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Summary. The present paper considers the exploitation of a common-

property, non-renewable resource, by individuals concerned with their social
status. Assuming that the social status is reflected by the individuals’relative
consumptions, we formalize this motivation by means of a utility function, de-
pending on the individual’s actual consumption and on the consumption level he
aspires, the latter being related to the consumptions in his reference group. We
compare the benchmark cooperative solution with a noncooperative Markov-
perfect Nash equilibrium. We confirm, under more general conditions than in
the existing literature, that the individuals’concern for social status exacerbates
the tragedy of the commons. We finally discuss the policy implications and pro-
vide a taxation scheme capable of implementing the cooperative solution as a
noncooperative Markov-perfect Nash equilibrium.
JEL Classification. Q30, C61.

1 Introduction

When a nonrenewable resource is owned in common, the economic agents ex-
ploiting it may have too little incentives to conserve it, because they fear the
units of the resource they leave in situ may actually be extracted by others (for
a review, see Dockner et al., 2000, Long, 2010, and Long, 2011). This adverse
behavior leads to the so-called tragedy of the commons. In parallel, a recent
literature has raised the idea that the concern for social status may amplify the
phenomenon, inducing an even faster extraction of the resource (Katayama and
Long, 2008; Long and McWhinnie, 2012).

This paper pursues this line of research. With respect to the previous lit-
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erature, the main contribution is the generality within which the results are
established. We use a more general utility function. We measure the individ-
uals’ status as a more general function of the others’ consumptions. In this
setting, focusing on symmetric Markov-perfect Nash equilibria, we confirm that
the tragedy of the commons occurs and is exacerbated by status.

Dockner et al. (2000) and Long (2010, 2011) review models of exploitation of
a common-property, nonrenewable resource (Bolle, 1986; Long and Shimomura,
1998; Long et al., 1999; McMillan and Sinn, 1984; Sinn, 1984). They com-
pare the benchmark cooperative solution, with a noncooperative open-loop Nash
equilibrium or Markov-perfect Nash equilibrium. By definition, the tragedy of
the commons occurs when a larger fraction of the resource stock is extracted
along the noncooperative equilibrium, compared with the benchmark coopera-
tive solution. In the open-loop version of the game, as shown by Bolle (1986),
the nature of the solution depends on how we restrict the set of feasible strate-
gies available to each agent. On the one hand, in the case where only strictly
feasible strategies are allowed (1), the cooperative extraction path coincides
with an open-loop Nash equilibrium of the noncooperative game. On the other
hand, in the case where weakly feasible strategies are allowed (2), the coopera-
tive extraction path cannot be supported as an open-loop Nash equilibrium of
the noncooperative game. Finally, a Markov-perfect Nash-equilibrium implies a
faster extraction rate than an open-loop Nash equilibrium, because each player
knows that being more conservationist will encourage the others to extract more
(Long and Shimomura, 1998; Long et al., 1999). To summarize, in most cases,
the literature shows that the exploitation of a common pool fosters an over-
consumption of the exhaustible resource, leading to a tragedy of the commons
(3).

All this literature implicitly assumes that the preferences are independent
across individuals. Yet, many social scientists reject this postulate as unrealistic.
In particular, they argue that the social status plays a role in the determination
of individuals’behaviors (Mac Adams, 1992; Weiss and Fershtman, 1998). In
economics, early recognition of this motivation can be found in Smith (1759)
and Veblen (1899). The first formal analysis are due to Duesenberry (1949),
Liebenstein (1950), Becker (1974) and Pollak (1976).

In a recent survey, Weiss and Fershtman (1998) expound how one can in-
corporate status considerations in an economic model. Firstly, one needs to
measure individuals’social status. Secondly, one needs to specify the benefits as-
sociated with a higher social status. This can be done, either directly, by putting

1The agents can only choose strategies that allow the other players’plans to be satisfied,
given the exhaustion constraint.

2The agents are allowed to choose strategies that may frustrate the other players’plans,
due to the exhaustion constraint.

3 Importantly, remark that this literature relies on simple specifications, using isoelactic
utility functions.

2



the associated benefits into the individuals’utility functions, or indirectly, by
specifying the channels by which status shifts the individuals’opportunity set.

Following the first approach, Hollander (2001) argues that the behavior of
individuals concerned with their social position, can be appropriately described
by means of a utility function, the arguments of which are the individual’s
actual consumption and the consumption level he aspires, the latter being equal
to the average consumption in his reference group. This formalization has found
applications in economic growth, finance, consumption analysis, among other
topics. See, for example, Arrow and Dasgupta (2009), Carroll et al. (1997),
Dupor and Liu (2003), Frank (1985), Galí (1994) and Ljungqvist and Uhlig
(2000). It has also received supporting experimental and empirical evidence.
See, for example, Alpizar et al. (2005), Clark and Oswald (1996), Clark et al.
(2008) and Luttmer (2005).

The implications that such motivations have on environmental issues have
already been investigated (Brekke and Howarth, 2002; Ng and Wang, 1993;
Howarth, 1996). As expected, this literature shows that the concern for social
status induces excessive levels of consumption and environmental damages (Ng
and Wang, 1993). In response, an optimal policy requires a consumption tax
and a pollution tax above the standard pigovian prescription (Howarth, 1996).

Recently, an emerging literature also explored the implications of such moti-
vations on the exploitation of common-property resources, including Katayama
and Long (2008) and Long and McWhinnie (2012). Long (2011) points this
issue as an interesting future topic for research in the field of dynamic games of
natural resources.

Katayama and Long (2008) consider an economy where the individuals man-
age a capital stock and a nonrenewable resource stock, both under common-
property, to produce a final output with a Cobb-Douglas technology. Each
individual’s preference depends on his consumption and on the average con-
sumption in the community. Preferences are represented by Cobb-Douglas util-
ity functions. For a special parametrization, Katayama and Long (2008) are
able to derive a linear Markov-perfect equilibrium. They show that the individ-
uals’concern for relative positions exacerbates overconsumption, with a higher
fraction of the capital stock consumed, and lowers the rate of extraction (4).

Long and McWhinnie (2012) consider a community of fishermen exploiting
a common-property fish stock for a foreign market. They use a standard model
of fishery, with the Schaeffer’s harvest function and the logistic growth function,
except that the fishermen are assumed to care about their relative performance
(either profits or harvests). Preferences are represented by isoelastic utility

4This last result holds only if extraction is costly. With costless extraction, no impact on
the resource exploitation is found.
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functions. Long and McWhinnie (2012) show that, in a (open loop) Nash equi-
librium steady state, the individuals’concern for relative performance worsens
the tragedy of the commons.

This short review outlines the fact that the existing papers give few exam-
ples where the individuals’motivation for relative positions exacerbates overcon-
sumption. However, they always rely on simple specifications of both preferences
and technologies (i.e., Cobb-Douglas and isoelastic functions).

The present paper extends the literature, by introducing a more general
formalization of the individuals’ social status and weaker restrictions on the
individuals’preference. Precisely, we consider the exploitation of a common-
property, non-renewable resource (5). Following Katayama and Long (2008)
and Long and McWhinnie (2012), we postulate that each individual cares about
his consumption and about his social status, the latter depending on his rela-
tive position with respect to a consumption standard in his reference group.
However, contrary to Katayama and Long (2008) and Long and McWhinnie
(2012), we formalize the consumption standard which the individuals aspire
as a general function of the others’consumptions and we introduce no restric-
tions about the shape of the individuals’utility. In this general setting, we are
still able to explicitly derive the benchmark cooperative solution and a nonco-
operative Markov-perfect Nash equilibrium (6) (7). Our results confirm that
a Markov-perfect Nash-equilibrium implies a faster extraction rate than the
optimal benchmark solution. This remains true even in the limit case where
the individuals do not pay attention to their social status. This means that the
tragedy of the commons occurs in a general setting. Taking this case as a bench-
mark, our results also confirm the general intuition that the individuals’concern
for relative positions exacerbates the tragedy of the commons. We finally dis-
play a taxation scheme to implement the benchmark cooperative solution as a
noncooperative Markov-perfect Nash equilibrium.

The rest of the paper is organized as follows. Section 2 sets out the model.
Section 3 analyses the cooperative solution. Section 4 characterizes a Markov-
perfect Nash equilibrium. Section 5 discusses the normative implications of our
results. Section 6 expounds an optimal taxation scheme. Most proofs are given
in the appendix.

5 In this respect, Katayama and Long (2010) and Long and McWhinnie (2012) use more
general models than ours, since we consider neither capital stock nor natural growth of re-
source. Hence, our generalization is limited to the representation of individuals’social status
and preference.

6We do not consider open-loop Nash equilibria. The advantage of Markov-perfect Nash
equilibria is that they satisfy the condition of subgame perfectness (Dockner et al, 2000).

7An anonymous referee remarks that the results presented here can be related with Rincon-
Zapatero et al. (1998) and Rincon-Zapatero (2004), dealing with the characterization of Nash
equilibria in differential games, by means of a system of partial differential equations. Indeed,
they illustrate their results with an application to non-renewable resources games. Although
some similarities exist, Rincon-Zapatero et al. (1998) and Rincon-Zapatero (2004) did not
obtain the characterization proposed here, due to their focus on finite-horizon problems.
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2 The model.

Consider a non renewable resource that can be exploited simultaneously by n
consumers. At each instant of time t, let ci (t) denote consumer i’s rate of con-
sumption and yi (t) the consumption level he aspires. The latter, depending on
the rates of consumption in his reference group, reflects consumer i’s concern for
relative position. More specifically, we let yi (t) = φi (c−i (t)), where the func-
tion φi (·) implicitly formalizes how consumer i delineates his reference group
and aggregates the rates of consumption within the group (8). Let v (ci, yi) be
individual i’s utility function. We postulate that the utility function v (ci, yi) is
twice continuously differentiable, with v1 (ci, yi) > 0 and v2 (ci, yi) ≤ 0 (9) (10).

The following assumptions will be used below.

Assumption 1. (Status) For all i and c−i (t), we have:
(a) φi (c−i (t)) ≥

∑
j 6=i cj (t) / (n− 1);

(b) if c−i (t) = (c, ..., c), for some c, then φi (c−i (t)) = c.

Katayama and Long (2008) and Long and McWhinnie (2012) consider the
case where consumer i’s aspiration is the average consumption in the rest of
the population, i.e. yi (t) =

∑
j 6=i cj (t) / (n− 1). Hence, their specification

satisfies Assumption 1. However, Assumption 1 is clearly more general. The
first part (a) states that the consumption level yi (t) that consumer i aspires
is at least equal to the average consumption

∑
j 6=i cj (t) / (n− 1) among his

peer. This condition thus implies that consumer i gives more weight to the
upper part of the consumptions’distribution. The second part (b) means that
if everyone consumes c in the rest of the population, the consumption level
yi (t) that consumer i aspires is also equal to c. Among others, an appealing
specification, satisfying assumption 1, but differing from Katayama and Long
(2008) and Long and McWhinnie (2012), is yi (t) = max {cj (t) ; j 6= i}.

Assumption 2. (Utility function)
(a) The utility function v (ci, yi) is concave.
(b) There exists α, with 0 ≤ α < 1, such that, for all c, we have αv1 (c, c) +

v2 (c, c) = 0 ( 11).

Assumption 2 is essentially a technical assumption. The first part (a) will
be used to prove Lemma 1 below. The second part (b) is implicit in most
of the literature. For example, it is in force in Carroll et al. (1997), Dupor
and Liu (2003), Galí (1994), Katayama and Long (2008), Ljungqvist and Uhlig
(2000) and Long and McWhinnie (2012). This condition will be used to derive

8Here, we use the notation: c−i (t) = (c1 (t) , ..., ci−1 (t) , ci+1 (t) , ..., cn (t)).
9Here and below, v1 (ci, yi) and v2 (ci, yi) denote the first and second derivatives of

v (ci, yi), respectively.
10Remark that if v2 (ci, yi) = 0, for all ci and yi, we obtain the standard common-pool

model of exploitation of an exhaustible resource, as a special case of our model.
11Note that α = 0 in the special case where v2 (ci, yi) = 0, for all ci and yi.
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Propositions 2 and 3 below. Intuitively, it means that, along the 45-degree line
(i.e., the locus where ci (t) = yi (t) = c, for some c), the consumer i’s marginal
rate of substitution between consumption ci (t) and aspiration yi (t) is constant
and lies between 0 and 1. It also implies that the utility is increasing along the
45-degree line, because the negative effect of others’consumption is less than
the gains from one’s own consumption (Arrow and Dasgupta, 2009) (12).

Below, it will be useful to define u (c) = v (c, c), for all c. By construc-
tion, the utility function u (c) measures the utility that an individual obtains
when consuming c, while the consumption he aspires is also equal to c. Due
to Assumption 1.b, this also corresponds to the utility he derives from living
in a society where everybody consumes c. Our assumptions above imply that
u′ (c) > 0 and u′′ (c) < 0, for all c (13).

The figure below aims at summarizing our assumptions about the individ-
uals’ preference. It depicts a familly of indifference curves, i.e., locus where
v (ci, yi) = k, k′ and k′′, with k < k′ < k′′. The utility is increasing in the
N-W direction. At any point, the slope of the indifference curve measures the
marginal rate of substitution between consumption ci (t) and aspiration yi (t).
By assumption 2, the marginal rate of substitution is constant along the 45-
degree line. The concavity of the utility function v (ci, yi) implies that any
segment joining two points of a given indifference curve lies above this indiffer-
ence curve. The concavity of the utility function u (c) implies that along the
45-degree line, the utility is increasing at a diminishing rate.

12 In a competitive economy, Arrow and Dasgupta (2009) prove that this condition implies
that the socially optimal and market equilibrium paths coincide.
13Katayama and Long (2008) and Long and McWhinnie (2012) consider specifications, such

that, implicitly, u (c) belongs to the familly of isoelastic utility functions.
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Figure 1.

The economy is endowed with a finite stock, x0, of the resource. The resource
state, x (t), evolves according to the ordinary differential equation

ẋ (t) = −
∑n
i=1 ci (t) , x (0) = x0. (1)

Each consumer i’s problem is to choose an individual consumption path ci (·)
to maximize ∫ ∞

0

v (ci (t) , yi (t)) e−δtdt, (2)

where δ is a common rate of time preference, with δ > 0.

The social objective is to find a vector of individual consumption paths
(ci (·))ni=1, for all i, to maximize∑n

i=1

∫ ∞
0

v (ci (t) , yi (t)) e−δtdt. (3)

3 Cooperative solution.

We derive here the socially optimal consumption path and discuss its properties.
In particular, we show that, from the social viewpoint, no account should be
taken of the individuals’concern for relative consumptions.

The following lemma will greatly simplify the determination of the optimal
policy, since it implies that we can limit our attention to symmetric consumption
paths. To expound this result, for all vector (ci (t))

n
i=1 of feasible individual rates

of consumption, we define

V ((ci (t))
n
i=1) =

∑n
i=1 v (ci (t) , φi (c−i (t))) ,

the corresponding sum of the consumers’utilities.

Lemma 1. (Symmetry of the optimal solution.)
For all (ci (t))

n
i=1, if there exist j 6= k such that cj (t) 6= ck (t), then

V
(
(
∑n
i=1 ci (t) /n)

n

i=1

)
> V ((ci (t))

n
i=1) .

The proof is given in the Appendix.

Intuitively, Lemma 1 says that if, along a given consumption path (ci (·))ni=1,
the aggregate consumption

∑n
i=1 ci (t) is not distributed equally at some time t,

the equal redistribution of the same quantity will increase the consumers’total
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utility. As a corollary, as this deviation does not challenge the feasibility of the
initial consumption path (ci (·))ni=1, lemma 1 implies, by contradiction, that an
optimal consumption path is symmetric.

From Lemma 1, we will derive a socially optimal consumption path, by first
substituting ci (t) = yi (t) = c (t), for all i and t, into (3), and by then choosing
c (t), for all t, to maximize∫∞

0
nu (c (t)) e−δtdt,

where:
ẋ (t) = −nc (t) , x (0) = x0,
c (t) ≥ 0, x (t) ≥ 0.

To state our result in Proposition 1 below, define σ (c) ≡ −u′′ (c) c/u′ (c),
for all c, the elasticity of the marginal utility u′ (c). Assuming integrability of
σ (c), let Θ (c) ≡

∫ c
0
σ (s) ds, for all c, and assume that limc→∞Θ (c) =∞.

Proposition 1. (Optimal policy in Feedback form.)
The optimal policy, given in the feedback form ci = f (x), for all i, is im-

plicitly defined by ∫ f(x)

0

σ (s) ds = δx/n, for all x. (4)

The proof is given in the Appendix.

It is clear from Proposition 1 that the optimal policy only depends on the
curvature of the marginal utility, σ (·), the rate of discount, δ, the stock of the
resource, x, and the population size, n.

Importantly, this means as a corollary that the optimal policy is not in-
fluenced by the way the individuals measure and value their social status, as
formalized here by the functions φi (·), for all i, and v (·). More precisely, propo-
sition 1 shows that any set of functions φi (·), for all i, and v (·), provided that
it leaves the utility function u (·) unchanged, will determinate the same optimal
policy. In this sense, we can affi rm that, from the social viewpoint, no account
should be taken of the individuals’concern for relative consumptions.

The figure below illustrates the utilization of Proposition 1. It displays
a possible graph of the elasticity of the marginal utility σ (·). According to
Proposition 1, it is optimal, at any time, that each consumer extracts a quantity
c◦, such that the surface area below the graph, from the origin to c◦, equals
δx0/n, where δ is the discount rate, x0 is the current state of the resource and
n is the population size.
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Figure 2.

From Figure 2, we immediatly see that the optimal individual consumption
c◦ does not depend on α, is increasing in δ and x0, and is decreasing in n and
σ (·) (14). A larger population has an ambiguous effect on the aggregate con-
sumption nc◦. However, further investigations make it possible to show the
following property.

Property 1. The optimal aggregate consumption is increasing, constant or de-
creasing in n, respectively, if the elasticity of marginal utility σ (c) is increasing,
constant or decreasing, repectively.

The proof is shown in the appendix.

Figure 3 below helps to understand Property 1. It considers two possible
graphs for the elasticity of the marginal utility, one being constant, σ (·), and the
other being increasing, σ+ (·). In both cases, the surface area below each graph,
from the origin to c◦, is assumed equal to δx0/n, by construction. Hence, in both
cases, the optimal individual consumption is initially equal to c◦. Assume now
that we double the population size (i.e., 2n). According to Proposition 1, the
new optimal individual consumptions can be found when the surface area below
each graph is half what it was initially (i.e., δx0/2n). Graphically, this yields the
optimal individual consumptions c and c+, respectively corresponding to σ (·)
and σ+ (·). Clearly, with the constant elasticity (i.e., σ (·)), the new optimal
individual consumption is simply half what it was initially (i.e., c = c◦/2).
Therefore, the aggregate optimal consumption is unchanged (i.e., 2nc = nc◦).
However, with the increasing elasticity, the new optimal individual consumption

14Here, in saying that c◦ is decreasing in σ (·), we mean that when comparing two problems
only differing with respect to their elasticity of marginal utility, σ1 (·) and σ2 (·) (say), the
optimal consumption c◦ will be smaller in the second problem when σ1 (c) < σ2 (c), for all c.
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is larger than half what it was initially (i.e., c+ > c◦/2). Therefore, the aggregate
optimal consumption increases (i.e., 2nc+ > nc◦).

Figure 3.

4 Markov-perfect Nash equilibrium.

In this section, we derive a Markov-perfect Nash equilibrium and discuss its
properties. In particular, we prove that it depends on the individuals’preference
about their relative consumptions.

A Markovian strategy for individual i is a function si, associating resource
states x with individual i’s consumptions ci = si (x). A vector S = (si)

n
i=1

is called a strategic profile. It is said to be feasible if there exists a unique
absolutely continuous state trajectory x (·) satisfying (1), with ci (t) = si (x (t)),
for all i and t, and if the corresponding individuals’objectives (2), for all i, are
well defined (Dockner et al., 2000).

For all feasible strategic profile S = (si)
n
i=1 and initial state x0, let

V i (S, x0) =
∫∞
0
v (ci (t) , yi (t)) e−δtdt,

where:
ẋ (t) = −

∑n
i=1 ci (t) , x (0) = x0,

yi (t) = φi (c−i (t)) ,
(ci (t))

n
i=1 = (si (x (t)))

n
i=1 .

(5)

A (stationary) Markov-perfect Nash equilibrium is a feasible vector S∗ =
(s∗i )

n
i=1 such that, for all i, si and x0, V i (S∗, x0) ≥ V i ((S∗/si) , x0), with

(S∗/si) =
(
s∗1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n

)
a feasible strategic profile.
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We expound our result in Proposition 2 below. It is assumed here that
σ (c) > (n− 1 + α) /n, for all c (15).

Proposition 2. (Markov-perfect Nash equilibrium.)
Let each individual i’s strategy s∗i = g, for all i, be implicitly defined

by ∫ g(x)

0

(σ (s)− (n− 1 + α) /n) ds = δx/n, for all x. (6)

The strategic profile S∗ = (s∗i )
n
i=1 yields a Markov-perfect Nash equilibrium.

The proof is given in the Appendix.

The figure below illustrates the utilization of Proposition 2. Remember that
the elasticity of the marginal utility σ (·) is assumed larger than (n− 1 + α) /n.
According to Proposition 2, a Markov-perfect Nash equilibrium results if, at any
time, each consumer extracts a quantity c∗, such that the surface area between
the graphs of the elasticity of marginal utility σ (·) and of the horizontal line
of ordinate (n− 1 + α) /n, from the origin to c∗, equals δx0/n, where δ is the
discount rate, x0 is the current state of the resource and n is the population
size.

Figure 4.

From Figure 4, we can conclude that the individual Nash equilibrium con-
sumption c∗ is increasing in α, δ and x0, and is decreasing in σ (·) (16). A larger
15As α < 1, we have (n− 1 + α) /n < 1. Thus, examples of standard utility functions

satisfying this condition are u (c) = ln (c) and
(
c1−µ − 1

)
/ (1− µ), with µ > 1.

16Here, in saying that c∗ is decreasing in σ (·), we mean that if two problems only differ
with respect to their elasticity of marginal utility, σ1 (·) and σ2 (·) (say), the noncooperative
consumption will be smaller in the second problem when σ1 (c) < σ2 (c), for all c.
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population has an ambiguous effect, both at the individual and aggregate levels.
Nevertheless, we are still able to derive the following property.

Property 2.
(a) The individual Nash equilibrium consumption is decreasing, constant or

increasing in n, respectively, if the elasticity of marginal utility is larger than,
equal to, or smaller than one, respectively.
(b) The Nash equilibrium aggregate consumption is increasing in n, if the

elasticity of marginal utility is smaller than or equal to one.
(c) The Nash equilibrium aggregate consumption is increasing in n, if the

elasticity of marginal utility is non-decreasing.

The proof is shown in the appendix.

The figure below will help to clarify why a larger population has an am-
biguous effect. It represents how the individual Nash equilibrium consumption
varies, when the resource stock and the population increase proportionally. As-
sume that, in an initial situation, where the resource stock is x0 and the popu-
lation size is n, the individual Nash equilibrium consumption is c∗. Hence, by
assumption, the surface between σ (·) and (n− 1 + α) /n, from the origin to c∗,
has measure δx0/n, from Proposition 2. Now, consider a final situation, ob-
tained from the initial one, by increasing the resource stock and the population
proportionally. Formally, in the final situation, the resource stock x′0 and the
population n′ are such that n′ > n and x′0/n

′ = x0/n. From Proposition 2,
the resulting individual Nash equilibrium consumption, c∗∗, is found when the
surface between σ (·) and (n′ − 1 + α) /n′, from the origin to c∗∗, has measure
δx′0/n

′. Now, as x′0/n
′ = x0/n by assumption, to obtain c∗∗ from c∗ in Figure

5, intuitively, one simply has "to slip, remodel and paste the shaded area in
the direction of the arrow". It immediatly follows that c∗∗ > c∗, showing that,
when the per capita stock remains constant, a larger population induces a larger
individual Nash equilibrium consumption.

Figure 5.
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This suggests a way to decompose the effect of a larger population. On
the one hand, there is the strategic effect, dealt with in Figure 5. The per
capita stock being constant, a larger population renders its conservation more
risky, inducing the individuals to consume the resource more quickly. On the
other hand, there is the scarcity effect. Conditional on the population being
constant, a smaller stock of the resource induces the individuals to reduce their
consumption. Since the two effects go in opposite directions, a larger population
has an ambiguous overall effect on the Nash equilibrium consumption. Property
2 shows that the strategic effect dominates when the elasticity of marginal utility
is smaller than one, and conversely.

5 Normative implications.

The results above imply that there is overconsumption of the resource at the
Markov-perfect Nash equilibrium, compared with the benchmark cooperative
solution. Indeed, as the shaded areas in figures 2 and 4 must have same measure,
it is not diffi cult to see that we always have c∗ > c◦, for all possible values of the
parameters. We can also remark that the gap between c◦ and c∗ is increasing
in (n− 1 + α) /n.

In order to isolate the role played by the individuals’preferences for social
status in our results, let us consider the benchmark case where α = 0. Then, our
framework generalizes the standard model of a common-property, nonrenewable
resource exploitation, as reviewed by Dockner et al. (2000) and Long (2010,
2011). It shows the result that the tragedy of the commons is exacerbated by
status holds under a general form of the utility function and formalizes that it
holds under a more general form of status.

Now, let us compare this benchmark case with a situation where α > 0.
As (n− 1 + α) /n is increasing in α, we can conclude that the gap between c◦

and c∗ becomes larger. Hence, our framework generalizes previous results in
the literature (Katayama and Long, 2008, and Long and McWhinnie, 2012). It
shows the result that the tragedy of the commons is exacerbated by status holds
under a general form of the utility function and formalizes that it holds under
a more general form of status.

Figure 6 provides a way to decompose graphically the role played by the
property regime and the individuals’concern for status, in the overconsumption
of the resource. The optimal consumption is c◦, obtained when the surface area
below σ (·) has measure δx0/n (by Proposition 1). The Markov-perfect Nash
equilibrium consumption is c∗, obtained when the surface area between σ (·)
and the line (n− 1 + α) /n has (the same) measure δx0/n (by Proposition 2).

To isolate the role played by the common-property regime in the transition
from c◦ and c∗, consider anew the special case where α = 0. In this situation,
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the Markov-perfect Nash equilibrium consumption would be c′, obtained when
the surface area between σ (·) and the line (n− 1) /n has measure (the same)
δx0/n (by Proposition 2). To obtain it graphically in Figure 6, intuitively, one
simply has "to slip, remodel and paste the shaded area in the direction the
arrow". By construction, the transition from c◦ to c′ can be attributed to the
tragedy of the commons. The remaining gap between c′ to c∗ is due to the
individuals’concern for social status.

Figure 6.

6 Policy recommandations.

In this section, we design a taxation scheme such that the socially optimal con-
sumption path can be sustained as a Markov-perfect Nash equilibrium. Under
this policy, each individual is taxed on the difference between his personal con-
sumption and his socially defined consumption standard, depending on the rates
of consumption in the rest of the population. The tax rate is calculated so as
to induce the internalization of the social costs of the players’behaviors along
the socially optimal consumption path.

At each instant of time t, assume that the social planner assigns to each
individual i a consumption standard zi (t), defined by reference with the rates
of consumption among his peers. Formally, we let zi (t) = ϕi (c−i (t)) (17).
Suppose that if c−i (t) = (c, ..., c), for some c, then ϕi (c−i (t)) = c. Moreover,
assume that player i is taxed τ (zi (t)) on the difference between his consumption
ci (t) and his socially defined consumption standard zi (t), where τ (·) is a tax
17Of course, the assumption that ϕi (·) = φi (·) seems natural. However, by definition, it

means that the social planner has perfect information on the individuals’reference groups and
on the way they determine their aspiration levels. This seems a very demanding assumption.
It is thus worth noticing that this assumption is not necessary to obtain our implementation
result.
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schedule to be defined below. Under this policy, each consumer i’s problem
becomes to choose an individual consumption path ci (·) to maximize∫ ∞

0

[
v (ci (t) , yi (t))

−τ (zi (t)) (ci (t)− zi (t))

]
e−δtdt.

Passing through the same steps as in section 5, for all feasible strategic profile
S = (si)

n
i=1 and initial state x0, let

W i (S, x0) =
∫∞
0

[
v (ci (t) , yi (t))

−τ (zi (t)) (ci (t)− zi (t))

]
e−δtdt,

where:
ẋ (t) = −

∑n
i=1 ci (t) , x (0) = x0,

yi (t) = φi (c−i (t)) ,
zi (t) = ϕi (c−i (t)) ,
(ci (t))

n
i=1 = (si (x (t)))

n
i=1 .

(7)

A (stationary) Markov-perfect Nash equilibrium is a feasible vector S∗ =
(s∗i )

n
i=1 such that, for all i, si and x0, W i (S∗, x0) ≥ W i ((S∗/si) , x0), with

(S∗/si) =
(
s∗1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n

)
a feasible strategic profile.

Proposition 3 below describes the proposed optimal taxation policy. The
result holds under the same conditions as Proposition 1.

Proposition 3. (Optimal taxation scheme)
Assume that each individual i is taxed at the rate

τ (zi (t)) = (n− 1 + α)u′ (zi (t)) / ((1− α)n) ,

and plays the strategy s∗i = f , where f is the optimal policy defined in Proposi-
tion 1. The strategic profile S∗ = (s∗i )

n
i=1 yields a Markov-perfect Nash equilib-

rium.

The proof is given in the Appendix.

7 Conclusion.

The paper considered the exploitation of a common-property, non-renewable
resource, by individuals concerned with their social status. We extended results
in Katayama and Long (2008), and Long and McWhinnie (2012), assuming a
more general formalization of the individuals’social status and preferences. We
confirmed that status seeking behaviors exacerbates the tragedy of the commons
and we found a taxation scheme to implement the socially optimal consumption
path as a Markov-perfect Nash equilibrium.
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8 Appendix.

8.1 Proof of lemma 1.

Consider any vector of individual consumptions C (t) = (ci (t))
n
i=1. Recall that

V (C (t)) =
∑n
i=1 v (ci (t) , φi (c−i (t))). Let C (t) = (ci (t))

n
i=1 = (

∑n
i=1 ci (t) /n)

n

i=1
represent the equal redistribution of C (t) = (ci (t))

n
i=1. We need to show that,

if C (t) 6= C (t), then V
(
C (t)

)
> V (C (t)).

By definition,

V
(
C (t)

)
=
∑n
i=1 v (ci (t) , φi (c−i (t))) . (8)

Since the consumption vector C (t) = (
∑n
i=1 ci (t) /n)

n

i=1
is symmetric, we have

(by assumption 1.b)

ci (t) = φi (c−i (t)) =
∑n
i=1 ci (t) /n, for all i.

Substituting into (8), we get

V
(
C (t)

)
=

∑n
i=1 v

(∑n
i=1

ci (t)

n
,
∑n
i=1

ci (t)

n

)
,

= nv

(∑n
i=1

ci (t)

n
,
∑n
i=1

ci (t)

n

)
.

Now, remark that(∑n
i=1

ci (t)

n
,
∑n
i=1

ci (t)

n

)
=
∑n
i=1

1

n

(
ci (t) ,

∑
j 6=i

cj (t)

n− 1

)
.

After substitution, this yields

V
(
C (t)

)
= nv

(∑n
i=1

1

n

(
ci (t) ,

∑
j 6=i

cj (t)

n− 1

))
.

Clearly, if C (t) 6= C (t), by concavity of v,

v

(∑n
i=1

1

n

(
ci (t) ,

∑
j 6=i

cj (t)

n− 1

))
>
∑n
i=1

1

n
v

(
ci (t) ,

∑
j 6=i

cj (t)

n− 1

)
,

and

V
(
C (t)

)
>
∑n
i=1 v

(
ci (t) ,

∑
j 6=i

cj (t)

n− 1

)
.

Now, remember that, for all i, v is decreasing in yi and φi (c−i (t)) ≥
∑
j 6=i cj (t) / (n− 1)

(by Assumption 1.a). It follows that

v

(
ci (t) ,

∑
j 6=i

cj (t)

n− 1

)
≥ v (ci (t) , φi (c−i (t))) ,

16



for all i, and, summing over i, that

∑n
i=1 v

(
ci (t) ,

∑
j 6=i

cj (t)

n− 1

)
≥
∑n
i=1 v (ci (t) , φi (c−i (t))) .

Finally, this allows us to show that

V
(
C (t)

)
>
∑n
i=1 v (ci (t) , φi (c−i (t))) = V (C (t)) ,

which shows lemma 1. �

8.2 Proof of Proposition 1.

The social problem is to choose c (·) to maximize∫∞
0
nu (c (t)) e−δtdt,

where:
ẋ (t) = −nc (t) , x (0) = x0,
c (t) ≥ 0, x (t) ≥ 0.

Define the current-value Hamiltonian

H (x, c, λ) = n (u (c)− λc) ,

where λ is a co-state multiplier associated with the state x.

A feasible control path c (·), with corresponding state trajectory x (·), is
optimal if there exists λ (·) such that

n (u′ (c (t))− λ (t)) ≤ 0 and n (u′ (c (t))− λ (t)) c (t) = 0, (9)

λ̇ (t) = δλ (t) , (10)

lim
t→∞

e−δtλ (t)x (t) = 0. (11)

Now, f (x) being such that

Θ (f (x)) ≡
∫ f(x)

0

σ (s) ds = δx/n, for all x,

let c (t), x (t) and λ (t), for all t, satisfy

c (t) = f (x (t)) ,

ẋ (t) = −nc (t) , x (0) = x0,

λ̇ (t) = δλ (t) , λ (0) = u′ (f (x0)) .

We show below that the proposed control path c (·) is feasible and satisfies
conditions (9), (10) and (11). Proposition 1 follows.
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1) Feasibility. We first show, in Lemmas 1 and 2, that the proposed control
path c (·) is feasible.

Lemma 1. For all x > 0, f (x) > 0, and f (0) = 0.

Proof. If x = 0, f (0) = 0 follows from Θ (0) = 0. Likewise, limx→∞ f (x) =
∞ follows from limc→∞Θ (c) =∞. If 0 < x <∞, as Θ (0) = 0 < δx/n <∞ =
limc→∞Θ (c) and Θ (c) is continuous, there exists 0 < f (x) < ∞ such that
Θ (f (x)) = δx/n (by the intermediate value theorem). As Θ (c) is increasing
(for Θ′ (c) = σ (c) > 0, for all c), this solution is unique. �

Lemma 2. The individual consumption path c (·) generates a trajectory of the
resource stock x (·) such that x (t) ≥ 0, for all t, and limt→∞ x (t) = 0.

Proof. By definition, the individual consumption path c (·) generates a
trajectory x (·) such that ẋ (t) = −nf (x (t)), for all t, with initial condition
x (0) = x0. Lemma 2 follows directly from the properties of f (·), which imply
that ẋ (t) = −nf (x (t)) < 0, when x (t) > 0, and ẋ (t) = 0, when x (t) = 0. �

2) Necessary conditions. We now check that the necessary conditions (9),
(10) and (11) are satisfied.

Let T represent the time of depletion of the resource stock (including the
possibility that T =∞).

Lemma 3. Along the path x (·) induced by f (·), the marginal utility u′ (f (x (t)))
grows at the rate δ, for all t < T , and is equal to u′ (0), for all t ≥ T .

Proof. First, remark thatΘ (f (x)) = δx/n, for all x, implies that σ (f (x)) f ′ (x) =
δ/n, for all x (by differentiation).
Define p (t) = u′ (f (x (t))), for all t.
For all t < T , differentiation yields

ṗ (t) = u′′ (f (x (t))) f ′ (x (t)) ẋ (t) .

Substituting ẋ (t) = −nf (x (t)) and dividing by p (t) = u′ (f (x (t))), we get

ṗ (t)

p (t)
= nσ (f (x (t))) f ′ (x (t)) = δ.

For all t ≥ T , x (t) = 0 (by definition) and f (0) = 0 imply that p (t) = u′ (0).
�

The maximum condition (9) follows directly from lemma 3.
The adjoint equation (10) is satisfied by construction of λ (t).
The transversality condition (11) is satisfied since e−δtλ (t) = u′ (f (x0)), by

construction, and limt→∞ x (t) = 0, by lemma 2. �
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8.3 Proof of property 1.

For all n, let c◦ satisfy Θ (c◦) = δx0/n and let C◦ = nc◦. By differentiation, we
obtain

dc◦

dn
= − δx0

n2σ (c◦)
,

dC◦

dn
= c◦ − δx0

nσ (c◦)
.

By the mean value theorem, given that Θ (0) = 0, there exists c, with 0 < c < c◦,
such that

Θ (c◦) = σ (c) c◦.

Hence, we have

c◦ =
δx0
nσ (c)

.

By substitution, it follows that

dC◦

dn
=
δx0
n

σ (c◦)− σ (c)

σ (c)σ (c◦)
,

which proves the property. �

8.4 Proof of Proposition 2.

Consider any player i. Assume that all individuals j 6= i play the Markovian
strategy s∗j = g (x), where g (x) satisfies

Ψ (g (x)) ≡
∫ g(x)

0

(σ (s)− (n− 1 + α) /n) ds = δx/n, for all x.

Then, noting that yi (t) = φi (g (x (t)) , ..., g (x (t))) = g (x (t)), for all t, by
assumption 1.b, the problem of the remaining player i is to find a consumption
path, ci (·), to maximize∫∞

0
v (ci (t) , g (x (t))) e−δtdt,

where:
ẋ (t) = − (ci (t) + (n− 1) g (x (t))) , x (0) = x0,
ci (t) ≥ 0, x (t) ≥ 0.

Define the current-value Hamiltonian

Hi (x, ci, λi) = v (ci, g (x))− λi (ci + (n− 1) g (x)) ,

where λi is a co-state multiplier associated with the state x.
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A feasible control path ci (·), with corresponding state trajectory x (·), is
optimal if there exists λi (·) such that

v1 (ci (t) , g (x (t)))− λi (t) ≤ 0 and (v1 (ci (t) , g (x (t)))− λi (t)) ci (t) = 0,
(12)

λ̇i (t) = (δ + (n− 1) g′ (x (t)))λi (t)− v2 (ci (t) , g (x (t))) g′ (x (t)) , (13)

lim
t→∞

e−δtλi (t)x (t) = 0. (14)

Let ci (t) and x (t), for all t, satisfy

ci (t) = g (x (t)) ,

ẋ (t) = −ng (x (t)) , x (0) = x0.

We show below that the proposed consumption path ci (·) = g (x (·)) is
feasible and we find λi (·) to satisfy conditions (12), (13) and (14). Proposition
2 follows.

1) Feasibility. It is immediate to adapt lemmas 1 and 2 to show that the
proposed control path ci (·) is feasible.

2) Necessary conditions. Let T represent the time of depletion of the re-
source stock (including the possibility that T =∞). We first construct λi (·) to
simultaneously satisfy the maximum condition (12) and the adjoint condition
(13). We then prove that the transversality condition (14) holds.

For all t < T , as x (t) > 0, ci (t) = g (x (t)) > 0. Thus, the maximum
condition (12) requires that

λi (t) = v1 (ci (t) , g (x (t))) =
1

1− αu
′ (g (x (t))) .

To show that the adjoint condition (13) holds, differentiate this expression to
get

λ̇i (t) =
1

1− αu
′′ (g (x (t))) g′ (x (t)) ẋ (t) .

Substitute ẋ (t) = −ng (x (t)) and use λi (t) = u′ (g (x (t))) / (1− α) to obtain

λ̇i (t) = nσ (g (x (t))) g′ (x (t))λi (t) .

Now, by differentiation, Ψ (g (x)) = δx/n, for all x, implies that

nσ (g (x)) g′ (x) = δ + (n− 1 + α) g′ (x) , for all x.

Thus, after substitution, we can write

λ̇i (t) = (δ + (n− 1 + α) g′ (x (t)))λi (t) .
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Finally, using λi (t) = v1 (ci (t) , g (x (t))) and v2 (ci (t) , g (x (t))) = −αv1 (ci (t) , g (x (t)))
(as ci (t) = g (x (t))), we derive

λ̇i (t) = (δ + (n− 1) g′ (x (t)))λi (t)− v2 (ci (t) , g (x (t))) g′ (x (t)) ,

which is the adjoint equation (13).
For t ≥ T , as x (t) = 0, ci (t) = g (0) = 0. Thus, the maximum condition

(12) requires that

v1 (0, 0) =
1

1− αu
′ (0) ≤ λi (t) .

Assume that λi (t) satisfies the adjoint equation (13), with λi (T ) = v1 (0, 0).
Then, we can show that

λi (t) =

(
λi (T )− v2 (0, 0) g′ (0)

δ + (n− 1) g′ (0)

)
e(δ+(n−1)g

′(0))(t−T ) +
v2 (0, 0) g′ (0)

δ + (n− 1) g′ (0)
.

Substituting v2 (0, 0) = −αv1 (0, 0) = −αλi (T ) and rearranging, we can write

λi (t) =
(δ + (n− 1 + α) g′ (0)) e(δ+(n−1)g

′(0))(t−T ) − αg′ (0)

δ + (n− 1) g′ (0)
λi (T ) .

As e(δ+(n−1)g
′(0))(t−T ) ≥ 1, this implies that λi (t) ≥ λi (T ) = v1 (0, 0), which

proves that the maximum condition (12) is true.

To verify the transersality condition (14), we need to separate the cases
where T is finite or infinite. If T is finite, the condition is trivially verified,
since x (t) = 0, for all t ≥ T . If T is infinite, define A (t) = e−δtλi (t)x (t). By
differentiation, we can obtain

Ȧ (t)

A (t)
= −δ +

λ̇i (t)

λi (t)
+
ẋ (t)

x (t)
.

Using

λ̇i (t)

λi (t)
= δ + (n− 1 + α) g′ (x (t)) ,

ẋ (t) = −ng (x (t)) ,

we can get
Ȧ (t)

A (t)
= (n− 1 + α) g′ (x (t))− ng (x (t))

x (t)
.

Now, by definition, for all x, g (x) satisfies Ψ (g (x)) = δx/n, which is equiv-
alent to ∫ g(x)

0

(n (σ (s)− 1) + 1− α) ds = δx.
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A first implication is that (by differentiation with respect to x)

(n (σ (g (x))− 1) + 1− α) g′ (x) = δ.

A second implication is that there exists c, with 0 < c < g (x), such that (by
the mean value theorem)

(n (σ (c)− 1) + 1− α) g (x) = δx.

This piece of information implies that, for all t, there exists c, with 0 < c <
g (x (t)), such that

Ȧ (t)

A (t)
= (n− 1 + α)

δ

n (σ (g (x (t)))− 1) + 1− α − n
δ

n (σ (c)− 1) + 1− α .

Now, when t tends to infinity, the resource stock x (t) converges to 0, imply-
ing that both g (x (t)) and c (as 0 < c < g (x (t))) converge to 0. From this, we
can write

lim
t→∞

Ȧ (t)

A (t)
= − 1− α

n (σ (0)− 1) + 1− αδ < 0,

which implies that the transversality condition (14) holds. �

8.5 Proof of property 2.

For all n, let c∗ satisfies Θ (c∗) − (n− 1 + α) c∗/n = δx0/n and let C∗ = nc∗.
By differentiation, we show

dc∗

dn
= − Θ (c∗)− c∗

nσ (c∗)− n+ 1− α ,

dC∗

dn
= c∗ − n (Θ (c∗)− c∗)

nσ (c∗)− n+ 1− α .

Let us show the first assertion. By the mean value theorem, given that
Θ (0) = 0, there exists c, with 0 < c < c∗, such that

Θ (c∗) = σ (c) c∗.

Assume that σ (c) > 1, for all c. Then, Θ (c∗) > c∗, implying that dc∗/dn < 0.
Likewise, one can prove that dc∗/dn = 0, if σ (c) = 1, for all c, and dc∗/dn > 0,
if σ (c) < 1, for all c.
As dC∗/dn = c∗+dc∗/dn, the second assertion directly follows from the first

one.
Let us now prove the third assertion.

nΘ (c∗)− nc∗ = δx0 − (1− α) c∗,
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we can write, after substitution

dC∗

dn
= c∗ − δx0

nσ (c∗)− n+ 1− α +
(1− α) c∗

nσ (c∗)− n+ 1− α .

Using anew Θ (c∗) = σ (c) c∗, we can show that

c∗ =
δx0

nσ (c)− n+ 1− α ,

and, after substitution,

dC∗

dn
=

n (σ (c∗)− σ (c))

(nσ (c)− n+ 1− α) (nσ (c∗)− n+ 1− α)
δx0 +

(1− α) c∗

nσ (c∗)− n+ 1− α .

It follows that dC∗/dn > 0 whenever σ (c∗) ≥ σ (c), which proves the property.
�

8.6 Proof of Proposition 3.

Consider any player i. Assume that all individuals j 6= i play the Markovian
strategy s∗j = f (x), where f (x) satisfies Θ (f (x)) = δx/n. Then, noting that
yi (t) = φi (f (x (t)) , ..., f (x (t))) = f (x (t)), zi (t) = ϕi (f (x (t)) , ..., f (x (t))) =
f (x (t)) and τ (zi (t)) ≡ (n− 1 + α)u′ (f (x (t))) / ((1− α)n), for all t, the prob-
lem of the remaining player i is to find a consumption path, ci (·), to maximize

∫∞
0

[
v (ci (t) , f (x (t)))

−τ (f (x)) (ci (t)− f (x (t)))

]
e−δtdt,

where:
ẋ (t) = − (ci (t) + (n− 1) f (x (t))) , x (0) = x0,
ci (t) ≥ 0, x (t) ≥ 0.

Define the current-value Hamiltonian

Hi (x, ci, λi) = v (ci, f (x))− τ (f (x)) (ci − f (x))− λi (ci + (n− 1) f (x))

where λi is a co-state multiplier associated with the state x.

A feasible control path ci (·), with corresponding state trajectory x (·), is
optimal if there exists λi (·) such that

v1 (ci (t) , f (x (t)))− τ (f (x (t)))− λi (t) ≤ 0

and (v1 (ci (t) , f (x (t)))− τ (f (x (t)))− λi (t)) ci (t) = 0, (15)

λ̇i (t) = (δ + (n− 1) f ′ (x (t)))λi (t)− v2 (ci (t) , f (x (t))) f ′ (x (t))

+ (τ ′ (f (x (t))) (ci (t)− f (x (t)))− τ (f (x (t)))) f ′ (x (t)) , (16)

lim
t→∞

e−δtλi (t)x (t) = 0. (17)
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Now, f (x) being such that Θ (f (x)) = δx/n, for all x, let ci (t) and x (t),
for all t, satisfy

ci (t) = f (x (t)) ,

ẋ (t) = −nf (x (t)) , x (0) = x0.

We show below that the proposed consumption path ci (·) = f (x (·)) is
feasible and we find λi (·) to satisfy conditions (15), (16) and (17). Proposition
3 follows.

1) Feasibility. The proposed path, being identical to the socially optimal
consumption path, is clearly feasible (see lemmas 1 and 2).

2) Necessary conditions. Let T represent the time of depletion of the re-
source stock (including the possibility that T =∞). We first construct λi (·) to
simultaneously satisfy the maximum condition (15) and the adjoint condition
(16). We then prove that the transversality condition (17) holds.

For all t < T , as x (t) > 0 (by definition), ci (t) = f (x (t)) > 0. Thus, the
maximum condition (12) requires that (using v1 (ci (t) , f (x (t))) = u′ (f (x (t))) / (1− α)
and τ (f (x (t))) = (n− 1 + α)u′ (f (x (t))) / ((1− α)n))

λi (t) = v1 (ci (t) , f (x (t)))− τ (f (x (t))) =
1

n
u′ (f (x (t))) .

To show that the adjoint condition (16) holds, differentiate this expression to
get

λ̇i (t) =
1

n
u′′ (f (x (t))) f ′ (x (t)) ẋ (t) .

Substitute ẋ (t) = −nf (x (t)) and use λi (t) = u′ (f (x (t))) /n to obtain

λ̇i (t) = nσ (f (x (t))) f ′ (x (t))λi (t) .

Now, by differentiation, Θ (f (x)) = δx/n, for all x, implies that

nσ (f (x)) f ′ (x) = δ, for all x.

Thus, after substitution, we can write

λ̇i (t) = δλi (t) .

Finally, we can verify that this precisely coincides with the adjoint equation
(16). Indeed, using ci (t) = f (x (t)), v1 (ci (t) , f (x (t))) = u′ (f (x (t))) / (1− α),
v2 (ci (t) , f (x (t))) = −αu′ (f (x (t))) / (1− α) and λi (t) = u′ (f (x (t))) /n, we
can show that

(n− 1) f ′ (x (t))λi (t)− v2 (ci (t) , f (x (t))) f ′ (x (t))

+ (τ ′ (f (x (t))) (ci (t)− f (x (t)))− τ (x (t))) f ′ (x (t)) = 0.
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For t ≥ T , as x (t) = 0, ci (t) = f (0) = 0. Thus, the maximum condition
(15) requires that

v1 (0, 0)− τ (0) =
1

n
u′ (0) ≤ λi (t) .

Assume that λi (t) satisfies the adjoint equation (16), with λi (T ) = v1 (0, 0) −
τ (0). Then, we can show that

λi (t) =

(
λi (T )− (v2 (0, 0) + τ (0)) f ′ (0)

δ + (n− 1) f ′ (0)

)
e(δ+(n−1)f

′(0))(t−T )+
(v2 (0, 0) + τ (0)) f ′ (0)

δ + (n− 1) f ′ (0)
.

Substituting v2 (0, 0) + τ (0) = (n− 1)λi (T ) and rearranging, we can write

λi (t) =
δe(δ+(n−1)f

′(0))(t−T ) + (n− 1) f ′ (0)

δ + (n− 1) f ′ (0)
λi (T ) .

As e(δ+(n−1)f
′(0))(t−T ) ≥ 1, this implies that λi (t) ≥ λi (T ) = v1 (0, 0) − τ (0),

which proves that the maximum condition (15) is true.

The transversality condition (17) is immediate, since, if T is finite, x (t) = 0,
for all t ≥ T , and if T is infinite, then e−δtλi (t) = 1

nu
′ (f (x0)), for all t, and

limt→∞ x (t) = 0. �
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