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shown, in simple examples, that the economy converges to a long-run balanced growth path from

compactly supported initial productivity distributions. The right tail of the stationary distribution
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1. Introduction

Imitation can speed up growth if there is something to imitate, and if it does not do too

much harm to the incentives of rms to innovate. But imitation makes a heterogeneous

population more homogeneous, and this tends to make the e ects of imitation peter out.

Luttmer [2007] presents a model of growth driven by imitation and selection in which

entering rms can imitate incumbent rms, and in which low-productivity incumbents

are forced to exit because of xed costs. Heterogeneity is preserved because individ-

ual rm productivities follow geometric Brownian motions. This paper adds imitation

by incumbent rms, not just by entering rms, and shows that the noise generated by

Brownian shocks to productivity continues to be enough to break the tendency of im-

itation to eliminate heterogeneity. In fact, the economy has a stationary distribution

of rm productivity relative to aggregate productivity with the same Pareto tail that

was obtained in Luttmer [2007]. Aggregate productivity grows at an endogenous rate,

and the only way the right tail of the rm productivity distribution depends on incum-

bent imitation is through general equilibrium e ects on the equilibrium growth rate of

aggregate productivity.

In the model, entrants and incumbents acquire imitation opportunities at Poisson

rates. For entrants this takes costly entrepreneurial e ort, and for incumbents this hap-

pens at a rate that is taken to be exogenous. But entrants and incumbents have exactly

the same ability to take advantage of imitation opportunities. When an opportunity to

imitate arrives, both can sample a random incumbent rm and copy its productivity at

no further cost. Since entrants sample incumbents that have not chosen to exit, adoption

is always pro table for entrants. Incumbents only adopt the sampled technology if it

implies an improvement in productivity.

The Poisson arrival of imitation opportunities delays the equalizing e ect of imita-

tion. But if incumbent productivities are growing at a common deterministic rate in the

absence of imitation opportunities, and if the initial distribution of productivity has com-

pact support, then this initial heterogeneity will quickly disappear, as low-productivity

rms catch up with the most productive incumbent rms. Alvarez, Buera and Lucas

[2007] and Lucas and Moll [2011] avoid this implication by focusing on balanced growth

paths that can only arise from initial productivity distributions with such thick right

tails that imitation opportunities are never exhausted. This is an assumption about ini-

tial conditions that many will nd hard to defend. Taken literally, it means that all the

growth that has happened since ancient times has been about more and more producers

imitating ideas that were present in the population all along. The contribution of this
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paper is to show that a little bit of independent randomness in the rates at which indi-

vidual rms innovate is enough to preserve heterogeneity in the presence of imitation,

and produce long-run growth, even if the range of productivities at some initial date is

extremely limited.

The economy can be simpli ed by abstracting from xed costs and assuming a xed

population of agents with heterogeneous productivities who simply produce for their

own consumption instead of for the market. In this simpli ed economy, the distribution

of productivities happens to satisfy a partial di erential equation –an example of a

reaction-di usion equation– that was introduced by Fisher [1937] and Kolmogorov,

Petrovskii and Piskunov [1937] to study the geographic spread of an advantageous gene.

Cavalli-Sforza and Feldman [1981] have used this equation to describe the geographic

spread of culture in human populations. As discussed in more detail in Section 2.2.1

below, the interpretation of random improvements and imitation given here is very

di erent from the classic interpretation of this equation. Adapted to an economy with

noise and imitation, the key result of Kolmogorov, Petrovskii and Piskunov [1937] shows

that an initial distribution of productivity concentrated at a mass point transitions over

the long run into a distribution of de-trended productivity that is stationary, with a trend

that grows at a speci c rate. Later investigations have shown that this long-run trend is

approached from below. In a rough sense, this implies a model of historical development

in which the economy transitions over time from an economy with limited variation

in productivity to one that grows at a steady rate, with a thick-tailed distribution of

productivity.

Such a convergence result remains an open problem in the market economy that

arises when rms participate in product and labor markets, and make optimal entry

and exit decisions. But the balanced growth path for this economy can be described by

a very simple system of ordinary di erential equations that can be solved numerically.

Furthermore, this system of di erential equations shows precisely why the right-tail of

the de-trended productivity distribution is approximately Pareto, and why incumbent

imitation has no direct e ect on how thick this right tail will be.

Some Related Work This paper aims to add to a literature on models of growth and

heterogeneity that feature search and imitation. In Jovanovic and Rob [1989], the engine

of growth is imitation in random meetings. Fogli and Veldkamp [2011] study the spread

of ideas when meetings are not random but based on a network structure. Jovanovic and

Eeckhout [2002] consider the e ect of imitation on rm size distributions using a more
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reduced-form copying mechanism. Kortum [1997] has a distribution of productivities

that shifts to the right over time as agents search. This paper extends Luttmer [2007]

by adding incumbent imitation to an economy with only entrant imitation. This follows

and builds on the work of Alvarez, Buera and Lucas [2007], Lucas and Moll [2011],

König, Lorenz and Zilibotti [2012], and Perla and Tonetti [2012].1

Alvarez, Buera and Lucas [2007] and Lucas and Moll [2011] abstract from entry and

exit and focus on incumbent imitation. They show that imitation alone gives rise to

balanced growth when the initial distribution of productivities has a su ciently thick

right tail, but not otherwise. Lucas and Moll [2011] assume producers have a producer-

speci c xed factor that must be divided between the production of consumption goods

and the creation of imitation opportunities. They are able to characterize the e cient

allocation and show the extent to which search and imitation externalities compromise

welfare.

Perla and Tonetti [2012] consider a xed population of incumbent rms imitating

incumbent rms, incorporating a trade-o between production and imitation. In their

economy, only actively producing rms can be sampled by searching rms, and only

relatively productive rms choose to produce rather than imitate. As a result, imitating

rms always sample from a population of rms that are more productive than themselves.

Balanced growth would not arise from an initial distribution with bounded support, but

does with a thick-tailed initial distribution of productivity.

König, Lorenz and Zilibotti [2012] also consider imitation of incumbent rms by in-

cumbent rms, using a mechanism similar to that in Lucas and Moll [2011] and Perla

and Tonetti [2012]. Individual rms decide not between current production and imi-

tation, but between rm-speci c innovation and imitation. This is an important and

crucial di erence because the resulting innovation generates stochastic improvements in

the individual productivities of rms that preserve heterogeneity, in spite of the ten-

dency of imitation to make rms similar. As a result, König, Lorenz and Zilibotti [2012]

obtain convergence from limited initial heterogeneity to long-term growth with a stable

non-degenerate distribution of de-trended productivity. In their economy, innovation

moves a rm up a quality ladder at a Poisson rate. This is probably easier to interpret

than Brownian shocks to productivity, but it does not allow for the direct application

of Kolmogorov, Petrovskii and Piskunov [1937] that is available in simple versions of

the economy described here. More importantly, complementing entrant imitation with

1See Atkeson and Burstein [2011] for a very di erent way to model knowlegde spillovers in an economy

with realistic rm heterogeneity and entry and exit.
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incumbent imitation in the growth model of Luttmer [2007] results in a highly tractable

benchmark model that can accommodate rms operating subject to decreasing returns

or as monopolistic competitors. And rms are making forward-looking decisions that

generate realistic predictions about rm entry and exit.

The Rest of the Paper Section 2 makes the strong equalizing e ect of imitation

explicit in a very simple example in which incumbent innovation is deterministic. It

then adds Brownian noise, while maintaining the assumption of a xed population of

producers. Section 3 characterizes the stationary distributions that arise from Brownian

innovation in an economy with imitating entrants and incumbents, and with exit at an

exogenously speci ed exit barrier. Section 4 then lays out the complete economy with

optimal entry and exit decisions and characterizes the balanced growth path. Section 5

concludes.

2. Innovation and Imitation in a Fixed Population

Consider an economy with a large population of agents who produce and consume.

Everyone has one unit of labor and a certain level of productivity that can evolve over

time. The imitation mechanism is that of Alvarez, Buera and Lucas [2007] and Lucas

and Moll [2011].2

2.1 Deterministic Innovation

Write for log productivity of a particular producer at time . Suppose productivity

evolves deterministically as a result of innovation by the producer, and stochastically

because of randomness in the imitation process. Speci cally, suppose

d = Id + d (1)

where I represents innovation by this producer, is a Poisson process with arrival

rate that counts opportunities to imitate. When an imitation opportunity arrives, the

producer randomly selects another producer from the population. The producer with

the imitation opportunity can copy the technology of the randomly selected producer,

and will do so if this generates an increase in productivity. The resulting increase in

productivity is represented by 0.

2In comparing results, note well that the state variable used below is log productivity, not produc-

tivity. This simpli es Kolmogorov forward equations.
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Write ( ) for the cumulative distribution of log productivity at time . The initial

distribution (0 ) is given and then the process of innovation and imitation determines

how ( ) evolves over time.

2.1.1 Degenerate Initial Conditions

In the simplest scenario, suppose all producers have the same initial productivity 0, so

that (0 ) is a non-decreasing step function with a unit step at 0. Since all producers

improve their own productivity at the same rate I, the population remains homogeneous,

and producers cannot improve their productivity by imitating others. As a result, the

degenerate distribution simply shifts tot the right, so that ( ) = (0 I ).

2.1.2 Stationary Distributions

Suppose instead that the initial productivity distribution (0 ) is smooth, and conjec-

ture that ( ) will be as well for all . Then ( ) must satisfy the partial di erential

equation

D ( ) = ID ( ) ( )[1 ( )] (2)

The negative term ID ( ) re ects the deterministic ow of individual producers

to the right. There is also a ow ( ) of producers with log productivities in ( ]

that sample from the population of producers. These producers move out of the range

( ] if they sample another producer with a productivity in excess of . This happens

with probability 1 ( ). Note that ( ) can only decrease with . There is no

entry into the range of log productivities ( ] from producers not already in that

range.

Conjecture that there is a cumulative distribution function so that

( ) = ( E )

for some E positive. Thus ( ) = (0 ) is the initial distribution of log productivity.

Inserting this into (2) and evaluating the result at = E shows that must satisfy

( E I)D ( ) = ( )[1 ( )] (3)

for all . The right-hand side is non-negative and can only be zero when ( ) {0 1}.
It follows that ( ) = ( E ) can only be a distribution function that solves (2)

if E I. To simplify the calculations, write

=
E I

0 (4)
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The di erential equation for then becomes

D ( ) = ( )[1 ( )]

which is solved by the logistic function

( ) =
1

1 +
³

1
(0)

1
´ (5)

Since 0, this is increasing by construction. Note that the right tail 1 ( ) behaves

like for large. Thus the level of productivity behaves like a Pareto distribution

with right tail index .3

Using (4) and (5) the smooth stationary distributions that solve (2) can be written

as

( ) =
1

1 +
³

1
(0 0)

1
´
exp

³
( E )

E I

´ (6)

This solution is indexed by two parameters: the initial value (0 0) and the trend

parameter E I. The solution is non-degenerate if and only if (0 0) (0 1). Note

well that the initial distribution (0 ) depends on the parameter E I. Thus the

assumed shape of the initial distribution determines the rate at which productivity grows

over time.

Starting from the right initial conditions, the long-run growth rate of this economy is

above the rate at which individual producers improve productivity. In Luttmer [2007],

this happens because of entry, exit, and imitation by entrants. Here entry and exit plays

no role and imitation by incumbents su ces to obtain accelerated growth. In Lucas and

Moll [2011], I = 0, but is not independent of because high-productivity producers

choose to imitate less than low-productivity producers.

2.1.3 Smooth Initial Conditions

It turns out that in this environment, accelerated long-run growth is special, in that it

can only arise from fortuitous initial conditions. To make this explicit requires solving

(2) for more general initial conditions. The partial di erential equation (2) can be

reduced to a system of ordinary di erential equations by de-trending the productivity

state variable. De ne

( ) = ( + I )

3One can also construct stationary distributions on [ ) with a point mass at . These are not

smooth everywhere. Distributions with support ( ) are discussed below.
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Evaluating (2) at = + I gives

D ( ) = ( )[1 ( )] (7)

This is now a system of ordinary di erential equations, instead of a partial di erential

equation. The solution is ( ) = 1 (1+[ 1+1 (0 )] ). The original distribution

is ( ) = ( I ), and (0 ) = (0 ) in particular. Hence

( ) =
1

1 +
³

1
(0 I )

1
´ (8)

for any smooth initial conditions (0 ). To check this against the stationary distribu-

tions obtained earlier, note that (17) and (6) imply

( ) =
1

1 +

Ã
1
1

1+( 1
(0 0)

1) ( I )

1

!
=

1

1 +
³

1
(0 0)

1
´

E I
( I )+

E I
( E I)

=
1

1 +
³

1
(0 0)

1
´

( E )

as required. If (0 ) is the logistic distribution (6), then (8) implies that ( ) is a

logistic distribution.

But (8) is not a logistic distribution if (0 ) is not logistic. It is clear from the

description of the economy that initial conditions with a compact support lead to ( )

that have a compact support as well–nobody can overtake the most productive producer

or fall behind the least productive producer. To make explicit what happens to ( )

over time, suppose and are nite and assume (0 ) = 0 and (0 ) = 1. If

(0 ) varies smoothly in between, then (8) implies

( + I ) =
1

1 +
³

1
(0 )

1
´

This means that ( + I ) = 0 for and ( + I ) = 1 for . No

producer at time will be less productive than + I , or more productive than + I .

In between, 0 implies

lim ( + I ) = 0, ( )

That is, the productivity distribution will converge to a distribution concentrated at

+ I , and not to any logistic limiting distribution. Because the initial distribution has
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compact support and everyone innovates at the same rate, one cannot hope to obtain a

stationary distribution by taking out a trend that di ers from I . The long-run growth

rate is determined by the rate at which individual producers innovate. But imitation

does matter. The easier it is to imitate, in the sense that imitation opportunities arise

more frequently, the more quickly will any initial productive heterogeneity disappear.

For an example, consider an initial distribution with support [0 1] given by (0 ) =

{1 + cos( ( 1))} 2 for [0 1]. Clearly, this is smooth everywhere. At xed

intervals of time, the distributions ( ) are shown in Figure 1.
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0.8
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1

x
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t,x
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Figure 1 The distributions ( ) for (0 ) with compact support.

As expected, the ( ) converge to a point mass that shifts to the right at rate I.

All initial heterogeneity disappears over time, as low-productivity producers receive

more and more draws that allow them to approach the productivity frontier. In this

economy, imitation changes the level of aggregate output, as more and more producers

use technologies close to the frontier. But the long-run growth rate of the economy

is una ected by imitation and completely determined by the rate at which individual

producers innovate.

2.2 Brownian Innovation

Imitation tends to eliminate heterogeneity, even if there is randomness in who gets to

imitate whom. An obvious way to preserve heterogeneity is to introduce randomness in

the innovation processes of individual producers. Consider the same economy as before,

but now add Brownian terms to the individual innovation processes. Thus innovation

makes individual productivity go up and down stochastically. One can imagine that
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all change is irreversible and producers do not know in advance whether a change is

for the better. Or the market conditions encountered by a particular producer could

change. Imitation is still an unambiguous source of productivity improvement: producers

only adopt a technology when it is more productive than their own, and the implicit

assumption is that it can be copied perfectly.

Therefore, instead of (1), suppose that the log productivity of a particular producer

evolves according to

d = Id + d + d (9)

where is a standard Brownian motion, a Poisson process with arrival rate ,

and an increment in log productivity that is obtained by copying another randomly

selected producer–provided this leads to a productivity improvement. Every producer is

subject to di erent Brownian noise, and this will be a force for increasing productivity

dispersion. In a large population, any initial discreteness in the initial productivity

distribution is smoothed out instantaneously.

As before, let ( ) be the distribution of log productivity at time . Then

D ( ) = ID ( ) +
1

2
2D ( ) ( )[1 ( )] (10)

for all 0 and ( ). Without the last term on the right-hand side, this

is the Kolmogorov forward equation, written in terms of distribution functions on the

unbounded domain ( ). The last term on the right-hand side of (10) arises from

imitation, exactly as in the deterministic case (2). As before, take out the common trend

I by considering ( ) = ( + I ). Then (10) becomes

D ( ) =
1

2
2D ( ) ( )[1 ( )] (11)

which generalizes (7).

Without imitation, when = 0, (10) is solved by the distribution function of a

normal random variable with mean 0 + I and variance
2 , which reduces to a point

mass at 0 when = 0. One can then integrate over the initial distribution (0 0) to

obtain a solution that satis es the desired initial condition. Since random walks, with

or without trends, are non-stationary, the distributions ( ) that solve (10) will not

converge when = 0.

The properties of (10) are very di erent when is positive. Consider solutions to

(10) of the form ( ) = ( E ). Evaluating (10) at = E gives

( E I)D ( ) +
1

2
2D2 ( ) = ( )[1 ( )] (12)
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for all ( ). Since is supposed to be a distribution function, ( ) [0 1],

( ) = 0 and ( ) = 1. Note that E I would imply that is convex. But

distribution functions on ( ) cannot be convex, and so (12) cannot be solved by

a cumulative distribution function unless E I. If there is a stationary distribution,

then the growth rate of aggregate productivity must be higher than the average rate at

which individual productivities improve over time.

The partial di erential equation (11) and the associated stationary distributions

implied by (12) have been widely studied. Equation (12) can be solved for a distribution

function on ( ) provided that E I + 2 .4 Kolmogorov, Petrovskii and

Piskunov [1937] and McKean [1975, 1976] prove that starting from a point mass (0 ),

the distributions ( + E ) converge to a non-degenerate limiting distribution when

E is taken to be at its lower bound

E = I +
p
2 . (13)

The same is also true for initial distributions with compact support.5 Furthermore,

McKean [1975] shows that the median of ( ) always lags behind the trend E . In

this sense, the E de ned in (13) is a maximal attainable long-run growth rate to which an

economy converges from below, given compactly supported initial conditions. This yields

a precise prediction for the long-run growth rate E, and for the resulting stationary

productivity distribution. Clearly, imitation is essential for accelerated growth. We have

already seen that growth at a rate above I cannot arise from limited initial heterogeneity

when there is no noise. The formula (13) shows that the amount of long-run acceleration

that is possible with noisy innovation is linear in the standard deviation of that noise.

2.2.1 Some Traditional Interpretations of (11)

Fisher [1937] proposed (11) to describe the geographic spread of an advantageous gene,

and Kolmogorov, Petrovskii and Piskunov [1937] adopted the same interpretation. More

broadly, (11) is an example of a reaction-di usion equation. The second term on the

right-hand side of (11) can be a more general function of ( ) in such equations.

Reaction-di usion equations have a number of di erent interpretations in biology and the

physical sciences. In the original interpretation of Fisher [1937], is a location, ( )

is the population density at a point , and is positive (note that 1 ( ) satis es

4Their argument is essentially the one described below for an economy with entry and exit.
5See Bramson [1983] for assumptions on (0 ) that will result in convergence to a stationary

distribution that solves (12) for a growth rate E that exceeds the one given in (13).
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the same equation with replacing ). The quadratic term ( )[1 ( )] then

measures logistic population growth at the location , with growth rates shrinking from

near to near zero as the population in a particular location gets close to its “carry-

ing capacity,” normalized to 1. In this interpretation, 1
2

2D ( ) measures random

movement of population across locations, usually referred to as di usion. Cavalli-Sforza

and Feldman [1981, Section 1.9] use Fisher’s model to interpret cultural transmission in

human populations.

Here, measures a productivity rather than a location, and ( ) is a distribution

function rather than a density. The classic di usion terminology is potentially confusing

in the present context. The di usion term 1
2

2D ( ) in (11) does not represent tech-

nology di usion, but continuous random and autonomous changes in the productivities

of individual producers. Instead, technology di usion takes place in jumps, when pro-

ducers imitate randomly selected producers with productivities greater than their own.

This is accounted for by the term ( )[1 ( )] in (11) and not by the di usion

term 1
2

2D ( ).

Considering the case = 2 = 1, McKean [1975] shows that, starting from (0 )

equal to a point mass at 0, the ( ) that solves (11) is the cumulative distribution

function of the rst order statistic of a branching Brownian motion. In the present con-

text, suppose initially there is one producer with log productivity zero. Log productivity

then follows a standard Brownian motion. At a unit Poisson rate, this producer gener-

ates a spino .6 The initial log productivity of this spino producer is that of its parent.

Immediately after the spino , the log productivities of parent and spino proceed as

independent standard Brownian motions. Both parent and spino will produce further

spino s at independent Poisson rates, and so on. This generates a stochastically grow-

ing population of producers, with a growth rate that settles down over time to the unit

Poisson rate at which producers generate spino s. In this growing but nite population,

( ) is the distribution at time of the productivity of the most productive producer.

Note well that this is not the cross-sectional distribution of productivities at time that

is of interest here.

6See Chatterjee and Rossi-Hansberg [2007] for model of idea ows and the rm size distribution

based on spino s.

11



3. Entry and Selective Exit

Consider again the economy with Brownian innovation. A simple way to introduce

population growth into this economy is to assume that, at a Poisson rate , every

producer generates a new entrant who inherits its productivity, as in the above discussion

of McKean [1975]. Equivalently, one can assume there is a ow of entrants equal to

times the measure of incumbent producers, who enter with productivities sampled at

random from the incumbent population. All this does is cause the population to grow

at the rate . In this growing population, (10) and all its implications still hold. In

particular, productivity will tend to grow at the rate (13) in the long run. One can also

assume that some producers exit randomly. Conclusions about the long-run distribution

of productivity are not a ected.

A slightly di erent scenario arises when there is a ow = of new entrants,

where and are positive parameters speci ed independently of the size of the initial

population of producers. As before, entrants sample an entry productivity from the

incumbent population. Both the entry rate and the population growth rate will converge

to in the long run, but these rates will not equal from the start unless the initial

population size happens to be . Nevertheless, one expects the convergence result of

Kolmogorov, Petrovskii and Piskunov [1937] and McKean [1975] to apply.

Again take the ow of entrants to be = so that the population has to grow at

the rate in the long run. Suppose further that producers exit when their productivity

crosses + E from above. The constant simply depends on what is associated with

calendar time, and exit at + E will force the distribution as well as its density to

be zero at this exit barrier, just as they would be at in an economy without exit

(see Cox and Miller [1965]). But with , the slope of the stationary density at

the exit barrier scales with the exit rate, and this now becomes an equilibrium variable.

As shown in Luttmer [2007], even given a particular value for E, there can be multiple

stationary stationary distributions, indexed not by the growth rate E, but by the exit

rate at the barrier + E . The question then again arises: to which of these stationary

distributions will productivity distributions converge given compactly supported initial

conditions?

3.1 Population Dynamics

Let ( ) denote the measure of incumbent producers at time with log productivity

+ E or higher. Thus ( ) integrates a density from the right, and it describes the

distribution of log productivity relative to the trend E of the exit barrier. The drift
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of incumbent relative to exit productivities is thus = I E. If E I then the

exit barrier catches up with incumbent productivity on average, and will be negative.

The ow of entering producers samples from the distribution 1 ( ) ( ) and

entrants can start with the productivity they have sampled. As before, incumbent

producers receive imitation opportunities at the Poisson rate .

Starting from (0 ), the measure of incumbent producers at time evolves according

to

D ( ) = D ( ) +
1

2
2D ( ) + ( + [ ( ) ( )])

( )

( )
(14)

The left-hand side and the rst two terms on the right-hand side are the result of

integrating the Kolmogorov forward equation for the density. The last term on the

right-hand side measures the ow of incumbent producers who reach [ ) as new

entrants or as incumbent producers with an imitation opportunity. The ow of entrants

is , and a ow [ ( ) ( )] of incumbents receive imitation opportunities that

could move them into [ ). But because they can only imitate a randomly selected

incumbent producer, they succeed with probability ( ) ( ). The exit barrier =

gives rise to the boundary conditions

( ) = ( ), D ( ) = 0, (15)

There are no producers below = and exit at this barrier means that the density

at = is also zero. Given an initial condition (0 ), the equations (14) and (15)

determine how the measure of surviving producers ( ) evolves over time.

Evaluating (14) at the exit barrier = and using the boundary conditions (15)

gives

D ( ) = +
1

2
2D ( ) (16)

The density at the exit barrier is D ( ) = 0, and so the slope D ( ) of this

density must be positive. The population of survivors changes according to D ( ),

and (16) means that 1
2

2D ( ) is the ow of incumbents exiting at the exit barrier

= .

3.1.1 Stationary Distributions

If the exit rate is constant, then the ow of entrants = , with and positive,

implies a population growth rate that converges to in the long run. Conjecture that

there is a balanced growth path of the form

( ) = ( ), =
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for some population level and some right cumulative distribution function ( ), both

to be determined. Then (14) and (15) can be written as

( ) = D ( ) +
1

2
2D2 ( ) +

μ
+ [1 ( )]

¶
( )

for all together with the boundary conditions ( ) = 1 and D ( ) = 0. A

distribution function 1 ( ) that solves this second-order di erential equation for

some population level de nes a balanced growth path. Evaluating the di erential

equation at = gives the stationary analog to (16),

= +
1

2
2D2 ( )

This emphasizes the fact that the entry rate is jointly determined with the distri-

bution ( ). The slope of the density at = implies an exit rate .

Note that ( ) shows up in linear terms on both sides of the above di erential

equation, and the coe cient that appears on the right-hand side is determined

jointly with ( ). It will be convenient to de ne

= + (17)

This is the sum of the rate at which incumbent producers imitate, and the exit rate

. Since the exit rate must be non-negative, this implies that . The

di erential equation for ( ) can now be written as

0 = D ( ) +
1

2
2D2 ( ) + ( ) 2( ) (18)

for all , together with the boundary conditions

( ) = 1 D ( ) = 0 (19)

Any combination of a distribution function 1 ( ) and an entry parameter

that satis es (18)-(19) de nes a balanced growth path. Note that implies that

( ) 2( ) is non-negative for any ( ) [0 1]. Also, D ( ) has to be non-positive

since 1 ( ) is supposed to be a distribution function. If were non-negative, then

(18) would imply that that 1 ( ) is convex on ( ). This is not consistent with

a stationary distribution with support ( ), and so we must assume that 0. In

other words, stationary distributions on ( ) can only be constructed if E I.

To compare (18)-(19) with the xed population case, note that taking ( ) = 1

( ), = I E and = in (18) gives (12). In the xed population case, E was
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jointly determined with the stationary distribution ( ), and stationary distributions

can be constructed for any E I + 2 = I + 2 . Compactly supported initial

conditions imply the particular long-run growth rate E = I+ 2 . Here, = I E

is taken as given and and ( ) are jointly determined. Luttmer [2007] explicitly

solves (18)-(19) in the special case = 0 and nds that compactly supported initial

distributions converge to the stationary distribution associated with E = I + 2 .

The formula E = I + 2 therefore describes the limiting growth rate in the two

special cases = and = 0, suggesting that the same may be true for (0 ).

3.1.2 Constructing Stationary Distributions

The following adapts some of the initial steps in Kolmogorov, Petrovskii and Piskunov

[1937] and McKean [1975] to account for exit. Fix some exit boundary and exit

parameter . Write ( ) = D ( ) for the density at . The di erential equation

(18)-(19) is equivalent to the rst-order system

D ( ) = ( ) (20)

D ( ) =
( ) + [ ( )] ( )

2 2
(21)

with the initial conditions ( ) = 1 and ( ) = 0. This di erential equation is au-

tonomous and so the solution only depends on . Note that the di erential equation

becomes linear when = 0. This is the case solved in Luttmer [2007].

Starting from any initial conditions, the pair of di erential equations (20)-(21) implies

trajectories [ ] that satisfy d d = ( + ( ) ) ( 2 2) for all 0.

Only solutions that satisfy ( ) [0 1] and ( ) 0 can be interpreted as stationary

distributions. Observe that

D ( ) = 0 ( ) = 0

D ( ) = 0 ( ) =
1
[ ( )] ( )

Since 0, the D ( ) = 0 curve is a parabola with a maximum at (2 ) and zeros

at ( ) = 0 and ( ) = 1. As illustrated in Figure 2 below, this implies

the stationary points [0 0] and [ 0]. Under the alternative assumptions =

and = , these stationary points would correspond to [ ( ) ( )] = [0 0] and

[ ( ) ( )] = [1 0]. In that case, stationary distributions are associated with

unstable trajectories out of the saddle point [1 0] that converge to [0 0] (Kolmogorov,
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Petrovskii and Piskunov [1937] and McKean [1975].) Here and implies

that the initial condition [ ( ) ( )] = [1 0] is not a stationary point of the di erential

equation. At this point, (21) yields D ( ) 0, and hence a positive exit rate at the

boundary .

To examine the di erential equation near the stationary point [0 0], linearize (20)-

(21) to obtain

D

"
( )

( )

# "
0 1

2 2 2 2

#"
( )

( )

#
(22)

The imitation parameter multiplies a quadratic term in (21) and so it drops out from

the linearization. The eigenvalues of the matrix on the right-hand side of (22) are

=
2

s³
2

´2
2 2
, + = 2

+

s³
2

´2
2 2

Since 0, both eigenvalues are negative if real. Complex eigenvalues result in trajec-

tories that spiral around the stationary point [0 0]. Along such trajectories, ( ) and

( ) become negative, and so parameters that gives rise to complex eigenvalues are not

associated with stationary distributions. Since we also have , this means that

must satisfy
1

2

³ ´2
(23)

The rst inequality arises because exit rates are positive, and the second is necessary for

the existence of a stationary distribution. Observe the upper bound for together with

0 implies that 2 = E I, and thus E I + 2 . This is the bound

we already have in (13) for the special case = , and in Luttmer [2007] for the special

case = 0.

Figure 2 shows the phase diagram for the case (2 ) 1 . Included are the

tangent to the curve de ned by D ( ) = 0 at ( ) = 0, the threshold ( ) 1, and the

trajectory that starts at [ ( ) ( )] = [1 0]. For any trajectory [ ] that converges to

the stationary point [0 0],

lim
0

d

d
=

1
2 2

μ
+
lim 0

¶
Thus = lim 0 d d = lim 0 must satisfy 2 2 = . Solving

this yields { +}. That is, the slope of any trajectory converging to the
origin is just the negative of one of the two eigenvalues of the linearized system. Near

the origin, trajectories that start above the line [ ] curve around the origin,
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while trajectories that start below this line converge to the origin monotonically, with

asymptotic slope +. Following the steps of Kolmogorov, Petrovskii and Piskunov

[1937] and McKean [1975] one can show that any that satis es (23) is associated with

a stationary distribution that solves (20)-(21) starting from [ ( ) ( )] = [1 0], and that

the trajectory that starts with initial values [ ( ) ( )] = [1 0] converges to [0 0] with

slope +. Since ( ) = D ( ), it therefore follows that

lim

μ
D ( )

( )

¶
= + = 2

s³
2

´2
2 2

(24)

That is, the stationary distribution behaves like an exponential distribution for large ,

with scale parameter +. The fact that the distribution of behaves like an expo-

nential distribution means that the distribution of behaves like a Pareto distribution.

When is at the upper bound implied by (23), the tail index of this Pareto distribution

simpli es to 2, as in Luttmer [2007].

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4
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0.6

R

f

Df(z) = 0

[R(z),f(z)]

Figure 2 Phase Diagram for [D ( ) D ( )]

Remarkably, the tail index (24) does not depend on the imitation Poisson rate , in con-

trast to both the case of deterministic innovation studied in Alvarez, Buera and Lucas

[2007] and Lucas and Moll [2011], and the case of Brownian innovation without exit pre-

sented above. Because the linearized di erential equation (22) near the stationary point
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[0 0] does not depend on , the tail index (24) of the stationary distribution does

not depend on either. Given 0 and , the precise rate at which incumbents

imitate has no e ect on the shape of the right tail of the productivity distribution. The

condition says that there is exit. The economy with no exit and productivities

distributed throughout ( ) has = , and with this (24) does again depend on .

4. Balanced Growth

The economy with a xed population in Section 2 can be interpreted as an economy

with agents who produce for their own consumption. The growing exit barrier + E

in Section 3 requires a more intricate interpretation. The following takes producers to

be rms and embeds the imitation mechanism of Section 3 in an economy very similar

to Luttmer [2007]. This yields equilibrium conditions that explain why rms exit and

why aggregate productivity grows at the rate E, along a balanced growth path.

4.1 Consumers

Consider an economy with a growing population = of consumers whose dynastic

preferences over per-capita consumption ows are determined byZ
0

ln( )d

for some positive subjective discount rate . Given complete markets, these preferences

imply an interest rate equal to +D[ ] [ ]. At any point in time, consumers

can choose to supply labor or choose to be an entrepreneur. Being an entrepreneur

means looking for opportunities to create a new rm. If the opportunity to create a

new rm arrives, the entrepreneur can randomly select an incumbent rm and adopt

its technology, at no further cost. Abilities vary, and there is a atomless distribution

of labor and entrepreneurial skills in the population. Labor skills determine the ow of

labor services a consumer can supply, and entrepreneurial skills determine the Poisson

rate at which a consumer can start new rms. Comparative advantage determines the

services consumers choose to supply. Write for the expected market value at time of

a randomly sampled rm, measured in units labor. Consumers for whom the product of

and the Poisson rate at which they are able to create new rms exceeds 1 will choose

to be entrepreneurs, and all other consumers will choose to be workers. Given a talent

distribution, one can compute the supplies of labor and entrepreneurial services,

= ( ), = ( ). (25)
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The assumption that the talent distribution is smooth ensures that (·) and (·) are
smooth. Assuming the talent distribution has a mean, both will be bounded. The

function (·) is decreasing and (·) is increasing. An increase in the expected value of
trying to start up a rm induces more agents to switch from supplying labor to being

an entrepreneur. Along a balanced growth path, will be constant at some equilibrium

level , and hence and will grow at the same rate as the population.

4.2 Firms

Firms are production functions that use labor, subject to decreasing returns to scale.

Following entry, a xed cost must be paid continuously to continue the rm.

4.2.1 Static Decisions

A type- rm is a Cobb-Douglas technology that can be used to produce a ow of

[ (1 )]1 [ ] units of consumption using units of labor, where (0 1) is

the factor share of labor. At any point in time , there are many incumbent rms with

rm-speci c xed factor levels . These change according to

d ln( ) = Id + d + d (26)

As before, is a standard Brownian motion, is a Poisson process with arrival rate

, and is an increment obtained by allowing the rm to adopt the technology of

another rm, sampled at random from the population of incumbent rms. Firms must

continuously expend a ow of 0 units of labor to survive, inducing exit of rms

that are not su ciently productive. Wages at time are denoted by , in units of

consumption per unit of time. A type- rm facing wages at time chooses labor

inputs by solving

max

(μ
1

¶1 μ ¶ )
This implies labor inputs equal to

=
1

1 (1 ) 1

After xed costs, the resulting pro ts are

(1 )
= ( 1)
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where the state variable is given by

= ln( ) ln( )
ln( )

1
(27)

Thus is normalized so that pro ts are zero when is zero and 1 measures pro ts

in units of labor. Labor inputs expressed in terms of are = (1 ). Up to

an intercept, measures log variable employment, a measure of rm size.

Let be the growth rate of wages along a balanced growth path. Then (26) and (27)

imply that d = d + d + d , where

= I E, E =
1

(28)

The drift I is a parameter, and E and are equilibrium variables associated with a

balanced growth path. From Section 3 we know that (26)-(28) gives rise to stationary

distributions if combined with exit at a lower threshold for and entry at randomly

sampled points above . As before, let (·) denote the right tail of such a distribution
and write = for the number of rms along a balanced growth path. Stationary

distributions must satisfy the di erential equation (18)-(19) for some = + ( )

, as in (17). Following the convergence considerations discussed in Section 3, select the

particular stationary distribution implied by

=
1

2

³ ´2
(29)

With this, there is a unique stationary distribution (·), given the exit threshold and

the drift = I E.

4.2.2 Exit and Entry Decisions

The construction so far gives rise to pro ts and labor income that grow at a per-capita

rate along a balanced growth path. It follows that per-capita consumption will also

grow at the rate , and hence the interest rate must be + . Since pro ts in units of

consumption are ( 1) and grows at the rate , it follows that the value of a

rm in state is ( ), where

( ) = max
0
E0

Z
0

( 1) d

¸
with determined by (26)-(27) and the initial condition 0 = . The stopping time

must depend on the information available to the rm–the aggregate state of the
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economy and its own history. The Bellman equation for this value function is

( ) = 1 + D ( ) +
1

2
2D2 ( ) +

Z
[ ( ) ( )] d[1 ( )] (30)

where the optimal barrier must satisfy

( ) = 0, D ( ) = 0. (31)

The last term on the right-hand side of (30) describes the capital gains that arise from

the arrival, at the rate , of opportunities to imitate by randomly selecting another

rm and copy its technology if it is more productive than . The condition ( ) = 0

arises from the fact that exit leaves the rm with nothing, and D ( ) = 0 is a familiar

smooth-pasting condition that is required for to be optimal. Given and (·), the
Bellman equation (30)-(31) determines the value function and the optimal threshold

below which this value function will be equal to zero. Note well that the distribution

(·) depends itself on a hypothesized exit barrier. In equilibrium, this exit barrier must
be the same as the exit barrier that follows from (30)-(31). Given , this results in a

xed point condition for .

Potential entrants draw a state from the distribution ( ). The result will be a

new rm with value ( ) in units of labor. The expected value of entry is thus

=

Z
( )d[1 ( )] (32)

in units of labor. The supply of entrepreneurial services (25) combined with the de nition

= + ( ) imply that the per-capita number of rms can be written as

=
( )

+
(33)

The amount of variable labor used by a rm in state is (1 ), and the xed labor

requirement is . Aggregating over all rms gives the labor market clearing condition

( ) =

Z μ
1 +

1

¶
d[1 ( )] (34)

One can think of (33) as the steady-state supply of rms, and (34) as the demand for

rms derived from the supply of labor ( ) . The market clearing price is , but also

has to satisfy the forward-looking condition (32). This implies an equilibrium condition

that drives the determination of the drift parameter , via the dependence of (·) and
(·) on this equilibrium parameter.
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A balanced growth path is now de ned by an exit barrier , a drift parameter with

an associated entry parameter determined by (29), the implied stationary distribution

1 ( ) determined by (18)-(19), a value function ( ) that satis es (30)-(31), and a

value of entry de ned as (32) that also satis es the market clearing conditions (33)-

(34). The level of consumption and wages at the initial date is determined by matching

the stationary distribution 1 ( ) with the time-0 distribution of xed factors, using

(27).

4.3 Constructing Balanced Growth Paths

Holding xed = I E, the conditions for a balanced growth path can be reduced

to a system of rst-order di erential equations. After solving these equations, one can

back out the xed cost parameter that is consistent with equilibrium.

The Bellman equation (30) depends on the expected gains from imitation. Given an

imitation opportunity, these gains are given by

( ) =

Z
[ ( ) ( )] d[1 ( )]

for a rm with a current state . The expected capital gains ( ) appear on the

right-hand side of the Bellman equation (30), and the value of entry (32) is given by

= ( ). Note that D ( ) = D ( ) ( ). Since ( ) is an increasing function,

the integral that de nes ( ) converges if and only if ( ) 0 for large . This is a

boundary condition for D ( ) = D ( ) ( ) that can be used to solve for ( ) given

( ) and ( ).

The construction is now as follows. Fix some 0 and let = ( )2 2, as in (29).

The stationary distribution is determined by

D ( ) = ( )

D ( ) =
( ) + ( ) 2( )

2 2
(35)

1 = ( ), 0 = ( )

This determines (·) and (·) up to a shift . The value function (·) and the associated
gains from imitation (·) must satisfy

D ( ) = ( )

D ( ) =
( ) [ 1 + ( ) + ( )]

2 2
(36)

D ( ) = ( ) ( )
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This is a system of three rst-order di erential equations for (·), (·) and (·). For
xed , the value-matching and smooth-pasting conditions (31) provide two boundary

conditions, and the requirement that ( ) 0 as provides a third. But remains

to be determined. What is missing is the transversality condition for the in nite-horizon

problem of a rm. Rather than impose this transversality condition directly, one can

exploit the fact that for very large, ( ) must behave like the value of a rm with no

imitation opportunities (because ( ) 0 as becomes large) and no option to exit

(because this option is very unlikely to be exercised as becomes large). The value of

such a hypothetical rm is simply the expected present value of + 1 discounted

at the rate . With this, the boundary conditions for (36) can be summarized as

0 = ( ) = D ( )

0 = lim ( ) = lim

(
( )

Ã ¡
+ 1

2
2
¢ 1

!)
(37)

This provides the four boundary conditions needed to determine (·), (·) and (·),
as well as the exit barrier , from (36). To implement this, one can guess [ ( )] and

solve (36) starting from the initial values ( ) = D ( ) = 0 and ( ). One can then

search for the [ ( )] for which the two large- boundary conditions hold approximately.

Starting values for this search can be obtained from the [ ( )] that can be computed

analytically for the special case of = 0, no incumbent imitation, that appears in

Luttmer [2007].

Given = I E 0 and = ( )2 2, this construction delivers a stationary

distribution, a value function, and an implied value = ( ) of entry. The market

clearing conditions (33)-(34) then require that

( ( ))

( ( ))
=

1

+

Z μ
1 +

1

¶
d[1 ( )] (38)

The right-hand side can be interpreted as the average demand for labor, measured in

units of the xed amount of labor needed to operate a rm, implied by a unit ow of

entrants. The left-hand side is the supply of labor in the same units divided by the

equilibrium ow of entrants–observe that this is a decreasing function of the amount

of labor it takes to continue a rm. Imposing (38) gives an equilibrium condition for

= I E 0. More easily, one can conjecture a 0 and then use this condition to

solve for the implicit xed cost that makes an equilibrium.
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4.4 A Numerical Example

Suppose E is the equilibrium growth rate for an economy with = 0, no incum-

bent imitation. From Luttmer [2007], this implies 0. Note that (29) implies

= ( )2 2 0. Fix E, take some (0 ), and again solve for the value func-

tion ( ), the gains from imitation ( ), and the distribution 1 ( ). Taking the

value functions of other rms as given, the ability to imitate increases the value of a

particular rm. Furthermore, although the exit threshold will be lower for 0 than

for = 0, rm productivities grow faster because of imitation, and this shifts much of

the productivity distribution to the right. Both e ects make for higher rm values. In

particular, the value of entry = ( ) will be higher when 0. This encourages

more consumers to become entrepreneurs and reduces labor supply. At the same time,

the average rm will be larger, and so the demand for labor will be higher. In addition,

rms move away from the exit barrier more quickly, and this implies a lower exit rate

. A lower exit rate translates into a higher steady state number of rms, further

increasing the demand for labor. There will be an excess demand for labor, implying

that the original growth rate E associated with = 0 is no longer an equilibrium.

It is easy to see that the new balanced growth rate E must be higher. This lowers

the rate = I E at which incumbent productivity grows by itself, relative to entry

productivity. This makes incumbent rms smaller–in particular, the tail index 2

increases, implying a thinner right tail. The value of incumbent rms will be lower,

because of the weaker growth prospects of individual rms, and because the population

that can be imitated is less productive. Such a decline in the value of incumbent rms

is precisely what is needed to help clear the labor market. More consumers will choose

to be workers rather than entrepreneurs, and rms are less productive and demand less

labor. Both e ects work to reduced the excess demand for labor implied by the growth

rate of an economy without imitation.

Quantitatively, everything will hinge on the supply functions (·) and (·) of en-
trepreneurial services and labor services. If these supplies are relative elastic, then it

will take only a small change in the value of entry to clear the labor market, and hence

only a small change in the equilibrium growth rate of the economy. If these supplies

are completely inelastic, then there is an excess demand for labor at the original growth

rate simply because the average rm is larger with imitation than without imitation, and

not because anyone switches from supplying labor services to supplying entrepreneurial

services. In that case, all the adjustment in the labor market clearing condition (38) has

to come from an increase in the equilibrium exit rate = 1
2

¡ ¢2
and an increase
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in the tail index 2 that will result from a higher value of = E I.

To illustrate this in a numerical example, it is easiest computationally to start with

an equilibrium with incumbent imitation and then determine the equilibrium for an

alternative economy with = 0. Figure 3 shows the value functions ( ) and the gains

from imitation ( ) associated with = 0 05, = 0 02 and = 0 10, for an economy

with 0 and an economy with = 0. Note that these parameters imply a tail index

of 2 = 2.7 In the economy with imitation, the imitation parameter is set equal

to = 2, where = ( )2 2. This implies = 0 01. Both sets of functions are

determined by solving (35)-(36). As expected, the value function for 0 dominates

the one for = 0, and both converge to the present value of 1 when is large.
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Figure 3 Value Functions and Gains from Imitation

Now suppose the used in Figure 3 is the equilibrium value of = I E for an economy

with imitation. Suppose the supplies of entrepreneurial and labor services are inelastic.

With some abuse of notation, write the left-hand side of the equilibrium condition (38) as

( ). Suppose the population growth rate is = 0 01 and the factor share of variable

7In the data, this number is slightly above 1. The closer 2 is to 1, the more important the

far right tail of the productivity distribution is for calculating aggregates and present values. This

makes numerical procedures more fragile and requires more rigorous testing of these procedures than

performed for this draft. Results for 2 close to 1 will be reported in a future draft.
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labor equals = 0 7. Then one can calculate the right-hand side of (38) and thus infer

( ). This gives a number of close to 1,000. Since + = 0 02, this implies that

( + ) ( ) 20. That is, xed costs amount to roughly 5% of rm employment

in the economy with incumbent imitation. Now hold xed ( ) and compute the

equilibrium for = 0 by solving (38) for , using the density ( ) = 2( ) ( )

with = ( )2 2 and the exit threshold determined by the optimal stopping problem

for and = 0, obtained in Luttmer [2007]. This gives = 0 0164, implying a

tail index equal to 1 64. The change from the 0 equilibrium = 0 02 to the

= 0 equilibrium = 0 0164 implies a reduction in the growth rate E = I of

the economy equal to 0 36% per annum. As expected, incumbent imitation speeds up

growth in this economy.

The resulting productivity distributions are shown in Figure 4.
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Figure 4 Right Cumulative Distribution Functions

The solid curve is the equilibrium distribution for 0. Holding xed and solving the

di erential equation (35)-(36) again for = 0, analytically using Luttmer [2007], gives

a productivity distribution with the same tail index, but with a higher exit threshold .

In equilibrium, the economy with = 0 and the same ( ) will then have a lower

growth rate E and hence a = I E 0 that is closer to zero. The result is a

productivity distribution with a thicker right tail, as shown in Figure 4.
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It goes without saying that the improvement in long-run growth rates generated by

incumbent imitation ignores the fact that there may be negative e ects on the incentives

of rms to innovate. Here, I is an exogenous parameter. Luttmer [2010] suggests a

model of managerial e ort choice in which this parameter becomes endogenous.

5. Concluding Remarks

The results in this paper suggests that an economy starting out with a narrow range

of initial productivities will, after some period of transition, settle down on a balanced

growth path along which aggregate productivity grows faster than the average rate at

which individual producers are able to innovate. Both noisy innovation and imitation

are essential. Without noise, imitation will eventually make all producers look alike.

Without imitation, aggregate growth is limited by the rate at which individual rms can

innovate. An interesting quantitative question that arises is: how long does an economy

with limited initial heterogeneity linger before it locks on to a path of stable growth?

Although incumbent rms can imitate, their imitation is not frictionless. It is delayed

by their undirected search, and by the nite Poisson rate at which imitation opportu-

nities arrive. This delay allows rm productivities to be widely dispersed. In turn this

dispersion gives rise to a thick-tailed distribution of rm employment, as observed in the

data. Luttmer [2011] gives an alternative interpretation of the employment size distri-

bution of rms that invokes heterogeneous histories of capital accumulation instead of

heterogeneous histories of productivity growth. In such an economy, rampant imitation

can lead to very similar productivities, without necessarily implying a counterfactual lack

of heterogeneity in rm size. Non-rival ideas may be easy to copy, but accumulating the

rival capital needed to implement these ideas takes time.
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