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& Toulouse School of Economics, University of Toulouse, France

(abdelaati.daouia@tse-fr.eu)
b Department of Statistics, Sookmyung Women’s University, South Korea

(word5810@gmail.com)
c Department of Statistics, Seoul National University, South Korea

(bupark@stats.snu.ac.kr)

Abstract

Estimation of support frontiers and boundaries often involves monotone and/or concave
edge data smoothing. This estimation problem arises in various unrelated contexts,
such as optimal cost and production assessments in econometrics and master curve
prediction in the reliability programs of nuclear reactors. Very few constrained esti-
mators of the support boundary of a bivariate distribution have been introduced in
the literature. They are based on simple envelopment techniques which often suffer
from lack of precision and smoothness. Combining the edge estimation idea of Hall,
Park and Stern with the quadratic spline smoothing method of He and Shi, we develop
a novel constrained fit of the boundary curve which benefits from the smoothness of
spline approximation and the computational efficiency of linear programs. Using cubic
splines is also feasible and more attractive under multiple shape constraints; computing
the optimal spline smoother is then formulated into a second-order cone programming
problem. Both constrained quadratic and cubic spline frontiers have a similar level
of computational complexity to the unconstrained fits and inherit their asymptotic
properties. The utility of this method is illustrated through applications to some real
datasets and simulation evidence is also presented to show its superiority over the best
known methods.

AMS 2000 subject classification: 62G05, 62P20, 62P30

Key words : Boundary curve; Concavity; Least majorant; Linear programming; Mono-
tone smoothing; Multiple shape constraints; Polynomial spline; Second-order cone program-
ming.

1 Introduction

Frontier modeling—that is, estimating the topological extremity of the support of a bivari-

ate density function—is one of the basic tools in statistical applications. This has been

well reflected by the expanding recent literature on data edge and data envelope analysis.

A number of semi- and non-parametric techniques have been proposed, including extreme
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values (de Haan and Resnick (1994), Hall et al. (1997), Gijbels and Peng (2000), and Girard

and Jacob (2003, 2004)), projections (e.g. Jacob and Suquet (1995)), piecewise polynomials

(Härdle et al. (1995), and Korostelev and Tsybakov (1993)), or local polynomials (Hall and

Park (2004), Hall et al. (1998), and Knight (2001)).

In this article we focus on the less-discussed problem of estimating boundary curves that

are believed or required to be monotone. This problem has increasing usage in classification

and cluster analysis, economics, education, finance, management, physics, public policy,

and other arenas. It is also closely related to edge estimation in image reconstruction. A

first application that we consider in this article is concerned with the reliability of nuclear

reactors. An accurate knowledge of the change in fracture toughness of the reactor pressure

vessel materials as a function of the temperature is of prime importance in a nuclear power

plant lifetime program. Physical considerations lead to the natural assumption that the

master curve prediction—that is, the set of materials having optimal fracture toughness—is

monotonely increasing. The scatterplot of 254 non-irradiated representative steels, obtained

from the US Electric Power Research Institute (EPRI), is given in Figure 1 (left panel).

Our second motivating example is concerned with the increase of the production activ-

ity of 123 American electric utility companies. The measurements for each company of the

produced output and the total cost involved in the production are represented in Figure 1

(middle panel). Naturally, the econometric frontier—that is, the locus of the most efficient

firms—is nondecreasing. Another related application is concerned with the assessment of

the efficiency of 37 European Air Controllers. The performance of each controller can be

measured by its “distance” from the efficient support boundary, called cost/production fron-

tier. The scatterplot of the controllers in the year 2000 is given in Figure 1 (right panel),

where their activity is described by one input (an aggregate factor of different kind of labor)

and one output (an aggregate factor of the activity produced, based on the number of air

movements controlled, the number flight hours controlled, etc.).

Most of the works on boundary curve estimation do not rely on the monotonicity con-

straint and require large samples to provide good results. There are mainly two known

methods for preserving monotonicity: the free disposal hull (FDH) and the data envelop-

ment analysis (DEA). The FDH estimator is the lowest “stair-case” monotone curve covering

all the data points (see, e.g., Korostelev et al. (1995)). When the joint support is in addi-

tion convex, the DEA estimator is defined as the least concave majorant of the FDH frontier

(see, e.g., Gijbels et al. (1999)). Although FDH and DEA estimators are very simple in

nature, their full statistical aspects have been elucidated only during the last decade. See,

for instance, Jeong and Park (2006), Kneip et al. (2008), Daouia et al. (2010) and Park

et al. (2010) for recent contributions. An improved version of the FDH estimator, referred
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to as the linearized FDH (LFDH) and obtained by drawing the polygonal line smoothing

the staircase FDH curve, has been considered in Hall and Park (2002) and Jeong and Simar

(2006).

Although the FDH, LFDH and DEA estimators are very easy to implement and provide

the fitted values at the observed predictor with monotonicity, they undersmooth the data

and underestimate the true support boundary. These vexing defects are more exacerbated

in case of small samples as those explored in our applications. Typically, the development

of the asymptotic theory of these estimators requires the assumption that the unknown

frontier function, ϕ, is at least continuously differentiable. It is then natural to incorporate

such information into the estimation procedure. The idea of this paper is to combine spline

smoothing with monotonic boundary estimation. It is well known that ϕ and ϕ′ can be uni-

formly approximated by polynomial splines and their derivatives (see, e.g., Dierckx (1993)

and Schumaker (2007)). We propose to estimate the data edge with a monotone spline func-

tion defined on a suitably chosen set of knots, which envelopes the full data and minimizes

the area under its graph. A similar idea can be found in Hall, Park and Stern (1998), where

the boundary curve is rather modeled by a single polynomial of known degree, and without

the inherent monotonicity constraint. The argument of polynomial approximation is very

attractive in terms of both pragmatic and didactic advantages. Spline functions extend the

advantages of polynomials to have greater flexibility as they are piecewise polynomials with

specified continuity constraints. They also afford the possibility of imposing monotonicity

and addressing a wide variety of settings, especially the range of applications which are likely

to have non-polynomial boundary curves.

The first proposed estimator in this work is derived by minimizing the integration of a

polynomial spline, and both monotonicity and data envelopment can be characterized by

linear constraints. In this way, the minimization problem can be efficiently solved by a very

simple linear programming algorithm. A similar estimator was considered in the context

of regression smoothing with monotonicity by He and Shi (1998), who suggested using a

constrained least absolute deviation principle in the space of polynomial splines to impose

monotonicity. Our approach is different from theirs at least in the following two important

aspects: it has the additional data envelopment constraint and its optimization criterion is

the integration of splines rather than the L1-type loss function. However, we share with

He and Shi the elegant idea of using quadratic splines on a selected knot mesh to impose

monotone constraint efficiently. Higher-order splines are more appealing for smoothness, but

monotonicity can no longer be characterized as linear constraints at the knots.

Yet, using cubic splines to estimate a smooth monotone support boundary is also pos-

sible. The key argument is that the necessary and sufficient condition for a cubic spline
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smoother to be nondecreasing can be characterized as second-order cone constraints. The

envelopment constraint remains a linear one, and hence is a second-order cone constraint as

well. Therefore, the estimation of the unknown parameters can be formulated into a standard

second-order conic programming problem. This method inherits the attractive properties of

cubic spline approximations and the computational efficiency of convex optimization. We

refer to Alizadeh and Goldfarb (2003) for an influential paper in the second-order cone pro-

gramming (SOCP) literature. In statistics, there is very little literature on the use of SOCP

for estimation and inference purposes. Up to our knowledge, only Wang and Li (2008) have

used SOCP for isotonic smoothing spline regression, and Papp and Alizadeh (2013) have sug-

gested recently to apply this technique in a more general manner to some shape constrained

estimation problems including density and regression estimation.

The choice of the number and location of knots for regularizing both estimated quadratic

and cubic spline functions is a major issue in practice, but the shape constraint makes

this selection easier than the unconstrained smoothing problem. Indeed, as monotonicity

reduces sharp changes in the slope and curvature of the estimated frontier, typically a very

small number of knots will suffice for the success of our methods. An adequate set of

knots can be determined by analogy to the popular Akaike information criterion (AIC) and

Bayesian information criterion (BIC). Both these selection criteria work remarkably well as

demonstrated in various simulated scenarios in Section 4.

In some applications, concavity is also an important characteristic of the monotone func-

tion being fitted. For example, this naturally occurs when analyzing production performance

of firms in a variety of industries. Aside from our motivating applications in the production

setting, the problem of estimating concave monotone boundaries also naturally appears to

be useful in portfolio management. In capital asset pricing models (CAPM), the volatility

or the variance of a portfolio and its average return are analogous to input and output in

models of production; the upper boundary of the attainable set of portfolios gives a bench-

mark relative to which the efficiency of an investment portfolio can be measured (see, e.g.,

Gijbels et al. (1999) and the references therein). Such examples are abundant in economics

and related fields. Both linear and second-order cone programming problems can easily be

expanded to include the additional concavity constraints that are linear. This is much harder

to do with other methods except for the piecewise linear DEA approach.

Section 2 describes in detail the constrained quadratic and cubic spline smoothing meth-

ods, including computation via linear programming and second-order cone programming as

well as knot selection processes. Section 3 presents some indicative rates of strong uniform

convergence for the unconstrained frontier estimates. We show that the monotone quadratic

spline fit inherits the asymptotic rate of its unrestricted version, and the same holds true
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for the cubic spline fit under both separate and simultaneous monotonicity and concavity

constraints. Section 4 provides a comparison with the best known frontier estimation meth-

ods through Monte Carlo experiments. Section 5 returns to our motivating applications and

illustrates the utility of the spline smoothing for the reliability of nuclear reactors and the

performance of air controllers and electric utility companies. Section 6 concludes and the

Appendix provides necessary mathematical proofs.

2 Constrained Polynomial Spline Smoothing

Suppose that we have n pairs of observations (xi, yi), i = 1, . . . , n, from a bivariate distri-

bution with a density f(x, y) in R2. The support Ψ of f is assumed to be of the form

Ψ = {(x, y)|y ≤ ϕ(x)} ⊇ {(x, y)|f(x, y) > 0}, (1)

{(x, y)|y > ϕ(x)} ⊆ {(x, y)|f(x, y) = 0},

where ϕ is a monotone increasing and/or concave function whose graph corresponds to the

locus of the curve above which the density f is zero. Without much loss of generality, we

restrict ourselves to xi ∈ [0, 1] and yi ≥ 0. We are interested in estimating ϕ based on the

sample {(xi, yi), i = 1, . . . , n} by making use of its spline approximation.

A quadratic spline smoother of ϕ can easily be defined using either the B-spline basis or

the truncated power function basis. In Section 2.1, we only describe the definition based on

the more popular B-spline basis, which is known to have the desired computational conve-

nience due to the sparsity of the design matrix. In spite of the computational expedience of

the resulting B-spline estimator using linear programming, revealing its asymptotic proper-

ties is a tedious matter in the case of multiple shape constraints because of the discontinuity

at knots of the second derivatives of the underlying piecewise quadratic polynomials. Making

use of cubic splines, we have been able to come up with a satisfactory solution in Section 2.2.

The asymptotics of the obtained fit can fully be elucidated under both separate and simul-

taneous monotonicity and concavity constraints, but its implementation requires the more

complex second-order cone programming. It is also possible to incorporate multiple simulta-

neous shape constraints into the estimation procedure by using any higher-order polynomial

spline referring to the work of Papp and Alizadeh (2013). However, one can only use the

truncated power function basis for the implementation of the estimators based on cubic or

higher-order splines.
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2.1 Quadratic splines and linear programming

Denote a partition of [0, 1] by 0 = t0 < t1 < · · · < tkn = 1. Let N = kn + p and π(x) =

(π1(x), . . . , πN(x))T be the vector of normalized B-splines of order p + 1 based on the knot

mesh {tj} (see, e.g., Schumaker (2007)). To characterize monotonicity as linear constraints

at the knots, we choose to use quadratic splines that correspond to p = 2. We then estimate

the frontier function ϕ(x) by ϕ̂n(x) = π(x)T α̂, where α̂ minimizes∫ 1

0

π(x)Tα dx =
N∑
j=1

αj

∫ 1

0

πj(x) dx (2)

over α ∈ RN subject to envelopment and monotonicity constraints, or equivalently,

π(xi)
Tα ≥ yi i = 1, . . . , n, and π′(tj)

Tα ≥ 0 j = 0, 1, . . . , kn, (3)

with π′ being the continuous, piecewise linear derivative of π. It is easily seen that α̂ is

identical to the maximum likelihood estimator of the parameter α in the special case where

data are independent and have a uniform density on the region Ψ = {(x, y) | 0 ≤ x ≤ 1, 0 ≤
y ≤ ϕ(x;α)}, where ϕ(x;α) = π(x)Tα.

From a computational point of view, minimizing (2) under (3) is an inequality form

linear program as the objective and constraint functions are all affine and the problem has

no equality constraints. Note that the monotonicity adds kn + 1 linear constraints to n of

them already in use. As the number of knots kn is usually small, the added computational

burden is negligible. By introducing slack variables s = (s1, . . . , sn+kn+1)
T for the inequalities

and expressing the variable α as the difference of two nonnegative variables α+ and α−, this

minimization problem can be solved by applying any linear programming algorithm to

minimize

∫ 1

0

π(x)T (α+ − α−)dx

subject to π(xi)
T (α+ − α−) = yi + si i = 1, . . . , n,

π′(tj)
T (α+ − α−) = sn+1+j j = 0, . . . , kn,

α+ ≥ 0, α− ≥ 0, s ≥ 0,

which is a linear program in standard form, with variables α+, α−, and s (see e.g. Boyd and

Vandenberghe (2004)). The inequalities here have to be understood componentwise.

As is typical in nonparametric estimation, the selection of knots is critical to the perfor-

mance of the spline smoother ϕ̂n. It is usual to pick out a set of knots equally spaced in per-

centile ranks by taking tj = x[jn/kn], the j/knth quantile of the values of xi for j = 1, . . . , kn−1

(see, e.g., He and Shi (1998)). However, considering the special connection of our estimator
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ϕ̂n with the conventional FDH frontier estimator, one can propose an easier way of choosing

the knot mesh. The monotone envelopment FDH estimator of ϕ, defined explicitly as

ϕn(x) = max{yi, i : xi ≤ x},

represents the lowest nondecreasing function that covers the data points (x1, y1), . . . , (xn, yn).

Then, a monotone function envelopes all the (xi, yi)’s if and only if it envelopes the extreme

FDH points (xi, yi) such that yi = ϕn(xi). Therefore, the spline smoother ϕ̂n is identical to

the smallest monotone majorant of the FDH function ϕn in the space of quadratic B-splines,

and hence the envelopment constraint in (3) reduces to

π(Xi)Tα ≥ Yi i = 1, . . . ,N ,

where (X1,Y1), . . . , (XN ,YN ) are the observations (xi, yi) lying on the FDH boundary. This

might suggest using the set of knots {tj = X[jN/kn], j = 1, . . . , kn − 1} among the FDH

points from the intuition that the X-locations of FDH points are more appropriate as knots

than those of other usual observations. On the other hand, since the number of knots kn

determines the complexity of the spline approximation, we may view the choice of kn as

model selection through the minimization of the following two information criteria:

AIC(k) = log

(
n∑
i=1

|yi − ϕ̂n(xi)|

)
+ 2(k + 2)/n, (4)

BIC(k) = log

(
n∑
i=1

|yi − ϕ̂n(xi)|

)
+ log n · (k + 2)/n. (5)

The first one is similar to the famous Akaike information criterion (Akaike, 1973) and the

second one to the Bayesian information criterion (Schwartz, 1978). Both criteria seem to

work reasonably well in our simulations and real data analysis. The asymptotic theory in

the next section shows that the optimal number of knots is in the order of n1/(3γ+1), where

γ > 0 stands for the sharpness degree, or equivalently, the quantity (γ − 1) describes the

rate at which the joint density f of the data tends to zero (in case γ > 1) or to infinity

(in case γ < 1) at the boundary. When the density has sudden jumps at the boundary (in

case γ = 1), the optimal number of knots is in the order of n1/4. Given that the selection

of smoothing parameters is typically a hard problem in nonparametric boundary regression

[see, e.g., Hall et al. (1998), Hall and Park (2004) and Daouia et al. (2010)], our method

benefits from an important advantage of having a simple and effective smoothing parameter

selector.

When the true frontier function ϕ is strictly increasing, the monotonicity of the estimate

ϕ̂n is obtained “free of charge”, at least in the asymptotic sense.
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Proposition 1. Let ϕ̃n(x) = π(x)T α̃ be the unconstrained B-spline estimator, where α̃ ∈ RN

minimizes (2) only subject to the data envelopment constraints in (3). Suppose ϕ has a

continuous and strictly positive derivative ϕ′ on [0, 1] and max1≤j≤kn |ϕ̃′n(tj)−ϕ′(tj)| = o(1)

almost surely. Then

P[ϕ̃n = ϕ̂n, n→∞] = 1.

Thus the asymptotic properties of ϕ̃n hold automatically for ϕ̂n, and we get the mono-

tonicity free of charge. The basic argument is to show that the continuous piecewise linear

derivative ϕ̃′n of ϕ̃n is eventually strictly positive with probability one. The strong uniform

convergence of ϕ̃n and its derivative is proved in the next section. The asymptotic rates of

uniform convergence are also provided there.

When the monotone boundary curve is also known or required to be concave, the lin-

ear programming problem of (2) and (3) can easily be expanded to include the additional

concavity constraints

π′′(t∗j)
Tα ≤ 0 j = 1, . . . , kn, (6)

that are linear, where π′′ denotes the second derivative of π and t∗j stands for the midpoint

of (tj−1, tj]. The second derivative of a quadratic spline exists on each inter-knot interval

and is constant. We then estimate ϕ by ϕ̂?n(x) = π(x)T α̂?, where α̂? ∈ RN minimizes (2)

subject to (3) and (6).

Arguably, the best known estimator for preserving both concavity and monotonicity is the

DEA frontier. This piecewise linear estimator being, by construction, the smallest concave

nondecreasing curve covering all the (xi, yi)’s, it is necessarily enveloped by the constrained

smoother ϕ̂?n, and the envelopment constraints in the linear program are equivalent to

π(X ∗i )Tα ≥ Y∗i i = 1, . . . ,M,

where (X ∗1 ,Y∗1 ), . . . , (X ∗M,Y∗M) denote the observations (xi, yi) lying on the DEA frontier.

Regarding the choice of knots for computing the optimal concave spline ϕ̂?n, an easy

option for it is just applying the same scheme as for ϕ̂n by replacing the FDH points (Xi,Yi)
with the DEA points (X ∗i ,Y∗i ) in the selection criteria (4) and (5). Typically, the number

of DEA points is very small compared to the sample size. As such, our experience with real

and simulated data indicates that the strategy of just using all the DEA points as knots is

also working quite well for datasets of modest size.

The constrained fit ϕ̂?n is similar to the unconstrained estimate ϕ̃n in terms of compu-

tational complexity and computing expedience using linear program. Asymptotically, both

smoothers coincide with probability one under the conditions of the following proposition.
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Proposition 2. Suppose the conditions of Proposition 1 hold. If ϕ has a continuous and

strictly negative second derivative ϕ′′ on [0, 1] and max1≤j≤kn |ϕ̃′′n(t∗j)−ϕ′′(t∗j)| = o(1) almost

surely, then P[ϕ̃n = ϕ̂?n, n→∞] = 1.

Unfortunately, posing the question of strong uniform convergence of ϕ̃′′n on the subintervals

(tj−1, tj) involves some mathematical difficulties that we have not yet succeeded in overcom-

ing. We shall need higher-order splines to obtain the uniform convergence of the second

derivative ϕ̃′′n as established below in Theorem 1.

All of the methods described above, including computation of ϕ̃n, ϕ̂n and ϕ̂?n via linear

programming and knot selection, have been implemented for the R package npbr (Daouia,

Laurent and Noh (2013)). Next, we propose an entirely satisfactory cubic spline based

approach that can handle separate as well as simultaneous monotonicity and concavity con-

straints.

2.2 Cubic splines and second-order conic programming

Denote a partition of [0, 1] by 0 = t0 < t1 < · · · < tkn = 1. Let N = kn + p and π(x) =

(π0(x), π1(x), . . . , πN−1(x))T = (1, x, . . . , xp, (x−t1)p+, . . . , (x−tkn−1)
p
+)T be a vector of power

basis based on the knot mesh {tj} with a+ = max{0, a}. We choose here to use cubic splines

that correspond to p = 3. We then estimate ϕ(x) by ϕ̃n(x) = π(x)T α̃, where α̃ minimizes∫ 1

0

π(x)Tα dx =
N−1∑
j=0

αj

∫ 1

0

πj(x) dx (7)

over α = (α0, α1, . . . , αkn+p−1)
T ∈ RN subject to the envelopment constraint

π(xi)
Tα ≥ yi, i = 1, . . . , n.

This defines the unconstrained cubic spline estimator of the frontier function. Given that

the second derivative of cubic splines is a linear spline, the concavity constraint can be

characterized as linear constraints at the knots tj themselves instead of the midpoints t∗j in

the case of quadratic splines, that is,

π′′(tj)
Tα ≤ 0, j = 0, 1, . . . , kn.

In contrast, since the first derivative of cubic splines is a quadratic spline, the mono-

tonicity constraint can no longer be formulated into linear constraints at the knots. Yet,

it is possible to come up with an alternative appealing representation of monotonicity as

standard second-order cone constraints thanks to the following proposition.
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Proposition 3 (Karlin and Studden, 1966). Let p(x) = p0 + p1x + p2x
2 be a quadratic

polynomial. Then p(x) ≥ 0 for all x ∈ [0, 1] if and only if there exists y0 ≥ 0 such that

(p0 +p2 +y0, p0−p2−y0, p1−y0)> ∈ Q3, where Qk+1 = {(z0, . . . , zk) : z0 ≥ ‖(z1, . . . , zk)>‖2}
is the (k + 1)−dimensional second order cone, with ‖ · ‖2 being the L2 norm.

This well-known characterization of nonnegative quadratic polynomials easily extends to

a characterization of monotone cubic splines. Indeed, suppose that we have a cubic spline

f(x) =
∑3

j=0 αjx
j +
∑kn+2

j=4 αj(x− tj−3)3+. Then the monotonicity constraint means that for

all j = 1, . . . , kn,

f ′((tj − tj−1)z + tj−1) ≥ 0 for all z ∈ [0, 1].

This inequality can be re-expressed as

α1 + 2tj−1α2 + 3t2j−1α3 +

j−1∑
l=1

3αl+3(tj−1 − tl)2

+

{
2(tj − tj−1)α2 + 6(tj − tj−1)tj−1α3 +

j−1∑
l=1

6αl+3(tj − tj−1)(tj−1 − tl)

}
z

+

{
3α3(tj − tj−1)2 +

j−1∑
l=1

3αl+3(tj − tj−1)2
}
z2

= p0j + p1jz + p2jz
2 ≥ 0 for all z ∈ [0, 1], (8)

with obvious definitions for p0j, p1j and p2j. When j = 1, we define all the summations in

(8) to be zero. Let u = (αT , (y0)T )T where y0 = (y01, . . . , y
0
kn

)T and y0j ≥ 0 for j = 1, . . . , kn.

When j = 2, . . . , kn, note that p0j + p2j + y0j = (dTj , e
T
j,kn

)Tu := cTj u, where

dj = (0, 1, 2tj−1, 6t
2
j−1−6tj−1tj+3t2j , 3((tj−1−t1)2+(tj−tj−1)2), . . . , 3(tj−tj−1)2, 0, · · · , 0)T ∈ RN

and ej,kn is a standard unit vector of Rkn with the jth element being 1. Moreover, p0j −
p2j − y0j = (BT

1j,−eTj,kn)Tu := AT1ju, where

B1j = (0, 1, 2tj−1, 6tj−1tj−3t2j , 3((tj−1−t1)2−(tj−tj−1)2), . . . ,−3(tj−tj−1)2, 0, · · · , 0)T ∈ RN

and p1j − y0j = (BT
2j,−eTj,kn)Tu := AT2ju, with

B2j = (0, 0, 2(tj − tj−1), 6(tj − tj−1)tj−1, 6(tj − tj−1)(tj−1 − t1), . . . , 0, 0, · · · , 0)T ∈ RN .

Therefore, according to Proposition 3, the monotonicity constraint means that there exist

A1j,A2j and y0 = (y01, . . . , y
0
kn

)T with y0j ≥ 0 such that ‖(AT1ju,AT2ju)T‖2 ≤ cTj u for every

j = 2, . . . , kn (called second-order cone constraints), where u = (αT , (y0)T )T . It is not hard

to verify that the second-order cone constraint holds when j = 1. This is the key argument
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for the estimation of the unknown parameters α of the constrained nondecreasing cubic

spline to be formulated into a second-order cone programming (SOCP) problem.

In summary, cubic spline smoothing under monotonicity and/or concavity constraints

requires solving the following typical convex programming problem with respect to u =

(αT , (y0)T )T :

minimize

(∫ 1

0

π0(x) dx, . . . ,

∫ 1

0

πN−1(x) dx, 0kn

)T
u (9)

subject to ‖Aju‖2 ≤ cTj u, j = 1, . . . , kn, (monotonicity contraints)

(π′′(tj)
T , 0kn)u ≤ 0, j = 0, . . . , kn, (concavity constraints)

(π(xi)
T , 0kn)u ≥ yi, i = 1, . . . , n, (envelopment constraints)

[Okn,N , Ikn ]u ≥ 0kn .

Here, Aj = (A1j, A2j)
T , 0kn is a zero vector of size kn, Okn,N is a kn×N zero matrix and Ikn

is the identity matrix of dimension kn. Since both concavity and envelopment constraints

are linear ones, and hence are second-order cone constraints, the problem (9) is identical

to a standard SOCP problem (see the review article by Alizadeh and Goldfarb (2003)).

This optimization model is solvable with minimal running time using available off-the-shelf

softwares. We may take any solution to be our estimate. For our numerical simulations and

real data analysis, we used CVX, a MATLAB-based free package for specifying and solving

convex programs because of its user-friendly nature and efficient implementation (for details,

refer to Grant and Boyd (2008, 2013)).

When only the monotonicity constraint is of interest, we estimate the frontier function

ϕ(x) by ϕ̌n(x) = π(x)T α̌, where α̌ ∈ RN is the solution of the SOCP problem (9) without the

concavity constraint. Under the monotonicity and concavity constraints, we estimate ϕ(x)

by ϕ̌?n(x) = π(x)T α̌?, where α̌? is the solution of the full optimization problem (9). Next, we

show that both restricted estimators ϕ̌n and ϕ̌?n inherit the same asymptotic properties as

the unrestricted version ϕ̃n.

Proposition 4. Let ϕ̃n(x) = π(x)T α̃ be the unconstrained cubic spline estimator, where

α̃ ∈ RN minimizes (7) only subject to data envelopment. If ϕ has a continuous and strictly

positive derivative ϕ′ on [0, 1] with supx∈[0,1] |ϕ̃′n(x)− ϕ′(x)| = o(1) almost surely, then

P[ϕ̃n = ϕ̌n, n→∞] = 1.

If in addition ϕ has a continuous and strictly negative second derivative ϕ′′ on [0, 1] with

supx∈[0,1] |ϕ̃′′n(x)− ϕ′′(x)| = o(1) almost surely, then

P[ϕ̃n = ϕ̌?n, n→∞] = 1.
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The next section provides indicative asymptotic rates of uniform convergence for the

derivatives ϕ̃′n and ϕ̃′′n of the unconstrained estimate.

In what regards the knot selection process, the same powerful way of regularizing the

quadratic spline estimates ϕ̂n and ϕ̂?n, described in Section 2.1, can be applied to the cubic

spline versions ϕ̌n and ϕ̌?n, respectively. The asymptotic theory in the following section shows

that the optimal number of knots is in the order of n1/(4γ+1) for cubic spline smoothing, and

hence a smaller number of knots is typically needed relative to quadratic spline smoothing.

3 Some asymptotic results

Due to the arguments made earlier in Propositions 1 and 4, the asymptotic properties of

the unconstrained spline estimate ϕ̃n carry over automatically to the monotonic quadratic

spline frontier ϕ̂n and to both constrained cubic spline smoothers ϕ̌n and ϕ̌?n. As a matter of

fact, spline smoothing does not appear to have been considered before even in the literature

on unconstrained frontier estimation. In this section we initiate a study of such estimation

procedures.

Let 0 = t0 < t1 < · · · < tkn = 1 be a knot sequence. We consider splines of general

order (p + 1). We first note that any spline function of order (p + 1) based on the B-spline

basis and knot meshes tj can be re-expressed as π(x)Tα, where π(x) = (1, x, . . . , xp, (x −
t1)

p
+, . . . , (x− tkn−1)

p
+)T , α is a (kn + p)-dimensional vector and a+ = max{0, a}. Thus, the

problem is to minimize
∫ 1

0
π(x)Tα dx subject to yi ≤ π(xi)

Tα for all 1 ≤ i ≤ n.

Let qj(x) = xj − (j + 1)−1 for 1 ≤ j ≤ p and qj(x) = (x− tj−p)p+ − (p+ 1)−1(1− tj−p)p+1

for p + 1 ≤ j ≤ p + kn − 1. The unconstrained spline estimator is then ϕ̃n(x) = π(x)T α̂,

where (α̂j : 1 ≤ j ≤ p+ kn − 1) minimizes max1≤i≤n[yi −
∑p+kn−1

j=1 αjqj(x)] and

α̂0 = max
1≤i≤n

[
yi −

p∑
j=1

α̂jx
j
i −

kn−1∑
k=1

α̂p+k(xi − tk)p+

]
.

Below, we demonstrate the uniform rates of convergence of ϕ̃n and its derivatives, which is

also of independent interest. We consider the general setting where the density function f

of the data (xi, yi) may have sudden jumps at its support boundary, decay to zero or rise

up to infinity at a speed of power γ − 1 (γ > 0) of the distance from the boundary. More

specifically, we assume

(A1) f(x, y) = 0 for all y > ϕ(x) and f(x, y) = γ[ϕ(x) − y]γ−1µ(x) + o((ϕ(x) − y)γ−1) as

y ↑ ϕ(x) for some γ > 0, where the function µ is bounded away from zero on [0, 1];

(A2) ϕ has a bounded (p+ 1)th order derivative on [0, 1];
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(A3) max1≤j≤kn(tj − tj−1)/min1≤j≤kn(tj − tj−1) is bounded.

Condition (A1) has been considered in Härdle et al. (1995), Hall et al. (1998), Gijbels

and Peng (2000), Hwang et al. (2002) and Daouia et al. (2010), to name a few. Note that the

case γ ≤ 1 corresponds to sharp or fault-type boundaries. When γ > 1, the density decays to

zero smoothly as it approaches the support frontier. The smoothness of the frontier function

ϕ is given in (A2). A similar assumption was used in the usual and more-discussed problems

of nonparametric central and/or quantile regression estimation (see, e.g., He and Shi 1998).

Condition (A3) is standard in spline smoothing, it can also be found in earlier work by He

and Shi (1994). For simplicity, we use an ∼ bn to mean that an/bn and bn/an are bounded.

Theorem 1. Assume that the conditions (A1)–(A3) hold. If kn ∼ (n/ log n)1/[(p+1)γ+1], then

with probability one

sup
x∈[0,1]

|ϕ̃(m)
n (x)− ϕ(m)(x)| = O

(
(n−1 log n)(p−m)/[(p+1)γ+1]

)
, 0 ≤ m ≤ p− 1.

As a direct consequence of Theorem 1, we get indicative asymptotic rates of global

convergence of ϕ̃n and its derivative ϕ̃′n:

sup
x∈[0,1]

|ϕ̃n(x)− ϕ(x)| = O
(
(n−1 log n)p/[(p+1)γ+1]

)
;

sup
x∈[0,1]

|ϕ̃′n(x)− ϕ′(x)| = O
(
(n−1 log n)(p−1)/[(p+1)γ+1]

)
.

The obtained rates depend on both the sharpness degree γ and the smoothness order p. The

smaller γ, the faster the attainable uniform convergence rates are.

Remark 1. In the standard mean and/or median regression, Stone (1982) and He and Shi

(1998) established that the optimal rates of uniform convergence are (n−1 log n)p/(2p+1) for

the regression curve estimate (m = 0) and (n−1 log n)(p−1)/(2p+1) for its derivative (m = 1)

when the number of knots kn ∼ (n/ log n)1/(2p+1). In this case, the proposed boundary

smoothing method attains better convergence rates than the classical central regression if

and only if γ < 2p/(p+1). This is what happens in the irregular setting γ ≤ 1 for all p ≥ 2.

In regions where the boundary is strictly increasing, we obtain rates of convergence of

the monotone quadratic and cubic spline estimates ϕ̂n and ϕ̌n as well, as can easily be seen

from Propositions 1 and 4, respectively.

Corollary 1. Suppose that the boundary function ϕ has a continuous and strictly positive

derivative ϕ′ on [0, 1]. If (A1)-(A3) hold and kn ∼ (n/ log n)1/[(p+1)γ+1] with p = 2 for ϕ̂n
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and p = 3 for ϕ̌n, then we have with probability one

sup
x∈[0,1]

|ϕ̂n(x)− ϕ(x)| = O
(
(n−1 log n)2/(3γ+1)

)
;

sup
x∈[0,1]

|ϕ̂′n(x)− ϕ′(x)| = O
(
(n−1 log n)1/(3γ+1)

)
,

sup
x∈[0,1]

|ϕ̌n(x)− ϕ(x)| = O
(
(n−1 log n)3/(4γ+1)

)
;

sup
x∈[0,1]

|ϕ̌′n(x)− ϕ′(x)| = O
(
(n−1 log n)2/(4γ+1)

)
.

Hence, the higher-order spline ϕ̌n is more appealing than ϕ̂n for both smoothness and speed

of convergence.

We also provide the uniform convergence of ϕ̃′′n on the unit interval [0, 1], which enables

us to get the concavity of the cubic spline ϕ̌?n free of charge. According to Theorem 1, if the

conditions (A1)-(A3) hold and kn ∼ (n/ log n)1/[(p+1)γ+1] with p = 3, then

sup
x∈[0,1]

|ϕ̃′′n(x)− ϕ′′(x)| = O
(
(n−1 log n)1/(4γ+1)

)
with probability one. By applying Proposition 4 in conjunction with this result, we obtain

indicative rates of convergence of the constrained smoother ϕ̌?n and its derivatives ϕ̌?
′
n and

ϕ̌?
′′
n in regions where the frontier is strictly increasing and concave.

Corollary 2. Suppose that the boundary function ϕ has a strictly positive derivative ϕ′ and

a continuous and strictly negative second derivative ϕ′′ on [0, 1]. If the conditions (A1)-(A3)

hold and kn ∼ (n/ log n)1/[(p+1)γ+1] with p = 3, we have with probability one

sup
x∈[0,1]

|ϕ̌?n(x)− ϕ(x)| = O
(
(n−1 log n)3/(4γ+1)

)
,

sup
x∈[0,1]

|ϕ̌?′n (x)− ϕ′(x)| = O
(
(n−1 log n)2/(4γ+1)

)
,

sup
x∈[0,1]

|ϕ̌?′′n (x)− ϕ′′(x)| = O
(
(n−1 log n)1/(4γ+1)

)
.

4 Monte Carlo evidence

Some numerical evidence is given in this section to demonstrate the superiority of the pro-

posed spline smoothers ϕ̂n, ϕ̌n, ϕ̂?n and ϕ̌?n over the best known constrained and unconstrained

frontier estimators based on data envelopment ideas. Those were the popular linearized

FDH (LFDH) and DEA estimators described in Section 1, and the modern local-polynomial

smoothing estimator of Hall, Park and Stern (1998). Specifically, the local linear frontier

14



estimator is defined by

ϕ̂n,LL(x) = min
{
z : there exists θ1 such that yi ≤ z + θ1(xi − x)

for all i such that xi ∈ (x− h, x+ h)
}
.

Hall and Park (2004) proposed a bootstrap procedure for selecting the bandwidth h in ϕ̂n,LL.

To evaluate finite-sample performance of the constrained spline smoothed estimators in

comparison with the various frontier estimates described above, we have undertaken some

simulation experiments. The experiments all employ the model yi = ϕ(xi) vi, where xi is

uniform on [0, 1] and vi, independent of xi, is Beta(β, β) with values of β = 0.5, 1 and 3

(corresponding, respectively, to a joint density of the (xi, yi)’s tending to infinity, having a

jump or converging to zero as it approaches the frontier points). The frontier function ϕ is

either linear ϕa(x) = x, concave ϕb(x) = x1/2, or ϕc(x) = exp(−5+10x)/(1+exp(−5+10x)).

All the experiments were performed over N = 200 independent samples of size n = 25,

50, 100 and 200. In Tables 1, 2 and 3 we report the simulation results devoted to accuracy

of the seven estimation methods: LFDH, DEA, QS (quadratic spline, ϕ̂n), CS (cubic spline,

ϕ̌n), LL (local linear), QS-C (concave quadratic spline, ϕ̂?n) and CS-C (concave cubic spline,

ϕ̌?n). To assess the performance of each method, we consider the empirical mean integrated

squared error (MISE), the empirical integrated squared bias (IBIAS2) and the empirical

integrated variance (IVAR), which are given by

MISE =
1

N

N∑
j=1

ISE(ϕ̂(j)) :=
1

N

N∑
j=1

[
1

I

I∑
i=0

(
ϕ̂(j)(zi)− ϕ(zi)

)2]
(10)

=
1

I

I∑
i=0

(
ϕ(zi)− ¯̂ϕ(zi)

)2
+

1

I

I∑
i=0

[
1

N

N∑
j=1

(ϕ̂(j)(zi)− ¯̂ϕ(zi))
2

]
≡ IBIAS2 + IVAR,

where {zi, i = 0, . . . , I} is an equispaced grid with width 1/I over [0, 1] with I = 1000, ϕ̂(j)(·)
is the estimated frontier function from the j-th data sample and ¯̂ϕ(zi) = N−1

∑N
j=1 ϕ̂

(j)(zi).

To guarantee a fair comparison among the different methods, we used the smoothing param-

eter which minimizes the MISE for the spline estimators (QS and CS) and the local linear

estimator (LL). Regarding the concave spline estimators (QS-C and CS-C), we just used all

the DEA points as knots for simplicity as explained earlier in Section 2.

Additionally, to see how our automatic selection procedures for k perform in practice, we

compared the results when the number of knots is selected by (4) and (5) for the estimators

ϕ̂n and ϕ̌n with the resulting local linear frontier estimator when the optimal bandwidth is

chosen by the bootstrap procedure proposed in Hall and Park (2004) [LL-B]. For the sake
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of conciseness, we only present the results obtained from the criterion (4) [QS-A and CS-

A]. The results from (5) were qualitatively similar to those from (4), so they are omitted.

Actually, to initiate Hall and Park (2004)’s bootstrap procedure, we need to set a pilot

bandwidth, which we have found to be quite critical to the quality of their procedure. To

see how the local linear frontier estimator performs empirically at the best, we used the

bandwidth which minimizes the MISE as the pilot bandwidth. Two typical realizations of

the experiment, with ϕ ∈ {ϕb, ϕc}, β = 0.5 and n = 50, are shown in Figures 2 and 3.

Overall, the spline-based estimators (QS, CS, QS-A, CS-A, QS-C and CS-C) show better

performance than all the other estimators regardless of the boundary type (which depends

on β) and the sample size. It is clear that the spline-based estimators enjoy the benefit of

smooth approximation in reducing the bias when the true function is smooth as shown in

Figures 2 and 3. Moreover, both selection criteria of the number of knots seem to work

quite well in practice. It is remarkable that our splined-based estimators (QS-A and CS-A)

with empirically chosen knots are performing better than the local linear estimator with the

theoretically MISE-optimal bandwidth.

When the true frontier function is concave and monotone (ϕ = ϕa or ϕb), we observe that

the DEA and the concave spline estimators (QS-C and CS-C) have lower IVARs compared

to the other estimators. The reason is that they enjoy both monotonicity and concavity

properties, reducing thus the unnecessary sampling variability. Moreover, the concave spline

estimators have the added advantage over the DEA estimator of reducing the bias thanks

to their modeling flexibility and function approximation power as illustrated in Figure 2.

When the frontier function ϕ is simply monotone but not concave, the local linear es-

timator (LL) seems to be a useful alternative to the LFDH estimator if the bandwidth is

judiciously chosen. However, the LL frontier lacks of smoothness and has no guarantee of

being monotone even if the true frontier is so. Accordingly, following the curvature of the

monotone frontier ϕ, its LL estimator is likely to exhibit substantial bias when the number

of data points is not large enough, especially at the sample boundaries, as shown in the

left panel of Figure 4. A simple way to remedy to this drawback is by imposing the extra

condition θ1 ≥ 0 in the definition of ϕ̂n,LL(x) to get

ϕ̂n,LL2(x) = min
{
z : there exists θ1 ≥ 0 such that yi ≤ z + θ1(xi − x)

for all i such that xi ∈ (x− h, x+ h)
}
.

This version reduces the vexing border defect of the LL estimator as illustrated in the

right panel of Figure 4. We actually utilized the improved version ϕ̂n,LL2(x) in all our

simulations instead of ϕ̂n,LL(x). Yet, it may be seen from Figure 3 and Table 3 that our

spline-based estimators are clearly superior to both the ϕ̂n,LL2(x) estimator (computed with
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the theoretically MISE-optimal bandwidth) and the LFDH estimator.

5 Data examples

In this section, we illustrate the utility of the proposed spline-based estimators for the three

motivating applications described in the introduction. First, we apply our method to the

dataset of 254 observations about the reliability of nuclear reactors. Here, it is important

to know both lower and upper limits of fracture toughness of each material as a function of

temperature. This translates into estimating both optimal support boundaries. Although

our focus in the sections above was only on the estimation of the upper support extremity,

similar considerations evidently apply to the estimation of the lower boundary. It may be

seen from Figure 5, which shows various estimates of the upper and lower frontier functions,

that the spline-based estimates (QS-A and CS-A) suggest better capability of fitting edge

data. It may also be noted that the lower frontier estimator via CS-A exhibits, as is to be

expected, more smoothness and indicates a convex and monotonely increasing shape for the

master curve prediction.

Figure 6 shows the efficient econometric frontier estimates which correspond to the pro-

duction activity of 123 American electric utility companies and 37 European Air Controllers

in the left and right panels, respectively. For each dataset, we plot the QS-A, the CS-A and

the QS-C estimators. It appears that the obtained QS-C fits provide more appealing results

in terms of stability and smoothness (the CS-C fits were very similar to the QS-C estimates,

and hence they are not reported here). This is not a surprise as the joint support of data,

production set called, is often assumed in the econometric literature to be convex (see, e.g.,

Gijbels et al. (1999) for the electric utility companies and Daouia et al. (2008) for the Air

Controllers).

6 Conclusion

We proposed a novel approach using polynomial spline fitting for the problem of constrained

nonparametric boundary regression. The method allows to handle both single and multiple

shape constrained estimation. We mainly considered monotone and/or concave frontier

smoothing. Using cubic splines requires solving a convex programming problem with second-

order conic constraints to characterize monotonicity, and only linear constraints to represent

both envelopment and concavity constraints. The proposed constrained fits are similar to the

unconstrained estimates in terms of computational complexity without sacrificing modeling

flexibility and function approximation power. They also have the same asymptotic rate of

17



strong uniform convergence.

Quadratic spline smoothing results in a simpler linearly constrained model, and the

restricted fit is shown to inherit the asymptotic rate of uniform convergence of its unrestricted

version only under the monotonicity constraint. The key advantage of the quadratic spline

fit over the cubic spline estimate is its computational expedience using linear programming.

Additionally, the latter can be implemented only with truncated power function basis rather

than the more popular B-spline basis, whereas the former can be implemented using both

bases. By contrast, the cubic spline smoother is the winner in terms of both smoothness and

speed of global convergence. Although both approaches work quite well and either might

be used in practice, we have a particular preference for the cubic spline fit as it exhibited

slightly better performance than the quadratic spline estimate in our simulation studies.

The quadratic spline smoothing method has been implemented for the R package npbr

(Daouia et al. 2013) and all the MATLAB codes for the cubic spline smoothing procedure

are available upon request. We hope that this will encourage others to explore these devices.

Appendix

A.1 Proof of Proposition 1

The key idea goes as in He and Shi (1998, p. 646). Let ε = inf{ϕ′(x), x ∈ [0, 1]}. We

have ϕ′(tj) ≥ ε > 0 for each j = 1, . . . , kn. Then, by the strong uniform convergence of ϕ̃′n

to ϕ′ at knots, there exists an nε such that for all n > nε and all j = 1, . . . , kn, we have

ϕ̃′n(tj) > ϕ′(tj) − ε/2 ≥ ε/2. Hence, with probability one, we get ϕ̃′n(tj) > 0 at all knots

for all n > nε. The derivative ϕ̃′n being piecewise linear, it follows that ϕ̃′n(x) > 0 at all

x ∈ [0, 1]. Therefore P[ϕ̃n = ϕ̂n, ∀n > nε] = 1.

A.2 Proof of Proposition 2

Let η = sup{ϕ′′(x), x ∈ [0, 1]} < 0. By the uniform convergence of ϕ̃′′n to ϕ′′ at midpoints,

there exists an nη such that for all n > nη and all j = 1, . . . , kn, we have ϕ̃′′n(t∗j) < −η/2 +

ϕ′′(t∗j) ≤ η/2 < 0. Because ϕ̃′′n is piecewise constant, this implies that ϕ̃′′n(x) < 0 at all

x ∈ (tj−1, tj), for each j = 1, . . . , kn, and all n > nη. Since ϕ̃n is also monotone on [0, 1] for

all n > nε, we get P[ϕ̃n = ϕ̂?n, ∀n > nη ∨ nε] = 1.

A.3 Proof of Proposition 4

Let ε = inf{ϕ′(x), x ∈ [0, 1]} > 0. By the uniform convergence of ϕ̃′n to ϕ′ over [0, 1], with

probability one, there exists an nε such that for all n > nε, we have ϕ̃′n(x) > ϕ′(x)−ε/2 ≥ ε/2

18



for all x ∈ [0, 1]. Hence, with probability one, we get ϕ̃′n(x) > 0 at all x ∈ [0, 1] and for all n

large enough. Whence P[ϕ̃n = ϕ̌n, n→∞] = 1.

Let η = sup{ϕ′′(x), x ∈ [0, 1]} < 0. By the strong uniform convergence of ϕ̃′′n to ϕ′′, there

exists an nη such that for all n > nη and all x ∈ [0, 1], we have ϕ̃′′n(x) < −η/2 + ϕ′′(x) ≤
η/2 < 0. Then ϕ̃′′n(x) < 0 at all x ∈ [0, 1] whenever n > nη, which implies the concavity of

ϕ̃n on [0, 1], with probability one. Therefore P[ϕ̃n = ϕ̌?n, ∀n > nη ∨ nε] = 1.

A.4 Proof of Theorem 1

Let zi = νn(yi − ϕ(xi)) and δn = max1≤j≤kn(tj − tj−1), where νn = n1/γ(kn log n)−1/γ. From

(A3) we have knδn ∼ 1. Here and below, an ∼ bn means that an/bn and bn/an are bounded.

Let ω(f, δ : [a, b]) = sup0≤h≤δ supa≤x≤b−h |f(x+h)−f(x)| be a modulus of continuity of f on

the interval [a, b]. According to an approximation theorem for spline functions (see Theorem

6.20 in Schumaker, 2007, for example), there exists a (kn + p)-dimensional vector α∗ such

that, for all m : 0 ≤ m ≤ p,

sup
tj−1≤x≤tj

|ϕ(m)(x)− α∗>π(m)(x)| ≤ C0δ
p−m
n ω(ϕ(p), δn : [tj−p−1, tj+p]), 1 ≤ j ≤ kn, (A.1)

where C0 is a positive constant that depends only on p and we set t−p = · · · t−1 = 0,

tkn+1 = · · · = tkn+p = 1. We note that πp+j, the (p + j)th component of π, is not p times

differentiable at x = tj−1. In (A.1), π
(p)
p+j(tj−1) is understood as the pth right derivative of π

at x = tj−1. From (A.1) and the condition (A2), we get

sup
x∈[0,1]

|ϕ(m)(x)− α∗>π(m)(x)| ≤ C ′0δ
p+1−m
n , 0 ≤ m ≤ p (A.2)

for some constant C ′0 > 0.

Define rn(x) = νn[ϕ(x)− π(x)Tα∗] and ∆j = νn(α̂j − α∗j ) for 0 ≤ j ≤ kn + p− 1. For a

vector d = (d1, . . . , dkn+p−1), let

T (d) = max
1≤i≤n

[
zi −

p+kn−1∑
j=1

djqj(xi) + rn(xi)

]
.

Thus, ∆ = (∆1, . . . ,∆kn+p−1) minimizes T (d). We note that

νn sup
x∈[0,1]

|ϕ̃n(x)− ϕ(x)| = sup
x∈[0,1]

|π(x)T∆− rn(x)|

≤
p∑
j=0

|∆j|+
kn−1∑
j=1

(1− tj)p|∆p+j|+ sup
x∈[0,1]

|rn(x)|

≤ |∆0|+
p∑
j=1

|∆j|+ c

p+kn−1∑
j=p+1

(
1− j − p

kn

)p
|∆j|+ sup

x∈[0,1]
|rn(x)|.

(A.3)

19



Here and below, c denotes the generic positive constant that depends only on p. We take

δn ∼ (n−1 log n)1/((p+1)γ+1), so that supx∈[0,1] |rn(x)| = O(νnδ
p+1
n ) = O(1) by (A.2).

We first prove

Wn ≡
p∑
j=1

|∆j|+
p+kn−1∑
j=p+1

(
1− j − p

kn

)p
|∆j| = O(kn) (A.4)

with probability one. Let ξj = (j+1)−1/j for 1 ≤ j ≤ p and ξp+k = tk+(p+1)−1/p(1−tk)1+(1/p)

for 1 ≤ k ≤ kn − 1. Then, 0 = ξ0 < ξ1 < · · · < ξp+kn−1 < ξp+kn = 1. Write ξj,1 =

ξj−1 + (ξj − ξj−1)/3 and ξj,2 = ξj−1 + 2(ξj − ξj−1)/3. Let Ij denote the interval [ξj,1, ξj,2].

Then, there exists a constant c > 0 such that

(length of Ij) ≥ c, 1 ≤ j ≤ p. (A.5)

Let g(t) = t+ (p+ 1)−1/p(1− t)1+(1/p). Then, g′ is strictly increasing so that g′(t) ≥ g′(0) =

1− p−1(p+ 1)1−(1/p) for all t ∈ [0, 1] and g′(0) > 0 for all p > 1. This means

ξp+j+1 − ξp+j = g(tj+1)− g(tj) ≥ g′(0)(tj+1 − tj),

so that there exists a constant c > 0 such that

(length of Ij) ≥ cδn, p+ 1 ≤ j ≤ p+ kn. (A.6)

Here, we have used the condition (A3). Arguing as in the proof of Theorem 2.1 of Hall, Park

and Stern (1998), there exists a random integer 1 ≤ J ≤ p + kn such that ∆j < 0 for all

j < J and ∆j ≥ 0 for all j ≥ J . We claim that there exists an absolute constant c0 > 0 such

that, on the event J = j,

sup
x∈Ij

p+kn−1∑
l=1

∆lql(x) ≤ −c0Wn/kn. (A.7)

This implies that, for a sufficiently large C > 0,

P (Wn > Ckn) ≤
p+kn∑
j=1

P
[
− 1

c0
sup
x∈Ij

p+kn−1∑
l=1

∆lql(x) > C, J = j
]

≤
p+kn∑
j=1

P
[
T (∆) ≥ max

i:xi∈Ij
zi +

2

3
c0C, J = j

]

≤
p+kn∑
j=1

P
[
T (0) ≥ max

i:xi∈Ij
zi +

2

3
c0C, J = j

]

≤
p+kn∑
j=1

P
(

max
i:xi∈Ij

zi ≤ −
1

3
c0C

)
.

(A.8)
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The second inequality of (A.8) follows from the facts that supx∈[0,1] |rn(x)| = O(1) and

T (∆) ≥ maxi:xi∈Ij [zi−
∑p+kn−1

l=1 ∆lql(xi) + rn(xi)]. The fourth inequality holds since T (0) ≤
supx∈[0,1] |rn(x)|.

The event maxi:xi∈Ij zi ≤ −c0C/3 occurs if and only if there is no (xi, yi) in the set

An ≡ {(x, y) : x ∈ Ij, y ∈ [ϕ(x)− ν−1n c0C/3, ϕ(x)]}. From (A.5) and (A.6) it follows that

P [(xi, yi) ∈ An] =

∫
An

f(x, y) dy dx ≥ c · cγ0 · Cγ log n

n
(1 + o(1)) (A.9)

for some constant c > 0. This implies

p+kn∑
j=1

P
(

max
i:xi∈Ij

zi ≤ −
1

3
c0C

)
≤ (p+ kn)n−c·C

γ

(A.10)

for some constant c > 0, so that
∑∞

n=1 P (Wn > Ckn) <∞ for sufficiently large C > 0. This

proves (A.4).

To prove |∆0| = O(kn) with probability one, we note that

|∆0| ≤
∣∣∣ max
1≤i≤n

(
zi −

p+kn−1∑
j=1

∆jπj(xi)
)∣∣∣+ sup

x∈[0,1]
|rn(x)|

≤ − max
1≤i≤n

zi + max{1, c}Wn +O(1)

for the constant c at (A.3). Since it holds that −maxi≤i≤n zi = O(k
−1/γ
n ) with probability

one, we get that |∆0| = O(kn) with probability one, so that

sup
x∈[0,1]

|ϕ̃n(x)− ϕ(x)| = O
(
ν−1n kn + δp+1

n

)
= O

(
(n−1 log n)p/[(p+1)γ+1]

)
with probability one.

Now, for the derivative estimation we note that there exist constants Cm > 0 for 1 ≤
m ≤ p− 1 such that

νn sup
x∈[0,1]

|ϕ̃(m)
n (x)− ϕ(m)(x)| ≤ Cm

[
p∑

j=m

|∆j|+ kmn

p+kn−1∑
j=p+1

(
1− j − p

kn

)p
|∆j|

]
+ sup

x∈[0,1]
|r(m)
n (x)|

≤ Cmk
m
nWn + sup

x∈[0,1]
|r(m)
n (x)|.

From (A.2) and (A.4), we conclude

sup
x∈[0,1]

|ϕ̃(m)
n (x)− ϕ(m)(x)| = O

(
ν−1n km+1

n + δp+1−m
n

)
= O

(
(n−1 log n)(p−m)/[(p+1)γ+1]

)
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with probability one.

It remains to prove the claim (A.7). Since ql(x) < 0 if x < ξl and ql(x) ≥ 0 if x ≥ ξl,

there exists a constant c > 0 such that, for all x ∈ IJ = [ξJ,1, ξJ,2],

ql(x) ≥ c(ξJ,1 − ξl) if 1 ≤ l ≤ J − 1,

ql(x) ≤ −c(ξl − ξJ,2) ≤ if l ≥ max{J, p+ 1} and ξJ,2 ≥ tl−p,

ql(x) = −(1− tl−p)p+1/(p+ 1) if l ≥ max{J, p+ 1} and ξJ,2 < tl−p,

ql(x) ≤ −c(ξl − ξJ,2) if J ≤ l < max{J, p+ 1}.

We note that, in case p+ 1 ≤ l ≤ p+ kn − 1,

−(1− tl−p)p+1

p+ 1
≤ −c

(
1− l − p

kn

)p+1

for some constant c > 0. Define l(J) = max{J, p+ 1} and for l(J) ≤ l ≤ p+ kn − 1

a(J, l) = (ξl − ξJ,2)I(ξJ,2 ≥ tl−p) +

(
1− l − p

kn

)p+1

I(ξJ,2 < tl−p).

Since ∆l < 0 for all l < J and ∆l ≥ 0 for all j ≥ J , there exists a constant c > 0 such that,

for all x ∈ IJ ,

p+kn−1∑
l=1

∆lql(x) ≤ −c

J−1∑
l=1

(ξJ,1 − ξl)|∆l|+
l(J)−1∑
l=J

(ξl − ξJ,2)|∆l|+
p+kn−1∑
l=l(J)

a(J, l)|∆l|

 .
The second sum on the right hand side of the above inequality is set to be zero in case

l(J) = J , i.e., J ≥ p + 1. Now, we note that ξJ,1 − ξl ≥ (ξJ − ξJ−1)/3 ≥ ck−1n for all

1 ≤ l ≤ J − 1 and ξl − ξJ,2 ≥ (ξJ − ξJ−1)/3 ≥ ck−1n for all J ≤ l ≤ p + kn, where c > 0 is a

constant. Furthermore, there exists a constant c > 0 such that

a(J, l) ≥ ck−1n

[
I(ξJ,2 ≥ tl−p) +

(
1− l − p

kn

)p
I(ξJ,2 < tl−p)

]
≥ ck−1n

(
1− l − p

kn

)p
.

These entail that, for some constant c0 > 0,

p+kn−1∑
l=1

∆lql(x) ≤ −c0k−1n

l(J)−1∑
l=1

|∆l|+
p+kn−1∑
l=l(J)

(
1− l − p

kn

)p
|∆l|

 ≤ −c0k−1n Wn

for all x ∈ IJ .

22



References

[1] Akaike, H. (1973), Information theory and an extension of the maximum likelihood
principle, in Second International Symposium of Information Theory, eds. B. N. Petrov
and F. Csaki, Budapest: Akademia Kiado, 267–281.

[2] Alizadeh, F. and Goldfarb, D. (2003). Second-order cone programming, Mathematical
Programming Series B, 95, 3–51.

[3] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University
Press, Cambridge.

[4] Daouia, A., Florens, J.P. and Simar, L. (2008). Functional Convergence of Quantile-
type Frontiers with Application to Parametric Approximations, Journal of Statistical
Planning and Inference, 138 (3), 708–725.

[5] Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value
Theory, Bernoulli, 16, 1039–1063.

[6] Daouia, A., Laurent, T. and Noh, H. (2013). Nonparametric boundary regression: The
npbr package, v1.0. Available at http://cran.r-project.org/package=npbr.

[7] de Haan, L. and Resnick, S. (1994). Estimating the home range, Journal of Applied
Probability, 31, 700–720.

[8] Dierckx, P. (1993). Curve and Surface Fitting With Splines, Oxford, U.K.: Clarendon
Press.

[9] Gijbels, I., Mammen, E., Park, B.U. and Simar, L. (1999). On estimation of monotone
and concave frontier functions, Journal of American Statistical Association, 94, 220–
228.

[10] Gijbels, I. and Peng, L. (2000). Estimation of a support curve via order statistics,
Extremes, 3, 251–277.

[11] Girard, S. and Jacob, P. (2003). Extreme values and Haar series estimates of point
process boundaries, Scandinavian Journal of Statistics, 30 (2), 369–384.

[12] Girard, S. and Jacob, P. (2004), Extreme values and kernel estimates of point processes
boundaries. ESAIM: Probability and Statistics, 8, 150–168.

[13] Grant, M. and Boyd, S. (2008), Graph implementations for nonsmooth convex programs,
Recent Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S.
Boyd, and H. Kimura, editors, pages 95-110, Lecture Notes in Control and Information
Sciences, Springer.

[14] Grant, M. and Boyd, S. (2013), CVX: Matlab software for disciplined convex program-
ming, version 2.0 beta.

23



[15] Hall, P., Nussbaum, M. and Stern, S.E. (1997). On the estimation of a support curve
of indeterminate sharpness, Journal of Multivariate Analysis, 62, 204–232.

[16] Hall, P. and Park, B.U. (2002). New methods for bias correction at endpoints and
boundaries, Annals of Statistics, 30, 1460-1479.

[17] Hall, P. and Park, B.U. (2004). Bandwidth choice for local polynomial estimation of
smooth boundaries, Journal of Multivariate Analysis, 91 (2), 240–261.

[18] Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and
boundaries, Journal of Multivariate Analysis, 66, 71–98.

[19] Härdle, W., Park, B.U. and Tsybakov, A.B. (1995). Estimation of non-sharp support
boundaries, Journal of Multivariate Analysis, 43, 205–218.

[20] He, X. and Shi, P. (1994). Convergence rate of B-spline estimators of nonparametric
conditional quantile functions, Nonparametric statistics, 3, 299–308.

[21] He, X. and Shi, P. (1998). Monotone B-Spline Smoothing, Journal of American Statis-
tical Association, 93, 643–650.

[22] Hwang, J.H., Park, B.U. and Ryu, W. (2002), Limit theorems for boundary function
estimators, Statistics & Probability Letters, 59, 353–360.

[23] Jacob, P. and Suquet, P. (1995). Estimating the edge of a Poisson process by orthogonal
series, Journal of Statistical Planning and Inference, 46, 215–234.

[24] Jeong, S.-O. and Park, B.U. (2006). Large sample approximation of the distribution for
convex-hull estimators of boundaries, Scandinavian Journal of Statistics, 33, 139–151.

[25] Jeong, S.-O. and Simar, L. (2006). Linearly interpolated FDH efficiency score for non-
convex frontiers, Journal of Multivariate Analysis, 97, 2141–2161.

[26] Karlin, S. and Studden, W.J. (1966). Tchebycheff Systems, with Applications in Analysis
and Statistics. Wiley Interscience Publishers.

[27] Kneip, A., Simar, L. and Wilson, P.W. (2008). Asymptotics and consistent bootstraps
for DEA estimators in non-parametric frontier models, Econometric Theory, 24, 1663–
1697.

[28] Knight, K. (2001). Limiting distributions of linear programming estimators, Extremes,
4 (2), 87–103.

[29] Korostelev, A., Simar, L. and Tsybakov, A.B. (1995). Efficient estimation of monotone
boundaries, Annals of Statistics, 23, 476–489.

[30] Korostelev, A. and Tsybakov, A.B. (1993). Minimax theory of image reconstruction.
Volume 82 of Lecture Notes in Statistics, Springer-verlag, New-York.

24



[31] Papp, D. and Alizadeh, F. (2013). Shape constrained estimations using nonnegative
splines, Journal of Computational and graphical Statistics, In press.

[32] Park, B.U., Jeong, S.-O. and Simar, L. (2010). Asymptotic distribution of conical-hull
estimators of directional edges, Annals of Statistics, 38, 1320–1340.

[33] Schumaker, L.L. (2007). Spline Functions: Basic Theory, 3rd edition, Cambridge Uni-
versity Press.

[34] Schwartz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6,
461–464.

[35] Stone, C. (1982). Optimal Global Rates of Convergence for Nonparametric Regression,
Annals of Statistics, 10, 1040–1053.

[36] Wang, X. and Li, F. (2008). Isotonic Smoothing Spline Regression, Journal of Compu-
tational and Graphical Statistics, 17 (1), 21–37.

25



−200 −150 −100 −50 0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

temperature

to
u

g
h

n
e

s
s

−2 0 2 4

2
4

6
8

1
0

log(cost)

lo
g

(o
u

tp
u

t)

−1.5 −0.5 0.5 1.5

−
0

.5
0

.0
0

.5
1

.0
1

.5
2

.0

input

o
u

tp
u

t

Figure 1: Scatterplots of three real datasets with the quartile curves in each plot. The three
regression quantile curves are estimated by the method of He and Shi (1998).
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Figure 2: When n = 50 and β = 0.5, the true frontier function (ϕb, black) and its three
estimates: DEA(solid red), QS-C (solid blue, left panel) and CS-C (dotted blue, right panel)
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Table 1: Comparison when the true frontier is linear (ϕ(x) = ϕa(x)). All the results are
multiplied by 100.

DEA QS CS LL QS-C CS-C QS-A CS-A LL-B
β = 0.5 n = 25 IBIAS2 0.225 0.106 0.094 0.146 0.248 0.122 0.127 0.094 0.255

IVAR 0.207 0.256 0.146 0.188 0.233 0.173 0.248 0.146 0.256
IMSE 0.431 0.362 0.241 0.334 0.481 0.294 0.374 0.241 0.512

n = 50 IBIAS2 0.077 0.026 0.022 0.049 0.078 0.037 0.033 0.022 0.078
IVAR 0.082 0.062 0.049 0.066 0.081 0.064 0.089 0.049 0.081
IMSE 0.158 0.087 0.071 0.114 0.159 0.101 0.122 0.072 0.159

n = 100 IBIAS2 0.014 0.001 0.001 0.007 0.014 0.004 0.001 0.001 0.014
IVAR 0.014 0.008 0.004 0.009 0.014 0.008 0.009 0.003 0.014
IMSE 0.028 0.009 0.005 0.016 0.028 0.011 0.011 0.005 0.028

n = 200 IBIAS2 0.004 0.000 0.000 0.002 0.004 0.001 0.000 0.000 0.004
IVAR 0.006 0.001 0.001 0.004 0.006 0.003 0.002 0.001 0.006
IMSE 0.009 0.001 0.001 0.005 0.009 0.004 0.002 0.002 0.009

β = 1 n = 25 IBIAS2 0.589 0.432 0.363 0.446 0.615 0.391 0.523 0.363 0.638
IVAR 0.254 0.350 0.238 0.252 0.252 0.261 0.372 0.238 0.285
IMSE 0.843 0.782 0.601 0.699 0.867 0.652 0.894 0.601 0.922

n = 50 IBIAS2 0.217 0.131 0.108 0.149 0.222 0.130 0.184 0.108 0.223
IVAR 0.099 0.113 0.078 0.080 0.099 0.089 0.161 0.078 0.099
IMSE 0.317 0.244 0.186 0.230 0.321 0.220 0.345 0.186 0.322

n = 100 IBIAS2 0.120 0.053 0.048 0.082 0.122 0.060 0.084 0.054 0.122
IVAR 0.055 0.051 0.039 0.042 0.054 0.043 0.077 0.040 0.054
IMSE 0.175 0.105 0.086 0.124 0.177 0.103 0.161 0.094 0.176

n = 200 IBIAS2 0.031 0.012 0.010 0.022 0.032 0.016 0.022 0.012 0.032
IVAR 0.015 0.012 0.009 0.012 0.015 0.010 0.026 0.010 0.015
IMSE 0.047 0.023 0.019 0.035 0.047 0.026 0.048 0.022 0.047

β = 3 n = 25 IBIAS2 2.015 1.834 1.592 1.697 2.083 1.648 2.088 1.594 2.132
IVAR 0.267 0.387 0.263 0.264 0.260 0.280 0.391 0.261 0.264
IMSE 2.282 2.221 1.855 1.960 2.343 1.929 2.479 1.855 2.396

n = 50 IBIAS2 1.298 1.162 1.042 1.123 1.353 1.073 1.402 1.048 1.352
IVAR 0.164 0.200 0.159 0.158 0.160 0.167 0.235 0.159 0.161
IMSE 1.461 1.362 1.202 1.281 1.513 1.240 1.637 1.207 1.513

n = 100 IBIAS2 0.760 0.661 0.579 0.652 0.789 0.604 0.956 0.595 0.784
IVAR 0.100 0.130 0.098 0.097 0.095 0.100 0.157 0.098 0.096
IMSE 0.860 0.791 0.676 0.749 0.884 0.704 1.113 0.694 0.880

n = 200 IBIAS2 0.490 0.418 0.367 0.415 0.504 0.383 0.688 0.383 0.503
IVAR 0.063 0.086 0.061 0.058 0.062 0.063 0.115 0.063 0.062
IMSE 0.553 0.504 0.428 0.473 0.566 0.446 0.804 0.446 0.564
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Table 2: Comparison when the true frontier is monotone and concave (ϕ(x) = ϕb(x)). All
the results are multiplied by 100.

DEA QS CS LL QS-C CS-C QS-A CS-A LL-B
β = 0.5 n = 25 IBIAS2 0.283 0.112 0.119 0.287 0.190 0.163 0.121 0.119 0.292

IVAR 0.185 0.257 0.187 0.189 0.197 0.194 0.264 0.187 0.199
IMSE 0.468 0.368 0.306 0.475 0.387 0.357 0.385 0.306 0.491

n = 50 IBIAS2 0.085 0.016 0.021 0.086 0.052 0.041 0.019 0.021 0.086
IVAR 0.065 0.077 0.056 0.065 0.067 0.064 0.077 0.056 0.065
IMSE 0.150 0.094 0.077 0.151 0.119 0.105 0.096 0.077 0.151

n = 100 IBIAS2 0.022 0.003 0.004 0.022 0.012 0.009 0.006 0.004 0.022
IVAR 0.018 0.018 0.013 0.018 0.017 0.016 0.018 0.013 0.018
IMSE 0.040 0.021 0.017 0.040 0.029 0.026 0.023 0.017 0.040

n = 200 IBIAS2 0.007 0.001 0.001 0.007 0.004 0.003 0.004 0.002 0.007
IVAR 0.005 0.005 0.003 0.005 0.005 0.005 0.006 0.004 0.005
IMSE 0.012 0.005 0.004 0.012 0.009 0.007 0.010 0.006 0.012

β = 1 n = 25 IBIAS2 0.849 0.505 0.498 0.866 0.641 0.573 0.558 0.499 0.889
IVAR 0.277 0.475 0.302 0.281 0.330 0.328 0.474 0.300 0.302
IMSE 1.126 0.981 0.800 1.148 0.971 0.901 1.032 0.799 1.191

n = 50 IBIAS2 0.297 0.144 0.143 0.302 0.210 0.186 0.165 0.146 0.301
IVAR 0.109 0.146 0.117 0.110 0.121 0.112 0.158 0.114 0.109
IMSE 0.406 0.290 0.260 0.412 0.331 0.298 0.323 0.260 0.410

n = 100 IBIAS2 0.143 0.054 0.063 0.143 0.098 0.088 0.068 0.064 0.143
IVAR 0.051 0.064 0.053 0.052 0.056 0.055 0.074 0.052 0.052
IMSE 0.195 0.118 0.117 0.195 0.154 0.143 0.142 0.116 0.195

n = 200 IBIAS2 0.054 0.017 0.020 0.054 0.036 0.030 0.020 0.020 0.054
IVAR 0.019 0.024 0.017 0.020 0.022 0.020 0.019 0.018 0.019
IMSE 0.072 0.040 0.038 0.072 0.055 0.050 0.043 0.038 0.072

β = 3 n = 25 IBIAS2 3.096 2.526 2.481 3.140 2.753 2.657 2.765 2.489 3.160
IVAR 0.288 0.438 0.332 0.289 0.341 0.346 0.417 0.327 0.292
IMSE 3.384 2.964 2.813 3.429 3.094 3.003 3.182 2.816 3.452

n = 50 IBIAS2 1.987 1.511 1.521 1.999 1.706 1.644 1.714 1.542 2.000
IVAR 0.198 0.303 0.234 0.198 0.239 0.236 0.311 0.234 0.198
IMSE 2.184 1.813 1.755 2.197 1.946 1.880 2.025 1.776 2.198

n = 100 IBIAS2 1.287 0.939 0.952 1.295 1.091 1.047 1.165 0.971 1.295
IVAR 0.104 0.169 0.138 0.104 0.131 0.126 0.178 0.128 0.104
IMSE 1.391 1.108 1.089 1.400 1.222 1.173 1.342 1.099 1.399

n = 200 IBIAS2 0.813 0.548 0.567 0.815 0.681 0.645 0.776 0.597 0.815
IVAR 0.075 0.110 0.095 0.075 0.093 0.092 0.138 0.089 0.075
IMSE 0.888 0.658 0.661 0.890 0.774 0.737 0.914 0.686 0.890
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Table 3: Comparison when the true frontier is monotone but not concave (ϕ(x) = ϕc(x)).
All the results are multiplied by 100.

LFDH QS CS LL QS-A CS-A LL-B
β = 0.5 n = 25 IBIAS2 0.715 0.153 0.207 0.549 0.139 0.185 0.990

IVAR 0.591 0.637 0.637 0.539 0.526 0.606 0.467
IMSE 1.306 0.790 0.844 1.087 0.665 0.791 1.457

n = 50 IBIAS2 0.258 0.029 0.035 0.192 0.032 0.034 0.610
IVAR 0.216 0.154 0.148 0.170 0.180 0.157 0.132
IMSE 0.474 0.183 0.184 0.362 0.212 0.191 0.743

n = 100 IBIAS2 0.090 0.006 0.005 0.057 0.009 0.004 0.179
IVAR 0.079 0.042 0.022 0.062 0.053 0.025 0.041
IMSE 0.169 0.048 0.027 0.119 0.062 0.029 0.220

n = 200 IBIAS2 0.037 0.001 0.001 0.019 0.002 0.000 0.055
IVAR 0.034 0.011 0.006 0.012 0.013 0.004 0.011
IMSE 0.071 0.012 0.006 0.031 0.015 0.005 0.065

β = 1 n = 25 IBIAS2 1.477 0.405 0.594 1.064 0.486 0.625 1.324
IVAR 0.571 0.642 0.732 0.484 0.685 0.653 0.504
IMSE 2.048 1.047 1.326 1.548 1.171 1.278 1.829

n = 50 IBIAS2 0.788 0.125 0.221 0.545 0.180 0.249 0.726
IVAR 0.329 0.321 0.305 0.265 0.346 0.344 0.243
IMSE 1.117 0.446 0.526 0.810 0.526 0.592 0.969

n = 100 IBIAS2 0.392 0.063 0.071 0.233 0.076 0.096 0.309
IVAR 0.163 0.110 0.115 0.089 0.137 0.106 0.087
IMSE 0.555 0.173 0.186 0.322 0.213 0.202 0.396

n = 200 IBIAS2 0.169 0.019 0.023 0.087 0.022 0.030 0.111
IVAR 0.075 0.052 0.032 0.040 0.057 0.035 0.036
IMSE 0.244 0.070 0.055 0.127 0.079 0.065 0.147

β = 3 n = 25 IBIAS2 3.919 2.023 2.051 3.019 2.407 2.488 3.088
IVAR 0.438 0.582 0.713 0.375 0.515 0.600 0.437
IMSE 4.357 2.605 2.765 3.394 2.922 3.088 3.525

n = 50 IBIAS2 2.587 1.054 1.036 2.321 1.398 1.588 2.318
IVAR 0.270 0.325 0.474 0.214 0.338 0.313 0.215
IMSE 2.857 1.379 1.510 2.535 1.735 1.901 2.532

n = 100 IBIAS2 1.801 0.594 0.713 1.315 0.944 1.049 1.345
IVAR 0.200 0.182 0.316 0.138 0.234 0.203 0.145
IMSE 2.001 0.776 1.029 1.453 1.177 1.253 1.489

n = 200 IBIAS2 1.245 0.319 0.509 0.886 0.629 0.702 0.890
IVAR 0.134 0.127 0.186 0.089 0.159 0.128 0.092
IMSE 1.378 0.446 0.695 0.975 0.788 0.829 0.982
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Figure 3: When n = 50 and β = 0.5, the true frontier function (ϕc, black) and its three
estimates: LFDH(dotted red), QS-A (solid blue) and CS-A (dotted blue)
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Figure 4: The problem of the local linear frontier estimator (left panel) and the illustration
of its improved version (right panel)-LL (red curve), QS-A (blue curve) and the true frontier
(black curve)
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Figure 5: Scatterplot of the 254 nuclear reactors data, with three frontier estimates: LFDH
(dotted black), QS-A (solid red) and CS-A (solid blue). From left to right, the estimates for
the lower and the upper support boundaries.
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Figure 6: Scatterplots of the 123 American electric utility companies’ data and the 37
European Air Controllers’ data with three estimates of the efficient extremity in each plot:
QS-A (solid red), CS-A (dotted red) and QS-C (solid blue)
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