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Abstract

We use cross-sectional information on the prices of G10 currency options to calibrate a non-Gaussian

model of pricing kernel dynamics and construct estimates of conditional currency risk premia. We find that

the mean historical returns to short dollar and carry factors (HMLFX ) are statistically indistinguishable from

their option-implied counterparts, which are free from peso problems. Skewness and higher-order moments

of the pricing kernel innovations on average account for only 15% of the HMLFX risk premium in G10

currencies. These results are consistent with the observation that crash-hedged currency carry trades continue

to deliver positive excess returns.
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The absence of arbitrage links the exchange rate between two currencies and the economies’ respective

stochastic discount factors. We exploit this link to extract the dynamics of stochastic discount factors from the

cross-section of currency options and produce a time series of option-implied currency risk premia. The option-

implied currency risk premia are free of peso problems, and allow us to elucidate the importance of global jump

risks in the determination of premia for common risk factors in currency returns.

Estimates of currency risk premia are commonly derived by studying the time-series and cross-sectional

properties of historical (realized) returns. This paper develops an alternative approach to this question, which

does not rely on historical currency returns, but instead uses cross-sectional data on the pricing of exchange rate

options. We demonstrate that, even though no single currency option is informative about the expected return

of the underlying currency pair, observing a sufficiently broad collection of options on currency cross-rates al-

lows us to deduce the structure of the stochastic discount factors, and therefore the dynamics of currency risk

premia.1 In order to operationalize this methodology, we impose a factor structure on the pricing kernel dynam-

ics, which assumes pricing kernels are driven by a combination of common (global) shocks and idiosyncratic

(country-specific) shocks, with individual countries differing in their exposure to global shocks.2 Cross-sectional

differences in global factor loadings generate variation in option-implied exchange rate distributions, which we

exploit to infer the structure of the pricing kernel innovations. We show that currency risk premia can be ex-

pressed using the cumulant generating functions of these innovations, similar to Backus, et al. (2011) and Martin

(2013), generating a two-factor pricing model for currency returns. The global factor in our model corresponds

to the HMLFX risk factor identified by Lustig, et al. (2011) – and is reflected in the returns to currency carry

trade strategies – while the second factor represents compensation demanded by investors for being short their

own (local) currency.

The model of pricing kernel dynamics we calibrate to exchange rate option data can be interpreted as a

discretized version of a continuous-time model with time-changed Lévy increments (Carr and Wu (2004)). The

global and country-specific pricing kernel innovations in our model are comprised of a Gaussian component and

a non-Gaussian component, each of which have time-varying distributions. The non-Gaussian component can

intuitively be thought of as capturing the joint effects of intra-period stochastic volatility and jumps (“disaster
1Our ability to recover risk premia from exchange rate options can be traced back to the fact that option-implied exchange rate

distributions reveal the conditional, country-level pricing kernel distributions. It is not an application of the Recovery Theorem (Ross
(2013)), and therefore does not rely on its underlying assumptions (e.g. finite-state Markov chains, time-homogenous dynamics, state-
variables following bounded diffusions), detailed in Carr and Yu (2012).

2The presence of asymmetric global factor loadings can be used to rationalize violations of uncovered interest parity (Backus, et al.
(2001)), is consistent evidence from historical currency returns (Lustig, et al. (2011), Hassan and Mano (2013)), as well as, evidence
from exchange rate option markets (Bakshi, et al. (2008)). Models with imperfect risk-sharing provide a microfoundation for asymmetric
global factor loadings (Verdelhan (2010), Ready, Roussanov, and Ward (2013)).
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risks”).3 These features combine to produce a model that not only accommodates non-Gaussian innovations at

each point in time, but also flexibly incorporates stochastic variation in second and higher moments, characteristic

of currency option data (Carr and Wu (2007), Bakshi, et al. (2008)).4 The availability of a closed-form expression

for the generalized Fourier transform of the log currency return, enables us to efficiently recalibrate the model on

each day in our sample (1999:1-2012:6; 3520 days) to match the cross-section of observed G10 exchange rate

option prices (up to 45 cross-rate pairs x 5 strikes).5 Finally, using the calibrated time-series of model parameters,

we compute estimates of option-implied currency risk premia for the currency pairs in our panel.

We confront the option-implied currency risk premia with the historical returns to empirical factor mimick-

ing portfolios identified by Lustig, et al. (2011, 2013), and examine the model’s ability to forecast currency pair

returns in the cross-section and time series. Crucial to note is that – due to limitations on the availability of ex-

change rate options – our investigation focuses only on the G10 (developed market) currencies, unlike Lustig, et

al. (2011, 2013) who examine both developed and emerging market currencies. We find that our model matches

the historical returns on common factor mimicking portfolios, indicating a substantial degree of integration in

the pricing of currency risks across the spot and option markets. Moreover, the lack of a statistically significant

wedge in the historical and option-implied risk premia suggests historical estimates of HMLFX risk premia in

developed markets are not plagued by peso problems (Burnside, et al. (2011)). Our model is never rejected in

cross-sectional (Fama-MacBeth) tests, and achieves adjusted R2 values up to 50%, which are roughly double

those achieved from using interest rate differentials alone. Finally, we decompose the model-implied currency

risk premia across innovations to the log pricing kernels, differentiating between: (a) the type of shock (Gaus-

sian vs. non-Gaussian); and, (b) the individual moments of the shock (variance, skewness, etc.). These results

provide a structural decomposition of risk premia, which complements reduced-form studies using crash-hedged

strategies to examine the effect of tail risks on currency risk premia (Burnside, et al. (2011), and Farhi, et al.

(2013), Jurek (2013)). We show that the skewness and higher-order moments of the log pricing kernel innova-

tions, on average, account for only 15% of the model-implied HMLFX risk premium. Consequently, the main
3Frameworks with (time-varying) disaster risks have been used to match the equity risk premium in consumption models (Martin

(2013)), explain aggregate stock market volatility (Wachter (2013)), and as a mechanism for generating violations of uncovered interest
rate parity (Farhi and Gabaix (2011). Gabaix (2012) demonstrates the power of this methodology in context of ten classical macro-finance
puzzles.

4Our specification of pricing kernel dynamics shares the features of the continuous-time model of Bakshi, et al. (2008), which
allows both global and country-specific innovations to be non-Gaussian. However, rather than imposing a flat term structure, our model
additionally links the dynamics of the interest rates to the underlying state variables. This creates a link between the level of interest
rates and risk premia, which is necessary for a consistent, risk-based explanation of violations of uncovered interest rate parity. The
specification we propose generalizes the conditionally Gaussian affine model in Lustig, et al. (2011, 2013), and the jump-diffusive setup
in Farhi, et al. (2013), which does not allow for country-specific jumps.

5The availability of the full cross-section of G10 cross-rates (45 pairs) plays an important role in model identification in a discrete-time
setting. The model can also be identified by specifying time-consistent dynamics for the state variables governing the time-change, and
using multiple tenors in the calibration, as in Bakshi, et al. (2008).
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channel through which non-Gaussian innovations act to determine risk premia in our model – both global and

country-specific – is as contributors of pricing kernel variance. For comparison, the contribution of skewness and

higher-order moments to equity risk premia is on average 35% in models calibrated to historical consumption

disasters (Barro (2006), Barro and Ursua (2008), Barro, et al. (2013)), but only 2% in a model calibrated to

match the pricing of equity index options (Backus, et al. (2011)).

Our preferred calibration focuses on pricing options on a set of twenty four currency pairs, designed to

capture the most liquidly traded exchange rate options, as well as, options on “typical” carry trade currencies.

This set includes the nine X/USD pairs, and an additional fifteen pairs formed from currencies which had either

the highest or lowest interest rate among G10 countries at some point in time in our sample. The preferred model

calibration delivers a root mean squared option pricing error – measured in volatility points – of 1.12, which

is in line with typical bid-ask spreads for exchange rate options (Table I, Panel C). Using the calibrated model,

we compute pair-level estimates of conditional currency risk premia. We then aggregate these option-implied

risk premia using the portfolio weights used in the construction of empirical factor mimicking portfolios, to

produce the corresponding model-implied portfolio risk premia. We examine the historical returns to conditional

factor mimicking portfolios – sorted on the basis of contemporaneous interest rates – and unconditional factor

mimicking portfolios – sorted on the basis of backward looking averages of interest rates.

We find that option-implied risk premia for the conditional and unconditional HMLFX factor mimicking

portfolios are 3.55% (3.44%) per annum, respectively (Table IV). Neither of these quantities is statistically dis-

tinguishable from the corresponding mean realized returns of 4.96% and 3.32% per annum; the t-statistics of the

differences are equal to 0.43 and -0.16, respectively. We then decompose the model-implied HMLFX risk into

contributions stemming from Gaussian and non-Gaussian pricing kernel shocks, as well as, across the moments

of the pricing kernel innovations. The decomposition reveals that (on average) 58% of the risk premium for the

HMLFX factor mimicking portfolio is due to non-Gaussian innovations in the global factor. To explore the

mechanism through which these innovations contribute to the HMLFX risk premium, we decompose the risk-

premium across the moments of the global pricing shock. This reveals a striking result. Although non-Gaussian

shocks are the dominant drivers of the HMLFX risk premium, they exert their influence primarily by contribut-

ing variance, rather than skewness (or higher moments), to the global innovation. Specifically, we find that (on

average) 85% of the total risk premium is attributed to the variance of the pricing kernel shocks, with only 10%

due to skewness of the shocks, and roughly 5% due to the higher moments. This parallels the empirical results

reported by Jurek (2013) based on an analysis of returns to crash-hedged G10 portfolios, but contrasts with Farhi,

et al. (2013), who argue that “disaster risk accounts for more than a third of the currency risk premia in devel-
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oped economies.” This discrepancy reflects two significant differences in the empirical identification strategies.

First, Farhi, et al. (2013) only observe data for X/USD options (N − 1 option-implied distributions), and are

therefore unable to fully identify the pricing kernel dynamics (N kernels) exclusively using exchange rate option

data unlike this paper. Instead, they measure the total HMLFX risk premium from historical returns, and only

use exchange rate options to pin down the disaster risk component. Second, their identification of the disaster

risk component leans heavily on the assumption of Gaussian country-specific innovations. This assumption is at

odds with evidence in Bakshi, et al. (2008) and the results of our calibration, both of which point to significantly

non-Gaussian country-specific innovations (Table A.I). For example, the average skewness values of the country-

specific innovations range from -0.82 (SEK) to -3.69 (AUD) in the cross-section; kurtosis values are routinely in

excess of ten.

We conduct a similar analysis for the risk premia demanded by investors in each of the G10 countries for being

short their own local currency (Table III). We refer to this risk premium as the short reference risk premium, and

show that – within our model – it is determined exclusively by the even moments of the country-specific pricing

kernel innovations. Empirically, we find that the mean share of the risk premium accounted for by the variance

of the country-specific innovations is greater than 98% in all ten G10 currencies. The short reference risk premia

range from 0.54% (AUD) to 1.33% (SEK) per annum. We find that the historical returns (3.32% per annum) to

a strategy which is unconditionally short the U.S. dollar against an equal-weighted basket of the G10 currencies,

are statistically indistinguishable from the model-implied premium of 1.59% per annum (difference t-stat: 0.63).

However, the model is unable to explain the high historical returns to the “short dollar carry trade” identified in

Lustig, et al. (2013), which goes long (short) the U.S. dollar against a basket of foreign currencies when foreign

interest rates are low (high).

To further evaluate the ability of the model to explain realized currency returns we conduct regressions of

currency pair excess returns onto the option-implied risk premia (Table V). We find that the single model-implied

variable achieves an adjusted R2 of 30% in cross-sectional (Fama-MacBeth) regressions, which is comparable to

that achievable using the interest rate differential (26%). The explanatory power of the model-implied quantities

increases even further when the risk premium is disaggregated into its two constituents (47%). The option-

implied risk premia are never driven out by interest rate differentials, though they also do not subsume their cross-

sectional forecasting power, suggesting that currency options and interest rates carry non-redundant information

about currency risk premia. Although the null hypothesis of the model is never rejected in these regressions, the

rejections of the null of no predictability are relatively weak. The model fares poorly in pooled panel regressions,

mimicking the empirical difficulties of identifying a statistically significant and positive, risk-return tradeoff in
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equity markets (Campbell (1987), French, et al. (1987), Campbell and Hentschel (1992)).

Our preferred calibration allows for time-varying global factor loadings, ξit , which are parameterized as a

function of the prevailing interest rate differentials, ξit = ξi − Ψt · (rit,t+1 − rUSt,t+1). This parameterization cap-

tures the empirical regularity that portfolios sorted on prevailing interest differentials (conditional factor mim-

icking portfolios) outperform portfolios sorted on historical averages of interest rate differentials (unconditional

factor mimicking portfolios). Indeed, we find a negative within-time-period/across pair association between the

loadings and interest rate differentials (Ψt > 0), and a negative across-time/across-pair relation between the

value of ξi and the unconditional mean interest rate differential (Table I, Panel A), consistent with a risk-based

explanation for currency excess returns. The average estimate of the cross-sectional sensitivity, Ψt, is 0.42 (t-stat:

13.09). Although this result is consistent with the preferred (“unrestricted”) model specification in Lustig, et al.

(2011), the covariation between loadings and exchange rates indicated by exchange rate options is quantitatively

weak within developed market currencies. As a result, the mean option-implied risk premium for the conditional

HMLFX replicating portfolio is only 11bps higher than for the corresponding unconditional factor mimicking

portfolio in developed market currencies. Equivalently, generating a large wedge between the model-implied

conditional and unconditional risk premia by linking global factor loadings to interest rate differentials, induces

excessive comovement of option-implied exchange rate moments with interest rate differentials, relative to that

observed in the data. Finally, we document that while allowing for time-varying loadings leads to a modest im-

provement in the model’s fit to option prices, it also leads to an overall decline in model-implied risk premia.

The intuition for this result is that since the models are constrained to match option prices (i.e. exchange rate

volatilities), an increase in the global factor loading spread requires some combination of a decline in the global

and/or country-specific state variables governing the quantity of risk, such that the level of the risk premium may

decline.

The remainder of the paper is organized as follows. Section 1 introduces the model of country-level pricing

kernel dynamics and derives key results for currency returns, interest rates, risk premia, and currency option

prices. Section 2 describes the data, model calibration, and parameter estimates. Section 3 reports the time

series of option-implied currency risk premia, conducts various decompositions, and compares the model risk

premia to historical returns on empirical factor mimicking portfolios. Section 4 discuses the effect of time-

varying loadings on currency risk premia within our option pricing calibration, and examines the implications of

linking time-variation in loadings to interest rate differentials for option-implied moments. Section 5 concludes.

Appendix A provides auxiliary results related to the cumulant generating function of the time-changed Lévy

increments.
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1 Pricing Kernels, Currency Risk Premia, and FX Option Pricing

We develop a parsimonious model of exchange rates based on a specification of pricing kernel dynamics

driven by a combination of global and country-specific wealth shocks, and derive its implications for the time-

series and cross-section of currency risk premia. Unlike previous papers which have studied these questions

using historical (realized) currency returns, we extract estimates of instantaneous currency risk premia from data

on foreign exchange options. The calibrated model allows us to: (1) obtain a time-series of option-implied risk

premia for the currency carry factor (HMLFX ; Lustig, et al. (2011)) and country-specific factors (e.g. such as

premium for short dollar exposure; Lustig, et al. (2013)); (2) decompose pair- and portfolio-level risk premia

across moments of the pricing kernel innovations; and, (3) assess the importance of non-Gaussian (jump) risks in

the determination of currency risk premia, complementing earlier empirical work (Burnside, et al. (2011), Farhi,

et al. (2013), Jurek (2013)).

Our model begins with a specification of country-level log pricing kernel dynamics of the form:

mi
t+1 −mi

t = −αit − ξit · L
g
Zt
− LiY it (1)

where LgZt and Li
Y it

are independent non-Gaussian shocks. The LgZt shock is global, and is common to all

countries; the Li
Y it

shocks are country-specific, and are cross-sectionally independent. This factor representation

corresponds to a discretized version of the continuous-time dynamics in the time-changed Lévy model of Bakshi,

et al. (2008), and shares the spirit of the affine models of Backus, et al. (2001), and Lustig, et al. (2011, 2013).

The distribution of the shocks is time-varying, and depends on the underlying model state variables, Zt and Y i
t ,

which correspond to the time-change parameters of a dynamic model (Carr and Wu (2004)). Intuitively, the

values of the state-variables can be thought of as determining the periodic variance of the pricing kernel shocks

(i.e. the prices of risk). We leave the dynamics of the state variables unspecified, and recover them period-by-

period from cross-sectional data on foreign exchange options.6

Cross-sectional differences in pricing kernel dynamics are driven by a combination of differences in: (a) the

level of αit; (b) countries’ loadings on global shocks, ξit; (c) the time-varying level of the country-specific state-

variables, Y i
t ; and, (d) parameters determining the higher-moments of the country-specific innovations, Li

Y it
. The

drifts, αit, have no effect on currency risk premia, and can be substituted out using the yields of bonds maturing

at t+ 1 for the purpose of option pricing. The importance of allowing for asymmetric country-level loadings on
6A supplementary online Technical Appendix derives the continuous-time analog of our model. The continuous-time model requires:

(a) specifying the dynamics of the model state variables, Zt and Y it ; and, (b) imposing the requirement that global factor loadings remain
constant.
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global innovations, ξit , for rationalizing violations of uncovered interest parity was first highlighted by Backus, et

al. (2001).7 Since then, this feature has been incorporated in the context of option pricing (Bakshi, Carr, and Wu

(2008)), and – in the identification of a factor structure in currency returns (Lustig, et al. (2011, 2013)). Following

Lustig, et al. (2011), we allow the global factor loadings to be time-varying, and explore the implications of this

feature for the determination of currency risk premia.

1.1 Pricing kernel innovations

The dynamics of the pricing kernels and exchange rates in our model are driven by time-changed Lévy

increments, such that each shock can be thought of as a combination of a Gaussian (diffusive) shock and non-

Gaussian (jump) shock.8 Moreover, the distributions of these two components are time-varying through their

dependence on the state-variables, Zt, and, Y i
t , controlling the time-change. These features combine to produce a

model that not only accommodates non-Gaussian innovations at each point in time, but also flexibly incorporates

stochastic variation in second and higher moments, characteristic of currency option data (Carr and Wu (2007)).

In our model, both the global, LgZt , and country-specific increments, Li
Y it

, are allowed to be non-Gaussian.

This mimics the features of the continuous-time model of Bakshi, et al. (2008), but is different from Farhi, et

al. (2013), who allow for global jump shocks, but fix the country-specific component to be Gaussian. The latter

assumption is restrictive since it forces the model to match any non-normalities present in exchange rate option

data using a combination of global factor loadings and the parameters governing the global jump distribution.

Consistent with Bakshi, et al. (2008) we find that allowing for non-Gaussianity in country-specific innovations

plays an important role in matching the data.

To gain intuition about the pricing kernel innovations, it is useful to first consider their non-time-changed

equivalents (i.e. a model with i.i.d innovations). We denote the non-time-changed pricing kernel shocks cor-

responding to the time interval between t and t + 1, Lgt and Lit, to differentiate them from their time-changed

counterparts, LgZt and Li
Y it

. Without loss of generality we normalize the non-time-changed innovations to have

unit variance and decompose each of them (j ∈ {g, i}) into the sum of two components:

Ljt = W j

(1−ηjt )
+Xj

ηjt
(2)

7Backus, Telmer and Foresi (2001) show that in order to account for the anomaly in an affine model, one has to either allow for
state variables to have asymmetric effects on state prices in different currencies or abandon the requirement that interest rates be strictly
positive.

8Since we are in a discrete-time setting the distinction between diffusive and jump shocks is somewhat semantic. More generally,
in the continuous-time version of the model the diffusive shock can also be non-Gaussian, if the instantaneous innovations to the state-
variable governing the time change and the innovations to the pricing kernels are correlated (Bakshi, et al. (2008)). Consequently, the
non-Gaussian component in our discrete-time innovation is designed to simultaneously capture the effects of stochastic variation in the
state-variable within the modeled time interval, and the effect of jumps.
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where W j

(1−ηjt )
is a Gaussian innovation with variance

(
1− ηjt

)
and Xj

ηjt
is a non-Gaussian innovation with

variance ηjt , and ηjt ∈ [0, 1]. With this normalization, the parameter, ηjt , is interpretable as the time-varying share

of innovation variance due to jumps. The jump component has a CGMY distribution, introduced by Carr, et al.

(2002), which is characterized by a quartet of potentially time-varying parameters, {C, G, M, Y }jt :

µjt [dx] =

 Cjt · eG
j
t ·x · |x|−Y

j
t −1 · dx x ≤ 0

Cjt · e−M
j
t ·x · x−Y

j
t −1 · dx x > 0

(3)

The Cjt parameter is a scaling factor, which is set such that the variance of the jump component is ηjt ; G
j
t and

M j
t determine the exponential dampening of the distribution for negative and positive jumps, respectively. The

Y j
t parameter can be interpreted as measuring the degree of similarity between the jump process and a Brownian

motion. The CGMY process nests compound Poisson jumps (−1 ≤ Y < 0), infinite-activity jumps with finite

variation (0 ≤ Y < 1), as well as, infinite-activity jumps with infinite variation (1 ≤ Y < 2). Specifically, we

assume that: (1) global jumps are one-sided, allowing only for positive shocks to marginal utility (Mg
t =∞); and,

(2) country-specific jumps are two-sided, capturing both positive and negative idiosyncratic shocks. Finally, we

use the (time-change) state-variables, Zt and Y i
t , to set the periodic volatility of the Lévy increments. Appendix

A discusses our specification in more detail.

Similar to Martin (2013), we rely on the cumulant generating functions (CGF) of the pricing kernel inno-

vations, k [u], to express quantities of interest such as yields, currency risk premia and and option prices.9 The

cumulant generating function for the non-time-changed Lévy increments, Ljt , are reported in Appendix A. To

derive the CGF for the corresponding time-changed increments we rely on Theorem 1 in Carr and Wu (2004).

In our setup, the time-change is controlled by pre-determined state-variables, Zt and Y i
t , which allow the model

to have non-identically distributed innovations over time. Unlike in a more typical stochastic volatility model,

the time-change variables affect not only volatility, but also the higher order moments of the pricing kernel, en-

abling the model to better match the empirical features of foreign exchange option data. Theorem 1 of Carr and

Wu (2004) states that for a generic time change, T , the cumulant generating function of the time-changed Lévy

process, LT , is given by kT [kL [u]], where kL[u] is the cumulant generating function of the non-time-changed

9Recall that the cumulant generating function of a random variable, εt+1, is defined as follows:

kε[u] = lnEt [exp (u · εt+1)] =

∞∑
j=1

κj · uj

j!

where κj , are the cumulants of the random variable, which can be computed by taking the j-th derivative of kε[u] and evaluating the
resulting expression at zero. The cumulant generating function of the sum of two independent random variables is equal to the sum of
their cumulant generating functions.
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process and kT [u] is the cumulant generating function of the time-change. In our case, the time-change variables

are fixed within the measurement interval (i.e. they follow a degenerate stochastic process with zero drift and

volatility), such that:

kLgZt
[u] = kZt

[
kLgt [u]

]
= kLgt [u] · Zt (4a)

kLi
Y it

[u] = kY it

[
kLit [u]

]
= kLit [u] · Y i

t (4b)

Unless specifically noted with superscripts, cumulant generating functions are computed under the historical (ob-

jective) measure, P. Using these results, along with the cumulant generating functions of the Gaussian and non-

Gaussian components (Appendix A), the cumulant generating function of the time-changed Lévy increments,

k
LjSt

[u] – for the empirically relevant case when Y 6= {0, 1} – is given by:

k
LjSt

[u] = k
W j

(1−ηjt)·St
[u] + k

Xj

η
j
t ·St

[u]

=
(

1− ηjt
)
· u

2

2
· St + ηjt ·

(
(M − u)Y −MY + (G+ u)Y −GY

)
Y · (Y − 1) · (MY−2 +GY−2)

· St (5)

To fix intuition about the analytical results, we will occasionally specialize to the case of a conditionally Gaussian

model, in which case the cumulant generating function of the increments can be obtained by setting, ηjt = 0.

1.2 Term structure of interest rates

Since the stochastic discount factors must price the risk-free claims in their respective economies, we have

Et
[
M i
t+1

]
= M i

t · exp
(
−yit,t+1 · τ

)
. Using the CGFs of the Lévy increments we can express the yield on a

one-period bond in country i as:

yit,t+1 = αit − kLgZt [−ξ
i
t]− kLi

Y it

[−1]

= αit − kLgt [−ξ
i
t] · Zt − kLit [−1] · Y i

t (6)

In our model, yields across countries share an exposure to the common global factor, Zt, with each country having

its own – potentially time-varying – loading, ξit . If the loadings are constant and the state-variables additionally

follow affine diffusions under the relevant measures, e.g. as in Bakshi, et al. (2008), the term-structure of interest

rates will obey a two-factor affine model. In the cross-section, this expression links interest rates to underlying

risk exposures, ξit , establishing an important channel for a risk-based explanation of violations of uncovered

9



interest parity. For example, if the global innovation is Gaussian (ηgt = 0), the cumulant generating function of

the global increment, kLgt [−ξ
i
t] = 1

2 ·
(
ξit
)2, such that countries with higher (lower) global factor loadings tend to

have lower (higher) interest rates, all else equal. More generally, if the first derivative of the cumulant generating

function of the global increment evaluated at−ξit is negative, k
′

Lgt
[−ξit] < 0, and the second derivative is positive,

k
′′

Lgt
[−ξit] < 0, interest rates will be inversely related to global factor loadings. A sufficient condition for this

relationship to hold is that G > ξit and Y < 1, which we show is satisfied under our preferred model calibration.

In the time-series, the expression places a restriction on the dynamics of interest rates (yields) as a function of

the global, Zt, and country-specific, Y i
t , state variables, and the parameters of the cumulant generating functions.

Finally, the above expression highlights that term-structure data can be used to extract information about

currency dynamics, which is an approach taken up by Brennan and Xia (2006), Ang and Chen (2010) and

Sarno, et al. (2012). While term structure dynamics reflect all moments of the underlying pricing kernels, this

information is actually more than sufficient for characterizing the dynamics of risk premia, since these depend

only on moments two and higher. Our approach exploits this feature to extract currency risk premia exclusively

from exchange rate option data.

1.3 Exchange rates and currency risk premia

In the absence of restrictions on the trade of financial assets, no arbitrage requires that the pricing kernel in

country I price all assets denominated in currency I , as well as, the currency-I returns of assets denominated in

all foreign currencies, J . This links the dynamics of the exchange rate, Sjit+1 – specified as the currency I price

of currency J – and the realizations of the respective pricing kernels, M i
t+1 and M j

t+1, through:

EP
t

[
M i
t+1

M i
t

·
Sjit+1

Sjit
· xjt+1

]
= EP

t

[
M j
t+1

M j
t

· xjt+1

]
(7)

EP
t

[
M i
t+1

M i
t

· xit+1

]
= EP

t

M j
t+1

M j
t

·

(
Sjit+1

Sjit

)−1

· xit+1

 (8)

where xit+1 and xjt+1 are payoffs of the traded assets denominated in currencies I and J , respectively. If we could

construct Arrow-Debreu securities corresponding to each (N + 1)-tuple of realizations, {LgZt , {L
k
Y kt
}Nk=1}, the

market would be complete and each of the above no arbitrage restrictions would have to hold state-by-state, such

that the exchange rate would be given by the ratio of the corresponding pricing kernels (Fama (1984), Dumas
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(1992), Backus, et al. (2001), Brandt, et al. (2006), Bakshi, et al. (2008)):10

Sjit+1

Sjit
=

M j
t+1

M j
t

·
(
M i
t+1

M i
t

)−1

(9)

The set of tradeable claims in our model economy includes risk-free bonds, exchange rates, and exchange

rate options, such that markets are incomplete. To see this, note that although we observe exchange rate options

on all N ·(N−1)
2 pairs, only N − 1 are non-redundant, preventing us from inferring the realization of the N

underlying stochastic discount factors. When markets are incomplete, the restriction, (9), provides a sufficient,

but not necessary, condition for the exchange rate to satisfy the pair of no arbitrage conditions. For example,

any exchange rate process formed by taking the ratio of a pair of candidate, strictly positive, stochastic discount

factors is admissible. In these circumstances, exchange rates are non-redundant assets, such that trading in

exchange rate options can be viewed as helping complete markets.

We interpret the pricing kernel dynamics, (1), as a representation of candidate stochastic discount factors in

incomplete markets. Correspondingly, we form a candidate exchange rate process using the ratio of the proposed

pricing kernels, and recover its dynamics by matching the prices of exchange rate options. Given our pricing

kernel parametrization the log currency return can be written as:

sjit+1 − s
ji
t =

(
mj
t+1 −m

j
t

)
−
(
mi
t+1 −mi

t

)
= −αjt + αit −

(
ξjt − ξit

)
· LgZt − L

j

Y jt
+ LiY it

(10)

Our primary interest is the characterization of the model-implied risk premium for a zero-investment position

which is long currency J , and is financed in the investor’s home currency I . Risk premia on generic long-short

positions, which do not involve the investor’s home currency I , can then be simply formed as the difference

between the risk premia on long positions in the two foreign currencies. Without loss of generality, if we take the

perspective of an investor in country I , the excess return from investing in a currency J is given by:

EP
t

[
exp

(
yjt,t+1

)
·
Sjit+1

Sjit
− exp

(
yit,t+1

)]
= exp

(
yjt,t+1 + lnEP

t

[
Sjit+1

Sjit

])
− exp

(
yit,t+1

)
≈ lnEP

t

[
Sjit+1

Sjit

]
+ yjt,t+1 − y

i
t,t+1 (11)

10Graveline and Burnside (2013) critique economic inference about real exchange rate determination and risk-sharing based on models
in which the exchange rate is represented as as a ratio of pricing kernels (“asset-market view”). In particular, they emphasize the
importance of modeling trade frictions, the span of tradable assets, and differences in preferences and consumption bundles. By contrast,
our interest is in building an arbitrage free model of exchange rates, rather than studying the economic model giving rise to them.
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In our empirical analysis, we study the relation between the measured currency excess returns (left hand side), and

the model-implied risk premia (right hand side) obtained by calibrating the model to exchange rate options. An

attractive feature of focusing on simple excess returns is that both sides of the equation can be aggregated using

portfolio weights to obtain model risk premia for empirical factor mimicking portfolios (e.g. for the HMLFX

and “dollar carry” factor mimicking portfolios studied by Lustig, et al. (2011, 2013)), which is not the case for

log excess returns.11 We verify ex post that the use of the approximation results in quantitatively negligible errors.

Following Bakshi, et al. (2008), we define the currency risk premium for currency pair J/I as the difference

between the log expected return on the currency adjusted for the interest rate differential:

λjit ≡ lnEP
t

[
Sjit+1

Sjit

]
+
(
yjt,t+1 − y

i
t,t+1

)
(12)

Substituting in the expressions for the risk-free rates, and using the cumulant generating function to re-write the

conditional expectation we obtain:

λjit =
(
kLgZt

[ξit − ξ
j
t ] + kLgZt

[−ξit]− kLgZt [−ξ
j
t ]
)

+

(
kLi

Y it

[1] + kLi
Y it

[−1]

)
=

(
kLgt [ξ

i
t − ξ

j
t ] + kLgt [−ξ

i
t]− kLgt [−ξ

j
t ]
)
· Zt +

(
kLit [1] + kLit [−1]

)
· Y i

t (13)

This expression illustrates that the expected excess return on an individual currency pair is comprised of two

components. The first component – controlled by the global state variable, Zt – represents compensation for

exposure to the global “slope” factor (HMLFX ). The second component – controlled by the country-specific

state variable, Y i
t – represents the compensation demanded by an investor in country i for being short his own

reference (local) currency:12

λjiHML,t =
(
kLgt [ξ

i
t − ξ

j
t ] + kLgt [−ξ

i
t]− kLgt [−ξ

j
t ]
)
· Zt (14)

λirefFX,t =
(
kLit [1] + kLit [−1]

)
· Y i

t (15)

11An alternative measure of the currency risk premium used by Backus, et al. (2001) and Lustig, et al. (2013) is the mean log excess
return, EP

t

[
sjit+1 − s

ji
t

]
+
(
yjt,t+1 − yit,t+1

)
. Although the log risk premium can be computed without reliance on an approximation,

the disadvantage of this measure is that it cannot be aggregated linearly using portfolio weights to produce model-implied estimates of
portfolio risk premia. The log risk premium can be expressed as a series expansion in terms of the cumulants of the time-changed Lévy
increments as:

EP
t

[
sjit+1 − s

ji
t

]
+
(
yjt,t+1 − y

i
t,t+1

)
=

∞∑
k=2

(−1)k ·

((
ξit
)k − (ξjt )k) · κkLg

Zt

+ κk
Li
Y it

− κk
L
j

Y
j
t

k!

12The online Technical Appendix demonstrates that in a model with parametric state-variable dynamics (e.g. as in Bakshi, et al.
(2008)), there will generally be a full term-structure of option-implied currency risk premia. Lustig, et al. (2013) study the corresponding
term-structure of realized risk premia.
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To facilitate interpretation, consider the case where both the global and country-specific innovations are

Gaussian (ηgt = ηjt = ηit), such that the cumulant generating function of the increments is given by, kLt [u] = u2

2 .

In this case, the two risk premia are equal to:

λjiHML,t = ξit ·
(
ξit − ξ

j
t

)
· Zt λirefFX,t = Y i

t (16)

Suppose that – as in a typical currency carry trade – the foreign currency J has an interest rate higher than

the home country I . Since loadings are inversely linked to interest rate levels, (6), the first risk premium is

positive and reflects the compensation demanded by an investor in country I for exposure to a risky asset (i.e. the

exchange rate), whose loading on the global factors is given by
(
ξit − ξ

j
t

)
. The magnitude of the risk premium is

time-varying and given by the level of the global state-variable, Zt. Consequently, the risk premium for exposure

to the global risk factor, LgZt , is interpretable as exposure to the HMLFX (“slope”) factor identified by Lustig, et

al. (2011). The investor in country I also requires compensation for being short exposure to his local (reference)

currency shocks, Li
Y it

; the magnitude of this risk premium is controlled by the local state variable, Y i
t . By

combining the risk premia on currency pairs J/I and K/I (e.g. AUD/USD and JPY/USD) we find that the risk

premium demanded by an agent in country I for a generic currency pair, J/K, not involving his home currency

are: λjkHML,t = ξit ·
(
ξkt − ξ

j
t

)
· Zt and λirefFX,t = 0.

Finally, to gain more intuition about the two risk premium components, we explore two decompositions.

The first decomposition expresses each risk premium in terms of the moments (variance, skewness, etc.) of the

corresponding pricing kernel shocks (LgZt and Li
Y it

). These decomposition shares the flavor of the analysis in

Backus, et al. (2011), who study disaster risk models by relating the pricing kernel entropy to the cumulants of

log consumption growth.13 The second decomposition expresses each risk premium in terms of the contributions

attributable to the Gaussian (W g
Zt

and W i
Y it

) and non-Gaussian ( Xg
Zt

and Xi
Y it

) components of the pricing kernel

innovations.

1.3.1 HMLFX risk premium

In order to express the two risk premia as a function of the moments of the underlying pricing kernel in-

novations, we take advantage of the fact that cumulant generating functions are linked to the cumulants of the

corresponding random variable through an infinite series expansion. Using this expansion, the contribution to the
13The entropy of the pricing kernel is defined as, L(M i

t+1) = lnEt
[
M i
t

]
− Et

[
lnM i

t+1

]
, and provides an upper bound on the log

excess return of any asset in economy I . For details see Appendix B in Backus, et al. (2011).
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excess return of currency pair J/I from exposure to the global factor (HMLFX ) is given by:

λjiHML,t =
∞∑
n=2

(
ξit − ξ

j
t

)n
+
(
−ξit
)n − (−ξjt)n

n!
· κnLgt · Zt (17)

where κn
Lgt

denotes the n-th cumulant of the global increment, Lgt . If we approximate this expression with terms

up to order three – capturing the premium for bearing variance and skewness – we obtain:

λjiHML,t ≈
(
ξit ·
(
ξit − ξ

j
t

)
· Vgt ·

(
1− 1

2
· ξjt · S

g
t ·
√
Vgt
))
· Zt +O(ξ4) (18)

where Vgt = κ2
Lgt

and Sgt = κ3
Lgt
·
(
κ2
Lgt

)− 3
2 , are the variance and skewness of the Lévy increments of the global

factor, Lgt . In particular, given our increment normalization, we have Vgt = 1. The compensation for a pair’s

HMLFX risk is high whenever: (a) the loading differential is large and positive (ξit − ξ
j
t � 0); (b) the price of

risk is high (i.e. volatility of global pricing kernel shocks, Zt, is high); and, (c) the skewness of the pricing kernel

innovations is negative (Sgt < 0). Although the fourth order terms can be shown to be positive, we find that they

are empirically negligible.

Risk-based explanations of violations of uncovered interest rate parity require a link between interest rate

differentials and currency risk premia. To illustrate this feature in our model consider a similar, third-order

expansion of the interest rate differential:

yjt,t+1 − y
i
t,t+1 = αjt − αit +

(
kLgt [−ξ

i
t]− kLgt [−ξ

j
t ]
)
· Zt − kLjt [−1] · Y j

t + kLit [−1] · Y i
t

≈ αjt − αit +

(ξjt − ξit) · κ1
Lgt

+

(
ξit
)2 − (ξjt)2

2
· κ2

Lgt
+

(
ξjt

)3
−
(
ξit
)3

6
· κ3

Lgt

 · Zt
− k

Ljt
[−1] · Y j

t + kLit [−1] · Y i
t +O(ξ4) (19)

Whenever the global jump innovations have negative mean (κ1
Lgt
< 0) and are negatively skewed (κ3

Lgt
< 0), the

interest rate differential will increase with the pair’s loading differential, ξit − ξ
j
t . These pairs are also predicted

to have higher currency excess returns within our model, consistent with empirical evidence on violations of

uncovered interest parity.

An alternative methodology for decomposing the HMLFX component of the currency pair risk premium is

to compute the contribution from Gaussian and non-Gaussian components of the global pricing kernel innovation,

LgZt . This decomposition formalizes the intuition underlying the papers by Burnside, et al. (2011), Farhi, et al.

(2013), and Jurek (2013), which study the contribution of tail risk premia to the excess returns of carry trade
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portfolios by comparing the realized returns to unhedged and crash-hedged portfolios. Specifically, since the

diffusive and jump components of the Lévy increments are independent at each point in time, the cumulant

generating functions appearing in the risk premium formula, (14), can be expressed as sums of the cumulant

generating functions of the time-changed diffusive and jump shocks. This allows us to isolate the component

of the pair’s HMLFX risk premium due to jump shocks, and represent it as a share, φjiHML, of the total risk

premium:

φjiHML,t =
kXg

t

[
ξit − ξ

j
t

]
+ kXg

t

[
−ξit
]
− kXg

t

[
−ξjt

]
kLgt

[
ξit − ξ

j
t

]
+ kLgt

[
−ξit
]
− kLgt

[
−ξjt

] · ηgt (20)

1.3.2 Short reference risk premium

We perform the same moment and shock-type decompositions on the premium demanded by an investor

in country i for being short his local, or reference, currency. Applying the series expansion to the cumulant

generating function of the country-specific shock, Li
Y it

, governing the short reference risk premium, (14), we

obtain:

λirefFX,t =

∞∑
k=1

1 + (−1)k

k!
· κkLit · Y

i
t =

∞∑
n=1

1

(2 · n)!
· κ2·n

Lit
· Y i

t (21)

A stark feature of the reference currency premium is that it does not depend on the odd moments of the country-

specific shock. In other words, economic rationalizations of a reference currency premium, e.g. a short dollar

premium, cannot be based on one-sided events, such as crashes or sporadic flights to quality. Finally, we compute

the fraction, φirefFX,t, of the short reference risk premium driven by the non-Gaussian (jump) component of the

pricing kernel innovation.

φirefFX,t =
kXi

t
[1] + kXi

t
[−1]

kLit [1] + kLit [−1]
· ηit (22)

Since our model does not ascribe a special role to any particular reference currency, we compute short ref-

erence risk premia for all currencies in our sample. Empirically, Lustig, et al. (2013) find evidence of large

compensation for short dollar exposure. We revisit these results in the model calibration and results section

(Section 3).
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1.4 FX option pricing

Given the choice of our model parametrization, option pricing can be efficiently accomplished using standard

Fourier transform option pricing methods described in Carr and Madan (1999). The central input to this pricing

methodology is the cumulant generating function (or characteristic function) of the log exchange rate, sjit =

logSjit , computed under the pricing measure. In general, if interest rates are time varying over the life of the

option, it is convenient to work under the risk-forward measure, Fiτ , whose numeraire is the τ -period zero coupon

bond in country i. In our discretized model, we assume the interest rate is fixed over the life of the option at the

level given by (6), such that the risk-forward and risk-neutral, Qi, measures coincide. Although we write the

subsequent formulas under the risk-forward measure, these can be interpreted as corresponding to risk-neutral

quantities in the model. Finally, it is important to emphasize, that the pricing measure depends on the home

country of the investor, since investors in different countries have distinct pricing kernels.

The risk-forward measure for an investor from country I , associated with a zero-coupon bond maturing at

time t+ 1, is defined as follows:

dFi

dP
=

M i
t+1

M i
t

· exp
(
yit,t+1

)
(23)

where P denotes the physical (historical) measure. The virtue of working under the risk-forward measure is that

we can price claims denominated in units of currency I (e.g. bonds or exchange rate options on the currency

pairs J/I) as the product of their expected payoff, x(sjit+1), under the Fi measure multiplied by the value of

the one-period zero-coupon bond in country I . To see this, recall that any payoff satisfies the following pricing

equation: V i
t = EP

t

[
M i
t+1

M i
t
· x(sjit+1)

]
. Dividing both sides by the value of the zero-coupon maturing at t+ 1, and

recognizing the measure change we obtain:

V i
t = Zit,t+1 · EP

t

[
M i
t+1

M i
t

· exp
(
yit,t+1

)
· x(sjit+1)

]
= Zit,t+1 · EFi

t

[
x(sjit+1)

]
(24)

where Zit,t+1 = exp
(
−yit,t+1

)
is the value of the numeraire, zero-coupon bond. In order to apply this valuation

approach to exchange rate options, we rely on Fourier pricing methods and characterize the distribution of the

exchange rate at t+ 1 using its cumulant generating function under Fi.

To derive the cumulant generating functions of the global and country-specific Lévy increments under the

risk-forward measure, Fi, we proceed directly from the definitions of the cumulant generating function and the
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measure change:

kF
i

LgZt
[u] = lnEFi

t

[
exp

(
u · LgZt

)]
= lnEP

t

[
exp

(
yit,t+1 +

(
mi
t+1 −mi

t

)
+ u · LgZt

)]
=

(
kLgt

[
u− ξit

]
− kLgt

[
−ξit
])
· Zt (25a)

kF
i

Li
Y it

[u] =
(
kLit [u− 1]− kLit [−1]

)
· Y i

t (25b)

kF
i

Lj
Y
j
t

[u] = k
Ljt

[u] · Y j
t (25c)

Contrasting these expressions with the corresponding values under the objective measure, P, we see that the

change of measure results in: (1) a change in the distribution of the global factor dependent on country i’s loading

on the global factor, ξit; (2) a change in the distribution of the local (reference) shock, Li
Y it

; and, (3) leaves the

distribution of foreign, country-specific shocks unchanged. To obtain the cumulant generating function for the

exchange rate at time t+ 1 under the risk forward measure, Fi, we substitute (10), into the definition of the CGF

to obtain:

kF
i

sjit
[u] =

(
sjit − α

j
t + αit

)
· u+ kFi

Lgt

[(
ξit − ξ

j
t

)
· u
]
· Zt + kFi

Lit
[u] · Y i

t + kFi
Ljt

[−u] · Y j
t (26)

where each of the risk-forward CGFs can be evaluated using the formulas above. In order to substitute out the αit

and αjt terms, we take advantage of the fact that: kF
i

sjit
[1] = sjit + yit,t+1 − y

j
t,t+1.14 Finally, the exponential of the

cumulant generating function, (26), evaluated at i · u, exp
(
kF

i

sjit
[i · u]

)
, corresponds to the generalized Fourier

transform of the log currency return. From there, the Fourier transform can be inverted numerically to produce

prices for calls and puts, as in Carr and Madan (1999).

1.4.1 Option-implied moments

An attractive feature of our model, which we exploit in the empirical calibration, is that the cumulants of

the distribution are linear functions of the state variables, {Zt, Y i
t , Y

j
t }. For example, the second and third

14To obtain this result consider pricing an investment in currency J from the perspective of an investor in country i:

1 = Et

[
M i
t+1

M i
t

·
Sjit+1

Sjit
· exp

(
yjt,t+1

)]
= Et

[
M i
t+1

M i
t

· exp
(
yit,t+1

)
·
Sjit+1

Sjit
· exp

(
yjt,t+1 − y

i
t,t+1

)]

= EFi
t

[
Sjit+1

Sjit
· exp

(
yjt,t+1 − y

i
t,t+1

)]
= exp

(
kF
i

s
ji
t

[1] + yjt,t+1 − y
i
t,t+1

)
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cumulants under the risk-forward measure, Fi are given by:

κ2,Fi

sjit
=

(
ξit − ξ

j
t

)2
·
(
kLgt

)′′ [
−ξit
]
· Zt +

(
kLit

)′′
[−1] · Y i

t +
(
k
Ljt

)′′
[0] · Y j

t (27a)

κ3,Fi

sjit
=

(
ξit − ξ

j
t

)3
·
(
kLgt

)′′′ [
−ξit
]
· Zt +

(
kLit

)′′′
[−1] · Y i

t −
(
k
Ljt

)′′′
[0] · Y j

t (27b)

Given a set of model parameters at time t, the state variables can be recovered using a cross-sectional regression

of cumulants measured from contemporaneous exchange rate option data onto the model-implied coefficients.

Although claims on cumulants are not traded, they can be readily reconstructed from option prices. Specifically,

using the insights from Breeden and Litzenberger (1978) and Bakshi, et al. (2003), we compute option-implied

swap rates for variance (V̂
sjit

) and skewness (Ŝ
sjit

). The corresponding empirical estimates of the risk-forward

cumulants can then be recovered from the definitions linking moments and cumulants, κ̂2,Fi

sjit
= V̂

sjit
, and κ̂3,Fi

sjit
=

Ŝ
sjit
·
(
V̂
sjit

) 3
2 . With the prices of these claims in hand, the values of the state variables can be inferred directly

by means of a cross-sectional linear regression, sidestepping more complicated filtering procedures.

Finally, these expressions highlight that the moments of the option-implied exchange rate distribution – and,

more generally, option prices – depend not only on the loading differentials, but also on the levels of the loadings,

ξit . The dependence on the level of the loadings is crucial for model identification, since otherwise option-

implied moments would only allow us to pin down loading differentials, which are insufficient for recovering

risk premia, e.g. (14). For example, if the global and country-specific innovations are Gaussian, the higher order

cumulants (j ≥ 3) are equal to zero, and the second cumulant is only a function of the loading differential,

precluding identification of currency risk premia. Similarly, the P-measure moments only depend on the loading

differentials.15

2 Data and Model Calibration

We calibrate the model of pricing kernel dynamics described in Section 1 using panel data on G10 currency

exchange rate options, and the time-series of G10 exchange rates and one-month LIBOR rates. A novel feature of

our approach is that it provides cross-sectional estimates of instantaneous currency risk premia, without relying

on the time-series of realized (historical) returns. The option-implied estimates of risk premia are free from peso

problems (Burnside, et al. (2011)), and complement the evidence on the factor structure in currency returns

documented by Lustig, et al. (2011, 2013). We then use the model to decompose the HMLFX risk premium
15The cumulants under the historical measure, P, are given by the same expressions, but with the derivatives of the consecutive cumulant

generating functions evaluated at zero, rather than {−ξi, −1, 0}.
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and the premium for short exposure to various G10 currencies into: (a) diffusive and jump shocks; and (b)

contributions from various factor moments (e.g. variance, skewness, etc.).

2.1 Data

The key dataset used in the analysis includes price data on foreign exchange options covering the full cross-

section of 45 G10 cross-pairs, spanning the period from January 1999 to June 2012 (T = 3520 days).16 The

dataset provides daily price quotes in the form of implied volatilities for European options at constant maturities

and five strikes, and was obtained via J.P. Morgan DataQuery. FX option prices are quoted in terms of their

Garman-Kohlhagen (1983) implied volatilities, which correspond to Black-Scholes (1973) implied volatilities

adjusted for the fact that both currencies pay a continuous “dividend” given by their respective interest rates. We

focus attention on constant-maturity one-month exchange rate options. For each day and currency pair, we have

quotes for five options at fixed levels of option delta (10δ puts, 25δ puts, 50δ options, 25δ calls, and 10δ calls),

which correspond to strikes below and above the prevailing forward price. In standard FX option nomenclature

an option with a delta of δ is typically referred to as a |100 · δ| option; we adopt this convention throughout. The

specifics of foreign exchange option conventions are further described in Wystup (2006), Carr and Wu (2007),

and Jurek (2013). In general, an option on pair J/I gives its owner the right to buy (sell) currency J at option

expiration at an exchange rate corresponding to the strike price, which is expressed as the currency J price of one

unit of currency I . The remaining data we use are one-month Eurocurrency (LIBOR) rates and daily exchange

rates for the nine G10 currencies versus the U.S. dollar obtained from Reuters via Datastream.

2.2 Calibration: Intuition

The final goal of our model calibration procedure is to produce a time series of instantaneous currency risk

premia. Since these risk premia are expressed in terms of the cumulant generating function of the pricing kernel

innovations, (13), the calibration procedure can be understood in terms of pinning down the cumulants in the

series expansion of the respective CGFs. Even more precisely, the identification of currency risk premia only

requires knowledge of cumulants of order two or higher, as can be seen in (17) and (21). Our calibration

procedure recovers these cumulants from information in the option-implied exchange rate distribution.

To present the intuition behind our empirical identification strategy it is useful to begin by specializing to

a world in which all pricing kernel innovations are Gaussian (ηjt = 0), such that there are no CGMY jump

16The G10 currency set is comprised of the Australian dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), Euro (EUR), U.K.
pound (GBP), Japanese yen (JPY), Norwegian kronor (NOK), New Zealand dollar (NZD), Swedish krone (SEK), and the U.S. dollar
(USD). There are a total of 45 possible cross-pairs.
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parameters to estimate. In this case, exchange rate distributions are Gaussian, and the only cumulant of order

two or higher – either in the distribution of the pricing kernel innovations, or in the exchange rate distribution –

which is non-zero, is the second cumulant. In particular, the second cumulant (or, variance) of the option-implied

distribution is immediately revealed by the implied volatility of any one of the five, quoted options. The quotes

on the remaining four options are redundant. The identification of the model parameters proceeds on the basis of

equation (27a), which links the variance of the option-implied distribution under the risk-forward measure with

the cumulants of the pricing kernel innovations. Given we have data on all exchange rate cross-pairs, we have

a total of N ·(N−1)
2 observation equations for the option-implied variances. The model parameters to be pinned

down on each day are: (1) the N country loadings, ξit; (2) the variance of the global innovation, Zt; and, (3)

the variances of the N country-specific innovations, Y i
t . Since we can normalize one of the loadings to one, this

leaves us with 2 ·N parameters. In particular, the G10 currency set has ten currencies, yielding twenty parameters

and forty five observation equations. Consequently, the parameters of the Gaussian model are fully-identifiable

using our cross-sectional information on each day individually.

Our ability to identify the Gaussian model owes to the availability of cross-rate options. By contrast, consider

the identification strategy proposed by Farhi, et al. (2013), which only uses information on X/USD options (i.e.

options on the exchange rate of foreign currencies against the U.S. dollar). This approach yields a total of nine

N − 1 observation equations for the twenty model parameters, such that their model is not fully identified even

in the Gaussian setting. This identification problem does not go away when distributions are non-Gaussian,

but rather highlights that the variance of the pricing kernels – which plays a first-order role in determining

the risk premium contributions of the Gaussian and non-Gaussian shocks – remains unidentified in their setup.

Importantly, the non-identification problem can be resolved by specifying time-consistent dynamics for the state-

variables and simultaneously calibrating to X/USD options with multiple tenors, e.g. as in Bakshi, et al. (2008).

How does the identification intuition change if we go to the more general setting with arbitrary option-implied

distributions? To focus attention on the conceptual issues of model identification, rather than the empirical

implementation, suppose that one observes options at a continuum of strike values. Consequently, one could use

the methodology of Breeden and Litzenberger (1976) to extract the option-implied distributions for any exchange

rate for which one has option data. In this case, the goal at each point in time is to identify the N + 1 factor

distributions (global + N country-specific innovations) on the basis of the exchange rate distributions extracted

from the option data. This is clearly not possible using information solely on the N − 1 X/USD exchange rate

options. Again, our ability to identify the model relies on the availability of cross-rate options, which yield a total

of N ·(N−1)
2 option-implied distributions to match. From here, the identification exercise relies on the specific
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parametric specification adopted for the time-changed Lévy increments.

We are faced with matching all the moments of the option-implied exchange rate distributions, by varying the

global factor loadings, state-variables, and parameters describing the pricing kernel innovations (or, equivalently,

the cumulants of the pricing kernel innovations). Again, the goal is to identify all pricing kernel cumulants

of order two or higher, since only these determine currency risk premia. Observing cross-rate options yields

a total of N ·(N−1)
2 independent observation equations per exchange rate cumulant used in model identification.

Contrast this with the number of parameters that would need to be estimated for our pricing kernel parametrization

based on time-changed Lévy increments. We continue to have 2 · N country loadings and state-variables, but

we now also have the CGMY parameters to estimate for the global and country-specific jump components.

Our parametrization only allows for one-sided global jumps, such that we have three global jump parameters,

{C, G, Y }gt , and N quartets for the country-specific components, {C, G, M, Y }it. This would result in a total

of 6 · N + 3 parameters to be identified on each day. With a full set of cross-rate currency options for ten

countries, the model could – at least in principle – be identified using data on only two option-implied moments

(e.g. variance and skewness). Of course, practical implementation faces both the numerical challenges of high

dimensional optimization, and the lack of availability of a dense set of options. The next section describes the

simplifications made to facilitate estimation in light of these issues.

2.3 Calibration: Implementation

To facilitate model calibration we make two simplifying assumptions. First, we assume that on any given day,

t, the country-specific jump parameters, {G, M, Y }it, are identical across all countries, and only allow the jump

share, ηit (equivalently, Cit ) to be country-specific. This reduces the number of country-specific jump parameters

from 4 · N to N + 3. Second, we parameterize the global factor loadings to be a function of each country’s

interest rate differential relative to the U.S. one-month rate, ξit = ξi − Ψt ·
(
rit,t+1 − rUSt,t+1

)
, as in Lustig, et al.

(2011). This allows us to parsimoniously explore the importance of co-variation of loadings and interest rates for

the pricing of exchange rate options, and its effect on the determination of currency risk premia in the time series

and cross section.

Our model calibration proceeds in two stages. The first stage assumes that global factor loadings and the

CGMY jump parameters are time-invariant. It then uses repeated regressions of option-implied cumulants onto

the model-implied loadings, (27a) − (27b), to identify the time series of state variables and estimates of the

global factor loadings, ξi, by minimizing the sum of squared regression errors over the full sample. The outputs

of the first stage are then used to initialize the second stage of the estimation, which steps through the dataset
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day-by-day and perturbs the first stage jump parameters, state variables, and the interest rate sensitivity of global

factor loadings (Ψt) to minimize option pricing errors on each day individually.17 Effectively, the two stage

calibration allows for the jump parameters, state variables, and global factor loadings to change over time. The

variation of the jump parameters and state variables is left unconstrained, while variation in the factor loadings,

ξit , is related to interest rate differentials and is controlled by the estimate of Ψt.

To identify the first-stage parameters, we match the empirical cumulants computed from the prices of variance

and skewness swaps. The procedure for computing moment swaps is based on Bakshi, et al. (2003), and requires

interpolating and extrapolating the observed implied volatility functions. Following Jurek (2013), we interpolate

the implied volatility function within the observed range using the vanna-volga method of Castagna and Mercurio

(2007), and append flat tails beyond the observed strike rage (below the 10δ puts and above the 10δ calls).

Because the procedure requires data augmentation, we only rely on it to provide starting values for the second-

stage of the calibration. The first stage is essentially an application of non-linear least squares to the full sample

of data, where we are minimizing:18

min
Zt,{Y it }10i=1

, {ξi}9i=1, {ηi}
10
i=1, G,M, Y, ηg , Gg , Y g

T∑
t=1

N∑
i=1

((√
m2
i, t −

√
m̂2
i, t

)2

+ ω ·
(
m3
i, t − m̂3

i, t

)2) (28)

where m̂k
i, t (mk

i, t) is the empirical (model) value of the option-implied moment k for cross-rate i at time t.

The first summation is over the dates in our sample, while the second – is over the number of pairs. For each

observation we match the volatility and skewness of the exchange rate, setting the weight ω equal to 0.01, to

account for the fact that the average option-implied skewness is an order of magnitude larger than the average

implied volatility. We sample data every five days (T = 744 weeks; 1999:1-2012:6), and use two different sets of

currency cross-pairs. The first set (HLX + X/USD) includes 24 currency pairs and is comprised of: (a) all X/USD

currency pairs (9 pairs); and, (2) cross-pairs formed on the basis of currencies which had the highest or lowest

interest rates in the G10 set at any point in our sample (15 pairs).19 The virtue of this subset is that it captures the

pricing of the liquid X/USD options, and options on “typical” carry trade currency pairs. The second set uses all

45 G10 cross-rates.

The second stage refines the first stage estimates by minimizing the option pricing errors for the specified
17The loading intercepts, ξi, are left unchanged in the second stage, which enables us to nest calibrations with and without time-varying

global factor loadings by imposing, Ψt = 0, in the second stage.
18Longstaff and Rajan (2008) rely on this methodology to calibrate their collateralized debt obligation pricing model, and provide

additional references of the use of this model calibration approach. As they do, we utilize a direct search algorithm, which does not rely
on the gradient or Hessian of the objective function.

19The set of unique currencies which – at some point in the sample – had the highest one-month LIBOR rates includes: AUD, GBP,
NOK, and NZD. The corresponding set of unique currencies with the lowest interest rates includes: CHF and JPY. This yields a total of
15 cross-pairs for use in estimation.
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option set by comparing the observed and model option-implied volatility. Specifically, we step through each

day in the sample, and perturb the first stage estimates to best match the cross-section of the option-implied

volatilities on that day. Formally, the second stage of the calibration minimizes:

min
Zt,{Y it }10i=1

,Ψt,{ηit}10i=1
, Gt,Mt, Yt, η

g
t , G

g
t , Y

g
t

N∑
i=1

5∑
j=1

(
σij,t − σ̂ij,t

)2
(29)

where σ̂ij, t (σij, t) is the empirical (model) value of the option-implied volatility for currency pair i at strike j at

time t. The first summation is over the set of currency pairs used in the estimation, and the second summation

is over the five strikes quoted for each currency pair. We repeat this procedure daily (T = 3520 days; 1999:1-

2012:6). The net effect of the second stage is to allow for: (a) adjustments to the level of the state variables on

that day; (b) time-variation in the global and country-specific jump parameters; and, (c) variation in the global

factor loading sensitivity, Ψt. Depending on the option set under consideration, this procedure involves pricing

120 (225) individual options on each day in the sample using the Fourier inversion method described in Section

1. Crucially, the second stage of the calibration does not rely on data augmentation, and uses exclusively the

quoted option prices.20

In our baseline specification, we focus on pricing the cross section of high-low cross-pairs and X/USD options

(24 pairs). We allow the global factor loadings to be time-varying and depend on the prevailing interest rate

differentials (Ψt 6= 0), and place no constraints on the type of jump process (Yt) used to explain the option prices.

We examine the robustness of our model calibration results with respect to: (1) the choice of the option set used

to calibrate the model (all G10 cross pairs vs. high-low cross pairs + X/USD options); and, (2) the choice of fixed

(Ψt = 0) vs. time-varying global factor loadings.

2.4 Model parameters

The calibrated model parameters are reported in Table I. Panel A reports the values of global factor loadings,

ξi, along with estimates of their standard errors (in parentheses), obtained from the first stage of the calibration.

Throughout our implementation the U.S. global factor loading is normalized to one. Panel B reports summary

statistics for the time series of model parameters obtained in the second stage of the calibration, which minimizes

option pricing errors day-by-day. We report the time series mean and volatility of the sensitivity of global factor

loadings to interest rate differentials (Ψt), and the parameters governing the distribution of the global pricing
20Since inverting model option prices to obtain estimates of option-implied volatility is computationally costly, we implement an

approximate version of this minimization criterion. Specifically, we minimize the (squared) difference between the model and market
option price, scaled by the value of Black-Scholes vega at that strike.
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kernel innovation. The latter include the share of variance attributable to the non-Gaussian component of the

innovation, ηgt , and estimates of the parameters of the global CGMY jump component, Gt (dampening coeffi-

cient) and Yt (power coefficient). To facilitate interpretation we also report the mean instantaneous skewness and

kurtosis of the time-changed global innovation, LgZt , induced by variation in the jump parameters and the global

state variable, Zt. Panel C reports the quality of the model’s fit to the data in the form of the root mean squared

fitting error for implied volatilities by strike, and in total, measured in volatility points.

We consider a total of four specifications. Specifications I and II are based on the set of high/low interest

rate cross pairs, combined with the nine X/USD pairs (24 pairs); Specifications III and IV are calibrated using

data on all G10 cross pairs (45 pairs). Specifications II and IV are constrained versions of Specifications I and

III, respectively, which impose the restriction that the global factor loadings remain constant in the time series

(Ψt = 0). Based on a combination of parsimony and quality of fit to the option data, Specification I is our

preferred model formulation.

2.4.1 Global factor loadings, ξit

The global loading parameters (Table I; Panel A) range from a low of 0.79 (AUD) to a high of 1.27 (JPY).

These values are broadly consistent with previously reported estimates from models allowing for asymmetries

in exposures to global risks. For example, using three years of data on a single currency triangle (JPY/USD,

GBP/USD, GBP/JPY), Bakshi, et al. (2008), find loadings of 1.53 (JPY) and 1.01 (GBP). Our estimate of

the loading for the British Pound is slightly lower and ranges from 0.93 to 0.98. These estimates can also be

contrasted with the parameters used in the simulation framework in Lustig, at al. (2011), which was calibrated

to match the historical risk and return properties of currency returns, risk-free rates, and inflation. Under their

“restricted” model with constant loadings, which is most comparable to our first stage output, the calibration

requires loadings to range from
√

δ
δ∗ = 0.81 (high interest rate currencies) to

√
δ
δ∗ = 1.16 (low interest rate

currencies), when measured as a fraction of the loading of the reference currency (δ∗).21 Our estimates of global

factor loadings based on option data fall into a comparable, but slightly broader range.

The second stage of the calibration relaxes the assumption that loadings are constant (Specifications I and

III), allowing them to depend on the contemporaneous interest rate differential, ξit = ξi −Ψt ·
(
rit,t+1 − rUSt,t+1

)
.

We find strong evidence that Ψt is positive on average, indicating that currencies with higher prevailing interest

rates tend to have lower global factor loadings. The estimate of the mean value of Ψt is 0.42 (t-stat: 13.09) for
21Their “restricted” specification fixes the sensitivity of the global loading to the country-specific state variable, Y it , at zero by setting

κ = 0. Our estimates of the global loading coefficient, ξi, map into
√
δi under their notation, with the added normalization that we fix

the loading of the U.S. dollar at unity.
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the option set including the high-low cross rates and X/USD currency pairs, and increases to 2.37 (t-stat: 62.17)

as the option set is expanded to include the full cross-section of 45 G10 cross rates (Table I, Panel B). Aside from

this conditional variation in loadings, we observe a strong negative unconditional cross-sectional relationship

between the ξi and the mean interest rate differential relative to the U.S. (Table I, Panel A; Figure 2, top left

panel). Both of these dimensions of variation are consistent with the preferred (“unrestricted”) specification in

Lustig, et al. (2011). We plot the time series of global factor loadings from Specification I for two high interest

rate currencies (AUD, NOK) and two low interest rate currencies (CHF, JPY) in the top panel of Figure 1.

Figure 2 summarizes the unconditional, cross-sectional relation between the global factor loading differen-

tials and various data quantities. The top two panels consider the relation between the loading differentials and

interest rate differentials (left panel), as well as, the realized currency excess return (right panel). Recall that nei-

ther of these two quantities was used as a target in the model calibration, which is designed to match FX option

prices. The top left panel indicates a strong negative relation between the mean loading differential and the mean

one-month interest rate differential. We find that this unconditional relation is driven primarily by the negative

relation between the estimates of ξi and the interest rate differentials, rather than the estimate of Ψt. This is

consistent with the link between loadings and interest rate differentials implied by our model of pricing kernel

dynamics, (19). Similarly, we observe a negative relation between the global factor loadings recovered from

exchange rate options and the mean realized currency pair excess returns. Likewise, this is consistent with the

model-predicted relation between currency risk premia and loading differentials, (13), suggesting that exchange

rate options carry information that is useful for explaining currency excess returns. The two bottom panels exam-

ine the link between the calibrated global factor loadings and option-implied exchange rate moments (volatility

and skewness), both of which are used in the model calibration. The model roughly predicts that: (a) option-

implied volatility is a function of the absolute loading differential (27a); and, (b) option-implied skewness is an

increasing function of the loading differential (27b), whenever the skewness of the global factor, LgZt is negative.

We find empirical support for both of these cross-sectional relations.

2.4.2 Global factor innovations, LgZt

Panel B of Table I reports the distributional properties of the global factor innovations, LgZt – the fraction of

variance attributable to non-Gaussian shocks (ηgt ), and the parameters of the one-sided CGMY jump distribution

(Ggt , Y
g
t ). All four specifications indicate that jump risks play a dominant role in describing global innovations,

accounting for at least 50% of the total shock variance. In each of the specifications, the skewness of the global

Lévy innovation, Lg, is stochastic and depends on the level of the global state variable, Zt, and the jump param-
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eters. The mean skewness of the global factor innovation is slightly below -1. These values are in line with the

realized return skewness of currency carry trade portfolios reported in Jurek (2013), which represent empirical

factor mimicking portfolios for the HMLFX (global) factor in G10 currencies.

The bottom panel of Figure 1 plots the time series of the state variable, Zt, which controls the variance of the

global factor innovations and the HMLFX factor risk premium, obtained from Specification I. The figure shows

that the dynamics of the global state variable share the features of the first principal component extracted from

the corresponding panel of exchange rate variance swap rates. In a supplementary table (Table A.I) we report

the parameters of square root diffusions fitted to the time series of the global and country-specific state variables,

{Zt, Y i
t }. We find that the global state variable is relatively persistent, exhibiting a half-life of 76 business days.

This feature is common to all of four specifications considered in Table I, and confirms that treating the level of

Zt as fixed over the course of a month – as is implicit in our discrete time model – is a benign simplification.

2.5 FX option pricing

Panel C of Table I reports the results of the second stage option pricing. Specifically, the table reports the

root mean squared option pricing errors (in volatility points) by strike, and across all all strikes jointly. For each

exchange rate pair included in the calibration set, we price options on each day (1999:1-2012:6; T = 3520 days)

for each of the five quoted strikes (10δ put to 10δ call). Our model RMSE stands at roughly 1.1 volatility points

for the combined HLX (high-low cross pairs) and X/USD option set; and at 1.6 volatility points – for the full

panel of 45 G10 cross-rate options. These errors are comparable to typical bid-ask spreads in FX option markets

(Jurek (2013)), suggesting that the model is doing a reasonable job of matching the data. Interestingly, although

the option data confirm the presence of time-varying loadings, their effect on prices appears to be economically

small. Figure 3 illustrates the quality of the fit under Specification I by plotting the mean actual option-implied

volatilities (blue) and their fitted counterparts (dashed red) for cross pairs formed by combining two high interest

rate currencies (AUD, NOK) with two low interest rate currencies (CHF, JPY), as well as, pairs involving each

of these currencies against the U.S. dollar. We additionally plot a typical bid-ask spread (dashed blue lines) equal

to 0.1 times the mean quoted implied volatility at each strike.

Since our goal is to produce option-implied estimates of currency risk premia, we want the calibrated model

to match the underlying option prices as well as possible. For this reason, we focus our subsequent analysis on

the output based on Specification I, which produces the lowest pricing errors. However, to guard against the risk

of overfitting, we have also verified the robustness of our results to using the full G10 cross-rate set. We find that

our conclusions regarding currency risk premia are qualitatively unaffected by the choice of the option set.
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3 Option-Implied Currency Risk Premia

The calibrated option pricing model allows us to: (a) decompose currency risk premia across Gaussian and

non-Gaussian pricing kernel innovations; (b) evaluate the mechanism through which jumps contribute to equi-

librium currency risk premia, by decomposing risk premia across the moments of the pricing kernel innovations

(variance, skewness, etc.); and, (c) compare the option-implied risk premia with the historical returns to individ-

ual currency pairs and empirical factor mimicking portfolios.

The direct output of the calibrated option model are the time series of currency risk premia for individual

currency pairs, (13). These can be compared to realized currency pair returns, or aggregated using portfolio

weights for comparison with realized currency portfolio returns. Throughout this analysis we take the perspective

of a U.S. dollar investor, to match the convention in previous papers. Note that the identity of the reference

currency plays an important role in the determination of risk premia. First, it determines the level of the global

(HMLFX ) factor risk premium, since pricing kernels in different counties have different exposures to the global

shocks. Second, investors demand a positive premium for short exposure to their country-specific pricing kernel

shocks, giving rise to a local currency risk premium.

3.1 Model risk premium decomposition

To compute the HMLFX factor risk premium within the model, we construct a hypothetical factor mimick-

ing portfolio on the basis of the calibrated time series of the global factor loadings, ξit . At each point in time, we

sort the G10 currencies – excluding the U.S. dollar – into long and short portfolios on the basis of their prevailing

loadings, and weight the currencies within each portfolio by the absolute deviation of their loading from the aver-

age loadings of currencies with ranks five and six. The resulting portfolio is dollar-neutral and loads exclusively

on the global factor innovations. This construction mimics the construction of spread-weighted, dollar-neutral

currency carry trade portfolios in Jurek (2013). However, there the portfolio weights are computed on the basis of

the prevailing one-month LIBOR rates, which act as an empirical proxy for global factor loadings. The monthly

return correlation for the portfolios sorted on option-implied loadings, ξit , and one-month interest rates, yit,t+1, is

equal to 0.92. During the time period in which they overlap (Jan. 1999 - Mar. 2010), the two portfolios are also

highly correlated with the developed-market HMLFX factor return series reported by Lustig, et al. (2011) with

correlations of 0.90 and 0.95, respectively, explaining 80-90% of the factor’s time series variation. The mean

return of the HMLFX factor in developed (all) currencies during this period is 4.86% (7.26%) per annum, and

their monthly return correlation is 0.61. The mean return on the G10 currency portfolio we form using loadings

(interest rates) is 4.46% (5.49%) per annum, respectively.
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Using the time series of portfolio weights, we aggregate the pair level global factor risk premia, (14), to

produce an option-implied HMLFX risk premium. Table II reports the mean level of this risk premium, the

global factor loadings of the long and short portfolios and two risk premium decompositions. To demonstrate

the robustness of our results to the specifics of the calibration exercise, we repeat this procedure for all four

specifications considered in Table I. A supplementary table confirms that the results are robust to: forming

portfolios on the basis of the prevailing one-month interest rates, rather than global factor loadings (Table A.II),

and equal-weighting currencies within the long and short portfolios (Table A.III).

We defer the discussion of the level of the model HMLFX risk premium until the next section, where

we compare the model-implied risk premia with the returns realized by empirical factor mimicking portfolios

formed on the basis of interest rate differentials. Abstracting from the level, we instead focus on: (a) the share

of the risk premium due to the Gaussian and non-Gaussian components of the global factor innovation, LgZt ;

and, (b) the share of the risk premium due to various moments of the pricing kernel innovation. Across all

four specifications, we find that on average the non-Gaussian (jump) component of the global factor innovation

accounts for approximately 55% of the HMLFX risk premium, with the balance accruing to the Gaussian

shocks. However, we observe considerable variation in these shares, with the maximum contribution of each

shock exceeding 90% in the time series. These values roughly match the mean level of the global shock variance

due to the non-Gaussian innovation, ηgt , reported in Table I.

The evidence uniformly points to an important role for non-Gaussian innovations as determinants of the risks

and returns to the HMLFX factor mimicking portfolios. To examine this in detail we decompose the model

HMLFX risk premium across the moments of the global factor innovation in the pricing kernel (variance,

skewness, and higher-order moments). Again we report shares rather than levels. On average, we find that 85%

of the HMLFX risk premium is due to the variance of the innovation, roughly 10% is due to the skewness of

the innovation, and the balance is due to higher order moments. We find that this decomposition is robust across

all four specifications. In the time series, the share of the risk premium due to variance ranges from 28-100%,

while skewness accounts from 0% to 26%, across the four specifications. Consequently, the primary mechanism

through which non-Gaussian innovations contribute to the global factor risk premium is by contributing variance,

rather than higher-order moments. For comparison, the contribution of skewness and higher-order moments to

equity risk premia is on average 35% in models calibrated to historical consumption disasters (Barro (2006),

Barro and Ursua (2008), Barro, et al. (2013)), but only 2% in a model calibrated to match the pricing of equity

index options (Backus, et al. (2011)).22

22A supplementary online Technical Appendix explores the mechanism through which disasters contribute to the determination of
equity risk premia. The expressions for equity risk premia are obtained from Martin (2013), and the parameters values describing the
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Table III implements the same decompositions for the short reference risk premium. The short reference

risk premium can be computed on the basis of the calibrated model parameters directly from (15), and does not

require the formation of factor mimicking portfolios. We report the results of decompositions for investors based

in each of the G10 countries in Table III, using the model parameters obtained under our preferred specification

(Specification I). The results based on the other specifications are qualitatively identical, and are omitted to

conserve space. The mean levels of the short reference risk premium range from 0.48% (JPY) to 1.33% (SEK)

per annum, and are largely determined by the mean level of volatility in the country-specific factors, Y i
t (Table

A.I). There is also considerable time-series variation in the short reference risk premium within each currency.

For example, the premium U.S. investors demand for being short the U.S. dollar ranges from a low of 0.20% per

annum, to a high of 3.17% per annum.

Panel B of Table III reports the share of the short reference risk premium for each currency due to Gaussian

and non-Gaussian risks, and a decomposition across the moments of the country-specific pricing kernel inno-

vations, Li
Y it

. The shock-type decomposition reveals significant cross-sectional and time-series variation in the

share of the risk-premium due to non-Gaussian (jump) risks. The mean share attributable to non-Gaussian risks

ranges from 20-60% across the G10 currency set, but reaches over 80% at some point in the sample for nine

out of ten currencies. This highlights the importance of allowing for a non-Gaussian component in modeling

the country-specific pricing kernel innovations. This feature is common to our model and Bakshi, et al. (2008),

but is absent from Lustig, et al. (2011) and Farhi, et al. (2013), who force country-specific shocks to be con-

ditionally Gaussian. Finally, we decompose the short reference currency risk premium across the moments of

the country-specific pricing kernel shocks. We find that the variance of the shocks accounts for at least 98%

of the mean risk premium for each country, with higher order moments playing a very minor share. The share

attributable to higher moments never exceeds 15% at any point in time for the G10 currencies. Specifically,

recall that the contribution of skewness to the short reference risk premium is zero, since the short reference risk

premium is determined solely by the even moments of the pricing kernel innovation, (21). We conclude that

while non-Gaussian country-specific innovations play an important role in matching the features of exchange

rate options across strikes and in the time series, they exert their influence on short reference risk premia through

their contribution to the variance of the pricing kernel, rather than its higher (even) moments.

consumption growth process in macro models and implied by equity index options are from Backus, et al. (2011).
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3.2 Comparison with empirical factor mimicking portfolios

The previous section focused on the share of currency risk premia due to different shock types and moments.

In this section, we compute the model-implied level of risk premia corresponding to empirical factor mimicking

portfolios. Specifically, we use the actual portfolio composition used in the construction of historical returns to

currency carry and short dollar portfolios, and use them to aggregate the model-implied, pair-level risk premia.

This allows us to contrast the realized (historical) performance of these trades with our model required rate of

return.

The basic unit of observation in the empirical analysis of currency risk premia is a currency excess return,

capturing the net return to a zero-investment portfolio which borrows one unit of currency I , at interest rate yit,t+1,

to lend at short-term rate yjt,t+1 in market J . The short-term interest rates (yields) are expressed in annualized

terms. At time t, the one unit of borrowed currency I buys 1

Sjit
units of currency J , such that Sjit has the

interpretation of the currency I price of one unit of currency J . Finally, at time t + 1 the trade is unwound and

the proceeds converted back to currency I , generating an excess return of:

rjit+1 = exp
(
yjt,t+1 · τ

)
·
Sjit+1

Sjit
− exp

(
yit,t+1 · τ

)
(30)

Unless otherwise noted, we take the perspective of a U.S. dollar investor, and report U.S. dollar denominated

returns. Consequently, if I is not the investor’s home currency, the above return needs to be converted to the

home currency, H , by multiplying it by
Siht+1

Siht
. Pair-level currency excess returns are then aggregated using

portfolio weights to produce the portfolio excess returns.

Following Lustig, et al. (2011, 2013), we report results for two types of historical factor mimicking portfo-

lios: conditional and unconditional. In unconditional factor mimicking portfolios currencies are sorted on the

basis of backward-looking averages of interest rates, or no historical information at all (i.e. the portfolio com-

position is fixed). By contrast, the composition of the conditional factor mimicking portfolio is determined on

the basis of the prevailing interest rates. We repeat the analysis for empirical factor mimicking portfolios which:

(a) exploit violations of UIP by borrowing funds in low interest rate currencies to purchase high interest rate

currencies (i.e. carry trades); and, (b) short the U.S. dollar. We focus attention on G10 currencies and the period

from January 1999 to June 2012, matching the span of our exchange rate option data. We compute a time series

of buy-and-hold returns, rebalancing positions at month ends (N = 162 months). The top two panels of Figure

4 plot the cumulative returns to the four factor mimicking portfolios. The bottom panels plot two estimates of

the instantaneous portfolio return volatility. The first measure is based on in-sample estimates of an EGARCH(1,
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1) model. The second is based on an option-implied variance-covariance matrix computed on the basis of con-

temporaneous observations of variance swap rates for the full panel of G10 cross-rates. Both models confirm

the presence of stochastic volatility in all four factor mimicking portfolios, consistent with the structure of our

model.

3.2.1 Slope (carry) factor

To construct conditional and unconditional factor mimicking portfolios for the G10 HMLFX (slope) factor

we use a dollar-neutral, spread-weighted portfolio of currency carry trades. Each of the portfolios is long (short)

the currencies with the highest (lowest) one-month LIBOR interest rates. We compute spread-weighted portfolio

returns by assigning portfolio weights on the basis of the absolute distance of country i’s interest rate from the

average of the interest rates in countries with ranks five and six. The spread-weighting procedure is similar in

spirit to forming portfolios of currencies based on interest rate sorts, and computing a long-short return between

the extremal portfolios, but is more pragmatic given the small cross-section. Importantly, we impose the restric-

tion that carry trade portfolios be dollar-neutral by constraining the sum of the nine remaining country weights

to equal zero. This allows us to cleanly separate the pricing of the short dollar and the HMLFX factors.

Panel A of Table IV reports summary statistics for the historical returns of the conditional and unconditional

HMLFX factor mimicking portfolios formed using developed market (G10) currencies. Consistent with Lustig,

et al. (2011) we find that the conditional factor mimicking portfolio delivers a mean currency excess return

of 4.96% per annum, relative to a mean excess return of 3.32% per annum for the unconditional portfolio.23

Roughly half of the 1.63% (t-stat: 1.99) return differential is accounted for by the difference in the carry (interest

rate differential) earned by the two portfolios. Specifically, by sorting and weighting currencies using the prevail-

ing – rather than historical – interest rates, the conditional factor mimicking portfolio earns 0.88% (t-stat: 27.95)

more per annum in carry than the unconditional portfolio. In fact, among G10 currencies the carry accounts for

almost the entirety of the currency excess return, indicating that raw exchange rates roughly follow a random

walk. Panel A further illustrates that excess returns to carry trades are generally non-normal and exhibit high,

negative skewness. Even after adjusting for the effects of stochastic volatility, the standardized monthly return

innovations are non-Gaussian, consistent with the presence of jumps. The Jarque-Bera test rejects the null of

Gaussianity both for the returns and standardized (log) returns based on the in-sample output of a EGARCH(1,

1) model.24

23Using an expanded set of 35 currencies (15 developed, 20 emerging), Lustig, et al. (2011) find that the conditionalHMLFX portfolio
earns 4.8% per annum. After transaction costs the unconditional carry premium accounts for roughly half of the total conditional carry
trade premium. See also Hassan and Mano (2013).

24Chernov, Graveline, and Zviadadze (2012) use a combination of historical returns and option data to estimates stochastic volatility
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We compute the model-implied risk premia for the empirical factor replicating portfolio on each rebalancing

date (monthly) using Specification I. We find a mean model-implied risk premium for the conditional (uncon-

ditional) portfolio of 3.55% (3.44%) per annum. We further decompose the required portfolio risk premium

into compensation for exposure to the global risk factor (HMLFX ), and for compensation for short U.S. dollar

exposure. Since the empirical factor replicating portfolios were constructed to be dollar-neutral the value of this

risk premium component is zero at all points in time. We find that: (a) the model-implied risk premium for the

conditional and unconditional portfolios is statistically indistinguishable; and, (b) the empirical portfolios real-

ized historical mean returns, which were indistinguishable from the corresponding model-implied premia. The

first result indicates that, although we find evidence of time-variation with the global factor loadings (Table I), it

is insufficiently correlated with the variation in the global price of risk to drive a meaningful wedge between the

risk premia on the conditional and unconditional factor portfolios. We discuss the impact of time-varying global

factor loadings on risk premia in more detail in Section 4. The second result indicates that foreign exchange spot

and option markets consistently price currency risks, and suggests that estimates of currency risk premia based on

historical returns are not significantly upward biased due to peso problems, as argued by Burnside, et al. (2011).

Figure 5 decomposes the model-implied HMLFX risk premium for the conditional empirical factor repli-

cating portfolio based on Specification I of the calibration. The top panel plots the time series of the total risk

premium and the contribution from exposure to the global risk factor; the middle panel – decomposes the risk

premium into contributions from Gaussian and non-Gaussian (CGMY) global factor innovations; and, the bottom

panel – decomposes the risk premium across moments of the global factor innovation. At the portfolio level, we

find that the option-implied risk premium for the empirical HMLFX factor mimicking portfolio is dominated

by compensation for jump risks, which account for 58% of the total portfolio risk premium. To evaluate the

channel through which non-Gaussian innovations contribute to the determination of currency risk premia, we

exploit the series expansion of the cumulant generating function for the global innovation to decompose the risk

premia across the moments of the underlying shocks, (17) and (21). We decompose the model-implied currency

risk premia into contributions from variance, skewness, and higher moments, and plot their shares in the bottom

panel of Figure 5.

In contrast to the typical “rare disasters” intuition, we find that global jumps exert their effect on currency risk

premia through their contribution to the total variance of the global factor innovation, rather than its skewness

(or higher moments). For example, roughly 85% of the 3.55% annualized model-implied risk premium for the

jump-diffusion models characterizing currency returns. Brunnermeier, Nagel and Pedersen (2008) argue that realized skewness is related
to rapid unwinds of carry trade positions, precipitated by shocks to funding liquidity. Plantin and Shin (2008) provide a game-theoretic
motivation of how strategic complementarities, which lead to crowding in carry trades, can generate currency crashes.
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conditional HMLFX replicating portfolio is accounted for by compensation for variance. The skewness and

higher-moments of the global factor innovation, LgZt , contribute 9.5% and 5.3% of the annualized risk premium

(Figure 5, bottom panel). These findings are in line with the empirical analysis of returns to crash-hedged

currency carry trades, which indicates that tail risks account for 8-10% of the historical excess returns earned by

dollar-neutral, spread-weighted portfolios of G10 currency carry trades (see Panel B of Table III in Jurek (2013)).

3.2.2 Short U.S. dollar factor

Lustig, et al. (2013) report evidence that investors earn high excess returns for being short the U.S. dollar

in bad times, when aggregate risk premia are high. We construct two versions of this short dollar strategy. An

unconditional strategy in which the investor is short the U.S. dollar currency against an equally-weighted basket

of foreign currencies independent of the level of interest rates; and a conditional strategy in which the investor is

long (short) an equally-weighted basket of foreign currencies whenever the U.S. dollar short rate is below (above)

the average G10 short rate. Again, we compute the historical realized returns to these strategies, and report them

alongside the model-implied risk premia in Panel B of Table IV.

The table confirms that the conditional portfolio earns a statistically significant excess return (4.93% per

annum; t-stat: 2.05), consistent with evidence on the “short dollar carry trade” reported in Lustig, et al. (2013).

However, we do not find evidence of a statistically distinguishable return differential between the conditional

and unconditional variants of this trade. Although the historical returns are only modestly negatively skewed and

kurtotic, once we adjust for stochastic volatility, the Jarque-Bera test rejects normality for the standardized (log)

return innovations (Z-scores).

Unsurprisingly, we find a lower model-implied risk premium for the conditional trade (0.76% per annum;

t-stat: 4.38) than for the unconditional trade (1.69% per annum; t-stat: 13.46). Within our model, the dollar

investor is compensated with a positive risk premium only when he is short the U.S. dollar. Consequently, the

conditional trade, which is long the U.S. dollar when U.S. interest rates are high relative to the other countries

in the G10 set, occasionally earns a negative model risk premium. Our model is consistent with the realized risk

premium on the unconditional short dollar portfolio, but is unable to match the returns of the “short dollar carry

trade.”

The top panel of Figure 6 plots the time series of the model-implied risk premium for the unconditional short

dollar portfolio. Since this portfolio is not orthogonal to the HMLFX factor, a portion of the realized excess

return reflects compensation for exposure to the global (slope) factor. Specifically, our model attributes 0.37%

(t-stat: 3.10) and 0.94% (t-stat: 9.54) of the model-implied portfolio risk premium to exposure to the HMLFX
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factor for the conditional and unconditional portfolios, respectively. To facilitate exposition, the middle and

bottom panels examine only the component of the model-implied portfolio risk premium attributable to the short

dollar exposure. These panels decompose this risk premium into contributions from Gaussian and non-Gaussian

innovations (middle panel), and the moments of the pricing kernel innovations (bottom panel). In contrast to

global shocks, we find that a U.S. investor’s premium for being short the U.S. dollar is dominated by Gaussian

shocks. This is consistent with evidence that, on average, only 30% of the total variance of the country-specific

innovation is due to the non-Gaussian innovation (ηUSt ).25 As our theoretical results indicate, the risk premium

for short exposure to one’s reference (local) currency is determined exclusively by the even moments of the

country-specific pricing kernel innovation, (21). We find that nearly the entirety (99%) of the short U.S. dollar

risk premium is determined by the variance of the country-specific pricing kernel innovations.

3.3 Forecasting currency returns

Finally, we examine the ability of option-implied currency risk premia to forecast one-month ahead currency

returns. We consider two sets of predictive regressions (Table V): (a) repeated cross-sectional regressions (Fama-

MacBeth); and (b) pooled panel regressions. In both instances the dependent variable is the simple excess return,

(30), and the regressions are based on the high-low cross pairs and X/USD currency pairs (24 pairs). The

cross-sectional regressions are repeated every 21 days (N = 167); the panel regressions are also run with non-

overlapping 21-day returns. Panel regressions include pair fixed effects, and report standard errors adjusted for

cross-sectional correlation and time series auto- and cross-correlations using the methodology from Thompson

(2011).

The cross-sectional regressions point to a positive and marginally significant relation between the option-

implied risk premium and the subsequent realized excess return (regression (1)). The hypothesis that the model

correctly prices the cross-section of currency returns (i.e. the intercept is zero and the slope coefficient is one)

has a p-value of 68.9%. Simultaneously, the p-value of the alternative that the model has no explanatory power

(i.e. all the coefficients with the exception of the intercept are zero) is 11.0%. The adjusted R2 from the cross-

sectional regression is 30%, and is slightly higher than the 26% adjusted R2 from an ad hoc predictive regression

using the interest rate differential (regression (3)). To further evaluate the ability of the model to explain currency

returns, we regress the realized pair-level excess return onto the model-implied HMLFX and short reference

components of the risk premium (regression (2)). The regression adjusted R2 rises to 47%, and neither of

the coefficients is statistically distinguishable from one. The p-value of the null hypothesis of the model is
25We relegate estimates of the jump variance shares, ηit, and parameters of square root processes fitted to country-specific state variable

time series, Y ti , to a supplementary appendix (Table A.I).
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45.2%; and, that of the alternative of no explanatory power is 12%. The fit of the regression improves even

further when the model-implied risk premia are combined with the interest rate differential (regressions (4) and

(5)). The regression adjusted R2 peaks at 57% for the specification combining the disaggregated model risk

premium with the interest rate differential, even though the interest rate differential itself ceases to be statistically

significant. Overall, the cross-sectional regressions support the theoretical predictions of the model, albeit with

modest degrees of statistical significance.

Figure 7 contrasts the ability of option-implied risk premia to explain the cross-section of currency excess

returns, relative to the random walk model of exchange rate dynamics. The left (right) panel plots the relation

between the unconditional mean of the realized currency excess return, and the unconditional mean of the model-

implied risk premium (interest rate differential). We find that our model of risk premia – which was calibrated

exclusively to exchange rate options – achieves a 77.0% explanatory, adjusted R2. By contrast, the random walk

model of exchange rates achieves an R2 of 57.2%.

The second part of Table V examines the predictive ability of the model-implied risk premia in the context of

panel regressions. Despite the ability of the model to match the cross-sectional properties of currency risk premia

well, the time series dimension remains a challenge. The slope coefficients on the model risk premia are negative,

though statistically insignificant, in all specifications. Formal tests strongly reject the theoretical prediction of

zero currency-pair fixed effects and unit coefficients on the model risk premia. This echoes the features of equity

return data, where the identification of a positive risk-return tradeoff in the time series has remained elusive.26

4 Discussion

Empirical evidence indicates that currency carry trades formed on the basis of prevailing interest rate dif-

ferentials (conditional carry trades), outperform portfolios formed on the basis of historical average interest rate

differentials (unconditional carry trades). Using a calibrated affine pricing kernel model, Lustig, et al. (2011)

show this finding can be rationalized if the global factor loadings, ξit , are functions of the country-specific state

variable, Y i
t .27 With this feature, the instantaneous interest rate, (6) – which is affected by Y i

t , – carries ad-

ditional information about the conditional global factor loading, and therefore currency risk premia. However,

their calibration was not designed to match exchange rate option data, and therefore places comparatively mild
26French, et al. (1987) and Campbell and Hentschel (1992) find a positive albeit insignificant relation between conditional variance

and the conditional expected return in equities. Campbell (1987) and Nelson (1991) find a significantly negative relation. Ghysels, et al.
(2005) find a positive and significant risk-return tradeoff using a mixed data sampling volatility estimator.

27Our model can be roughly mapped into the preferred (”unrestricted”) specification in Lustig, et al. (2011) by: (a) shutting down
jump risks in the global and diffusive Lévy increments by setting ηgt = ηit = 0; and, (b) parameterizing the global factor loading as,

ξ̃it = ξi ·
√

1 + κi

(ξi)2
· Y

i
t
Zt

.
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constraints on the structure of the pricing kernel volatility. We show that, once these constraints are imposed,

increasing global factor loading differentials may act to decrease currency risk premia.

To understand the implications of time-varying loadings for currency risk premia, in the context of a calibra-

tion designed to match exchange rate option prices, it will be useful to specialize to a setting in which all pricing

kernel innovations are (conditionally) Gaussian. Furthermore, suppose the model fits the data perfectly. Since the

model is Gaussian, the variance of the (log) currency return, (27a), is simply, σ2
sjit

=
(
ξjt − ξit

)2
·Zt +Y i

t +Y j
t ,

and the objective and risk-neutral (i.e. option-implied) variances will be identical. In this context, the expression

for the HMLFX component of the risk premium for currency pair J/I is given by:

λjiHML,t = ξit ·
(
ξit − ξ

j
t

)
· Zt = ξit ·

σ2
sjit
−
(
Y i
t + Y j

t

)
∣∣∣ξit − ξjt ∣∣∣ (31)

where the second equality follows by substituting out the level of the global state variable using the implied

variance of the option. As the loading differential widens, the currency risk premium will decline, unless there is

a sufficiently large offsetting decline in the sum of the country-specific variances. Put differently, an increase in

the global factor loading differential, increases the model-implied exchange rate variance, which has to be offset

by a decline in one of the model state variables, {Zt, Y i
t , Y

j
t }, in order to continue matching the data σ2

sjit
. If this

happens through a decline in Zt, currency risk premia may fall. We find empirical support for this effect.

Two of the specifications we consider (Specifications I and III) allow global factor loadings to depend on

the prevailing interest rate differential, ξit = ξi −Ψt ·
(
rit,t+1 − rUSt,t+1

)
. This parsimonious parametrization fixes

the U.S. loading (ξUSt = ξUS = 1), implicitly links the loadings to the model state variables, and matches the

specification used by Lustig, et al. (2011) in empirical tests of conditional factor pricing models. Strikingly,

we consistently find that specifications in which global factor loadings are time-varying deliver lower average

estimates of theHMLFX risk premium, than the corresponding specifications in which loadings are fixed (Ψt =

0). This can be seen in Table II, and also in a supplementary table (Table A.IV) which computes the model-

implied risk premia for empirical factor replicating portfolios under Specification II (fixed loadings). The model-

implied risk premium for the conditional (unconditional) HMLFX replicating portfolios rises relative to the

values reported in Table IV to 3.81% (3.73%) per annum, respectively. Consequently, we find that although

allowing for time-varying loadings leads to a modest improvement in the model’s fit to option prices, it also leads

to an overall decline in model-implied risk premia.

To explore the link between time-varying loadings and currency risk premia in greater depth we conduct two

experiments. First, we ask what are the implications of increasing Ψt to match the empirical point estimates of
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risk premia earned by conditional currency carry trades in G10 currencies (Table IV) on option prices. Specifi-

cally, we contrast the link induced by high values of Ψt between interest rate differentials and the model-implied

exchange rate volatility and skewness, with its counterpart in the historical data. Second, we empirically examine

whether the idiosyncratic factors driving FX option prices, Y i
t , are also the drivers of instantaneous interest rates.

This relation is a feature of our model, (6), but need not hold in the data. We find that interest rate variation is,

in fact, largely orthogonal to factors extracted from foreign exchange option data. Consequently, we examine an

alternative parametrization of global factor loadings, ξit = ξi + Ψ̃t ·
(
Y i
t − Y US

t

)
, which links them directly to

the country-specific state variables, Y i
t .

4.1 Matching risk premia with Ψt

The basic design of our empirical investigation has been to match data on exchange rate options, and derive

implications for currency risk premia. However, we could also proceed in the reverse direction, and ask what are

the model’s implications for exchange rate option prices, once the model has been calibrated to match empirically

observed currency risk premia. To illustrate this complementary analysis, we begin with our preferred model

specification and perturb the calibrated values of Ψt by a constant Ψ∗ at each point in the time series, until

the mean model-implied risk premium for the empirical HMLFX factor replicating portfolio exactly matches

its historical mean excess return of 4.96% per annum (Table IV). We leave the calibrated dynamics of the state

variables, Zt and Y i
t , unaltered. Effectively, we are forcing the model to match the observed excess return through

the time-varying global factor loadings, while allowing it to arbitrarily misprice the cross-section of options. We

find that this requires increasing the cross-sectional dependence of the global factor loadings on interest rate

differential by Ψ∗ = 2.1, in our sample.

Using the perturbed model (Ψt + Ψ∗), we examine the implications of time-varying global factor loadings

for option price dynamics. As can be clearly seen in, (27a) and (27b), our model links the variance and skewness

of the model-implied exchange rate distribution with the loading differential. Consequently, an implication of

increasing the dependence of global factor loadings on interest rate differentials (Ψ∗ > 0) is that option-implied

moments will co-move more strongly with interest rate differentials. We examine this effect by running pooled

panel regressions of option-implied moments – in the data, in our preferred calibrated specification, and in the

perturbed specification – onto the pairwise interest rate differentials.28

28The computation of option-implied moments in the data requires the interpolation and extrapolation of option-implied volatilities.
To ensure the robustness of our results we report the regression for two different computation schemes. The first, interpolates implied
volatilities in the observed range and then appends flat tails. The second, extrapolates the observed implied volatilities to the 1δ strike,
and then appends flat tails. Extrapolated volatilities in the (1δp, 10δp) range are based on the (10δp, 25δp, ATM) option triplet, and –
in the (10δc, 1δc) range – on the (ATM, 25δc, 10δc). Implied volatilities below 1δp and above 1δc are set equal to their values at those
thresholds, unless otherwise noted.
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Panel A of Table VI reports the results of panel regressions of option-implied volatility onto the absolute

interest rate differential – as suggested by (27a) – and the corresponding regression of option-implied skewness

onto the raw interest rate differential. We find that the relation between option-implied volatility and the absolute

interest rate differential is statistically significant and negative, with a coefficient estimate of -0.45 (t-stat: -3.28).

This result is insensitive to the details of the computation of the option-implied variance. Our calibrated model

(Specification I) reproduces the relation exactly, with a coefficient estimate of -0.46 (t-stat: -3.06). In contrast,

once loadings have been perturbed by Ψ∗ – in order to match the historical point estimate of the mean return on

the empirical factor mimicking portfolio for theHMLFX factor – the relation becomes statistically insignificant,

with a point estimate of -0.03 (t-stat: -0.20).

The intuition from skewness regressions is similar in spirit. In the data, the relation between the option-

implied skewness and the interest rate differential is weakly negative, with a point estimate between -0.89 (t-stat:

-1.66) and -1.21 (t-stat: -1.81). Unsurprisingly, the value of the coefficient here is more sensitive to the details

of the implied volatility extrapolation scheme used to compute the value of the option-implied skewness. Our

preferred calibration produces a noticeably stronger link, with a point estimate of -6.66 (t-stat: -3.35). This link

is strengthened even further once the model is forced to match historical risk premia (Ψ∗ > 0), raising the point

estimate to -12.41 (t-stat: -6.20). Once again, we find that inducing strong covariation between loadings and

interest rate differentials, pushes the relation between model-implied exchange rate moments and interest rate

differentials further away from that observed in the data.

4.2 Are currency option and bond markets integrated?

Within the model, the dynamics of FX option prices and interest rates, (6), are driven by the global and

country-specific state variables. In Panel B of Table VI, we examine the existence of this relationship by regress-

ing the change in the one-month interest rate onto terms governing the model-implied change, ∆
(
−kgt

[
−ξit
]
· Zt
)

and ∆
(
−kit [−1] · Y i

t

)
. Notice that while this regression is the closest proxy to our model, it suffers from omitted

variable bias due to the absence of an empirical proxy for αit. We find that the country-level regressions consis-

tently point to the absence of a link between interest rates and the state variables extracted from foreign exchange

options. This observation is consistent with the results of the cross-sectional forecasting regressions (Table V),

which indicate that option-implied risk premia and interest rate differentials carry non-redundant information

about currency excess returns. The p-values of the joint test that the coefficients on the model-implied variables

are equal to one strongly rejects the null of integration between currency option and bond markets. This negative

result leaves open the possibility that linking global factor loadings to the Y i
t state variables directly, rather than
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interest rate differential, may generate the desired increase in risk premia for models with time-varying loadings.

As mentioned earlier, this type of parametrization is explicitly built into the “unrestricted” model of Lustig, et al.

(2011).

We repeat the calibration of our preferred model specification, allowing global factor loadings to be tied

to local state variable dynamics via ξit = ξi − Ψ̃t ·
(
Y i
t − Y US

t

)
. Similar to the parametrization based on

interest rate differentials, this expression normalizes the U.S. loading to equal ξUS at each point in time, which

is set equal to one. Repeating the calibration of our preferred specification, we find that the mean value of

Ψ̃t in the time series is -0.37 (t-stat: -1.84). The RMSE of the option fitted error is 1.05, which is slightly

better than under Specification I. The mean model-implied risk premium for the conditional (unconditional)

HMLFX replicating portfolio stands at 3.82% (3.76%). Again, we find that: (a) the historical mean return of

the empirical portfolios are statistically indistinguishable from the corresponding model-implied quantities; and,

(b) the variation in global factor loadings only contributes an additional 6bps to the model-implied risk premium

for the conditional HMLFX factor replicating portfolio, relative to its unconditional counterpart. These results

parallel the baseline results of the paper, and are relegated to the supplementary data appendix (Table A.V).

5 Conclusion

This paper develops a new methodology for computing conditional currency risk premia on the basis of ob-

servations of contemporaneous prices of G10 exchange rate options. Conceptually, our methodology requires no

arbitrage, such that exchange rates can be interpreted as ratios of pricing kernels, and a factor structure in the

pricing kernel dynamics. The factor structure imposes that each country’s marginal utility is driven by a combi-

nation of common (global) and an idiosyncratic (country-specific) innovations, both of which are modeled using

time-changed Lévy increments. Cross-sectional differences in the global factor loadings generate differences in

interest rates, currency risk premia, and option-implied exchange rate distributions. We exploit this variation to

calibrate our model to exchange rate options, and construct a time-series of option-implied risk premia at the

currency pair level. Crucially, our methodology does not rely on historical realized returns.

We show that option-implied risk premia for conditional and unconditional empirical factor replicating port-

folios for the HMLFX (Lustig, et al. (2011)), implemented in developed markets currencies, are statistically

indistinguishable from the realized returns of these portfolios. These results indicate that historical estimates of

currency returns in developed economies are unlikely to suffer from peso problems, as argued by Burnside, et

al. (2011). Furthermore, the structure of our model allows us to decompose the model risk premia across the

types of pricing kernel innovations (Gaussian and non-Gaussian), as well as, their moments (variance, skewness,
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etc.). We find an important role for non-Gaussian global and country-specific innovations in describing the cross-

section of option-implied exchange rate distributions. For example, the non-Gaussian innovation in the global

factor – which can be interpreted as a catch-all for the effects of stochastic volatility and jumps – accounts for

nearly 60% of the model’s 3.55% annual risk premium on the HMLFX factor. Interestingly, the mechanism

through which non-Gaussian innovations contribute to the determination of currency risk premia is primarily as

a source of variance in the pricing kernel, rather than higher-order moments. This contrasts with insights from

rare disaster models of the equity risk premium calibrated to match historical consumption disasters (Barro and

Ursua (2008)). In general, we find that the skewness and higher-order moments of the pricing kernel, on average

account for only 15% of the HMLFX risk premium in developed markets (G10 currencies). These results are

consistent with the observation that crash-hedged currency carry trades continue to deliver positive excess returns

(Jurek (2013)). Finally, we demonstrate that the model is never rejected by cross-sectional tests, and that option-

implied risk premia forecast 47% of the cross-sectional variation in realized returns, exceeding the forecasting

power of interest rate differentials.

Our model calibration confirms the presence of time-varying global factor loadings, although their economic

effect on the quality of the fit to option prices is modest (i.e. within plausible estimates of bid-ask spreads).

Specifically, we find a negative within-time-period (conditional) association between the loadings and interest

rate differentials, and a negative (unconditional) relation with the mean historical interest rate differential. The

quantitative variation in the option-implied global factor loadings produces a small spread between the model

risk premia for conditional and unconditional HMLFX factor mimicking portfolios constructed using devel-

oped market (G10) currencies. More generally, in a model with asymmetries in global factor loadings and

non-Gaussian innovations, linking loadings to interest rate differentials induces strong comovement between

option-implied moments and interest rates. Although we find evidence of this form of comovement in the ex-

change rate option data, it is relatively weak.
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A Cumulant Generating Functions of Lévy Increments

In our model, the non-time-changed Lévy increments are given by Lgt and Lit, and correspond to shocks occurring over

the interval from t to t + 1. Their variance is normalized to be equal to one, and is subsequently set through the time

change state variables, Zt and Y it . The Lévy increments (j ∈ {g, i}) can be decomposed into the sum of two independent

components:

Ljt = W j

(1−ηjt )
+Xj

ηjt
(A.1)

where W j

(1−ηjt )
is a Gaussian innovation with variance

(
1− ηjt

)
and Xj

ηjt
is a non-Gaussian innovation with variance ηjt ,

and ηjt ∈ [0, 1]. With this normalization, the parameter, ηjt , is interpretable as the time-varying share of innovation variance

due to jumps. Note that the random variable W j

1−ηjt
is equivalent to the random variable

√
1− ηjt ·W

j
1 , since each variable

has zero mean and equal variance. However, the random variable Xj

ηjt
is not equivalent to

√
ηjt ·X

j
1 . This can be seen by

computing the cumulants of these random variables. Given the independence of the Gaussian and non-Gaussian innovations

in the non-time-changed Lévy increment, its cumulant generating function is given by the sum of the cumulant generating

functions of the two innovations:

kLjt
[u] = kW j

(1−ηjt)
[u] + kXj

η
j
t

[u] (A.2)

In our application, the Xj

ηjt
shock follows a CGMY distribution, with variance normalized to equal ηj .

The cumulant generating function of the Gaussian innovation is given by:

kW j

(1−ηjt)
[u] =

1− ηjt
2
· u2 (A.3)

and the corresponding cumulant generating function of the CGMY random variable is given by:

kX
η
j
t

[u] =


C · Γ[−Y ] ·

(
(M − u)

Y −MY + (G+ u)
Y −GY

)
· τ Y 6= {0, 1}

−C ·
(
ln
(
1− u

M

)
+ ln

(
1 + u

G

))
· τ Y = 0

C ·
(
(M − u) ·

(
ln
(
1− u

M

)
+ (G+ u) · ln

(
1 + u

G

)))
· τ Y = 1

(A.4)

where Γ[·] is the gamma function. In general, the parameters of the CGMY process, {C, G, M, Y }jt , are allowed to

be time-varying our model, and we drop subscripts and superscripts only for parsimony. Since we have normalized the

increments such that the non-Gaussian component contributes a fraction ηjt of the periodic variance, we use the constraint

that the second cumulant (variance), κ2X , equal to ηjt to pin down the value of C. For example, consider the generic case
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when Y 6= {0, 1}. In this case, the second and third cumulant of the CGMY shock are given by:

κ2X = C · Γ[−Y ] · Y · (Y − 1) ·
(
MY−2 +GY−2

)
= ηjt (A.5a)

κ3X = C · Γ[−Y ] · Y · (Y − 1) · (Y − 2) ·
(
MY−3 +GY−3

)
(A.5b)

To derive the CGF for the corresponding time-changed increments we rely on Theorem 1 in Carr and Wu (2004). In our

setup, the time-change is controlled by pre-determined state variable, St ∈ {Zt, Y it }, which allows the model to have non-

identically distributed innovations over time. Theorem 1 of Carr and Wu (2004) states that for a generic time change, T , the

cumulant generating function of the time-changed Lévy process, LT , is given by kT [kL [u]], where kL[u] is the cumulant

generating function of the non-time-changed process and kT [u] is the cumulant generating function of the time-change.

In our case, the time-change variables are fixed within the measurement interval (i.e. they follow a degenerate stochastic

process with zero drift and volatility), such that:

kLjSt
[u] = kSt

[
kLjt

[u]
]

= kLjt
[u] · St (A.6)

Consequently, the second and third cumulants of the time-changed increments are given by:

κ2
LjSt

=
((

1− ηjt
)

+ κ2X

)
· St = St (A.7a)

κ3
LjSt

=
(
0 + κ3X

)
· St (A.7b)

Unlike in a more traditional stochastic volatility, both the variance and skewness of the total time-changed Lévy increment

are time-varying and governed by the state variable, St. The variance is given by: κ2
LjSt

= St, and the skewness is given by:

κ3
LjSt
·
(
κ2
LjSt

)− 3
2

=
κ3
X√
St

.

Putting these results together, the cumulant generating function for the time-changed Lévy increments, kLjSt
[u] – for

the empirically relevant case when Y 6= {0, 1} – is given by:

kLjSt
[u] = kW j

(1−ηjt)·St

[u] + kXj
η
j
t ·St

[u]

=
(

1− ηjt
)
· u

2

2
· St + ηjt ·

(
(M − u)

Y −MY + (G+ u)
Y −GY

)
Y · (Y − 1) · (MY−2 +GY−2)

· St (A.8)
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Technical Appendix to “Option-Implied Currency Risk Premia”

Jakub W. Jurek and Zhikai Xu∗

1 A Continuous-Time Model of Exchange Rate Dynamics

We develop a parsimonious model of exchange rates based on a continuous-time specification of pricing
kernel dynamics driven by a combination of global and country-specific wealth shocks, and derive its implications
for the time-series and cross-section of currency risk premia. This specification extends the model in Bakshi, et
al. (2008), to allow for time-varying interest rates and therefore a non-trivial term structure of interest rates. This
dimension is particularly important in the study of currency risk premia, which have empirically been linked to
interest rates (Lustig, et al. (2011)). This section derives the key expressions of our paper in a continuous-time
setting, and highlights the costs and benefits of discretizing the continuous-time model to obtain the specification
used in the paper.

1.1 Pricing kernel dynamics

The dynamic model begins with a specification of country-level log pricing kernel dynamics of the form:

mi
t = −αit · t− ξi · L

g
Πt
− LiΛit (1)

where LgΠt and Li
Λit

are independent, time-changed Lévy processes, corresponding to the global and country-
specific factors, respectively. Each of these processes can be interpreted as being comprised of a combination
of independent diffusive and jump components. The ξi reflect each country’s loading on the global factor inno-
vations; cross-sectional differences in these loadings play a central role in determining exchange rate dynamics
and risk-premia. Note, unlike in the model presented in the paper, the global factor loadings are assumed to be
constant through time.

Following Bakshi, et al. (2008), the global factor time-change, Πt, is defined as function of the the instanta-
neous stochastic variance process, Zt:,

Πt =

∫ t

0
Zsds (2)

dZt = κZ · (θZ − Zt) · dt+ ωZ ·
√
Zt · dWZ

t (3)

∗Jurek: Bendheim Center for Finance, Princeton University and NBER; jjurek@princeton.edu. Xu: Department of Operations Re-
search and Financial Engineering, Princeton University; zhikaixu@princeton.edu.



where WZ
t is a Brownian motion. Similarly, the country-specific time change, Λit, is modeled as:

Λit =

∫ t

0
Y i
s ds (4)

dY i
t = κiY · (θiY − Y i

t ) · dt+ ωiY ·
√
Y i
t · dW

Y,i
t (5)

where (WZ
t )t≥0 (resp. (W Y,i

t )t≥0 ) is independent from (Lit)t≥0 and (W Y,i
t )t≥0 (resp. (Lgt )t≥0 and (WZ

t )t≥0

), but can be correlated with the diffusive part of (Lgt )t≥0 (resp. (Lit)t≥0). We fix the correlation between the
diffusive part of (Lgt )t≥0 (resp. (Lit)t≥0) and (WZ

t )t≥0 (resp. (W Y,i
t )t≥0) at ρZ (resp. ρiY ). Allowing the

instantaneous innovations to the pricing kernels and the time change state variables to be correlated, induces
non-normalities into the pricing kernel distribution, over and above, those induced by the jump component of the
Lévy increments.

In order to obtain closed form expressions within the continuous time-framework we make two key model-
ing assumptions: (a) the global factor loadings are constant, ξit = ξi; and, (b) the dynamics of the time-change
variables are specified parametrically. These two assumptions contrast with the discretized model used in the
paper. Since the calibration of the discrete-time model is carried out period-by-period using a single tenor of ex-
change rate options (1-month maturity), we are able to leave the dynamics of the global factor loadings and state
variables unrestricted. Allowing for variation in loadings is potentially important, since it offers a mechanism
for reconciling the differential performance of conditional and unconditional currency carry trades (Lustig, et al.
(2011)). Avoiding parametric restrictions on the state variable dynamics mitigates the risk of model misspecifi-
cation, but prevents us from being able to simultaneously calibrate the model to the full surface of exchange rate
option implied volatilities.

1.2 Cumulant generating functions and the risk-forward measure

The key expression in our model are given in terms of the cumulant generating function (CGF) of the Lev́y
increments of LgΠt and Li

Λit
. Recall that the cumulant generating function of a random variable, ε, is defined as:

kε[u] = lnEP
t [exp (u · ε)]. Since the CGF is closely linked to the characteristic function, this formulation also

facilitates the pricing of foreign exchange options via generalized Fourier transform methods. The CGFs of the
Lev́y increments over an interval of time τ are:

kzLg ,τ [u] = lnEP
t

[
e
u·(LgΠt+τ−L

g
Πt

)
]

= lnEP
t

[
e
u·(LgΠt+τ−L

g
Πt

) |Zt = z
]

(6)

ky
Li,τ

[u] = lnEP
t

[
e
u·(Li

Λit+τ

−Li
Λit

)
]

= lnEP
[
e
u·(Li

Λit+τ

−Li
Λit

)
|Y i

t = y

]
(7)

For example, the time t yield on a τ -period zero-coupon bond can be expressed using the cumulant generating
functions of the Lévy increments by noting that the pricing kernel, M i

t , has to price risk-free claims denominated
in currency I:

yit,t+τ = −1

τ
· lnEP

t

[
M i
t+τ

M i
t

]
= −1

τ
· lnEP

[
M i
t+τ

M i
t

|Zt = z, Y i
t = y

]
= αit −

1

τ
· kzLg ,τ [−ξi]− 1

τ
· ky

Li,τ
[−1]. (8)

As we will subsequently show, given the parametrization of the state variable dynamics, the cumulant generating



functions, kzLg ,τ [u] and ky
Li,τ

[u], are affine in the prevailing level of the state variables Zt and Y i
t . Consequently,

the risk-free term structures in all of the countries fall into the A2(2) family (Dai and Singleton (2002)), and
share exposure to the global state variable, Zt. By contrast, the continuous-time model in Bakshi, et al. (2008)
features flat term structures.

Since interest rates are stochastic, it will be convenient to derive option pricing formulas under the risk-
forward measure. Recall that under the risk-forward measure, Fiτ – with the τ -period bond denominated in
currency I as its numeraire – the price of any risky claim whose payoff is denominated in currency I (e.g. options
on exchange rate Sjit+τ ), can be priced as a product of the time t value of the numeraire bond, exp

(
yit,t+τ · τ

)
,

and the risk-forward expectation of the risky payoff. Formally, this risk-forward measure, Fiτ , is defined through
the following change of measure:

dFiτ
dP

=
M i
t+τ

M i
t

· ey
i
t,t+τ ·τ (9)

The cumulant generating functions of the Lev́y increments of LgΠt and Li
Λit

, under the Fiτ -measure, can be related
to their P-measure counterparts as follows:

• For the global factor:

k
z,Fiτ
Lg ,τ [u] = lnE

Fiτ
t

[
e
u·LgΠt+τ |Zt = z

]
= lnEP

t

[
e
yit,t+τ τ+mit+τ+u·LgΠt+τ |Zt = z

]
= lnEP

t

[
e
−kz

Lg,t
[−ξi]−ξi·LgΠt+τ+u·LgΠt+τ | Zt = z

]
= kzLg ,τ [u− ξi]− kzLg ,τ [−ξi]. (10)

• For country I’s country-specific factor:

k
y,Fiτ
Li,τ

[u] = lnE
Fiτ
t

[
e
u·Li

Λit+τ |Y i
t = y

]
= lnEP

t

[
e
yit,t+τ ·τ+mit+τ+u·Li

Λit+τ |Y i
t = y

]
= lnEP

[
e
−ky

Li,τ
[−1]−Li

Λit+τ

+u·Li
Λit+τ | Y i

t = y

]
= ky

Li,τ
[u− 1]− ky

Li,τ
[−1]. (11)

• By independence, all the other country-specific factors ( 6= i) are unaffected by the measure change.

What remains to be computed are the cumulant generating functions, kzLg ,τ [u] and ky
Li,τ

[u]. This computation
is made possible via Theorem 1 in Carr and Wu (2004), which states that for any time-changed Lévy process LTτ ,
if the CGF of the process Lt is kL[u] = 1

t lnE[eu
′Lt ], then the CGF of the process LTτ is given by kuT,t[kL[u]]

where kuT,τ denotes the CGF of the time-change process (Tt)t≥0 under the measure Mu defined by:

dMu

dP
= exp (u · LTτ − Tτ · kL[u]) . (12)

Applying this result to our case,

kzLg ,τ [u] = k
z,Mu

Z
T,τ [kLg [u]] and ky

Li,τ
[u] = k

y,Mu
Y i

T,τ [kLi [u]] (13)



where kz,M
u
Z

T,τ (resp. k
y,Mu

Y i

T,τ ) denotes the cumulant generating of Πτ (resp. Λiτ ) under measure Mu
Z (resp. Mu

Y i
)

defined by:

dMu
Z

dP
= exp

(
u · LgΠτ −Πτ · kLg [u]

)
(14)

dMu
Y i

dP
= exp

(
u · LiΛiτ − Λiτ · kLi [u]

)
. (15)

By Girsanov’s Theorem, under Mu
Z , the (Zt)t≥0 process remains a CIR process, with parameters κZ(u) =

κZ − ρZωZu , θZ(u) = κZθZ
κZ(u) , and ω = ωZ . Similarly, under Mu

Y i
, (Y i

t )t≥0 is still a CIR process, with

parameters κiY (u) = κiY − ρiY ωiY u, θiY (u) =
κiY θ

i
Y

κiY (u)
, and ω = ωiY .

Finally, since the time-changes are defined as integrals of the underlying CIR state variables, Zt and Y i
t , the

cumulant generating functions, kz,M
u
Z

T,τ and k
y,Mu

Y i

T,τ , have closed-form expressions (Bakshi, et al. (2008)):

kxT,τ [u] = −bτ (u)x− cτ (u) (16)

with

bτ (u) =
−2u(1− e−η(u)τ )

2η(u)− (η(u)− κ)(1− e−η(u)τ )
(17a)

cτ (u) =
κθ

ω2

(
2 ln

(
1− η(u)− κ

2η(u)
(1− e−η(u)τ )

)
+ (η(u)− κ)τ

)
(17b)

η(u) =
√
κ2 − 2ω2u (17c)

Consequently, the cumulant generating function of the time-changed Lévy innovations is also available in closed-
form, so long as (Lgt )t≥0 and (Lit)t≥0 are chosen to be Lévy processes, which themselves have closed-from
cumulant generating functions.

1.3 The term structure of option-implied currency risk premia

The exchange rate dynamics are determined by the ratio of pricing kernels, such that the log exchange rate
between country J and I (the price of currency J in units of currency I), at time t+ τ , sjit+τ , is given by:

sjit+τ − s
ji
t = (mj

t+τ −m
j
t )− (mi

t+τ −mi
t)

=
(
ξi − ξj

)
· (LgΠt+τ − L

g
Πt

) + (LiΛit+τ
− LiΛit)− (Lj

Λjt+τ
− Lj

Λjt
) (18)

Given this expression and the above results, the cumulant generating function for the log exchange rate, sjit+τ ,
under the risk-forward measure, Fiτ , is:

k
Fiτ
sji,τ

[u] = kZtLg ,τ
[
(ξi − ξj) · u− ξi

]
− kZtLg ,τ

[
−ξi
]

+ k
Y it
Li,τ

[u− 1]− kY
i
t

Li,τ
[−1] + k

Y jt
Lj ,τ

[−u] (19)

The knowledge of the cumulant generating function of log exchange rate under forward measure is sufficient to
compute option prices using the generalized Fourier transform method (e.g. Carr and Madan (1999)), since the
characteristic function of the log exchange rate at time t+τ can be recovered from: φ

sjit,τ
(u) = exp

(
k
Fiτ
sji,τ

[i · u]
)

.
As in the discrete-time setup, this allows us to fit the model exclusively to data on exchange rate options and com-



pute option-implied currency risk premia for individual currency pairs.
Following Bakshi, et al. (2008), we define the currency risk premium for currency pair J/I as the difference

between the log expected return on the currency adjusted for the interest rate differential:

λjit,τ ≡ lnEP
t

[
Sjit+τ

Sjit

]
+
(
yjt,t+τ − yit,t+τ

)
(20)

Substituting in the P-measure cumulant generating function of the log exchange rate between currencies J/I at
horizon τ , sjit,τ , we obtain:

λjit,τ =
(
kZtLg ,τ [ξit − ξ

j
t ] + kZtLg ,τ [−ξit]− k

Zt
Lg ,τ [−ξjt ]

)
+
(
k
Y it
Li,τ

[1] + k
Y it
Li,τ

[−1]
)

(21)

Notice that, unlike in the discrete-time model, the continuous-time framework allows us to compute an entire
term-structure of conditional currency risk premia. This represents the direct benefit of parametrically specifying
the dynamics of the state-variables.

1.4 Discretizing the model

In bringing the continuous-time model to the data, we make the following modifications. First, we assume
that the time change state variables, Zt and Y i

t , remain constant within the measurement interval from t to
t + τ (one-month), and are only allowed to change across measurement intervals. This allows us to sidestep
estimating the parameters of the time-change, {κ, θ, ω}, for the global and country-specific state variables (11
triplets). However, this modification mechanically imposes that the diffusive component of the Lévy innova-
tions is conditionally Gaussian, and the only source of non-Gaussianity in the pricing kernel innovations are the
jump components of the Lévy increments. Since this need not be the case in continuous time, we interpret the
non-Gaussian component in our discrete-time innovation as simultaneously capturing the effects of stochastic
variation in the state-variable within the modeled time interval, and the effect of jumps.

Second, rather than impose CIR dynamics on the state variables and estimate the model using the full panel
of option data (as in Bakshi, et al. (2008)), we sequentially recalibrate the model to match a cross-section of
option prices on (up to) 45 G10 currency pairs. This effectively leaves the structure of the state-variable process
unconstrained, and allows for non-time-homogenous model dynamics, such that the distributions of the shocks,
{Lg, Li}, and factors loadings, ξi, can vary over time.

2 What Drives Equity Risk Premia in Rare Disaster Models?

We contrast our finding that the skewness and higher moments of the log pricing kernels play a modest role
in the determination of the HMLFX risk premium in G10 currencies, with the corresponding results for U.S.
equity risk premia. The derivations here follow the notation of Martin (2013) and rely on parameter values from
Backus, et al. (2011). Specifically, we construct the contribution of the higher moments of the log pricing kernel
to equity risk premia under: (a) macro-model parameterizations based on historical evidence on consumption
disasters (Barro (2006), Barro and Ursua (2008) and Barro, et al. (2013)); and, (b) evidence obtained from equity
index options (Backus, et al. (2011)).



2.1 The equity risk premium

Following Martin (2013), consider a hypothetical claim which pays a periodic dividend equal to Cλt , with
Ct equal to aggregate consumption. When λ = 0, this asset corresponds to a risk-free perpetuity; when λ = 1,
the asset corresponding to a claim on aggregate consumption, and when λ > 1, the asset represents a levered
consumption claim. He defines the risk premium as the difference between the log of the expected return on the
risky asset and the log riskless rate, paralleling our definition in the context of currencies. When the representative
agent has CRRA preferences, the risk premium is given by:

rp = lnEt

[
Pt+1(λ)

Pt(λ)

]
− rf

= k [λ] + k [−γ]− k [λ− γ] (22)

where k[u] is the cumulant generating function of the log consumption growth process, gt+1 = lnCt+1 − lnCt,
and γ is the relative risk aversion coefficient of the representative agent. If the log consumption growth, gt+1, is
driven by a Lévy increment with finite variation (e.g. as in the jump-diffusion models of Barro (2006), Barro and
Ursua (2008), Backus, et al. (2011) and Barro, et al. (2013)), the cumulant generating function takes the form:

k[u] = µu+
1

2
σ2u2 +

∫
R

(eux − 1)dν(x) (23)

where ν denotes the Lévy measure of gt+1, and µ is the mean of the log consumption growth process.
Using an infinite series expression for the cumulant generating function we have:

rp =
∞∑
n=1

(λn + (−γ)n − (λ− γ)n) · κn

n!
(24)

where κn = ∂nk[u]
∂un

∣∣∣
u=0

is the n-th cumulant of the log consumption growth rate process. Expanding the risk
premium to third order, and exploiting the relations between the cumulants of the innovations with variance and
skewness, we have:

rp ≈ κ2 · λ · γ +
1

2
· κ3 · λ · γ · (λ− γ) = λ · γ · V +

1

2
· S · V

3
2 · λ · γ · (λ− γ)

where V and S, denotes the variance and skewness of the log consumption growth process, respectively. Similar
to our model for currencies, the two terms reflect the contributions of variance and skewness to the equity risk
premium. The contribution of the higher-order terms can be trivially recovered as the difference between the risk
premium given by the closed-form expression and the approximate formula.

2.2 Moment decompositions

To compare the results we obtained for the HMLFX factor in currencies with the results in the equity liter-
ature, we compute the contribution of variance, skewness and higher-moments to the equity risk premium under
the calibrations reported in Table II in Backus, et al. (2011). Specifically, we focus on parametrizations (2) and
(4), which correspond to a macro model calibrated to historical data (Poisson Cons Gr), and a model calibrated to
match evidence on equity index options (Implied Cons Gr). These two sets of parameters are chosen to generate
the same equity risk premium – defined as the expectation of the difference in log returns, Et [rt+1(λ)− rf ] –



but produce different values for rp due to the Jensen effect. The parameters of the jump component for the macro
model are derived from studies of international macroeconomic data by Barro (2006), Barro and Ursua (2008),
and Barro, et al. (2013). In each of the models, the consumption growth jump distribution is modeled as Poisson
mixture of normals.

To facilitate comparisons with our decompositions for currency risk premia, we first report the decomposition
for rp = lnEt [Rt+1(λ)]− rf , following the risk premium definition in Martin (2013). The table below displays
the contributions of various moments in levels, and as a fraction of the total model risk premium:

Poisson Cons Gr Implied Cons Gr

lnEt [Rt+1(λ)]− rf 4.95% 5.56%

Variance 3.24% 5.44%
Skewness 0.06% 0.10%
Residual 1.65% 0.02%

Variance [share] 65.5% 97.9%
Skewness [share] 1.2% 1.7%
Residual [share] 33.3% 0.3%

The same decomposition for the equity risk premium, defined as the expectation of the log equity return over the
log risk-free rate, following Backus, et al. (2011), yields:

Poisson Cons Gr Implied Cons Gr

Et [rt+1(λ)]− rf 4.00% 3.99%

Variance 1.65% 3.85%
Skewness 1.10% 0.12%
Residual 1.25% 0.02%

Variance [share] 41.3% 96.5%
Skewness [share] 27.5% 3.0%
Residual [share] 31.3% 0.5%

Decompositions of the equity risk premium into contributions from the variance of the log pricing kernel and the
higher-order (j ≥ 3) odd and even cumulants, yield quantitatively and qualitatively similar results. For example,
the decomposition of rp under the Poisson Cons Gr parametrization yields: 3.24% (variance), 0.09% (higher-
order odd cumulants), and 1.62% (higher-order even cumulants). The decomposition under the equity-index
option implied parametrization (Implied Cons Gr) is unchanged.



Table I
Calibrated Model Parameters

This table reports summary statistics for the calibrated parameters of the pricing kernel factor model. Results are reported for four
specifications which either: (a) match the prices of the high/low interest rate cross pairs and X/USD options (HLX + X/USD option
set; 24 pairs) or the full panel of G10 cross rates (X/Y option set; 45 pairs); and, (b) allow the global factors loadings, ξi, to be
time-varying or not. All calibrations are performed using daily option quotes from January 1999 to June 2012 (T = 3520 days) at
five individual option strikes (10δ put, 25δ put, at-the-money, 25δ call, 10δ call). In specifications with time-varying global factor
loadings, the loadings are parameterized on the basis of the one-month interest rate differential, ξi

t = ξi − Ψt · (ri
t,t+1 − rUS

t,t+1).
The slope coefficient, Ψt, is time-varying, but common to all currencies in the cross-section. Panel A reports the values of the
country-specific loadings, ξi, obtained from the first stage of the calibration, with standard errors in parentheses. We also report
the mean one-month LIBOR interest rate differential for each country relative to the U.S.. Panel B summarizes the cross-sectional
dependence of the global factor loadings on interest rates differentials, Ψt, and the characteristics of the global factor innovation,
Lg

Zt
. We report the share of variance in the global innovations due to jumps, ηg

t , and estimates of the parameters of the global
CGMY jump component, Gg

t (dampening coefficient) and Y g
t (power coefficient). Finally, we compute the skewness (Skewnessg

t )
and kurtosis (Kurtosisg

t ) of the global factor innovation induced by variation in the global factor, Zt. We obtain each of these
quantities day-by-day by minimizing option pricing errors for the target option set, and report their time series means and
volatilities. Panel C reports the root mean squared option pricing error measured in volatility points. We compute root mean
squared errors (RMSE) for each pair in the target option set, and report their mean pooled: (a) across all strikes and currency pairs;
(b) across all pairs with a given option strike.

Specification Fixed ξi
t Option Set

I No HLX and X/USD pairs
II Yes (Ψt = 0) HLX and X/USD pairs
III No All pairs (X/Y)
IV Yes (Ψt = 0) All pairs (X/Y)

Panel A: Global Factor Loadings, ξi

Specification AUD CAD CHF EUR GBP JPY NOK NZD SEK USD
I and II 0.79 1.00 0.96 1.00 0.93 1.17 0.92 0.81 1.00 1.00

(0.0101) (0.0000) (0.0033) (0.0001) (0.0044) (0.0072) (0.0054) (0.0084) (0.0001) -
III and IV 0.84 0.96 1.02 1.00 0.98 1.27 1.00 0.87 0.99 1.00

(0.0046) (0.0044) (0.0050) (0.0049) (0.0047) (0.0062) (0.0050) (0.0049) (0.0051) -
ri
t,t+1 − rUS

t,t+1 [%] 2.46 0.20 -1.58 -0.15 1.06 -2.54 1.53 2.78 0.07 0.00

Panel B: Global Factor Summary Statistics
Specification Ψt ηg

t Gg
t Y g

t Skewnessg
t Kurtosisg

t

I Mean 0.42 0.51 7.91 -0.75 -1.10 6.03
Volatility 1.89 0.19 5.60 0.16 1.35 4.04

II Mean 0.00 0.53 7.13 -0.74 -1.16 6.21
Volatility - 0.18 3.80 0.17 1.29 4.06

III Mean 2.37 0.53 9.98 -0.74 -1.25 5.72
Volatility 2.26 0.20 6.83 0.15 1.73 4.20

IV Mean 0.00 0.53 7.43 -0.75 -1.12 5.30
Volatility - 0.19 3.16 0.14 1.53 3.46

Panel C: Option Pricing RMSE (Volatility Points)
Specification All 10δp 25δp 50δ 25δc 10δc

I 1.12 1.04 1.27 1.27 1.16 0.85
II 1.17 1.09 1.34 1.33 1.22 0.89
III 1.55 1.28 1.77 1.85 1.67 1.19
IV 1.60 1.30 1.83 1.92 1.74 1.22



Table II
Model HMLFX Factor Risk Premium Decomposition

This table uses the calibrated pricing kernel model to compute and decompose the HMLFX factor risk premium from the
perspective of a U.S. dollar investor. We compute the model-impliedHMLFX factor risk premium by constructing a hypothetical,
dollar-neutral factor mimicking portfolio on the basis of the calibrated time series of the global factor loadings, ξi

t . At each point
in time, we sort the G10 currencies – excluding the U.S. dollar – into long and short portfolios on the basis of their prevailing
loadings, and weight the currencies within each portfolio on the basis of the absolute deviation of their loading from the average
loadings of currencies with ranks five and six. The model risk premia are computed daily and span from January 1999 to June
2012 (T = 3520 days). We report the global factor loadings of the high and low interest rate portfolios (ξH and ξL), as well as,
the mean portfolio risk premium (λHML; % per annum). We then decompose the portfolio risk premium into contributions from
the Gaussian and non-Gaussian components of the global factor innovation, Lg

Zt
. Finally, we evaluate the mechanism through

which jumps contribute to equilibrium currency risk premia by decomposing risk premia across the moments of the pricing kernel
innovations (variance, skewness, etc.). For each quantity, we report its time-series mean, volatility, and range. Results are reported
for each of the four specifications reported in Table I.

Loadings Risk premium By Shock Type By Moment
Specification ξH ξL λHML Gaussian Non-Gaussian Variance Skewness Other

I Mean 0.81 1.12 5.03 42.07 57.93 85.30 9.57 5.13
Volatility 0.05 0.05 6.28 18.18 18.18 10.79 5.17 6.12

Min. 0.46 0.99 0.22 0.01 0.18 38.03 0.01 0.00
Max. 0.88 1.49 74.87 99.82 99.99 99.99 26.14 37.24

II Mean 0.83 1.13 5.31 40.12 59.88 85.05 10.26 4.69
Volatility 0.00 0.00 6.65 17.11 17.11 9.70 4.80 5.35

Min. 0.83 1.13 0.25 0.01 5.09 36.04 0.08 0.00
Max. 0.83 1.13 79.70 94.91 99.99 99.92 26.08 39.37

III Mean 0.80 1.25 4.46 41.82 58.18 86.87 9.17 3.96
Volatility 0.07 0.06 4.99 20.36 20.36 11.01 5.68 5.96

Min. 0.48 1.13 0.10 0.00 0.16 21.62 0.02 0.00
Max. 0.92 1.68 57.92 99.84 100.00 99.97 26.88 59.98

IV Mean 0.87 1.23 5.44 40.95 59.05 84.98 10.65 4.38
Volatility 0.00 0.00 5.96 18.76 18.76 9.90 5.27 5.11

Min. 0.87 1.23 0.17 0.00 5.97 28.47 0.71 0.06
Max. 0.87 1.23 75.25 94.03 100.00 99.21 26.98 48.20



Table III
Model Short Reference Currency Factor Risk Premium Decomposition

This table uses the calibrated pricing kernel model (Specification I) to compute and decompose the risk premium demanded by
investors in each of the G10 countries for being short their local (reference) currency. The model risk premia are computed daily
and span from January 1999 to June 2012 (T = 3520 days). Panel A reports the mean, volatility, and range of the model-implied
short reference risk premium for each country (% per annum). Panel B decomposes the risk premium into: (a) contributions from
the Gaussian and non-Gaussian components of the country-specific innovation, Li

Y i
t

; (b) contributions from variance and higher
moments of the kernel innovations. The risk premium decompositions report the mean share of the total risk premium due to
each component and its volatility. Since the decompositions are exhaustive, we only report the range for one of the two components.

Panel A: Short Reference Risk Premia [%]
AUD CAD CHF EUR GBP JPY NOK NZD SEK USD

Total (λi
refFX ) Mean 0.54 0.54 0.69 0.92 0.63 0.48 0.76 0.79 1.33 0.74

Volatility 0.45 0.81 0.50 0.75 0.51 0.51 0.61 0.38 1.11 0.41
Min. 0.00 0.00 0.15 0.12 0.13 0.00 0.16 0.05 0.33 0.20
Max. 5.28 7.40 4.31 5.96 4.12 3.49 5.26 3.74 8.86 3.17

Panel B: Risk Premium Decompositions [share, %]
Component AUD CAD CHF EUR GBP JPY NOK NZD SEK USD
Gaussian (Share [%]) Mean 39.37 52.98 39.77 65.70 62.74 56.97 58.70 61.18 75.57 64.86

Volatility 19.68 30.68 15.97 17.30 15.89 33.01 19.06 18.26 12.11 18.26
Non-Gaussian (Share [%]) Mean 60.63 47.02 60.23 34.30 37.26 43.03 41.30 38.82 24.43 35.14

Volatility 19.68 30.68 15.97 17.30 15.89 33.01 19.06 18.26 12.11 18.26
Min. 0.19 0.02 1.54 0.18 0.11 0.01 0.33 0.12 0.08 0.02
Max. 100.00 100.00 99.99 97.01 88.71 100.00 92.69 99.96 62.40 87.62

Variance (Share [%]) Mean 98.05 98.57 98.10 98.92 98.83 98.30 98.69 98.66 99.24 98.75
Volatility 2.31 1.94 2.17 1.35 1.45 2.71 1.63 1.77 1.00 1.68

Other (Share [%]) Mean 1.95 1.43 1.90 1.08 1.17 1.70 1.31 1.34 0.76 1.25
Volatility 2.31 1.94 2.17 1.35 1.45 2.71 1.63 1.77 1.00 1.68

Min. 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max. 10.97 11.03 10.34 8.51 8.68 11.04 9.08 10.87 6.17 8.83



Table IV
Option-Implied Currency Risk Premia: Empirical factor mimicking portfolio returns

The table compares the historical (realized) returns to factor mimicking portfolios, with the corresponding model-implied risk
premia. The data span the period from January 1999 to June 2012 (N = 162 months). Realized returns are computed on the basis
of monthly buy-and-hold returns. The conditional HMLFX factor mimicking portfolios is a dollar-neutral portfolio formed by
sorting currencies into long and short portfolios on the basis of their prevailing one-month LIBOR rates. Within each portfolio
currencies are spread weighted, on the basis of the distance of their respective interest rates to the mean of the interest rates in
countries with ranks five and six. The unconditional HMLFX portfolios is formed on the basis of the historical interest rate
differentials computed using an expanding window starting in January 1990. The conditional short USD factor mimicking goes
long (short) the U.S. dollar when the prevailing U.S. dollar interest rate is above (below) the prevailing average of the nine other
G10 interest rates. The unconditional short USD factor mimicking portfolio is long an equal-weighted basket of G10 currencies
against the U.S. dollar. Model risk premia are computed on the basis of Specification I. We report the moments of various
quantities of interest, the p-values of the Jarque-Bera test for the realized portfolio returns, and comparisons of the mean realized
and model-implied risk premia (t-stats in square brackets). Portfolio ξL and ξS report the time-series mean of the global factor
loading for the long and short leg of the portfolio.

Panel A: HMLFX Factor Mimicking Portfolio
Conditional Unconditional Difference

Realized Mean 4.96 3.32 1.63
[1.92] [1.32] [1.99]

Volatility 9.51 9.26
Skewness -1.07 -0.89
Kurtosis 7.03 6.90
JB (returns) 0.00 0.00
JB (Z-scores) 0.00 0.00
Carry 4.57 3.69 0.88
t-stat [60.81] [51.65] [27.95]

Model Total (λ) 3.55 3.44 0.11
[8.72] [8.37] [2.63]

HML (global, (λ
HML

) 3.55 3.44 0.11
[8.72] [8.37] [2.63]

Short USD (λ
USD

) 0.00 0.00 0.00
- - -

Portfolio ξL (long) 0.83 0.87
Portfolio ξS (short) 1.06 1.07

Difference Mean 1.41 -0.11 1.53
t-stat [0.53] [-0.04] [1.86]

Panel B: Short USD Factor Mimicking Portfolio
Conditional Unconditional Difference

Realized Mean 4.93 3.12 1.81
[2.05] [1.29] [0.78]

Volatility 8.84 8.90
Skewness -0.45 -0.17
Kurtosis 3.96 3.72
JB (returns) 0.01 0.09
JB (Z-scores) 0.00 0.00

Model Total (λ) 0.76 1.69 -0.93
[4.38] [13.46] [-7.61]

HML (global, (λ
HML

) 0.37 0.94 -0.57
[3.10] [9.53] [-6.32]

Short USD (λ
USD

) 0.38 0.74 -0.36
[3.19] [22.73] [-8.93]

Portfolio ξL (long) 0.96 0.94
Portfolio ξS (short) 0.98 1.00

Difference Mean 4.18 1.44 2.74
t-stat [1.73] [0.59] [1.17]



Table V
Option-Implied Currency Risk Premia: Individual currency pairs

The table reports the results of a regression analysis of realized carry trade returns for individual currency pairs on option-implied
currency risk premia and interest rate differentials. The returns are measured using 21-day non-overlapping intervals, and the
explanatory variables are assumed to be measured as of the last day preceding that interval. We report two sets of results. The
first is based on repeated cross-sectional regressions (Fama-MacBeth); the second, is based on a pooled panel regression. The
reported coefficients are time series averages and standard errors are computed on the basis of the time series of estimates. Adj.R2

reports the average cross-sectional adjusted R2. Standard errors of coefficient estimates are reported in parentheses (N = 167).
The second set of regressions is based on pooled panel regressions with currency-pair fixed effects (N = 24 · 167 = 4008). For
panel regressions, standard errors are adjusted for cross-sectional correlation and time series auto- and cross-correlations using the
methodology from Thompson (2011) with three lags. The panel regression is run with country-fixed effects; however, the adjusted
R2 is reported net of the explanatory power of the fixed effects. Finally, we report the p-value for two hypothesis tests. The first
hypothesis asserts that the model is correctly specified, such that the regression intercept (respectively, fixed effects) is zero and
the slope coefficients on the model-implied risk premia are one (H0). When additional regressors are included, the model predicts
a zero coefficient on those variables; if no model-implied variables are included in the regression, we do not report the result of
the test. The second hypothesis (H1) is that the included variables have no explanatory power (i.e. all the coefficients with the
exception of the intercept are zero).

Cross-sectional Panel
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept 0.00 -0.00 0.00 -0.00 -0.00 FE FE FE FE FE
(0.00) (0.00) (0.00) (0.00) (0.00)

λji
t 2.09 0.73 -0.22 -0.21

(1.31) (1.44) (0.72) (0.74)
λji,hml

t 2.50 0.75 -0.15 -0.11
(1.42) (1.46) (0.72) (0.75)

λji,refFX
t 6.01 6.74 -5.25 -6.61

(4.03) (4.53) (4.81) (4.68)
rj
t − ri

t 0.14 0.11 0.08 0.06 0.05 0.07
(0.05) (0.06) (0.06) (0.07) (0.08) (0.08)

Adj. R2 0.30 0.47 0.26 0.43 0.57 0.00 0.00 0.00 0.00 0.00
(0.02) (0.02) (0.02) (0.02) (0.02) - - - - -

N 167 167 167 167 167 4008 4008 4008 4008 4,008
H0 p-value [%] 68.90 45.22 - 27.76 32.35 0.00 0.00 - 0.00 0.00
H1 p-value [%] 11.01 11.88 0.51 6.20 17.07 75.47 53.86 44.01 68.28 46.25



Table VI
Time-Varying Loadings, Interest Rates, and Option-Implied Moments

Panel A of this table compares the model-implied dynamics of risk-neutral volatility and skewness implied by Specification
I with those observed in the data. In particular, we focus on the link between the interest rate differentials driving the global
factor loadings and the option-implied moments in the data, and in the model. In order to compute option implied moments in
the data we interpolate the implied volatility functions and append flat tails at 10δ, or extrapolate to 1δ using the vanna-volga
method of Castagna and Mercurio (2007) before appending flat tails. We report results for both computation schemes to ensure
robustness. We then compute the model-implied moments under Specification I, which allows the global factor loadings to be
functions of interest rate differentials. Finally, we repeat the computation in a model where Ψt has been perturbed by a constant
Ψ∗, chosen such that the model-implied portfolio risk premium for the conditional HMLFX factor replicating portfolio is equal
to the point estimate of the mean excess return realized in the sample. We then run pooled panel regressions of the data and
model-implied moments onto interest rate differentials (N = 24 · 167 = 4008). The panel regressions include currency pair
fixed effects, and adjust standard errors for cross-sectional correlation and time series auto- and cross-correlations using the
methodology from Thompson (2011). Panel B of this table examines the existence of model-predicted links between interest rates,
and the state-variables extracted from FX options. We report the results from regressions of changes in one-month LIBOR rates
in G10 countries onto changes in the model-implied quantities, -kLg [−ξi

t] · Zt and -ki
Li [−1] · Y i

t , appearing in the expression for
yields. The global factor loadings, ξi

t , and the option-implied state variables are obtained from our preferred model calibration
(Specification I). We report regression coefficients, standard errors (in parentheses), and the regression adjusted R2; for panel
regressions, the adjusted R2 is reported net of the explanatory power of the fixed effects. Finally, we report the p-value for
two hypothesis tests. The first hypothesis asserts that the model is correctly specified, such that the slope coefficients on the
model-implied quantities are jointly equal to one (H0). The second hypothesis (H1) is that the slope coefficients are jointly equal
to zero. The data span the period from January 1999 to June 2012 (N = 166).

Panel A: Option-Implied Moments
Option-Implied Volatility Option-Implied Skewness

Data Model Model Data Model Model
(10δ) (1δ) (Ψt) (Ψt + Ψ∗) (10δ) (1δ) (Ψt) (Ψt + Ψ∗)

Intercept FE FE FE FE FE FE FE FE
rj
t,t+1 − ri

t,t+1 -0.45 -0.46 -0.46 -0.03 -0.89 -1.21 -6.66 -12.41
(0.14) (0.14) (0.15) (0.17) (0.53) (0.67) (1.99) (2.00)

Adj. R2 0.02 0.02 0.02 0.00 0.00 0.00 0.01 0.04
N 4008 4008 4008 4008 4008 4008 4008 4008

Panel B: Interest rate changes, ∆ri
t

AUD CAD CHF EUR GBP JPY NOK NZD SEK USD
Intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
−∆(kL

g
t
[−ξi

t] · Zt) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

−∆(ki
Li

t
[−1] · Y i

t ) 0.04 -0.01 0.01 -0.01 -0.03 -0.01 0.05 0.03 0.01 0.00

(0.02) (0.02) (0.02) (0.02) (0.05) (0.01) (0.05) (0.03) (0.02) (0.04)
Adj. R2 0.00 -0.01 0.00 -0.01 0.00 0.01 0.00 0.00 -0.01 0.00
N 166 166 166 166 166 166 166 166 166 166
H0 p-value [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H1 p-value [%] 31.71 82.37 46.95 81.35 30.97 14.82 26.77 40.29 69.10 44.73



Table A.I
State-variable Dynamics and CGMY Jump Structures in the Preferred Model Specification

This table reports detailed information on the state variable dynamics, Zt and Y i
t , and calibrated CGMY jump structures under

Specification I. We report the parameters of square-root diffusions fitted to the time series of the global, Zt, and country-specific
state variables, Y i

t , corresponding to each of the G10 currencies (coefficient standard errors in parentheses). The second section
of the table reports the time-series means (first row) and volatilities (second row) of the calibrated CGMY parameters, as well
as, the fraction of the innovation variance due to the non-Gaussian innovation, ηjt . Our model allows for one-sided global factor
innovations (Mg →∞), and two-sided country-specific innovations. The jump structures in the countries are assumed to share the
same parameters, {G, M, Y }it, which we report on the line corresponding to AUD, and omit them elsewhere. Finally, we compute
the skewness (Skewnessjt ) and kurtosis (Kurtosisjt ) of the global, Lg

Zt
, and country-specific factor innovation, Li

Y i
t

, induced by
variation in the corresponding state variable.

State variable κj θj ωj ηjt Gj
t Mj

t Y j
t Skewnessjt Kurtosisjt

Global (Zt) 2.3061 0.1416 0.6083 0.51 7.91 ∞ -0.75 -1.10 6.03
(0.3384) (0.0007) (0.0003) 0.19 5.59 - 0.16 1.35 4.05

AUD 2.8655 0.0051 0.0972 0.59 7.75 78.83 -0.73 -3.69 15.22
(0.4317) (0.0000) (0.0000) 0.20 3.39 13.48 0.12 1.86 4.03

CAD 1.3574 0.0053 0.1235 0.38 -2.06 11.92
(0.2379) (0.0000) (0.0000) 0.38 2.79 4.93

CHF 2.1419 0.0064 0.0886 0.59 -3.50 15.17
(0.2926) (0.0000) (0.0000) 0.16 1.64 4.42

EUR 1.7826 0.0087 0.1135 0.27 -1.70 11.04
(0.2500) (0.0000) (0.0000) 0.26 1.70 4.86

GBP 1.3111 0.0060 0.0691 0.36 -2.34 12.72
(0.1840) (0.0000) (0.0000) 0.16 1.46 4.66

JPY 4.4177 0.0041 0.1982 0.31 -1.42 10.65
(0.7917) (0.0000) (0.0000) 0.40 2.87 4.52

NOK 1.6399 0.0071 0.0766 0.40 -2.42 12.23
(0.2350) (0.0000) (0.0000) 0.19 1.66 4.70

NZD 3.3117 0.0077 0.0928 0.37 -2.04 11.30
(0.5183) (0.0000) (0.0000) 0.19 1.42 4.51

SEK 1.7331 0.0127 0.1185 0.15 -0.82 8.49
(0.2456) (0.0000) (0.0000) 0.21 1.00 3.73

USD 2.2455 0.0073 0.0772 0.34 -1.97 10.92
(0.3370) (0.0000) (0.0000) 0.18 1.41 4.59



Table A.II
Model HMLFX Factor Risk Premium Decomposition: Portfolios formed using one-month interest rates

This table uses the calibrated pricing kernel model to compute and decompose the HMLFX factor risk premium from the
perspective of a U.S. dollar investor. We compute the model-impliedHMLFX factor risk premium by constructing a hypothetical,
dollar-neutral factor mimicking portfolio on the basis of the one-month interest rates, yit,t+1. At each point in time, we sort the G10
currencies – excluding the U.S. dollar – into long and short portfolios on the basis of their yields, and weight the currencies within
each portfolio on the basis of the absolute deviation of their loading from the average yields of currencies with ranks five and six.
The model risk premia are computed daily and span from January 1999 to June 2012 (T = 3520 days). We report the global
factor loadings of the high and low interest rate portfolios (ξH and ξL), as well as, the mean portfolio risk premium (λHML; %
per annum). We then decompose the portfolio risk premium into contributions from the Gaussian and non-Gaussian components
of the global factor innovation, Lg

Zt
. Finally, we evaluate the mechanism through which jumps contribute to equilibrium currency

risk premia by decomposing risk premia across the moments of the pricing kernel innovations (variance, skewness, etc.). For each
quantity, we report its time-series mean, volatility, and range. Results are reported for each of the four specifications reported in
Table I.

Loadings Risk premium By Shock Type By Moment
Specification ξH ξL λHML Gaussian Non-Gaussian Variance Skewness Other

I Mean 0.83 1.06 3.46 42.01 57.99 85.22 9.48 5.30
Volatility 0.07 0.04 4.53 17.21 17.21 10.19 4.95 5.63

Min. 0.47 0.95 0.21 0.79 2.44 45.70 0.35 0.07
Max. 0.96 1.46 50.26 97.56 99.21 99.54 25.18 29.27

II Mean 0.85 1.06 3.74 40.22 59.78 85.25 10.09 4.65
Volatility 0.03 0.02 4.73 16.29 16.29 8.78 4.52 4.58

Min. 0.82 1.03 0.22 2.01 10.30 48.36 0.71 0.06
Max. 0.93 1.12 54.01 89.70 97.99 99.23 24.93 27.12

III Mean 0.84 1.17 2.89 41.68 58.32 86.72 9.16 4.12
Volatility 0.09 0.07 3.44 19.36 19.36 10.40 5.46 5.35

Min. 0.49 1.06 0.09 0.04 0.92 33.09 0.18 0.02
Max. 1.01 1.64 39.12 99.08 99.96 99.76 26.44 44.13

IV Mean 0.91 1.12 3.14 40.96 59.04 85.09 10.53 4.38
Volatility 0.03 0.02 3.46 17.83 17.83 9.05 4.95 4.44

Min. 0.87 1.08 0.13 1.03 13.91 40.22 1.90 0.16
Max. 0.99 1.21 40.57 86.09 98.97 97.72 26.41 34.78



Table A.III
Model HMLFX Factor Risk Premium Decomposition: Equal-weighted portfolios

This table uses the calibrated pricing kernel model to compute and decompose the HMLFX factor risk premium from the
perspective of a U.S. dollar investor. We compute the model-impliedHMLFX factor risk premium by constructing a hypothetical,
dollar-neutral factor mimicking portfolio on the basis of the calibrated time series of the global factor loadings, ξit . At each point
in time, we sort the G10 currencies – excluding the U.S. dollar – into long and short portfolios on the basis of their prevailing
loadings, and equal-weight the currencies within each portfolio. The model risk premia are computed daily and span from January
1999 to June 2012 (T = 3520 days). We report the global factor loadings of the high and low interest rate portfolios (ξH and
ξL), as well as, the mean portfolio risk premium (λHML; % per annum). We then decompose the portfolio risk premium into
contributions from the Gaussian and non-Gaussian components of the global factor innovation, Lg

Zt
. Finally, we evaluate the

mechanism through which jumps contribute to equilibrium currency risk premia by decomposing risk premia across the moments
of the pricing kernel innovations (variance, skewness, etc.). For each quantity, we report its time-series mean, volatility, and range.
Results are reported for each of the four specifications reported in Table A.I.

Loadings Risk premium By Shock Type By Moment
Specification ξH ξL λHML Gaussian Non-Gaussian Variance Skewness Other

I Mean 0.87 1.04 2.66 42.28 57.72 85.78 9.32 4.90
Volatility 0.04 0.03 3.16 18.18 18.18 10.54 5.13 5.88

Min. 0.62 0.96 0.11 0.01 0.18 39.08 0.01 0.00
Max. 0.92 1.34 37.48 99.82 99.99 99.99 26.00 36.10

II Mean 0.88 1.04 2.82 40.41 59.59 85.68 9.94 4.38
Volatility 0.00 0.00 3.53 17.17 17.17 9.33 4.73 5.01

Min. 0.88 1.04 0.13 0.01 5.08 37.90 0.08 0.00
Max. 0.88 1.04 42.18 94.92 99.99 99.92 25.89 37.24

III Mean 0.88 1.09 1.95 42.12 57.88 87.64 8.79 3.57
Volatility 0.05 0.05 2.20 20.38 20.38 10.28 5.50 5.31

Min. 0.66 1.00 0.04 0.00 0.16 25.49 0.02 0.00
Max. 0.95 1.45 25.60 99.84 100.00 99.97 26.59 54.47

IV Mean 0.93 1.07 2.12 41.26 58.74 85.70 10.24 4.06
Volatility 0.00 0.00 2.32 18.83 18.83 9.50 5.16 4.76

Min. 0.93 1.07 0.07 0.00 5.84 30.50 0.67 0.06
Max. 0.93 1.07 29.20 94.16 100.00 99.25 26.67 45.74



Table A.IV
Option-Implied Currency Risk Premia: Empirical factor mimicking portfolio returns

(Specification II; constant global factor loadings)

The table compares the historical (realized) returns to factor mimicking portfolios, with the corresponding model-implied risk
premia. The data span the period from January 1999 to June 2012 (N = 162 months). Realized returns are computed on the basis
of monthly buy-and-hold returns. The conditional HMLFX factor mimicking portfolios is a dollar-neutral portfolio formed by
sorting currencies into long and short portfolios on the basis of their prevailing one-month LIBOR rates. Within each portfolio
currencies are spread weighted, on the basis of the distance of their respective interest rates to the mean of the interest rates in
countries with ranks five and six. The unconditional HMLFX portfolios is formed on the basis of the historical interest rate
differentials computed using an expanding window starting in January 1990. The conditional short USD factor mimicking goes
long (short) the U.S. dollar when the prevailing U.S. dollar interest rate is above (below) the prevailing average of the nine other
G10 interest rates. The unconditional short USD factor mimicking portfolio is long an equal-weighted basket of G10 currencies
against the U.S. dollar. Model risk premia are computed on the basis of Specification II. We report the moments of various
quantities of interest, the p-values of the Jarque-Bera test for the realized portfolio returns, and comparisons of the mean realized
and model-implied risk premia (t-stats in square brackets).

Panel A: HMLFX Factor Mimicking Portfolio
Conditional Unconditional Difference

Realized Mean 4.96 3.32 1.63
[1.92] [1.32] [1.99]

Volatility 9.51 9.26
Skewness -1.07 -0.89
Kurtosis 7.03 6.90
JB (returns) 0.00 0.00
JB (Z-scores) 0.00 0.00
Carry 4.57 3.69 0.88
t-stat [60.81] [51.65] [27.95]

Model Total (λ) 3.81 3.73 0.08
[8.97] [8.54] [1.74]

HML (global, (λ
HML

) 3.81 3.73 0.08
[8.97] [8.54] [1.74]

Short USD (λ
USD

) 0.00 0.00 0.00
- - -

Portfolio ξH 0.85 0.88
Portfolio ξL 1.06 1.08

Difference Mean 1.14 -0.41 1.55
t-stat [0.43] [-0.16] [1.89]

Panel B: Short USD Factor Mimicking Portfolio
Conditional Unconditional Difference

Realized Mean 4.93 3.12 1.81
[2.05] [1.29] [0.78]

Volatility 8.84 8.90 8.56
Skewness -0.45 -0.17 -0.62
Kurtosis 3.96 3.72 8.07
JB (returns) 0.01 0.09 0.00
JB (Z-scores) 0.00 0.00 0.00

Model Total (λ) 0.84 1.59 -0.74
[5.35] [13.59] [-8.30]

HML (global, (λ
HML

) 0.46 0.81 -0.35
[4.47] [9.21] [-6.81]

Short USD (λ
USD

) 0.39 0.78 -0.39
[3.76] [22.96] [-8.88]

Portfolio ξH 0.97 0.95
Portfolio ξL 0.98 1.00

Difference Mean 4.09 1.54 2.56
[1.70] [0.63] [1.09]



Table A.V
Calibrated Model Parameters: Linking ξit to Y i

t

This table reports summary statistics for the calibrated parameters of the pricing kernel factor model. Results are reported for
four specifications which either: (a) match the prices of the high/low interest rate cross pairs and X/USD options (HLX + X/USD
option set; 24 pairs) or the full panel of G10 cross rates (X/Y option set; 45 pairs); and, (b) allow the global factors loadings, ξi, to
be time-varying or not. All calibrations are performed using daily option quotes from January 1999 to June 2012 (T = 3520 days)
at five individual option strikes (10δ put, 25δ put, at-the-money, 25δ call, 10δ call). In specifications with time-varying global
factor loadings, the loadings are parameterized on the basis of the one-month interest rate differential, ξit = ξi − Ψ̃t · (Y i

t − Y US
t ).

The slope coefficient, Ψ̃t, is time-varying, but common to all currencies in the cross-section. Panel A reports the values of the
country-specific loadings, ξi, obtained from the first stage of the calibration, with standard errors in parentheses. We also report
the mean one-month LIBOR interest rate differential for each country relative to the U.S.. Panel B summarizes the cross-sectional
dependence of the global factor loadings on interest rates differentials, Ψt, and the characteristics of the global factor innovation,
Lg
Zt

. We report the share of variance in the global innovations due to jumps, ηgt , and estimates of the parameters of the global
CGMY jump component, Gg

t (dampening coefficient) and Y g
t (power coefficient). Finally, we compute the skewness (Skewnessgt )

and kurtosis (Kurtosisgt ) of the global factor innovation induced by variation in the global factor, Zt. We obtain each of these
quantities day-by-day by minimizing option pricing errors for the target option set, and report their time series means and
volatilities. Panel C reports the root mean squared option pricing error measured in volatility points. We compute root mean
squared errors (RMSE) for each pair in the target option set, and report their mean pooled: (a) across all strikes and currency pairs;
(b) across all pairs with a given option strike.

Specification ξit Parametrization Option Set
I ξi −Ψt · (rit,t+1 − rUS

t,t+1) HLX and X/USD pairs
I’ ξi − Ψ̃t · (Y i

t − Y US
t ) HLX and X/USD pairs

Panel A: Global Factor Loadings, ξi
Specification AUD CAD CHF EUR GBP JPY NOK NZD SEK USD
I and I’ 0.79 1.00 0.96 1.00 0.93 1.17 0.92 0.81 1.00 1.00

(0.0101) (0.0000) (0.0033) (0.0001) (0.0044) (0.0072) (0.0054) (0.0084) (0.0001) -
rit,t+1 − rUS

t,t+1 [%] 2.46 0.20 -1.58 -0.15 1.06 -2.54 1.53 2.78 0.07 0.00

Panel B: Global Factor Summary Statistics
Specification Ψt ηgt Gg

t Y g
t Skewnessgt Kurtosisgt

I Mean 0.42 0.51 7.91 -0.75 -1.10 6.03
Volatility 1.89 0.19 5.60 0.16 1.35 4.04

I’ Mean -0.37 0.54 7.60 -0.74 -1.13 6.19
Volatility 11.94 0.20 4.86 0.17 1.35 4.20

Panel C: Option Pricing RMSE (Volatility Points)
Specification All 10δp 25δp 50δ 25δc 10δc

I 1.12 1.04 1.27 1.27 1.16 0.85
I’ 1.05 1.01 1.17 1.19 1.05 0.83

Panel D: HMLFX Factor Mimicking Portfolio
Conditional Unconditional Difference

Realized Mean 4.96 3.32 1.63
[1.92] [1.32] [1.99]

Model I’ Total (λ) 3.82 3.76 0.06
[8.37] [8.03] [1.19]

Difference Mean 1.14 -0.43 1.57
t-stat [0.42] [-0.17] [1.90]



Figure 1. Global Factor Loadings and State Variable Dynamics. The top panel plots the time series of global factor loadings,
ξit , for two high interest rate currencies (AUD, NOK), two low interest rate currencies (CHF, JPY), and the U.S. dollar. The bottom
panel plots the dynamics of the global state variable, Zt, from the preferred model specification. Overlaid is the time-series of the
first principal component extracted from the time series of option-implied variance swap rates for the 24 G10 currency pairs used
in the calibration. This set includes: (a) all X/USD currency pairs (9 pairs); and, (2) cross-pairs formed on the basis of currencies
which had the highest or lowest interest rates in the G10 set at any point in our sample (15 pairs). The principal component is re-
scaled to have the same mean and volatility as the global state variable. The plots report data spanning the period 1999:1-2012:6,
and are based on the output of Specification I.
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Figure 2. Cross-Sectional Relation between Calibrated Model Loading Differentials and Data Quantities. This figure plots
the unconditional pair-level relation between the time-series mean of the calibrated global factor loading differential and the time-
series mean of the corresponding one-month interest rate differential (top left), realized currency excess return (top right), option-
implied volatility (bottom left), and the option-implied skewness (bottom right). The option-implied moments are computed on
the basis of implied volatility functions which have been interpolated using the method of Castagna and Mercurio (2007), and
extrapolated beyond the lowest and highest quoted strikes (10δ) by appending flat tails. The results are plotted for the 24 G10
currency pairs used to calibrate the model (Specification I). This set includes: (a) all X/USD currency pairs (9 pairs); and, (2)
cross-pairs formed on the basis of currencies which had the highest or lowest interest rates in the G10 set at any point in our sample
(15 pairs). X/USD pairs are additionally denoted with red dots. The plots report data spanning the period 1999:1-2012:6.
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Figure 3. Fitted and Actual Option-Implied Volatilities. This figure plots the mean actual option-implied volatilities (blue)
and their fitted counterparts (dashed red) for cross pairs formed by combining two high interest rate currencies (AUD, NOK) with
two low interest rate currencies (CHF, JPY), as well as, pairs involving each of these currencies against the U.S. dollar. These
pairs represent a subset of the 24 pairs used in the model calibration (Specification I) on which these plots are based. All values
are annualized and reported in units of percent per annum. To illustrate the economic quality of the fit, the actual mean implied
volatility is plotted with a typical bid-ask spread (dashed blue lines), equal to 0.1 times the implied volatility at that strike; the mean
at-the-money volatility is reported in the title of each subplot. For each currency pair we plot option-implied volatilities at the five
quoted strikes (10δ put, 25δ put, at-the-money, 25δ call, 10δ call). The plot reports time-series means computed using daily data
for the period 1999:1-2012:6.

10dp 25dp ATM 25dc 10dc
5

10

15

20
CHF/AUD: ATM Vol = 12.06%

10dp 25dp ATM 25dc 10dc
5

10

15

20
NOK/CHF: ATM Vol = 8.38%

10dp 25dp ATM 25dc 10dc
5

10

15

20
CHF/USD: ATM Vol = 11.00%

10dp 25dp ATM 25dc 10dc
5

10

15

20
AUD/JPY: ATM Vol = 14.60%

10dp 25dp ATM 25dc 10dc
5

10

15

20
NOK/JPY: ATM Vol = 13.75%

10dp 25dp ATM 25dc 10dc
5

10

15

20
JPY/USD: ATM Vol = 10.92%

10dp 25dp ATM 25dc 10dc
5

10

15

20
AUD/USD: ATM Vol = 12.29%

10dp 25dp ATM 25dc 10dc
5

10

15

20
NOK/USD: ATM Vol = 12.21%



Figure 4. Returns to Empirical Factor Mimicking Portfolios. This figure plots the returns to empirical factor mimicking port-
folios for the HMLFX (left panels) and short dollar (right panels) factors, constructed using G10 currencies, over the period from
January 1999 to June 2012. We report results for conditional and unconditional factor mimicking portfolios. The conditional factor
mimicking portfolios are formed by sorting currencies on the basis of the prevailing one-month interest rates; unconditional factor
mimicking portfolios sort currencies on the basis of a backward looking average of one-month interest rates. The HMLFX fac-
tor replicating portfolios are spread-weighted, and dollar-neutral; the short dollar factor replicating portfolios are equal-weighted.
The top two panels plot the cumulative returns from investing $1 in each of the factor replicating portfolios. The bottom panels
plot estimates of the instantaneous portfolio return volatility based on an EGARCH(1, 1) model, and – on the basis of a variance-
covariance matrix imputed from the contemporaneous cross-section of option-implied variance swap rates for G10 cross-rates (‘FX
Option-Implied’).
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Figure 5. Option-Implied Currency Risk Premia: Conditional carry trade portfolio. This figure illustrates the model-implied
currency risk premium decomposition for the conditional G10 currency carry trade portfolio, which is spread-weighted and dollar-
neutral. The top panel plots the time series of the total, model-implied risk premium, and the contribution from exposure to the
global currency risk factor (HMLFX ). Since the empirical factor mimicking portfolio is constructed to be dollar-neutral, the
entirety of the model risk premium reflects compensation for exposure to the global factor. The middle panel decomposes the
model-implied portfolio risk premium into compensation for Gaussian and non-Gaussian innovations. The panel plots the share of
the risk premium due to each component; the mean share due to each component is reported in the title of the respective subplots.
The bottom panel decomposes the portfolio risk premium into contributions from the variance, skewness, and higher moments
(other) of the global pricing kernel shock, Lg

Zt
. The plots report data spanning the period 1999:1-2012:6, and are based on the

output of Specification I.
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Figure 6. Option-Implied Currency Risk Premia: Unconditional short U.S. dollar portfolio. This figure illustrates the model-
implied currency risk premium decomposition for the unconditional short dollar portfolio, which is short the U.S. dollar against an
equal-weighted portfolio of G10 currencies. The top panel plots the time series of the total, model-implied risk premium, and the
contribution from exposure to the global currency risk factor (HMLFX ). The middle and bottom panels decompose the component
of the portfolio risk premium not attributable to exposure to the global factor. The middle panel decomposes the risk premium into
compensation for Gaussian and non-Gaussian innovations. The panel plots the share of the risk premium due to each component;
the mean share due to each component is reported in the title of the respective subplots. The bottom panel decomposes the short
dollar risk premium into contributions from the variance, skewness, and higher moments of the country-specific U.S. pricing kernel
innovation, LUS

Y US
t

. The plots report data spanning the period 1999:1-2012:6, and are based on the output of Specification I.
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Figure 7. The Cross-Section of Model and Realized Currency Risk Premia. The left panel plots the cross-sectional relation
between the mean realized currency pair excess return, and the mean option-implied currency pair risk premium obtained from the
calibrated model. The right panel plots the cross-sectional relation between the mean realized currency pair excess return and the
mean one-month interest rate differential. Each subplot is equipped with a 45-degree line with an intercept of zero. In the left panel,
this line corresponds to the hypothesis that the calibrated, option-implied risk premia are an unbiased predictor of currency excess
returns. In the right panel, this line corresponds to a random walk model of exchange rate dynamics. The results are plotted for the
24 G10 currency pairs used to calibrate the model (Specification I). This set includes: (a) all X/USD currency pairs (9 pairs); and,
(2) cross-pairs formed on the basis of currencies which had the highest or lowest interest rates in the G10 set at any point in our
sample (15 pairs). X/USD pairs are additionally denoted with red dots. The plots report data spanning the period 1999:1-2012:6.
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