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Abstract

A recent literature explores many ways in which uncertainty shocks can have im-
portant economic effects. But how large are uncertainty shocks and where do they
come from? Researchers typically estimate a model with stochastic volatility, using all
available data, then condition on the estimated model to infer volatility. This volatility
is the uncertainty of an agent who knows the true probability of outcomes and whose
only uncertainty is about what the draw from that distribution will be. We model a
Bayesian forecaster who uses new data released each quarter to re-estimate the param-
eters that govern the shape of the probability distribution of GDP growth. Although
the forecaster’s parameter revisions are small, the probability of black swans (extreme
events) is very sensitive to these revisions. Our real-time measure of GDP forecast
uncertainty reveals that changes in the risk of a black swan explain most of the shocks
to uncertainty.

Some times feel like uncertain times for the aggregate economy. At other times, events

appear to be predictable and confidence is high. An active emerging literature argues that

changes in uncertainty can explain asset pricing, banking crises, business cycle fluctua-

tions, and the 2007 financial crisis. But why do people suddenly become uncertain about

future outcomes? What belief formation process can generate large enough fluctuations in

uncertainty to explain recessions and financial crises?
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Typically, researchers use the variance of innovations in a GARCH or stochastic volatil-

ity model to measure uncertainty. The estimation procedure would use all available data

to estimate a model’s parameters and then condition on that estimated model to compute

conditional variance. This amounts to assuming that, at every date, an agent knows the

true distribution of outcomes. The only uncertainty is about what draw nature will choose

from that distribution. But an essential component of macroeconomic uncertainty and

financial crises is that no one knows the true distribution of outcomes. Everyone’s model is

an estimate. Therefore, we estimate linear and nonlinear forecasting models to measure the

uncertainty (conditional standard deviation) of the forecast of next quarter’s GDP growth,

recognizing that since the estimated parameters have standard errors, they are themselves

uncertain. In each quarter, we update the forecast model parameter estimates, using all

U.S. GDP growth data that was available at that time.

Acknowledging model estimation uncertainty uncovers two new sources of uncertainty

shocks. One source of shocks is surprises: events that are improbable under the previous

period’s estimated model. If an event occurs that a model says is improbable, a Bayesian

agent concentrates less probability weight on that model’s parameters; standard errors

on the parameter estimate often rises and uncertainty increases. Of course, an outlier

event also leads a stochastic volatility model to predict higher volatility. That makes these

mechanisms hard to distinguish. But more importantly, uncertainty shocks generated from

this first mechanism are tiny.

The second source of uncertainty is something we call “black swan risk,” which is the

conditional probability of a growth realization more negative than any observed so far.

When the forecasting model implies a normal distribution of outcomes, the probability of

an n-standard-deviation event is constant. But when we allow our forecaster to estimate

a distribution with skewness or excess kurtosis, the probability of negative outliers can

fluctuate. For example, a mildly negative observation can lead the forecaster to estimate

stronger negative skewness, which makes extreme negative outcomes more likely and thus

raises uncertainty. Because the probability of tail events is very sensitive to the parameters

that regulate the curvature of the probability distribution, black swan risk is very volatile

and generates large changes in uncertainty. When we apply this model to GDP data, we

find that most of the shocks to uncertainty are explained by changes in the estimated
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probabilities of black swans.

We define macroeconomic uncertainty as the standard deviation of next-period GDP

growth yt+1, conditional on all information observed through time t: Std[yt+1|It]. We use

this definition because in most models, this is the theoretically-relevant moment. When

there is an option value of waiting, beliefs with a higher conditional variance (imprecise

beliefs) raise the value of waiting to observe additional information. Thus, it is uncertainty

in the form of a higher conditional variance that typically delays consumption or investment

and thus depresses economic activity.

To build up intuition for how estimation uncertainty behaves, we start with one of the

simplest forecasting models: a linear model of GDP growth with a hidden Markov state

and homoskedastic innovations. We hold the volatility of the innovations fixed so that

we can isolate the effect of estimation uncertainty shocks. Each period t, our forecaster

observes time-t GDP growth and uses the complete history of GDP data to estimate her

model and forecast GDP growth in t + 1. In such a setting, an agent with known model

parameters faces no uncertainty shocks because the estimated model is a homoskedastic

one. But the forecaster with estimation uncertainty experiences changes in the conditional

variance of her forecasts. These are uncertainty shocks.

However, a linear model with normally distributed shocks generates only small uncer-

tainty shocks, those shocks are not counter-cyclical, and its forecasts badly miss a key

feature of forecast data: The average forecast is significantly lower than the average GDP

growth realization. For an unbiased forecaster with a linear model, this should not be

the case. But if the true distribution of GDP growth is not known bus is estimated to

be negatively skewed, we show that expected values can be systematically lower than the

realizations. Adding extra uncertainty, such as parameter uncertainty, amplifies this effect.

Therefore, we explore a non-linear forecasting model and find that combining non-linear

forecasting with parameter uncertainty generates medium-sized shocks to uncertainty, par-

ticularly in recessions. Finally, we allow agents to learn about the non-linearity in their

forecasting model. This generates the largest uncertainty shocks.

We compare our model-based uncertainty series to commonly-used uncertainty proxies

and find that it is less variable, but more persistent than the proxy variables. The most

highly correlated proxies are the price of a volatility option (VIX) or forecast dispersion.
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But neither achieves more than a 40% correlation with our uncertainty measure.

A key message of our paper is that understanding and measuring economic uncertainty

requires relaxing the full-information assumptions of rational expectations econometrics. In

econometrics, rational expectations typically describes the assumption that agents know

the true law of motion of the economy. If agents have rational expectations, they have

no uncertainty about their model. Their only uncertainty is about realizations of model

innovations. To measure the uncertainty of such a forecaster, it makes sense to estimate

a model on as much data as possible, take the parameters as given, and estimate the

conditional standard deviation of model innovations. This is what stochastic volatility

estimates typically are. But in reality, the macroeconomy is not governed by a simple,

known model and we surely don’t know its parameters. Instead, our forecast data (from

the Survey of Professional Forecasters or SPF) suggests that forecasters estimate simple

models to approximate complex processes and constantly use new data to update our

beliefs. Forecasters are not irrational. They simply lack rational expectations because they

do not know the economy’s true data-generating process. In such a setting, uncertainty

and volatility can behave quite differently.

Related literature A new and growing literature uses uncertainty shocks as a driving

process to explain business cycles (e.g., Bloom, Floetotto, Jaimovich, Sapora-Eksten, and

Terry (2012), Basu and Bundick (2012) Christiano, Motto, and Rostagno (2012), Bianchi,

Ilut, and Schneider (2012)), to explain investment dynamics Bachmann and Bayer (2012a),

to explain asset prices (e.g., Bansal and Shaliastovich (2010), Pastor and Veronesi (2012)),

and to explain banking panics (Bruno and Shin, 2012). These papers are complementary

to ours. We explain where uncertainty shocks come from, while these papers trace out the

economic and financial consequences of the shocks.1

A small set of related theories appeal to nonlinearities in a production economy to

explain why uncertainty fluctuates (Van Nieuwerburgh and Veldkamp (2006), Fajgelbaum,

Schaal, and Taschereau-Dumouchel (2013)). Our model differs because it does not depend

on an economic environment, only on a statistical law of motion. Our uncertainty shocks

arise from agents applying Bayes law when parameters are unknown.

1In contrast, Bachmann and Bayer (2012b) argue that there is little impact of uncertainty on economic
activity.

4



Our exercise also speaks to a set of papers that measure uncertainty shocks in various

ways. Bloom (2009), Baker, Bloom, and Davis (2012), Stock and Watson (2012), Jurado,

Ludvigson, and Ng (2013) Fernandez-Villaverde, Kuester, Guerron, and Rubio-Ramirez

(2012), Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez, and Uribe (2011), Naka-

mura, Sergeyev, and Steinsson (2012), Justiniano and Primiceri (2008) and Born, Peter,

and Pfeifer (2011) document the properties of uncertainty shocks in the U.S. and in emerg-

ing economies, while Bachmann, Elstner, and Sims (2012) use forecaster data to measure

ex-ante and ex-post uncertainty in Germany. While our paper also engages in a measure-

ment exercise, what we add to this literature is a quantitative model of how and why such

shocks arise.

The idea that the probability of rare events is time-varying also appears in models of

discrete, rare events (e.g., Rietz (1998), Barro (2005), Gabaix (2012) ). However, these

papers assume that there is a time-varying probability of a rare event and derive the conse-

quences of that for asset prices. Our paper is a complement to this literature; it describes a

learning process that can generate volatile, counter-cyclical beliefs about the probabilities

of extreme, negative outcomes. Using only the assumptions of Bayesian updating and the

idea of parameter uncertainty in non-normal probability distributions, we show as a result

that estimated probabilities of tail outcomes are volatile and that economic uncertainty is

sensitive to these probabilities. This finding helps to justify the assumptions of the previous

literature.

The theoretical part of our paper grows out of an existing literature that estimates

Bayesian forecasting models with model uncertainty. Cogley and Sargent (2005) use such

a model to understand the behavior of monetary policy, while Johannes, Lochstoer, and

Mou (2011) estimate a similar type of model on consumption data to capture properties of

asset prices. While the mechanics of model estimation are similar, the focus on non-linear

filtering, uncertainty shocks and uncertainty proxies distinguish our paper. Nimark (2012)

also generates increases in uncertainty by assuming that only outlier events are reported.

Thus, the publication of a signal conveys both the signal content and information that

the true event is far away from the mean. Such signals can increase agents’ uncertainty.

But that paper does not attempt to quantitatively explain the fluctuations in uncertainty

measures. Our paper is in the spirit of Hansen’s Ely Lecture (Hansen, 2007) and Chen,
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Dou, and Kogan (2013) which advocate putting agents in the model on equal footing with

an econometrician who is learning about his environment over time and struggling with

model selection.

1 A Linear-Normal Forecasting Model

The purpose of the model is to explain why relaxing rational expectations and assuming

that agents do not know the true distribution of outcomes with certainty opens up an

additional source of uncertainty shocks. To isolate this new source of uncertainty shocks,

we consider first a homoskedastic model. If an agent knew the true model (they had

rational expectations), their uncertainty would be only about the random realizations of

future shocks. Since the variance of these shocks is assumed to be constant over time, there

would be no uncertainty shocks.

We consider a forecaster who observes a real-time GDP growth data, in every quarter

and forecasts the next period’s growth. The agent knows that GDP growth comes from a

linear model with a hidden Markov state, but does not know the parameters of this model.

Each period, he starts with prior beliefs about these parameters and the current state,

observes the new GDP data, and updates his beliefs using Bayes’ law.

1.1 Definitions

A model, denoted M, is a probability distribution over a sequence of outcomes. Let

yt ≡ {yτ}tτ=0 denote a series of data available to the forecaster at time t. Models will

differ in the information set available to forecasters and the driving process for yt. In every

model, the information set will include yt, the history of y observations up to and including

time t. The state St is never observed. Each model has a vector θ of parameters.

The agent, who we call a forecaster and index by i, is not faced with any economic

choices. He simply uses Bayes’ law to forecast future y outcomes. Specifically, at each date

t, the agent conditions on his information set Iit and forms beliefs about yt+1. We call

the expected value E (yt+1|Iit) an agent i’s forecast and the square root of the conditional

variance V ar (yt+1|Iit) is what we call uncertainty. Forecasters’ forecasts will differ from

the realized growth rate. This difference is what we call a forecast error.

6



Definition 1. An agent i’s forecast error is the distance, in absolute value, between the

forecast and the realized growth rate: FEi,t+1 = |yt+1 − E[yt+1|Iit]|.

We date the forecast error t + 1 because it depends on a variable yt+1 that is not

observed at time t. Similarly, an average forecast error is

F̄Et+1 =
1

Nt

It∑
i=1

FEi,t+1. (1)

We define forecast errors and uncertainty over 1-period-ahead forecasts because that is the

horizon we focus on in this paper. But future work could use these same tools to measure

uncertainty at any horizon.

Definition 2. Uncertainty is the standard deviation of the time-(t + 1) GDP growth,

conditional on an agent’s time-t information: Uit =

√
E
[

(yt+1 − E[yt+1|Iit])2
∣∣∣ Iit].

In settings where the forecaster’s information set does not include the model or its

parameters, we make a distinction between uncertainty and volatility. Volatility is the

same standard deviation as before, but now conditional on the history yt as well as the

model M and the parameters θ:

Definition 3. Volatility is the standard deviation of the unexpected innovations in yt+1,

taking the model and its parameters as given:

V OLt =

√
E
[

(yt+1 − E[yt+1|yt, θ,M])2
∣∣∣ yt, θ,M].

Many papers equate volatility, uncertainty and squared forecast errors. These defini-

tions allow us to understand the conditions under which these are equivalent. Volatility

and uncertainty are both ex-ante measures because they are time-t expectations of t + 1

outcomes, which are time-t measurable. However, forecast errors are an ex-post measure

because it is not measurable at the time when the forecast is made. Substituting definition

1 into definition 3 reveals that Uit =
√
E[FE2

i,t+1|Iit]. So, uncertainty squared is the same

as the expected squared forecast error. Of course, what people measure with forecast er-

rors is typically not the expected squared forecast error. It is an average of realized squared

forecast errors:
√

1/Nt
∑

i FE
2
i,t+1.
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To compare volatility and uncertainty, we can examine definitions 3 and 2. When

Iit = {yt, θ,M}, uncertainty and volatility are equivalent. Thus, when a forecaster knows

his model and its parameters with certainty, volatility measures uncertainty. That leads

us to define estimation uncertainty as the part of uncertainty that comes from relaxing

rational expectations.

Definition 4. The uncertainty generated by imperfect information about the model and its

parameters (hereafter “estimation uncertainty”) is ∆ = U − V .

The difference between volatility and uncertainty is due to the difference between con-

ditioning on an agent’s information set, and conditioning on {yt,M, θ}. If the agent’s

information set is Iit = {yt,M, θ}, then estimation uncertainty is zero. But if the agent

is uncertain about the model or parameters, U and V will differ. Note that unlike U or

V , ∆ can be, and sometimes is, negative. For example, suppose the highest-probability

model has high-variance innovations, but the probability of that model is just over 50%.

Then accounting for model uncertainty will lead the agent to take some draws from the

high-variance model and some from the low-variance model. The resulting set of outcomes

may be less uncertain than they would be if the agent treated the high-variance model as

if it was true.

1.2 The linear forecasting model

We begin by examining the following continuous-state hidden Markov process for yt
2

yt = α+ st + σεy,t (2)

st = ρst−1 + σsεs,t (3)

where εy,t and εs,t are standard normal random variables independent of each other. In

this model, the parameters are θ ≡ [α, ρ, σ, σs]
′.

Information assumptions Each forecaster has an identical information set: Iit =

{yt,M}, ∀i. The model M is described by (2) and (3). The state st and the parameters

θ are never observed.

2We have also explored a version of the model with a discrete hidden state. The results are very similar
and are reported in Appendix B.

8



To compute forecasts and the process for uncertainty, we use Bayesian updating A

forecast is a conditional expectation of next-period growth, where the expectation is taken

over unknown parameters, states, and growth realizations. Using the law of iterated ex-

pectations, we can write this forecast as:

E
(
yt+1|yt

)
=

∫ ∫ ∫
yt+1p

(
yt+1|θ, St+1, y

t
)
p
(
St+1|θ, yt

)
p
(
θ|yt

)
dθdSt+1dyt+1 (4)

The first probability density function, p
(
yt+1|θ, St+1, y

t
)
, is the probability of t + 1 gdp

growth, given the state and the parameters. From 2, we know that, conditional on the

state, gdp growth is normally distributed with mean α+ st+1 and variance σ2.

The second probability density function, p
(
St+1|θ, yt

)
, is the probability of a hidden

state in a Kalman filtering system. It is also conditionally normally distributed. When

the parameters are known, (2) and (3) form the observation and state equations of a

Kalman filtering system. The following recursive equations describe the conditional mean

and variance of the first two probability terms, jointly:

E[yt+1|yt, θ,M] = ρE[yt|yt−1, θ,M] + ρKtyt (5)

where the term Kt is the Kalman gain

Kt = (I + σ2V ar[yt|yt−1, θ,M])−1. (6)

and the conditional variance of the estimate is

V ar[yt+1|yt, θ,M] =
(
(1− ρ2)σ2 + σ2S

)
I (7)

Volatility is
√
V ar[yt+1|yt, θ,M], which is a constant. Constant volatility may or may not

be a realistic feature of the data. But it is a helpful starting point because it will allow us

to isolate the fluctuations in uncertainty that come from estimation uncertainty.

Finally, the third probability density function is the probability of the parameter vector

θ, conditional on the t-history of observed GDP data. To compute posterior beliefs about

parameters, we employ a Markov Chain Monte Carlo (MCMC) technique.3 At each date t,

3More details are presented in the Appendix. Also, see Johannes, Lochstoer, and Mou (2011) for a
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the MCMC algorithm produces a sample of possible parameter vectors,
{
θd
}D
d=1

, such that

the probability of any parameter vector θd being in the sample is equal to the posterior

probability of those parameters, p
(
θd|yt

)
. Therefore, we can compute an approximation

to any integral by averaging over sample draws:
∫
f(θ)p(θ|yt)dθ ≈ 1/D

∑
d f(θd).

To estimate uncertainty, we compute these probability density terms and integrate

numerically to get a forecast. In similar fashion, we also calculate E
(
y2t+1|yt

)
. Applying

the variance formula V ar
(
yt+1|yt

)
= E

(
y2t+1|yt

)
−E

(
yt+1|yt

)2
, and taking the square root

yields uncertainty: Ut =
√
V ar (yt+1|yt).

1.3 Data Description

There are two pieces of data that we use to evaluate and estimate our forecasting model.

The first is real-time GDP data from the Philadelphia Federal Reserve. The variable we

denote yt is the growth rate of GDP. Specifically, it is the log-difference of the seasonally-

adjusted real GDP series, times 400, so that it can be interpreted as an annualized per-

centage change. We use real-time data because we want to accurately assess what agents

know at each date. Allowing them to observe final GDP estimates, that are not known

until 2 years later, is not consistent with the goal. Therefore, yt represents the estimate of

GDP growth between then end of quarter t−1 and quarter t, based on the GDP estimates

available at time t. Similarly, yt is the history of GDP growth up to and including period

t, based on the data available at time t.

We use the second set of data, professional GDP forecasts, to evaluate our forecasting

models. We describe below the four key moments that we use to make that assessment.

The data come from the Survey of Professional Forecasters, released by the Philadelphia

Federal Reserve. The data are a panel of individual forecaster predictions of real US output

for both the current quarter and for one quarter ahead from quarterly surveys from 1968

Q4 to 2011 Q4. In each quarter, the number of forecasters varies from quarter-to-quarter,

with an average of 40.5 forecasts per quarter.

Formally, t ∈ {1, 2, . . . , T} is the quarter in which the survey of professional forecasters

is given. Let i ∈ {1, 2, . . . , I} index a forecaster and It ⊂ {1, 2, . . . , I} be the subset of

forecasters who participate in a given quarter. Thus, the number of forecasts made at time

recursive implementation of a similar discrete-state problem of sampling from the sequence of distributions.
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t is Nt =
∑I

i=1 I(i ∈ It). Finally, let yt+1 denote the GDP growth rate over the course of

period t. Thus, if GDPt is the GDP at the end of period t, observed at the start of quarter

t+ 1, then yt+1 ≡ ln(GDPt)− ln(GDPt−1). This timing convention may appear odd. But

we date the growth t+ 1 because it is not known until the start of date t+ 1. The growth

forecast is constructed as Eit[yt+1] = ln(Eit[GDPt])− ln(GDPt−1).

1.4 Estimation and results: linear-normal model

Our forecaster starts with a prior distribution of parameters, p (θ), described in table 1.

The prior means are chosen to match the mean, variance, and persistence of the GDP

Table 1: Prior assumptions

parameter mean stdev

ρ 0.5 0.08
σ2 3 0.5
σ2s 5 1

growth data between 1968-2012.4 We endow the agent with the prior belief that yt = α,

its long-run mean. Starting in quarter 4 of 1968, each period, the agent observes yt, and

updates his beliefs about future GDP growth using (4).
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4The appendix explores priors estimated on data from 1947-68.
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To understand what properties of our forecasts come from estimation uncertainty, Fig-

ure 1.4 compares our uncertainty to that of an agent who has rational expectations and

thus takes the model parameters as given (labeled θ known). To keep the results compa-

rable, the parameters that are used to compute volatility are the same as the mean prior

beliefs in the parameter uncertainty mode.5

The main takeaway is that estimation uncertainty generates uncertainty shocks, albeit

small ones. With known parameters, stdev(Ut) = 0. When parameters are updated every

period, stdev(Ut) = 0.20. To illustrates what triggers these estimation uncertainty shocks,

it is useful to examine surprises. We define a surprise to be an event that was unlikely,

given the previous period’s estimated model:

Surpriset =
|yt − E(yt|yt−1)|

Ut−1
.

Figure 1.4 plots this surprise measure against the uncertainty measure. What it reveals is

that periods with large surprises are periods when uncertainty increases. But also that the

uncertainty generated by the surprise persists, long after the surprise has passed.

Our results also expose three aspects of our forecasts that do not look realistic. 1) Our

forecasters’ uncertainty is not counter-cyclical (Correl(Ut,GDP) = 13% ). Every common

proxy for uncertainty is counter-cyclical and most theories use uncertainty to explain the

onset of a recession. So, a forecasting model that fails to deliver this feature is suspect. 2)

The model does not explain the low average forecasts of GDP observed in the professional

forecaster data. The true average of GDP growth over 1968:Q4-2012:Q4 is 2.68%. The

average professional forecast of GDP growth is 2.24%, almost half a percentage point lower.

This model fails to explain that gap.6 3) There is obviously no dispersion in forecasts.

There is only one forecaster. Yet, forecast dispersion is a prominent and interesting feature

of the data. Later, we will introduce heterogeneous signals to examine its role.

In the next section, we examine a nonlinear forecasting model that remedies the first two

5The appendix reports results where parameters come from matching moments of the data from 1947-
1968.

6This gap only arises in final GDP estimates. The average initial GDP announcement has 2.3% growth
on average, in line with the forecasts. But if these initial announcements are themselves BEA forecasts of
what the final GDP estimate will be, there is still a puzzle about why early estimates are systematically
lower than final estimates.
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problems: It generates counter-cyclical uncertainty and forecasts that are low on average.

At the same time, the nonlinearity amplifies the uncertainty shocks and makes clear that

ignoring estimation uncertainty may result in a significant under-estimation of uncertainty

shocks.

2 A Non-Normal Forecasting Model

The linear model of the previous section was a starting point. It is a commonly-used

framework where we shut down all sources of uncertainty shocks besides our estimation

uncertainty and could see that mechanism at work. But that model misses important

features of the forecast data and its uncertainty shocks are modest. One reason that

uncertainty varies so little is that all the random variables are normally distributed. The

normal distribution has the unusual property that the conditional variance is the same,

no matter what the conditional mean is. Since uncertainty is a conditional variance, the

normal distribution shuts down much scope for changes in uncertainty. Therefore, we

explore a model that has non-normal shocks. We find that this model both does a better

job of matching features of forecast data and generates much larger uncertainty shocks.

Updating non-normal variables is typically cumbersome. Combining this with param-

eter uncertainty typically makes the problem unwieldy. We make this problem tractable

by doing a change of measure. The Radon-Nikodym theorem tells us that, for any mea-

sure g that is absolutely continuous with respect to a normal distribution, we can find a

change-of-measure function f such that g(x) =
∫
f(x)dΦ(x), where Φ is a normal cdf. Of

course, allowing a forecaster to explore the whole function space of possible f ’s is not viable.

Therefore, we choose a family of functions that has three desirable properties: 1) Its range

is the real line; 2) it has a small number of parameters to estimate; and 3) it can be either

concave or convex, depending on the estimated parameters. A class of transformations

that satisfy this criteria is7

f(X̃t) = c+ b exp(−X̃t) (8)

7Of course, the choice of class of transformations can affect our uncertainty estimates. However, the
key property of this function is its degree of curvature. We allow our agent to estimate a parameter that
governs this curvature. Any function with similar curvature, such as a polynomial or sine function, would
have a similar mechanism at work.
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If we have estimates for b and c, we can do a change of variable: Use f−1(yt) to transform

GDP growth into a variable X̃, which is a normally-distributed continuous variable with a

hidden persistent state.

X̃t = α+ St + σεt

St = ρSt−1 + σSεt

where εt ∼ N(0, 1) and εt ∼ N(0, 1). This procedure allows our forecaster to consider

a family of non-normal distributions of GDP growth and convert each one into a linear-

normal filtering problem with unknown parameters that can be solved using the same tools

as in the previous section. The only additional complication is that the parameters b and

c also need to be estimated.

To isolate the effect of learning about the non-normality of the conditional distribution,

we compute two sets of results. In the first set, we assume that the forecaster knows the

non-linear mapping. He is uncertain about the X̃ process and what parameters govern

it. But he knows the relationship between the variable X̃ and GDP (y). The parameter

ratio c/b in equation (8) affects the skewness of the resulting distribution of GDP growth.

Therefore, we choose c/b = 24 so that the skewness of y matches the skewness of GDP

growth in the data from 1952-1968:Q3.8 The remaining b parameter can then be estimated

just like the mean of yt was before. Then, we can use linear updating MCMC techniques to

form beliefs about the X̃t process. For each parameter draw θi from the MCMC algorithm,

we compute E[yt|It, θi] and E[y2t |It, θi]. We average these expectations over all parameter

draws and compute uncertainty as Ut = E[y2t |It]− E[yt|It]2.
In the second set of results, we allow the forecaster to update beliefs about c/b each

period and to consider his uncertainty about these parameters when computing conditional

standard deviations. This slight change in the model is the piece that generates the largest

uncertainty shocks.
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Figure 1: Uncertainty (Ut) implied by each of the models. The top panel plots the raw
series, while the second shows the same uncertainty series in percentage deviations from
trend.

2.1 Results: Uncertainty Shocks

Figure 1 compares the time series of uncertainty in each of our models.In the non-linear

model where the change of measure function f is known, the presence of unknown param-

eters raises uncertainty above what the model with state uncertainty alone predicts. It

does so directly, but also indirectly, as the unknown parameters make the state harder to

infer. But by the end of the sample, beliefs about parameters have largely converged and

the uncertainty levels are more similar to the other models.

Column (3) of Table 2 shows that updating beliefs about the non-normality of the GDP

growth distribution have a large effect on uncertainty. Such learning increases the average

level of uncertainty by 32%. More strikingly, it more than doubles the size of uncertainty

shocks. The standard deviation of the uncertainty series was 0.71% with a fixed, non-linear

transformation and rises to 1.60% when our forecaster updates beliefs about the shape of

the distribution. One can interpret the magnitude of this standard deviation relative to

the mean. A 1-standard deviation shock to uncertainty raises uncertainty 21% above its

8We choose this time period because the agents would know this data before the first forecast is made
in 1968. If we instead use the 1968-2012 sample, the results are nearly identical.
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model: linear non-normal learn c signals
(1) (2) (3) (4)

Mean Ut 3.38% 5.79% 7.65% 2.11%
Vt 2.91% 6.82% 6.82% 2.73%

Std deviation Ut 0.21% 0.71% 1.60% 0.05%
Vt 0% 0.37% 0.37% 0.21%

Autocorrelation Ut 0.95 0.95 0.95 0.95
Vt 0 0.47 0.47 0

Detrended uncertainty/volatility

Corr(Ũt, yt) 0.28 -0.90 -0.34 0.27

Corr(Ṽt, yt) 0 -0.92 -0.92 0

Corr(Ũt, yt+1) 0.24 -0.22 -0.10 0.24

Corr(Ṽt, yt+1) 0 -0.23 -0.23 0

Forecast properties
data linear nonlinear learn c signals

Mean forecast 2.24% 3.06% 2.24% 2.21% 2.63%
Mean |F Err| 2.20% 2.31% 2.35% 2.40% 2.20%

Table 2: Properties of model uncertainty series. Columns 1, 2 and 3 use equations (4), (8)
and (16) to forecast yt+1. The signal results come from a model described in section 3.2.Volatilities are
computing assuming that the true parameters θ are the maximum likelihood estimates, using all gdp data
available at time t.

mean. That is quite a volatile process and offers quite a contrast to the relatively modest

changes in volatility typically measured.

Uncertainty is very persistent. It is highest at the start of the sample, when data is

most scarce, and then slowly decays over the rest of the sample. As noted by Collin-

Dufresne, Johannes, and Lochstoer (2013), the persistent uncertainty process comes from

the nature of learning: A single large shock to GDP growth results in a quick reevaluation

of the parameter and model probabilities. These revisions in beliefs act as permanent,

non-stationary shocks even when the underlying shock is transitory.

Since using growth rates of GDP is a form of trend-removal, it only makes sense to

correlate a stationary series with another stationary series. Therefore, we detrend volatility

and uncertainty in order to discern the nature of their cyclical components (Table 2, middle

panel). We remove the low-frequency changes in uncertainty, using a bandpass filter to

filter out frequencies lower than once every 32 quarters. Then, we compute a log deviation
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from this long-run trend.

Ũt ≡ ln(Ut)− ln(U trendt ) (9)

The resulting series, plotted in figure 1, reveals large, highly counter-cyclical uncertainty

shocks. In each of the recessions since 1968, uncertainty has risen sharply, 10-20% above

trend.

Finally, keep in mind that there is still no stochastic volatlity in this model. To the

extent that we believe that there are volatility shocks to GDP, this would create additional

shocks to uncertainty, above and boynd those we have already measured. These series are

not yet a complete picture of macroeconomic uncertainty. Instead, they are a look at what

part of uncertainty is missed when we just measure volatility.

2.2 Black Swan Risk

One way of understanding why uncertainty varies so much is to look at the probability

of tail events. Since our estimated probability distribution is negatively skewed, negative

outliers are more likely than positive ones. For a concrete example, let’s consider the

probability of a particular negative growth event. The mean of GDP growth is 2.68%,

while its standard deviation is 3.38%. If GDP growth were normally distributed, then

yt+1 ≤ −6.8% would be a 1-in-100-year event (Pr= 0.0025 quarterly). Let’s call this rare

event, which is more negative than any observed in our data, a black swan. When the

distribution of GDP growth is non-normal and states and parameters change over time,

the probability of this black swan event fluctuates. Figure 2 plots the estimated black swan

probability each period.
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Figure 2: When the probability of a black swan event is high, uncertainty is high. Black
Swan Risk is defined in (10).
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Black SwanRiskt = Prob[yt+1 ≤ −6.8%|It]. (10)

The correlation between black swan risk and uncertainty is 91%. This illustrates that

when distributions of outcomes are being re-estimated each period, uncertainty shocks can

come from changes in estimated probabilities of events the likes of which the forecaster has

never seen.

2.3 Why Does the Non-normal Forecast Model Perform So Differently?

The key to understanding the counter-cyclical nature of uncertainty and the low average

forecast is the curvature of the change of measure function (8). When we estimate the

change of measure function f , we consistently find that the coefficient b is negative, meaning

that the transformation is concave. A concave transformation of a normal variable puts

more weight on very low realizations and makes very high realizations extremely unlikely.

In other words, the concave transformation creates a negatively-skewed variable. This fits

the data because the unconditional distribution of GDP growth rates is negatively skewed.

One economic interpretation of this concave change of measure is to think of X̃t as an

economic fundamental condition. When the economy is functioning very well (high X̃t),

then improving its efficiency results in a small increase in GDP. But if there is a high

degree of dysfunction or inefficiency (low X̃), then the economy can easily fall into a deep

depression. Most modern macroeconomic models are not linear. Many generate exactly

this type of effect through borrowing or collateral constraints, other financial accelerator

mechanisms, matching frictions, or information frictions. Even a simple diminishing returns

story could explain such a concave mapping.

The concavity of the change of measure explains why uncertainty becomes counter-

cyclical. The concave line in Figure 3 is a mapping from x into GDP growth, y. The slope

of this curve is a Radon-Nikodym derivative. A given amount of uncertainty is like a band

of possible x’s. (If x was uniform, the band would represent the positive-probability set and

the width of the band would measure uncertainty about x.) If that band is projected on

to the y-space, the implied amount of uncertainty about y depends on the state x. When

x is high, the mapping is flat, and the resulting width of the band projected on the y-axis

(y uncertainty) is small. When x is low, the band projected on the y axis is larger and
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Figure 3: Nonlinear change of measure and counter-cyclical uncertainty. A given amount of
uncertainty about x creates more uncertainty about y when x is low than it does when x is high.

uncertainty is high.

Learning about b and c causes this concave curve to shift over time. As the slope of the

curve shifts, the amount of y uncertainty that a give amount of x uncertainty generates

changes. This is the single largest source of uncertainty shocks in our model. Notice in

Table 2 that one difference between uncertainty with known c/b and with distribution

learning is that the uncertainty is significantly less counter-cyclical when forecasters are

learning about the non-normality of the distribution. The reason for this is that when

GDP is high, it increases the estimated mean of the GDP process. This makes the negative

outliers in the sample lie further away from the mean and increases the sample skewness.

Since the beliefs about c are tied to model skewness, this causes a decline in c, which

increases the slope of the change of measure function and as a result, increases uncertainty.

Aside from generating larger uncertainty shocks, the nonlinear model also explains

the low GDP growth forecasts in the professional forecaster data. The average forecast

is 2.2% in the model and 2.2% in the forecaster (SPF) data.9 Thus, the first puzzle is

why the nonlinear model produces these average forecasts. If GDP growth is a concave

transformation of a linear-normal underlying variable, Jensen’s inequality tells us that

expected values will be systematically lower than the median realization. But by itself,

Jensen’s inequality does not explain the forecast bias because the expected GDP growth

9Elliott and Timmermann (2008) confirm our finding of forecast bias. They argue that stock analysts
over-estimate earnings growth and the Federal Reserve under-estimates GDP growth.
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Figure 4: Explaining why average forecasts are lower than mean GDP growth. The result has
two key ingredients: The forecaster faces more uncertainty than he would if he knew the true distribution
of outcomes, and a Jensen inequality effect from the concave change of measure.

and the mean GDP growth should both be lowered by the concave transformation (see

figure 4, left panel). It must be that there is some additional uncertainty in expectations,

making the Jensen inequality effect larger for forecasts than it is for the unconditional mean

of the true distribution (see figure 4, right panel). This would explain why our results tell

us that most of the time, E[yt+1|θ] > E[yt+1|yt]. If the agent knew the true parameters,

he would have less uncertainty about yt+1. Less uncertainty would make the Jensen effect

smaller and raise his estimate of yt+1, on average. Thus, it is the combination of parameter

uncertainty and the non-linear updating model that can explain the forecast bias.10

3 Data Used to Proxy for Uncertainty

Our model generates a measure of economic uncertainty. Next, we compare our measure

to others. Commonly used measures for uncertainty include the VIX, forecast dispersion,

squared forecast errors, and GARCH volatility estimates. First, we describe each measure

and examine the theoretical difference with ours. Then, we compare the statical properties.

10When we use first-release GDP data, this forecast bias disappears. But that is consistent with an
interpretation of this first release as itself a forecast. The first release may be lower, on average because
it is more uncertain and the added uncertainty, combined with the non-linear model, lowers the average
initial announcement.
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3.1 Time-varying volatility models

One common procedure for estimating the size of volatility shocks is to estimate an ARMA

process that allows for stochastic volatility. In order to compare such a volatility measure

to our uncertainty series, we estimate a GARCH model of GDP growth, that allows for

time-variation in the variance of the innovations. All data is quarterly and all of these

series are non-stationary. To obtain stationary series, we use annualized growth rates.

The GARCH process that generates the best fit is one with an AR(1) process for GDP

growth (y) and a GARCH(1) process for volatility, σ2t+1, which includes 1 lagged variance:

yt+1 = 3.38 + 0.41yt + εt+1, εt+1 ∼ N (0, σ2t+1) (11)

σ2t+1 = 0.52 + 0.76σ2t + 0.24ε2t (12)

We assume that the errors in our models, εt, are Gaussian and estimate the process using

our full sample of data (1947-2012). The complete set of estimates, stationarity tests, as

well as more detail about the model selection process are reported in appendix B.

Our forecasting model assumed that innovations to the state and observation equa-

tions had constant variance. We estimate homoskedastic models to test the hypothesis

of homoskedasticity with an ARCH-LM test. The evidence for time-varying volatility is

inconclusive.11

But we could incorporate volatility shocks in our forecasting model by allowing the

shock variances σ2 and/or σ2s to have their own stochastic processes. Increases in volatility

would increase uncertainty directly and indirectly, by making other parameters harder to

learn. Future work will explore this interaction.

11The log likelihood of the highest-likelihood heteroskedastic model is only 3% higher than the best-fitting
homoskedastic model. With an ARCH-LM test, one cannot reject the null hypothesis of homoskedasticity
(pvalue is 0.22). We come to a similar conclusion if we estimate the model, starting in 1947, use a stochastic
volatility model, or relax the distributional assumptions. Our baseline analysis assumes that errors εt have
a Gaussian distribution. Using distributions with fatter tails (student-t) yields no difference in estimations
or significance. Furthermore, we explore further lags of all variables; either coefficients were not significantly
different from zero or the log-likelihood was reduced. Finally, we included different lags of linear terms for
εt and variances σ2

t in the GARCH specification. Again, the estimated parameters were not significant or
the log-likelihood was reduced.
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3.2 Forecast dispersion

Some authors use forecast dispersion (Dt in equation 14) as a measure of uncertainty.12

One advantage of this measure is that it is typically regarded as “model-free.” It turns

out that dispersion is not model-free. It is only equivalent to uncertainty in models with

uncorrelated signal noise and no parameter uncertainty.

Any unbiased forecast can be written as the difference between the true variable being

forecast and some forecast noise that is orthogonal to the forecast. In other words,

yt+1 = E[yt+1|It] + ηt + eit (13)

where the forecast error (ηt + eit) is mean-zero and orthogonal to the forecast. We can

further decompose any forecast error into a component that is common to all forecasters

ηt and a component that is the idiosyncratic error eit of forecaster i.

Dispersion is the average squared difference of each forecast from the average forecast.

We can write each forecast as yt+1− ηt− eit. Then, with a large number of forecasters, we

can apply the law of large numbers, set the average eit to 0 and write the average forecast

as Ē[yt+1|It] = yt+1 − ηt. Thus,

Dt ≡
1

N

∑
i

(E[yt+1|It]− Ē[yt+1|It])2 =
1

N

∑
i

e2it (14)

Whether dispersion accurately reflects uncertainty depends on private or public nature

of information. Imprecise private information (high e2it) generates forecast dispersion, while

imprecise public information or estimation error typically does not. To understand the

importance of this distinction, we explore a forecasting model with forecast dispersion.

A Model with Heterogeneous Signals Exploring a model with heterogenous signals

allows to to better understand the realtionship between forecast dispersion and uncertainty.

It also allows us to address the concern that professional economic forecasters have access

to much more information that just past GDP realizations. In this model, the signals

will be a stand-in for all this other macroeconomic data that forecasters can use. Since

12See e.g. Baker, Bloom, and Davis (2012) or Diether, Malloy, and Scherbina (2002), or Johnson (2004).
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the linear-normal model is the simplest setting to illustrate these effects, we augment that

model with signals.

To model this additional information and the heterogeneity of forecasts, we consider a

setting where forecasters update beliefs as in section 1. But each period, each forecaster

i observes an additional signal zit that is the next period’s GDP growth, with common

signal noise and idiosyncratic signal noise:

zit = yt+1 + ηt + εit (15)

where ηt ∼ N(0, σ2η) is common to all forecasters and εit ∼ N(0, σ2ε ) is i.i.d. across fore-

casters.

We calibrate the two signal noise variances σ2η and σ2ε to match two moments. The

first is the average dispersion of forecasts. Time-t forecast dispersion is defined in (14),

where Ēt = 1/Nt
∑

iEit[yt+1] is the average time-t growth forecast and Nt is the number

of forecasters making forecasts at time t. The time-series average of Dt in the survey of

professional forecasters is 1.6%.

The second calibration moment is the average forecast error, 1/T
∑

t FEt. In the

data, this average forecast error is 1.91%. Note that this average error is larger than the

dispersion. It tells us that signal noise is not exclusively private signal noise. We choose

ση and σε such that average dispersion and forecast errors are identical in the model and

in the data. The resulting estimated signal variances are ση = 1.42% and σε = 2.31%.

Our forecasters use prior GDP growth realizations to estimate the parameters of the

model, just as in (4). Then, they use their additional, heterogeneous signal to update these

prior beliefs using Bayes’ law:

E
(
yt+1|yt, zit

)
=

∫
yt+1

f(zit|yt+1)f(yt+1|yt)∫
f(zit|y′, yt)f(y′|yt)dy′dyt+1. (16)

Comparing signal model to forecast data The main result is that forecast dispersion

reduces uncertainty and average forecast errors, in line with the data. But it does not create

uncertainty shocks. Column 4 of Table 2 reveals that the uncertainty shocks in this model

and the linear model without signals are similar and small.

An insight we get from this model is that parameter uncertainty does not show up as
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forecast dispersion. Parameters are estimated on a whole set of historical data. That data

is common to all forecasters. The differences in signals about next-quarter GDP growth

create differences in forecasts. But for parameter estimation, there are many pieces of data

that forecasters have in common and one signal that differs. So the parameter estimates

mostly reflect the common historical data that forecasters observe. Since they have little

heterogeneity, they do not contribute to changes in forecast dispersion. Estimation error

looks more like the public component of the forecast error ηt than it does the private

component εt.

This model matches the data better than the previous models because it allows forecasts

to be more highly correlated with future GDP growth. The correlation of 0.74 in this model

is almost equal to the correlation of 0.72 in the data. With a signal about future GDP,

forecasters in this model are more likely to revise their forecasts slightly up when growth

will be high and down when it will be low, achieving a higher correlation between forecast

and GDP growth.

The bottom line is that forecast dispersion is not synonymous with uncertainty. Build-

ing forecast heterogeneity in the model, similar to what we see in the data, is not a mecha-

nism for generating large uncertainty shocks. Uncertainty shocks that come from estimation

uncertainty are unlikely to be captured by a dispersion measure because most of the rele-

vant data used for estimation is public, not private. With a nonlinear forecasting model,

more subtle relationships between dispersion and uncertainty can arise. These effects are

explored in Orlik, Veldkamp and Kozeniauskas (2013).

3.3 Mean-squared forecast errors

A measure related to forecast dispersion that captures both private and common forecast

errors is the forecast mean-squared error.

We define a forecast mean-squared error (MSEt+1) of a forecast of yt+1 made in quarter

t as the square root of the average squared distance between the forecast and the realized

value

MSEt+1 =

√∑
i∈It(E[yt+1|Iit]− yt+1)2

Nt
. (17)

If forecast errors were completely idiosyncratic, with no common component, then
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dispersion in forecasts and mean-squared forecasting errors would be equal. To see this,

note that FE2
jt = (E[yt+1|Ijt]− yt+1)

2. We can split up FE2
jt into the sum ((E[yt+1|Ijt]−

Ēt[yt+1]) + (Ē[yt+1] − yt+1))
2, where Ēt[yt+1] =

∫
j E[yt+1|Ijt] is the average forecast. If

the first term in parentheses is orthogonal to the second, 1/N
∑

j FE
2
jt = MSE2

t is simply

the sum of forecast dispersion and the squared error in the average forecast: E[yt+1|Ijt]−
Ēt[yt+1])

2 + (Ēt[yt+1]− yt+1)
2.

We can then use this insight along with our forecast data to evaluate the extent to which

variation in mean-squared errors (MSE) comes from changes in the accuracy of average

forecasts and how much comes from changes in dispersion. We estimate a regression of

the GDP forecast mean-squared error, MSE2, defined in (17) on (Ēt[yt+1] − yt+1)
2. We

find that the R2 of this regression is 80%. The remaining variation is due to changes in

forecast dispersion. Since most of the fluctuation in MSE comes from changes in average

forecast errors, it tells us that using forecast dispersion as a proxy for uncertainty will miss

an important source of variation.

3.4 VIX and confidence measures

We discuss the volatility and forecast-based measures in most detail because there are

measures that we can relate explicitly to our theory. Other proxy variables for uncertainty

are interesting but have a less clear connection to our model. The market volatility index

(VIX) is a traded blend of options that measures expected percentage changes of the

S&P500 in the next 30 days. It captures expected volatility of equity prices. But it

would take a rich and complicated model to link macroeconomic uncertainty to precise

movements in the VIX. Nevertheless, we can compare its statistical properties to those of

the uncertainty measure in our model. Figure 5 does just this.

Another commonly cited measure of uncertainty is business or consumer confidence.

The consumer confidence survey asks respondents whether their outlook on future business

or employment conditions is “positive, negative or neutral.” Likewise, the index of consumer

sentiment asks respondents whether future business conditions and personal finances will be

“better, worse or about the same.” While these indices are indeed negatively correlated with

the GARCH-implied volatility of GDP, they are not explicitly questions about uncertainty.

Furthermore, we would like to use a measure that we can compare to the forecasts in
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our model. Since it is not clear what macro variable “business conditions” or “personal

finances” corresponds to, it is not obvious what macro variable respondents are predicting.

3.5 Comparing uncertainty proxies to model-generated uncertainty
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BBD policy unc (0.30)

Figure 5: Comparing variables used to measure uncertainty in the literature.

Figure 5 plots each of the uncertainty proxies. There is considerable comovement, but

also substantial variation in the dynamics of each process. These are clearly not measures

of the same stochastic process, each with independent observation noise. Furthermore,

they have properties that are quite different from our model-implied uncertainty metric.

Table 3 shows that our uncertainty metric is less volatile, moderately counter-cyclical, but

the raw uncertainty series is more persistent than the proxy variables.

3.6 Inferring uncertainty from probability forecasts

One way to infer the uncertainty of an economic forecaster is to ask them about the

probabilities of various events. The survey of professional forecasters does just that. They

ask about the probability that GDP growth exceeds 6%, is between 5-5.9%, between 4-

4.9%, . . . , between -1 and -2%, and below -2%. However, the survey only reports a single

probability weight that is averaged across all forecasters.

26



Mean Standard autocorr correlation correlation

deviation with gt+1 with Ũt
forecast MSE 2.64% 1.53 0.48 0.04 -3.02%
forecast dispersion 1.54% 0.95 0.74 -0.19 19.98%
GARCH volatility 3.65% 1.35 0.90 0.06 7.26%
GARCH real-time 3.45% 1.04 0.90 -0.07 8.32%
VIX 20.55 7.81 0.58 -0.41 35.80%
BBD policy uncertainty 105.95 31.79 0.65 -0.41 20.95%

NL model uncertainty (Ũt) 0 0.03 0.41 -0.23 100%

Table 3: Properties of forecast errors and volatility series for macro variables.
Forecast MSE and dispersion are defined in (17) and (14) and use data from 1968q4-2011q4. Growth
forecast is constructed as ln(Et(GDPt))− ln(Et(GDPt−1)). GARCH volatility is the σt+1 that comes from
estimating (12), using data from 1947q2-2012q2. At each date t, GARCH real-time is the σt+1 that comes
from estimating (12) using only data from 1947:Q2 through date t. V IXt is the Chicago Board Options
Exchange Volatility Index closing price on the last day of quarter t, from 1990q1-2011q4. BBD policy
uncertainty is the Baker, Bloom, and Davis (2012) economic policy uncertainty index for the last month
of quarter t, from 1985q1-2011q4. Ũt is nonlinear model uncertainty, measured as the log deviation from
trend (eq. 9).

Since this data does not completely describe the distribution of yt+1 beliefs, computing

a variance requires some approximation. The most obvious approximation is to assume a

discrete distribution. For example, when agents assign a probability to 1−2% GDP growth,

we treat this as if that is the probability placed on the outcome of 1.5% GDP growth.

When the agent says that there is probability p6.5 of growth above 6%, we treat this as

probability p6.5 placed on the outcome yt+1 = 6.5%. And if the agent reports probability

p−2.5 of growth below -2%, we place probability of p−2.5 on yt+1 = −2.5%. Then the

expected rate of GDP growth is ȳ =
∑

mεM pmm for M = {−2.5,−1.5, . . . , 6.5}. Finally,

the conditional variance of beliefs about GDP growth are var[y|I] =
∑

mεM pm(m− ȳ)2.

The resulting conditional variance series is not very informative. It hardly varies (range

is [0.0072, 0.0099]). It does not rise substantially during the financial crisis. In fact, it

suggests that uncertainty in 2008 was roughly the same as it was in 2003. The reason this

measure does not detect high uncertainty in exteme events is that the growth rates are

top- and bottom-coded. All extremely bad GDP events are grouped in the bin “growth

less than 2%.” All the uncertainty was about how bad this recession might be. Instead,

what the probability bins reveal is a high probability weight on growth below 2%. Since
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most of the probability is concentrated in one bin, it makes the uncertainty look low. The

bottom line is that while using surveys to ask about ex-ante probabilities of GDP events is

a promising approach to measuring uncertainty, the available data that uses this approach

does not seem useful for our purposes.

4 Conclusions

Most approaches to measuring economic uncertainty employ rational expectations econo-

metrics. That means estimating a model and then conditioning on the model and the

estimated parameters to infer what the volatility of innovations was in each period in the

past. In equating the volatility with uncertainty, the econometrician is assuming that the

uncertain agent knows the true distribution of outcomes as every moment in time and is

only uncertain about which outcome will be chosen from this distribution. Assuming such

precise knowledge of the economic model rules out most uncertainty and ignores many

sources of uncertainty shocks.

We measure uncertainty for an agent who is not endowed with knowledge of the true

economic model. Instead, this agent needs to estimate the model of the economy, just like

an econometrician. The conditional variance of this agent’s forecast, his uncertainty, is

much higher and varies more than volatility does. When the agent considers non-normal

distributions of outcomes, new data or real-time revisions to existing data can change

his beliefs about the skewness and kurtosis of the distribution, and thus the probability

of extreme events. Small changes in the estimated shape of a probability distribution can

increase or decrease the probability of these tail events many-fold. Because these events are

so far from the mean outcome, changes in their probability have a large effect on conditional

variance, which translates into large shocks to uncertainty. Thus, our message is that it

is beliefs about these black swans, extreme events that are never observed, but whose

probability is extrapolated from a model with Bayesian updating, that are responsible for

much of the shocks to economic uncertainty.
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A Estimating the model

We estimate the parameters of the model using random-walk Metropolis Hastings algo-
rithm. The likelihood function of a given vector of parameters, θ, (which we need for the
accept/reject step of the algorithm) is given by

p
(
yT |θ

)
=

T−1∏
t=0

p
(
yt+1|yt, θ

)
In turn, the predictive distribution of the data, p

(
yt+1|yt, θ

)
can be obtained as an

integral against the filtering distribution

p
(
yt+1|yt, θ

)
=

∫ ∫
p (yt+1|st+1, θ) p (st+1|st, θ) p

(
st|yt, θ

)
dstdst+1

We apply Kalman filtering techniques to obtain the distribution of the filtered values
of the hidden state, p

(
st|yt, θ

)
, which will be characterized by the following moments

ŝt ≡ E
[
st|yt−1, θ

]
and V ars,t ≡ E

[
(st − ŝt) (st − ŝt)′

]
. The predictive distribution of the

data is then given by the following moments E
[
yt|yt−1, θ

]
= ŝt and V ar

[
yt|yt−1, θ

]
=

V ars,t + σ2.

B Estimated ARCH/GARCH process for GDP

In this section we present the GARCH models that we estimate to infer volatility proxies
for GDP. We estimate volatility using an ARMA model with ARCH or GARCH errors.
The estimation procedure is maximum likelihood. We considered several models and chose
the AR and MA orders based on the significance of additional variables and their effect on
the log-likelihood. Similarly, we considered different lags of linear terms for εt and variances
σ2t in the GARCH specification and used the significance and effect of additional variables
on the log-likelihood to inform the specification choice.

We use quarterly GDP growth rate data for 1947:Q2–2012:Q2.13 The subsample of the
GDP data which matches the uncertainty data is 1968:Q4 to 2011:Q4. The results of ADF
tests indicate that the series for the full sample and matching subsample are stationary.

Best-fitting homoskedastic model Recall that we defined yt+1 ≡ ln(gdpt) − ln(gdpt−1).
The best-fitting processes is an ARMA(1,0):

∆gdpt+1 = 3.25 + 0.37∆gdpt + εt+1, εt+1 ∼ N (0, 14.43)

13Data source: Bureau of Economic Analysis (http://www.bea.gov/national/index.htm#gdp). We are
using the seasonally adjusted annual rate for the quarterly percentage change in real GDP. Note that this
data is for the actual percentage change, not an approximation. The version of the data is 27 July 2012,
downloaded 2 August 2012.
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The log-likelihood is -713.27.
Best-fitting heteroskedastic model For heteroskedastic processes, the best specification

is ARMA(1,0) for growth and GARCH(1) for variance:

∆gdpt+1 = 3.38 + 0.41∆gdpt + εt+1, εt+1 ∼ N (0, σ2t+1)

σ2t+1 = 0.52 + 0.76σ2t + 0.24ε2t

The log-likelihood is -693.90.
For each sample period of each variable we use Augmented Dickey-Fuller (ADF) tests

to check that the series is stationary. This test is based on estimating an AR model for the
data. For each sample we use the best-fitting AR model as the basis for the test. Each of
the series we use passed the stationarity test.
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