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Abstract. We introduce a new method for estimating the parame-
ters of exponential random graph models. The method is based on a
large-deviations approximation to the normalizing constant shown to
be consistent using theory developed by Chatterjee and Varadhan [15].
The theory explains a host of difficulties encountered by applied work-
ers: many distinct models have essentially the same MLE, rendering
the problems “practically” ill-posed. We give the first rigorous proofs
of “degeneracy” observed in these models. Here, almost all graphs have
essentially no edges or are essentially complete. We supplement recent
work of Bhamidi, Bresler and Sly [6] showing that for many models,
the extra sufficient statistics are useless: most realizations look like the
results of a simple Erdős–Rényi model. We also find classes of models
where the limiting graphs differ from Erdős–Rényi graphs and begin to
make the link to models where the natural parameters alternate in sign.

1. Introduction

Graph and network data are increasingly common and a host of statistical
methods have emerged in recent years. Entry to this large literature may be
had from the research papers and surveys in Fienberg [21, 22]. One mainstay
of the emerging theory are the exponential families

(1.1) pβ(G) = exp

(
k∑
i=1

βiTi(G) + ψ(β)

)
where β = (β1, . . . , βk) is a vector of real parameters, T1, T2, . . . , Tk are
functions on the space of graphs (e.g., the number of edges, triangles, stars,
cycles, . . . ), and ψ is a normalizing constant. In this paper, T1 is usually
taken to be the number of edges (or a constant multiple of it).

We review the literature of these models in Section 2.1. Estimating the
parameters in these models has proved to be a challenging task. First, the
normalizing constant ψ(β) is unknown. Second, very different values of β
can give rise to essentially the same distribution on graphs.
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Figure 1. The plot of u∗ against (β1, β2). There is a dis-
continuity on the left where u∗ jumps from near 0 to near 1;
this corresponds to a phase transition. (Picture by Sukhada
Fadnavis.)

Here is an example: consider the model on simple graphs with n vertices,

(1.2) pβ1,β2(G) = exp
(

2β1E +
6β2

n
∆− n2ψn(β1, β2)

)
where E, ∆ denote the number of edges and triangles in the graph G. The
normalization of the model ensures non-trivial large n limits. Without scal-
ing, for large n, almost all graphs are empty or full. This model is studied
by Strauss [52], Park and Newman [45, 46], Häggstrom and Jonasson [29],
and many others.

Theorems 3.1 and 4.1 will show that for n large,

(1.3) ψn(β1, β2) ' sup
0≤u≤1

(
β1u+ β2u

3 − 1
2
u log u− 1

2
(1− u) log(1− u)

)
.

The maximizing value of the right-hand side is denoted u∗(β1, β2). A plot
of this function appears in Figure 1. Theorem 4.2 shows that for any β1

and β2 > 0, with high probability, a pick from pβ1,β2 is essentially the same
as an Erdős–Rényi graph generated by including edges independently with
probability u∗(β1, β2). This phenomenon has previously been identified by
Bhamidi et al. [6] and is discussed further in Section 2.1. Figure 2 shows
the contour lines for Figure 1. All the (β1, β2) values on the same contour
line lead to the same Erdős–Rényi model in the limit. Simulations show
that the asymptotic results are valid for n as small as 30. Other methods
for estimating normalizing constants are reviewed in Section 2.2.
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Figure 2. Contour lines for Figure 1. All pairs (β1, β2) on
the same contour line correspond to the same value of u∗ and
hence those models will correspond to the same Erdős–Rényi
model in the limit. The phase transition region is seen in
the upper left-hand corner where all contour lines converge.
(Picture by Sukhada Fadnavis.)

Our development uses the emerging tools of graph limits as developed by
Lovász and coworkers. We give an overview in Section 2.3. Briefly, a se-
quence of graphs Gn converges to a limit if the proportion of edges, triangles,
and other small subgraphs in Gn converges. There is a limiting object and
the space of all these limiting objects serves as a useful compactification of
the set of all graphs. Our theory works for functions Ti(G) which are contin-
uous in this topology. In their study of the large deviations of Erdős–Rényi
random graphs, Chatterjee and Varadhan [15] derived the associated rate
functions in the language of graph limit theory. Their work is crucial in the
present development and is reviewed in Section 2.4.

Our main results are in Section 3 through Section 6. Working with gen-
eral exponential models, Section 3 proves an extension of the approxima-
tion (1.3) for ψn (Theorem 3.1) and shows that, in the limit, almost all
graphs from the model (1.1) are close to graphs where a certain functional
is maximized. As will emerge, sometimes this maximum is taken on at a
unique Erdős–Rényi model. Section 4 studies the problem for the model
(1.1) when β2, . . . , βk are positive (β1 may have any sign). It is shown that
the large-deviations approximation for ψn can be easily calculated as a one-
dimensional maximization (Theorem 4.1). Further, amplifying the results of
Bhamidi et al. [6], it is shown that in these cases, almost all realizations of
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the model (1.1) are close to an Erdős–Rényi graph (or perhaps a finite mix-
ture of Erdős–Rényi graphs) (Theorem 4.2). These mixture cases actually
occur for natural parameter values. This explains a further difficulty found
by applied workers who attempt to estimate parameters by using Monte
Carlo to match observed counts of small subgraphs. Section 5 also gives a
careful account of the phase transitions and near-degeneracies observed in
the edge-triangle model (1.3).

Sections 6, 7 and 8 investigate cases where βi is allowed to be negative.
While the general case remains open (and appears complicated), in Sec-
tion 6 it is shown that Theorems 4.1 and 4.2 hold as stated if (βi)2≤i≤k are
sufficiently small in magnitude. This requires a careful study of associated
Euler–Lagrange equations. Section 7 shows how the results change for the
model containing edges and triangles when β2 is negative. For sufficiently
large negative β2, typical realizations look like a random bipartite graph.
This is very different from the Erdős–Rényi model. The result generalizes
to other models via an interesting analogy with the Erdős–Stone theorem
from extremal graph theory. Finally, in Section 8 we discuss a model that
exhibits transitivity, an important requirement for social networks.

2. Background

This section gives needed background and notation in three areas. Ex-
ponential graph models (Section 2.1), graph limits (Section 2.3), and large
deviations (Section 2.4). Some new material is presented as well, e.g., the
analysis of Monte Carlo maximum likelihood in Section 2.2.

2.1. Exponential random graphs. Let Gn be the space of all simple
graphs on n labled vertices (“simple” means undirected, with no loops or
multiple edges). Thus Gn contains 2(n2) elements. A variety of models in
active use can be presented in exponential form

(2.1) pβ(G) = exp

(
k∑
i=1

βiTi(G)− ψ(β)

)
where β = (β1, . . . , βk) is a vector of real parameters, T1, T2, . . . , Tk are
real-valued functions on Gn, and ψ(β) is a normalizing constant. Usually,
Ti are taken to be counts of various subgraphs, e.g., T1(G) = # edges in
G, T2(G) = # triangles in G, . . . . The main results of Section 3 work
for more general “continuous functions” on graph space, such as the degree
sequence or the eigenvalues of the adjacency matrix. This allows models
with sufficient statistics of the form

∑n
i=1 βidi(G) with di(G) the degree of

vertex i. See, e.g., [14].
These exponential models were used by Holland and Leinhardt [32] in

the directed case. Frank and Strauss [24] developed them, showing that if
Ti are chosen as edges, triangles, and stars of various sizes, the resulting
random graph edges form a Markov random field. A general development



EXPONENTIAL RANDOM GRAPH MODELS 5

is in Wasserman and Faust [54]. Newer developments are summarized in
Snijders et al. [51]. Finally, Rinaldo et al. [47] develop the geometric theory
for this class of models with extensive further references.

A major problem in this field is the evaluation of the constant ψ(β) which
is crucial for carrying out maximum likelihood and Bayesian inference. As
far as we know, there is no feasible analytic method for approximating ψ
when n is large. Physicists have tried the technique of mean-field approxi-
mations; see Park and Newman [45, 46] for the case where T1 is the number
of edges and T2 is the number of two-stars or the number of triangles. Mean-
field approximations have no rigorous foundation, however, and are known
to be unreliable in related models such as spin glasses [53]. For exponential
graph models, Chatterjee and Dey [13] prove that they work for some re-
stricted ranges of {βi}: values where the graphs are shown to be essentially
Erdős–Rényi graphs (see Theorem 4.2 below and [6]).

A host of techniques for approximating the normalizing constant using
various Monte Carlo schemes have been proposed. As explained in Sec-
tion 2.2, these include the MCMLE procedure of Geyer and Thompson [28]
(see example below). The bridge sampling approach of Gelman and Meng
[27] also builds on techniques suggested by physicists to estimate free energy
(ψ(β) in our context). The equi-energy sampler of Kou et al. [36] can also
be harnessed to estimate ψ.

Alas, at present writing these procedures do not seem very useful. Snijders
[50] and Handcock [31] demonstrate this empirically with further discussion
in [51]. One theoretical explanation for the poor performance of these tech-
niques comes from the work of Bhamidi et al. [6]. Most of the algorithms
above require a sample from the model (2.1). This is most often done by
using a local Markov chain based on adding or deleting edges (via Metrop-
olis or Glauber dynamics). These authors show that if the parameters are
non-negative, then for large n,

• either the pβ model is essentially the same as an Erdős–Rényi model
(in which case the Markov chain mixes in n2 log n steps);
• or the Markov chain takes exponential time to mix.

Thus, in cases where the model is not essentially trivial, the Markov chains
required to carry MCMLE procedures cannot be usefully run to stationarity.

Two other approaches to estimation are worth mentioning. The pseudo-
likelihood approach of Besag [5] is widely used because of its ease of im-
plementation. Its properties are at best poorly understood: it does not
directly maximize the likelihood and in empirical comparisions (see, e.g.,
[17]), has appreciably larger variability than the MLE. Comets and Janžura
[16] prove consistency and asymptotic normality of the maximum pseudo-
likelihood estimator in certain Markov random field models. Chatterjee [12]
shows that it is consistent for estimating the temperature parameter of the
Sherrington-Kirkpatrick model of spin glasses. The second approach is Sni-
jders’ [50] suggestion to use the Robbins–Monroe optimization procedure to
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compute solutions to the moment equations Eβ(T (G)) = T (G∗) where G∗

is the observed graph. While promising, the approach requires generating
points from pβ for arbitrary β. The only way to do this at present is by
MCMC and the results of [6] suggest this may be impractical.

Practical Remark. One use for the normalizing constant is to enable max-
imum likelihood estimates of the β parameter in the model (1.1). This
requires evaluating ψ(β) on a fine grid in β space and then carrying out
the maximization by classical methods (e.g., a grid search). Iterative refine-
ment may be used when honing in at the maximum. The theory developed
below allows for refining the estimate of ψ(β) along the following lines.
Consider the situation of Section 4 below where β2, . . . , βk are positive.
Theorem 4.2 shows that the exponential model is close to an Erdős–Rényi
graph with parameter u∗ determined by an equation similar to (1.3). Let
q(G|β) = exp(

∑k
i=1 βiTi(G)) be the unnormalized density. Generate inde-

pendent, identically distributed random graphs Gi from the Erdős–Rényi
model pu∗(G). The estimator

1
N

∑ qβ(Gi)
pu∗(Gi)

is unbiased for expψ(β). Many similar variations can be concocted by com-
bining present theory with the host of algorithms reviewed by Gelman and
Meng [27, Sect. 3.4].

2.2. A simple example. In this section we treat the simplest exponential
graph model, the Erdős–Rényi model. Here the relevant Markov chains for
carrying out the Monte Carlo estimates of normalizing constants described
at the end of Section 2.1 can be explicitly diagonalized and estimates for
the variance of various estimators are available in closed form. The main
findings are these: for graphs with n vertices,

• the Metropolis algorithm for sampling from pβ converges in order
n2 log n steps;
• the variance of MCMLE estimates of the normalizing constant is

exponential in n2, rendering them impractical.
The model to be studied is

(2.2) pβ(G) = z(β)−1eβE(G)

for −∞ < β < ∞ a fixed parameter, z(β) the normalizing constant, and
E(G) the number of edges in G. This is just the Erdős–Rényi model with
edges included independently with parameter p = eβ/(1 + eβ). Here, the
normalizing constant is

z(β)−1 = (1 + eβ)(
n
2)

and β ≥ 0 corresponds to p ≥ 1/2. We suppose throughout this section that
β ≥ 0.



EXPONENTIAL RANDOM GRAPH MODELS 7

A natural Markov chain for generating from pβ is the Metropolis algo-
rithm:

(2.3)

• From G pick (i, j), 1 ≤ i < j ≤ n, uniformly.

• If (i, j) is not in G, add this edge.

• If (i, j) is in G, delete it with probability e−β

and leave it with probability 1− e−β.

Call the transition matrix of this Markov chain K(G,G′). The following
theorem gives an explicit spectral decomposition of K. It is useful to identify
a graph G with the binary indicator of its edges, a vector xG ∈ Cm2 with
m =

(
n
2

)
.

Theorem 2.1. For the Metropolis Markov chain K of (2.3), with m =
(
n
2

)
,

(1) K is reversible with stationary distribution pβ(G) of (2.2).
(2) For each ξ ∈ Cm2 there is an eigenvalue βξ with eigenfunction ψξ(x)

given by

ψξ(x) = (−1)ξ·xe
β
2

(|ξ|−2ξ·x), βξ = 1− |ξ|(1 + e−β)
m

.

Here |ξ| is the number of ones in ξ and ξ·x is the usual inner product.
The eigenfunctions are orthornormal in L2(pβ).

(3) The L2(pβ) or chi-square distance from stationarity, starting at G↔
xG is

χ2
G(`) =

∑
G′

(K`(G,G′)− pβ(G′))2

pβ(G′)
=
∑
ξ 6=0

ψ2
ξ (xG)β2`

ξ .

(4) For 0 ≤ β ≤ 1, as n tends to infinity, `∗ = m(logm+c)
2(1+e−β)

steps are
necessary and sufficient to drive x2

G(`) to zero:

lim
n→∞

χ2
∅(`
∗) = ee

β−c − 1, lim
n→∞

χ2
Kn(`∗) = ee

−β−c − 1;

χ2
∅(`
∗) ≥ eβm

(
1− (1 + e−β)

m

)2`∗

,

χ2
Kn(`∗) ≥ e−βm

(
1− (1 + e−β)

m

)2`∗

.

Proof. For (1), the Metropolis algorithm is reversible by construction [30].
For (2), the Metropolis chain is a product chain on the product space Cm2
with component chain (

0 1
e−β 1− e−β

)
with stationary distribution

π(0) =
1

1 + eβ
, π(1) =

eβ

1 + eβ
.
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This two-state chain has (right) eigenfunctions/eigenvalues (orthonormal in
L2(π))

ψ0(0) = ψ0(1) = 1, ψ1(0) = eβ/2, ψ1(1) = −e−β/2,

β0 = 1, β1 = −e−β.

By elementary computations [19, Sect. 6], the product chain has eigenfunc-
tions the product of these component eigenfunctions/values yielding (2).
Formula (3) follows from elementary spectral theory (see, e.g., [48]). For
(4), starting from the empty graph G = ∅ corresponds to x∅ = 0 and then

x2
∅(`) =

m∑
j=1

eβj
(
m

j

)(
1− j(1 + e−β)

m

)2`

.

Similarly, starting at the complete graph Kn ↔ xKn = (1, . . . , 1) and

x2
Kn(`) =

m∑
j=1

e−βj
(
m

j

)(
1− j(1 + e−β)

m

)2`

.

Now the stated results follow from elementary calculus (for upper bounds)
and just using the first term in the sums above (for the lower bound). �

Note that the right-hand sides of the limits in (4) tend to zero as c tends
to ∞. Thus there is a cutoff in convergence at `∗. More crudely, for the
simple model (2.2), order m logm steps are necessary and sufficient for con-
vergence for all values of β and all starting states. This remains true for
total variation. More complicated models can have more complicated mixing
behavior [6]. The calculations for the Metropolis algorithm can be simply
adapted for Glauber dynamics with very similar conclusions.

In applications, Markov chains such as the Metropolis algorithm are used
to estimate normalizing constants or their ratios. Consider an exponential
graph model pβ (as in (2.1)) on Gn with normalizing constant z(β). Several
estimates of z(β) are discussed in Section 2.1. These include:

Importance sampling. Generate G1, G2, . . . , GN from a Markov chain with
known stationary distribution Q(G) and use

(2.4) ẑI =
1
N

N∑
j=1

exp
{∑k

i=1 βiTi(Gj)
}

Q(G)
.

This is an unbiased estimate of z(β). This requires knowing Q. (For ex-
ample, an Erdős–Rényi model may be used.) If Q is only known up to a
normalizing constant, say Q = zQ̄, then∑N

j=1 exp{
∑k

i=1 βiTi(Gj)}/Q̄(Gj)∑N
j=1 1/Q̄(Gj)

may be used.
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MCMLE. Generate G1, G2, . . . , GN with stationary distribution pβ0 and use

(2.5) ẑM =
1
N

N∑
j=1

exp
{

(βi − β0
i )Ti(Gj)

}
.

This is an unbiased estimate of z(β)/z(β0).

Acceptance ratio. Generate G1, . . . , GN1 with stationary distribution pβ0

and G′1, . . . , G
′
N2

with stationary distribution pβ and use

(2.6) ẑA =
1
N1

∑N1
j=1 exp

{∑
j βiTi(Gj)

}
α(Gj)

1
N2

∑N2
j=1 exp

{∑
j β

0
i T (G′j)

}
α(Gj)

.

Here α can be any function on graph space. The numerator is an unbiased
estimator of c/z(β0). The denominator is an unbiased estimator of c/z(β)
with c =

∑
G∈Gn exp{

∑k
i=1(βi + β0

i )Ti(G)}α(G). Thus the ratio estimates
z(β)/z(β0). Common choices of α(G) are the constant function, or α(G) =
exp{1

2

∑
(βi − β0

i )Ti(G)}. See [27] for history and efforts to optimize α.
All of these estimators involve things like Eβ(f(G)) with f(G) an ex-

ponentially large function. In the remainder of this section we investigate
the variance of these estimates in the Erdős–Rényi case. To ease notation,
suppose that all Markov chains start in stationarity. Let K(G,G′) be a
reversible Markov chain on Gn with stationary distribution P (G). Suppose
that K has eigenvalues βξ and eigenfunctions ψξ for ξ ∈ Cm2 . Let f be a
function on Gn. Expand f(G) =

∑
ξ f̂(ξ)ψξ(xG), with

f̂(ξ) =
∑
G

f(G)ψξ(xG)pβ(G).

Let G1, G2, . . . , GN be a stationary realization from K. Proposition 2.1 in
[4] shows that the estimator µ̂ = 1

N

∑N
i=1 f(Gi) is unbiased with variance

(2.7) var(µ̂) =
1
N2

∑
ξ 6=0

∣∣∣f̂(ξ)
∣∣∣2WN (ξ)

where

WN (ξ) =
N + 2βξ −Nβ2

ξ + 2βN+1
ξ

(1− βξ)2
.

For large N , the asymptotic variance is

σ2
∞(µ̂) := lim

N→∞
N var(µ̂) =

∑
ξ 6=0

∣∣∣f̂(ξ)
∣∣∣2 1 + βξ

1− βξ

≤ 2
1− β1

‖f‖22,0 := σ̄2
∞.(2.8)
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Here β1 is the second eigenvalue and

‖f‖22,0 =
∑
ξ 6=0

|f̂(ξ)|2 =
∑
G∈Gn

f2(G)pβ(G)−
( ∑
G∈Gn

f(G)pβ(G)
)2
.

For the Erdős–Rényi model (2.2) with the Markov chain (2.3), all the quan-
tities needed above are available in closed form:

Lemma 2.2. With notation as in Theorem 2.1, let f(G) = eaE(G). Then

f̂(ξ) = (1− ea)|ξ|(1 + ea+β)m−|ξ|.

As an example, we compute the usual bound for the asymptotic variance
of the MCMLE estimate (2.5). More precise calculations based on (2.7) do
not change the basic message; the standard deviation is exponentially larger
than the mean.

Proposition 2.3. For β ≥ 0 and β0 ≥ 0 in the Erdős–Rényi model (2.2),
the MCMLE estimate for the ratio of normalizing constants (2.5) is unbiased
with mean

µ =
(

1 + eβ0

1 + eβ

)m
.

The second eigenvalue is β1 = 1− (1 + e−β)/m. The variance bound is

σ̄2
∞ =

2
1− β1

‖f‖22,0 with ‖f‖22,0 = µ2

[(
1 +

(
1− eβ−β0

1 + eβ

)2
)m
− 1

]
.

It follows that, if β0 6= β, σ̄2
∞/µ

2 tends to ∞ exponentially fast as n tends
to infinity.

For example if β0 = 2 and β = 1 then µ
.= (2.2562)m and σ̄2

∞/µ
2 .=

m
2.7358 [(1.042)m − 1]. If n = 30, σ̄∞/µ

.= 95, 431. If n = 100, the ratio is
huge.

2.3. Graph limits. In a sequence of papers [9, 10, 11, 25, 37, 38, 39, 40,
41, 42, 43], Laszlo Lovász and coauthors V.T. Sós, B. Szegedy, C. Borgs,
J. Chayes, K. Vesztergombi, A. Schrijver, and M. Freedman have developed
a beautiful, unifying theory of graph limits. (See also the related work of
Austin [2] and Diaconis and Janson [18] which traces this back to work
of Aldous [1], Hoover [33] and Kallenberg [35].) This sheds light on topics
such as graph homomorphisms, Szemerédi’s regularity lemma, quasi-random
graphs, graph testing and extremal graph theory, and has even found appli-
cations in statistics and related areas (see e.g., [14]). Their theory has been
developed for dense graphs (number of edges comparable to the square of
number of vertices) but parallel theories for sparse graphs are beginning to
emerge [7].

Lovász and coauthors define the limit of a sequence of dense graphs as
follows. We quote the definition verbatim from [40] (see also [10, 11, 18]).
Let Gn be a sequence of simple graphs whose number of nodes tends to
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infinity. For every fixed simple graph H, let | hom(H,G)| denote the number
of homomorphisms of H into G (i.e., edge-preserving maps V (H)→ V (G),
where V (H) and V (G) are the vertex sets). This number is normalized to
get the homomorphism density

(2.9) t(H,G) :=
|hom(H,G)|
|V (G)||V (H)| .

This gives the probability that a random mapping V (H) → V (G) is a ho-
momorphism.

Note that |hom(H,G)| is not the count of the number of copies of H in
G, but is a constant multiple of that if H is a complete graph. For example,
if H is a triangle, |hom(H,G)| is the number of triangles in G multiplied by
six. On the other hand if H is, say, a 2-star (i.e. a triangle with one edge
missing) and G is a triangle, then the number of copies of H in G is zero,
while | hom(H,G)| = 33 = 27.

Suppose that the graphs Gn become more and more similar in the sense
that t(H,Gn) tends to a limit t(H) for every H. One way to define a limit
of the sequence {Gn} is to define an appropriate limit object from which the
values t(H) can be read off.

The main result of [40] (following the earlier equivalent work of Aldous
[1] and Hoover [33]) is that indeed there is a natural “limit object” in the
form of a function h ∈ W, where W is the space of all measurable functions
from [0, 1]2 into [0, 1] that satisfy h(x, y) = h(y, x) for all x, y.

Conversely, every such function arises as the limit of an appropriate graph
sequence. This limit object determines all the limits of subgraph densities:
if H is a simple graph with V (H) = [k] = {1, . . . , k}, let

(2.10) t(H,h) =
∫

[0,1]k

∏
(i,j)∈E(H)

h(xi, xj) dx1 . . . dxk.

Here E(H) denotes the edge set of H. A sequence of graphs {Gn}n≥1 is said
to converge to h if for every finite simple graph H,

(2.11) lim
n→∞

t(H,Gn) = t(H,h).

Intuitively, the interval [0, 1] represents a ‘continuum’ of vertices, and h(x, y)
denotes the probability of putting an edge between x and y. For example,
for the Erdős–Rényi graph G(n, p), if p is fixed and n → ∞, then the limit
graph is represented by the function that is identically equal to p on [0, 1]2.

These limit objects, i.e., elements of W, are called “graph limits” or
“graphons” in [10, 11, 40]. A finite simple graph G on {1, . . . , n} can also
be represented as a graph limit fG is a natural way, by defining

(2.12) fG(x, y) =

{
1 if (dnxe, dnye) is an edge in G

0 otherwise.

The definition makes sense because t(H, fG) = t(H,G) for every simple
graph H and therefore the constant sequence {G,G, . . .} converges to the
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graph limit fG. Note that this allows all simple graphs, irrespective of the
number of vertices, to be represented as elements of a single abstract space,
namely W.

With the above representation, it turns out that the notion of convergence
in terms of subgraph densities outlined above can be captured by an explicit
metric on W, the so-called cut distance (originally defined for finite graphs
by Frieze and Kannan [26]). Start with the spaceW of measurable functions
f(x, y) on [0, 1]2 that satisfy 0 ≤ f(x, y) ≤ 1 and f(x, y) = f(y, x). Define
the cut distance

(2.13) d�(f, g) := sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

[f(x, y)− g(x, y)] dxdy
∣∣∣∣.

Introduce in W an equivalence relation: Let Σ be the space of measure
preserving bijections σ : [0, 1]→ [0, 1]. Say that f(x, y) ∼ g(x, y) if f(x, y) =
gσ(x, y) := g(σx, σy) for some σ ∈ Σ. Denote by g̃ the closure in (W, d�)
of the orbit {gσ}. The quotient space is denoted by W̃ and τ denotes the
natural map g → g̃. Since d� is invariant under σ one can define on W̃, the
natural distance δ� by

δ�(f̃ , g̃) := inf
σ
d�(f, gσ) = inf

σ
d�(fσ, g) = inf

σ1,σ2

d�(fσ1 , gσ2)

making (W̃, δ�) into a metric space. To any finite graph G, we associate fG

as in (2.12) and its orbit G̃ = τfG = f̃G ∈ W̃.
The papers by Lovász and coauthors establish many important proper-

ties of the metric space W̃ and the associated notion of graph limits. For
example, W̃ is compact. A pressing objective is to understand what func-
tions from W̃ into R are continuous. Fortunately, it is an easy fact that the
homomorphism density t(H, ·) is continuous for any finite simple graph H
[10, 11]. There are other, more complicated functions that are continuous
(see, e.g., [3]).

2.4. Large deviations for random graphs. Let G(n, p) be the random
graph on n vertices where each edge is added independently with probability
p. This model has been the subject of extensive investigations since the
pioneering work of Erdős and Rényi [20], yielding a large body of literature
(see [8, 34] for partial surveys).

Recently, Chatterjee and Varadhan [15] formulated a large deviation prin-
ciple for the Erdős–Rényi graph, in the same way as Sanov’s theorem [49]
gives a large deviation principle for an i.i.d. sample. The formulation and
proof of this result makes extensive use of the properties of the topology
described in Section 2.3.

Let Ip : [0, 1]→ R be the function

Ip(u) : =
1
2
u log

u

p
+

1
2

(1− u) log
1− u
1− p

.(2.14)
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The domain of the function Ip can be extended to W as

Ip(h) :=
∫ 1

0

∫ 1

0
Ip(h(x, y))dxdy.(2.15)

The function Ip can be defined on W̃ by declaring Ip(h̃) := Ip(h) where h is
any representative element of the equivalence class h̃. Of course, this raises
the question whether Ip is well defined on W̃. It was proved in [15] that the
function Ip is indeed well defined on W̃ and is lower semicontinuous under
the cut metric δ�.

The random graph G(n, p) induces probability distributions Pn,p on the
space W through the map G → fG and P̃n,p on W̃ through the map G →
fG → f̃G = G̃. The large deviation principle for P̃n,p on (W̃, δ�) is the main
result of [15].

Theorem 2.4 (Chatterjee and Varadhan [15]). For each fixed p ∈ (0, 1),
the sequence P̃n,p obeys a large deviation principle in the space W̃ (equipped
with the cut metric) with rate function Ip defined by (2.15). Explicitly, this
means that for any closed set F̃ ⊆ W̃,

lim sup
n→∞

1
n2

log P̃n,p(F̃ ) ≤ − infeh∈ eF Ip(h̃).(2.16)

and for any open set Ũ ⊆ W̃,

lim inf
n→∞

1
n2

log P̃n,p(Ũ) ≥ − infeh∈eU Ip(h̃).(2.17)

3. Exponential random graphs

Let T : W̃ → R be a bounded continuous function on the metric space
(W̃, δ�). Fix n and let Gn denote the set of simple graphs on n vertices.
Then T induces a probability mass function pn on Gn defined as:

pn(G) := en
2(T ( eG)−ψn).

Here G̃ is the image of G in the quotient space W̃ as defined in Section 2.2
and ψn is a constant such that the total mass of pn is 1. Explicitly,

(3.1) ψn =
1
n2

log
∑
G∈Gn

en
2T ( eG)

The coefficient n2 is meant to ensure that ψn tends to a non-trivial limit as
n→∞. To describe this limit, define a function I : [0, 1]→ R as

I(u) :=
1
2
u log u+

1
2

(1− u) log(1− u)

and extend I to W̃ in the usual manner:

(3.2) I(h̃) =
1
2

∫∫
[0,1]2

I(h(x, y)) dxdy
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where h is a representative element of the equivalence class h̃. As mentioned
before, it follows from a result of [15] that I is well defined and lower semi-
continuous on W̃. The following theorem is the first main result of this
paper.

Theorem 3.1. If T : W̃ → R is a bounded continuous function and ψn and
I are defined as above, then

ψ := lim
n→∞

ψn = supeh∈fW(T (h̃)− I(h̃)).

Proof. For each Borel set Ã ⊆ W̃ and each n, define

Ãn := {h̃ ∈ Ã : h̃ = G̃ for some G ∈ Gn}.

Let Pn,p be the Erdős–Rényi measure defined in Section 3. Note that Ãn is
a finite set and

|Ãn| = 2n(n−1)/2Pn,1/2(Ãn) = 2n(n−1)/2Pn,1/2(Ã).

Thus, if F̃ is a closed subset of W̃ then by Theorem 2.4

lim sup
n→∞

log |F̃n|
n2

≤ log 2
2
− infeh∈ eF I1/2(h̃)

= − infeh∈ eF I(h̃).(3.3)

Similarly if Ũ is an open subset of W̃,

lim inf
n→∞

log |Ũn|
n2

≥ − infeh∈eU I(h̃).(3.4)

Fix ε > 0. Since T is a bounded function, there is a finite set R such that
the intervals {(a, a + ε) : a ∈ R} cover the range of T . For each a ∈ R, let
F̃ a := T−1([a, a+ ε]). By the continuity of T , each F̃ a is closed. Now,

en
2ψn ≤

∑
a∈R

en
2(a+ε)|F̃ an | ≤ |R| sup

a∈R
en

2(a+ε)|F̃ an |.

By (3.3), this shows that

lim sup
n→∞

ψn ≤ sup
a∈R

(
a+ ε− infeh∈ eFa I(h̃)

)
.

Each h̃ ∈ F̃ a satisfies T (h̃) ≥ a. Consequently,

supeh∈ eFa(T (h̃)− I(h̃)) ≥ supeh∈ eFa(a− I(h̃)) = a− infeh∈ eFa I(h̃).

Substituting this in the earlier display gives

lim sup
n→∞

ψn ≤ ε+ sup
a∈R

supeh∈ eFa(T (h̃)− I(h̃))

= ε+ supeh∈fW(T (h̃)− I(h̃)).(3.5)
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For each a ∈ R, let Ũa := T−1((a, a+ ε)). By the continuity of T , Ũa is an
open set. Note that

en
2ψn ≥ sup

a∈R
en

2a|Ũan |.

Therefore by (3.4), for each a ∈ R

lim inf
n→∞

ψn ≥ a− infeh∈eUa I(h̃).

Each h̃ ∈ Ũa satisfies T (h̃) < a+ ε. Therefore,

supeh∈eUa(T (h̃)− I(h̃)) ≤ supeh∈eUa(a+ ε− I(h̃)) = a+ ε− infeh∈eUa I(h̃).

Together with the previous display, this shows that

lim inf
n→∞

ψn ≥ −ε+ sup
a∈R

supeh∈eUa(T (h̃)− I(h̃))

= −ε+ supeh∈fW(T (h̃)− I(h̃)).(3.6)

Since ε is arbitrary in (3.5) and (3.6), this completes the proof. �

Theorem 3.1 gives an asymptotic formula for ψn. However, it says nothing
about the behavior of a random graph drawn from the exponential random
graph model. Some aspects of this behavior can be described as follows. Let
F̃ ∗ be the subset of W̃ where T (h̃)−I(h̃) is maximized. By the compactness
of W̃, the continuity of T and the lower semi-continuity of I, F̃ ∗ is a non-
empty compact set. Let Gn be a random graph on n vertices drawn from
the exponential random graph model defined by T . The following theorem
shows that for n large, G̃n must lie close to F̃ ∗ with high probability. In
particular, if F̃ ∗ is a singleton set, then the theorem gives a weak law of
large numbers for Gn.

Theorem 3.2. Let F̃ ∗ and Gn be defined as the above paragraph. Then for
any η > 0 there exist C, δ > 0 such that for all n,

P(δ�(G̃n, F̃ ∗) > η) ≤ Ce−n2δ.

Proof. Take any η > 0. Let

Ã := {h̃ : δ�(h̃, F̃ ∗) ≥ η}.

It is easy to see that Ã is a closed set. By compactness of W̃ and F̃ ∗, and
upper semi-continuity of T − I, it follows that

2δ := supeh∈fW(T (h̃)− I(h̃))− supeh∈ eA(T (h̃)− I(h̃)) > 0.

Choose ε = δ and define F̃ a and R as in the proof of Theorem 3.1. Let
Ãa := Ã ∩ F̃ a. Then

P(Gn ∈ Ã) ≤ e−n2ψn
∑
a∈R

en
2(a+ε)|Ãan| ≤ e−n

2ψn |R| sup
a∈R

en
2(a+ε)|Ãan|.
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While bounding the last term above, it can be assumed without loss of
generality that Ãa is non-empty for each a ∈ R, for the other a’s can be
dropped without upsetting the bound. By (3.3) and Theorem 3.1 (noting
that Ãa is compact), the above display gives

lim sup
n→∞

log P(Gn ∈ Ã)
n2

≤ sup
a∈R

(
a+ ε− infeh∈ eAa I(h̃)

)
− supeh∈fW(T (h̃)− I(h̃)).

Each h̃ ∈ Ãa satisfies T (h̃) ≥ a. Consequently,

supeh∈ eAa(T (h̃)− I(h̃)) ≥ supeh∈ eAa(a− I(h̃)) = a− infeh∈ eAa I(h̃).

Substituting this in the earlier display gives

lim sup
n→∞

log P(Gn ∈ Ã)
n2

≤ ε+ sup
a∈R

supeh∈ eAa(T (h̃)− I(h̃))− supeh∈fW(T (h̃)− I(h̃))

= ε+ supeh∈ eA(T (h̃)− I(h̃))− supeh∈fW(T (h̃)− I(h̃)).

= ε− 2δ = −δ.
This completes the proof. �

4. An Application

Let H1, . . . ,Hk be finite simple graphs, where H1 is the complete graph
on two vertices (i.e. just a single edge), and each Hi contains at least one
edge. Let β1, . . . , βk be k real numbers. For any h ∈ W, let

(4.1) T (h) :=
k∑
i=1

βit(Hi, h)

where t(Hi, h) is the homomorphism density of Hi in h, defined in (2.10).
Note that there is nothing special about taking H1 to be a single edge; if we
do not want H1 in our sufficient statistic, we just take β1 = 0; all theorems
would remain valid.

As remarked in Section 2.3, T is continuous with respect to the cut dis-
tance onW, and hence admits a natural definition on W̃. Note that for any
finite simple graph G that has at least as many nodes as the largest of the
Hi’s,

T (G̃) =
k∑
i=1

βit(Hi, G).

For example, if k = 2, and H2 is a triangle, and G has at least 3 nodes, then

T (G̃) =
2β1(#edges in G)

n2
+

6β2(#triangles in G)
n3

.

Let ψn be as in (3.1), and let Gn be the n-vertex exponential random graph
with sufficient statistic T . Theorem 3.1 gives a formula for limn→∞ ψn as
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the solution of a variational problem. Surprisingly the variational problem
is explicitly solvable if β2, . . . , βk are non-negative.

Theorem 4.1. Let T , ψn and H1, . . . ,Hk be as above. Suppose β2, . . . , βk
are non-negative. Then

(4.2) lim
n→∞

ψn = sup
0≤u≤1

(
k∑
i=1

βiu
e(Hi) − I(u)

)
where I(u) = 1

2u log u + 1
2(1 − u) log(1 − u) and e(Hi) is the number of

edges in Hi. Moreover, each solution of the variational problem of Theorem
3.1 for this T is a constant function, where the constant solves the scalar
maximization problem (4.2).

Proof. By Theorem 3.1,

(4.3) lim
n→∞

ψn = sup
h∈W

(T (h)− I(h)).

By Hölder’s inequality,

t(Hi, h) ≤
∫∫

[0,1]2
h(x, y)e(Hi) dxdy.

Thus, by the non-negativity of β2, . . . , βk,

T (h) ≤ β1t(H1, h) +
k∑
i=2

βi

∫∫
[0,1]2

h(x, y)e(Hi) dxdy

=
∫∫

[0,1]2

k∑
i=1

βih(x, y)e(Hi) dxdy.

On the other hand, the inequality in the above display becomes an equality
if h is a constant function. Therefore, if u is a point in [0, 1] that maximizes

k∑
i=1

βiu
e(Hi) − I(u),

then the constant function h(x, y) ≡ u solves the variational problem (4.3).
To see that constant functions are the only solutions, assume that there is
at least one i such that the graph Hi has at least one vertex with two or
more neighbors. The above steps show that if h is a maximizer, then for
each i,

(4.4) t(Hi, h) =
∫∫

[0,1]2
h(x, y)e(Hi) dxdy.

In other words, equality holds in Hölder’s inequality. By the assumed con-
dition and the criterion for equality in Hölder’s inequality, it follows that
h(x, y) = h(y, z) for almost every (x, y, z). From this one can easily conclude
that h is almost everywhere a constant function.
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If the condition does not hold, then each Hi is a union of vertex-disjoint
edges. Assume that some Hi has more than one edge. Then again by (4.4)
it follows that h must be a constant function.

Finally, if each Hi is just a single edge, then the maximization problem
(4.3) can be explicitly solved and the solutions are all constant functions. �

Theorem 4.1 gives the limiting value of ψn if β2, . . . , βk are non-negative.
The next theorem describes the behavior of the exponential random graph
Gn under this condition if n is large.

Theorem 4.2. For each n, let Gn be an n-vertex exponential random graph
with sufficient statistic T defined in (4.1). Assume that β2, . . . , βk are non-
negative. Then:
(a) If the maximization problem in (4.2) is solved at a unique value u∗, then

Gn is indistinguishable from the Erdős–Rényi graph G(n, u∗) in the large
n limit, in the sense that G̃n converges to the constant function u∗ in
probability as n→∞.

(b) Even if the maximizer is not unique, the set U of maximizers is a finite
subset of [0, 1] and

min
u∈U

δ�(G̃n, ũ)→ 0 in probability as n→∞

where ũ denotes the image of the constant function u in W̃. In other
words, Gn behaves like an Erdős–Rényi graph G(n, u) where u is picked
randomly from some probability distribution on U .

Proof. The assertions about graph limits in this theorem are direct con-
sequences of Theorems 3.2 and 4.1. Since

∑k
i=1 βiu

e(Hi) is a polynomial
function of u and I(u) is sufficiently well-behaved, showing that U is a finite
set is a simple analytical exercise. �

It may be noted here that the conclusion of Theorem 4.2 was proved
earlier by Bhamidi et al. [6] under certain restrictions on the parameters
that they called a ‘high temperature condition’. An important observation
from [6] is that when β2, . . . , βk are non-negative, the model satisfies the so-
called FKG property [23]. The FKG property has important consequences;
for instance, it implies that the expected value of t(Hi, G) is an increasing
function of βj for any i and j. We will see some further consequences of the
FKG property in our proof of Theorem 5.1 in the next section.

5. Phase Transitions and Near-Degeneracy

To illustrate the results of the previous section, recall the exponential
random graph model (1.2) with edges and triangles as sufficient statistics:

(5.1) T (G̃) = 2β1
#edges in G

n2
+ 6β2

#triangles in G

n3
.
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Figure 3. The contour plot of >β1,β2(G). Here G is chosen
from the distribution given by β1 = −0.45, β2 = 0.2. Given
sample G it is most likely to be chosen from distributions
given by parameters not too far from the original parameters
β1, β2; this indicates that our approximation for pβ1,β2 is good
even when n = 30. (Picture by Sukhada Fadnavis.)

Let Gn be an n-vertex exponential random graph with sufficient statistic
T . By Theorem 3.1, the probability mass function for this model can be
approximated by p̂β1,β2(G) = exp(n2>β1,β2(G)) with

>β1,β2(G) := inf
0≤u≤1

>β1,β2,G(u),

where

>β1,β2,G(u) := 2β1
#edges in G

n2
+ 6β2

#triangles in G

n3

− β1u− β2u
3 +

1
2
u log u+

1
2

(1− u) log(1− u).

The figures below have n = 30 and graphs are sampled from pβ1,β2 using
Glauber dynamics run for 10,000 steps. Figure 3 and Figure 4 show contour
plots of >β1,β2(G) as β1 and β2 vary, fixing a realization of G. Figure 5
and Figure 6 illustrate the behavior of >β1,β2,G(u) as u varies. The captions
explain the details.

Now fix β1 and β2 and let

(5.2) `(u) := β1u+ β2u
3 − I(u)

where I(u) = 1
2u log u + 1

2(1 − u) log(1 − u), as usual. Let U be the set of
maximizers of `(u) in [0, 1]. Theorem 4.2 describes the limiting behavior
of Gn in terms of the set U . In particular, if U consists of a single point
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Figure 4. The contour plot of >β1,β2(G). Here G is chosen
from the distribution given by β1 = 0.4, β2 = 0.2. Again,
given sample G it is most likely to be chosen from distri-
butions given by parameters not too far from the original
parameters β1, β2. (Picture by Sukhada Fadnavis.)

u∗ = u∗(β1, β2), then Gn behaves like the Erdős–Rényi graph G(n, u∗) when
n is large.

It is likely that u∗(β1, β2) does not have a closed form expression, other
than when β2 = 0, in which case

u∗(β1, 0) =
eβ1

1 + eβ1
.

It is, however, quite easy to numerically approximate u∗(β1, β2). Figure 7
plots u∗(β1, β2) versus β2 for four different fixed values of β1, namely, β1 =
0.2,−0.35,−0.45, and −0.8. The figures show that u∗ is a continuous func-
tion of β2 as long as β1 is not too far down the negative axis.

But for β1 below a threshold (e.g., when β1 = −0.45), u∗ shows a single
jump discontinuity in β2, signifying a phase transition. In physical terms,
this is a first order phase transition, by the following logic. By Theorem 4.2,
our random graph behaves like G(n, u∗) when n is large. On the other
hand, by a standard computation the expect number of triangles is the first
derivative of the free energy ψn with respect to β2. Therefore in the large
n limit, a discontinuity in u∗ as a function of β2 signifies a discontinuity in
the derivative of the limiting free energy, which is the physical definition of
a first order phase transition.

At the point of discontinuity, `(u) is maximized at two values of u, i.e.,
the set U consists of two points. Lastly, as β1 goes down the negative axis,
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the model starts to exhibit “near-degeneracy” in the sense of Handcock [31]
(see also [45]) as seen in the last frame of Figure 7. This means that as β2

varies, the model transitions from being a very sparse graph for low values of
β2, to a very dense (nearly complete) graph for large values of β2, completely
skipping all intermediate structures.

The following theorem gives a simple mathematical description of this
phenomenon and hence the first rigorous proof of the degeneracy observed
in exponential graph models. Related results are in Häggstrom and Jonas-
son [29].

Theorem 5.1. Let Gn be an exponential random graph with sufficient statis-
tic T defined in (5.1). Fix any β1 < 0. Let

c1 :=
eβ1

1 + eβ1
, c2 := 1 +

1
2β1

.

Suppose |β1| is so large that c1 < c2. Let e(Gn) be the number of edges
in Gn and let f(Gn) := e(Gn)/

(
n
2

)
be the edge density. Then there exists

q = q(β1) ∈ [0,∞) such that if −∞ < β2 < q, then

lim
n→∞

P(f(Gn) > c1) = 0,

and if β2 > q, then
lim
n→∞

P(f(Gn) < c2) = 0.

In other words, if β1 is a large negative number, then Gn is either sparse (if
β2 < q) or nearly complete (if β2 > q).

Remark. The difference in the values of c1 and c2 can be quite striking even
for relatively small values of β1. For example, β1 = −5 gives c1 ' 0.007 and
c2 = 0.9.

Proof. Fix β1 < 0 such that c1 < c2. As a preliminary step, let us prove
that for any β2 > 0,

(5.3) lim
n→∞

P(f(Gn) ∈ (c1, c2)) = 0.

Fix β2 > 0. Let u be any maximizer of `. Then by Theorem 4.2, it suffices
to prove that either u ≤ eβ1/(1 + eβ1) or u ≥ 1 + 1/2β1. This is proved as
follows. Define a function g : [0, 1]→ R as

g(v) := `(v1/3).

Then ` is maximized at u if and only if g is maximized at u3. Since ` is
a bounded continuous function and `′(0) = ∞, `′(1) = −∞, ` cannot be
maximized at 0 or 1. Therefore the same is true for g. Let v be a point
in (0, 1) at which g is maximized. Then g′′(v) ≤ 0. A simple computation
shows that

g′′(v) =
1

9v5/3

(
−2β1 + log

v1/3

1− v1/3
− 1

2(1− v1/3)

)
.
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Figure 5. The plot of−>β1,β2,G(u) versus u when β1 is fixed
at −0.1. For this choice of β1 there is no phase transition and
> has a unique maximum always. (Picture by Sukhada Fad-
navis.)

Thus, g′′(v) ≤ 0 only if

log
v1/3

1− v1/3
≤ β1 or − 1

2(1− v1/3)
≤ β1.

This shows that u ∈ (0, 1) can be a maximizer of ` only if

u ≤ eβ1

1 + eβ1
or u ≥ 1 +

1
2β1

.

By Theorem 3.2, this completes the proof of (5.3) when β2 > 0.
Now notice that as β2 →∞, supu≤a `(u) ∼ β2a

3 for any fixed a ≤ 1. This
shows that as β2 → ∞, any maximizer of ` must eventually be larger than
1 + 1/2β1. Therefore, for sufficiently large β2,

(5.4) lim
n→∞

P(f(Gn) < c2) = 0.

Next consider the case β2 ≤ 0. Let F̃ ∗ be the set of maximizers of T (h̃) −
I(h̃). Take any h̃ ∈ F̃ ∗ and let h be a representative element of h̃. Let
p = c1. An easy verification shows that

T (h)− I(h) = β2t(H2, h)− Ip(h),

where Ip(h) is defined as in (2.15). Define a new function

h1(x, y) := min{h(x, y), p}.
Since the function Ip defined in (2.14) is minimized at p, it follows that for
all x, y ∈ [0, 1], Ip(h1(x, y)) ≤ Ip(h(x, y)). Consequently, Ip(h1) ≤ Ip(h).
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Figure 6. The plot of−>β1,β2,G(u) versus u when β1 is fixed
at −0.8. For this choice of β1 there is a phase transition and
−> has two local maxima always. The left one starts as the
global maxima; they become equal at phase transition, then
the right maxima becomes the global maximum. This is the
jump in the value of u∗ observed in Figure 1. (Picture by
Sukhada Fadnavis.)

Again, since β2 ≤ 0 and h1 ≤ h everywhere, β2t(H2, h1) ≥ β2t(H2, h).
Combining these observations, we see that T (h1) − I(h1) ≥ T (h) − I(h).
Since h maximizes T − I it follows that equality must hold at every step
in the above deductions, from which it is easy to conclude that h = h1

a.e. In other words, h(x, y) ≤ p a.e. This is true for every h̃ ∈ F̃ ∗. Thus,
Theorem 3.2 proves that when β2 ≤ 0,

(5.5) lim
n→∞

P(f(Gn) > c1) = 0.

Recalling that β1 is fixed, define

an(β2) := P(f(Gn) > c1), bn(β2) := P(f(Gn) < c2).

Let An and Bn denote the events in brackets in the above display. A simple
computation shows that

a′n(β2) =
6
n

Cov(1An ,∆(Gn)) and b′n(β2) =
6
n

Cov(1Bn ,∆(Gn)),

where ∆(Gn) is the number of triangles in Gn. It is easy to see that the ex-
ponential random graph model with β2 ≥ 0 satisfies the FKG criterion [23].
Therefore the above identities show that on the non-negative axis, an is a
non-decreasing function and bn is a non-increasing function.

Let q1 := sup{x ∈ R : limn→∞ an(x) = 0}. By equation (5.4), q1 <∞ and
by equation (5.5) q1 ≥ 0. Similarly, if q2 := inf{x ∈ R : limn→∞ bn(x) = 0},
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Figure 7. Plot of u∗(β1, β2) on y-axis vs β2 on x-axis for
different fixed values of β1. Part (c) demonstrates a phase
transition. Part (d) demonstrates near-degeneracy.

then 0 ≤ q2 < ∞. Also, clearly, q1 ≤ q2 since an + bn ≥ 1 everywhere. We
claim that q1 = q2. This would complete the proof by the monotonicity of
an and bn.

To prove that q1 = q2, suppose not. Then q1 < q2. Then for any β2 ∈
(q1, q2), lim sup an(β2) > 0 and lim sup bn(β2) > 0. A simple probability
argument shows that

0 ≤ an(β2) + bn(β2)− 1 ≤ P(f(Gn) ∈ (c1, c2)).

Therefore by (5.3),

lim
n→∞

(an(β2) + bn(β2)− 1) = 0.
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Consequently,

lim inf
n→∞

∫ q2

q1

(1− an(β2))(1− bn(β2))dβ2

≥
∫ q2

q1

lim inf
n→∞

(1− an(β2))(1− bn(β2))dβ2

=
∫ q2

q1

lim inf
n→∞

bn(β2)an(β2)dβ2 > 0.

If G′n is an independent copy of Gn, then a moment’s thought shows that

var(f(Gn)) =
1
2

E(f(Gn)− f(G′n))2

≥ 1
2

(c2 − c1)2(1− an(β2))(1− bn(β2)).

On the other hand, a simple computation gives

∂2ψn
∂β2

1

=
4
n2

var(e(Gn)) = (n− 1)2 var(f(Gn)).

Combining the last three displays gives

lim inf
n→∞

(
∂ψn
∂β1

(β1, q2)− ∂ψn
∂β1

(β1, q1)
)

= lim inf
n→∞

∫ q2

q1

∂2ψn
∂β2

1

(β1, β2)dβ2 =∞.

However, this is impossible, since for all (β1, β2),
∂ψn
∂β1

=
2
n2

E(e(Gn)) ≤ 1.

This completes the proof. �

6. The Symmetric Phase, Symmetry Breaking, and the
Euler–Lagrange Equations

Borrowing terminology from spin glasses, we define the replica symmetric
phase or simply the symmetric phase of a variational problem like maximiz-
ing T (h)− I(h) as the set of parameter values for which all the maximizers
are constant functions. When the parameters are such that all maximizers
are non-constant functions we say that the parameter vector is in the re-
gion of broken replica symmetry, or simply broken symmetry. There may
be another situation, where some optimizers are constant while others are
non-constant, although we do not know of such examples. (This third region
may be called a region of partial symmetry.)

Statistically, the exponential random graph behaves like an Erdős–Rényi
graph in the symmetric region of the parameter space, while such behavior
breaks down in the region of broken symmetry. This follows easily from
Theorem 3.2.
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Theorem 4.2 shows that for the sufficient statistic T defined in (4.1), ev-
ery (β1, β2, . . . , βk) ∈ R × Rk−1

+ falls in the replica symmetric region. Does
symmetry hold only when β2, . . . , βk are non-negative? The following theo-
rem (proven with the aid of the Euler–Lagrange equations of Theorem 6.3
below), shows that this is not the case; (β1, . . . , βk) is in the replica sym-
metric region whenever |β2|, . . . , |βk| are small enough. Of course, this does
not supersede Theorem 4.2 since it does not cover large positive values of
β2, . . . , βk. However, it proves replica symmetry for small negative values of
β2, . . . , βk, which is not covered by Theorem 4.2.

Theorem 6.1. Consider the exponential random graph with sufficient statis-
tic T defined in (4.1). Suppose β1, . . . , βk are such that

k∑
i=2

|βi|e(Hi)(e(Hi)− 1) < 2

where e(Hi) is the number of edges in Hi. Then the conclusions of Theorems
4.1 and 4.2 hold true for this value of the parameter vector (β1, . . . , βk).

Proof. It suffices to prove that the maximizer of T (h)−I(h) as h varies over
W is unique. This is because: if h is a maximizer, then so is hσ(x, y) :=
h(σx, σy) for any measure preserving bijection σ : [0, 1] → [0, 1]. The only
functions that are invariant under such transforms are constant functions.

Let ‖ · ‖∞ denote the L∞ norm on W (that is, the essential supremum of
the absolute value). Let h and g be two maximizers of T − I. For any finite
simple graph H, a simple computation shows that

‖∆Hh−∆Hg‖∞ ≤
∑

(r,s)∈E(H)

‖∆H,r,sh−∆H,r,sg‖∞

≤ e(H)(e(H)− 1)‖h− g‖∞.
Using the above inequality, Theorem 6.3 and the inequality∣∣∣∣ ex

1 + ex
− ey

1 + ey

∣∣∣∣ ≤ |x− y|4

(easily proved by the mean value theorem) it follows that for almost all x, y,

|h(x, y)− g(x, y)| =
∣∣∣∣ e2

Pk
i=1 βi∆Hi

h(x,y)

1 + e2
Pk
i=1 βi∆Hi

h(x,y)
− e2

Pk
i=1 βi∆Hi

g(x,y)

1 + e2
Pk
i=1 βi∆Hi

g(x,y)

∣∣∣∣
≤ 1

2

k∑
i=1

|βi|‖∆Hih−∆Hig‖∞

≤ 1
2
‖h− g‖∞

k∑
i=1

|βi|e(Hi)(e(Hi)− 1).

If the coefficient of ‖h− g‖∞ in the last expression is strictly less than 1, it
follows that h must be equal to g a.e. �
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6.1. Symmetry breaking. Theorems 4.2 and 6.1 establish various regions
of symmetry in the exponential random graph model with sufficient statis-
tic T defined in (4.1). That leaves the question: is there a region where
symmetry breaks? We specialize to the simple case where k = 2 and H2

is a triangle, i.e., the example of Section 5. In this case, it turns out that
replica symmetry breaks whenever β2 is less than a sufficiently large negative
number depending on β1.

Theorem 6.2. Consider the exponential random graph with sufficient statis-
tic T defined in (5.1). Then for any given value of β1, there is a positive con-
stant C(β1) sufficiently large so that whenever β2 < −C(β1), T (h)− I(h) is
not maximized at any constant function. Consequently, if Gn is an n-vertex
exponential random graph with this sufficient statistic, then there exists ε > 0
such that

lim
n→∞

P
(
δ�(G̃n, C̃) > ε

)
= 1

where C̃ is the set of constant functions. In other words, Gn does not look
like an Erdős–Rényi graph in the large n limit.

Proof. Fix β1. Let p = eβ1/(1 + eβ1) and γ := −β2, so that for any h ∈ W,

T (h)− I(h) = −γt(H2, h)− Ip(h).

Assume without loss of generality that β2 < 0. Suppose u is a constant
such that the function h(x, y) ≡ u maximizes T (h) − I(h), i.e., minimizes
γt(H2, h) + Ip(h). Note that

γt(H2, h) + Ip(h) = γu3 + Ip(u).

Clearly, the definition of u implies that γu3 + Ip(u) ≤ γx3 + Ip(x) for all
x ∈ [0, 1]. This implies that u must be in (0, 1), because the derivative of
x 7→ γx3 + Ip(x) is −∞ at 0 and ∞ at 1. Thus,

0 =
d

dx
(γx3 + Ip(x))

∣∣∣∣
x=u

= 3γu2 +
1
2

log
u

1− u

which shows that u ≤ c(γ), where c(γ) is a function of γ such that

lim
γ→∞

c(γ) = 0.

This shows that

(6.1) lim
γ→∞

min
0≤x≤1

(
γx3 + Ip(x)

)
= Ip(0) =

1
2

log
1

1− p
.

Next let g be the function

g(x, y) :=

{
0 if x, y on same side of 1/2
p if not.
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Clearly, for almost all (x, y, z), g(x, y)g(y, z)g(z, x) = 0. Thus, t(H2, g) = 0.
A simple computation shows that

Ip(g) =
1
4

log
1

1− p
.

Thus, γt(H2, g) + Ip(g) = 1
4 log 1

1−p . This shows that if γ is large enough
(depending on p and hence β1), then T−I cannot be maximized at a constant
function. The rest of conclusion follows easily from Theorem 3.2 and the
compactness of W̃. �

6.2. Euler–Lagrange equations. We return to the exponential random
graph model with sufficient statistic T defined in (4.1) in terms of the den-
sities of k fixed graphs H1, . . . ,Hk, where H1 is a single edge. Theorems
4.1 and 4.2 analyze this model when β2, . . . , βk are non-negative. What if
they are not? One can still try to derive the Euler–Lagrange equations for
the related variational problem of maximizing T (h̃) − I(h̃). The following
theorem presents the outcome of this effort.

For a finite simple graph H, let V (H) and E(H) denote the sets of vertices
and edges of H. Given a symmetric measurable function h : [0, 1]2 → R, for
each (r, s) ∈ E(H) and each pair of points xr, xs ∈ [0, 1], define

∆H,r,sh(xr, xs) :=
∫

[0,1]V (H)\{r,s}

∏
(r′,s′)∈E(H)
(r′,s′)6=(r,s)

h(xr′ , xs′)
∏

v∈V (H)
v 6=r,s

dxv.

For x, y ∈ [0, 1] define

(6.2) ∆Hh(x, y) :=
∑

(r,s)∈E(H)

∆H,r,sh(x, y).

For example, when H is a triangle, then V (H) = {1, 2, 3} and

∆H,1,2h(x, y) = ∆H,1,3h(x, y) = ∆H,2,3h(x, y) =
∫ 1

0
h(x, z)h(y, z) dz

and therefore ∆Hh(x, y) = 3
∫ 1

0 h(x, z)h(y, z)dz. When H contains exactly
one edge, define ∆Hh ≡ 1 for any h, by the usual convention that the empty
product is 1.

Theorem 6.3. Let T : W̃ → R be defined as in (4.1) and the operator ∆H be
defined as in (6.2). If h̃ ∈ W̃ maximizes T (h̃)−I(h̃), then any representative
element h ∈ h̃ must satisfy for almost all (x, y) ∈ [0, 1]2,

h(x, y) =
e2

Pk
i=1 βi∆Hi

h(x,y)

1 + e2
Pk
i=1 βi∆Hi

h(x,y)
.

Moreover, any maximizing function must be bounded away from 0 and 1.



EXPONENTIAL RANDOM GRAPH MODELS 29

Proof. Let g be a symmetric bounded measurable function from [0, 1] into
R. For each u ∈ R, let

hu(x, y) := h(x, y) + ug(x, y).

Then hu is a symmetric bounded measure function from [0, 1] into R. First
suppose that h is bounded away from 0 and 1. Then hu ∈ W for every u
sufficiently small in magnitude. Since h maximizes T (h) − I(h) among all
elements of W, therefore under the above assumption, for all u sufficiently
close to zero,

T (hu)− I(hu) ≤ T (h)− I(h).

In particular,

(6.3)
d

du
(T (hu)− I(hu))

∣∣∣∣
u=0

= 0.

It is easy to check that T (hu)− I(hu) is differentiable in u for any h and g.
In particular, the derivative is given by

d

du
(T (hu)− I(hu)) =

k∑
i=1

βi
d

du
t(Hi, hu)− d

du
I(hu).

Now,

d

du
I(hu) =

∫∫
d

du
I(h(x, y) + ug(x, y)) dydx

=
1
2

∫∫
g(x, y) log

hu(x, y)
1− hu(x, y)

dydx.

Consequently,

d

du
I(hu)

∣∣∣∣
u=0

=
1
2

∫∫
g(x, y) log

h(x, y)
1− h(x, y)

dydx.

Next, note that

d

du
t(Hi, hu)

=
∫

[0,1]V (H)

∑
(r,s)∈E(Hi)

g(xr, xs)
∏

(r′,s′)∈E(Hi)
(r′,s′)6=(r,s)

hu(xr′ , xs′)
∏

v∈V (H)

dxv

=
∫∫

g(x, y)∆Hihu(x, y) dydx.

Combining the above computations and (6.3), we see that for any symmetric
bounded measurable g : [0, 1]→ R,∫∫

g(x, y)

(
k∑
i=1

βi∆Hih(x, y)− 1
2

log
h(x, y)

1− h(x, y)

)
dydx = 0.
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Taking g(x, y) equal to the function within the brackets (which is bounded
since h is assumed to be bounded away from 0 and 1), the conclusion of the
theorem follows.

Now note that the theorem was proved under the assumption that h is
bounded away from 0 and 1. We claim that this is true for any h that
maximizes T (h)− I(h). To prove this claim, take any such h. Fix p ∈ (0, 1).
For each u ∈ [0, 1], let

hp,u(x, y) := (1− u)h(x, y) + umax{h(x, y), p}.
Then certainly, hp,u is a symmetric bounded measurable function from [0, 1]2

into [0, 1]. Note that
d

du
hp,u(x, y) = max{h(x, y), p} − h(x, y) = (p− h(x, y))+.

Using this, an easy computation as above shows that

d

du
(T (hp,u)− I(hp,u))

∣∣∣∣
u=0

=
∫∫ ( k∑

i=1

βi∆Hih(x, y)− 1
2

log
h(x, y)

1− h(x, y)

)
(p− h(x, y))+ dydx

≥
∫∫ (

−C − 1
2

log
h(x, y)

1− h(x, y)

)
(p− h(x, y))+ dydx

where C is a positive constant depending only on β1, . . . , βk and H1, . . . ,Hk

(and not on p or h). When h(x, y) = 0, the integrand is interpreted as ∞,
and when h(x, y) = 1, the integrand is interpreted as 0.

Now, if p is so small that

−C − 1
2

log
p

1− p
> 0,

then the previous display proves that the derivative of T (hp,u)−I(hp,u) with
respect to u is strictly positive at u = 0 if h < p on a set of positive Lebesgue
measure. Hence h cannot be a maximizer of T − I unless h ≥ p almost
everywhere. This proves that any maximizer of T − I must be bounded
away from zero. A similar argument shows that it must be bounded away
from 1 and hence completes the proof of the theorem. �

6.3. A solvable case with negative parameters. A j-star is an undi-
rected graph with one ‘root’ vertex and j other vertices connected to the
root vertex, with no edges between any of these j vertices. Let Hj be a
j-star for j = 1, . . . , k. Let T be the sufficient statistic

(6.4) T (G) =
k∑
j=1

βjt(Hj , G).

Theorems 4.1 and 4.2 describe the behavior of this model when β2, . . . , βk
are all non-negative. The following theorem shows that the behavior is the
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same even if β2, . . . , βk are all non-positive. This phenomenon for j-star
models was first observed in simulations by Sukhada Fadnavis.

Theorem 6.4. For the sufficient statistic T defined in (6.4), the conclusions
of Theorems 4.1 and 4.2 hold when β2, . . . , βk are all non-positive.

Proof. Since β2, . . . , βk ≤ 0 and I is a convex function, note that for any
h ∈ W

T (h)− I(h) = β1

∫
h(x, y)dxdy +

k∑
j=2

βj

∫ (∫
h(x, y)dy

)j
dx

−
∫
I(h(x, y))dxdy

≤ β1

∫
h(x, y)dxdy +

k∑
j=2

βj

(∫∫
h(x, y)dydx

)j
− I
(∫

h(x, y)dxdy
)

≤ sup
0≤u≤1

(β1u+ β2u
2 + · · ·+ βku

k − I(u)),

with equality holding in all steps if and only if h is identically equal to a
constant that solves the maximization problem in the last step. �

Naturally, the question arises as to whether the conclusions of Theorems
4.1 and 4.2 continue to hold for all values of β1, . . . , βk, even when some
of them are positive and some negative. As of now, we do not know the
answer.

7. Extremal behavior

In the sections above we have been assuming that β2, . . . , βk are positive
or barely negative. In this section we investigate what happens when k = 2
and β2 is large and negative. The limits are describable but far from Erdős-
Rényi. Our work here is inspired by related results of Sukhada Fadvanis who
has a different argument (using Turán’s theorem) for the case of triangles.

Suppose H is any finite simple graph containing at least one edge. Let T
be the sufficient statistic

T (G̃) = 2β1
#edges in G

n2
+ β2t(H,G).

Let Gn be the exponential random graph on n vertices with this sufficient
statistic and let ψn be the associated normalizing constant as defined in (3.1).
Then Theorem 3.1 gives

lim
n→∞

ψn = sup
h∈W

(T (h)− I(h)) =: ψ,
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where I is defined in (3.2). We also know (by Theorem 3.2 that

δ�(G̃n, F̃ ∗)→ 0 in probability as n→∞,

where F̃ ∗ is the subset of W̃ where T − I is maximized. (Note that F̃ ∗ is a
closed set since T − I is an upper semicontinuos map.)

We can compute F̃ ∗ and ψ when β2 is positive, or negative with small
magnitude. We are unable to carry out the explicit computation in the case
of large negative β2, unless H is a convenient object like a j-star. However,
a qualitative description can still be given by analyzing the behavior of F̃ ∗

and ψ as β2 → −∞. Fixing β1, we consider these objects as functions of β2

and write F̃ ∗(β2), ψ(β2) and Tβ2 instead of F̃ ∗, ψ and T .

Theorem 7.1. Fixing H and β1, let F̃ ∗(β2) and ψ(β2) be as above. Let
χ(H) be the chromatic number of H, and define

(7.1) g(x, y) :=

{
1 if [(χ(H)− 1)x] 6= [(χ(H)− 1)y],
0 otherwise,

where [x] denotes the integer part of a real number x. Let p = e2β1/(1+e2β1).
Then

lim
β2→−∞

supef∈ eF ∗(β2)

δ�(f̃ , pg̃) = 0

and

lim
β2→−∞

ψ(β2) =
(χ(H)− 2)
2(χ(H)− 1)

log
1

1− p
.

Intuitively, the above result means that if β2 is a large negative number
and n is large, then an exponential random graph Gn with sufficient statistic
T looks roughly like a complete (χ(H) − 1)-equipartite graph with 1 − p
fraction of edges randomly deleted, where p = e2β1/(1+e2β1). In particular,
if H is bipartite, then Gn must be very sparse, since a 1-equipartite graph
has no edges. Figure 8 gives a simulation result for the triangle model with
large negative β2.

Theorem 7.1 is closely related to the Erdős-Stone theorem from extremal
graph theory (or equivalently, Turán’s theorem in the case of triangles as in
the work of Fadnavis). Indeed, it may be possible to prove some parts of
our theorem using the Erdős-Stone theorem, but we prefer the bare-hands
argument given below. Due to this connection with extremal graph theory,
we refer to behavior of the graph in the ‘large negative β2’ domain as extremal
behavior.

Lemma 7.2. Let r be any integer ≥ χ(H). Let Kr be the complete graph
on r vertices. Then for any symmetric measurable h : [0, 1]2 → {0, 1}, if
t(Kr, h) > 0 then t(H,h) > 0.

Proof. Let hn(x, y) be the average value of h in the dyadic square of width
2−n containing the point (x, y). A standard martingale argument implies
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Figure 8. A simulated realization of the exponential ran-
dom graph model on 20 nodes with edges and triangles as
sufficient statistics, where β1 = 120 and β2 = −400. (Picture
by Sukhada Fadnavis.)

that the sequence of functions {hn}n≥1 converges to h almost everywhere.
For any positive integer u, let Ku

r denote the complete r-partite graph on
ru vertices, where each partition consists of u vertices (so that K1

r = Kr).
Since r ≥ χ(H), it is easy to see that there exists u so large that H is a
subgraph of Ku

r . Fix such a u.
By the almost everywhere convergence of hn to h and the assumption

that t(Kr, h) > 0, there is a set of r distinct points x1, . . . , xr ∈ [0, 1] such
that h(xi, xj) > 0 and limn→∞ hn(xi, xj) = h(xi, xj) for each 1 ≤ i 6= j ≤ r.
Since h is {0, 1}-valued, h(xi, xj) = 1 for each i 6= j. Choose n so large that
for each i 6= j,

hn(xi, xj) ≥ 1− ε,
where ε = 2/ru. Let (Xs

i )1≤i≤r, 1≤s≤u be independent random variables,
where Xs

i is uniformly distributed in the dyadic interval of width 2−n con-
taining xi. Then for each 1 ≤ i 6= j ≤ r, 1 ≤ q, s ≤ u,

P(h(Xq
i , X

s
j ) = 1) = hn(xi, xj) ≥ 1− ε.

Therefore,

P(h(Xq
i , X

s
j ) = 1 for all 1 ≤ i 6= j ≤ r, 1 ≤ q, s ≤ u) ≥ 1− ruε = 1/2.

Let (Y s
i )1≤i≤r, 1≤s≤u be independent random variables uniformly distributed

in [0, 1]. Conditional on the event that Y s
i belongs to the dyadic interval of

width 2−n containing xi, Y s
i has the same distribution as Xs

i . This shows
that

t(Ku
r , h) ≥ P(h(Y q

i , Y
s
j ) = 1 for all 1 ≤ i 6= j ≤ r, 1 ≤ q, s ≤ u) > 0.

Since H is a subgraph of Ku
r , therefore t(H,h) > 0. �
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Theorem 7.3. Let g be the function defined in (7.1). Take any p ∈ (0, 1). If
f is any element ofW that minimizes Ip(f) among all f satisfying t(H, f) =
0, then f̃ = pg̃.

Proof. Take any minimizer f . (Minimizers exist due to the Lovász-Szegedy
compactness theorem and the lower semicontinuity of Ip.) First, note that
f ≤ p almost everywhere: if not, then Ip(f) can be decreased by replacing
f with min{f, p}, which retains the condition t(H, f) = 0.

Next, note that for almost all x, y, f(x, y) = 0 or p. If not, then redefine
f to be equal to p wherever f was positive. This decreases the entropy while
retaining the condition t(H, f) = 0.

Let h = f/p. Then h takes value 0 or 1 almost everywhere and h max-
imizes

∫∫
h(x, y)dxdy among all symmetric measurable h : [0, 1]2 → {0, 1}

satisfying t(H,h) = 0. Our goal is to show that h̃ = g̃.
Let r := χ(H). Let X0, X1, X2, . . . be a sequence of i.i.d. random variables

uniformly distributed in [0, 1]. Let

R := {i : h(Xi, Xj) = 1 for all 1 ≤ j < i},

and let R := |R|. Let λ(x) :=
∫
h(x, y)dy, so that for any given i,

P(h(Xi, Xj) = 1 for all 1 ≤ j < i) = E(λ(Xi)i−1) = E(λ(X0)i−1).

Thus,

E(R) =
∞∑
i=1

P(h(Xi, Xj) = 1 for all 1 ≤ j < i)

=
∞∑
i=1

E(λ(X0)i−1)

≥
∞∑
i=1

(Eλ(X0))i−1 =
1

1− Eλ(X0)
=

1
1−

∫∫
h(x, y)dxdy

.(7.2)

Let g be the function defined in (7.1). Suppose the vertex set of H is
{1, . . . , k} for some integer k. If t(H, g) > 0, then there exist x1, . . . , xk such
that g(xi, xj) = 1 whenever (i, j) is an edge in H. By the nature of g, this
implies that H can be colored by r − 1 colors; since this is false, therefore
t(H, g) must be zero. By the optimality property of h, this gives∫∫

h(x, y)dxdy ≥
∫∫

g(x, y)dxdy = 1− 1
r − 1

.

Therefore by (7.2),

E(R) ≥ r − 1.

Again by Lemma 7.2, t(Kr, h) = 0. Therefore, R ≤ r − 1 almost surely.
Combined with the above display, this shows that equality must hold in
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(7.2) and R = r − 1 almost surely. In particular, E(λ(X0)2) = (Eλ(X0))2

and Eλ(X0) = 1− 1/(r − 1), which shows that

λ(x) = 1− 1
r − 1

a.e.

For each x, let A(x) := {y : h(x, y) = 0}. Then |A(x)| = 1/(r − 1) a.e.,
where |A(x)| denotes the Lebesgue measure of A(x).

Define a random graph G on {0, 1, 2, . . .} by including the edge (i, j) if
and only if h(Xi, Xj) = 1. Since t(Kr, h) = 0, G cannot contain any copy
of Kr. Thus, with probability 1, h(X0, Xi) = 0 for some i ∈ R. In other
words,

⋃
i∈RA(Xi) cover almost all of [0, 1]. Again, |A(Xi)| = 1/(r − 1) for

all i ∈ R and |R| = r − 1 almost surely. All this together imply that with
probability 1, A(Xi) ∩ A(Xj) has Lebesgue measure zero for all i 6= j ∈ R,
since ∑

i,j∈R, i<j
|A(Xi) ∩A(Xj)| ≤

∑
i∈R
|A(Xi)| −

∣∣∣∣⋃
i∈R

A(Xi)
∣∣∣∣ = 0.

Let Y1, Y2, . . . and Z1, Z2, . . . be i.i.d. random variables uniformly distributed
in [0, 1], that are independent of the sequence X1, X2, . . .. Since t(Kr, h) = 0,
with probability 1 there cannot exist l and a set B of integers of size r − 2
such that h(Yl, Xi) = h(Zl, Xi) = 1 for all i ∈ B, h(Xi, Xj) = 1 for all
i 6= j ∈ B, and h(Yl, Zl) = 1.

Now fix a realization of X1, X2, . . .. This fixes the set R. Take any i ∈ R.
Let I be the smallest integer such that both YI and ZI are in A(Xi). Clearly
YI and ZI are independent and uniformly distributed in A(Xi), conditional
on the sequence X1, X2, . . . and our choice of i ∈ R. By the observation
from the preceding paragraph, h(YI , ZI) = 0 with probability 1, since the
set R\{i} serves the role of B.

This shows that given X1, X2, . . ., the sets A(Xi) have the property that
for almost all y, z ∈ A(Xi), h(y, z) = 0. Since λ(x) = 1− 1/(r − 1) a.e. and
|A(Xi)| = 1/(r− 1), this shows that for almost all y ∈ A(Xi) and almost all
z 6∈ A(Xi), h(y, z) = 1.

The properties of (A(Xi))i∈R that we established can be summarized as
follows: the sets A(Xi) are disjoint up to errors of measure zero; each A(Xi)
has Lebesgue measure 1/(r− 1) and together they cover the whole of [0, 1];
for almost all y, z ∈ [0, 1], h(y, z) = 0 if they belong to the same A(Xi), and
h(y, z) = 1 if y ∈ A(Xi) and z ∈ A(Xj) for some i 6= j. These properties
immediately show that h is the same as the function g up to a rearrangement;
the formal argument can be completed as follows.

Given X1, X2, . . ., let u : [0, 1]→ [0, 1] be the map defined as

u(x) := minimum i ∈ R such that x ∈ A(Xi).

Note that with probability 1, for almost all x there is a unique i ∈ R such
that x ∈ A(Xi). Let σ : [0, 1] → [0, 1] be a measure-preserving bijection
such that x 7→ u(σx) is a non-increasing (we omit the construction). Then
σ maps the intervals [0, 1/(r−1)], [1/(r−1), 2/(r−1)], . . ., [(r−2)/(r−1), 1]
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onto the sets (A(Xi))i∈R up to errors of measure zero. By the properties of
A(Xi) established above, this shows that h(σx, σy) is the same as g(x, y) up
to an error of measure zero. �

Proof of Theorem 7.1. First, note that

Tβ2(h)− I(h) = β2t(H,h)− Ip(h)− 1
2

log(1− p),

where p = e2β1/(1 + e2β1). Take a sequence β(n)
2 → −∞, and for each n,

let h̃n be an element of F̃ ∗(β(n)
2 ). Let h̃ be a limit point of h̃n in W̃. If

t(H,h) > 0, then by the continuity of the map t(H, ·) and the boundedness
of Ip,

lim
n→∞

ψ(β(n)
2 ) = −∞.

But this is impossible since ψ(β(n)
2 ) is uniformly bounded below, as can be

easily seen by considering the function g defined in (7.1) as a test function
in the variational problem. Thus, t(H,h) = 0. If f is a function such that
t(H, f) = 0 and Ip(f) < Ip(h), then for all sufficiently large n,

T
β

(n)
2

(hn)− I(hn) < T
β

(n)
2

(f)− I(f)

contradicting the definition of F̃ ∗(β2). Thus, if f is a function such that
t(H, f) = 0, then Ip(f) ≥ Ip(h). By Theorem 7.3, this shows that h̃ = pg̃.
The compactness of W̃ now proves the first part of the theorem.

For the second part, first note that

lim inf
n→∞

ψ(β(n)
2 ) ≥ lim

n→∞
(T
β

(n)
2

(g)− I(g))

= −Ip(g)− 1
2

log(1− p)

=
(χ(H)− 2)
2(χ(H)− 1)

log
1

1− p
.

Next, note that by the lower-semicontinuity of Ip and the fact that β(n)
2 is

eventually negative,

lim sup
n→∞

ψ(β(n)
2 ) = lim sup

n→∞
(β(n)

2 t(H,hn)− Ip(hn))− 1
2

log(1− p)

≤ lim sup
n→∞

(−Ip(hn))− 1
2

log(1− p)

≤ −Ip(g)− 1
2

log(1− p).

The proof is complete. �
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8. Transitivity and clumping

In the social networks literature, one of the key motivations for consider-
ing exponential random graphs is to develop models of random graphs that
exhibit ‘transitivity’. In simple terms, this means that a friend of a friend
is more likely to be a friend than a random person. Presence of transitivity
gives rise to ‘clumps’ of nodes that have higher connectivity between them-
selves. Since transitivity is closely related to the presence of ‘triads’ (i.e.
triangles) researchers initially tried to model transitivity by the exponential
random graph with edges and triangles as sufficient statistics. Sometimes,
j-stars were thrown in for additional effect. For a history of such attempts
and their experimental outcomes, see the discussion in Snijders et. al. [51].

However, as seen in experiments and through heuristics [46] and proved
in Theorems 4.1 and 7.1, it is futile to model transitivity with only edges
and triangles as sufficient statistics. If β2 is positive, the graph is essentially
behaving like an Erdős-Rényi graph, while if β2 is negative, it becomes
roughly bipartite. The degeneracy observed in experiments and proved in
Theorem 5.1 also renders this model quite useless.

Recently, Snijders et. al. [51] have suggested a certain class of models
that exhibit the desired transitivity and clumping properties in simulations.
These models are of the type (4.1), where Hj is a j-star (or ‘j-triangle’, as
defined in [51]) for j = 1, . . . , k−1 and Hk is a triangle. The crucial assump-
tion is that the parameters β1, β2, . . . , βk have alternating signs. Usually,
there is a single unknown parameter λ and βj is taken to be (−1)j−1λ−j for
j = 1, . . . , k − 1. Based on simulations and heuristics, the authors of [51]
claim that this class of models should demonstrate transitivity and clumping
properties.

Although we do not yet have a general understanding as to why alternat-
ing sign models should give rise to transitivity, we can prove it in a certain
special case. In this model, k = 3 and H1 = a single edge, H2 = a 2-star
and H3 = a triangle. There is a single unknown (positive) parameter β, and
the sufficient statistic is defined as

T (f̃) := 3β t(H1, f̃)− 3β t(H2, f̃) + β t(H3, f̃).

Let F̃ ∗ = F̃ ∗(β) be as in Theorem 3.2. Of course, if β is sufficiently small,
F̃ ∗(β) consists of a single constant function (and hence the model is effec-
tively Erdős-Rényi) by Theorem 6.1. However, as following theorem shows,
all elements of F̃ ∗(β) exhibit two clumps of roughly equal size when β is
large.

Theorem 8.1. In the setting described above,

lim
β→∞

supef∈ eF ∗(β)

δ�(f̃ , h̃) = 0,
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where

h(x, y) =

{
1 if x, y on same side of 1/2
1/2 if not.

Proof. Note that T (f) can be alternately written as a constant plus S(1−f),
where

S(g) := −β t(H3, g).

The proof is now complete by Theorem 7.1 applied to the model with suffi-
cient statistic S. �

Intuitively, the function h in the above theorem represents connectivities
between people in a population divided into two equal parts, say democrats
and republicans, where all democrats are friends with each other, as are
republicans; and there is a probability 1/2 of friendship between a democrat
and republican. It is clear that this arrangement automatically gives rise to
transitivity.
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