by optimal GMM with the moment vector gid(’y) in (39)).
The first result being worth highlighting concerns the bias of the OLS estimator due to omission of spatial
autocorrelation. We observe a negative and significant (at the 10% threshold) estimated coefficient for the
surrounding-market potential variable, M P, while this estimated coefficient becomes positive but looses

31 In terms of economic interpretation, least

its significance when spatial autocorrelation is accounted for.
squares estimates would imply a negative elasticity of market potential on FDI, a case which does not fit
in the considered economic theory. Besides, we also observe an estimated value of the OECD dummy twice
smaller in the least squares regressions compared to spatial regressions and this variable becomes significant
at the 10% level in the latter case, but we will come back on these interpretation later on. The parameter
of the population variable is also affected since its estimated value by least squares (—0.479) is on average
around 25% higher than in spatial models. These results provide thus strong arguments to account for
spatial autocorrelation in the specification. The rest of the discussion will thus focus on the 6 last columns
of Table 8, which rely on spatial econometrics’ methods.

Secondly, the quasi maximum likelihood and GMM estimation of the MESS(1,1) with homoskedastic
and heteroskedastic disturbances provide similar results for both estimated values and standard errors.

The last result we would like to pinpoint relates to the sign of spatial autocorrelation. We observe a

negative spatial autocorrelation for both SARAR specifications (homoskedastic and heteroskedastic) while

28 As each weight will be multiplied by a common factor, the spectral radius will also be multiplied by this factor, implying
that the normalized matrix will be the same, no matter if the interaction matrix is initially rescaled or not.

29For further information concerning matrix normalizations, interested readers may consult Kelejian and Prucha (2010).

30Tn the moment vector, the instruments for the linear moments are Rn [(Xn, Wn 5‘; an Bn] and the matrices for the quadratic
moments are I:EanSﬁll%ﬁl — Diag(RanS}flR;l) and Mnf%ﬁl — Diag(Mnéﬁl), where R, = I, — pnMn, S = I — A Wh,
and (An, pn, B,) is an initial GMME.

31 A more rigorous analysis, based on impacts of explanatory variables computed from the reduced form of the spatial
regressions is presented later on.
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the MESS(1,1) provides a positive value for . Thus, a negative spatial autocorrelation translates in a

positive a.32

Finally, we observe that there is not any significant spatial autocorrelation left in the error
terms.

The computation of matrices of impacts of changes in determinants on FDI is required to be able to
give conclusions regarding the dominant type of FDI characterizing Belgium. Indeed, as MESS(1,1) and
SARAR are estimated under implicit form (see (2) and (3)), we need to compute their associated reduced

form and then calculate the matrix of partial derivatives with respect to each explanatory variable to get

impact matrices. For the MESS(1,1), this impact matrix for regressor X, is shown in (6).

Table 8: Estimation results for different specifications

(1) (2) (3) (4) (5) (6) (7)

Cons. 1745 -1.664  -3.021  -3.159  -1.266  -3.023 -2.989
(4.668)  (4.628)  (4.660)  (4.671)  (3.899)  (4.288) (4.291)
LGDP | 1.038**  1.093***  1.114**  1.121***  1.089"*  1.113*** 1.113%*
(0.265)  (0.237)  (0.246)  (0.246)  (0.220)  (0.241) (0.241)
LPOP 0.479*  -0.584**  -0.585**  -0.595**  -0.591**  -0.584** -0.584*
(0.268)  (0.239)  (0.246)  (0.246)  (0.235)  (0.254) (0.254)

OECD 0.542 1.024*  1.037*  1.081* 1.023*  1.037* 1.033*
(0.702)  (0.544)  (0.551)  (0.553)  (0.605)  (0.611) (0.611)
LDIS | -1.162%** -1.271** -1.199*** -1.201*** -1.293*** -1.199***  -1.200***
(0.217)  (0.237)  (0.220)  (0.220)  (0.209)  (0.200) (0.200)

TARIFFS | 0.089 0.104 0.106 0.108 0.108 0.106 0.106
(0.078)  (0.112)  (0.113)  (0.113)  (0.084)  (0.084) (0.084)

MP -0.786* 1.123 1.212 1.394 1.156 1.212 1.196
(0.407)  (1.090)  (1.105)  (1.128)  (1.147)  (1.186) (1.185)

Spat auto - -0.326"  0.265**  0.286***  -0.335*  0.265"* 0.264**
in y (0.157)  (0.109)  (0.110)  (0.173)  (0.121) (0.121)

Spat auto - 0.275 0.004  -0.010 0.282 -0.004 0.001
in errors (0.439)  (0.516)  (0.516)  (0.598)  (0.419) (0.419)

n 35 35 35 35 35 35 35

Standard errors between brackets; (1) is OLS (with White correction), (2) is homoskedastic
SARAR, (3) is homo. MESS(1,1) by QML, (4) is homo. MESS(1,1) by GMM, (5) is heteroskedas-
tic SARAR, (6) is hetero. MESS(1,1) by QML and (7) is hetero. MESS(1,1) by GMM; *, ** and
*** correspond to significance at the 10%, 5% and 1% respectively.

To compare MESS(1,1) and SARAR results, we report in Table 9 the average direct effect and the total
effect for each of the explanatory variables for heteroskedastic SARAR and MESS(1,1), estimated both by
QML and GMM. The average direct effect is computed as the average of diagonal elements of the impact

—=Yn

matrix %tr(uxnk) while the total effect is defined as the sum of all of its elements I}, =% 1,,. In terms of

impacts on the dependent variable, the main focus for economists, we observe a strong similarity of impacts

32This difference comes from the definition of these two models, as shown in Section 2.
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produced by the two specifications even though parameters capturing spatial autocorrelation are completely

different from each other.

Table 9: Comparison of average direct effects and total effects

Direct effects Total effects
SARAR MESS(1,1) MESS(1,1) | SARAR MESS(1,1) MESS(1,1)

QML GMM QML GMM
LGDP 1.094 1.116 1.115 30.936 32.243 32.249
LPOP -0.595 -0.586 -0.585 -16.802 -16.926 -16.926
OECD 1.029 1.039 1.035 29.085 30.025 29.938
LDIS -1.300 -1.202 -1.202 -36.749 -34.720 -34.775

TARIFFS 0.109 0.107 0.106 3.070 3.076 3.074

M_PO 1.163 1.215 1.198 32.854 35.094 34.659

Effects are computed from estimation results of heteroskedastic SARAR and
MESS(1,1) (estimated by QML and GMM)

The lemma derived in Section 3 allows performing inference on elements of the impact matrices of the
MESS(1,1). Table 10 summarizes inference results performed on different (functions of) elements of these
impact matrices, based on the heteroskedastic MESS(1,1) estimated by GMM. The first row analyzes the
significance of average direct effects. The results indicate a non-significant elasticity of surrounding-market
potential on FDI. This result, combined with a negative spatial autocorrelation, points to the dominance of
pure vertical type of FDI. To the best of our knowledge, this application is the first to indicate such a clear
cut result. One possible explanation of this result lies in the production costs faced by Belgian multinationals
in Belgium. Indeed, labor costs in Belgium are amongst the highest in Europe.?? Besides, determinants of
the traditional gravity equation have the expected sign. We observe a positive and significant elasticity of
GDP, which captures the wealth effect, while elasticities of population and bilateral distance are found to
be negative. The OECD dummy is found to be significant at the 10% level while least squares estimated
value was found to be non-significant. Finally, the tariffs variable is found to be non-significant which can
be explained by the homogeneity of the sample.

The second row presents inference on the indirect effect of Austria on Slovakia, (Eggﬂk )svk, aur- In other
words, we analyze if a shock on a regressor in Austria will affect outward FDI from Belgium to Slovakia. We
observe a significant effect for the host GDP variable and bilateral distance but the effect is non-significant
for the four other regressors. For instance, increasing the GDP of Austria by 1% will reduce outward FDI
from Belgium to Slovakia by 0.147%. Finally, the last row of Table 10 studies significance of the difference

between the indirect effect of Mexico on the United-States and the indirect effect of Canada on United-

33See Eurostat database on labor costs.
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States ,(E‘g("nk)Ug AMEX — (Eg("nk)Us A,cAN. We observe significant difference between those indirect effects
for GDP and bilateral distance. In other words, the effect of a variation of Mexican GDP on outward FDI
from Belgium to the United States will be statistically different from the effect of the same variation of
Canadian GDP on outward FDI from Belgium to the United States.

Table 10: Inference on elements of impact matrices

LGDP LPOP OECD LDIS TARIFF MP

L Et ) 1115"* -0.585"* 1.035* -1.202°*  0.106 1.198
n AT X (0.242)  (0.255)  (0.613)  (0.200)  (0.084) (1.183)
= ) -0.147* 0077 -0.137  0.159** -0.014 -0.158
=X/ SVEAUT (0.084)  (0.058)  (0.120)  (0.075)  (0.013) (0.226)

—Un =Yn 0.009* -0.005 0.008  -0.010** 0.001 0.010
(EX.vsamex = (B, Jusa.can (0.005)  (0.004)  (0.007) (0.005)  (0.001) (0.016)
Standard errors are between brackets; AUT stands for Austria, CAN for Canada, MEX for Mexico, SVK
for Slovakia and USA for the United States; - tr(ZY ) is the average direct effect, (2% )sv i, avr is the
indirect effect between Austria and Slovakia; (Egglk JUSAMEX — (Eg&k Jusa,can is the difference between
the indirect effect of a change in  in Mexico on outward FDI in the United States and the indirect effect
of a change in x in Canada on outward FDI in the United States; *, ** and *** correspond to significance
at the 10%, 5% and 1% respectively.

To conclude this section, even though SARAR and MESS(1,1) provide similar impacts, it is important to
remark that the MESS is much easier to compute since there is no Jacobian of the transformation involved

and the parameter space for « is not constrained.

6. Conclusions

This paper firstly develops the asymptotic theory of the matrix exponential spatial specification (MESS)
in both the dependent variable and error terms. We show that the GMME is consistent and asymptotically
normal even in the presence of unknown heteroskedasticity as long as the interaction matrix has zero
diagonal elements. Besides we show that if the interaction matrices for the dependent variable and the
error terms commute, the QMLE may also be consistent and asymptotically normal in the presence of
unknown heteroskedasticity. In the homoskedastic case, we develop a best optimal GMME which is much
simpler than the best optimal GMME for the SAR specification since moment conditions do not depend
on estimated parameters. In case of non-normality, the homoskedastic best optimal GMME is shown to be
more efficient than the QMLE. In the heteroskedastic case, a best optimal GMME cannot be derived except
if we know the structure of heteroskedasticity. We thus develop an optimal GMME which is shown to be
more efficient than the QMLE. We also derive a lemma to perform inference on the elements, or functions of

them, of the impact matrices implied by the reduced form of the MESS, which is very important for applied
42



economists. Monte Carlo experiments are conducted and show the good small sample properties of the
proposed estimators. Finally, we apply our estimators to show that outward FDI from Belgium are mainly
characterized by the vertical type. Results indicate that least squares estimation results are misleading. We
also compare SARAR and MESS(1,1) impacts and note that they are very similar, which pleads for the use

of the latter. When the spatial process is stable, the MESS has many advantages over the SAR model.

Appendix A. QML Estimation of a high order MESS [MESS(p,q)]

Consider the following high order MESS:
eaw"yn = XpnB + Un, BTM"Un = €n, €Ep = (enh B Enn)lv (Al)

where aW,, denotes aq Wy1 + - - -+, Wy, for a vector a = (a1, ..., @) and n x n spatial weights matrices
Whyi's, i =1,...,p, and ™M, denotes 1y M1 + -+ + 74My, for 7 = (11,...,7)" and n x n spatial weights
matrices M,;’s, j =1,...,q. Denote the model as MESS(p,q). We investigate the properties of the QMLE
for this model when the disturbances are i.i.d. as assumed in Assumption 5. The quasi log likelihood function

of the MESS(p,q), as if the €,;’s were i.i.d. normal, is

1

553 (€W yn = X BY el M) M (W, — X, )

Ln(6) = —g In(2702) + In [e@Wn | 4 In |e™n | —

where 6 = (', 02)" with v = (a, 7, 3’)’. Let 8 be the true parameter vector. Since [e*Wn| = e(@Wn) and
|e™n| = " (TMn) a5 long as W,,;'s and M,,;’s have zero diagonals, the log Jacobians disappear and the
quasi log likelihood function is simplified to
1 /
L,(0) = —g In(270?) — 2—2(eo‘w"yn — X, 0) ™) ™M ((aWny X 3). (A.2)
o

By contrast, for the high order SARAR model corresponding to (A.1),

(In - Awn)yn = Xnﬁ + up, (In - pMn)un = €n, €n = (Enla R 6nn)/a

where A = (A1,...,A,) and p = (p1,...,pq) , the quasi log likelihood function involves the log Jacobian
In|(I, — AW,,)(I, — pM,,)| = In|I,, — AW, | + In|I,, — pM,,|. The stationary regions of A and p can be

hard to find and the Jacobian is computationally intensive (Elhorst et al., 2012).
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The MESS(p,q) (A.1) with the notations aW,, and 7M,, resembles the MESS(1,1) presented in (2),

thus we have similar expressions for the QMLE. From (A.2), the QMLE of  is the minimizer of
Qu(7) = €Wy — X, 8) M ™M (6Wry, — X, ). (A.3)

For fixed ¢ = (&, 7")’, the QMLE of 3 is

Bn(®) = (X5 el ™M €M X ) TLX TV M Wiy, (A4)
Substituting 3, (¢) into Q,(v), we obtain a function of only ¢:
Qn (¢) — y;e(awn)/e(-rM“)/Hn (T)GTM" e"‘w”yn, (A.5)

where the projection matrix H, (1) = I,, —e™n X, (X! e(TMn) ™™ X )=1 X7 o(TMn)"  The QMLE of ¢ can
be derived by the minimization of @,,(¢). Corresponding to Assumptions 1, 3 and 4, we make the following

assumptions.

Assumption A.1. Matrices {W,;} fori=1,...,p and {M,;} for j = 1,...,q are bounded in both row

and column sum norms. The diagonal elements of Wy;’s and M,;’s are zero.

Assumption A.2. There exists a constant § > 0 such that |o;| < § fori=1,...,p, || <d forj=1,...,q,

and the true ¢ is in the interior of the parameter space ® = [—4,6]P+4.

Assumption A.3. The limit lim, o %X;Le("M"),e"M"Xn exists and is nonsingular for any T € [—6,0]9,

and the sequence of the smallest eigenvalues of e(TMn) ™™

[—6, 89

» is bounded away from zero uniformly in T €

To find the identification condition for ¢, define

Qn(®) = minE Qn(y) = (Xnfio)'e~ (W) e(@Wn) TN 1, (7)eTMn 0 Wm0 Wo X, g
(A.6)

! ’ ’ ’
+ 0_8 tI‘(B_(ToM") e—(aow,,) e(aWn) €(TM") eTM" eawne—aowne—‘roMH).

The following condition is assumed for the identification uniqueness.

Assumption A.4. FEither (i) lim, n‘l(Xnﬂo)’e_(o‘own)/e(awn)/e("'M")/Hn(T)e"'M"eO‘W“e_"‘ow"Xnﬂo #+
0 for any T and o # ag, and lim,, oo n"! tr(e_(ToM”)/e(TM”)/eTM”e_T"M") > 1 for any T # Tg, or
(1) limy, 0o 0~ " tr(e™ (ToMn) g = (@0 Wa)' o (W) o(TMn)’ o TMy caWn o =0 W o=ToMn ) 5 1 for any ¢ # ¢,
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The consistency of the QMLE follows from the uniform convergence of [Q,,(¢) — Q. (®)]/n to zero on the

parameter space ® and the identification uniqueness. The proof of the following proposition is in Appendix

C.

Proposition A.1. Under Assumptions 2, 5 and A.1-A.4, the QMLE 4, of the MESS(p,q) in (A.1) is

consistent.

For the asymptotic distribution of 4,,, a Taylor expansion of the first-order condition ‘%257_(\7") = 0 at the

true v, yields

2 3 -1
Vit =) = = (5 ) ), (A7)

2 (=
where «,, is between 4,, and ~,. Under regularity conditions, %% = C, + op(1) with C,, =

1E 9°Qn(0) We assume that C,, is nonsingular in the limit
n ovo~y’ n g .
Assumption A.5. The limit of C,, exists and is nonsingular.

The first-order derivatives of @, () at v, are

a n /(9 (a()W")/ ’
7@@()(70) = 2(X, B0 + e TMre, ) e~ (@0W) TE T o elmoMa)e 0 i=1,...,p, (A.8)
7 3
3 " /3 (ToM")/
Q(,;7(_7 ) — 26,/”67(7-01\/[") %67L7 1= 17 .. q, (Ag)
aQ, /
Q@g‘m) _ —2X;G(TOM") € (A.lO)

which are linear and quadratic functions of €, and have mean zero by verification. Thus we may apply the
central limit theorem for linear-quadratic forms in Kelejian and Prucha (2001). The proof of the following
proposition is in Appendix C.

Proposition A.2. Under Assumptions 2, 5 and A.1-A.5, \/n(¥,, — Vo) 4, N(0,lim, . C,19,C,1),

2
where C,, = %E %@0) is a 3 x 3 symmetric block matriz with the (i,7)th element for 1 <i,j < p in the

(1,1)th block being

2 ,8e(aoWn)/ , He®oWn 202 , a?e(agwn)’
“ Xn 1, — (g Wy,) (ToMy)" _ToM,, —aanXn 0 t —(axoW,,)
n( bo)'e oa; c c Oa; ¢ Bo + n r(e dada;
2 agW,,)’ a oW,
+ @ tr (e—(foMn)le—(auwn), el ) e(TOMn)/eTOMn de*o e—ozoWne—-roMn)7
oy Oa;

the (i,7)th element for 1 <i <p,1 < j < q in the (1,2)th block being

(o Wp)’ ToM,,
" e(ToMn)lae ! e_TOMn)

80&1‘ aTj

(a()Wn)/ 86(70Mn)l 20-8
Gai aTj n

2
209 tr (e~ (ToMn) g~ (W)’ Oe tr (e~ (ToMn) g~ (o W)’ de
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the ith row for 1 < i < p in the (1,3)th block being —2(Xn50)’e*(o‘ow")'MzoiWe(TDM")/e"oM"Xm the

23

(i,7)th element for 1 <i,j < q in the (2,2)th block being

2 2 M,)’ 2 M,)’ M,
% tr(e_(TOMn), 9%elmo ) + ﬁ tr(e_(T(JMn)/ De(To S e

n 07,075 n or; 0T

)

e—"'oMn)

the elements in the (2,3)th block being all zero, and the (3,3)th block being %X,’Le("'oM")/e"UM”Xn, and
Q, = C, + Qq,, where Qy,, is a symmetric 3 x 3 block matriz with the (i,j)th element for 1 <i,5 <p in
the (1,1)th block being

) BeleaWa)’

W)
(4 — 307) VeCD/(Qe*(Tol\/I”)/e*("‘ow")/L(;O i e(ToMn)") yecp (26~ (ToMn) o= (@0 Wn 5 e(ToMn)"y
Q5 (67
agW, ! agW, ’
+2#3(Xnﬂo)lei(aown)/ae(ao ) e(TOM")/vecD(26*(’”’1\4")/67(0‘0W")Iae((,);)e(ToMn)')
(6% aj
agW,, / agW, ’
+2%(;(”50)/@7(%%)’%#emlvln)’VeCD(ze%ToMn)'ef(aown)'36(@; : C(ToM)' .
J i
the (i,7)th element for 1 <i<p, 1 <j <q in the (1,2)th block being
, , OelcoWy)' , , He(ToMn)’
(114 — 308) vecp' (26~ (ToMn) o —(@0 W) g™ e(ToMn)") yecp (2¢ (ToMn) gero
8041' aTj

ToM,,)’
_(TOMn), 66( ’ :

/3 (QOW"), ’
+ 2#3(Xnﬂo)'€_(aow") eie(TOMn) VecD(Ze 5 :
Tj

5041-

the ith row for 1 < i < p in the (1,3)th block being —2p3 vecp' (2e~(ToMn)’ g = (o W)’ ae(zo#e("oM")')eT“M" Xn,

the (i,7)th element for 1 <i,j < q in the (2,2)th block being

, Oe(ToMn)’ , He(ToMn)’

_(TOMn) ) VeCD(ze_(TOMn)

(1a = 30g) veep'(2e = )

the ith row for 1 < ¢ < q in the (2,3)th block being —2us vecD’(Qe’(ToM")/‘r’e(:;’il\_AM)e"'oM"Xn, and the

Ti

elements of the (3,3)th blocks being zero.

When pu3 = py — 305 =0, Q1,, = 0.

Appendix B. Lemmas

Lemmas 2-5 can be found in, e.g., Lin and Lee (2010) and Jin and Lee (2012). The central limit theorem
in Lemma 5 is originated in Kelejian and Prucha (2010). Lemma 6 is Lemma A.6 in Lee (2007). They are

provided here for easy reference. Let UB stand for “bounded in both row and column sum norms”.
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Lemma 2. Suppose that n x n matrices {A,} are UB. Elements of n x k matrices {X,} are uniformly
bounded and lim,, oo n1 X! X, exists and is nonsingular. Let M,, = I, — X, (X} X,,)"1X/. Then {M,}
are UB and tr(M,A,) = tr(A,) + O(1).

Lemma 3. Suppose that A,, = [an i;] and By, = [by ;;] are two nxn matrices and €,;’s in €, = (€n1, ..., €nn)’
are independently distributed with mean zero (but may not be i.i.d.). Then,

(1) E(en - €, Anen) = (an11 E(631), - -, annn B(e5,))’, and

(2) E(e), Apen - €,Bnen) = > iy aniibnii[E(eh;) — 30k + tr(S,A4,) tr(X,.By) + tr[2, 4,5, (B + B,

where ¥, = Diag(c2,,...,02,) with 02, =E(e2,), i=1,...,n.

Lemma 4. Suppose that n x n matrices {A,} are UB, elements of the n x k matrices {C,} are uniformly
2

The sequence {E(€t.)} is bounded. Then €/, Ane, = Op(n), E(e/, Ane,) = O(n), n~ e, Ane, —E(e, Anen)] =
op(1) and n=Y2C" A,e, = Op(1).

bounded, and €,;’s in €, = (€p1,- - -, €nn)’ are independent random variables with mean zero and variance o

Lemma 5. Suppose that { A} is a sequence of symmetric nxn matrices that are UB and by, = (bp1, ..., bnn)’
is an n-dimensional column vector such that sup, n=* Y " | |bni|*T™ < oo for some m; > 0. Further-

more, suppose that €y, ,€nn are mutually independent with zero means and the moments E(|e,;|*T)
2

Cn

for some na > 0 exist and are uniformly bounded for all n and i. Let o be the variance of ¢, where

cn = €, Apen + b6, —tr(A,3,) with 2, being a diagonal matriz with Ee%i ’s on its diagonal. Assume that

—-1.2
n- o

is bounded away from zero. Then - 4, N(0,1).

Lemma 6. Suppose that [Q,(Y) — Qn(7)] converges in probability to zero uniformly in v € T which is a
convez set, and {Q, ()} satisfies the identification uniqueness condition at yo. Let 4, and % be, respectively,

the minimizers of Qn(y) and Q% (v) inT. If Q% (y) — Qn(y) = op(1) uniformly in v € T', then both 4,, and

*

Ay converge in probability to .

2
In addition, suppose that 8835,57) converges in probability to a well defined limiting matriz, uniformly in

~ € T, which is nonsingular at o, and \/ﬁaniyo) = 0p(1). If a;fféf/?) - 626355/7) = op(1) uniformly in
v €T and \/ﬁanEﬂO) - \/ﬁanﬂ(ﬂO) = op(1), then \/n(%: —v) and \/n(f, — o) have the same limiting

distribution.

For the best GMME in the homoskedastic case, we show that adding any other moments to the selected
ones cannot improve the asymptotic efficiency using the redundancy conditions in Breusch et al. (1999).
Suppose that we have a set of moment conditions E[g}(v)] = 0 with the corresponding optimal GMME
being 4. Adding some additional moment conditions E[g, ()] = 0 to E[g}(v)] = 0, we have an optimal
GMME %, using both sets of moment conditions. Then the moment conditions E[g,(v)] = 0 are redundant

given E[g%(y)] = 0 if the asymptotic variances of 4% and 4, are the same. Let V* = nE[g*(v0)g (70)],
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Vo1 = nE[gn(70)g2 ()], G = E %}]‘)) and G, = E 8937570). The following two lemmas from Breusch

et al. (1999) give conditions for moment redundancy.

Lemma 7. The following statements are equivalent: (a) E[g,(v)] = 0 is redundant given E[gZ(v)] = 0; (b)
Gy = Va1 V,i 7 GE; and (c) there exists a matriz T such that G, = VT and Gy, = V01T

Lemma 8. Let the set of moment conditions to be considered be Elgn(7)] = Elg91,,(7), 95,(7), 95,(¥)] = 0,

/

or simply g = (g1,95,95) . Then (gb,9%) is redundant given g1 if and only if g2 is redundant given g; and

gs s redundant given g;.

The following Lemmas 9, 10 and 11 summarize relevant matrices of the MESS which possess the essential

UB property.3*

Lemma 9. Suppose that nxn matrices {My1},..., {My,,} are UB. The smallest eigenvalue of e™n)" ¢™n
is bounded away from zero uniformly over the interval [—9,8]7 for some finite 6 > 0. Elements of the n X k

(TMn)/

matriz X,, are uniformly bounded. The limit of %X;e e™n X exists and is nonsingular for any T €

[—6,0]7. Then e™n, Xn(X;le(rMn)/eTMan)—er/L and H,(T) = In_eTMnXn(X;Le(TMn)/e-rMan)_lXT/le(TM“)/

are UB uniformly in T € [—0, ]9.

Lemma 10. Let Wy1,..., Wyp, Mp1, ..., My, A, and B, be n X n matrices that are UB, b, be an
n-dimensional vector with uniformly bounded elements, X,, be an n X k matriz with uniformly bounded el-
ements, and €, = (€p1,...,€nn)" be a random vector with independent elements that have mean zero and
variances 072“. ’s. Assume that lim,, o %X;Le("M"),e"M"Xn exists and is nonsingular for any T € [—4, ]9
and the sequence {E(et.)} is bounded. Then %b;e(aw")/e("M")/Hn(T)e"M”eo‘WnAnen = op(1) uniformly
on the parameter space ® = [—4§,0]PH4, %b;le(awn)/e(TM")/BneTM"eaw"Anen = op(1) uniformly on
@, Lt AL e@Wn) o(TM0) [ (1)e™neaWn A e, — tr(ALe@Wn) e(TMa) [T, (1)e™neaWn 4,31 )] = op(1)
uniformly on ®, %[e;A;e(aW")/e("'M")/Bne"'M" e“Wn A e, — tr(AL e@Wn) (TMn)' B ™M oo Wi g 53 3] —

op(1) uniformly on ®, and %tr(A;le(o‘w")/e("M”)/(In — H,(7))e™nexWn A 3,) = o(1) uniformly on @,

where Hn(T) =1, — eTM"Xn(X;Le(TMn),eTMan)ilx;ze(TMn)/ and Xy, = Diag(agzl? s 70’3m)'

Lemma 11. Let A, be any n x n UB matriz and a,, = op(1). Then |[e®" —I,,||oc = 0p(1) and ||e®A» —
I,|l1 = op(1).
Appendix C. Proofs

Proof of Proposition 8. To show that 4;; is the best GMME within the class of GMMEs with linear and

quadratic moments, we prove that the moment condition E[g,, ()] = 0, where g,,(7) is a set of arbitrary linear

34The detailed arguments to establish their UB properties are in a supplementary file available upon request.
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and quadratic moments in (25), is redundant given the moment conditions E[g}(7)] = 0. By Lemmas 7 and

8, it is sufficient to show that there exists a matrix T such that G,, = E 89575/70) =V,1T and G}, = VT,

where
V21 = 1 E(gn(70)95, (70))
03 tr(PyPry) - ‘73 tr(Pﬁlprt,k*-s-al) 3 veep' (Pu1) Fy
B . )
‘73 tr(Pi,kaﬁkﬂ e Ué tr(Prf,ka;,k*Jrz;) H3 VeCDI(Pn,kp)th
psky veep(Pry) ... paky veep (B ey y) opFLFy
veep' (Py1) veep(PY) ... veep’(Pui) vecD(P;7k*+4) 0
1 4
+ E(M —30y)
vecp'(Ppk,) veep(Pry) ... veep'(Puk,) veep(Py e iy) 0
0 . 0 0
by Lemma 3.
Let P* — P, — =8 Mipe 90 s pr ps o Npoopro P for]—1,... k% and F¥, —
© an — *nl (77471)77]% n2 (77471)7715 n3» f™n T ny £ Anl Tt nl4+4 ort=1,..., , an an —
Na—1 * 772 *« (111 170 My _ 2001 * ToM,, : :
(774741)777% Er ey Frs(s e W, X, 80) 7(7747(1’)5715 Er,. If e~ X, does not contain an intercept
term, let £ = (774777417)17@ Fr— (7741'13)777% F;B(%l;emM"X;); otherwise, let F, = m o (Tex, Ox 1)+
2
ﬁc(m)ﬂfge;k - (m_”ﬁFgg(%l;emMan), where ey is the jth unit vector in R¥. Then
6;1(7)(P;n6n(’y)7 P:nen(7)7 Pgnlen(v)v cee Pgnk*en(’y)) = 6;7,(7)(13;:16”(7)7 ) P:,k*+46n(7))AP7
where
_ (ma=3)-mi  og'ns
1 (774*1)*7% (mgl)*ng 0 0
P=10 0 0 1 0
0 0 0 0 I

If emM= X, does not contain an intercept term, (F,, F5) = (Fpys Py Fig, By ) Ap1, where

2
-1 n 13/ oM, 200M3
0 74 - 3 2 eToMn |V, X —
Ay = (na—1)—n3 (na=1)—n3 (=l nXnfo) (na=1)—n3 | .
2 b
na—1 o N3 197 toM, y*\/
na—1—n3 T 0 (na—1)—n3 (Glne X 0
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otherwise, (Fyy,,, F3,) = (Fy1, Fra, Frys, Fiyg) Ara, where

na—1 _ n3 13 oMo, __ 2007
fg = 0 (?74:11)*1732, (774*13)*772 (lne™ ™ Wn X fo) (nri})in%
n4n4;n (Ik* Ok*Xl) 0 mc(’ro)ekk ﬁ( l/ ToM"X ) 0
Ap 0 Ap 0
Let App = if emMn X does not contain an intercept term and App =
0 AFI 0 AF2

otherwise. Then g;kzl (V)APF = G;L(’y)(Pa*nen(PY)? P:nen(’)/)’ Pgnlen(7)7 R/ PEnk*en( ) (Foz*n7 FEn)) Let

o° 0 0 (05%0)
Ar=10 o052 0 (0,0) :
0 0 ¥ (0,—052I)

where V' = (b],...,b}.) with b = %e;ﬂ. Define T' = AppAr. We shall show that G,, =V}, 21T and
3

Gy, =V T for this T.
Let J, = I,,— %lnlib and P,, be any nxn matrix with trace zero. The following identities are useful to show

.
m vecp (Wn) - ﬁjnem]wn W, X Bo; (b) VeCD(PEnl) =

JneTOMT”X*l; (C> Zf—*l VeCD(PE l)egel = JneTOMan; (d) Fan + K3 VeCD(P:;n) = O.QeTOMWW XTL/BOa ( )

g, — WZl 1V€CD(Pgnz)ekz = e™Mn X, (f) VeCD'(Pn)FEH = WVQCD (Pn)e™M X,; (g)

ps veep' (Pp)FY,, + oatr(PSP:,) + (ug — 308) veep/ (Py,) veep (Pr,) = oatr(PSW,,).

n- an

the desired results: (a) vecp(Pr,) =

Since g% () App = €,(V) (P en(7), PEen(7), Proi€n(V)s s Phope€n(7), Fius F7,) as shown above and
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Pg,,’s are diagonal matrices, we have

Vio1Apr = E[gn(%)(gii/ (70)ApF)]

Py PL)  odt(PPL)  odveen(Pi)(veen (P, ). veen(Phy)) s veen! (Pan)(Fin. F)

1
o tr(Pi,ka&kn) og tr(P;f,ka:n) o VecD’(P;kp)(vecD (Pip1)s- - 7VecD(P[}‘m,c*)) 3 veen' (P, )(
psFy, veep(Pyy,)  psky veen(Pr,) psF (veen (P ), - - - veen (B ) oo (Fos
vecp'(Pn1) veep(Py,)  veep'(Pu1) veep(Pr,)  veep'(Ppi)(veep(P3,,,), - - -, veen (P,
4z 303

" veep' (Pok, ) veen(Py,,)  veep'(Puk,) veen(Pr,)  veep'(Puk, ) (veen (P3,1), - - -, veen (Pg,,y,

0 0

The V,, 01T = (Vy 21App)Ar is a (k,+1) x 3 block matrix. By (g), the (4, 1)th block of V;, 01T for 1 < j <k,
is Lo tr(P3;W,); the (j,2)th block of Vy, 1T for 1 < j < ky, is +og tr(P5;M,); by (c) and (f), the (j,3)th
block of Vy 21T for 1 < j < k, is 0; by (d), the (k, + 1,1)th block of V;, 01T is 1 F)e™MnW, X, Bo;
the (k, + 1,2)th block of V;, 1T is 0; by (e), the (k, + 1,3)th block of V;, 01T is —2 Fje™M» X, Thus
Vi T = Gy,

Furthermore, as g% (7) is a special case of g,(v), G% = V*T. Then AX = GXV*'G% = GET =
(G;ZIA pr)Ar = E %&))APF)AT, which has the explicit expression in (30) by some computation. The
asymptotic distribution of 4;; follows by Proposition 6. O
Proof of Proposition A.1. The consistency of the QMLE 4, will follow from the uniform convergence

that supyee =|Qn(@) — Qn(@)| = op(1) and the identification uniqueness condition.

We first show the uniform convergence. As y, = e~ *0Wn (XnBo + e~ ToMn €n),

1 - 2 / / /
E[Qn(¢) — Qn(®)] = Z(XnﬁO)le_(aown) e(@Wn)' (TMy) Hn(T)eTM"eaw"e_aowne_"'oM"gn

1 _ ro_ ’ ’ ’ _ _
_|_ 76;6 (TUMn) e (a()wn) e(awn) e(“'Mn) Hn(T)eTMneaWne aowne TOMnen
n

2
_ 0o tr[e—(foMn)’e—(aOWn)’e(aWn)’e(TMn)’Hn(T)e‘rMneaW —aOWne—roMn]

ne

2
_ 0-70 tr{e_(TOMn),e_(aOWn)le(awn)/e(‘rMn), [In _ Hn(T)]eTMneawne_aowne_TUMn}.
n

By Lemma 10, 2[Q,,(¢) — Qn(¢)] = op(1) uniformly on ®.
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We now show that %Qn(qb) is uniformly equicontinuous. By the mean value theorem, for ¢, ¢* € ®,

p &W
—( a " (F ! ~\ T 86 " —a *
22 (XnB0) e oWn)' o(GW)' o (FM) H,(T)e Mni&)a- e OW"Xnﬂo(Oéi — )
i=1 )
p aW,
200 Z [~ (TOM.) (= (@0Wo) ((&W,.) (7M. g7n, IO

8047;

e oW TTMa] (0 — )

0e™n  9H,.(F) - ~
e + (7') eTM" )eawne—agwn XnﬁO(Ti* _ Ti)

1 < y
2 ~(ao W) (&W,)' ((FMa) (9T
+nZ X, f0)'e (2H,(7)

37’1‘ aTi
i=1
2 4 s ’ ae%M" ~
290 E trle —(ToMn) o= (e Wn)' (GWy)' ((FM)' TC  aW, —agW, e~ ToMn](7x _ 1),
1 87‘1‘
1=

where &) is between ¢* and ¢. By Lemma 9, H,, (1), e*W» and e™= are UB uniformly over their respective

aW TMy, . .
parameter spaces. By the proof of Lemma 10, ‘%aa' , aear and afg’;<7) are UB uniformly over their

respective parameter spaces. Then there exists some constant ¢ such that

1 _
~1@n(07) = Qu(@)] < clle” — af[ +[|77 —7|]).

Thus +Q,(¢) is uniformly equicontinuous.
Finally, we show that the identification uniqueness condition holds. Let Aq,..., A, be the eigenvalues of
Ap(¢) = e~ (ToMn) g (@oWn)" (@Wn)' o(TMy)' (M gaWo o =0 Wn o =ToMn - Gince A,,(¢) is positive definite,

Ai’s are all positive. Then by the inequality of arithmetic and geometric means,

Sir(An(@) = - oA ([[A0V" = [ Au(@) "

i=1 i=1

— [6_ tr(‘roMn)e— tr(aown)etr(aWn)etr(‘rMn)etr(TMn)etr(awn)e— tr(agwn)e— tr(‘roMn)]l/n

:1’

because tr(aM,,) = tr(tW,,) = 0. In addition,

(Xnﬁo)/e_(aown)/e(awn)le(TMn)lHn (T)@TMn eawne—agwanﬁo Z 0

Thus, %Qn(d)) > 0. When ¢ = ¢y, %Qn(d)) = 03. Assumption 6 implies that whenever ¢ # ¢,

limy, o0 %Qn (¢) # o2. Thus the identification uniqueness condition holds.
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With the uniform convergence and identification uniqueness condition, the consistency of &)n follows.
The consistency of /3, follows by plugging qAbn into the function Bn(d)) in (A.4). O

Proof of Proposition A.2. To obtain the asymptotic distribution, we use (A.7) for \/n(%,, —~,) derived

t 1 2? Qn(¥n) _ 1 aan("/o) + OP(].) —

from a Taylor expansion of the first-order condition. We first show that & =5=5-2" = = =525

1 Eaa%’b(:‘)) + 0op(1) = C, + op(1). Noting that for any a*,a € [-4,d]?, by expanding (a*W,,)! =

[(a* — @)W, + aW,, ]}, we have

* A i : i i— *
@ W,) = @W,) e = 3 () laWa ¥ " ~ )W &
k=1
- * : 1/i—1 i—k * k—1
—illia Wl 3 (17 ) laWal @ — a) Wi

k=1

<ill(a” — )Wl ([aWo oo + [[(0" — @)W [o)' ™

Then Heo‘*w" — e®Wn

o <l = ) Wallool [ 271 o (leWallo + [|(0* — ) Wi[loo) ™! = [l(e* —

a)wn||Ooe||aWn"oo+||(a*70¢)w7t||oo < Ha —a” ma‘X1<j<p ||an‘|ooe||aw-n”oo+“(a 7a)W,,LHOO' Thus ||€dnwn_

e*Wn|| = op(1). With this result, we can show that iagy"a(,;y") = %828%%(1/0) + op(1).*> Further-
more, each element of 7118 8%?‘9(»70) — %E% is a linear-quadratic function of €,, then %% =
2 ~ 52
71L E 3@%75("//0) + OP(]-) by Lemma 4. Hence7 %8 acijb(;y/") = %E da%%(’?:n) —+ OP(]_). It follows that
. 1 9Qn(v0)
V¥, =) = -G — = +op(1),

N

where each element of 8Q”A(/'Y°)

is a linear-quadratic form of €, as shown in (A.8)—(A.10). We now show that

9Qn(v0) —(ToM,) ,—(coW,,)’ e 0Wn) (r M)\ _
E By e Sa € ) =

= 0. Ase,;’s are i.i.d. with mean zero, it remains to show that tr(e

agWnp

tr(Me_a"W") =0 and tr(%f” —7oMa) = 0. W.lo.g., we show that tr(2&—"

—agW —
e, e"®Wn) = 0. As

aeaow" = Zg 1 Zk 0 jll (W) Wi (oW ) 1 F, (g W e 0Wn = e *0Wn (g W)/ and tr(AB) =

tr(BA) for any two conformable square matrices A and B, we have

W’VL o
tr<8e°‘o e_aown) :tr W, .o~ 00Wn Z Z aOW j 1
aOZi ni
Jj= 1
:t nze—aow Z aOW ) )

35Please see the proof of Proposition 2 in the supplement for a similar argument.
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Applying the central limit theorem in Lemma 5, we have

VA, =) % N(0, lim C;'Q,C;Y),
n—oo

where Q,, = %E(mgiyg)mgi_y")). The explicit expressions for C,, and €2,, can be derived by Lemma 3. [
Acknowledgments

We would like to thank Yvan Stroppa and Matthias Pécot for providing valuable help with the Monte
Carlo simulations and seminar participants of the economics department of the University of Murcia and

University of Orléans.

References

Amemiya, T. (1985), Advanced econometrics, Harvard University Press, Cambridge, MA.

Baltagi, B. H., Egger, P. and Pfaffermayr, M. (2007), ‘Estimating models of complex FDI: Are there third-country effects’,
Journal of Econometrics 140, 260—281.

Baltagi, B. H., Egger, P. and Pfaffermayr, M. (2008), ‘Estimating regional trade agreement effects on FDI in an interdependent
world’, Journal of Econometrics 145, 194-208.

Blonigen, B. A., Davies, R. B., Waddell, G. R. and Naughton, H. T. (2007), ‘FDI in space: Spatial autoregressive relationships
in foreign direct investment’, Furopean Economic review 51, 1303—-1325.

Breusch, T., Qian, H., Schmidt, P. and Wyhowski, D. (1999), ‘Redundancy of moment conditions’, Journal of Econometrics
91, 89-111.

Chiu, T. Y. M., Leonard, T. and Tsui, K.-W. (1996), ‘The matrix-logarithmic covariance model’, Journal of the American
Statistical Association 91(433), 198-210.

Coughlin, C. C. and Segev, E. (2000), ‘Foreign direct investment in China: A spatial econometric study’, The World Economy
23, 1-23.

Davies, R. B. (2005), ‘Fragmentation of headquarter services and FDI’, North American Journal of Economics and Finance
16, 61-79.

Debarsy, N. and Ertur, C. (2010), ‘Testing for spatial autocorrelation in a fixed effects panel data model’, Regional Science
and Urban Economics 40, 453-470.

Elhorst, J. P., Lacombe, D. J. and Piras, G. (2012), ‘On model specification and parameter space definitions in higher order
spatial econometric models’, Regional Science and Urban Economics 42(1), 211-220.

Garretsen, H. and Peeters, J. (2009), ‘FDI and the relevance of spatial linkages: do third country effects matter for Dutch
FDI?’, Review of World Economics 145, 319-338.

Jin, F. and Lee, L.-F. (2012), ‘Approximated likelihood and root estimators for spatial interaction in spatial autoregressive

models’; Regional Science and Urban Economics 42, 446—-458.

54



Kelejian, H. H. and Prucha, I. R. (1998), ‘A generalized spatial two-stage least squares procedure for estimating a spatial
autoregressive model with autoregressive disturbances’, Journal of Real Estate Finance and Economics 17, 99-121.

Kelejian, H. H. and Prucha, I. R. (2001), ‘On the asymptotic distribution of the Moran I test statistic with applications’,
Journal of Econometrics 104, 219-257.

Kelejian, H. H. and Prucha, I. R. (2010), ‘Specification and estimation of spatial autoregressive models with autoregressive and
heteroskedastic disturbances’, Journal of Econometrics 157, 53—67.

Lee, L.-F. (2003), ‘Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive dis-
turbances’, Econometric Reviews 22(4), 307-335.

Lee, L.-F. (2004), ‘Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models’, Econo-
metrica 72(6), 1899-1925.

Lee, L.-F. (2007), ‘GMM and 2SLS estimation of mixed regressive, spatial autoregressive models’, Journal of Econometrics
137, 489-514.

Lee, L.-F. and Liu, X. (2010), ‘Efficient GMM estimation of high order spatial autoregressive models with autoregressive
disturbances’, Econometric Theory 26, 187-230.

LeSage, J. P. and Pace, R. K. (2007), ‘A matrix exponential spatial specification’, Journal of Econometrics 140, 190-214.

LeSage, J. and Pace, R. K. (2009), Introduction to spatial econometrics, Vol. 196, Chapman & Hall/CRC.

Lin, X. and Lee, L.-F. (2010), ‘GMM estimation of spatial autoregressive models with unknown heteroskedasticity’, Journal of
Econometrics 157, 34-52.

Liu, X., Lee, L.-F. and Bollinger, C. R. (2010), ‘An efficient GMM estimator of spatial autoregressive models’, Journal of
FEconometrics 159, 303-319.

Pace, K. R., LeSage, J. P. and Zhu, S. (2011), Spatial dependence in regressors and its effect on estimator performance,
Technical report.

Smith, T. E. (2009), ‘Estimation bias in spatial models with strongly connected weight matrices’, Geographical Analysis
41, 307-332.

White, H. (1980), ‘A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity’, Econo-

metrica 48, 817-838.

95



	1 Introduction
	2 Comparison of MESS and SAR Specifications
	3 Estimations of the MESS(1,1) Model
	3.1 QMLE
	3.1.1 QMLE: Homoskedastic Case
	3.1.2 QMLE: Heteroskedastic Case when Wn and Mn are Commutative

	3.2 GMME
	3.2.1 GMME: Homoskedastic Case
	3.2.2 GMME: Heteroskedastic Case

	3.3 On the Inference of Elements in Impact Matrices

	4 Monte Carlo Simulations
	5 Application to Belgium's outward FDI
	5.1 Data and empirical specification

	6 Conclusions
	Appendix  A QML Estimation of a high order MESS [MESS(p,q)]
	Appendix  B Lemmas
	Appendix  C Proofs

