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Abstract

It is a widespread practice to estimate land use models at some aggregated scales
but the consequences of such aggregations are rarely evaluated. This paper proposes
an evaluation in terms of predictive accuracy, based on estimating a broad spectrum
of individual and aggregated econometric models on the same dataset. Exploiting
a detailed parcel-level dataset, we perform both short and long run predictions and
compare them at the same 12 x 12 km aggregate scale of interest. In particular, we
argue that data aggregation allows the application of spatial econometric tools. We
show that modeling spatial autocorrelation can compensate for loss of information
due to aggregation and, with well-designed predictors, can even outperform individ-
ual models. We provide a detailed analysis of the available predictors in the context
of spatial econometrics and show how to extend them in a context of out-of-sample
and counterfactual predictions. However, for predictions from counterfactual eco-
nomic scenarios, aggregate models do not perform as well.
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1 Introduction

Land Use Changes (LUC) produce significant economic and environmental outcomes with
important implications for a wide variety of policy issues including food security, wildlife
conservation, housing supply, carbon sequestration (Turner et al., 2007; Bateman et al.,
2013). Given these large impacts and the potential for huge LUC in the future, prospective
analysis requires a thorough understanding of how policies and economics affect land use
patterns (Nelson et al., 2008; Lewis, 2010; Wu and Duke, 2014). In particular, accurate
predictions about future land use need to integrate the complex spatiotemporal structure
of human choices in relation to natural processes.

Thus, there is a real need for econometric models of land use for at least three reasons
(Turner et al., 2007; Wu and Duke, 2014): first, to identify the key drivers of LUC;
second, to predict expected LUC in response to projected changes in economic or climatic
conditions; and third, to study the effects of public policies (taxes, subsidies) on LUC.
Depending on the objective of the study, the choice of the appropriate specification for
an econometric model of land use necessarily requires tradeoffs between data quality and
availability, and computation costs.

With respect to data availability, land-use models can be classified into two general
groups based on their use of aggregate or individual data.! Until recently, and due to
the scarcity and cost of access to individual level data, most studies have been based
on aggregated data for a region, a country, or other geographic scales. Most studies
based on aggregated data specify the shares of land allocated to different land uses as
a function of the explanatory variables, and use the logistic functional form (Plantinga,
1996; Plantinga et al., 1999; Chakir and Le Gallo, 2013). Land-use studies based on
individual data are more recent and involve discrete choice models to explain the choice
between two categories of land use (binomial probit or logit models) or several categories
of land use (multinomial logit, nested logit or multinomial probit, Lewis and Plantinga,
2007; Lubowski et al., 2008; Chakir and Parent, 2009).

There are important trade-offs between aggregate and individual models although
they may be quite complementary and can provide different insights into the determinants
of land use changes and their effects on the environment. The choice of the scale is often
dictated by the data available and also the objective of the study. Thus, if the goal is
to make predictions about land uses across one or several countries with heterogenous
raw data, an aggregate model is often preferable datasets. However, if the objective is to
study more locally the effects of land use on biodiversity or water quality for instance,
an individual data model is more relevant. Most socioeconomic variables are collected
for administrative units rather than grid cells, making it more straightforward to apply
the econometric models at the same administrative scale (Plantinga, 1996; Hardie and
Parks, 1997). Furthermore, some economic data only make sense at the aggregate scale
(e.g., commodity prices determined in national or global markets). However, a land-use-
change model at coarse spatial resolution has limited value for ecological assessments,
given that most ecological processes of interest, such as habitat suitability, dispersal,
and spread of invasive species, operate at finer scales. Also, administrative boundaries
and ecological boundaries rarely coincide which means that ecological conditions tend to
vary substantially within each administrative unit, introducing further uncertainty into
ecological assessments.

1See Irwin and Geoghegan (2001); Plantinga and Irwin (2006); Irwin (2010) for reviews of empirical
methods of land-use modeling.



The issue of predictive accuracy of individual versus aggregate models has received
little attention, especially in the literature on LUC. In a seminal paper, Grunfeld and
Griliches (1960) have examined the relative power of micro and macro models for ex-
plaining the variability of the aggregate dependent variable and found that the aggregate
equation may explain the aggregate data better than a combination of micro equations.
Wu and Adams (2002) examine the issue in the context of predicting land allocation.
They show that, even for linear prediction models, the decision over use of a micro or
macro models to make aggregate predictions cannot be generally resolved by a prior:
reasoning.

At the center of the aggregation process, land use is inherently related to space.
However, incorporating spatial dimension into land-use models presents several challenges
related to econometric estimation, hypothesis testing and prediction (Anselin, 2007; Brady
and Irwin, 2011). This is more challenging in the case of individual land-use models since
the introduction of spatial dependence would render discrete choice models analytically
intractable, and would require the use of simulation or Bayesian techniques (Fleming
and Mae, 2004).> Given the size of our individual sample (around 500,000 observations)
and our aim to study in what proportions the predictions from aggregated models can
be improved by taking account of the spatial dimension in the econometric model, the
introduction of spatial autocorrelation in a discrete choice model is beyond the scope.

The contribution of our paper is to show how the introduction of a spatial dimen-
sion in aggregated land use models enables better predictions than individual, non spatial
models with higher numbers of observations. Our analysis is based on a detailed dataset
of 514,074 individual plots of land use for the whole of continental France (about 675,000
km?) observed annually over the period 1993-2003. These data are used to estimate indi-
vidual plot-level discrete choice models of LUC and aggregate models of land use shares at
the 12 x 12 km grid scale. We consider four categories of land use: arable, forest, pasture
and urban. We estimate and compare different model specifications: two models at the
individual scale and eight at the aggregate scale. Namely, we fit individual linear prob-
ability models, individual discrete multinomial logit models, aggregated logit-linearized
share models estimated by ordinary least squares, aggregated logit-linearized share mod-
els estimated by geoadditive models, aggregate fractional model with multinomial and
Dirichlet distributions and aggregated logit-linearized share models in a variety of spatial
econometric specifications. We use the Root Mean Square Error (RMSE) to compare the
prediction accuracy of these different land use models with different specifications and the
different predictors proposed by Kelejian and Prucha (2007).

In section 2, we present the econometric models and the different formulae available
to predict LUCs. Section 3 presents the data and section 4 presents the results for the
estimated parameters, and the prediction accuracy of different models. The last sectionis
the summary and conclusions.

20Other estimation procedures have also been proposed in the literature: EM method (McMillen,
1992), the generalized method of moments (Pinkse and Slade, 1998), the method of maximum pseudo-
likelihood (Smirnov, 2010) and the method composite maximum likelihood Ferdous and Bhat (2013);
Sidharthan and Bhat (2012). For a detailed review of the inclusion of spatial autocorrelation in discrete
choice models see Fleming and Mae (2004) and Smirnov (2010).



2 Econometric models

2.1 Individual land use models

Following the literature (Stavins and Jaffe, 1990; Plantinga, 1996; Lubowski et al., 2006),
we consider a risk-neutral landowner facing the choice of allocating a parcel of land of
uniform quality among a set of alternative uses. We assume that landowners choose uses
in order to maximize the present discounted value of the stream of expected net benefits
from the land, and that landowners base their expectations of future land use profits on
current and historic values of the relevant variables. Given these simplifying assumptions,
the decision rule that emerges from the related dynamic optimization problem is to choose
the use with the highest expected one-period return at time ¢, minus the current one-period
expected opportunity cost for a specific use type.

In particular, a stylized landowner ¢ chooses the use £}, on a plot if this provides the
highest utility from all uses that are possible. The following formula:

0, = arg max {ui} (1)

Given that we do not observe data on all variables that might affect the landowner’s
returns to the different uses, the landowner’s profit is written as a function to include
both observed and unobserved components. Using a general random utility expression,
the one-period expected net profit (utility) to the landowner on parcel ¢ from use ¢ at
time ¢ as:

Wit = BTier + Einr (2)
where x4 is a vector of observed variables, J are parameters on each of these variables
allowed to vary over time and g;, is a random error term.

As Train (2009) states, the two major implications of this framework — utilities are
ordinal and only differences in utilities matter — are in accordance with the economic the-
ory. Therefore, this discrete choice framework is fairly general, the strongest restrictions
come from the parametrization of the utility functions necessary for their application
to the data. On this latter point, we follow the empirical literature (Lubowski et al.,
2008; Lewis, 2010; Ay et al., 2014) by considering the one-period vector of the returns
r; from the different land uses as the main explanatory variables driving utilities and,
consequently, LUC. These monetary returns are completed by time-constant biophysical
characteristics of land (noted b; that represents land quality, topography, climate®) which
are known to influence the returns from land. These variables are added separately from
the economic returns because they are generally more precisely observed, for example,
through digital elevation models. Pecuniary and non pecuniary conversion costs are also
identified in the literature as important drivers of LUC, so we introduce lagged land uses
d;,t’ <t in the general specification of utility functions.

Ujpr = diTt/'YzD + riTt’YIE + bz’T'Yf + €ipt- (3)

This specification restricts the actual utility to be free of uncertainty and irresistibility
effects,” to have identical time preference and anticipation of the future in the population,

3We consider climate as constant despite the strong evidences provided by the Intergovernmental
Panel on Climate Change. This is because it is not of special interest here, otherwise see Ay et al. (2014).
4See Schatzki, 2003 for an attempt to introduce them.
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and to neglect non-pecuniary returns, liquidity constraints, interdependencies, spatial land
constraints and transactions costs. Landowners are considered risk-neutral but inter-
temporal consistency is assured as this is important for pluri-annual land uses such as
forestry and urban uses. In terms of specification, each element d;; in d;y is 1 if the plot
i is in use £ at ¢’ and 0 otherwise. Because these columns sum to 1 in row, a modality-
specific variable is dropped. The vector r;; contains in the row the L returns from different
land-use. The vector b; binds the K biophysical variables that are described in greater
details in the data section.

Because all the sources of landowner’s utility cannot be observed, an error term g4
is included in (3). The stochastic dimension of the model (and its predictions) is related
only to these unobserved components of utilities and their associated densities. McFad-
den (1974) identifies three standard hypothesis about error terms that allow obtaining
a multinomial logit model to be derived: independence, homoskedasticity and extreme
value distribution (i.e., Gumbel). On the basis of these hypotheses, one can show that the
probabilities of having the land use ¢ on ¢ at ¢ have simple closed forms, which correspond
to the logit transformation of the deterministic part of the utility, Wiy = wier — €iar:

exp(u;
Piet = Lp(—ﬁz = f(dit/7 Ty, by Fz)~ (4)
i1 exp(Tin)

2.2 Aggregate land use models

There is an important literature on econometric aggregate land use models: Lichtenberg
(1989), Stavins and Jaffe (1990), Wu and Segerson (1995) and Plantinga (1996), and
Miller and Plantinga (1999) are the most significant papers. The underlying microe-
conomic theory is identical to that in the previous section, but individual choices are
aggregated typically to estimate models of land use shares. This process of aggregation
is generally considered as a loss of information through a drastic decrease in the num-
ber of observations. Usually, land use shares are specified as logistic functions (Wu and
Segerson, 1995; Chakir and Le Gallo, 2013) which have the advantage of being empiri-
cally tractable thanks to the “logit-linear transformation” (Zellner and Lee, 1965). The
observed shares of land use ¢ at the aggregate grid level g (¢ = 1,...,G) in t is then
expressed as (V0 =1,...,L):

exp (D), 87 +R,,B{ + B, 37)

Zle exp (D;,,@lD + R;ﬂlR + B;BlB)

The meanings of these variables are the same as in the previous subsection, and capital
letters here represent aggregate values. Aggregating the dummies d;» consists of including
land use shares in ¢’ < t as explanatory variables, still with a referecne modality. Through
identification with (2) and (3), these aggregate share models can directly be estimated
as fractional models, using pseudo maximum likelihood techniques (Gourieroux et al.,
1984; Papke and Wooldridge, 1993, 2008; Mullahy, 2010). In parallel with these original

techniques, we follow the current practices in noting that the natural logarithm of each
observed share normalized by a reference share (here S,;) is approximately equal to:”

Syt = (5)

5We choose the reference modality as the land use with the less number of shares equal to zero.
Because it is still possible to have some zeros at the denominator, we add € = .0001 at the numerator and
the denominator of (6). This is clearly an inconvenient but its effect will be evaluated by comparing with



log(Syet/Sque) = DB + RLBE + BI B + g VLH L (6)

gt’

With L land use categories, the system has L — 1 equations. The elements Dy,
R, and B, in Equation 6 do not have an index ¢ since we use the same explanatory
variables in all L equations. A Seemingly Unrelated Regressions approach could also
be adopted (Considine and Mount, 1984). However, Chakir and Le Gallo (2013) show
that estimating inter-equation correlations doesn’t improve the predictive accuracy of the
model. Therefore, to simplify the results, we skip this aspect in this paper.

Finally, space can be easily introduced in these models by including a smoothed
function of the geographical coordinates of the grids’ centroids in B,. This leads to
semi-parametric Generalized Additive Models (GAM), estimated by penalized likelihood
techniques (Hastie and Tibshirani, 1986; Wood, 2004). Because in this case, spatial au-
tocorrelation is not modeled explicitly, we do not consider such models as being spatial
econometric models but we include them in our comparative set.

2.3 Modeling spatial autocorrelation in aggregate models

There are various possible sources of spatial autocorrelation in LUC models. First, it
might be the result of strategic interactions between neighboring individuals. Secondly,
it might arise from measurement errors that spill across boundaries or be due to scale
mismatch and the inherent need to integrate data for different scales. Third, it can arise
from unobservable latent variables that are spatially correlated. The first explanation
is particularly relevant for individual data, while the second affects models based on
aggregated data. An econometric model that fails to include all the relevant spatial
variables is adversely affected by its omissions. As stated in Chakir and Le Gallo (2013),
these omitted variables could account for any specific bioclimatic regional characteristics
(e.g. dairy production tends to take place in rainy areas while cereal production is located
on plains) that are correlated over space. Moreover, regional agricultural systems are the
outcome of spatially shapped historical and institutional determinants (e.g., the location
of intensive livestock production is linked partly to infrastructure such as harbor facilities
for importing soybeans, while vegetable production tends to be close to consumption
centers).

The spatial econometric literature is extensive (Cliff and Ord, 1981; Anselin, 1988;
LeSage and Pace, 2009; Anselin, 2010) and provides a number of ways to deal with spatial
autocorrelation. Nevertheless, introducing spatial dependence in discrete choice models is
still problematic econometrically, especially with high numbers of observations (Fleming
and Mae, 2004; Smirnov, 2010). In particular, an important consequence of introducing
spatial dimension in discrete choice models is the complex covariance structure due to
heteroskedasticity. Moreover, it implies high dimension integrals in order to compute the
likelihood function (Anselin, 2002). To avoid such complications associated with spatial
autocorrelation in discrete choice models, in this paper we focus on introducing this spatial
autocorrelation in the aggregate land use models only.

In the context of aggregated land use models, note S}, = log(Su/Squ), X = [Dt/ |
R, | B] and 3, = [BP | BF | BF], where all vectors follow the same notations as
in Equation 6 but stacked for the G grids, the most general spatial econometric model
(MSAC) is written as:

other models. We consider this as a necessity of linearized logistic models, often used in the literature.



gelt ~ Pzwgglt + X By + O WXy + & with & = MW + 1 (7)

still with V¢ # [ because [ is the reference modality. The major modifications compared to
previous aggregate models come from the inclusion of the G x GG spatial weight matrix W,
which summarizes the connectivity structure of the observations. Once multiplied to a
variable and if it is row-standardized, it contains the weighted average of the values of the
neighbors of each observations. To avoid endogeneity problems, this matrix is often based
on purely geographical considerations, such as borders or distances between observations.
This model is sufficiently general that, for all land use ¢ # [, the SARAR(1,1) model can
be recovered with § = 0 (Kelejian and Prucha, 2007) (also called SAC by Bivand, 2002;
Bivand et al., 2013), the spatial error model (SEM) can be recovered with p = 6 = 0,
the spatial X model (SXM) with p = 0, the spatial autoregressive (SAR) model with
0 = X = 0; and the spatial Durbin model (SDM) model can be recovered when A\ = 0.
The SDM, is the appropriate specification in the case of omitted variables (LeSage and
Pace, 2009).

2.4 Performing predictions
2.4.1 On individual models

For the individual MNL models, the direct predictions (without changing exogenous vari-
ables) consist, for each plot i, of a fitted probability vector p;; of being in each use at
t. Assuming L = 4 and that each observation counts for 100 ha (in anticipation of our
application), the predicted probabilities can easily be converted into aggregate LUC. For
example, consider a plot ¢ which counts for 100 ha of annual crop in period ¢’ and has
a predicted probability vector for period ¢ of p; = (0.8,0.15,0.04,0.01). This means
that 80 ha are predicted to retain their land use, 15 ha will be converted to pasture, 4
ha to forest and 1 ha to urban. The aggregation of probabilities in terms of aggregate
acreages (and aggregate shares) is operated by multiplying the probabilities by 100 and
summing the results at the aggregate scale of interest. With this multinomial approach,
the predicted acreages of each use are always positive and assured to sum to the national
available land base. To evaluate the effect of these desirable prediction properties, we also
estimate some linear probability models on individual data that do not take account of
the discrete nature of land use choices but are less computationally intensive. Within this
framework, counterfactual out of sample scenarios and policies are easily simulated. As
it will be shown in the application, changing the values of r;», t” > t allows to evaluate
to corresponding raw LUC between ¢ and t” (Lubowski et al., 2008; Lewis, 2010).

2.4.2 On aggregate models

Obtaining predictions from aspatial aggregate models is immediate, by resolving the sys-
tem described by Equation 6. For spatial econometric models, we perform predictions
based on the work of Kelejian and Prucha (2007). They consider 5 predictors, from the
more constrained in terms of information sets to the less constrained. They are written
for each aggregate grid g, the first is:

S = (I — pW); "Xy with ¢p = [ |0] and X = [Xow | WXw]  (8)

glt



This predictor KP1 can be computed with minimal information and for all prediction
types: in-sample and out of sample. The other 4 predictors are written as:

32(,2 = Pzwg.s'lt + ig.tt’@ + Coxifjrgézjj%ligm [wg.glt - E(wg.glt)] (9)

St = powg. Se + Xy + cov(&g, S—g ) [AS—g)) M S—gut — E(S_g)]  (10)
:9\;2 = pfwg.gét + jv(g.tt’(bé (11)

AQZ = X gir 0 + Moy (Ser — Xy y) (12)

where (I —AW), ', w, and X denote respectively the " row of (I —p,W)™", W and
X g,g,gt represent the G — 1 observations on ggt and:

cov (&t wg.gglt) = UEU;(I - pZW/)ilw;. ; E(g—g,lt) = S 4(I— PZW)il}ztt'Qﬁe
E(wg.glt) - wg(j - /)ZW/)_IXMW ) Cov(gglta g—g,lt) - 0-52‘0-;(] - PZW/>¢_,ISL1

~ S ~ s
Q(S_gu) = 025’_9’&2 S e var(wg, Se) = oiw, Z W,

with ¢ being the g row of y3* = (I-X\W) ™' (I-A;W')~" and S = (I—p W)L S (I—
peW') 1.

All logit-transformed aggregate models have the desirable properties of positive acreages
predictions and summing to one. Predictors KP2 and KP3 are unbiased, whereas pre-
dictors KP4 and KP5 are biased but are easier to compute and are more used in the
literature. Note that while these last 4 predictors can be used in an in-sample frame-
work, it is not possible to compute them when performing out of sample predictions since
they include in their formulations the spatial lag of the dependent variable. In this case,
we suggest some heuristic bypass approaches to approximate Sy, which are presented in
details in the empirical application.

For each econometric model presented above, lagged land uses are included in the sets
of explanatory variables. This practice is not frequent in the literature because of data
availability but also endogeneity problems for studies based on several periods. Therefore,
we extend the range of our comparisons by estimating similar models without lagged land
use. Comparing the predictions from models with and without lagged land uses is not
direct, as they correspond to different temporal horizons. In reference to the times series
litterature (Box et al., 2013), when lagged endogenous variables are included, we interpret
the outcomes as short run predictions. Inversely, models without lagged land use provide
long term predictions. In a stationary world, the fact that long run predictions are the
limit of the short run is easily demonstrable (see also LeSage and Pace, 2009 in the context
of spatial model).



3 Data

3.1 Land use data

Data on land use are extracted from the TERUTI survey (AGRESTE, 2004), which is
carried out every year by the statistical services of the French Ministry of Agriculture.
It collects data on land use through the whole continental territory of France. It counts
514,074 points continuously geo-referenced and surveyed each year from 1992 to 2003.
The survey uses a systematic area frame sampling with a two-stage sampling design. In
the first stage, the total land area of France is divided into 12 x 12 km grids. For each of
the 4,700 grids there are four aerial photographs which cover 3.5 km? each. In the second
stage, on each photograph, a 6 x 6 grid determines 36 points (the area of each point is
equal to 100 ha). On the basis of the detailed classification of land uses (81 items), we
attribute to each plot a use among four more aggregate items:® arable crops (wheat, corn,
sunflowers and perennial crop), pastures (a rather large definition: grassland, rangelands,
productive fallows, moor), forests (both productive and recreational, including plantations
and hedgerows) and urban areas (cities and exurban housing, and also roads, highways,
airports, etc.) The following Table 1 presents the raw transitions 1993-2003.

Table 1: Raw land use transitions in %, TERUTI 1993—-2003

N =514,074 PASTURE ARABLE FOREST URBAN Sum

PASTURE 26.53 4.2 1.26 0.69 32.68
ARABLE 3.79 27.61 0.17 0.37 31.94
FOREST 0.56 0.13 29.03 0.15 29.87
URBAN 0.27 0.09 0.07 5.08 5.51
Sum 31.15 32.03 30.53 6.29 100

Table 1 shows that, in 2003, arable crops, pastures and forests each represented almost
30% of the continental France. It also shows that between 1992 and 2003, the area to
pasture declined by almost 5%, while arable, forest and urban uses increased by 2%, 3%
and 14% respectively. Worldwide (and in all other land use studies), land use presents
a significant temporal inertia, which comes from conversion costs but also intertemporal
decisions, land owner specializations, legislative constraints, etc.

As mentioned in the footnote 5, the presence of zeros in the denominator of the
logit transformation is a limit of the logit transformation for aggregate modeling that
is overridden by adding e both in the numerator and the denominator. As Figure 5
and Figure 6 of the Appendix A.10 show, the logit transformation produces some mass
probabilities around the value —7 but the distribution of the outcome is undoubtedly
closer to that of a normal distribution than raw land use shares were.

3.2 Explanatory variables

The theoretical literature on land use suggests that the explanatory variables introduced
in models include the net return to each land use and the distribution of land quality.

SWe dropped from the data observations that concern salt marshes, ponds, lakes, rivers, marshes,
wetlands, glaciers, eternal snow, wastelands, and moors, which accounted for about 7% of observations.



In this paper, these variables include: economic returns for each land use (computed for
arable crops and pastures from land prices according to the Ricardian formula with an
interest rate of 2%, similar to Ay et al., 2014) and population densities used as proxies
for the economic returns from urban use. Finally, we include some biophysical attributes:
slope, altitude, water holding capacity (WHC), and climate. The following Table 2 dis-
plays summary statistics for these variables aggregated at the grid scale without loss of
generality.

Table 2: Summary statistics for explanatory variables

N=3,767 DESCRIPTION MEAN STD MIN MAX

Arable returns03  returns from arable crop (2003 euro) 183.500 89.178 0.000 1,210.599
Pasture returns03 returns from pasture (2003 euro) 126.083 74.393 0.000 619.683
Forest returns03  returns from forest (2003 euro) 88.914 131.145 0.000 792.223
POPO03 urban pop density (hab/km?) 3,109.910 17,929.310  51.639 819,298.800
Elevation elevation (meters) 336.230 399.984 0.000 2,772.500
Slope slope (degrees) 3.803 4.798 0.000 31.731
WHC water holding capacity (mm) 131.031 49.295  13.000 343.193
Soil depth soil depth (cm) 80.214 22.603  10.000 131.000
Precipitations precipitations (mm/yrs) 871.268 200.217 359.672 1,988.323
Temperature temperatures (degrees celsius) 11.528 1.947  -0.971 16.192
Humidity relative humidity (%) 932.614 52.380 730.042 1,026.848
Radiation solar radiation (J) 996.824 48.878 796.467 1,099.190

Data on land prices are available from the statistical services of the French Ministry
of Agriculture. Yearly prices 1990-2005 are available for arable crops and pastures. For
the other two land uses considered — forest and urban — the approximations of economic
returns are computed differently and at different geographic scales. For the expected net
returns from forest, we use data on wood raw production (in m?), total forest area (in
ha) and wood prices (in current euros per ha). We compute the expected returns from
forest use by multiplying the aggregate production by its unitary price and dividing the
result by the total forest area in each département. Urban returns are approximated by
population densities for urban land use at the fine scale of the municipalities, based on
the national census of the French population.

4 Results

4.1 Parameter estimates

Detailed results of different model specifications are provided in the appendix. The ex-
planatory variables are scaled to obtain standardized parameters, and we report only here
the results of the models for in-sample predictions, that is 1993-2003. Because of their
proximity to the displayed models, the raw results from the Dirichlet estimations (close to
the fractional FRA), the linear probabilities (close to the individual MNL), and the SAC
and MSAC (close to SAR and SDM) are not reported but are available upon request.
On the one hand, we performed the estimation of individual MNL models using nnet
7.3 on the R software. A critical aspect of such models is that the unobserved factors
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have to be uncorrelated over alternatives and periods, as well as having the same variance
for all alternatives and periods. These assumptions, used to provide a convenient form
for the choice probability, are not found to be restrictive (homoskedasticity cannot be
rejected by a score test, p-value= 0.283). Moreover, these assumptions are associated with
the classical restriction of Independence of Irrelevant Alternatives for which Hausman-
McFadden specification tests were performed, with mixed evidence. The independence is
not rejected for two uses: pasture and urban (p-values are respectively 0.001, 0.005 and
0.036) but is rejected for arable and forest at 5%. This means that the former choices
can be dropped from the choice set without significant modification to the model (i.e.,
they are robust to the ITA restriction), a property that does not apply to the latter two
choices. In the literature, use of nested multinomial logit is found not to change the results
(Lubowski et al., 2008; Li et al., 2013).

On the other hand, we estimated the spatial econometric models using maximum
likelihood through the R package spdep. Because we are interested in predictions, we do
not run a detailed specification search, based on the specific-to-general or the general-to-
specific approaches (see Florax et al., 2003, Elhorst, 2010 or Le Gallo, 2013 for reviews
of these spatial specification searches). Instead, we estimate the full set of spatial models
described in section 2.3 since spatial autocorrelation could arise from several sources. The
summary measure of impacts, direct, indirect and total as defined in LeSage and Pace
(2009), are not reported here but are available upon request. Globally, it appears that
incorporating lagged land use (i.e. short-run models) strongly decreases the significance
of the coefficients associated to the other variables or even renders then insignificant or
with a counter-intuitive sign. However, as shown in Figure 9 and Figure 10 of Appendix
A.12 that display the Moran scatterplots of regression residuals in the OLS and GAM
models, it also allows to decrease or render spatial error autocorrelation insignificant.
The spatial smoothed functions estimated by the GAMs are displayed in Figure 7 and
Figure 8 of Appendix A.11. For the long run models without temporal lag, the regional
specialisations of land use apprear clearly: arable crops for the south-east, forests for the
south-west and urban areas around Paris, at the center-north. These contextual effects
are intuitive and are still present (even if less marked) for the models with temporal lag.

Table 3 and Table 4 display the value of the spatial coefficients p and A for respectively
the long run and the short run models. Evidence of spatial autocorrelation is strong in
all specifications, whether for the spatial error component or the spatial lag component.
When a spatial lag of the dependent variable (SEM, SXM) and the spatial error coefficient
models (SEM, SXM) are introduced separately, spatial autocorrelation appears to be
positive but to different extents depending on the land use: land use shares in forest
is the most spatially autocorrelated across specifications while urban use is the least
spatially autocorrelated. In most general models (SAC, MSAC), some multicollinearity
appears, with an instability of parameter according to the specification. In effect, for each
model, the spatial coefficients have opposite signs indicating spurious compensation of the
spatial effects between errors and lag. Finally, when comparing the long run and short
run models (Table 3 versus Table 4), the extent of spatial autocorrelation is much less
pronounced in the latter, and although the spatial lag coefficient remains positive in all
specifications, only the spatial error coefficient is negative in most of the general SAC and
MSAC specifications.
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Table 3: Spatial coefficients for long run models (i.e., without temporal lags)

Spatial Error component: \ Spatial Lag component: p
AR FO UR AR FO UR

SEM  0.6449**  0.7349"  0.4991**
(0.0183)  (0.0248)  (0.0217)
SXM  0.626™  0.7019*  0.4902*
(0.0177)  (0.0158)  (0.0216)

SAR 0.5654*  0.7017**  0.4586**
(0.0171)  (0.0151)  (0.0209)

SDM 0.6205"  0.6944**  0.4877"
(0.0174)  (0.0153)  (0.0215)

SAC  0.9093  0.9306*  0.8166™  —0.6221"* —0.7208" —0.6248""
(0.0129)  (0.0086)  (0.0195) (0.047)  (0.0426)  (0.0502)
MSAC 0.8995** —0.7029** —0.635"*  —0.7909**  0.8991**  0.7958"*
(0.0114)  (0.0448)  (0.0602) (0.044)  (0.0112)  (0.0215)

Table 4: Spatial coefficients for short run models (i.e., with temporal lags)

Spatial Error component: A Spatial Lag component: p
AR FO UR AR FO UR

SEM  0.1134**  0.3004  0.2246**
(0.022)  (0.0295)  (0.0278)

SXM  0.0473*  0.2404™  0.2**
(0.0131)  (0.0282)  (0.0288)

SAR 0.1335* 0.1256*  0.1122*
(0.0129)  (0.0087)  (0.0134)
SDM 0.0620" 0.2427  0.2011**

(0.0302)  (0.029)  (0.0287)

SAC  —0.1119* 0.1451™  0.1338**  0.1572* 0.1103* 0.0755*
(0.0334)  (0.0324)  (0.0361) NA  (0.0087) (0.0179)

MSAC —0.3827* —0.0403 —0.3825"  0.3746" 0.2776" 0.48967**
(0.0958)  (0.0418)  (0.0814) (0.071)  (0.0428)  (0.0527)

4.2 Predictions results

The predictive accuracy of the models is compared statistically by computing the Root
Mean Squared Errors (RMSE) for each model’s predictions, based on comparing observed
and predicted land use at the aggregate grid level. The comparisons are reported in the
panels A, B, C and D of Table 5. They present respectively the in-sample and out of
sample predictions for the models, and with and without lagged land uses.

The in-sample predictions consist of 2003 land use shares from the models fitted on
the 1993-2003 time interval. Out of sample predictions consist of 2003 land use shares but
fitted on the models estimated on the 1993-1998 time interval. The rows in the following
tables are: REF, the reference RMSE (i.e. computed with national shares as predictors),
OLS for Ordinary Least Squares, GAM for GeoAdditive Models, FRA for aggregate multi-
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nomial model, DIR for aggregate Dirichlet model, SEM for spatial error model, SXM for
model with spatially-lagged explanatory variables, SAR for spatial autoregressive model,
SDM for spatial Durbin model, SAC for the spatial error spatial autoregressive model,
MSAC for the most general spatial model, Lpb for the linear probability model and Mnl
for the individual multinomial model. The last two are estimated on individual data.

For in-sample predictions without lags, the predictors from the spatial econometric
models are based on a full-information set and perform better than any other estimation
techniques. The differences are relatively high, as it can be seen from the last columns
reporting the RMSE means by rows.” Spatial models gains relative to OLS are half of
the gains of OLS relatively to the benchmark. Thus, the effect is strong. In the same
magnitudes, the GAM is in an intermediate position between the spatial and the aspatial
models. For the aspatial models (both aggregate and individual) the predictive abilities
are rather similar and the individual linear probability model is the worst. Note that the
multicollinear models such as SAC and MSAC, perform the best, according to a well-
known property that multicollinearity does not bias the predictions. Including lagged
land uses for short run predictions drastically decreases the RMSE, and the differences
between estimation techniques also decrease significantly. The spatial models perform
best, but the performance of the GAM model is also quite similar. More importantly, the
inclusion of temporal lag implies a loss of relative performance in the models (aggregate
and individual) based on discrete outcomes: FRA, DIR, Lpb, Mnl.

For the out of sample predictions, a first counter-intuitive result is that, in some cases,
the models perform better for the out-of-sample relatively to the previous in-sample. Be-
cause the predictors are not known for the out-of-sample, the full-information estimators
cannot be implemented for spatial econometric models. As a consequence, their perfor-
mance strongly decrease compared to other aspatial models. Also, the GAM presents the
smallest RMSE. Including the lagged land use shares in the out of sample predictions
does not change the previous results: GAM remains the most efficient. However, OLS
estimation appears also as a good performer. Because of these results, we approximate
full-information predictors for spatial econometrics models based on some approximations
of S_, to recover their relative performance as in the in-sample context.

Table 6 reports the in-sample and out of sample RMSE from the spatial econometric
models, for the different KP predictors. Choosing a predictor without bias appears as an
important choice because all the gain from spatial econometric models comes from this
choice. Predictors KP2 and KP3 perform best, closely followed by the KP4 and KP5
when we choose KP4 for the models with spatial lag and KP5 for models with spatial
errors. Because predictors KP2 to KP5 are not computable for out-of-sample predictions,
we propose a heuristic solution. It consists of substituting S, by Sy in formulas (9),
(10), (11) and (12).® As the bottom panel of Table 6 shows, our heuristic computations
of out-of-sample prediction allows some recovery of the gains in predictive ability through
the introduction of space. Using KP2 and KP3 for out-of-sample prediction allows us to
obtain RMSE close to 0.1 with long run models, and outperform the predictive abilities
of the GAM and individual models. The results of the SAC and MSAC are interesting
because they perform better with the good predictors but the gains from using more
complex predictors are less marked.

"It is not surprising for a case with 4 land use categories to have a benchmark of 0.25.

8This choice seems natural from the inertia of the land use reported in Table 1 and would be applicable
to every study about land use. For applications on economic processes that present less inertia, we can
imagine using temporal projections of the variables of interest.
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Table 6: Means of the Root Mean Square Errors from different spatial pre-
dictors, long run models

KP1 KP2 KP3 KP4 KP5

In Sample (i.e., S, is known)

SEM  0.1649 0.1087 0.1649  0.1108
SXM  0.1617 0.1081 0.1617  0.1111
SAR  0.1638 0.1104 0.1152  0.1670
SDM  0.1580 0.1095 0.1116  0.1698
SAC  0.1844 0.1175 0.2716  0.1088
MSAC 0.1730 0.1730 0.1936  0.2739
Out Sample (i.e., Sy is unknown)

SEM  0.1703 0.1098 0.1619  0.1104
SXM  0.1650 0.1097 0.1519  0.1106
SAR 0.1616 0.1113 0.1130  0.1638
SDM  0.1565 0.1113 0.1109  0.1690
SAC 0.1736 0.1230 0.2590  0.1101
MSAC 0.1691 0.1096 0.1091  0.3510

When S, is unknown, we use our extension of KP.

In summary, it appears that the predictors used matters more than the specification
for predictive accuracy. Hence, particular care should be taken in choosing the predictor.
Results from the short run models are not reported due to less visible differences, the
rankings of relative performance are the same. These results are available from the authors
upon request.

4.3 Simulation results

Turning to the counter-factual simulations, we use the 1993-1998 models in out-of-sample
predictions (i.e., for 2003) with the returns for pastures increased by 200 euros. This
represents an example of a green policy which proposes incentives for extensive land use
in order to increase water quality or biodiversity. We compute the differences in terms
of aggregate pasture acreages in 2003 relatively to what is observed. For the spatial
econometric models, both KP1 and KP2 (marked with a *) are reported in the following
Table 7. Note that spatial predictions KP2 take into account both the direct and indirect
effects of payments, so they imply no differences for the interpretation of changes to
acreages at the aggregate scale.

In terms of aggregate changes in pasture acreages as a consequence of increasing their
economic returns, there is a significant gap between individual and aggregate models when
comparing short run and long run models. Predictions are relatively similar from a long
term perspective (except for GAM and SEM which appear to strongly underestimate the
effects) but in the short run, the aggregate models clearly underestimate the effects. We
interpret this result as indicating an indisputable advantage of individual models (amount
of information), which show significant effects of economics returns in short run models
when lagged land use captures a lot of the effect. In contrast, no specific patterns emerge
for the aggregate models in either the short run or long run. OLS seems to be in mid
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Table 7: Simulation of 200 euros payments for pasture: acreages variations
The table reports the variations of pasture acreages for 2003 at the national scale on
the basis of models estimated on the period 1993-1998. The t stat. are relative to the
nullity of the correlation with the individual mnl model. The units are in thousand ha.

LONG RUN SHORT RUN
NET EFFECT COR(mnl) ¢ stat. NET EFFECT COR(mnl) ¢ stat.
OLS + 7145 ~0.018 — 1.155 +41.82 +0.131  + 8.084
GAM + 126.4 — 0212 - 13.32 + 30.52 +0.243  +15.36
FRA + 651.3 +0.061  + 3.727 — 3.467 — 0292 - 18.72
DIR + 568.8 +0.049  +3.020 + 13.12 +0271 4 17.30
SEM + 298.6 +0.074  + 4.547 + 45.05 +0.128  +7.938
SXM + 7135 +0.224  +14.08 —13.12 ~0.028 — 1.775
SAR + 667.3 +0.300  +19.13 + 91.00 +0.012  +0.735
SDM + 885.7 +0.169  + 10.51 +51.13 +0.001  + 0.071
SAC + 3821 +0.025  + 1.558 + 18.10 +0.023  + 1.400
MSAC + 285.8 +0.016  + 9.992 — 2725 ~0.033 — 2011

mnl + 756.2 1.000 + 166.19 1.000

position, between the spatial econometric models that sometimes perform well (SXM in
the long run and SAR in the short run) but appears really contrasted with the individual
model. Aggregate FRA and Dirichlet perform less badly in relation to predictive accuracy
terms, at least in the long run.

We compare the spatial patterns of the simulations of each aggregate model with the
results of the individual mnl in columns 3-4 and 6-7, which report the correlations and
the associated t statistics for each of them. Note first that the correlation coefficients
are relatively low although they are mostly significant. In the long run models, the
spatial patterns of new pasture acreages in OLS and GAM are negatively correlated
with the simulations for the individual model, and its is bigger and significant for the
GAM. Compared to the out-of-sample predictive performance of GAM, it seems to induce
antagonism between predictive accuracy and capacity to mimic the individual model.
Among the spatial models, the SAR presents the highest significant correlation coefficients:
0.3. For short run simulations, the Dirichlet model performs the best with 0.27 and
outperforms the spatial econometric models. These simulation results are confirmed by
the following maps of Figure 1 showing the intuitive consistency of the simulation from
the individual models relatively to some aggregate models.

5 Conclusion

It is generally recognized that economic behaviors are more accurately analyzed using
individual models. The increasing availability of individual land use data is allowing the
estimation of individual models. However, modeling at an aggregate scale is still common
because of complexity of individual discrete choice models or because the aggregate scale
corresponds to the outcome of interest. It is generally assumed that aggregation of these
individual micro relationships yields better predictions than more aggregate models.

In this paper, we compared the predictive abilities of different land use model spec-
ifications at the individual and aggregate levels. More specifically, we showed how the
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Figure 1: Simulation of 200 euros payments for pasture: spatial patterns The
maps report both long run (top panel) and short run (bottom panel) predictions, for the
indiwidual MNL (left), the GeoAdditive model (middle) and the spatial autoregressive
(right). The units are in thousand ha.
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introduction of a spatial dimension in aggregate models matters for improving their pre-
dictions related to aggregate changes in land use. Our results show that: (i) introducing
spatial autocorrelation in aggregate grid-level models improves their predictive accuracy
and even outperforms individual models if unbiased predictors are used, (ii) a specifica-
tion including lagged land use as explanatory variable in the aggregated as well in the
individual models, outperforms any other specification where only economic and biocli-
matic variables are included, (iii) in terms of policy simulation, individual models perform
better than aggregate models.

Our findings show that it may not be worth using individual land use data when
the only objective is to predict aggregate land use. This result corroborates the findings
in Grunfeld and Griliches (1960) that show "aggregation is not necessarily bad if one is
interested in the aggregates”. By taking advantage of the progress made in spatial econo-
metrics tools, we show how the introduction of spatial autocorrelation in aggregated land
use models allow more precise predictions than individual models. However, individual
land use data are needed for simulation purpose if the focus is impact of land use changes
on greenhouse gas emissions or other local environmental issues such as biodiversity loss
or ground-water pollution.
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A Supporting Information (not for publication)

A.1 Raw results from OLS

Table 8: Linear OLS models of land use on 1993—2003

Arable Share

Forest Share

Urban Share

long run short run long run short run long run short run
ARlog93 0.900*** —0.003 0.016
(0.020) (0.010) (0.012)
FOlog93 0.008 0.937*** 0.007
(0.013) (0.017) (0.014)
URlog93 —0.033** —0.013 0.847***
(0.014) (0.011) (0.021)
scale(Arable returns03) 0.510*** 0.041** 0.272%** 0.012 0.397*** 0.060***
(0.042) (0.019) (0.036) (0.011) (0.033) (0.015)
scale(Pasture returns03) —0.331%** —0.027 —0.325%** —0.030** —0.234%** —0.045%**
(0.036) (0.017) (0.032) (0.014) (0.032) (0.015)
scale(Forest returns03) —0.078** 0.018 0.525*** 0.039*** 0.116%** —0.014
(0.035) (0.019) (0.036) (0.014) (0.029) (0.017)
scale(POP03) —0.239** —0.043 —0.053 —0.013 0.141 0.016
(0.121) (0.068) (0.127) (0.023) (0.300) (0.034)
scale(Elevation) —1.452%** —0.189*** —0.754*** —0.139*** —0.859*** —0.108**
(0.100) (0.059) (0.104) (0.026) (0.098) (0.048)
scale(Slope) —0.429*** —0.135** 0.450*** 0.069*** 0.017 0.038
(0.083) (0.054) (0.073) (0.014) (0.077) (0.028)
scale(WHC) 0.378*** 0.085*** —0.287*** 0.014 —0.026 —0.017
(0.054) (0.028) (0.056) (0.019) (0.047) (0.023)
scale(Soil depth) —0.260*** —0.052* 0.255%** —0.026 0.051 0.006
(0.053) (0.028) (0.055) (0.019) (0.049) (0.023)
scale(Precipitations) —0.568*** —0.091*** 0.040 —0.032*%** —0.104*** —0.023
(0.035) (0.022) (0.030) (0.009) (0.032) (0.014)
scale(Temperature) 0.167** —0.082* 0.151 —0.021 —0.194** 0.039
(0.084) (0.046) (0.093) (0.018) (0.084) (0.033)
scale(Humidity) —0.003 —0.102*** —0.119* —0.048*** —0.319%** —0.035
(0.062) (0.032) (0.065) (0.013) (0.070) (0.023)
scale(Radiation) —0.354*** 0.025 —0.650*** —0.018 0.243%** 0.019
(0.074) (0.037) (0.081) (0.021) (0.078) (0.034)
Constant —0.615*** —0.097*** —0.177*** 0.060** —1.815%** —0.082**
(0.025) (0.034) (0.023) (0.029) (0.023) (0.039)
Observations 3,767 3,767 3,767 3,767 3,767 3,767
R? 0.663 0.911 0.229 0.919 0.359 0.852
Adjusted R? 0.662 0.911 0.227 0.918 0.357 0.851
Note: *p<0.1; **p<0.05; ***p<0.01.

Reference modality= Pastures, scaled variables, HC robust standard errors.
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A.2 Raw results fom GAM

Table 9: GeoAdditive models of land use on 1993—2003

Arable Share

Forest Share

Urban Share

long run short run long run short run long run short run
ARlog93 0.881*** —0.006 0.013
(0.010) (0.006) (0.008)
FOlog93 —0.004 0.912%** —0.004
(0.010) (0.006) (0.008)
URlog93 —0.031*** —0.015** 0.837***
(0.010) (0.006) (0.008)
scale(Arable returns03) 0.403*** 0.032* —0.018 —0.018 0.245*** 0.045***
(0.035) (0.019) (0.031) (0.012) (0.032) (0.016)
scale(Pasture returns03) —0.126*** —0.020 —0.037 —0.016 —0.106*** —0.041%**
(0.033) (0.018) (0.029) (0.011) (0.030) (0.015)
scale(Forest returns03) —0.068* 0.011 0.053 0.021* 0.044 0.022
(0.041) (0.020) (0.037) (0.013) (0.037) (0.018)
scale(POP03) —0.180*** —0.042*** —0.026 —0.014* 0.141%** 0.012
(0.023) (0.013) (0.021) (0.008) (0.021) (0.011)
scale(Elevation) —1.036*** —0.062 —0.594*** —0.120*** —0.731*** —0.168***
(0.118) (0.066) (0.105) (0.039) (0.108) (0.055)
scale(Slope) —0.700*** —0.202*** 0.453*** 0.062*** 0.057 0.059**
(0.062) (0.034) (0.055) (0.021) (0.056) (0.029)
scale(WHC) 0.375*** 0.062** —0.233*** 0.002 0.0002 —0.013
(0.051) (0.028) (0.046) (0.017) (0.047) (0.024)
scale(Soil depth) —0.383*** —0.059** 0.097** —0.030* —0.057 —0.010
(0.050) (0.028) (0.044) (0.017) (0.046) (0.023)
scale(Precipitations) —0.486*** —0.084*** 0.211%** —0.003 —0.134%** —0.034*
(0.039) (0.021) (0.035) (0.013) (0.035) (0.018)
scale(Temperature) 0.414*** 0.025 0.188* —0.002 0.152 —0.006
(0.114) (0.061) (0.101) (0.037) (0.104) (0.051)
scale(Humidity) 0.028 —0.090** 0.324*** 0.022 —0.031 0.040
(0.067) (0.036) (0.060) (0.022) (0.061) (0.030)
scale(Radiation) —0.118 0.044 —0.442%** 0.0002 0.237*** 0.070
(0.097) (0.051) (0.086) (0.031) (0.088) (0.043)
Constant —0.615*** —0.109*** —0.177*** 0.047*** —1.815%** —0.107***
(0.023) (0.023) (0.020) (0.014) (0.020) (0.019)
Observations 3,767 3,767 3,767 3,767 3,767 3,767
Adjusted R? 0.716 0.913 0.426 0.921 0.418 0.855
UBRE 1.932 0.595 1.509 0.208 1.599 0.399
Note: *p<0.1; **p<0.05; ***p<0.01.

Reference= Pastures, scaled variables, bivariate smooth function of coordinates, see subsection A.11
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A.3 Raw results from FRA fractional

Table 10: Aggregate FRA fractional models of land use on 1993—-2003

Long Run Short Run
arable share forest share urban share arable share forest share urban share
ARBLE93 2.899%** —0.165 —0.786**
(0.230) (0.249) (0.346)
PSTUR93 —2.929%** —2.933*** —3.862***
(0.223) (0.215) (0.342)
FORST93 —0.396 3.256%** —1.224***
(0.250) (0.207) (0.368)
URBAN93 —1.354 —0.910 5.226%**
(0.960) (0.940) (0.923)
scale(Arable returns03) 0.498*** 0.321*** 0.357*** 0.050 0.034 0.103
(0.064) (0.062) (0.091) (0.073) (0.066) (0.096)
scale(Pasture returns03) —0.298*** —0.339*** —0.242%** —0.016 —0.039 —0.047
(0.056) (0.061) (0.082) (0.062) (0.067) (0.088)
scale(Forest returns03) 0.025 0.355%** 0.094 0.036 0.044 0.010
(0.058) (0.052) (0.082) (0.061) (0.058) (0.088)
scale(POP03) —0.495*** —0.065 0.090 —0.036 0.001 —0.010
(0.129) (0.073) (0.056) (0.085) (0.047) (0.046)
scale(Elevation) —0.889*** —0.538*** —0.671** —0.419** 0.028 —0.091
(0.193) (0.125) (0.274) (0.209) (0.144) (0.284)
scale(Slope) —0.387** 0.321*** 0.081 —0.207 —0.049 —0.033
(0.163) (0.087) (0.203) (0.168) (0.097) (0.210)
scale(WHC) 0.335%** —0.283*** 0.112 0.006 —0.002 —0.031
(0.097) (0.102) (0.151) (0.104) (0.110) (0.162)
scale(Soil depth) —0.203** 0.260*** 0.026 0.001 0.002 0.003
(0.095) (0.099) (0.150) (0.102) (0.106) (0.159)
scale(Precipitations) —0.410*** 0.081* —0.111 —0.067 —0.043 —0.027
(0.068) (0.048) (0.096) (0.073) (0.056) (0.103)
scale(Temperature) 0.135 0.032 —0.357* 0.107 0.001 —0.015
(0.150) (0.116) (0.216) (0.159) (0.129) (0.227)
scale(Humidity) —0.064 —0.192** —0.578*** 0.063 —0.047 —0.099
(0.115) (0.086) (0.162) (0.122) (0.096) (0.172)
scale(Radiation) —0.164 —0.358*** 0.508** —0.232 0.006 0.129
(0.142) (0.112) (0.203) (0.151) (0.128) (0.218)
Constant —0.355*** —0.080* —1.621***
(0.062) (0.046) (0.078)
Akaike Inf. Crit. 8,545.113 8,545.113 8,545.113 7,634.633 7,634.633 7,634.633

Note:

*p<0.1; **p<0.05; ***p<0.01.
Reference= Pastures, scaled variables, corrected standard errors.
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A.4 Raw results from SEM

Table 11: Spatial Error Models of land use on 1993—2003

Arable Share

Forest Share

Urban Share

long run short run long run short run long run short run
ARlog93 0.889*** —0.009 0.013
(0.009) (0.006) (0.008)
FOlog93 0.006 0.920*** —0.001
(0.010) (0.006) (0.008)
URlog93 —0.030*** —0.014** 0.842%***
(0.010) (0.006) (0.008)
scale(Arable returns03) 0.464*** 0.050*** 0.031 0.010 0.323*** 0.063***
(0.045) (0.018) (0.043) (0.012) (0.038) (0.016)
scale(Pasture returns03) —0.204*** —0.031* —0.135%** —0.031*** —0.173*** —0.047***
(0.049) (0.017) (0.047) (0.012) (0.039) (0.015)
scale(Forest returns03) —0.087* 0.016 0.339*** 0.044*** 0.116*** —0.005
(0.051) (0.016) (0.053) (0.011) (0.038) (0.015)
scale(POP03) —0.152%** —0.042*** —0.026 —0.014* 0.124*** 0.014
(0.025) (0.013) (0.022) (0.008) (0.023) (0.011)
scale(Elevation) —1.065*** —0.191*** —0.531%** —0.140*** —0.830*** —0.119***
(0.099) (0.045) (0.090) (0.029) (0.086) (0.039)
scale(Slope) —0.448*** —0.140*** 0.570%** 0.071*** 0.061 0.044
(0.066) (0.032) (0.059) (0.020) (0.059) (0.027)
scale(WHC) 0.310*** 0.084*** —0.195%** 0.006 0.017 —0.013
(0.061) (0.028) (0.055) (0.018) (0.054) (0.024)
scale(Soil depth) —0.213%** —0.049* 0.144*** —0.016 —0.013 0.006
(0.061) (0.028) (0.055) (0.018) (0.054) (0.024)
scale(Precipitations) —0.510*** —0.095*** 0.076 —0.032%** —0.139*** —0.027*
(0.052) (0.018) (0.052) (0.012) (0.041) (0.016)
scale(Temperature) 0.494*** —0.069* 0.422%** —0.004 —0.082 0.041
(0.110) (0.040) (0.107) (0.027) (0.089) (0.035)
scale(Humidity) 0.067 —0.095%** 0.140* —0.041** —0.272%** —0.036
(0.083) (0.030) (0.082) (0.020) (0.067) (0.027)
scale(Radiation) —0.267** 0.016 —0.613*** —0.030 0.245*** 0.017
(0.114) (0.038) (0.113) (0.026) (0.088) (0.034)
Constant —0.639*** —0.099*** —0.194*** 0.049*** —1.814*** —0.097***
(0.059) (0.024) (0.069) (0.016) (0.040) (0.021)
Observations 3,767 3,767 3,767 3,767 3,767 3,767
a? 1.656 0.594 1.250 0.203 1.491 0.394
Akaike Inf. Crit. 12,891.050 8,769.077 11,936.960 4,771.993 12,373.050 7,246.211
Wald Test (df = 1) 1,247.921%** 26.557*** 880.688*** 103.971*** 527.874*** 65.066***
LR Test (df = 1) 917.587*** 12.524%*** 1,399.780*** 96.056*** 435.836*** 58.226***

Note:

*p<0.1; **p<0.05; ***p<0.01
scaled variables. Reference= Pastures
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A.5 Raw results from SXM

Table 12: Spatial X Models of land use on 1993—2003

Arable Share Forest Share Urban Share

long run short run long run short run long run short run
ARlog93 0.834*** —0.019*** 0.006
(0.011) (0.006) (0.009)
FOlog93 —0.009 0.897*** —0.019**
(0.011) (0.006) (0.009)
URlog93 —0.019* —0.017*** 0.836***
(0.010) (0.006) (0.009)
scale(Arable returns03) 0.352%** 0.077** —0.054 —0.054*** 0.171%** 0.048*
(0.056) (0.035) (0.049) (0.020) (0.054) (0.029)
scale(Pasture returns03) —0.032 0.004 —0.010 0.034 —0.022 —0.029
(0.068) (0.042) (0.060) (0.024) (0.066) (0.034)
scale(Forest returns03) —0.035 0.011 0.074 0.043 0.066 0.124***
(0.093) (0.057) (0.081) (0.033) (0.090) (0.047)
scale(POP03) —0.132%** —0.016 —0.020 —0.010 0.123*** 0.011
(0.025) (0.016) (0.022) (0.009) (0.024) (0.013)
scale(Elevation) —0.857*** —0.053 —0.512%** —0.092** —0.844*** —0.133**
(0.105) (0.067) (0.093) (0.038) (0.101) (0.054)
scale(Slope) —0.432%** —0.154*** 0.578*** 0.076*** 0.046 0.068**
(0.067) (0.042) (0.059) (0.024) (0.063) (0.034)
scale(WHC) 0.238%** 0.047 —0.188*** —0.027 0.013 —0.001
(0.064) (0.040) (0.057) (0.023) (0.062) (0.033)
scale(Soil depth) —0.180*** —0.014 0.132** 0.013 —0.044 —0.001
(0.063) (0.039) (0.055) (0.023) (0.060) (0.032)
scale(Precipitations) —0.200** —0.020 0.197*** 0.005 —0.155% —0.066
(0.083) (0.051) (0.073) (0.030) (0.080) (0.042)
scale(Temperature) 1.017*** 0.283*** 0.307** 0.041 0.379** 0.021
(0.161) (0.101) (0.141) (0.059) (0.156) (0.083)
scale(Humidity) —0.225 —0.148* 0.209* 0.020 —0.062 0.023
(0.138) (0.084) (0.120) (0.049) (0.133) (0.069)
scale(Radiation) —0.277 —0.080 —0.546*** —0.013 0.176 0.108
(0.176) (0.108) (0.153) (0.063) (0.170) (0.089)
Constant —0.638*** —0.116*** —0.191*** 0.074** —1.814*** 0.001
(0.055) (0.043) (0.061) (0.029) (0.039) (0.040)
Observations 3,767 3,767 3,767 3,767 3,767 3,767
a? 1.616 0.572 1.244 0.197 1.476 0.390
Akaike Inf. Crit. 12,802.470 8,650.725 11,900.890 4,673.891 12,353.180 7,225.390
Wald Test (df = 1) 1,251.796*** 12.987*** 1,982.371*** 72.671%** 514.239*** 48.084***
LR Test (df = 1) 905.610*** 2.284 1,271.983*** 65.701*** 421.610*** 46.372%**

Note:

*p<0.1; **p<0.05; ***p<0.01

scaled variables. Reference= Pastures coefficients from spatially lagged explanatory variables are not reported
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A.6 Raw results from SAR

Table 13: Spatial Autoregressive Regressions of land use on 1993-2003

Arable Share

Forest Share

Urban Share

long run short run long run short run long run short run
ARlog93 0.854*** —0.010* 0.013*
(0.010) (0.005) (0.008)
FOlog93 —0.006 0.890*** —0.007
(0.012) (0.007) (0.012)
URlog93 —0.026*** —0.018*** 0.830***
(0.010) (0.006) (0.009)
scale(Arable returns03) 0.297*** 0.017 0.069*** —0.005 0.242%** 0.034**
(0.028) (0.015) (0.024) (0.029) (0.015)
scale(Pasture returns03) —0.145*** —0.002 —0.110%** —0.010%** —0.132%** —0.029**
(0.026) (0.005) (0.023) (0.003) (0.024) (0.013)
scale(Forest returns03) —0.040 0.028* 0.170%** —0.0001 0.067*** —0.016
(0.025) (0.017) (0.022) (0.024) (0.019)
scale(POP03) —0.164*** —0.037*** —0.026 —0.011 0.113*** 0.010
(0.022) (0.013) (0.018) (0.008) (0.021) (0.011)
scale(Elevation) —0.652%** —0.069 —0.460*** —0.132*** —0.564*** —0.063*
(0.075) (0.043) (0.057) (0.024) (0.076) (0.038)
scale(Slope) —0.309*** —0.116*** 0.357*** 0.069*** 0.029 0.045*
(0.051) (0.030) (0.039) (0.019) (0.067) (0.027)
scale(WHC) 0.197*** 0.053** —0.146*** 0.026 —0.027 —0.021**
(0.046) (0.026) (0.039) (0.016) (0.034) (0.010)
scale(Soil depth) —0.131*** —0.028 0.117*** —0.038** 0.031 0.006
(0.046) (0.026) (0.039) (0.017) (0.056)
scale(Precipitations) —0.248*** —0.038** —0.005 —0.040*** —0.063* —0.014
(0.030) (0.017) (0.010) (0.037) (0.012)
scale(Temperature) 0.064 —0.090** 0.072* —0.027 —0.143** 0.050***
(0.078) (0.036) (0.040) (0.026) (0.060) (0.017)
scale(Humidity) —0.094* —0.117*** 0.034 —0.026 —0.209*** —0.015**
(0.057) (0.027) (0.028) (0.019) (0.050) (0.006)
scale(Radiation) —0.157** 0.042 —0.296*** 0.012 0.143** —0.011
(0.071) (0.035) (0.043) (0.027) (0.063)
Constant —0.275%** —0.036 —0.058*** 0.053*** —0.982*** 0.081***
(0.024) (0.023) (0.019) (0.013) (0.043) (0.029)
Observations 3,767 3,767 3,767 3,767 3,767 3,767
a? 1.721 0.580 1.265 0.201 1.513 0.396
Akaike Inf. Crit. 12,962.830 8,684.350 11,939.190 4,694.791 12,403.390 7,243.951
Wald Test (df = 1) 1,091.723%** 106.356*** 2,162.109*** 207.793*** 479.396*** 69.676***
LR Test (df = 1) 845.807*** 97.251%** 1,397.558*** 173.258*** 405.499*** 60.486***

Note:

*p<0.1; **p<0.05; ***p<0.01
scaled variables. Reference= Pastures
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A.7 Raw results from SDM

Table 14: Spatial Durban Models of land use on 1993—2003

Arable Share

Forest Share

Urban Share

long run short run long run short run long run short run
ARlog93 0.831*** —0.021*** 0.005
(0.009) (0.006) (0.013)
FOlog93 —0.010 0.893*** —0.021**
(0.006) (0.010)
URlog93 —0.019* —0.017*** 0.834***
(0.010) (0.005) (0.008)
scale(Arable returns03) 0.342%** 0.079*** —0.119 —0.055*** 0.148** 0.048**
(0.050) (0.027) (0.017) (0.058) (0.024)
scale(Pasture returns03) 0.005 0.004 0.042 0.033*** —0.015 —0.029***
(0.014) (0.004) (0.030) (0.011)
scale(Forest returns03) —0.031 0.011 —0.039 0.044 0.036 0.126***
(0.048) (0.037) (0.052) (0.048)
scale(POP03) —0.100*** —0.016 —0.011 —0.011 0.115%** 0.009
(0.029) (0.008) (0.021) (0.014)
scale(Elevation) —0.768*** —0.052 —0.476%** —0.094 —0.831*** —0.137*
(0.111) (0.085) (0.097) (0.120) (0.076)
scale(Slope) —0.443%** —0.155 0.603*** 0.076*** 0.055 0.067
(0.070) (0.058) (0.012) (0.098) (0.048)
scale(WHC) 0.226*** 0.047 —0.165 —0.027 0.028 —0.003
(0.070) (0.063)
scale(Soil depth) —0.176*** —0.014 0.106 0.014 —0.065 0.001
(0.065) (0.067) (0.002)
scale(Precipitations) —0.203*** —0.022 0.239*** 0.006 —0.129* —0.068***
(0.055) (0.052) (0.074) (0.026)
scale(Temperature) 1.086*** 0.286 0.376*** 0.050 0.399*** 0.009
(0.160) (0.138) (0.119)
scale(Humidity) —0.211 —0.147*** 0.301%** 0.026 —0.026 0.033
(0.136) (0.018) (0.036) (0.060) (0.065)
scale(Radiation) —0.206 —0.080 —0.541*** —0.019 0.189 0.113
(0.171) (0.158) (0.073)
Constant —0.242%** —0.109*** —0.058*** 0.061 —0.929*** 0.013
(0.023) (0.019) (0.017) (0.044) (0.028)
Observations 3,767 3,767 3,767 3,767 3,767 3,767
a? 1.619 0.571 1.236 0.197 1.476 0.389
Akaike Inf. Crit. 12,803.420 8,648.834 11,865.140 4,671.029 12,349.980 7,223.800
Wald Test (df = 1) 1,278.793%** 4.324** 2,047.633*** 69.960*** 516.272%** 49.006***
LR Test (df = 1) 904.656*** 4.175** 1,307.732%** 68.563*** 424.817*** 47.962%**

Note: *p<0.1; **p<0.05; ***p<0.01

on scaled variables. Reference= Pastures, coefficients from spatially lagged explanatory variables are not reported
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A.8 Raw results from individual MNL

Table 15: Individual mnl models on 1993—2003

Long Run Short Run
arable share forest share urban share arable share forest share urban share
U93PSTUR —1.861*** —3.032%** —3.590***
(0.008) (0.013) (0.017)
U93ARBLE 1.592%** —3.120*** —2.548***
(0.009) (0.035) (0.025)
U93FORST —1.477*** 3.939*** —1.217***
(0.043) (0.019) (0.041)
U93URBAN —1.245%** —1.315*** 2.865%**
(0.054) (0.059) (0.028)
Arable returns03 0.495*** 0.332*** 0.391*** 0.288*** 0.170*** 0.252***
(0.005) (0.005) (0.008) (0.007) (0.012) (0.013)
Pasture returns03 —0.269*** —0.308*** —0.257*** —0.143*** —0.237*** —0.199***
(0.005) (0.005) (0.007) (0.006) (0.012) (0.013)
Forest returns03 0.006 0.335*** 0.070*** 0.034*** 0.181*** —0.049***
(0.005) (0.004) (0.007) (0.006) (0.010) (0.013)
POPO3 —0.615*** —0.122%** 0.120*** —0.262*** —0.047*** 0.046***
(0.013) (0.008) (0.005) (0.013) (0.008) (0.005)
Elevation —0.903*** —0.224*** —0.533*** —0.616*** —0.153*** —0.275%**
(0.012) (0.007) (0.017) (0.017) (0.019) (0.029)
Slope —0.224*** 0.148%** 0.034*** —0.136*** 0.141%** —0.005
(0.009) (0.005) (0.011) (0.012) (0.012) (0.019)
WHC 0.262*** —0.238*** 0.091*** 0.157*** —0.089*** 0.009
(0.008) (0.008) (0.012) (0.010) (0.020) (0.022)
Soil depth —0.162%*** 0.204*** 0.019 —0.082*** 0.077*** 0.031
(0.007) (0.008) (0.012) (0.010) (0.019) (0.022)
Precipitations —0.453*** 0.078*** —0.122%** —0.324*** 0.018* —0.091***
(0.005) (0.004) (0.008) (0.008) (0.010) (0.014)
Temperature 0.088*** 0.027*** —0.331%** 0.022 —0.083*** —0.125***
(0.011) (0.008) (0.016) (0.015) (0.020) (0.028)
Humidity —0.058*** —0.240*** —0.549*** —0.005 —0.394*** —0.407***
(0.009) (0.006) (0.012) (0.012) (0.016) (0.022)
Radiation —0.066*** —0.208*** 0.496*** —0.103*** 0.172%** 0.390***
(0.011) (0.009) (0.016) (0.015) (0.022) (0.029)
Constant —0.286*** —0.060*** —1.629***
(0.005) (0.004) (0.007)
Akaike Inf. Crit. 1,160,067.000  1,160,067.000  1,160,067.000 413,591.400 413,591.400 413,591.400

Note:

*p<0.1; **p<0.05; ***p<0.01
on scaled variables. Reference= Pastures
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A.9 Maps at the aggregate scale

Figure 2: Aggregated land

use shares in 2003
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Figure 3: Aggregated land use variations on 1993-2003, in km?
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Figure 4: Out of sample 2003 predictions from individual mnl
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A.10 Aggregate outcome variables

Figure 5: Raw distribution of 1998 aggregate land use shares
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Figure 6: Linearized distribution of 1998 aggregate land use shares
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A.11 Spatial Smoothing Functions

Figure 7: Semi-parametric smoothing functions of geographical coordinates:
without temporal lags
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Figure 8: Semi-parametric smoothing functions of geographical coordinates:
with temporal lags
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A.12

Morans’ I on residuals

Figure 9: Morans’ I from OLS and GAM without temporal lags
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Figure 10: Morans’ I from OLS and GAM with temporal lags
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