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Abstract. We extend some previous existence results for quenching type parabolic problems
involving a negative power of the unknown in the equation to the case of merely integrable initial
data. We show that L1(Ω) is the suitable framework in order to get the continuous dependence
with respect to some norm of the initial datum, giving answer, in this way, to this question
raised by several authors in the previous literature.We aslo show the global and local quenching
phenomena for such type of initial datum.
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1 Introduction.

The main purpose of this paper is to study the existence of nonnegative mild solution and the
”quenching phenomenon” of the singular parabolic equation:

∂tu−∆u+ χ{u>0}u
−β = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(·, 0) = u0(·) on Ω,

(1)

where β ∈ (0, 1), Ω is a smooth bounded domain in RN , u0 ≥ 0 and χ{u>0} denotes the char-
acteristic function of the set of points (x, t) where u(x, t) > 0. Parabolic equations involving
as zero order term a negative exponent of the unknown are quite common in the literature
since 1960. The pioneering paper by Fulks and Maybee [17] was motivated by the study of the
heat conduction in an electric medium but in the modelling the singular term was of a sourcing
nature and so in the right hand side of the equation: the differences between the behavior of
solutions of such model with respect to our problem (1) are today well-known. Perhaps, one of
the first papers dealing with the first equation of (1) was [22] in the study of Electric Current
Transient in Polarized Ionic Conductors (in fact for β = 1). The literature on this type of
problems increased then very quickly and models arising in other contexts were mentioned by
different authors, specially when regarding the first equation of (1) as the limit case of models in
chemical catalyst kinetics (Langmuir-Hinshelwood model) or of models in enzyme kinetics (see
[10, 14] for the elliptic case and [3, 28] for the parabolic equation). See also many references in
the survey [21] and the monograph [19]). Many other variants of the equation were formulated
in terms of possible doubly nonlinear diffusion operators of the form
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∂tw −∆p(|w|m−1w) +
χ{w 6=0}

wk
= λ(wqχ{w 6=0} + g(x, t)), (2)

for some p > 1,m, q ∈ R and k, λ > 0. Here the above unknown u was formally replaced by
|w|m−1w and ∆ph denotes the usual p-Laplacian operator ∆pv = div(|∇v|p−2∇v): see[24] for
p = 2 and m > 1, and [8, 20] for the case of p6=2 and m = 1. We also mention the formulation
considered in [31, 32] in terms of a non-divergential equation. For instance, the case p = 2 and
m 6= 1, and k ∈ (0, 1) was associated to some models arising in plasma physics, and nonlinearities
on the gradient appear in some geometrical problems (see references and examples in [23]). We
also mention that this equation also arises in the context of the study of the so-called Euler-
Poisson system in Maxwell-Vlasov problems (see [1]) and in hydrodynamic quantum fluids (see
[18]). As a last mention in the modelling, we want to point out that similar problems, but with
β ≥ 1 (and mostly with initial conditions and initial data implying the strict positiveness of
the solution u) arise in the so-called MEMS materials (Micro Electromechanical Systems): see,
e.g., the monograph [27]. Obviously, what makes specially interesting equations like (1) and (2)
is the fact that the solutions may raise to a free boundary defined as the boundary of the set
{(x, t): u(x, t) > 0}. In many contexts the boundary conditions are not zero but, for instance,
u = 1 and thus, the terminology of ”quenching problem” was used in the literature to denote
the appearance of blow-up result on ∂tu for the first time in which u = 0 (see, e.g., [22, 26, 28]).

In spite of such a long list of references, most of the theory in the literature deals with
bounded (quite often even assumed continuous) initial data. We must add that even so, it is
today well-known that the uniqueness of solution fails (see [33]) except for the case in which
there is not a free boundary (see [9]). In particular, it is know that the solution is not necessarily
continuously dependent on the norm ‖u0‖L∞(Ω). The main purpose of this work is to deal with
initial data satisfying merely

0 ≤ u0 ∈ L1(Ω)

and to show that L1(Ω) is the suitable framework in order to get the continuous dependence
with respect some norm of the initial datum, giving answer, in this way, to this question raised
by several authors in the previous literature. To be more precise, we introduce the notion of
solution we shall use in this paper:

Definition 1 A function u ∈ C([0, T );L1(Ω)) is called a mild solution of (1) if χ{u>0}u
−β ∈

L1(Ω× (0, T )) and u fulfils the identity

u(·, t) = S(t)u0(·)−
∫ t

0
S(t− s)χ{u>0}u

−β(·, s)ds in L1(Ω), (3)

where S(t) is the L1(Ω)-semigroup corresponding to the Laplace operator with homogeneous
Dirichlet boundary conditions.

We recall that the L1(Ω)-semigroup S(t) corresponding to the Laplace operator with homo-
geneous Dirichlet boundary conditions was considered by many authors since the seventies (or
even earlier) of the past century and that the associated weak solutions S(t)u0 can be charac-
terized by multiplying by suitable test functions (see, e.g., [4, 6, 7] and the exposition made
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in Chapter 4 of [10]). In particular, we know that any mild solution u belongs to the space
Ls(0, T ;W 1,s

0 (Ω)), for any s ∈ (1, N+2
N+1), and satisfies that∫

Ω
u(x, t)ψ(x, t)dx+

∫ t

0

∫
Ω
∇u(x, s) · ∇ψ(x, s)dxds

+

∫ t

0

∫
Ω
χ{u>0}u

−β(x, s)ψ(x, s)dxds =

∫ t

0

∫
Ω
u(x, s)∂tψ(x, s)dxds+

∫
Ω
u0(x)ψ(x, 0)dx

for any test function ψ ∈W 1,∞(0, T ;L1(Ω))∩L∞(0, T ;W 1,∞
0 (Ω)) and almost every t ∈ (0, T ).

The main results of this paper are the following:

Theorem 2 Let 0 ≤ u0 ∈ L1(Ω). Then, there exists the (global) maximal nonnegative mild
solution u of (1), i.e. such that for any other mild solution v of (1) we have 0 ≤ v ≤ u in
Ω× [0, T ]. Moreover, for any 0 < τ < T , u ∈ L2(τ, T ;W 1,2

0 (Ω)) ∩ L∞(Ω× (τ, T )).

Concerning the quenching phenomenon, we recall that since there is lack of uniqueness of
solutions, it looks difficult to apply, directly, super- and sub-solutions methods to study it and
the free boundary defined as the boundary of the set {(x, t): u(x, t) > 0}. Our alternative is the
application of local energy methods available for many types of evolution equations and systems
for the last thirty years of the last century (see, e.g., the monograph [2] and its many references)
but with the new fact that our initial datum does not need to be in the natural energy space
defined over L2(Ω).

Theorem 3 Let 0 ≤ u0 ∈ L1(Ω). Then, if v is any nonnegative mild solution of (1), there
exists a finite time, T ∗ > 0 such that v(·, t) vanishes in a.e. in Ω for t > T ∗. Moreover, T ∗ only
depends on ‖u0‖L1(Ω), N and |Ω|.

Finally, concerning the spatial behavior of the free boundary we have

Theorem 4 (Instantaneous shrinking of the support) Let 0 ≤ u0 ∈ L1(Ω) and let v be any
nonnegative mild solution of (1). Then, there exist a point x0 ∈ Ω, a parameter µ ∈ (0, 1) and a
finite time t∗ ≤ T ∗, only depending on ‖u0‖L1(Ω) and N , such that u(x, t) = 0 in the paraboloid
{(x, t) : |x− x0| < (t− t∗)µ, t ∈ (t∗, T ∗)}.

Some remarks about global statements of the above result will be given later. The paper is
organized as follows: section 2 is devoted to the proof of Theorem 2 and the proofs of Theorem
3 and Theorem 4 will be given in section 3.

The consideration of the more sophisticated equation (2) in the L1(Ω)-framework requires
sharper gradient estimates and is the main object of the paper [8].

2 Proof of Theorem 2

We shall follow a scheme of approximation similar to the one used in [33]. We start by considering
the problem 

∂tuε −∆uε + gε(uε) = 0 in Ω× (0,+∞),
uε = 0 on ∂Ω× (0,+∞),
uε(·, 0) = u0(·) on Ω,

(4)
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with

gε(s): =

{
0 if s ≤ 0,
ψε(s)s

−β if s > 0.

where ψε(s) = ψ( sε) and ψ ∈ C∞(R) is a non-decreasing function on R such that ψ(s) = 0 for
s ≤ 1, ψ(s) = 1 for s ≥ 2. The main idea of the proof is to construct the maximal solution of
(4) by passing to the limit in the solutions uε of (4) as ε → 0. Our proof differs, and offers an
alternative, to the approach to the existence of solution presented in [20].

First of all, we observe that for any fixed ε > 0, gε is a global Lipschitz-continuous function.
Then, we get easily to the following result:

Theorem 5 There exists a unique nonnegative mild solution uε ∈ C([0,+∞);L1(Ω)) to problem
(4),i.e. satisfying, for any t > 0,

uε(t) = S(t)u0 −
∫ t

0
S(t− σ)gε(uε(s))ds. (5)

Moreover, for any 0 < τ < T < +∞, and for some α ∈ (0, 1), we have uε ∈ C
2+α,1+α

2
x,t (Ω×(τ, T )).

Proof: Concerning the existence, we shall follow some rather classical arguments and so, we
give its proof in the appendix section at the end of the paper. Concerning the uniqueness, the
proof is an immediate consequence from the lemma below. �

Lemma 6 For any 0 < τ < T , let v1 ∈ L∞(Ω× (τ, T ))∩L2(τ, T ;W 1,2
0 (Ω)) (resp. v2) be a mild

sub-solution (resp super-solution) of (4). Then, we have v1 ≤ v2, in Ω× (0, T ).

Proof: (of Lemma 6) We shall use a L2-technique. We introduce the truncation function

Tk(s) :=

{
s if |s| ≤ k,
sign(s)k if |s| > k,

and its primitive integral

Sk(u) :=

∫ u

0
Tk(s)ds =

1

2
|u|2χ{|u|<k} + k

(
|u| − 1

2
k

)
χ{|u|≥k}.

Let us consider the equation satisfied by the difference between v1 and v2

∂t(v1 − v2)−∆(v1 − v2) + gε(v1)− gε(v2) ≤ 0.

Then, using the test function T1(v+), with v:=v1 − v2, we get for any 0 < τ < t,∫
Ω
S1(v+(t))dx+

∫ t

τ

∫
Ω
|∇v+|2dxds+

∫ t

τ

∫
Ω

(gε(v1)− gε(v2))T1(v+)dxds ≤
∫

Ω
S1(v+(τ))dx.

Since gε is a global Lipschitz-continuous function, it follows from the last inequality that∫
Ω
S1(v+(t))dx ≤ C(ε)

∫ t

τ

∫
Ω
|v|T1(v+)dxds+

∫
Ω
S1(v+(τ))dx. (6)

4



By passing to the limit as τ → 0 in (6), noting that
∫

Ω S1(v+(τ))dx −−−→
τ→0

0, we obtain∫
Ω
S1(v+(t))dx ≤ C(ε)

∫ t

0

∫
Ω
|v|T1(v+)dxds. (7)

On the other hand, we observe that

|v|T1(v+) ≤ 2S1(v+). (8)

Combining (7) and (8) we deduce∫
Ω
S1(v+(t))dx ≤ 2C(ε)

∫ t

0

∫
Ω
S1(v+)dxds.

Then, if we define y(t):=
∫

Ω S1(v+(t))dx, we obtain the ordinary differential inequality
d

dt
y(t) ≤ 2C(ε)y(t),

y(0) = 0.

Thus, by Gronwall’s inequality, for any t > 0, y(t) = 0, and so v+(t) = 0, which completes the
proof of the lemma. �

Now, we shall show the existence of a solution of (1) by passing to the limit as ε→ 0.

Theorem 7 For any fixed ε > 0, let uε be the unique solution of (4). Then, there is a subse-
quence of {uε}ε (still denoted as {uε}ε) such that, for any T > 0, uε converges to a function u
in Lr(0, T ;W 1,r

0 (Ω)), for any r ∈ (1, N+2
N+1), and gε(uε) converges to u−βχ{u>0} in L1(Ω× (0, T ))

as ε→ 0. Furthermore, u is a mild solution of (1).

Proof: It follows from (5), the fact that gε(uε) ≥ 0 and the regularizing effect of the L1(Ω)−semigroup
(see, e.g., [30] and [5, Proposition 2.1]) that, for any t > 0,

0 ≤ uε(x, t) ≤ S(t)u0(x) ≤ Ct−
N
2 ‖u0‖L1(Ω). (9)

The constant C in (9) merely depends on N, |Ω|. Then, uε is bounded locally in time.
For any 0 < τ < T , integrating equation (4) on Ω× (τ, T ) yields∫

Ω
uε(x, T )dx−

∫ T

τ

∫
∂Ω
∇uε.ndσds+

∫ T

τ

∫
Ω
gε(uε)dxds =

∫
Ω
u(x, τ)dx,

where n is the unit outward normal vector of ∂Ω. Since ∇uε.n ≤ 0 on ∂Ω× (τ, T ), we get∫
Ω
uε(x, T )dx+

∫ T

τ

∫
Ω
gε(uε)dxds ≤

∫
Ω
u(x, τ)dx,

Passing to the limit as τ → 0 in the last inequality asserts∫
Ω
uε(x, T )dx+

∫ T

0

∫
Ω
gε(uε)dxds ≤ ‖u0‖L1(Ω). (10)

5



By using [4, Lemma 3.3], we obtain

‖uε‖Ls(0,T ;W 1,r
0 (Ω))

≤ C(s, r, T,Ω)
(
‖gε(uε)‖L1(Ω×(0,T )) + ‖u0‖L1(Ω)

)
, (11)

with s, r ≥ 1 such that 2
s + N

r > N + 1. Combining (10) and (11) we get

‖uε‖Lr(0,T ;W 1,r
0 (Ω))

≤ C(r, T,Ω)‖u0‖L1(Ω), (12)

with r = s ∈ [1, N+2
N+1). Thus, for any r ∈ (1, N+2

N+1), {∂tuε}ε is bounded in L1(0, T ;W−1,r′(Ω)) +

L1 (Ω× (0, T )) by a constant independent of ε. Then, the sequence {uε}ε is relatively compact
in L1(Ω× (0, T )) (see [29]) and there is a subsequence of {uε}ε (still denoted as {uε}ε) such that

uε−−−→
ε→0

u in L1(Ω× (0, T )). (13)

(We denote that any passage to the limit is up to a subsequence in the sequel). Next, we claim
that

uε(x, t) ↓ u(x, t), for a.e. (x, t) ∈ Ω× (0, T ). (14)

Indeed, it is enough to show that {uε}ε is a non-decreasing sequence. We have for any ε > ε′ > 0,
gε ≤ gε′ on R. Then,

∂tuε −∆uε + gε′(uε) ≥ ∂tuε −∆uε + gε(uε) = 0.

This implies that uε is a super-solution of the equation satisfied by uε′ . Thanks to Lemma 6,
we get uε(x, t) ≥ uε′(x, t), for a.e. (x, t) ∈ Ω× (0, T ), likewise we get the claim (14).
Next, we shall show the convergence of the gradients. Let us first demonstrate that

∇uε −−−→
ε→0

∇u in L1(Ω× (0, T )). (15)

For any ε, ε′ > 0, we consider function vε,ε′ :=uε − uε′ and the difference between the equations
satisfied by uε and uε′

∂tvε,ε′ −∆vε,ε′ + gε(uε)− gε′(uε′) = 0. (16)

For any δ > 0 and any 0 < T0 < +∞, we take Tδ(vε,ε′) as a test function for (16). Then, we get∫
Ω
Sδ(vε,ε′(T0))dx+

∫ T0

0

∫
Ω
|∇Tδ(vε,ε′)|2dxds

+

∫ T0

0

∫
Ω

(gε(uε)− gε′(uε′))Tδ(vε,ε′)dxds =

∫
Ω
Sδ(vε,ε′(0))dx. (17)

It follows from (17) that∫ T0

0

∫
Ω
|∇Tδ(vε,ε′)|2dxds ≤ δ

∫ T0

0

∫
Ω
gε(uε) + gε′(uε′)dxds. (18)

Combining (10) and (18) yields∫
{|vε,ε′ (x,t)|<δ}∩Ω×(0,T0)

|∇vε,ε′ |2dxds ≤ 2δ‖u0‖L1(Ω). (19)
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Next, we have from Holder’s inequality∫
{|vε,ε′ (x,t)|<δ}∩Ω×(0,T0)

|∇vε,ε′ |dxds

≤ mes{Ω× (0, T0)}
1
2

(∫
{|vε,ε′ (x,t)|<δ}∩Ω×(0,T0)

|∇vε,ε′ |2dxds

) 1
2

. (20)

From (19) and (20), we get∫
{|vε,ε′ (x,t)|<δ}∩Ω×(0,T0)

|∇vε,ε′ |dxds ≤ C
√
δ, (21)

where C = C(|Ω|, T0, ‖u0‖L1(Ω)). On the other hand, using Hölder’s inequality again yields

∫
{|vε,ε′ (x,t)|≥δ}∩Ω×(0,T0)

|∇vε,ε′ |dxds ≤

(∫
{|vε,ε′ (x,t)|≥δ}∩Ω×(0,T0)

|∇vε,ε′ |rdxds

) 1
r

×mes
(
{|vε,ε′(x, t)| ≥ δ} ∩ Ω× (0, T0)

)1− 1
r ,

with some value r ∈ (1, N+2
N+1). By inserting (12) into the last inequality, we obtain∫

{|vε,ε′ (x,t)|≥δ}∩Ω×(0,T0)
|∇vε,ε′ |dxds ≤

C(r, |Ω|, T0, ‖u0‖L1(Ω))×mes
(
{|vε,ε′(x, t)| ≥ δ} ∩ Ω× (0, T0)

)1− 1
r . (22)

Combining (19) and (22) induces∫ T0

0

∫
Ω
|∇vε,ε′ |dxds ≤ C

(√
δ +mes

(
{|vε,ε′(x, t)| ≥ δ} ∩ Ω× (0, T0)

)1− 1
r

)
. (23)

We observe that vε,ε′ converges to 0 in measure by (13) or (14). Then, letting ε, ε′ → 0 in (23)
leads to

lim sup
ε,ε′→0

∫ T0

0

∫
Ω
|∇vε,ε′ |dxds ≤ C

√
δ.

The last inequality holds for any δ > 0, so we obtain (15).
Let us show now a sharper convergence: for any r ∈ (1, N+2

N+1),

uε−−−→
ε→0

u in Lr(0, T0;W 1,r
0 (Ω)). (24)

Indeed, the conclusion (24) just follows from (12), (13), (15) and Vitali’s theorem.
Next, we show that for any T0 > 0, there is a subsequence of {gε(uε)}ε such that

gε(uε)−−−→
ε→0

u−βχ{u>0} in L1(Ω× (0, T0)). (25)

More precisely, we claim that the above subsequence satisfies, from Fatou’s lemma, that

lim inf
ε→0

gε(uε) = u−βχ{u>0} in L1(Ω× (0, T )) (26)
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and that
u ∈ C([0, T0];L1(Ω)). (27)

Let us skip the proof of (25) (or (26)) for the moment and let us first show (27) if (25) holds.
For any 0 < t < T0, we use the argument of (17) with δ = 1 to get∫

Ω
S1(vε,ε′)(t)dx+

∫ t

0

∫
Ω
|∇T1(vε,ε′)|2dxds+

∫ t

0

∫
Ω

(gε(uε)− gε′(uε′))T1(vε,ε′)dxds = 0;

and so ∫
Ω
S1(vε,ε′)(t)dx ≤

∫ T

0

∫
Ω
|gε(uε)− gε′(uε′)|dxds. (28)

On the other hand, we observe from the expression of S1 that∫
Ω
|vε,ε′(t)|χ{|vε,ε′ (t)|≥1}dx ≤ 2

∫
Ω
S1(vε,ε′)(t)dx,

and using Hölder’s inequality it yields∫
Ω
|vε,ε′(t)|χ{|vε,ε′ (t)|<1}dx ≤ |Ω|

1
2

(∫
Ω
|vε,ε′(t)|2χ{|vε,ε′ (t)|<1}dx

) 1
2

≤
(

2|Ω|
∫

Ω
S1(vε,ε′)(t)dx

) 1
2

.

Thus, we obtain ∫
Ω
|vε,ε′(t)|dx ≤ 2

∫
Ω
S1(vε,ε′(t)dx+

(
2|Ω|

∫
Ω
S1(vε,ε′(t)dx

) 1
2

. (29)

It follows from (25), (28) and (29) that

lim
ε,ε′→0

‖vε,ε′(t)‖L1(Ω) = 0, uniformly in [0, T0].

In other words, we have

lim
ε→0
‖uε(t)− u(t)‖L1(Ω) = 0, uniformly in [0, T0]. (30)

Thanks to (30), for any δ > 0 (small) there exists a positive number εδ > 0 such that

sup
t∈[0,T0]

‖uεδ(t)− u(t)‖L1(Ω) < δ. (31)

Now, we consider for any t, t0 ∈ [0, T0]

‖u(t)− u(t0)‖L1(Ω) ≤ ‖u(t)− uεδ(t)‖L1(Ω) + ‖uεδ(t)− uεδ(t0)‖L1(Ω) + ‖uεδ(t0)− u(t0)‖L1(Ω).

By (31), we get from the last inequality

‖u(t)− u(t0)‖L1(Ω) ≤ 2δ + ‖uεδ(t)− uεδ(t0)‖L1(Ω)

Letting t→ t0 and noting that uεδ ∈ C([0, T ];L1(Ω)), we get for any δ > 0,

lim sup
t→t0

‖u(t)− u(t0)‖L1(Ω) ≤ 2δ + lim sup
t→t0

‖uεδ(t)− uεδ(t0)‖L1(Ω) = 2δ.

This implies the conclusion of (27).

Now, to prove (26), we shall use a suitable gradient estimate which will be obtained by the
so-called Bernstein technique in a similar way to [33, Lemma 3.1] (see also [9, Lemma 2.4]).
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Lemma 8 There is a positive constant C > 0 such that for any fixed τ > 0, we have∣∣∣∣∇uβ+1
2

ε (x, t)

∣∣∣∣ ≤ C (1 +
∥∥∥uε(τ)

β+1
2

∥∥∥
L∞(Ω)

)(
1 + (t− τ)−

1
2 + d(x)−1

)
, in Ω× (τ,+∞), (32)

with d(x) = inf
y∈∂Ω

‖x− y‖RN , the distance from x to the boundary of the domain Ω. Moreover, if

u:= lim
ε→0

uε, then ∇uε−−−→
ε→0
∇u, in L2

loc(Ω× (0,+∞)) and we have the estimate

|∇u(x, t)| ≤ C(N, |Ω|, β)u
1−β
2

(
1 +

(
τ−

N
2 ‖u0‖L1(Ω)

)β+1
2

)(
1 + (t− τ)−

1
2 + d(x)−1

)
. (33)

Proof: (of Lemma 8) In fact, we observe that, for any τ > 0, uε(τ) ∈ C0(Ω). Then, we can
mimic the proof of [33, Lemma 3.3] but by considering uε(τ) as the initial condition instead of
u0 in order to get (31). In Ω× (τ,+∞), we rewrite the estimate (32) as follows:

|∇uε(x, t)| ≤ C(β)u
1−β
2

ε

(
1 +

∥∥∥uε(τ)
β+1
2

∥∥∥
L∞(Ω)

)(
1 + (t− τ)−

1
2 + d(x)−1

)
. (34)

Combining (9) and (34) we deduce that

|∇uε(x, t)| ≤ C(N, |Ω|, β)u
1−β
2

ε

(
1 +

(
τ−

N
2 ‖u0‖L1(Ω)

)β+1
2

)(
1 + (t− τ)−

1
2 + d(x)−1

)
. (35)

Passing to the limit as ε → 0 in (35), we get (33). By (24) and (35), we conclude that
∇uε−−−→

ε→0
∇u, in L2

loc(Ω× (0,+∞)). �

Remark 9 The uniqueness result in Lemma 6 plays an important role in the proof of Lemma 8.
Indeed, the proof of Lemma 8 (following [33, Lemma 3.3]) uses a regularization of uε, say uε,η to
get (31) in the terms of uε,η. After that, passing to the limit as η → 0, we get the conclusion of
Lemma 8. The uniqueness result ensures that uε,η converges to the unique solution uε mentioned
above.

Now, it is sufficient to show the claim (26). Indeed, using (10) and Fatou’s lemma asserts
that there is a non-negative function Φ ∈ L1(Ω× (0, T )) such that

lim inf
ε→0

gε(uε) = Φ in L1(Ω× (0, T )). (36)

Furthermore, we observe that

gε(uε)(x, t) ≥ gε(uε)χ{u>0}(x, t), for a.e. (x, t) ∈ Ω× (0, T ),

which implies that

lim inf
ε→0

gε(uε)(x, t) ≥ u−βχ{u>0}(x, t), for a.e. (x, t) ∈ Ω× (0, T ). (37)

It follows from the Lebesgue’s dominated convergence theorem that

u−βχ{u>0} ≤ Φ and u−βχ{u>0} ∈ L1(Ω× (0, T )). (38)
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Now we shall use a L1-technique. For any fixed η > 0, we use the test function ψη(uε)φ,
φ ∈ C∞c (Ω× (0, T )) to the equation satisfied by uε. Then, an integration by part gives us∫

Supp(φ)

(
−Ψη(uε)∂tφ+

1

η
|∇uε|2ψ′

(
uε
η

)
φ+ ψη(uε)∇uε · ∇φ+ gε(uε)ψη(uε)φ

)
dxds = 0,

where

Ψη(u) =

∫ u

0
ψη(s)ds.

By (14), (33), we can pass to the limit as ε→ 0 in the last inequality in order to get∫
Supp(φ)

(
−Ψη(u)∂tφ+

1

η
|∇u|2ψ′

(
u

η

)
φ+ ψη(u)∇u · ∇φ+ u−βψη(u)φ

)
dxds = 0, (39)

From (33), (38) and the Lebesgue’s dominated convergence theorem, it is not difficult to verify
that

lim
η→0

∫
Supp(φ)

(
−Ψη(u)∂tφ+ ψη(u)∇u · ∇φ+ u−βψη(u)φ

)
dxds

=

∫
Supp(φ)

(
−u∂tφ+∇u · ∇φ+ u−βχ{u>0}φ

)
dxds, (40)

with any term of the left hand side converges to any term of the right hand side in order.
On the other hand, it follows from (33) that

1

η

∫
Supp(φ)

|∇u|2
∣∣∣∣ψ′(uη

)
φ

∣∣∣∣dxds ≤ C(φ)
1

η

∫
Supp(φ)∩{η<u<2η}

u1−βdxds

≤ 2C(φ)

∫
Supp(φ)∩{η<u<2η}

u−βdxds.

Then, by the Lebesgue’s dominated convergence theorem and (38), we obtain

lim
η→0

∫
Supp(φ)∩{η<u<2η}

u−βdxds = 0.

This leads to

lim
η→0

∫
Supp(φ)

1

η
|∇u|2ψ′

(
u

η

)
φdxds = 0. (41)

Combining (39), (40) and (41) yields∫
Supp(φ)

(
−u∂tφ+∇u · ∇φ+ u−βχ{u>0}φ

)
dxds = 0. (42)

Note that (42) says that u is a weak solution of (1) in Ω× (0,+∞). However, this is not enough
to conclude that u is a mild solution of (1).
Since uε is a weak solution of (4), we have∫

Supp(φ)
(−uε∂tφ+∇uε · ∇φ+ gε(uε)φ) dxds = 0.
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The passage to the limit as ε→ 0 provides us∫
Supp(φ)

(−u∂tφ+∇u · ∇φ) dxds+ lim
ε→0

∫
Supp(φ)

gε(uε)φ dxds = 0. (43)

By (42) and (43), we get

lim
ε→0

∫ +∞

0

∫
Ω
gε(uε)φdxds =

∫ +∞

0

∫
Ω
u−βχ{u>0}φdxds. (44)

Thanks to Fatou’s lemma, (36) and (44), we obtain for any non-negative φ ∈ C∞c (Ω× (0,+∞)),∫ +∞

0

∫
Ω
u−βχ{u>0}φdxds ≥

∫ +∞

0

∫
Ω

Φφdxds.

We deduce, from this last inequality and (38), that

u−βχ{u>0} = Φ, a.e. in Ω× (0,+∞);

in other words, that claim (26) holds.
Now, it is clear that u is a mild solution of (1) since we have

uε(t) = S(t)u0 −
∫ t

0
S(t− s)gε(uε(s))ds. (45)

and the conclusion follows by passing to the limit as ε→ 0 in (45) with the help of (26). �

Finally, we shall show that the solution u constructed above is the maximal solution of (1).

Theorem 10 Let v be any mild solution of (1). Then, we have

v ≤ u in Ω× (0,+∞).

Proof: First of all, we claim that any mild solution v of (1) satisfies

v ∈ L2(τ, T ;W 1,2
0 (Ω)) ∩ L∞(Ω× (τ,+∞)), for 0 < τ < T < +∞. (46)

Since the arguments are rather classical we skip the proof of (46) for the moment but we shall
prove it in the Appendix section. Then, assumed (46), we have for any ε > 0,

0 = ∂tv −∆v + v−βχ{v>0} ≥ ∂tv −∆v + +gε(v).

This implies that v is a sub-solution of (4). Applying Lemma 6 to v and uε we get

v ≤ uε in Ω× (0,+∞).

Letting ε→ 0 we arrive to the desired conclusion. �

Remark 11 It can be shown (see, e.g., [9, Lemma 2.4], [33, Lemma 3.1]) that if β ≥ 1, no mild
solution can exist. Nevertheless, by extending the notion of solution (by requiring merely that
χ{u>0}u

−β ∈ L1(0, T ;L1(Ω, d))), it seems possible to show, as in the elliptic case (see [12, 13]),
that such extended notion of solution exists even if β ∈ (0, 2) and also for suitable initial data
merely in u0 ∈ L1(Ω, d). Here again, d(x) is the distance from x to the boundary of the domain
Ω (this could follow the same lines of proof as in the elliptic case [13]).
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Remark 12 It is easy to see that the above proof allows to get some extra information on the
regularity of the mild solution. In the following, we list some of such properties but since the
arguments for their proof are today rather classical we leave the details to the interested reader
(see also the proof of Theorem 13 bellow):

1. u1−β ∈ L
1

1−β (Ω × (0, T )), t
N
2 u0 ∈ L∞(0, T ;L1(Ω)), u ∈ C(Ω × (0, T )) and for any τ > 0,

u ∈ L∞(τ, T ;H1
0 (Ω)) and ut ∈ L2(τ, T ;L2(Ω)).

2. If u0 ∈ L2(Ω), then u ∈ L2(0, T ;H1
0 (Ω)) and if we define

D(u, 0, T ) := ess sup
s∈(0,T )

∫
Ω
|u(x, s)|2 dx+

∫
Ω×(0,T )

(
|∇u|2 + |u|1−β

)
dxdt, (47)

then we have D(u, 0, T ) < +∞.

3. Finally, if u0 ∈ H1
0 (Ω), then ∂tu ∈ L2(0, T ;L2(Ω)) and u ∈ L∞(0,+∞;H1

0 (Ω))∩L2(0,+∞;H1
0 (Ω)).

3 Quenching phenomenon in a finite time

It is well known (see, e.g., [16]) that since, for any τ > 0, the maximal solution u belongs to
L∞(τ,+∞;H1

0 (Ω))∩L2(τ,+∞;H1
0 (Ω)), u(x, t)→ 0 as t→ +∞. In this section, we shall show a

stronger property: in fact any mild solution of (1) vanishes after a finite time, likewise Theorem
4 will state. As a previous comment, we recall that thanks to Theorem 10, it is enough to show
this property only for the maximal solution u.

Theorem 13 Let u be as in Theorem 7. Then, u(t) vanishes on the whole domain Ω after a
finite time T ∗> 0. Moreover, T ∗ only depends on ‖u0‖L1(Ω), N and |Ω|.

Proof: First of all, we establish the energy equation for u (local in time). By multiplying the
equation of uε by uε and integrating by parts, we get for any 0 < τ < t < +∞,

1

2

∫
Ω

(|uε(t)|2 − |uε(τ)|2)dx+

∫ t

τ

∫
Ω
|∇uε|2dxds+

∫ t

τ

∫
Ω
gε(uε)uεdxds = 0.

By passing to the limit in the last equation as ε→ 0, we deduce that

1

2

∫
Ω

(|u(t)|2 − |u(τ)|2)dx+

∫ t

τ

∫
Ω
|∇u|2dxds+

∫ t

τ

∫
Ω
u1−βdxds = 0. (48)

Then, usual variational arguments leads to the fact that for a.e. t ∈ (0,+∞),,

d

dt

(
1

2

∫
Ω
|u(t)|2dx

)
+

∫
Ω
|∇u(t)|2dx+

∫
Ω
u1−β(t)dx = 0. (49)

On the other hand, from the Gagliardo-Nirenberg inequality, we have

‖u(t)‖L2(Ω) ≤ C(N, θ)‖∇u(t)‖θL2(Ω)‖u(t)‖1−θ
L1(Ω)

, (50)

with θ = N
N+2 , and C(N, θ) = C(N). Moreover, for any fixed τ > 0, (9) yields

sup
t≥τ
‖u(t)‖L∞(Ω) ≤ C(N, |Ω|)τ−

N
2 ‖u0‖L1(Ω):=Mτ .
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Thus, we have for any t ≥ τ , ∫
Ω
u1−β(t)dx ≥M−βτ

∫
Ω
u(t)dx. (51)

Combining (50) and (51), we deduce that

M−β(1−θ)
τ ‖u(t)‖L2(Ω) ≤ C(N)

(∫
Ω
|∇u(t)|2dx

) θ
2
(
M−βτ

∫
Ω
u(t)dx

)1−θ

≤ C(N)

(∫
Ω
|∇u(t)|2dx

) θ
2
(∫

Ω
u1−β(t)dx

)1−θ

≤ C(N)

(∫
Ω
|∇u(t)|2dx+

∫
Ω
u1−β(t)dx

) θ
2

+1−θ
.

Then,

M
− 2β(1−θ)

2−θ
τ

(∫
Ω
|u(t)|2dx

)γ
≤ C(N)

(∫
Ω
|∇u(t)|2dx+

∫
Ω
u1−β(t)dx

)
, (52)

with γ: = 1
2−θ = N+2

N+4 . Hence, from (49) and (52), we get for any t ≥ τ ,

d

dt
w(t) +K(τ)wγ(t) ≤ 0. (53)

where

w(t):=

∫
Ω
|u(t)|2dx and K(τ):=2C(N)−1M

− 2β(1−θ)
2−θ

τ .

Thus, since u(τ) ∈ L2(Ω), for any τ > 0, and since γ ∈ (0, 1), w(t) vanishes after a finite time
(see, e.g., [2]).

Finally, we shall show that the vanishing time (i.e. the quenching time) of u(t) can be esti-
mated by a constant only depending on ‖u0‖L1(Ω) and N , |Ω|. In fact, by the smoothing effect
estimate (see [5, 30]), we know that

w(τ)
1
2 = ‖u(τ)‖L2(Ω) ≤ Cτ−

N
4 ‖u0‖L1(Ω).

Thus, by integrating in the ODE (53), we get for any t ≥ τ ,

w1−γ(t) + (1− γ)K(τ)(t− τ) ≤
(
Cτ−

N
4 ‖u0‖L1(Ω)

)2(1−γ)
. (54)

Let Tmin be a minimum vanishing time of u(t). According to (54), we have for any τ > 0,

Tmin ≤ T (τ) = τ + C1(N, γ, |Ω|)τ−
N
2

(1−γ)K(τ)−1‖u0‖2(1−γ)
L1(Ω)

.

By a computation based on the definition of K(τ) and M(τ), we obtain

T (τ) = τ + C2(N, γ, |Ω|)τ−
(
N(1−γ)

2
+Nβ(1−θ)γ

)
‖u0‖2β(1−θ)γ+2(1−γ)

L1(Ω)
:= τ + C2τ

−α1‖u0‖α2

L1(Ω)
.
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But
min
τ>0
{τ + C2τ

−α1‖u0‖α2

L1(Ω)
} = τ0 + C2τ

−α1
0 ‖u0‖α2

L1(Ω)
,

with τα1+1
0 := α1C2‖u0‖α2

L1(Ω)
. Then, the previous equality gives us

min
τ>0
{τ + C2τ

−α1‖u0‖α2

L1(Ω)
} = C3‖u0‖

α2
α1+1

L1(Ω)
:= T ∗,

with C3 = C3(N, γ, |Ω|). Then, Tmin ≤ T ∗, which completes the proof. �

Remark 14 The quenching property was established in the previous literature (see, e.g., [20,
33]) only for the special case of bounded initial data or u0 ∈ L2(Ω); and so, the obtained quench-
ing time T ∗ was always depending on ‖u0‖L∞(Ω) or ‖u0‖L2(Ω). Thus, our result is sharper in
the sense that we merely require that u0 ∈ L1(Ω).

Remark 15 The phenomenon of extinction in finite time was earlier well known for the case of
absorption terms with a positive power less than one (which corresponds to the case β ∈ (−1, 0]
in our formulation). See the exposition and references quoted in [2].

We shall end this paper by showing that the quenching phenomenon has a local nature in
the sense that according to the initial data, the solution may start to vanish in a small subset of Ω.

Proof: (of Theorem 4) Thanks to the additional regularity mentioned in a previous Remark
the proof is a direct application of [11, Theorem 4.2]. Indeed, even if u0 ∈ L1(Ω) the maximal
solution satisfies that

D(u, τ, T ) := ess sup
s∈(τ,T )

∫
Ω
|u(x, s)|2 dx+

∫
Ω×(τ,T )

(
|∇u|2 + |u|1−β

)
dxds < +∞,

for any τ > 0. Moreover, we can choose t∗ ∈ (0, T ) such that energy D(u, t∗, T ) may be as small
as we wish and thus, the conclusion comes from the application of [11, Theorem 4.2]. �

Remark 16 Some estimates on the behavior of χ{u>0}u
−β(t) near the quenching time T ∗ can

be found in [15] (see also its references). We also point out that in our framework (i.e., for
β ∈ (0, 1)) the gradient estimate (33) implies that on the free boundary (defined as the boundary
of the set {(x, t): u(x, t) > 0}), we have not only that u = 0 but that also ∇u = 0. This property
fails if β ≥ 1 (see [15, 22]).

Remark 17 Other qualitative properties of the free boundary (as the ”finite speed of propaga-
tion” or the ”finite waiting time” properties) can also be obtained as application of the results
of [11, Theorem 1] under additional information on the initial datum u0.
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4 Appendix

4.1 Proof of Theorem 5

Let us regularize the initial condition u0 by considering a nonnegative sequence {u0,k}k ⊂ C∞c (Ω)
such that u0,k−−−−→

k→+∞
u0 in L1(Ω), and consider the problem

∂tvk −∆vk + gε(vk) = 0, in Ω× (0, T ),
vk = 0, on ∂Ω× (0, T ),
vk(·, 0) = u0,k(·) on Ω.

(55)

Since gε is a global Lipschitz-continuous function, the classical result ensures the existence and
the uniqueness of a classical solution vk. Moreover, vk fulfils that for any t > 0,

vk(t) = S(t)u0,k −
∫ t

0
S(t− s)gε(vk(s))ds. (56)

Next, we claim that, for any T > 0, vk ≥ 0 in Ω× (0, T ). Indeed, it is sufficient to show that

min
(x,t)∈Ω×(0,T )

vk(x, t) ≥ 0.

We can assume by contradiction that there is a point (x0, t0) ∈ Ω× (0, T ) such that

min
Ω×(0,T )

vk(x, t) = vk(x0, t0) < 0.

Let vk(x, t):=vk(x, t) + δt, with δ > 0 small enough such that vk(x0, t0) = vk(x0, t0) + δt0 < 0.
This implies that vk attains its minimum at a point inside of Ω× (0, T ), say (x1, t1) ∈ Ω× (0, T ),
and vk(x1, t1) ≤ vk(x0, t0) < 0. Then, we have ∂tvk(x1, t1) = 0 and ∆vk(x1, t1) ≥ 0, so

0 = ∂tvk(x1, t1)−∆vk(x1, t1) + gε(vk(x1, t1)) = (∂tvk(x1, t1)− δ)−∆vk(x1, t1) + 0.

This leads to a contradiction. Thus, we get the claim.

Next, we proceed as in the proof of Theorem 7 to get vk → uε, in Lr(0, T ;W 1,r
0 (Ω)), as k → +∞

(up to a subsequence if necessary), and that uε ∈ C([0, T ];L1(Ω)). Then, it suffices to pass to
the limit in (56) as k → +∞ in order to get (5).

It remains to show now that uε ∈ C
2+α,1+α

2
x,t (Ω × (τ, T )) for any 0 < τ < T < +∞, with some

α ∈ (0, 1). Indeed, applying the result of [25] to vk we obtain that ∂tvk, ∇vk, D2
xixjvk ∈ L

p(Ω×

(τ, T )), for p > 1. When p is large enough (such as p>N+2), we have that vk ∈ C
α,α

2
x,t (Ω×(τ, T )),

for some α ∈ (0, 1). Note that vk is bounded in Cα,
α
2

x,t (Ω× (τ, T )) by a constant independent of k.
Therefore, Ascoli’s theorem implies that there is a subsequence (still denoted {vk}k) such that

vk−−−−→
k→+∞

uε in Cα,
α
2

x,t (Ω× (τ, T )).

On the other hand, uε satisfies equation

∂tuε −∆uε = −gε(uε).

But, since gε is Lipschitz-continuous, we have that gε(uε) ∈ C
α,α

2
x,t (Ω× (τ, T )). Then, the conclu-

sion uε ∈ C
2+α,1+α

2
x,t (Ω× (τ, T )) follows from the α-Holder regularity of parabolic equations.
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4.2 Proof of claim (46)

Let v be a mild solution of (1) and let us consider the following problem:
∂tv −∆v + f = 0, in Ω× (0, T ),
v = 0, on ∂Ω× (0, T ),
v(·, 0) = u0(·) on Ω.

(57)

where f :=v−βχ{v>0} ∈ L1(Ω×(0, T )) and 0 < T < +∞. Then, a classical result (see for example
[4, Lemma 3.3]) ensures that there is a unique mild (or weak) solution v of (57). Moreover, [4,
Lemma 3.4] asserts v = v in Ω × (0, T ). To prove (46), it is enough to show that, for any
0 < τ < T < +∞, v ∈ L2(τ, T ;W 1,2

0 (Ω)). Indeed, let {fn}n ⊂ C∞c (Ω × (0,+∞)) be a sequence
converging to f in L1(Ω× (0,+∞)) as n→ +∞. Then, there exists a unique classical solution
of the following equation: 

∂tvn −∆vn + fn = 0, in Ω× (0, T ),
vn = 0, on ∂Ω× (0, T ),
vn(·, 0) = u0(·) on Ω.

Consider the difference between two equations satisfied by vn and vm:

∂t(vn − vm)−∆(vn − vm) + fn − fm = 0,

Multiplying the above equation with vn,m:=vn − vm and integrating by parts we get

1

2

∫
Ω

(vn,m)2(T )dx+

∫ T

τ

∫
Ω
|∇vn,m|2dxds =

∫ T

τ

∫
Ω

(fm − fn)vn,mdxds+
1

2

∫
Ω

(vn,m)2(τ)dx.

This implies∫ T

τ

∫
Ω
|∇vn,m|2dxds ≤

∫ T

τ

∫
Ω
|fm − fn|.|vn,m|dxds+

1

2

∫
Ω

(vn,m)2(τ)dx.

The fact that (fn − fm) converges to 0 in L1(Ω × (0, T )) as n,m → +∞, and that {vn}n is
bounded by (9) assert that

lim
n,m→+∞

∫ T

τ

∫
Ω
|fm − fn|.|vn,m|dxds = 0.

Moreover, using the same compactness argument as in the proof of Theorem 7, we get

lim
n,m→+∞

∫
Ω

(vn,m)2(τ)dx = 0.

Finally, combining the last three inequalities, we deduce that

lim
n,m→+∞

∫ T

τ

∫
Ω
|∇vn,m|2dxds = 0.

Then, the uniqueness result implies that {∇vn}n converges to ∇v in L2(Ω×(τ, T )) and we reach
the conclusion.
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