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Abstract

Consider a 2-player normal-form game repeated over time. We introduce an adaptive learning
procedure, where the players only observe their own realized payoff at each stage. We assume
that agents do not know their own payoff function, and have no information on the other player.
Furthermore, we assume that they have restrictions on their own actions such that, at each stage,
their choice is limited to a subset of their action set. We prove that the empirical distributions of
play converge to the set of Nash equilibria for zero-sum and potential games, and games where
one player has two actions.

AMS 2000 Subject classifications: Primary 91A26, 62L20; secondary 37B25.
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approximations.

1 Introduction

First introduced by Brown [11] to compute the value of zero-sum games, fictitious play is one of
the most intensely studied and debated procedures in game theory. Consider an N -player normal
form game which is repeated in discrete time. At each time, players compute a best response to the
opponent’s empirical average play.

A major issue in fictitious play is identifying classes of games where the empirical frequencies of
play converge to the set of Nash equilibria of the underlying game. A large body of literature has
been devoted to this question. Convergence for 2-player zero-sum games was obtained by Robinson
[33] and for general (non-degenerate) 2 × 2 games by Miyasawa [30]. Monderer and Shapley [31]
proved the same result for potential games, and Berger [9] for 2-player games where one of the players
has only two actions. Recently, a large proportion of these results have been re-explored using the
stochastic approximation theory (see for example, Benäım [3], Benveniste et al [8], Kushner and
Yin [27]), where the asymptotic behavior of the fictitious play procedure can be analyzed through
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related dynamics. For instance, Hofbauer and Sorin [23] obtain more general convergence results
for zero-sum games, while Benäım et al [6] extend Monderer and Shapley’s result to a general class
of potential games, with nonlinear payoff functions on compact convex action sets.

Most of these convergence properties also hold for smooth fictitious play, introduced by Fudenberg
and Kreps [15], (see also Fudenberg and Levine [16]), where agents use a fictitious play strategy in a
game where payoff functions are perturbed by random variables, in the spirit of Harsanyi [19]. For
this adaptive procedure, convergence holds in 2 × 2 games (see Benäım and Hirsch [5]), zero-sum,
potential games (see Hofbauer and Sandholm [22]), and supermodular games (see Benäım and Faure
[4]).

As defined above, in fictitious play or smooth fictitious play, players compute best responses to
their opponents’ empirical frequencies of play. Three main assumptions are made here: (i) each
player knows the structure of the game, i.e. she knows her own payoff function; (ii) each player is
informed of the action selected by her opponents at each stage; thus she can compute the empirical
frequencies; (iii) each player is allowed to choose any action at each time, so that she can actually
play a best response.

The next question is usually, what happens if assumptions (i) and (ii) are relaxed. One approach
is to assume that the agents observe only their realized payoff at each stage. This is the minimal
information framework of the so-called reinforcement learning procedures (see Börgers and Sarin
[10] or Erev and Roth [13] for pioneer work on this topic). Most work in this direction proceeds as
follows: a) construct a sequence of mixed strategies which are updated taking into account the payoff
they receive (which is the only information agents have access to) and b) study the convergence (or
non-convergence) of this sequence. It is supposed that players are given a rule of behavior (a decision
rule) which depends on a state variable constructed by means of the aggregate information they
gather and their own history of play.

It is noteworthy that most of the decision rules considered in the literature are stationary in the
sense that they are defined through a time-independent function of the state variable. This kind of
rule has proved useful in the analysis of simple cases, e.g. 2 × 2 games (see Posch [32]), 2-players
games with positive payoff (see Börgers and Sarin [10], Beggs [2], Hopkins [25], Hopkins and Posch
[26]) or in establishing convergence to perturbed equilibria in 2-player games (see Leslie and Collins
[28]) or multiplayer games (see Cominetti at al [12]). An example of a non-homogeneous (time-
dependent) decision rule is proposed by Leslie and Collins [29] where, via stochastic approximation
techniques, convergence of mixed actions is shown for zero-sum games and multiplayer potential
games. Another interesting example that implements a non-homogeneous decision rule is proposed
by Hart and Mas-Colell [21]. Using techniques based on consistent procedures (see Hart and Mas-
Colell [20]), the authors show that, for any game, the joint empirical frequency of play converges to
the set of correlated equilibria. To our knowledge, this is the only reinforcement learning procedure
that uses a decision rule depending explicitly on the last action played (i.e. it is Markovian).
However, in all the examples described above, assumption (iii) holds; in other words, players can
use any action at any time.

A different idea, that of releasing assumption (iii), comes from Benäım and Raimond [7], who
introduced the Markovian fictitious play (MFP) procedure, where players have restrictions on their
action set, due to limited computational capacity or even to physical restrictions. Players know the
structure of the game and, at each time, they are informed of opponents’ actions, as in the fictitious
play framework. Under the appropriate conditions regarding payers’ ability to explore their action
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set, it is shown that this adaptive procedure converges to Nash equilibria for zero-sum and potential
games.

Here, we drop all three assumptions (i), (ii) and (iii). The main novelty of this work is that
we construct a sophisticated, non-stationary learning procedure in 2-player games with minimal
information and restrictions on players’ action sets. We assume that players do not anticipate
opponents’ behavior and that they have no information on the structure of the game (in particular,
they do not know their own payoff function) nor on opponents’ actions at each stage. This means
that the only information allowing agents to react to the environment is their past realized payoffs;
the adaptive procedure presented in this work thus belongs to the class of reinforcement learning
algorithms. In addition (and in the spirit of the (MFP) procedure), we suppose that at each stage
the agents are restricted to a subset of their action set, which depends on the action they chose at
the previous stage. The decision rule we implement is fully explicit, and it is easy for each agent to
compute the mixed action which dictates her next action. She actually chooses an action through
a non-homogeneous Markovian rule which depends on a meaningful state variable.

One of the main differences between this procedure and standard reinforcement learning is that
the sequence of mixed strategies is no longer a natural choice of state variable. Indeed, the set of
mixed strategies available to a given agent at time n + 1 depends on the action he chose at time
n. As a consequence, it is unrealistic to expect good asymptotic behavior from the sequence of
mixed strategies, and we turn our attention to the sequence of empirical moves. Our main finding is
that the empirical frequencies of play converge to Nash equilibria in zero-sum and potential games,
including convergence of the average scored payoffs. We also show convergence in the case where
at least one player has only two actions.

This paper is organized as follows. In Section 2 we describe the setting and present our model,
along with our main result. Section 3 introduces the general framework in which we analyze our
procedure. The related Markovian fictitious play procedure is also presented, to help the reader
better grasp our adaptive procedure. Section 4 gives the proof of our main result, presented as an
extended sketch, while the remaining results and technical comments are left to the Appendix.

2 The Model

2.1 Setting

Let G = (N, (Si)i∈N , (G
i)i∈N ) be a given finite normal form game and S =

∏
i S

i be the set of

action profiles. We call ∆(Si) the mixed action set, i.e ∆(Si) = {σi ∈ R|Si| :
∑

si∈Si σi(si) =
1, σi(si) ≥ 0, ∀si ∈ Si}, and ∆ =

∏
i ∆(Si). More generally, given a finite set S, ∆(S) denotes the

set of probability distributions over S.

In the whole paper, for any agent i, we denote δsi the pure action si seen as an element of ∆(Si).
As usual, we use the notation −i to exclude player i, namely S−i denotes the set

∏
j 6=i S

j and ∆−i

the set
∏
j 6=i ∆(Si).

Definition 2.1. The Best-Response correspondence for player i ∈ N , BRi : ∆−i ⇒ ∆(Si), is defined
as BRi(σ−i) = argmaxσi∈∆(Si)G

i(σi, σ−i), for any σ−i ∈ ∆−i. The Best-Response correspondence

BR : ∆ ⇒ ∆ is given by BR(σ) =
∏
i∈N BRi(σ−i), for σ ∈ ∆.
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Recall that a Nash equilibrium of the game G is a fixed point of the set-valued map BR, namely
a mixed action profile σ∗ ∈ ∆ such that σ∗ ∈ BR(σ∗).

2.2 Payoff-based Markovian procedure

We consider a situation where the game G described above is repeated in discrete time. Let sin ∈ Si
be the action played by player i at time n. We assume that players do not know the game that
they are playing, i.e. they know neither their own payoff functions nor opponents’. Also we assume
that the information that a player can gather at any stage of the game is given by her payoff, i.e. at
each time n each player i ∈ N is informed of gin = Gi(s1

n, s
2
n, ..., s

N
n ). Players are not able to observe

opponents’ actions.

In this framework, a reinforcement learning procedure can be defined in the following manner.
Let us assume that, at the end of stage n ∈ N, player i has constructed a state variable Xi

n. Then

(a) at stage n + 1, player i selects a mixed action σin according to a decision rule, which can
depend on state variable Xi

n and time n.

(b) Player i’s action sin+1 is randomly drawn according to σin.

(c) She only observes gin+1, as a consequence of the realized action profile (s1
n+1, . . . , s

N
n+1).

(d) Finally, this observation allows her to update her state variable to Xi
n+1 through an updating

rule, which can depend on observation gin+1, state variable Xi
n, and time n.

In this work we assume that, in addition, players have restrictions on their action set. This idea
was introduced by Benäım and Raimond [7] through the definition of the (MFP) procedure (see
Section 3.2 for details). Suppose that, when an agent i plays an action s ∈ Si at stage n ∈ N,
her available actions at stage n + 1 are reduced to a subset of Si. This can be due to physical
restrictions, computational limitations or a large number of available actions. The subset of actions
available to player i depends on her last action and is defined through a stochastic exploration
matrix M i

0 ∈ R|Si|×|Si|. In other words, if at stage n player i plays s ∈ Si, she can switch to action
r 6= s at stage n+ 1 if and only if M i

0(s, r) > 0.

The matrix M i
0 is assumed to be irreducible and reversible with respect to its unique invariant

measure πi0, i.e. πi0(s)M i
0(s, r) = πi0(r)M i

0(r, s) for every s, r ∈ Si. This assumption guarantees that
agents have access to any of their actions.

Remark 2.2. Recall that a stochastic matrix M over a finite set S is said to be irreducible if it
has a unique recurrent class which is given by S.

For β > 0 and a vector R ∈ R|Si|, we define the stochastic matrix M i[β,R] as

M i[β,R](s, r) =

M
i
0(s, r) exp(−β|R(s)−R(r)|+) s 6= r

1−
∑
s′ 6=s

M i[β,R](s, s′) s = r, (2.1)

where, for a number a ∈ R, |a|+ = max{a, 0}.
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From the irreducibility of the exploration matrix M i
0, we have that M i[β,R] is also irreducible

and its unique invariant measure is given by

πi[β,R](s) =
πi0(s) exp(βR(s))∑

r∈Si

πi0(r) exp(βR(r))
, (2.2)

for any β > 0, R ∈ R|Si|, and s ∈ Si.

Let (βin)n be a deterministic sequence and let Fn be the σ-algebra generated by the history of
play up to time n. Let Ri0 = 0. We suppose that, at the end of stage n ≥ 1, player i has a state

variable Rin ∈ R|Si|. Let M i
n = M i[βin, R

i
n] and πin = πin[βin, R

i
n]. For n ≥ 0, Player i selects her

action at time n+ 1 through the following choice rule:

σin(s) = P(sin+1 = s | Fn),

= M i
n(sin, s),

=

M
i
0(sin, s) exp(−βin|Rin(sin)−Rin(s)|+) s 6= sin

1−
∑
s′ 6=s

M i
n(sin, s

′) s = sin.

(CR)

for every s ∈ Si. As we will see, variable Rin will be defined so as to be an estimator of the
time-average payoff vector.

At time n+ 1, player i observes her realized action sin+1, as well as her realized payoff gin+1. The

updating rule chosen by player i is defined as follows. Agent i updates the vector Rin ∈ R|Si|, only
on the component associated to the action selected at stage n. For every action s ∈ Si,

Rin+1(s) = Rin(s) + γin+1(s)
(
gin+1 −Rin(s)

)
1{sin+1=s}, (UR)

where

γin+1(s) = min

{
1 ,

1

(n+ 1)πin(s)

}
,

and 1E is the indicator of the event E.

Remark 2.3. For the sake of simplicity, we refer to Rin as the state variable of player i even if,
strictly speaking, the actual state variable is of the form Xi

n = (Rin, s
i
n), since the choice rule (CR)

is Markovian.

Note that the step size γin+1(s) depends only on πi0, βin and Rin. Also, as we will see later on,
(γin(s))−1 = nπin−1(s) for sufficiently large n (c.f. Section A.2).

While choosing this step size might appear surprising, we believe that it is actually very natural,
as it takes advantage of the fact that the invariant distribution πin is known by player i. To put
it another way: a natural candidate for step size γin(s) in (UR) is γin(s) = 1/θin(s), where θin(s) is
equal to the number of times agent i actually played action s during the n first steps. If the Markov
process was homogeneous and ergodic, with invariant measure πi, then the expected value of θin
would be exactly nπi(s).

Consequently, our stochastic approximation scheme (UR) can be interpreted as follows. Assume
that, at time n + 1, action s is played by agent i. Then Rin+1(s) is updated by taking a convex
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combination of Rin(s) and of the realized payoff playing s at time n + 1; additionally the weight
that is put on the realized payoff is inversely proportional to the number of times this action should
have been played (and not the number of times it has actually been played).

Let us denote by (vin)n the sequence of empirical distribution of moves of agent i, i.e. vin =
n−1

∑n
m=1 δsim , and vn = (vin)i∈N ∈ ∆. Note that, given the physical restrictions on the action set,

one cannot expect convergence results on the mixed actions of players σin. Therefore, the empirical
frequencies of play become the natural focus of our analysis.

Definition 2.4. We call Payoff-based Markovian procedure the adaptive process where, for any
i ∈ N , agent i plays according to the choice rule (CR), and updates Rin through the updating rule
(UR).

2.3 Main result

In the case of a 2-player game, we introduce our major assumption on the sequence (βin)n.

Assumption 2.5. For i ∈ {1, 2}, the sequence (βin)n is positive and verifies

(i) βin −→ +∞,

(ii) βin = Ain ln(n), where Ain is non-increasing and Ain −→n 0.

Let us denote by gin the average payoff obtained by player i, i.e. gin = n−1
∑n

m=1G
i(s1

m, s
2
m) and

gn = (g1
n, g

2
n).

For a sequence (zn)n, we call L((zn)n) its limit set , i.e.

L((zn)n) =
{
z : there exists a subsequence (znk

)k such that lim
k→+∞

znk
= z
}
.

We say that the sequence (zn)n converges to a set A if L((zn)n) ⊆ A, which amounts to having
limn→+∞ d(zn, A) = 0.

Recall that G is a potential game with potential Φ if, for all i = 1, 2, and s−i ∈ S−i, we have
Gi(si, s−i)−Gi(ti, s−i) = Φ(si, s−i)− Φ(ti, s−i), for all si, ti ∈ Si.

Our main result is the following.

Theorem 2.6. Under Assumption 2.5, the Payoff-based Markovian procedure enjoys the following
properties:

(a) In a zero-sum game, (v1
n, v

2
n)n converges almost surely to the set of Nash equilibria and the

average payoff (g1
n)n converges almost surely to the value of the game.

(b) In a potential game with potential Φ, (v1
n, v

2
n)n converges almost surely to a connected subset

of the set of Nash equilibria on which Φ is constant, and n−1
∑n

m=1 Φ(s1
m, s

2
m) converges to

this constant.

In the particular case G1 = G2, then (v1
n, v

2
n)n converges almost surely to a connected subset

of the set of Nash equilibria on which G1 is constant; moreover (g1
n)n converges almost surely

to this constant.
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(c) If either |S1| = 2 or |S2| = 2, then (v1
n, v

2
n)n converges almost surely to the set of Nash

equilibria.

In fact, we prove a more general result. We establish a relationship between the limit set of
the sequence (v1

n, v
2
n)n and the attractors of the well-known Best-Response dynamics, introduced by

Gilboa and Matsui [17],

v̇ ∈ −v + BR(v). (BRD)

See Section 4 (Theorem 4.1) for details.

Comments on the result For potential games, in the general case, the payoff of a given player
is not necessarily constant on the limit set of (vn)n. However, the potential almost surely is.

Consider the game G, with payoff function G and potential Φ:

G =

a b c
A 1,1 9,0 1,0
B 0,9 6,6 0,8
C 0,1 8,0 2,2

and Φ =

a b c
A 4 3 3
B 3 0 2
C 3 2 4

(G)

There is a mixed Nash equilibrium, and two strict Nash equilibria (A, a) and (C, c), with same
potential value (equal to 4). However,

P [L((vn)n) = {(A, a), (C, c)}] = 0,

because this set is not connected.

Now consider the following modified version G′:

G′ =

a b c
A 1,1 9,0 1,0
B 0,9 6,6 0,8
C 1,2 8,0 2,2

and Φ′ =

a b c
A 4 3 3
B 3 0 2
C 4 2 4

(G′)

Here we see that the set of Nash equilibria is connected and equal to

NE = {((x, 0, 1− x), a), x ∈ [0, 1]} ∪ {(C, (y, 0, 1− y)), y ∈ [0, 1]} . (2.3)

Consequently, there is no reason to rule out the possibility that the limit set of (vn)n is equal to the
whole set of Nash equilibria. Therefore the payoff is not necessarily constant on L((vn)n).
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Comments on the assumptions. Assumption 2.5 supposes that the sequence βin increases to
infinity as o(ln(n)). This assumption is necessary due to the informational constraints on players.
For instance, it is not possible to know a priori how far the variables Ri0 are from the set of feasible
payoffs.

As we will see later on, in the Markovian fictitious play procedure, sequence βin is supposed to
grow more slowly than Ai ln(n), where Ai is smaller than a quantity which is related to the energy
barrier of the payoff matrix Gi (see Benäım and Raimond [7] for details). This quantity is in turn
related to the freezing schedule of the simulated annealing algorithm (see for example Holley and
stroock [24] and Hajek [18], and references therein).

We believe it is worth reformulating our result in this spirit. However, this requires players to
have more information about the game. For each i ∈ {1, 2}, suppose that the initial state variable
Ri0 belongs to the set of feasible payoffs. Also, let us define the quantity

ωi = max
s∈Si

max
s−i,r−i∈S−i

|Gi(s, s−i)−Gi(s, r−i)|,

and let us consider the following assumption.

Assumption 2.7. Each player i ∈ {1, 2} can choose a positive constant Ai such that

(i) βin −→ +∞,

(ii) βin ≤ Ai ln(n), where 2Aiωi < 1.

Then, we have the following version of our main result.

Theorem 2.8. Under Assumption 2.7, conclusions of Theorem 2.6 hold.

The proof of this result runs along the same lines as the proof of Theorem 2.6, and is therefore
omitted.

2.4 Examples

The following simple examples show the scope of our main result. In every case presented in this
section, we performed a maximum of 5× 105 iterations.

Blind-restricted RSP Consider the Rock-Scissor-Paper game defined by the payoff matrix G1:

R S P
R 0 1 -1
S -1 0 1
P 1 -1 0

(RSP )

Then the optimal strategies are given by ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)) ∈ ∆ and the value of
the game is 0. Players’ exploration matrices and their invariant measures are given by

M1
0 = M2

0 =

1/2 1/2 0
1/3 1/3 1/3
0 1/2 1/2

 and π1
0 = π2

0 =

2/7
3/7
2/7

 . (2.4)
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R S P

Figure 1: Graph representing players’ restrictions for the (RSP ) game (every state has a self-arrow).

Figure 1 means that if a player’s action is Rock at some time, she cannot select Paper immediately
afterwards, and inversely. In Figure 2, we present a realization of (vn)n, as well as (g1

n)n.

R

P

S

v1
n

R

P

S

v2
n

-0.2

-0.1

0

0.1

0.2

0.3

time

g1
n

Figure 2: At the top, a realization of vn. At the bottom, g1n.

3× 3 Potential game Consider the potential game with payoff matrix G′ and potential Φ′ (see
(G′)). We assume that players’ exploration matrices are also given by (2.4). Therefore the graph
representing the restriction of players is given by Figure 1, if R,S and P are replaced by A,B and
C, respectively.

Figure 3 shows a realization of our procedure for the game (G′). On the left, we plot the evolution

of v1
n. On the right, we present the corresponding trajectory of Φ

′
n = n−1

∑n
m=1 Φ′(s1

m, s
2
m), the

average value of the potential Φ′ along the realization of (s1
n, s

2
n)n. Note that our results do not

stipulate that (vn)n converges, and that our simulation tend towards non-convergence of v1
n. We

choose not to display v2
n here (which seems to converge to the action a).
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A

C

B

v1
n

3.5

3.6

3.7

3.8

3.9

4

time

Φ
′
n

Figure 3: Simulation results for the potential game (G′).

5× 5 Identical interests game Consider the game with identical interests where both players
have 5 actions and the common payoff matrix is given by

A B C D E
A 2 0 0 0 0
B 0 1 0 0 0
C 0 0 0 0 0
D 0 0 0 1 0
E 0 0 0 0 2

(C)

Assume that players’ exploration matrices are

M1
0 = M2

0 =


1/2 0 1/2 0 0
0 1/2 1/2 0 0

1/5 1/5 1/5 1/5 1/5
0 0 1/2 1/2 0
0 0 1/2 0 1/2

 with π1
0 = π2

0 =


2/13
2/13
5/13
2/13
2/13



C

A B

D E

Figure 4: Graph representing players’ restrictions for the game (C) (every state has a self-arrow).

Note that, even if the center action C is bad for both players, the restrictions force them to play
C every time they switch to another action.
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In Figure 5, on the left, we present a realization where (v1
n, v

2
n) converges to the NE (B,B). On

the right, a trajectory where (v1
n, v

2
n) converges to the NE (E,E) is displayed. Note that, in both

cases, the average realized payoff gn converges to the payoff of the corresponding equilibrium. For
simplicity, we only plot the component that converges to one for the first player. This is consistent
with the recent finding that the four strict Nash equilibria have a positive probability of being the
limit of the random process (vn)n (see Faure and Roth [14] for details).

0.4

0.6

0.8

1

time

v1n(B)

0.4

0.6

0.8

1

time

v1n(E)

0

0.5

1

1.5

2

time

g1n

(a) At the top, v1n(B) → 1. At the bottom,
g1n → 1.

0

0.5

1

1.5

2

time

g1
n

(b) At the top, v1n(E) → 1. At the bottom,
g1n → 2.

Figure 5: Two realizations of the procedure for the game (C).

3 Preliminaries to the proof, related work

The aim of this section is twofold: we introduce the general framework in which we analyze our pro-
cedure, and we present the related Markovian fictitious play procedure, where the idea of restrictions
on the action set was first introduced.

3.1 A general framework

Let S be a finite set and let M(S) be the set of Markov matrices over S. We consider a discrete
time stochastic process (sn,Mn)n defined on the probability space (Ω,F ,P) and taking values in
S ×M(S). The space (Ω,F ,P) is equipped with a non-decreasing sequence of σ-algebras (Fn)n.
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Let us assume the following on the sequence (sn,Mn)n.

Assumption 3.1. The process (sn,Mn)n satisfies:

(i) For all n ∈ N, (sn,Mn) is Fn-measurable.

(ii) For all s ∈ S and n ∈ N, P(sn+1 = s | Fn) = Mn(sn, s).

(iii) For all n ∈ N, the matrix Mn is irreducible with invariant measure πn ∈ ∆(S).

Let Σ be a compact convex subset of an euclidean space Rd and H : S → Σ. For all n ∈ N,
let Vn = H(sn) ∈ Σ. We are interested in the asymptotic behavior of the random sequence zn =
n−1

∑n
m=1 Vm. Let us call

µn =
∑
s∈S

πn(s)H(s) ∈ Σ. (3.1)

Remark 3.2. This setting is a simplification of that considered by Benäım and Raimond [7], where
a more general observation term Vn is treated. For instance Vn may depend on other non-observable
variables or explicitly on time.

In order to maintain the original terminology, we introduce the following definition, which is
stated in a slightly different form (see Benäım and Raimond [7, Definition 2.4]).

Definition 3.3. A set-valued map with nonempty convex values C : Σ ⇒ Σ is adapted to the
random sequence (zn, µn)n if

(i) its graph Gr(C) = {(z, µ) : z ∈ Σ, µ ∈ C(z)} is closed in Σ× Σ.

(ii) Almost surely, for any limit point (z, µ) of (zn, µn)n, we have (z, µ) ∈ Gr(C).

Given a set-valued map C : Σ ⇒ Σ adapted to a random sequence (zn, µn)n, we consider the
differential inclusion

ż ∈ −z + C(z). (DI)

Under the assumptions above, it is well known (see, e.g. Aubin and Cellina[1]) that (DI) admits at
least one solution (i.e. an absolutely continuous mapping z : R→ Rd such that ż(t) ∈ −z(t)+C(z(t))
for almost every t) through any initial point.

Definition 3.4. A nonempty compact set A ⊆ Σ is called an attractor for (DI), provided

(i) it is invariant, i.e. for all v ∈ A, there exists a solution z to (DI) with z(0) = v and such that
z(R) ⊆ A,

(ii) there exists an open neighborhood U of A such that, for every ε > 0, there exists tε > 0
such that z(t) ⊆ N ε(A) for any solution z starting in U and all t > tε, where N ε(A) is the
ε-neighborhood of A. An open set U with this property is called a fundamental neighborhood
of A.

12



A compact set D ⊆ Σ is internally chain transitive (ICT) if it is invariant, connected and has
no proper attractors.

Let m(t) = sup{m ≥ 0 : t ≥ τm}, where τm =
∑m

j=1 1/j. For a sequence (un)n and a number
T > 0, we define ε(un, T ) by

ε(un, T ) = sup


∥∥∥∥∥∥
l−1∑
j=n

uj+1

∥∥∥∥∥∥ ; l ∈ {n+ 1, . . . ,m(τn + T )}

 .

Let us denote by (Wn)n the random sequence defined by Wn+1 = H(sn+1)− µn. The evolution
of zn can be recast as

zn+1 − zn =
1

n+ 1
(µn − zn +Wn+1). (3.2)

A consequence of Benäım and Raimond [7, Theorem 2.6] in this particular framework is the
following result.

Theorem 3.5. Under Assumption 3.1, assume that the set-valued map C is adapted to (zn, µn)n
and that for all T > 0

lim
n→+∞

ε

(
1

n+ 1
Wn+1, T

)
= 0, (3.3)

almost surely. Then the limit set of (zn)n is, almost surely, an ICT set of the differential inclusion
(DI). In particular, if A is a global attractor for (DI) then the limit set of (zn)n is almost surely
contained in A.

Remark 3.6. Roughly speaking, the fact that the set-valued map C is adapted to (zn, µn) means
that (3.2) can be recast as

zn+1 − zn ∈
1

n+ 1
(−zn + C(zn) +Wn+1).

In turn, this recursive form can be seen as a Cauchy-Euler scheme to approximate the solutions
of the differential inclusion (DI) with decreasing step sizes and added noise term (Wn)n. Assump-
tion (3.3) guarantees that, on any given time horizon, the noise term asymptotically vanishes. As
a consequence, the limit set of (zn)n can be described through the deterministic dynamics (DI), in
the sense that it needs to be internally chain transitive. If the differential inclusion admits a global
attractor, then any ICT set is contained in it. This implies the second point of the theorem (see
Benäım et al [6] for a full discussion on stochastic approximations for differential inclusions) .

3.2 Markovian fictitious play

As in Section 2, we consider that players have constraints on their action set, i.e. each player has an
exploration matrix M i

0 which is supposed to be irreducible and reversible with respect to its unique
invariant measure πi0.

The crucial difference between (MFP) and the procedure introduced in Section 2.2 is that players
know their own payoff function. Also, at the end of each stage, each player is informed of the

13



opponent’s action. The (MFP) procedure is defined as follows. A player’s i action at time n+ 1 is
chosen accordingly to the non-homogeneous Markov matrix

P(sin+1 = s | Fn) = M i[βin, U
i
n](sin, s),

=

M
i
0(s1

n, s) exp(−βin|U in(sin)− U in(s)|+) s 6= s1
n,

1−
∑
s′ 6=s

M i[βin, U
i
n](sin, s

′) s = s1
n,

(3.4)

where U in is taken as the vector payoffs of player i, against the average moves of the opponent

U in = Gi(·, v−in ) =
1

n

n∑
m=1

Gi(·, s−im ),

for all s ∈ Si, and the function M i[·, ·] is defined by (2.1). Let M̃ i
n = M i[βin, U

i
n]. Observe that

again, from the irreducibility of M i
0, the matrix M̃ i

n is also irreducible. Also, π̃in = πi[βin, G
i(·, v−in )]

(where πi[·, ·] is defined in (2.2)) is the unique invariant measure of M̃ i
n, i.e.

π̃n(s) =
πi0(s) exp(βinU

i
n(s))∑

s′∈Si

πi0(s′) exp(βinU
i
n(s′))

,

for every s ∈ Si.

Benäım and Raimond [7] obtain the following result.

Theorem 3.7. If both players follow the (MFP) procedure, defined by (3.4), then the limit set of the
sequence vn = (v1

n, v
2
n) is an ICT set of the Best-Response dynamics (BRD), provided for i ∈ {1, 2}

the positive sequence (βin)n satisfies

(i) βin → +∞ as n→ +∞.

(ii) βin ≤ Ai log(n), for a sufficiently small positive constant Ai.

As a consequence, we have the following.

(a) In a zero-sum game, (v1
n, v

2
n)n converges almost surely to the set of Nash equilibria.

(b) If G1 = G2, then (v1
n, v

2
n)n converges almost surely to a connected subset of the set of Nash

equilibria on which G1 is constant.

Some insights on the proof of Theorem 3.7

We believe it is interesting to sketch the proof of Theorem 3.7. For that purpose, we need to
introduce some notions that will be useful later on.

Let S be a finite set and M an irreducible stochastic matrix over S with invariant measure π.
For a function f : S → R, the variance and the energy of f are defined, respectively, as

var(f) =
∑
s∈S

π(s)f2(s)−

(∑
s∈S

π(s)f(s)

)2

,

E(f, f) =
1

2

∑
s,r∈S

(f(s)− f(r))2M(s, r)π(s).

14



Definition 3.8. Let M be a stochastic irreducible matrix over the finite set S and π be its unique
invariant measure.

(i) The spectral gap of M is defined by

χ(M) = min

{
E(f, f)

var(f)
: var(f) 6= 0

}
. (3.5)

(ii) The pseudo-inverse of M is the unique matrix Q ∈ R|S|×|S| such that
∑

rQ(s, r) = 0, for
every s ∈ S, which satisfies the Poisson’s equation

Q(I −M) = (I −M)Q = I −Π, (3.6)

where Π is the matrix defined as Π(s, r) = π(r) for every s, r ∈ S and I denotes the identity
matrix.

For a matrix Q ∈ R|S|×|S| and a vector U ∈ R|S|, set |Q| = maxs,r |Q(s, r)| and |U | = maxs |U(s)|.

We want to apply Theorem 3.5 with H(s) = (δs1 , δs2). Recall that vin is the empirical frequency
of play of player i. Thus, the random variable zn = vn is given by

vn =
1

n

n∑
m=1

(
δs1n , δs2n

)
=
(
v1
n, v

2
n

)
.

Therefore, the evolution of vn is described by

vn+1 − vn =
1

n+ 1
(µn − vn +Wn+1), (3.7)

where µn =
∑

s∈S π̃n(s)H(s) =
(
π̃1
n, π̃

2
n

)
and W̃n+1 = (δs1n , δs2n)− µn =

(
δs1n − π̃

1
n, δs2n − π̃

2
n

)
.

We first provide a sketch of the proof that (3.3) holds for the sequence (W̃n)n. Afterwards, we will
verify that the set-valued map BR is adapted to (vn, µn)n and conclude by applying Theorem 3.5.

Consequences (a) and (b) for games follow from the fact that the set of Nash equilibria is an
attractor for the Best-Response dynamics in the relevant classes of games. We will omit this part
of the proof, since the same argument will be used in Section 4.2.

Let Q̃in be the pseudo-inverse of M̃ i
n. Benäım and Raimond prove that if, for i ∈ {1, 2},

lim
n→+∞

|Q̃in|2 ln(n)

n
= 0,

lim
n→+∞

|Q̃in+1 − Q̃in| = 0,

lim
n→+∞

|π̃in+1 − π̃in| = 0,

(3.8)

almost surely, then (3.3) holds for (W̃n)n.

Proposition 3.4 in Benäım and Raimond [7] shows that the norm of Q̃in can be controlled as a
function of the spectral gap χ(M̃ i

n). If in addition the constants Ai are sufficiently small, then (3.8)
holds.
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Finally, since βin → +∞, we have that if (v1
n, v

2
n) → (v1, v2), then π̃in → πi[v−i], where, for all

s ∈ Si

πi[v−i](s) =
πi0(s)1{s∈argmaxr G

i(r,v−i)}∑
s′∈Si

πi0(s′)1{s′∈argmaxr G
i(r,v−i)}

∈ BRi(v−i).

This implies that map BR is adapted to (vn, µn)n and the proof is finished.

4 Proof of the main result

As mentioned in Section 2.3, we will prove a more general result. The following theorem implies
that the conclusions of Theorem 3.7 hold for our procedure.

Theorem 4.1. Under Assumption 2.5, assume that players follow the Payoff-based adaptive Marko-
vian procedure. Then the limit set of the sequence (vn)n is an ICT set of the Best-Response dynamics
(BRD). In particular if (BRD) admits a global attractor A, then L((vn)n) ⊆ A.

There are two key aspects which highlight the difference between the proof of Theorem 4.1 and
the proof of Theorem 3.7. First, to show that the noise sequence (defined in (4.1) below) satisfies
condition (3.3), we cannot directly use condition (3.8). Second, the proof that BR is adapted to
(vn, µn)n is considerably more involved. In contrast to the approach for the (MFP) procedure, the
invariant measure πin of matrix M i

n depends on state variable Rin which is updated, in turn, using
πin−1. To overcome these difficulties, we develop a more general approach, that is presented in the
Appendix.

In what follows, we present an extended sketch of the proof of Theorem 4.1. The proof of
Theorem 2.6 will follow as a corollary.

4.1 Proof of Theorem 4.1

Proof. We aim to apply Theorem 3.5. Let Σ = ∆(S1) × ∆(S2). We take Vn = (δs1n , δs2n) and
µn = (π1

n, π
2
n). As before, let vn = (v1

n, v
2
n). Then we have

vn+1 − vn =
1

n+ 1

(
µn − vn +Wn+1

)
,

where
Wn+1 =

(
W

1
n+1,W

2
n+1

)
= (δs1n+1

− π1
n, δs2n+1

− π2
n). (4.1)

We need to verify that two conditions hold. First we need to prove that ε
(
Wn+1/(n+ 1), T

)
goes

to zero almost surely for all T > 0. Proposition A6 (ii) provides proof of this.

Second, we need to verify that the Best-Response correspondence BR is adapted to (vn, µn)n. As
we will see, this problem basically amounts to showing that vector Rin becomes a good asymptotic
estimator of vector Gi(·, v−in ).

Fix i ∈ {1, 2} and s ∈ Si. Lemma A3 shows that for a sufficiently large n, (γin+1(s))−1 =
(n+ 1)πin(s) for any s ∈ Si. Therefore, from the definition of Rin and without any loss of generality,
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we have

Rin+1(s)−Rin(s) =
1

(n+ 1)πin(s)

[
1{sin+1=s}G

i(s, s−in+1)− 1{sin+1=s}R
i
n(s)

]
,

=
1

(n+ 1)πin(s)

[
πin(s)

(
Gi(s, π−in )−Rin(s)

)
+

+
(
1{sin+1=s}G

i(s, s−in+1)− πin(s)Gi(s, π−in )
)
+

+ Rin(s)
(
πin(s)− 1{sin+1=s}

)]
,

=
1

n+ 1

[
Gi(s, π−in )−Rin(s) +W i

n+1(s)
]
, (4.2)

where for convenience we set W i
n+1(s) = W i,1

n+1(s) +W i,2
n+1(s) with

W i,1
n+1(s) =

Rin(s)

πin(s)

(
πin(s)− 1{sin+1=s}

)
, and (4.3)

W i,2
n+1(s) =

1

πin(s)

(
1{sin+1=s}G

i(s1
n+1, s

2
n+1)− πin(s)Gi(s, π−in )

)
. (4.4)

Propositions A6 (i) and A7 prove that, almost surely and for any T > 0, ε
(
W i,1
n+1(s)/(n+ 1), T

)
→

0 and ε
(
W i,2
n+1(s)/(n+ 1), T

)
→ 0, respectively.

Recall that U in = Gi(·, v−in ). Naturally, the evolution of vector U in can be written as

U in+1 − U in =
1

n+ 1

(
Gi(·, π−in )− U in +W i,3

n+1

)
, (4.5)

where W i,3
n+1 = Gi(·, s−in+1) − Gi(·, π−in ). Again, Proposition A6 (iii) shows that for all T > 0,

ε
(
W i,3
n+1/(n+ 1), T

)
→ 0 almost surely.

We define ζin = Rin − Gi(·, v−in ) = Rin − U in. Equations (4.2) and (4.5), show that the evolution
of the sequence (ζin)n can be recast as

ζin+1 − ζin =
1

n+ 1

[
− ζin +W i

n+1

]
,

whereW i
n+1 = W i,1

n+1 +W i,2
n+1−W

i,3
n+1, and each component of W i,1

n+1 and W i,2
n+1 defined by Equations

(4.3) and (4.4), respectively.

Collecting all the analysis above, we conclude that ε
(
W i
n+1/(n+ 1), T

)
→ 0 almost surely for

all T > 0.

Based on the fact that sequence (ζin)n is bounded (see Lemma A3) and on standard results from
stochastic approximation theory, the limit set of the sequence (ζin)n is almost surely an ICT set of
the ordinary differential equation ζ̇ = −ζ which admits the set {0} as a global attractor.

Therefore, for i ∈ {1, 2}, Rin −Gi(·, v−in )→ 0 as n→ +∞, almost surely.

Now let us assume that

(v1
nk
, v2
nk

)→ (v1, v2) ∈ Σ, and (π1
nk
, π2
nk

)→ (π1, π2) ∈ Σ,
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for a sub-sequence (nk)k.

For i ∈ {1, 2}, let r /∈ argmaxs′ G
i(s′, v−i) and take ŝ ∈ Si such that Gi(r, v−i) < Gi(ŝ, v−i). Since

Rin −Gi(·, v−in )→ 0, there exists ε > 0 and k0 ∈ N such that, for any k ≥ k0, Rink
(r) < Rink

(ŝ)− ε.
So that, for k sufficiently large,

πink
(r) ≤ πi0(r)

πi0(ŝ)
exp

[
βink

(Rink
(r)−Rink

(ŝ))
]
≤ πi0(r)

πi0(ŝ)
exp(−βink

ε).

Then πi(r) = 0 and we have proved that πi ∈ BRi(v−i) which implies that set-valued map BR is
adapted to

(
vn, µn

)
n
.

4.2 Proof of Theorem 2.6

For all three points, the result follows from a direct application of Theorem 4.1.

Consider the variable zn = (v1
n, v

2
n, g

1
n, g

2
n), where gin = n−1

∑n
m=1 g

i
m is the average realized

payoff for player i ∈ {1, 2}. Recall that the evolution of gin can be written as

gin+1 − gin+1 =
1

n+ 1

(
gin+1 − gin

)
=

1

n+ 1

(
Gi(πin, π

−i
n )− gin +W i,4

n+1

)
,

where W i,4
n+1 = Gi(sin+1, s

−i
n+1)−Gi(πin, π−in ).

Let G be the convex hull in R2 of the set

{(G1(s, r), G2(s, r)) : s ∈ S1 , r ∈ S2}

and let Σ = ∆(S1)×∆(S2)×G. We define the set-valued map C : Σ→ Σ such that C(z) is given
by {

(α1, α2, γ) : α1 ∈ BR1(v2), α2 ∈ BR2(v1), γ = (G1(α1, α2), G2(α1, α2))
}
,

for z = (v1, v2, g1, g2) ∈ Σ and we consider the differential inclusion

ż ∈ −z + C(z). (4.6)

Let µn = (π1
n, π

2
n, (G

1(π1
n, π

2
n), G2(π1

n, π
2
n)). From Theorem 4.1, the map C is adapted to (zn, µn).

Proposition A7 (ii) shows that ε(W i,4
n+1/(n + 1), T ) goes to zero almost surely for all fixed T > 0.

Therefore, by writing the evolution of zn in the same manner as for vn before, we can conclude that
the limit set of the sequence (zn)n is an ICT set of the differential inclusion (4.6).

Zero-sum games Hofbauer and Sorin [23] (by exhibiting an explicit Lyapunov function) show
that the set of Nash equilibria is a global attractor for the differential inclusion (BRD). Hence, if
we denote by g∗ the value of the game, a direct consequence is that

{(v1, v2, g1, g2) : v1 ∈ BR1(v2) , v2 ∈ BR2(v1) , (g1, g2) = (g∗,−g∗))}

is a global attractor for (4.6). Therefore (vn)n converges to the set of Nash equilibria and g1
n

converges to the value of the game.
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Potential games In the same spirit as above, Φ is a Lyapunov function for the differential
inclusion (4.6) (see Benäım et al. [6, Theorem 5.5]). Since, in our case, the payoff functions are
linear in all variables, Propositions 3.27 and 3.28 in Benäım et al [6] imply that (vn)n converges
almost surely to a connected component of Nash equilibria on which the potential Φ is constant. In
particular, if G1 = G2, let G∗ be the value of G on the limit set of (vn)n. Then limnG(v1

n, v
2
n) = G∗.

Therefore, by definition of C, we also have limn g
1
n = G∗.

2 ×N games Our result follows from the fact that any trajectory of the Best-Response dynamics
converges to the set of Nash equilibria in this case (see Berger [9]).
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A Appendix: technical results

While Assumption 2.5 is used here, in fact, the proofs are written in such a way that they can be
easily extended to the case where the less stringent Assumption 2.7 is considered on the sequences
(βin)n.

A.1 A general result

Returning to the framework of Section 3.1, we consider a discrete time stochastic process (sn,Mn)n,
defined on the probability space (Ω,F ,P), which is equipped with a non-decreasing sequence of
σ-algebras (Fn)n. The process (sn,Mn)n takes values in S ×M(S) and satisfies Assumption 3.1.
Let Σ be a compact convex nonempty set which is assumed, for simplicity, to be contained in R|S|.
It will become clear that the argument extends to the case of arbitrary euclidean spaces.

As before, let H : S → Σ, Vn = H(sn) and µn be defined by (3.1). The pseudo-inverse matrix of
Mn is denoted by Qn (see (3.6)). The following technical proposition will be key to our main result.

Proposition A1. Let (εn)n be a real random process which is adapted to (Fn)n. Let us assume
that, almost surely,

(i) |εn||Qn| ≤ na for a < 1/2 and n large,

(ii) |Qn||εn − εn−1| → 0 ,

(iii) |εn| (|Qn+1 −Qn|+ |πn+1 − πn|)→ 0.

Let Wn+1 = εn (Vn+1 − µn) . Then, for all T > 0, ε (Wn+1/(n+ 1), T )→ 0, almost surely as n goes
to infinity.
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Proof. Let c be a positive constant that may change from line to line. In a similar manner as in the
proof of Benäım and Raimond [7, Theorem 2.6], we can decompose the noise term as follows:

1

n+ 1
Wn+1 =

εn
n+ 1

(Vn+1 − µn),

=
εn

n+ 1
(H(sn+1)− µn),

=
εn

n+ 1
(H(sn+1)−

∑
s∈S

πn(s)H(s)).

For a matrix A ∈ R|S|×|S| and for any r ∈ S, let A[r] be the r-th line of A. Let us identify the
function H with the matrix H where, for each r ∈ S, H[r] = H(r). Notice that, by definition of
the matrix Πn (see (3.6)), we have that ΠnH[r] = µn for every r ∈ S. Therefore we can write

1

n+ 1
Wn+1 =

εn
n+ 1

((I −Πn)H) [sn+1]

=
εn

n+ 1
((Qn −MnQn)H) [sn+1],

=
εn

n+ 1
((QnH)[sn+1]− (MnQnH)[sn+1]) ,

=
4∑
j=1

ujk,

where the second identity follows from the definition of the pseudo-inverse matrix, and

u1
n =

εn
n+ 1

((QnH)[sn+1]− (MnQnH)[sn]) ,

u2
n =

εn
n+ 1

(MnQnH)[sn]− εn−1

n
(MnQnH)[sn],

u3
n =

εn−1

n
(MnQnH)[sn]− εn

n+ 1
(Mn+1Qn+1H)[sn+1],

u4
n =

εn
n+ 1

(Mn+1Qn+1H)[sn+1]− εn
n+ 1

(MnQnH)[sn+1],

=
εn

n+ 1
(Mn+1Qn+1 −MnQn) H[sn+1].

Since E((QnH)[sn+1] | Fn) = (MnQnH)[sn], the random process u1
n is a martingale difference

and ∥∥u1
n

∥∥ ≤ c |εn||Qn|
n+ 1

.

The exponential martingale inequality (see Equation (18) in Benäım [3]) gives that, for all K > 0

P(ε(u1
n, T ) ≥ K) ≤ c exp

(
−K2

c
∑m(τn+T )

j=n ε2
j |Qj |2/j2

)
.

By assumption we have that, almost surely and for j large enough, |εj ||Qj | ≤ ja, for a < 1/2. So
that

c

m(τn+T )∑
j=n

ε2
j |Qj |2

j2
≤ c 1

n1−2a

m(τn+T )∑
j=n

1

j
≤ cT + 1

n1−2a
,
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by definition of m(t). Therefore

P(ε(u1
n, T ) ≥ K) ≤ c exp

(
− K2

T + 1
n2a−1

)
.

Finally, from the fact that a < 1/2, we have
∑

n≥1 P(ε(u1
k, T ) ≥ K) < +∞ for all K > 0 and the

Borel–Cantelli lemma implies that ε(u1
n, T )→ 0 almost surely.

For the second term,

ε(u2
n, T ) ≤ c

m(τn+T )∑
j=n

|Qj |
∣∣∣∣εj−1

j
− εj
j + 1

∣∣∣∣ ,
= c

m(τn+T )∑
j=n

|Qj |
∣∣∣∣(j + 1)εj−1 − jεj

j(j + 1)

∣∣∣∣ ,
= c

m(τn+T )∑
j=n

|Qj |
∣∣∣∣εj−1 − εj

j
+

εj
j(j + 1)

∣∣∣∣ ,
≤ c

[
sup
j≥n
|Qj ||εj − εj−1|+ sup

j≥n

|Qj ||εj |
j + 1

]
m(τn+T )∑
j=n

1

j
,

≤ c

[
sup
j≥n
|Qj ||εj − εj−1|+ sup

j≥n

|Qj ||εj |
j + 1

]
(T + 1),

by definition of m(t). Hence, from assumptions (i) and (ii), we conclude that ε(u2
n, T ) → 0 almost

surely.

Now for u3
n, by cancellation of successive terms,

ε(u3
n, T ) =

εn−1

n
(MnQnH)[sn]−

εm(τn+T )−1

m(τn + T )
(Mm(τn+T )Qm(τn+T )H)[sm(τn+T )],

≤ 2 sup
j≥n

|Qj ||εj−1|
j

,

which implies, by (i), that ε(u3
n, T )→ 0 almost surely.

For the fourth term, recall that MnQn = Qn − I + Πn for all n ∈ N. Therefore, we can write

u4
n =

εn
n+ 1

(Qn+1 −Qn − (Πn+1 −Πn)) H[sn+1].

Hence

ε(u4
n, T ) ≤ c

m(τn+T )∑
j=n

1

j

[
sup
j≥n
|εj ||Qj+1 −Qj |+ |εj ||πj+1 − πj |

]
,

≤ c(T + 1)

[
sup
j≥n
|εj ||Qj+1 −Qj |+ |εj ||πj+1 − πj |

]
.

Assumption (iii) implies that ε(u4
n, T )→ 0 almost surely, as n goes to infinity.
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A.2 Stability

The following lemma is a trivial consequence of the recursive definition of the vector Rin and the
fact that γin(s) ∈]0, 1].

Lemma A2. For any i ∈ {1, 2}, s ∈ Si, n ∈ N, we have Rin(s) ∈ [−Ki,Ki], where

Ki = max{max
s,r∈Si

|Ri0(s)−Ri0(r)|,max
s∈Si

max
s−i,r−i∈S−i

|Gi(s, s−i)−Gi(s, r−i)|}. (A.1)

The following result states that, without loss of generality, we can suppose that the step size
γin(s) is equal to (nπin−1(s))−1 for all s ∈ Si.

Lemma A3. Let α ∈]0, 1[ There exists n0(α) ∈ N (which only depends on α, Ri0, the payoff functions
Gi and the vanishing sequence (Ain)n) such that, for any n ≥ n0(α) and s ∈ Si, πin(s) ≥ n−α. In
particular, there exists n0 ∈ N such that, for any n ≥ n0 and s ∈ Si, (γin(s))−1 = nπin−1(s).

Proof. Let α ∈]0, 1[ and α′ ∈]0, α[. Choose n0 ∈ N such that, for any n ≥ n0, 2KiAin ≤ α′, where
Ki is defined in (A.1), and take rn ∈ Si such that Rin(rn) = maxr R

i
n(r). Then, for any s ∈ Si,

πin(s) =
πi0(s) exp

(
Ain ln(n)(Rin(s)−Rin(rn))

)
πi0(rn) +

∑
r 6=rn π

i
0(r) exp (Ain ln(n)(Rin(r)−Rin(rn))

≥ πi0(s) exp
(
−2Ain ln(n)Ki

)
≥ min

r
πi0(r) exp(−α′ ln(n)) ≥ min

r
πi0(r)n−α

′
.

Without loss of generality, we can assume that n0 is large enough so that minr π
i
0(r)n−α

′ ≥ n−α.
This concludes the proof of the first point. In particular, there exists n0 ∈ N such that, for any
n ≥ n0, (n+ 1)πin(s) > 1, which proves the second point.

A.3 Analysis of the noise sequences

Let us fix i ∈ {1, 2} and let χin be the spectral gap of the matrix M i
n = M [βin, R

i
n], i.e.

χin = min

{
E in(f, f)

varin(f)
: varin(f) 6= 0

}
,

where

varin(f) =
∑
s∈Si

πin(s)f2(s)−

∑
s∈Si

πin(s)f(s)

2

,

E in(f, f) =
1

2

∑
s,r∈Si

(f(s)− f(r))2M i
n(s, r)πin(s).

The following result is a direct consequence of results of Holley and Stroock [24].

Lemma A4. There exists a positive constant c such that, for a sufficiently large n ∈ N

c exp(−2Kiβin) ≤ χin,

where Ki is defined in Lemma A2.
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Proof. By Holley and Stroock [24, Lemma 2.7], for sufficiently large n, χin ≥ c exp(−βinmn), where

mn = max
s,r∈Si

{
min
γ∈Γ

max
s′∈γ

Rin(s′)−Rin(s)−Rin(r) + min
s′∈Si

Rin(s′)

}
,

and Γ is the set of every path from s to r on the graph that represents the action set of player i.
Now it is clear that mn ≤ 2Ki, by Lemma A2.

Lemma A5. Under Assumption 2.5, the following holds, almost surely, as n→ +∞. Given s ∈ Si,

(i)
|Qin|

naπin(s)b
−→ 0, for any a > 0, b > 0,

(ii)
|Qin+1 −Qin|n1−α

πin(s)
−→ 0 and

|πin+1 − πin|n1−α

πin(s)
−→ 0 for any α > 0.

Proof. Let c be a general positive constant that may change from line to line.

(i) The first inequality in Benäım and Raimond [7, Proposition 3.4] (based on estimations ob-
tained by Saloff-Coste [34]) reads in this case, for n ∈ N and s, s′ ∈ Si,

|Qin(s, s′)| ≤ 1

χin

(
πin(s′)

πin(s)

)1/2

≤ 1

χin
(πin(s))−1/2, (A.2)

Let a > 0 and b > 0. By Lemma A4, (χin)−1 ≤ c−1n2KiAi
n . Pick a

b+1/2 > α > 0. There exists

n0(α) such that, for any n ≥ n0, for any s ∈ Si, πin(s) ≥ n−α Therefore for sufficiently large
n,

|Qin|
naπin(s)b

≤ c−1n
2KiAi

n+α/2

nan−bα
= c−1n2KiAi

n+α(1/2+b)−a.

Thus the conclusion follows from the fact that α(1/2 + b)− a < 0 and limnA
i
n = 0.

(ii) Let α > 0. Recall that M i
n = M i[βin, R

i
n]. Therefore

|M i
n+1 −M i

n| ≤
∣∣M i[βin+1, R

i
n+1]−M i[βin, R

i
n+1]

∣∣+
∣∣M i[βin, R

i
n+1]−M i[βin, R

i
n]
∣∣ .

A simple application of the mean value theorem on the functions β → M i[β,R] and R →
M i[β,R] yields, respectively,

∣∣M i[βin+1, R
i
n+1]−M i[βin, R

i
n+1]

∣∣ ≤ cAin
n
,

and ∣∣M i[βin, R
i
n+1]−M i[βin, R

i
n]
∣∣ ≤ cβin|Rin+1 −Rin|,

By Lemma A3, and since |Rin+1 −Rin| ≤ maxs∈Si cγin+1(s), we have that

∣∣M i
n+1 −M i

n

∣∣ ≤ 1

n1−α/4
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for sufficiently large n. Analogously, recalling that πin = πi[βin, R
i
n], we have

|πin+1 − πin| ≤
1

n1−α/4 . (A.3)

for sufficiently large n. Recall that, from part (i), |Qin| ≤ nα/8 for sufficiently large n. Also,
πin(s) ≥ n−α/4. Using the last inequality in the proof of [7, Proposition 3.3]:

|Qin+1 −Qin| ≤ c
(
|Qin+1||Qin||M i

n+1 −M i
n|+ |Qin||πin+1 − πin|

)
,

we have that

|Qin+1 −Qin|n1−α

πin(s)
≤ c

n1−α

n−α/4
(
|Qin+1||Qin||M i

n+1 −M i
n|+ |Qin||πin+1 − πin|

)
≤ 1

nα/8
,

almost surely, for sufficiently large n.

The following two propositions establish all the results on the noise terms that we need in the
proof of Theorem 4.1 (c.f. Section 4).

Proposition A6. Suppose that Assumption 2.5 holds and let i ∈ {1, 2}.

(i) For s ∈ Si, let

W i,1
n+1(s) =

Rin(s)

πin(s)

(
1{sin+1=s} − π

i
n(s)

)
∈ R.

Then, for all T > 0, ε
(
W i,1
n+1(s)/(n+ 1), T

)
→ 0, almost surely as n goes to infinity.

(ii) Let

W
i
n+1 = δsin+1

− πin ∈ R|S
i|.

Then, for all T > 0, ε
(
W

i,1
n+1/(n+ 1), T

)
→ 0, almost surely as n goes to infinity.

(iii) Let

W i,3
n+1 = Gi(·, s−in+1)−Gi(·, π−in ) ∈ R|S

i|.

Then, for all T > 0, ε
(
W i,3
n+1/(n+ 1), T

)
→ 0, almost surely as n goes to infinity.

Proof. We prove part (i) in detail. Given that the arguments are very similar, the remaining proofs
are omitted.

We apply Proposition A1 with S = Si, Σ = ∆(Si), sn = sin, Mn = M i
n, πn = πin and H(r) = δr

for all r ∈ Si. Therefore in this case µn = πin and Vn+1 = δsin+1
. We also put εn = Rin(s)/πin(s).
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From the fact that Rin is bounded, it is easy to see that points (i) and (ii) of Lemma A5
respectively imply assumptions (i) and (iii) of Proposition A1. To confirm that assumption (ii)
holds, it suffices to compute

|Qin||εn − εn−1| =
|Qin||πin(s)(Rin(s)−Rin−1(s)) +Rin(s)(πin−1(s)− πin(s))|

πin(s)πin−1(s)

≤ c|Qin|n−1+α

by definition of Rin, Lemma A3 and equation (A.3), for sufficiently large n and any α > 0. Hence, by
Lemma A5, |Qin||εn−εn−1| goes to zero almost surely as n goes to infinity. By using Proposition A1,
we show that ε(U in+1/(n+ 1), T ) goes to zero almost surely for any T > 0, where

U in+1 =
Rin(s)

πin(s)

(
δsin+1

− πin
)
∈ R|S

i|.

The result follows from the fact that the s-th component of the vector U in+1 is equal to W i,1
n+1(s).

Proposition A7. Suppose that Assumption 2.5 holds and let us fix i ∈ {1, 2}.

(i) For s ∈ Si, let

W i,2
n+1(s) =

1

πin(s)

(
1{sin+1=s}G

i(s1
n+1, s

2
n+1)− πin(s)Gi(s, π−in )

)
∈ R.

Then, for all T > 0, ε
(
W i,2
n+1/(n+ 1), T

)
→ 0, almost surely as n goes to infinity.

(ii) Let
W i,4
n+1 = Gi(sin+1, s

−i
n+1)−Gi(πin, π−in ) ∈ R.

Then, for all T > 0, ε
(
W i,4
n+1/(n+ 1), T

)
→ 0, almost surely as n goes to infinity.

Proof. (i) For the sake of clarity, let us set i = 1. Again, we use Proposition A1, where in this
case, S = S1 × S2, Σ ⊆ R|S1| is defined by ∑

s2∈S2

σ2(s2)G1(·, s2) :
∑
s2∈S2

σ2(s2) = 1 and σ2(s2) ≥ 0 for all s2 ∈ S2

 .

Also, sn = (s1
n, s

2
n), Mn = M1

n ⊗ M2
n, πn = π1

n ⊗ π2
n and H : S1 × S2 → Σ where

H(s1, s2) = δs1G
1(s1, s2), for all (s1, s2) ∈ S1 × S2. Notice that in this case δ is the

Kronecker’s delta function taking values in ∆(S1). Therefore µn = (µn(s1))s1∈S1 , with
µn(s1) = π1

n(s1)G1(s1, π2
n) and Vn+1 = (Vn+1(s1))s1∈S1 , where

Vn+1(s1) = 1{s1n+1=s1}G
1(s1

n+1, s
2
n+1) = 1{s1n+1=s1}G

1(s1, s2
n+1).
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We also set in this case εn = 1/π1
n(s). Let Qn be the pseudo-inverse matrix of the stochastic

matrix Mn. It is easy to see that the spectral gap of Mn verifies that

χ(Mn) = χ(M1
n ⊗M2

n) = min{χ(M1
n), χ(M2

n)} = min{χ1
n, χ

2
n}.

By using inequality (A.2) for the matrix Qn and the fact that πn(s1, s2) = π1
n(s1)π2

n(s2) ≥ n−α
for any α > 0 and sufficiently large n, we can obtain exactly the same conclusions as in
Lemma A5 for Qn and πn.

Hence, as in the proof of Proposition A6, we deduce that sequences (εn)n and (Qn)n verify
assumptions (i)-(iii) of Proposition A1.

Therefore, we have that ε(U in+1/(n + 1), T ) goes to zero almost surely for any T > 0 where,
for s1 ∈ S1,

U in+1(s1) =
1

π1
n(s)

(
1{s1n+1=s1}G

1(s1, s2
n+1)− π1

n(s1)G1(s1, π2
n)
)

=
1

π1
n(s)

(
1{s1n+1=s1}G

1(s1
n+1, s

2
n+1)− π1

n(s1)G1(s1, π2
n)
)
.

The conclusion follows taking s1 = s in the equation above.

(ii) The proof of this part also follows from Proposition A1, taking as Σ a sufficiently large
compact set in R, sn = (s1

n, s
2
n), Mn = M1

n ⊗M2
n, πn = π1

n ⊗ π2
n and H : S1 × S2 → Σ, where

H(s1, s2) = Gi(s1, s2). Therefore µn = Gi(πin, π
−i
n ) and εn = 1 for all n ∈ N. Finally, using the

same argument as in part (i), we prove that the assumptions (i)-(iii) hold and we conclude.
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[7] Benäım, M. and Raimond, O. (2010). A class of self-interacting processes with applications
to games and reinforced random walks. SIAM J. Control Optim., 48 4707–4730.

[8] Benveniste, A., Métivier, M. and Priouret, P. (1990). Adaptive Algorithms and Stochas-
tic Approximations. Springer-Verlag, Berlin.

[9] Berger, U. (2005). Fictitious play in 2× n games. J. Econom. Theor., 120 134–154.
[10] Börgers, T. and Sarin, R. (1997). Learning through reinforcement and replicator dynamics.

J. Econom. Theory, 77 1–14.

26



[11] Brown, G. W. (1951). Iterative solution of games by fictitious play. In Activity Analysis of
Production and Allocation. Wiley, New York, 374–376.

[12] Cominetti, R., Melo, E. and Sorin, S. (2010). A payoff-based learning procedure and its
application to traffic games. Games Econ. Behav., 70 71–83.

[13] Erev, I. and Roth, A. E. (1998). Predicting how people play games: Reinforcement learning
in experimental games with unique, mixed strategy equilibria. Amer. Econ. Rev., 88 848–81.

[14] Faure, M. and Roth, G. (2010). Stochastic approximations of set-valued dynamical systems:
Convergence with positive probability to an attractor. Math. of Oper. Res., 35 624–640.

[15] Fudenberg, D. and Kreps, D. M. (1993). Learning mixed equilibria. Games Econ. Behav.,
5 320–367.

[16] Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT Press,
Cambridge, MA.

[17] Gilboa, I. and Matsui, A. (1991). Social stability and equilibrium. Econometrica, 59 859–
867.

[18] Hajek, B. (1988). Cooling schedules for optimal annealing. Math. Oper. Res., 13 311–329.
[19] Harsanyi, J. C. (1973). Games with randomly disturbed payoffs: A new rationale for mixed-

strategy equilibrium points. International Journal of Game Theory, 2 1–23.
[20] Hart, S. and Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated

equilibrium. Econometrica, 68 1127–1150.
[21] Hart, S. and Mas-Colell, A. (2001). A reinforcement procedure leading to correlated

equilibrium. In Economics Essays: A Festschrift for Werner Hildebrand. Springer, Berlin,
181–200.

[22] Hofbauer, J. and Sandholm, W. H. (2002). On the global convergence of stochastic ficti-
tious play. Econometrica, 70 2265–2294.

[23] Hofbauer, J. and Sorin, S. (2006). Best response dynamics for continuous zero-sum games.
Discrete Contin. Dynam. Systems, Ser. B, 6 215–224.

[24] Holley, R. and Stroock, D. (1988). Simulated annealing via Sobolev inequalities. Comm.
Math. Phys., 115 553–569.

[25] Hopkins, E. (2002). Two competing models on how people learn in games. Econometrica, 70
2141–2166.

[26] Hopkins, E. and Posch, M. (2005). Attainability of boundary points under reinforcement
learning. Games Econom. Behav., 53 110–125.

[27] Kushner, H. J. and Yin, G. (2003). Stochastic Approximation and Recursive Algorithms
and Applications. Springer-Verlag, New York.

[28] Leslie, D. S. and Collins, E. J. (2005). Individual Q-learning in normal form games. SIAM
J. Control Optim., 44 495–514.

[29] Leslie, D. S. and Collins, E. J. (2006). Generalised weakened fictitious play. Games
Econom. Behav., 56 285–298.

[30] Miyasawa, K. (1961). On the convergence of the learning process in a 2 x 2 non-zero-sum
two-person game. Tech. rep., DTIC Document.

[31] Monderer, D. and Shapley, L. S. (1996). Fictitious play property for games with identical
interests. Journal of Economic Theory, 68 258–265.

[32] Posch, M. (1997). Cycling in a stochastic learning algorithm for normal form games. J. Evol.
Econ., 7 193–207.

[33] Robinson, J. (1951). An iterative method of solving a game. Ann. Math., 54 296–301.
[34] Saloff-Coste, L. (1997). Lectures on finite Markov chains. In Lectures Notes in Math.

Springer, Berlin, 301–413.

27


