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Abstract

The tree harvest problem of forest management is an archetypal investment problem; it involves
time, uncertainty, and irreversible actions with consequences in the future. The exercise of the
option to cut a tree opens the option of planting a new one or of using the land for alternative
purposes. We enrich the tree harvest problem by considering the planting decision too with
no cost associated with harvesting or planting. Two tree species are available; their growth is
deterministic but their timber unit price is stochastic. In the case of a single rotation, known as
the Wicksellian tree harvest problem, the forest manager should plant one species immediately
if its price is su¢ ciently high relative to the price of the other species. However, if prices
are close to each other, the manager should wait in order to avoid the mistake of planting
the wrong species. Waiting should last until the prices are su¢ ciently far apart to make the
probability of a future price reversal acceptably low. In contrast, when the number of rotations
is arbitrarily high, as in Faustman�s problem, waiting before planting the new tree, whatever
its species, is never optimal once a harvest has taken place. However, the optimal harvest
age depends on the relative timber price. We show that the optimum harvest age increases
when the relative price approaches a threshold value signalling the necessity to switch to the
alternative species. This is because the decision maker would rather wait than plant the wrong
species; letting existing trees grow older is a way to postpone the choice. We also show that
the land value increases with the uncertainty of timber prices. The stand value is similar to
the value of an American option with a free boundary and an inde�nite expiry date but with
endogenous payo¤.
key words: Real options; stochastic prices; American options; free boundary; penalty method;
forestry; Faustman; alternative species; rotation.
J.E.L. classi�cation: C61; D81; G11; G13; Q23.



Résumé

La décision de couper un arbre en gestion forestière est l�archétype du problème d�investissement;
il implique le temps, l�incertitude ainsi que l�irréversibilité d�actions ayant des conséquences
dans le futur. L�exercice de l�option de couper un arbre donne naissance à l�option de planter
un nouvel arbre ou bien d�utiliser la terre à d�autres �ns. On enrichit ce problème en consid-
érant aussi la décision de planter. Deux essences d�arbres sont disponibles; leurs fonctions de
croissance sont déterministes mais les prix de leurs bois sont stochastiques. Lorsqu�une seule
rotation est envisagée, il s�agit du problème dit de Wicksell; le gestionnaire forestier plante
immédiatement une essence si le prix de son bois est su¢ samment élevé relativement au prix
de l�autre essence. Cependant, si les deux prix sont proches, le gestionnaire doit attendre dans
le but de ne pas commettre l�erreur de choisir la mauvaise essence. L�attente doit se prolonger
jusqu�à ce que les prix se distinguent su¢ samment pour que la probabilité que l�espèce choisie
ne soit plus l�espèce désirée ultérieurement devienne su¢ samment faible. En revanche, dans le
problème de Faustman, où le nombre de rotations est illimité, il n�est jamais optimal d�attendre
avant de planter une essence une fois qu�une récolte a eu lieu. Cependant, l�âge des arbres à la
récolte dépend du prix relatif de leur bois. On montre que l�âge optimal à la récolte croît quand
le prix relatif est su¢ samment proche d�un seuil signalant la nécessité de planter l�essence al-
ternative. Au lieu d�attendre en laissant le terrain nu lorsqu�il n�est pas su¢ samment certain
de l�espèce à choisir, le gestionnaire laisse croître plus longtemps les arbres en place, ce qui
est une manière de reporter la décision. La valeur d�un terrain planté est similaire à la valeur
d�une option américaine avec frontière libre, échéance in�nie et paiement endogène.
mots clés: Options réelles; prix stochastiques; options américaines; frontière libre; méthode de
pénalité; essences alternatives; rotation.
Quali�cation JEL: C61, D81, G11, G13, Q23.



1. Introduction

Forest management is an archetypal investment problem; it involves time; it involves

uncertainty; it involves irreversible actions with consequences in the future. It also

exempli�es investments that open up new options: cutting a tree opens the option

of planting a new one or using the land di¤erently. Faustman (1849) gave forestry

economics its foundations by addressing the question: at what age should a stand of

even-aged trees be harvested? He did so under the assumption of constant timber

prices by comparing the net marginal bene�ts from letting timber grow further, to the

opportunity cost of existing trees plus the opportunity cost of the land, itself a function

of timber management decisions.

Faustman�s original problem has been re�ned and generalized in many ways. In

this paper we focus on the availability of alternative species to replace the trees being

harvested. We show how this choice should be made and timed, and how it a¤ects

the harvesting decision. While species choice is clearly important for the forester, that

question has much wider relevance and may be viewed as illustrating a general investment

problem. The question of choosing a harvest age is akin to that of deciding when an

equipment should be retired; the species choice is similar to the choice of alternative

technologies for replacement. Thus we introduce alternative projects in situations where

decisions open up new options in a process that repeats itself inde�nitely, and must

be reevaluated at each instant. This most common practical situation has not been

investigated theoretically before, although both the real option literature and the forestry

literature have gone some way toward solving that problem.

The real option approach has been widely applied in natural resources exploitation

and management. In the real option framework, a typical investment involves an opti-

mum stopping rule, the choice of the date at which the decision maker considers that

conditions have become favorable enough to justify committing resources irreversibly.

A typical result is that more uncertainty postpones investment although it increases

project value.



Applying this approach, a number of studies (Brazee and Mendelsohn (1988), Clarke

and Reed, 1989; Thomson, 1992; Insley, 2002) examine the optimal harvesting age in

forestry under stochastic timber price.2 These studies show that when timber prices or

stand value follow a Brownian motion and in absence of management costs, the solution

is similar to the deterministic case. However, when management costs are considered,

the expected value of the stand is increased by considering a reservation price policy that

exploits stochastic variations in prices. Uncertainty provides an incentive to postpone

harvest and delay management costs until observing future prices and schedule harvests

accordingly. Platinga (1998) shows that the option value to delay harvest when timber

prices are stationary stems both from the level of the current stumpage price relative

to its long-term mean and from the stand value relative to the �xed management cost.

Over time, applications have been extended to include more and more problems, such as

di¤erentiated timber prices (Forboseh et al., 1996), uneven-aged management (Haight,

1990), multi-species stands under changing growth conditions caused by climate change

(Jacobsen and Thorsen, 2003).

The real option literature has begun to treat situations where an action of the decision

maker simultanously involves a choice between alternative opportunities and choosing

the timing of an investment. These alternative opportunities may di¤er with respect

to investment costs and output as in Decamps et al (2006) or bene�t trajectories as in

Kassar and Lasserre (2004). An interesting result in such situations is that a new reason

for postponing action arises. When the alternatives are too close to each other and un-

certain, the decision maker may choose to wait in order to avoid choosing an alternative

that might prove to be less desirable than another candidate in the future. This inaction

may be optimal although each project, taken in isolation, would satisfy the requirements

for immediate investment under conditions of irreversibility and uncertainty. Although

the forestry literature has considered choices between alternative options (Reed, 1993;

Conrad, 1997; Abildtrup and Strange, 1999) such as the investment problem of stand

establisment, no attention has been devoted to the hysteresis possibly induced in such

2Willassen (1998) dismisses the optimal stopping methodology and uses impulse control.
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circumstances. Furthermore, when simultanous alternatives were considered, the future

stand value was treated as exogenous, independent of the current choice. For instance,

Thorsen (1999a) analyses the choice of tree species for a¤orestation as a real option prob-

lem, and Thorsen and Malchow-Møller (2003a) extend it to a two-option problem with

two mutually exclusive options (two tree species), where exercising one option implies

losing the other. Jacobsen (2007) goes one step further: upon harvest, the current stand

(of spruce) may be allowed to regenerate naturally and costlessly, or may be replaced

with oaks at some cost. However, it is assumed that at some �nite time horizon oaks

will be de�nitely planted so that the problem eventually simpli�es to the inde�nitely

repeated single-species problem of Faustman, with stochastic price. Finally, it is not

certain whether the age at which harvest is optimal is higher or lower than Faustman�s

or Wicksell�s rotation.

To our knowledge our paper is the �rst one involving an inde�nitely repeated choice

between options. Given an existing stand composed of one of two possible species, the

decision maker chooses the harvest age. Then, she decides which species or which pro-

portion of species should be used to repopulate the land, where timber prices evolve

stochastically, possibly with some correlation. Then again, and forever, harvests times

and species choices must be decided optimally. To draw again on the analogy with

equipement retirement and replacement, equipment may be retired at any age and re-

placed with any of two alternative technologies where the e¢ ciency of each technology

evolves stochastically as suppliers improve their products. It is not certain that one type

will dominate the other for long, let alone forever.

The general setting and assumptions are introduced in Section 2. After harvesting,

the land may be repopulated with any combination of two tree species; the new crop may

be established right after the harvest or at any later time. Each species is characterized

by a di¤erent, stochastic, timber price process and by a distinct, although not stochastic,

growth function. In Section 3, we investigate the case of a single rotation, also known

as Wicksell�s tree harvest problem already analyzed for a single species by Willassen

(1998). With two species, one should consider the species choice and its timing, before
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considering harvest. A form of hysteresis not previously identi�ed in the literature arises:

under some conditions about relative species prices, the decision maker waits rather

than establishing a crop, despite the fact that each species would be worth planting in

isolation.

In Section 4 we extend the analysis to multiple rotations. The decision maker must

decide at what age the trees of the current stand must be cut; after harvest she must

decide whether she should establish a new crop or wait; when she makes such decision,

she must choose one, or the other, species. This process is repeated inde�nitely. We �nd

that the hysteresis of the Wicksellian problem disappears. The qualitative properties of

the decision rules and value functions are described analytically and presented in a num-

ber of propositions.3 The stand value is similar to the value of an American option with

a free boundary and an expiry date equal to in�nity but with endogenous payo¤. Land

value increases with the volatility of timber prices. It is continuous and di¤erentiable

even around the switching threshold. . The optimum harvest age increases when the

relative price approaches some threshold value signalling the necessity to switch to the

alternative species. This is because the decision maker would rather wait than plant the

wrong species; letting existing trees grow older is a way to postpone the choice, allowing

the prices to become more informative. Conversely, if the relative price exceeds the

switching threshold, the risk of making a mistake by switching diminishes as the relative

price moves further away from the threshold, so that the reason to postpone harvest

becomes less compelling and the optimum harvest age diminishes. This possibility to

postpone harvest explains why the hysteresis observed in the Wicksellian problem, tak-

ing the form of forest land being left bare until a decision to plant is made, disappears

when harvests can be inde�nitely repeated.

Before concluding in Section 5, we complete the analysis of Section 4 with a numerical

resolution based on the penalty method (Zvan et al 1998) applied simultaneously to the

3The assumption that prices follow geometric Brownian motions helps obtain some of the analytical
results. However the numerical treatment does not depend on that assumption and the qualitative
properties of the solution, as well as the intuitive understanding arising from the analytical results still
stand to changes in it.
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stand value function of each species, and on a Newton iterative process applied to the

land value. This allows explicit comparisons with the non stochastic solution of the

model obtained entirely analytically and presented in the Appendix.

Section 5 concludes.

2. General setting and assumptions

We study the decision by a risk-neutral decision maker (DM) to establish one, or any

mix, of two alternative tree species P and P 0 on a plot of bare land. The timber price

of species P (respectively P 0) follows a geometric Brownian motion (GBM) with drift �

(resp. �0) and volatility � (resp. �0):

dp = �pdt+ �pdz (1a)

dp0 = �0p0dt+ �0p0dz (1b)

where time indices have been omitted, dz = "
p
dt and dz0 = "0

p
dt are the increments of

Wiener processes, and " and "0 are standardized Gaussian white noises whose correlation

is �. In the rest of the paper variables that depend on time are indexed unless they are

considered at the current date de�ned as t = 0, in which case the time index is omitted.

The relative price � = p0

p
is time variable while � = r � � > 0 and �0 = r � �0 > 04 are

constant parameters assumed to be positive, where r is the discount rate. Thus the price

of one species may be lower or higher than the price of the other species at anyone time

and that situation may reverse itself any number of times. When � = �0 reversals are

purely random events; when one of the drifts is higher than the other one the probability

that the high-drift species price-dominate the other one increases over time, although the

possibility of a reversal only vanishes in the limit when the relative price tends toward

in�nity. If both volatilies are zero and � = �0, the relative prices remain constant so

that one species should be prefered to the other one forever. If both volatilies are zero

and one drift is higher than the other one, it is certain that the high-drift species will

override the other one at some known time if its harvest value is not higher already.5

4We assume that � > 0 and �0 > 0; otherwise it would be optimal to hold on to the trees forever.
5Taking into account the species growth function.
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Consequently that species has to be chosen whether immediately or at some known date

in the future.

Each tree species is characterized by a timber volume growth function with the

following properties:

Assumption 1 There exists a > 0 and a0 > 0, such that the timber volume functions

V (a) and V 0(a) are continuous over [0;+1[, V (a) = 0 over [0; a], V 0(a) = 0 over [0; a0];

V (a) and V 0(a) are positive, continuous, di¤erentiable and concave over [a;+1[ and

[a0;+1[ respectively. In addition, lim
a!+1

Va(a) = 0 and lim
a!+1

V 0a(a) = 0.

Empirical volume growth functions have a convex initial part and become concave

once the trees have reached some strictly positive age. This implies that it is never

optimum to harvest at an arbitrarily low age if the trees are the sole source of value for the

land tract. Assumption 1 ensures that this stylized property is satis�ed while avoiding

delicate and economically trivial complications associated with the non convexity of the

volume functions at low tree ages6. Similarly, we assume that operational costs (while

trees are growing) and harvesting costs are either nil or accounted for in prices p and p0.

A more consequential assumption is that planting and other initial investment costs

are zero. We make that assumption for two reasons. The �rst one is theoretical. A

key element of real options decisions is the irreversible commitment of resources at the

time a project is undertaken. When these resources take the form of an irreversible

investment cost, and the future returns of the project are uncertain, they create a de-

ferral option or an option to wait that is well understood.7 This paper focuses on the

option to choose, once or an inde�nite number of times, between two alternatives; this

option is best identi�ed in the absence of sunk costs, an assumption that eliminates the

conventional deferral option. The second reason for eliminating investment costs is that

this assumption allows to go further into the analytical resolution of the problems to

6In the numerical illustrations, we use the same volume growth function for both species; this better
isolates the role of the stochastic price processes de�ned by (1a) and (1b). The volume growth function
used is V (a) = V1

�
1� e��(a�a)

�
where V1 = 100 is the timber volume when the age tends to in�nity,

� = 0:01, and a = 10 is the minimum age for positive growth.
7See the references in the introduction.
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describe and understand the impact of the switching option on the investment decision.

The numerical method developed to illustrate the solution and to complement the results

can be adapted to a model involving a positive planting or investment cost.

3. Choosing between two investment projects: an extension of
Wicksell�s problem

"The Wicksellian tree cutting problem" refers to the problem of choosing the age at

which a stand of even-aged trees will be harvested. One single harvest is considered and

the land is assumed to be of negligible value beyond this unique harvest. The optimal

harvesting age is determined by the well-knownWicksellian rule under which the optimal

age is chosen in such a way that the marginal value growth of the trees is equal to the

opportunity cost of holding them.

We modify the stochastic version of Wicksell�s problem in two essential ways. First

we start with bare land and consider the tree planting decision. Second we study a

situation where two tree species, not simply one, are available. The reasons why these

new features are important are the following. First, since the timber value of each species

evolves stochastically, the revenues derived upon harvest depend on the species initially

planted and on the price reached at harvesting. The harvest value of one species may

overtake the other one, implying that the decision maker may regret the initial choice.

Second, the availability of more than one species opens up the possibility of diversi�cation

that we show is not optimal in the following proposition.

Proposition 1 When two tree species may be grown simultaneously on a forest land, it

is optimal to specialize into one, or the other, species rather than diversify.

Proof. See the appendix.

Proposition 1 indicates that the stand value at planting time is highest when one

single species, rather than a combination of the two species, is established on the plot.

Clearly, however, a combination with lower expected value but less risk might be prefer-

able if the decision maker was risk averse. Let G(p; a) (G0(p0; a)) be the stand value
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function when species P (resp. species P ) is in place, the age of the trees is a, and the

current price of the species in place is p (resp. p0):

G(p; a) = max
s
E
�
e�rsV (a+ s)ps

�
(2a)

G0(p0; a) = max
s
E
�
e�rsV 0(a+ s)p0s

�
(2b)

Consider G(p; a). As G(p; a) is homogenous in p, G(p; a) = pg(a) where g(a) � G(1; a).

G(p; a)must satisfy Bellman�s equationEdG = rGda which implies, by Itô�s lemma, that

g(a) satis�es �g(a)�ga(a) = 0. Then g(a) = be�a, where b is a constant to be determined

using the value-matching and smooth-pasting conditions as follows. At harvest age aw

and for any price p, G(p; aw) = V (aw)p, Gp(p; aw) = V (aw), and Ga(p; aw) = Va(aw)p,

implying g(aw) = V (aw) and ga(aw) = Va(aw). Consequently,

G(p; a) = be�ap (3a)

b = V (aw)e
��aw (3b)

Va(aw)

V (aw)
= � (3c)

where aw is determined implicitly by the last equation as a function of � independent of

price. In particular when the expected value of timber is constant (� = 0), the optimum

harvest age is given by condition Va(aw)
V (aw)

= r, which is Wicksell�s rule in the absence of

uncertainty (Willassen, 1998).

To examine the e¤ect of the existence of the second tree species, note similarly that

G0(p0; a) = b0e�
0ap0 (4a)

b0 = V 0(a0w)e
��0a0w (4b)

V 0a(a
0
w)

V 0(a0w)
= �0 (4c)

In particular, when the age of the trees is zero, the stand value is either bp or b0p0,

depending on the species. If the species is yet to be chosen, the stand value is xx

maxT
�
be�rTEp

T
; b0e�rTEp0

T

�
, where T is the date at which the chosen species will be

established. As only one harvest is possible in Wicksell�s problem and the land has no
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value further to that harvest, this is also the value of land xx and therefore:

F (p; p0) = max
T

h
be��Tp; b0e��

0Tp0
i

(5)

Since F (p; p0) is homogenous in (p; p0) it can be written F (p; p0) = pf(�) where � = p0

p
.

Suppose that the land is currently bare and that it is optimal to wait rather than

establish a new crop at the current time. Then there exists a time interval dt during

which F (p; p0) satis�es Bellman�s Equation EdF = rFdt. This de�nes the continuation

region in the plan (p; p0). Itô�s lemma implies that f(�) satis�es:

�2

2
�2f��(�) + ��f�(�)� �f(�) = 0 (6)

with �2 � �2 � 2���0 + �02 and � � �0 � � = � � �0.

This di¤erential equation has solutions (i.e. the continuation region exists) when its

characteristic equation Q(�) = 0 has real roots, where Q(�) = �2

2
�(� � 1) + �� � �.

This requires the equation to be quadratic and its determinant � � (� � �2

2
)2 + 2�2�

to be non negative. The equation is quadratic if and only if either � > 0 or �0 > 0. If

this condition does not hold, the species yielding the highest return at harvest is known

for any crop establisment time. Since � < r and �0 < r, it is then more pro�table to

establish the stand immediately than later. Consequently it is never optimal to wait

before choosing a species if � = �0 = 0. The determinant of the characteristic equation

is zero if and only if (� = �0, � = �0, � = 1) or if (� = �0, � = �0 = 0). In such cases,

prices follow parallel trajectories, so that the higher price will remain so forever; it is

then optimal to invest immediately in the project with the highest price. To rule out

these trivial cases where the continuation region does not exist, we make the following

assumption:

Assumption 2 The future price of at least one species is uncertain i.e. � > 0 or �0 > 0

and (�; �) 6= (�0; �0).

Under Assumption 2, the characteristic equation has two roots �1 > 1 and �2 < 0.

In that case,

f(�) = b1�
�1 + b2�

�2 (7)
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where b1 and b2 are two constants. The option value function is then F (p; p0) = pf(�)

in the continuation region. However, at some levels of �, it is optimal to invest rather

than wait. Precisely,

Proposition 2 (one rotation) When one of two tree species must be established for a

single harvest, the optimal decision is to leave the land bare unless the relative timber

price is out of an interval
h
��; �

0�
i
. The �rst time that the relative price reaches �

0� from

below (resp. �� from above) species P 0 (resp. P ) should be established. Once species P

(resp. P 0) has been established the stand should be allowed to grow until it reaches its

optimal harvest age de�ned by Formula (3c) (resp. (4c)), which is independent of the

relative price. As long as the land is bare, its value is pf (�) given by (7); once populated

with age a trees of species P (resp. P 0), the land is worth be�ap (resp. b0e�
0ap0) where b

is given by (3b) (resp. b0 is given by (4b)).

Proof. See the Appendix for details not in the main text.

The decision to go ahead with the investment is postponed until timber prices have

di¤erentiated themselves clearly enough. This hysteresis leaves the land bare despite the

fact that it would be unambiguously optimal to plant any of the two species immediately

if the option to establish the other one was not available. In situations where the returns

expected from a project, while high enough to warrant investment in isolation, might in

the future be overtaken by the returns from an alternative project, using such a decision

rule reduces the probability of �nding out ex post that the least pro�table option was

chosen, irreversibly. Clearly the hysteresis may occur under any parameter combination

satisfying Assumption 2, whether the drifts of the price processes are identical or not,

and whether or not the price of the chosen species is subject to uncertainty.

4. Choosing between alternative replacements repeatedly: an
extension of Faustman�s problem

In order to keep the notation simple, some functions used in Section 3. will be rede�ned

to account for multiple rotations; otherwise the notation is unchanged. Multiple harvests

10



is the realm of Faustmann and his followers, who initially considered successive harvests

of a single species whose price was both certain and constant. The problem is to �nd the

age at which it is optimal to cut the trees. It has been shown that the optimal harvest

age may be independent of the price, whether that price is stochastic or constant.

When in addition two species are available and their prices are stochastic, we will

show that the optimum age depends on the species in place and on the relative price of

both species. Furthermore, we will treat separately the decision to cut and the decision

to establish the same or the alternative species. We start with existing results when

there is one single species.

When only one species P is available, the expected value of harvesting after some

time s a forest stand whose current age is a, and then replanting and harvesting the

same species for an arbitrary number of rotations, is

G(p; a) = max
s
Ee�rs [psV (a+ s) + F (ps)] (8)

where F (p), the land value, solely depends on the current price of the single species

available:

F (p) = max
s
Ee�rs [psV (s) + F (ps)] (9)

Thus, the land value coincides with the stand value at age zero as implied by the as-

sumption that there are no planting or other investment costs; that is F (p) = G(p; 0).

When the timber price is constant, the optimal harvesting age aF is constant from

one rotation to the next and determined by Faustman�s rule (1849); it is independent of

the timber price and implicitly given by:

Va(aF )

V (aF )
=

r

1� e�raF (10)

The analysis has been extended to situations where the price may change over time

(Brazee and Mendelsohn, 1988; Clarke and Reed, 1989; Morck et al. 1989; Thomson,

1992; Reed, 1993). When the price is governed by (1a) and there are no �xed costs

such as management costs the solution is equivalent to the deterministic solution with

11



the timber value increasing at a constant exponential as established by Newman et al.

(1985).8 The following result then holds:

Lemma 1 When the timber price p follows the process (1a), the land value F (p) and

the value of the stand at age a, G(p; a), are homogenous of degree one in p, and the

optimal harvest age is independent of the timber price p, precisely,

G(p; a) = ce�ap (11a)

F (p) = cp (11b)

c =
V (af )

e�af � 1 (11c)

Va(af )

V (af )
=

�

1� e��af (11d)

where af is the optimal harvest age.

Proof. See the appendix .

Both land and forest values F (p) and G(p; a) depend linearly on the current price

of the unique tree species. The optimal harvest age is constant from one harvest to the

next, thus independent of price, and equals the Faustman (constant price) rotation if and

only if the drift of the stochastic timber price process is zero. We call it the generalized

Faustman age in this paper. It is also smaller than the Wicksellian one-rotation optimal

harvest age given by (3c) as Va(a)
V (a)

is decreasing in a.

We now turn to a situation not previously considered in the literature. Two tree

species P and P 0 are available. The DM has the option to harvest and to replant

any combination of species, immediately after the harvest or after any delay, and to

harvest again. The process goes on forever as establishing a new stand opens up the

option to harvest, etc. As in the case of a single harvest, it can be shown that, to

an expected value maximizer, any forest diversi�cation strategy involving growing two

species simultaneously would be dominated by one consisting in establishing one single

8Saphores (2003) generalizes Faustman�s formula to partial or total harvests in the case of a biomass
whose stochastic growth is stock-dependent and represents the sole source of uncertainty. The optimal
biomass at which harvest should occur is not a monotonic function of uncertainty, which implies that
the relationship with Faustmann�s rotation is ambiguous.
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species if at all. Thus suppose that the problem starts with trees of either species

established on the forest tract. The DM may choose (i) to wait and observe the stand

growing up, or (ii) to harvest the stand and replant the same species immediately, or

(iii) to harvest the stand and plant the alternative species, or �nally (iv) to harvest the

stand and wait before planting one or the other species. As before we assume that there

is no �xed cost associated with harvesting and establishing a new crop, so that the role

of the alternative species is highlighted.

Consider the last possibility. After harvesting, the forest DM may wait before estab-

lishing a new crop. Then the land remains bare,9 allowing the DM to wait until timber

prices evolve in such a way that it is easier to choose the right species. No gain can be

achieved by using that strategy, though. Indeed suppose the DM decides to establish

one species at some date t strictly posterior to the harvest. Had she planted that species

immediately after harvest, she would then be better o¤ at t because the trees would

have grown already. Had she planted the other species, she could cut the trees and plant

the preferred species at no cost. In that case she would either be as well o¤, if cutting

the existing trees produced no income, or she would be better o¤ if cutting the existing

trees produced some income. This proves the following proposition, which implies that

only the �rst three possible decisions outlined in the past paragraph need be considered.

Proposition 3 It is optimal to establish a new crop immediately after harvesting.

This result contrasts with the one indicating that it is optimal, in the Wicksellian

two-species single-harvest case, to delay planting when the projects are not clearly dif-

ferentiated. Indeed, the decision to choose a species that turns out to be undesirable ex

post has a lower opportunity cost in case of multiple rotations: trees that turn out to be

less desirable after planting may be cut and replaced with the desirable species. In the

single rotation case, the possibility of a more pro�table harvest is lost once the wrong

species is established.

9Allowing for costs of keeping the land bare, such as weeding or protection against erosion, would
only reinforce the result.
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Given that the land is populated with one uniform-age species, consider now alter-

natives (i)� (iii) for harvest age and replacement choice. Let F (p; p0) denote the value

of the bare land, the value of the options to inde�nitely plant and harvest the forest

tract, choosing the appropriate species after each harvest. Let G(p; p0; a) (respectively

G0(p0; p; a)) denote the value of the forest (land and trees) when the forest tract is pop-

ulated with trees of species P (respectively P 0) of age a and price p (resp. p0) while the

price for the other species is p0 (resp. p). Precisely,

G(p; p0; a) = max
s
Ee�rs [psV (s+ a) + F (ps; p

0
s)] (12a)

G0(p0; p; a) = max
s
Ee�rs [p0sV

0(s+ a) + F (ps; p
0
s)] (12b)

The following three lemmas give additional properties of the bare-land and forested-

land functions that will help characterize the solution in terms of optimum harvest age

and trigger price. The �rst lemma establishes the homogeneity of the functions.

Lemma 2 When p and p0 follow the processes (1a) and (1b) respectively, F (p; p0), G(p; p0; a),

and G0(p0; p; a) are homogenous of degree one in (p; p0) and the optimal harvest age de-

pends only on the current relative price of timber � = p0

p
. Furthermore, the following

reduced functions

g(�; a) � 1

p
G(p; p0; a) (13a)

g0(�; a) � 1

p
G0(p0; p; a) (13b)

f(�) � 1

p
F (p; p0) (13c)

solve the following problems respectively

g(�; a) = max
s

�
e��sV (a+ s) + e�rsE

ps
p
f(�s)

�
(14a)

g0(�; a) = max
s

�
e��

0s�V 0(a+ s) + e�rsE
ps
p
f(�s)

�
(14b)

f(�) =

8<: f� (�) � max
s

h
e��sV (s) + e�rsE ps

p
f(�s)

i
; � � ��

f+ (�) � max
s

h
e��

0s�V 0(s) + e�rsE ps
p
f(�s)

i
; � � ��:

(14c)
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where �� is the relative price below (above) which it is optimal to plant Species P (Species

P 0) on a bare land.

Proof. xx véri�er; il me semble que la preuve en annexe est inutile. Il faut véri�er

toutes les preuves

As g(�; a) � 1
p
G(p; p0; a) = 1

p
max
s

Ee�rs [psV (s+ a) + F (ps; p
0
s)] then g(�; a) =

max
s

h
V (s+ a) e

�rsEps
p

+ e�rsE ps
p
f(�s)

i
. Since Eps = pe��s, it follows that g(�; a) =

max
s

h
e��sV (s+ a) + e�rsE ps

p
f(�s)

i
. Note that ps

p
does not depend on P as it is a GBM

that is equal to one at date zero. A similar proof gives (14b) and (14c), where the �rst

(second) line of (14c) is obtained using the fact that the �rst harvest established on the

bare land is Species P (Species P 0) when � � �� (� ��). The existence of �� is proven

in Lemma 3.

As a consequence of Proposition 3, it is certain that the trees being harvested are

replaced immediately. At relative prices below some switching value ��, species P is

planted if the land is bare; above ��, it is optimal to plant species P on a bare land. It

is certain that �� exists as species P must be chosen when � tends to zero and species

P must be chosen when � tends to in�nity. This is formally proven in the next lemma.

Lemma 3 There exists a unique, strictly positive, value of �, �� such that, if � < ��

(respectively � > ��) and the land is bare, it is optimal to plant species P (respectively species P 0)

immediately, while indi¤erently planting P or P 0 on bare land is optimal if � = ��.

Proof. The set of � > 0 for which it is optimal to plant P is not empty as for �

positive and su¢ ciently small it is optimal to plant P . This set is bounded as for �

su¢ ciently high it is optimal to plant P 0. Being not empty and bounded, the set of

� > 0 for which it is optimal to plant P has a �nite maximum ��. The unicity of ��

results from continuity.

Both the forested land and the bare land value functions increase when the price of

either species increases. As a matter of fact, if the land is populated with one species
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and the price of the other species increases while the price of the species in place does

not change, the value of the forested land increases, because the exercise of the option

to plant the other species becomes more likely. Furthermore, when relative prices are

such that a switch to the alternative species might be a pro�table decision, one should

expect that the value functions should be higher than if that possibility to switch was not

available. On the contrary, when relative prices are extreme, the land value should re�ect

the expected present value of the revenues associated with establishing and harvesting

the same species forever, pc and p0c0 for species species P and P 0 respectively. Formally,

for the reduced form of the land value, this gives:

Lemma 4 The reduced land value function is such that

f (�) = g(�; 0) = g0 (�; 0) (15)

Furthermore, f(�) is increasing in � with lim�!0 f(�) = c, lim�!+1 f(�) = c0�, where

c =
V (af )

e
�af�1

and c0 =
V 0(a0f )

e
�0a0

f�1
and, for � > 0, f(�) > c f(�) > c0�.

Proof. The land value function F (p; p0) must be strictly increasing in p; then

Fp(p; p
0) > 0. As Fp(p; p0) = f�(�) then f�(�) > 0 and therefore f(�) is strictly in-

creasing in �. As the ratio of two GMB�s, � is a GMG and zero is an absorbing

value. When � tends to zero, that is when p0 is close to zero while p is strictly pos-

itive with p0 � p, P 0 remains the preferred species for an inde�nite time and the

problem collapses to the single species case. Therefore, using (11b), lim
�!1

pf(�) = cp

or lim
�!0
f(�) = c. A similar proof shows that lim

�!+1
f(�) = c0�. In the continuation region,

G(p; p0; a) = max
s
Ee�rs [psV (a+ s) + F (ps; p

0
s)] , i.e. G(p; p

0; 0) = F (p; p0) or f(�) =

g(�; 0) if (�; 0) belongs to the continuation region otherwise G(p; p0; 0) = F (p; p0)+pV (0)

then f(�) = g(�; 0) as V (0) = 0. Similarly, one can show that f(�) = g0(�; 0). Inequal-

ities f(�) > c f(�) > c0� follow from the fact that choosing species P or P 0 forever is

feasible, yielding values of c and c0� respectively. The inequalities are strict because, for

0 < � < 1, there is a positive probability of switching species in such a way that the

objective function is increased from either c or c0�.
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5. Choosing between alternative replacements repeatedly: the
solution

We are interested in characterizing the continuation region when species P is in place,

and the continuation region when species P 0 is in place. In either case the continuation

region is the set of points (�; a) in R+ � R+ where it is optimum to wait rather than

exercise the option of harvesting.10 Suppose that species P is in place, a situation which

is desirable at relatively low values of �. Clearly, as � > 0, there is an age above

which it is desirable to cut the trees so that the continuation region, if it exists, is

bounded above (along the a dimension). Let a+ (�) denote the upper boundary of the

continuation region, the age above which it is optimum to harvest and below which it

is desirable to allow the trees to grow further, given �. At high enough values of �,

the alternative species P 0 becomes so attractive that there is no age at which it would

be desirable to allow trees of species P to grow any further. At such high values of

�, the continuation region of species P does not exist. Let � denote the value of �

above which the continuation region does not exist for any harvest age and below which

the continuation region exists for some age. Thus � delimits the right-hand end of the

continuation region of Species P .

It can be shown by contradiction that the continuation region exists for any � < �

and that � is strictly higher than ��. Indeed, at � = �� the decision maker is indi¤erent

between stands of either species P or P 0 populated with trees of age zero, which respec-

tively take periods of a or a0 before producing any valuable timber. Then if the stand is

populated with trees of species P whose age is strictly between 0 and a while � = ��, then

it is strictly preferable to hold on to such a stand than to cut the trees, as cutting yields

no revenue since a < a and no bene�t in terms of establishing the preferred species, since

� = ��. This proves that �� < �. This simple argument also implies that, for values of

the relative price in
�
��; ��

�
, it is optimal to allow the trees to continue growing if they

are older than some minimum age. Consequently, the continuation region has a lower

10While � is the same variable in both continuation regions, a is speci�c to the species in place.
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boundary a� (�) > 0 for � 2
�
��; ��

�
.

A similar analysis applies to the continuation region when species P 0 is in place.

Remembering that �0� � ��, it follows that ��0 � �� and that the continuation region for

P 0 has upper and lower boundaries a0+(�) and a0�(�) on
h
��
0
; ��
i
, and has only an upper

boundary a0+(�) on [��0;+1[. While the relative price � is the same variable in both cases,

only considered at di¤erent values, one should note that the expressions corresponding

to each region are not the mirror image of each other, although the analysis obeys a

symmetric logic. For example, obviously, ��0 � �� � �� as species P 0 is desirable at high

relative prices while the continuation region for P 0 does not exist below ��0 by de�nition

of ��0. Also, the relevant value functions (14a) ; (14b) and (14c) are not identical at values

of � on either side of ��; implying di¤erences in the continuation regions.

Precisely, if species P is in place, then the upper boundary a+(�) is the smallest value

of a such that

argmax
s

�
e��sV (a+ s) + e�rsE

ps
p
f(�s)

�
= 0 (16)

The lower boundary a�(�) is de�ned by the conditions

For � 2
�
��; �

�
;

g (�; a) = V (a) + f(�); if a = a�(�)
g (�; a) > V (a) + f(�); if a�(�) < a < a+(�)

g (�; a) < V (a) + f(�); if a < a�(�) or a > a+(�)
(17)

For � 2
�
��; �

�
and a 2]a�(�); a+(�)[, the condition g (�; a) > V (a)+f(�) indicates that,

if the land is populated with trees of species P and age a, it is preferable to allow them

to reach maturity and harvest them when they reach age a+(�), rather than harvesting

them immediately and planting species P 0 to obtain V (a) plus the expected land value

f(�). For � 2
�
��; �

�
and a < a�(�) or a > a+(�), the trees are too young to be allowed to

reach maturity or are beyond maturity; condition g (�; a) < V (a) + f(�) then indicates

that it is optimal to harvest immediately and switch to Species P 0.

For � 2
�
0; �
�
, if it is optimal to wait and harvest later on, the forest value function

G(p; p0; a) should satisfy Bellman�s equation E (dG(p; p0; a)) = rG(p; p0; a)da which can

be written as the following partial di¤erential equation governing the reduced forest
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value function g(�; a) in the continuation region (proof in the appendix):

�2

2
�2g�� + ��g� � �g + ga = 0 (18)

Thus, on the upper boundary a+(�) of the continuation region, the following value

matching and smooth pasting conditions apply:

g
�
�; a+ (�)

�
= V

�
a+ (�)

�
+ f (�) (19a)

g�
�
�; a+ (�)

�
= f� (�) (19b)

ga
�
�; a+ (�)

�
= Va

�
a+ (�)

�
(19c)

The smooth pasting condition can be written in either of the two forms (19b) or

(19c); given the value-matching condition these two forms are equivalent.11 Clearly, no

similar conditions apply to the lower boundary, as a� (�) is not an optimum stopping

unlike a+ (�).

The following proposition enunciates properties of the upper and lower boundaries.

Proposition 4 Suppose that species P is currently in place. The upper boundary a+ (�)

is continuous on
�
0; �
�
, such that a+ (0) = af , and non increasing at low values of �;

on ]��; � ], a+ (�) is strictly decreasing. The lower boundary a� (�) is continuous and

strictly increasing on
�
��; �

�
, with a� (��) = 0. The upper and lower boundaries meet at

(��; a).

11One can show that the reduced forest value function g0(�; a) should satisfy the same partial di¤er-
ential equation as g(�; a), that is

�2

2
�2g0�� + ��g

0
� � �g0 + ga = 0

The boundary conditions are slightly di¤erent because the de�nition of the relative price � is main-
tained irrespective of the species in place. On the upper boundary a+0(�) of the continuation region
corresponding to g0, the following value matching and smooth pasting conditions apply:

g0
�
�; a+0 (�)

�
= �V 0

�
a+0 (�)

�
+ f (�)

g0�
�
�; a+0 (�)

�
= V 0

�
a+0 (�)

�
+ f� (�)

g0a
�
�; a+ (�)

�
= �V 0a

�
a+0 (�)

�
:
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Proof. When � tends to zero, the problem collapses to the single species case

analyzed above, for which the optimum harvest age is af given by (10) i.e. a+ (0) = af .

When � is su¢ ciently close to zero, Equation (18) implies ��g + ga ' 0 or, using

(19a) and (19c), �f (�) ' Va (a
+ (�)) � �V (a+ (�)) where f (�) is non decreasing in �

while Va (a) � �V (a) strictly decreases in a. It follows that a+ (�) is non increasing on

some interval that includes � = 0.

The continuity of a+ (�) follows from the continuity of the functions g; f , and V that

de�ne it in expressions (19a), and (19b) or (19c). This argument also applies at � = ��

because functions g and f are continuous at �� despite the change of de�nitions that

they experience at that point according to (14c). The continuity of a� (�) follows from

the continuity of the functions that de�ne it in (17).

Let us show that a+ (�) is strictly decreasing on
�
��; �

�
. Assume that there exists a

point A(�; a) on the boundary where a+ (�) is non decreasing while � > ��. At A(�; a) the

DM is indi¤erent between harvesting now and establishing species P 0 (the left-hand side

of (20)), or waiting and harvesting later (the right-hand side of (20))12:

V (a)+max
t

�
e��

0t�V 0(t) + e�rtE�

�
pt
p
f(�t)

��
= max

s

�
e��sV (a+ s) + e�rsE�

�
ps
p
f(�s)

��
(20)

where E� denotes expectation, conditional on
ps
p
and �s having initial values of 1 and �

respectively. Let '(s; y) denote E�
n
ps
p
f(�s)

o
where ys =

ps
p
f(�s) follows a generalized

Brownian motion with y = f (�).13 Let a small period of time da > 0 elapse, over which

� becomes � + d� and and y becomes y + dy. Take the case d� < 0 (a similar argument

holds when d� > 0) and consider the point B(� + d�; a + da), to the upper left of A.

Since a+ (�) is assumed to be non decreasing, point B lies inside the immediate-harvest

region. It follows that

V (a+ da)+max
t

�
e��

0(t�da)(� + d�)V 0(t) + e�r(t�da)'(t� da; y + dy)
�
� max

s

�
e��(s�da)V (a+ s) + e�r(s�da)'(s� da; y + dy)

�
.

When da # 0, appropriate expansions of both sides give:
12Both sides of the equation are normalized by p.
13According to the convention introduced earlier about time subscripts, �; p; y refer to current values,

while �s; ps; ys refer to the values of the same variables after a period s has elapsed.
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V (a)+Va(a)da+max
t

�
(1 + �0da) e��

0t(� + d�)V 0(t) + (1 + rda) e�rt
�
' (t; y) + 'y (t; y)Edy +

1
2
'yy (t; y)Edy

2 � 't (t; y) da
�	

� max
s

�
(1 + �da) e��sV (a+ s) + (1 + rda) e�rs

�
'(s; y) + 'y (s; y)Edy +

1
2
'yy (s; y)Edy

2 � 's (s; y) da
�	
.14

Note that 'y(s; y)Edy+
1
2
'yy(s; y)Edy

2�'s (s; y) da = da
�
�y'y(s; y) +

1
2
�2y'yy(s; y)� 't (s; y)

�
where �y'y(s; y)+

1
2
�2y'yy(s; y)�'t (s; y) is the Kolmogorov backward di¤erential equa-

tion associated with ' (t; y) where �y and �
2
y are respectively the drift and volatility of

the generalized Brownian motion followed by y. As such this expression is equal to zero

(see for instance Karlin et al. (1981), page 214). Therefore, after neglecting terms of

order of magnitude smaller than or equal to da under the assumption that da # 0, we ob-

tain, V (a)+max
t

�
e��

0t(� + d�)V 0(t) + e�rt' (t; y)
�
� max

s

�
e��sV (a+ s) + e�rs'(s; y)

�
which contradicts Equation (20) as d� was initially assumed to be < 0. Therefore a+ (�)

is strictly decreasing on
�
��; �

�
.

Similarly, let us show that the lower boundary a� (�) is strictly increasing on
h
�
0
; ��

i
.

At a point C(�; a) on a� (�), with a < a and �
0
< � < ��, assume that a� (�) is non

increasing. The DM is indi¤erent between harvesting immediately thus earning the land

value (the harvest is worth zero as a < a) given by the left-hand term of the following

equation, or harvesting later at age a+ s > a, in which case she earns the right-hand of

the same equation:

max
t

�
e��

0t�V 0(t) + e�rtE
pt
p
f(�t)

�
= max

s

�
e��sV (a+ s) + e�rsE

ps
p
f(�s)

�
(21)

After a small time interval da > 0, � becomes � + d�. Assuming that d� > 0 and given

that a� (�) is non increasing, the pair C(�; a) moves to D(�+d�; a+da) in the continua-

tion region. Proceeding as in the previous proof, we obtainmax
t

h
e��

0t�V 0(t) + e��
0td�V 0(t) + e��tE pt

p
f(�t)

i
�

max
s

h
e��sV (a+ s) + e��sE ps

p
f(�s)

i
which cannot hold along with Equation (21) as

d� > 0. This implies that the boundary a� (�) is strictly increasing on
�
��; �

�
.

At (��; 0) the DM is indi¤erent between planting species P or switching to species P 0;

thus (��; 0) belongs to a� (�). Also, by de�nition, a� (�) � a ; in particulier a�
�
�
�
� a.

14Strictly, the solution of the maximization problems on both sides of the inequality are a¤ected by
the expansion of the objective functions. However the derivation is valid whether or not the optimum
timing of the harvest is forced to be maintained while the functions are expanded. We avoid introducing
further notation by implicitely ignoring this issue as it has no bearing on the result.

21



Let us show by contradiction that a+
�
�
�
= a. Suppose that a+

�
�
�
= a+", " > 0. Then

V (a+ ") + f(��) > V (a) + f(��) � V (a�
�
�
�
) + f(��) where the left-hand side applies the

de�nition (16) of the upper boundary while the right-hand side results from the condition

that a�
�
�
�
� a. But then, for some pair

�
"00; ��

00
�
such that 0 < "00 < " and �00 > ��, it is

also true that V (a+"00)+f(��00) > V (a�
�
�
�
)+f(��

00
) so that �� is not the maximum value of

� at which the continuation region exists, contradicting its de�nition. This contradiction

can be avoided only if " = 0, implying that a+
�
�
�
= a. Now suppose a�

�
�
�
< a; then

by (14a) g
�
�; a
�
> V

�
a�
�
�
��
+ f(��) = f(��). However, g

�
�; a�

�
�
��
= f(��) by (17)

since V (a) = 0 8 a < a, a contradiction. Hence a�
�
�
�
= a. We conclude that the upper

and lower boundaries meet at (��; a).

We are now going to argue and show that, when the value of � is not far from and

below �� so that a switch to Species P 0 at the next harvest may be forthcoming, the

harvest age on the boundary is increasing in �.

THE CONTINUATION OF THE PAPER CONTAINS SEVERAL UNFINISHED

ELEMENTS AND PROOFS. PLEASE READ AT YOUR OWNRISKS AND ACCEPT

THE AUTHORS�APOLOGIES!

When � is approaching �� from below, the decision to harvest may have two alter-

native implications: if the trees are cut immediately, since � < ��; Species P must be

chosen after the harvest. Alternatively, allowing the trees to grow to some higher age

may allow � to overtake �� before the harvest so that Species P 0 would be established

after the harvest. Thus the decision to wait rather than harvest opens the possibility of

a switch to the species not currently in place. However, this is not necessarily optimal:

the slope of the upper boundary re�ects the desirability of keeping the option to switch

at the coming harvest open.

Consider in Figure 1 a pair (a+ (�1) ; �1) on the upper boundary a+ (�), with �1 < �
�.

On the boundary the value from immediate harvest is identical to the expected value

from delaying. If the boundary is downward sloping in �, delaying the harvest by any
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time interval dt cannot result in an eventual switch because, since da > 0, any increase

in � would cause the (a; �) pair to cross the boundary, implying reestablishing the same

species. On the contrary, if the boundary is upward sloping as depicted, delaying the

harvest may allow the (a; �) pair to move to the right and up before crossing the boundary

again. The harvest (and switch) then would happen at some value �2 such that15

a+ (�1) < a
+ (�2) ; �1 < �

� < �2:

This shows that if the boundary is upwardsloping in � for some �1 < �
� and harvesting

is optimal at age a+ (�1), then delaying harvest leads to harvesting at a higher age and

a higher level of �; with a positive probability of switch. Vice versa, if it is optimal to

harvest immediately while equally optimal to keep the prospect of switching open by

delaying harvest, then the slope of the boundary when � approaches �� from below is

positive as represented in Figure 1. It should be noted that that delaying harvest from

Point A in Figure 1 may result in a harvest at Point B with a switch to Species P 0, but

may also result in a harvest at Point A�with no switch. A positive slope of the harvest

boundary thus allows but does not guarantee a switch; a non positive slope rules out

any switch.

Let us show that, when � approachs �� from below and it is time to harvest, a good

alternative strategy is to wait in the hope that the delay will lead to a species switch.

The best way to understand that is to start by considering the certainty case. In that

case � can approach �� from below only if �
0

�
, the drift of �, is strictly positive....

The monotonicity properties of a+ (�) and a� (�) stated in Proposition 4 are indepen-

dent of the parameters of the price processes or the species growth functions. Therefore,

by symmetry, if species P 0 is in place then a0+ (�) is strictly increasing while the lower

boundary a0� (�) is strictly decreasing on
h
�
0
; ��
i
as depicted on Figure 1.

Compared with Faustman�s rule, including its versions with price uncertainty, the

presence of an alternative tree species modi�es the harvesting and planting decision

substantially.
15This possibility does rule out another possibility, that the pair (a; �) hits the barrier again at some

value of � short of ��.
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Figure 1: Boundaries of the continuation region according to the species in place

24



5.1 Numerical resolution

In order to conclude the description of the solution of the model, in particular in order to

draw the boundary of the continuation region, it is necessary to use numerical methods.

The reduced forest value function g(�; a) must satisfy the partial di¤erential equation

(18) and the value-matching and smooth pasting conditions (Equations (19a), (19b), and

(19c)). The partial di¤erential equation governing g(�; a) can be simpli�ed by performing

the change of variable x = log(�). Let h(x; a) = g(�; a) and l(x) = f(�), then the partial

di¤erential equation governing h(x; a) is

�2

2
hxx +

�
�� �

2

2

�
hx � �h+ ha = 0 (22)

The optimal stopping problem of valuing the forest value when species P is planted is

similar to the problem of valuing an American-type option with free boundary. Because

the free boundary location is not known in advance, the value-matching and smooth

pasting conditions cannot be of immediate help. These conditions can be used to localize

the free harvest boundary once the stand value is determined. We do so iteratively as

explained later in this section. To compute the forest value function h(x; a), it is helpful

to specify the corresponding optimal stopping problem as a linear complementarity one

(Zvan et al, 1998). Let L be the linear operator de�ned as

L:h = �2

2
hxx +

�
�� �

2

2

�
hx � �h+ ha

Then, the linear complementarity problem is

L:h(x; a) � 0

h(x; a)� (l(x) + V (a)) � 0

L:h(x; a) [h(x; a)� (l(x) + V (a))] = 0

Note that this formulation does not imply any explicit use of the free harvest bound-

ary a(�). It shows that the value function h(x; a) can be considered as the value of an

American option with expiry date equal to in�nity, an underlying asset which is a geo-

metric di¤usion process with drift � and volatility �2, and a discount factor equal to �.
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Indeed, in the continuation region where it is optimal to continue holding the option to

harvest, the required return �h is equal to the actual return or equivalently L:h(x; a) = 0

and the option value is higher than the payo¤, that is h(x; a)� (l(x) + V (a)) > 0. Con-

sequently, it is not yet optimal to exercise. In the stopping region, it is no more optimal

to continue holding the option to harvest but it is optimal to harvest immediately be-

cause the required return �h is less than the actual return or equivalently L:h(x; a) > 0

and the option value must equal the payo¤ that is h(x; a) � (l(x) + V (a)) = 0. The

free harvest boundary is just where the decision maker is indi¤erent between harvest-

ing immediately or continuing to hold this option, that is when L:h(x; a) = 0 and

h(x; a)� (l(x) + V (a)) = 0.

When valuing an American option, the use of the complementarity formulation is

straightforward. The option value is then computed numerically by performing a dis-

cretization of the linear complementarity problem. The main di¤erence between valuing

an American option and the forest value is that the payo¤ in the former case is known

as a function of the underlying asset when exercising the option whereas it should be

endogenously determined in the latter as it is the sum of the timber crop value and the

land value l(x) = h(x; 0). For this reason, valuing the forest value function h(x; a) as a

complementarity problem as speci�ed above is seemingly not possible. In order to over-

come this limitation, we need to consider simultaneously the second problem consisting

in valuing the forest value function g0(�; a) = h0(x; a) as follows:

L:h(x; a) � 0 (23a)

h(x; a)� (l(x) + V (a)) � 0 (23b)

L:h(x; a) [h(x; a)� (l(x) + V (a))] = 0 (23c)

L:h0(x; a) � 0 (24a)

h0(x; a)� (l(x) + exV (a)) � 0 (24b)

L:h0(x; a) [h0(x; a)� (l(x) + exV (a))] = 0 (24c)
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l(x) = h(x; 0) = h0(x; 0) (25)

Equations (23a)�(24c) represent the complementarity problem respectively for stand

P and stand P whereas equation (25) says that each forest value at age zero must equal

the land value by Proposition 4. As speci�ed by equations (23a)� (24c), and equation

(25), the problem of valuing simultaneously both stands can then be solved numerically.

The value-matching and smooth-pasting conditions will be used to localize the harvest

boundary. The forest value functions h(x; a) and h0(x; a) are computed iteratively as

speci�ed by the following pseudo-code. First, (i) assume that after the n� 1th iteration,

the land value function is l(n); then (ii) compute forest value function h(n) as solution

to (23a)� (23c) and forest value function h0(n) as solution to (24a)� (24c); (iii) deduce

the new land value function as l(n+1)(x) = max(h(n)(x; 0); h0(n)(x; 0)); (iv) continue iter-

atively until convergence is reached when h(x; 0) and h0(x; 0) are approximately equal.

The initial value ascribed to the land value can be arbitrarily chosen. We �nd that the

algorithm converges when the land value has initially any positive values. However, the

convergence is generally faster when the initial land value function is equal tomax (c; c0�)

or max (c; c0ex). Indeed, this is the minimal land value when both tree species P and P

are available.

The numerical discretization to compute h(n) and h0(n) at step (ii) is based on a fully

implicit �nite di¤erence method. With respect to a fully explicit �nite di¤erence method,

the implicit method is unconditionally stable and more robust (Brennan and Schwartz

1978). Other numerical methods to solve option valuation problems are discussed in

Wilmott et al (1993). We use the penalty method (Zvan et al, 1998) to solve the linear

complementarity problem as in Insley (2002).

Figures 2 and 3 illustrate the harvest age boundary with respectively low and high

uncertainty in the case where � < �0. The relative price threshold �� for which the

decision maker is indi¤erent between planting any of the two species on a bare land (the

switching threshold) corresponds to the relative price for which it is optimal to cut the

27



­5 ­4 ­3 ­2 ­1 0
0

10

20

30

Relative price (log)

C
ut

tin
g 

ag
e 

(y
ea

rs
)

Boundary of the continuation region under certainty
Boundary of the continuation region under uncertainty
Generalized Faustman age
Minimum age for positive growth

θ
0 θ∗

a
f

Figure 2: Boundary of the continuation region under low uncertainty (� < �0)

currently planted species at age zero. It is the same relative price at which the replanting

harvest boundary meets the switching boundary.

Figure 4 shows the land value function in the case where � < �0. The land has a

greater value under uncertainty than under certainty and it is more valuable when the

uncertainty level, measured by �2, increases. Unlike the case under certainty, the land

value function has a continuous slope around the relative price switching threshold under

uncertainty to prevent any arbitrage. When the relative price tends respectively to zero

or to in�nity, that is when respectively species P or P is worthless, the reduced land

value functions tend toward their single species level c or c0� respectively.
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Figure 3: Boundary of the continuation region under high uncertainty (� < �0)
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6. Conclusion

We have examined the decision to undertake projects that di¤er in that they gener-

ate di¤erent future income �ows. The focus has been extensions of the conventional

forestry economics model. In our extended forestry model, two alternative species may

be planted, so that outputs as well as timber prices di¤er across species. This entails

more sophisticated planting and harvesting decisions than had been considered before.

When choosing between two alternative species for just one rotation, the decision

maker plants immediately if the price of one species is su¢ ciently high compared to the

price of the other species. However, the decision maker prefers to wait if both prices

are su¢ ciently close. This is so even while the decision does not involve any direct cost.

Indeed, even in the absence of explicit investment costs, there is the potential cost of

establishing the wrong species. This mistake is irreversible because the project involves

one harvest only. Consequently, the decision maker prefers waiting until the prices of

the alternative species are su¢ ciently far away from each other to make the probability

of a price reversal acceptably low.

We then considered situations where the decision maker has the opportunity to ex-

ploit the forest land for an inde�nite number of rotations. Here the decision maker must

decide at what age the current stand should be harvested and whether the same species,

or the alternative species, should be replanted, immediately or after some delay.

We showed that, absent any planting costs, the DM immediately establishes the

species whose relative price exceeds some threshold; otherwise the alternative species is

selected. This rule di¤ers from the one rotation case because introducing many rotations

has the e¤ect of diluting the irreversibility e¤ect present in the one rotation case. The

decision maker plants immediately because it is possible to switch to the alternative

species whenever desirable. This is not an easy decision, however, as trees may in that

case have to be harvested while they have little or no value. We have shown that,

although waiting without planting may help choose the best species, nothing can be

gained and some loss may be made, by using that strategy.
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We have characterized the value functions and the optimal management strategy in

this stochastic repeated rotations context, although they were not provided in explicit

form. In the space of relative species prices and wood stand ages, we characterized the

set of points where the DM is willing to wait or to exercise the option of harvesting.

The exercise frontier divides itself into a zone where the same species is reestablished

immediately, and, at higher relative prices a zone where the other species is chosen. The

relative price that separates these two zones is independent of stand age. At still higher

relative prices, the continuation zone and exercise frontier disappear altogether: a stand

of the "wrong" species should then be harvested immediately.

Land value is higher than when one species only is available. It converges to the

limiting cases of one species, or the other, when their relative price tends to zero or to

in�nity. When both species are available, the optimum cutting age is non monotonous

but oscillates around Faustman�s�age when the relative price is below some threshold

value signalling the necessity to switch to the alternative species. This is because the

decision maker would rather wait than plant the wrong species and adjust the number

of times the same species has to be planted. The land value increases with the uncer-

tainty related to timber prices. It is an increasing function of the relative price with a

continuous slope even around the switching threshold to prevent any arbitrage as long as

the uncertainty is present. On the contrary, under certainty, the slope of the land value

function generally changes at the switching threshold. For relative prices higher than

the switching threshold, the optimal harvesting age decreases until it hits the minimum

age at which timber volumes become positive. Similar results are established explicitly

in the certainty case.
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7. APPENDIX

a) Risk neutrality case:
Consider a risk neutral decision maker who chooses the proportion � of a bare piece of

land to be devoted to either one of the species while simultaneously choosing the planting
date. The rest of the land 1� � is devoted to the other species and planted simultaneously or
later. Harvests take place at dates to be chosen optimally for each species. Assuming without
loss of generality that species P is planted at T and species P is established at T 0, the value
of the project is then

F (p; p0) = E max
T;T 0;�2[0;1]

n
�e�rT max

s
E
T

�
e�rsV (s)pT+s

�
+ (1� �) e�rT 0 max

s0
ET 0

�
e�rs

0
V 0(s0)p0T 0+s0

�o
(26)

where E is the expected value operator conditional on current information, and ET (respec-
tively ET 0) is the expected value operator conditional on information at T (respectively T 0).
Since � and 1�� do not a¤ect the choices of s or s0 in problem (26), and since they enter the
objective function multiplicatively, they do not a¤ect the choices of T or T 0. Consequently �
can be determined given the optimal rules for choosing T and T 0:

F (p; p0) = E max
�2[0;1]

n
�max

T
E
�
e�rT max

s
ET e

�rsV (s)pT+s

�
+ (1� �)max

T 0
E
�
e�rT

0
max
s0
ET 0e

�rs0V 0(s0)p0T 0+s0
�o

The above problem is linear in �. Consequently the solution is either � = 1 or � = 0. This
establishes that diversi�cation is not optimum.

Proof of Proposition 1 XX A véri�er encore

The only elements not established in the text are the price thresholds and the constants in
Formula (7). For a current price level p, su¢ ciently high relative to p0, that is for � smaller than
a critical threshold ��, it is optimal to invest immediately in P ; then, by (5), F (p; p0) = bp or
f(�) = b. On the boundary � = ��, the value-matching and smooth-pasting conditions (Dixit,
1993) imply f(��) = b and f�(�

�) = 0. Similarly, at levels p0 su¢ ciently high relatively to
p, that is for � bigger than a critical threshold �0�, it is optimal to invest immediately in P ;
then F (p; p0) = b0p0 or f(�) = b0�, and the value-matching and smooth-pasting conditions are
respectively f(�0�) = b0�0� and f�(�

0�) = b0. Consider the following equations to determine b1,
b2, �

� and �0�:

b1�
��1 + b2�

��2 = b (27a)

�1b1�
��1�1 + �2b2�

��2�1 = 0 (27b)

b1�
�0�1 + b2�

�0�2 = b0��
0

(27c)

�1b1�
�0�1�1 + �2b2�

�0�2�1 = b0 (27d)

Consider the �rst two equations 27a and 27b, then:
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�1b1�
��1 + �1b2�

��2 = b�1
�1b1�

��1 + �2b2�
��2 = 0

then (�1 � �2) b2���2 = b�1 or �� =
�

b�1
�1��2

���12
b
���12
2

The same �rst two equations imply also:
�2b1�

��1 + �2b2�
��2 = b�2

�1b1�
��1 + �2b2�

��2 = 0

then (�1 � �2) b1���1 = �b�2 or �� =
�
�b�2
�1��2

���11
b
���11
1

As �� =
�

b�1
�1��2

���12
b
���12
2 =

�
�b�2
�1��2

���11
b
���11
1 then

��
b�1

�1��2

���12
b
���12
2

��1�2
=

��
�b�2
�1��2

���11
b
���11
1

��1�2
and �

b�1
�1 � �2

��1
b
�2
1 =

�
�b�2
�1 � �2

��2
b
�1
2 (28)

Then consider the last two equations 27c and 27d; one can proceed similarly to obtain
(�1 � �2) b2��

0�2 = b0��0 (�1 � 1)
(�1 � �2) b1��

0�1 = b0��0 (1� �2)
and by eliminating ��

0

�
b0 (�1 � 1)
�1 � �2

��1�1
b
�2�1
1 =

�
b0 (1� �2)
�1 � �2

��2�1
b
�1�1
2 (29)

Substituting for b1 using equations 28 and 29:�
b�1

�1��2

��1(�1�1)
b
�2(�1�1)
1 =

�
�b�2
�1��2

��2(�1�1)
b
�1(�1�1)
2�

b0(�1�1)
�1��2

��1(�1�1)
b
�1(�2�1)
1 =

�
b0(1��2)
�1��2

��1(�2�1)
b
�1(�1�1)
2

so

b
�1��2
1 =

�
�b�2
�1��2

��2(�1�1) � b0(1��2)
�1��2

���1(�2�1) � b�1
�1��2

���1(�1�1) � b0(�1�1)
�1��2

��1(�1�1)
b
�1��2
1 =

�
��2
�1��2

��2(�1�1) � 1��2
�1��2

���1(�2�1) � �1
�1��2

���1(�1�1) � �1�1
�1��2

��1(�1�1)
b�2(�1�1)��1(�1�1)b0��1(�2�1)+�1(�1�1)

b
�1��2
1 =

�
��2
�1��2

��2(�1�1) � 1��2
�1��2

��1��2 � 1��2
�1��2

���1(�2�1)�(�1��2) � �1
�1�1

���1(�1�1)
b�(�1�1)(�1��2)b0�1(�1��2)

b
�1��2
1 =

�
1��2
�1��2

��1��2 � ��2
�1��2

��2(�1�1) � 1��2
�1��2

���2(�1�1) � �1
�1�1

���1(�1�1)
b�(�1�1)(�1��2)b0�1(�1��2)

b
�1��2
1 =

�
1��2
�1��2

��1��2 � �2
�2�1

��2(�1�1) � �1
�1�1

���1(�1�1)
b�(�1�1)(�1��2)b0�1(�1��2)

b1 =
1��2
�1��2

�
�1�1
�1

��1(�1�1)=(�1��2) ��2�1
�2

���2(�1�1)=(�1��2) b0�1
b�1�1

Substituting for b2 using equations 28 and 29:�
b�1

�1��2

��1(�2�1)
b
�2(�2�1)
1 =

�
�b�2
�1��2

��2(�2�1)
b
�1(�2�1)
2�

b0(�1�1)
�1��2

��2(�1�1)
b
�2(�2�1)
1 =

�
b0(1��2)
�1��2

��2(�2�1)
b
�2(�1�1)
2
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Then

b
�1��2
2 =

�
b0(�1�1)
�1��2

��2(�1�1) � b�1
�1��2

���1(�2�1) � b0(1��2)
�1��2

���2(�2�1) � �b�2
�1��2

��2(�2�1)
b
�1��2
2 =

�
�1�1
�1��2

��1��2 � �1�1
�1��2

��2(�1�1)�(�1��2) � �1
�1��2

���1(�2�1) ��2�1
�2

���2(�2�1)
b��1(�2�1)+�2(�2�1)b0�2(�1�1)��2(�2�1)

b
�1��2
2 =

�
�1�1
�1��2

��1��2 � �1�1
�1��2

��1(�2�1) � �1
�1��2

���1(�2�1) ��2�1
�2

���2(�2�1)
b(1��2)(�1��2)b0�2(�1��2)

b
�1��2
2 =

�
�1�1
�1��2

��1��2 � �1�1
�1��2

��1(�2�1) � �1
�1��2

���1(�2�1) ��2�1
�2

���2(�2�1)
b(1��2)(�1��2)b0�2(�1��2)

b2 =
�1�1
�1��2

�
�2�1
�2

��2(1��2)=(�1��2) ��1�1
�1

��1(�2�1)=(�1��2) b0�2
b�2�1

As ���1 = �b�2
�1��2

b
�1
1 then

���1 = �b�2
�1��2

�1��2
1��2

�
�1�1
�1

���1(�1�1)=(�1��2) �1��2
��2

��2(�1�1)=(�1��2) b�1�1
b0�1

���1 =
�
�1�1
�1

���1(�1�1)=(�1��2) �1��2
��2

��2(�1�1)=(�1��2)�1 b�1

b0�1

���1 =
�
�1�1
�1

���1(�1�1)=(�1��2) �1��2
��2

��1(�2�1)=(�1��2) b�1
b0�1

�� =
�
�1�1
�1

��(�1�1)=(�1��2) ��2�1
�2

�(�2�1)=(�1��2) b
b0

As (�1 � �2) b2��
0�2 = b0��0 (�1 � 1) then

��
0�2�1 = b0(�1�1)

�1��2
b�12

��
0�2�1 = b0(�1�1)

�1��2
�1��2
�1�1

�
�1�1
�1

���1(�2�1)=(�1��2) �1��2
��2

���2(1��2)=(�1��2) b�2�1
b0�2

��
0�2�1 =

�
�1�1
�1

���1(�2�1)=(�1��2) �1��2
��2

���2(1��2)=(�1��2) b�2�1
b0�2�1

��
0
=
�
�1�1
�1

���1=(�1��2) ��2�1
�2

��2=(�1��2) b
b0

b1 =
1� �2
�1 � �2

�
�1 � 1
�1

��1(�1�1)=(�1��2)��2 � 1
�2

���2(�1�1)=(�1��2) b0�1
b�1�1

(30a)

b2 =
�1 � 1
�1 � �2

�
�2 � 1
�2

��2(1��2)=(�1��2)��1 � 1
�1

��1(�2�1)=(�1��2) b0�2
b�2�1

(30b)

�� =

�
�1 � 1
�1

��(�1�1)=(�1��2)��2 � 1
�2

�(�2�1)=(�1��2) b
b0

(30c)

��
0
=

�
�1 � 1
�1

���1=(�1��2)��2 � 1
�2

��2=(�1��2) b
b0

(30d)

Proof of Lemma 1

F (p) may be written as F (p) = max
fakg

E
P1

k=1 e
�r�kp�kV (ak) where current time is t = 0

and � k =
Pk

s=1 as is the sum of all harvest ages from the next harvest to the kth harvest.
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Since p is a GBM, multiplying p by � implies that ps is multiplied by � for any s > t. Then
F (�p) = max

fakg
E
P1

k=1 e
�r�k(�p�k)V (ak)

=�max
fakg

E
P1

k=1 e
�r�kp�kV (ak)= �F (p)

Consequently, (9) can be written as
pF (1) = max

s
Ee�rs [psV (s) + psF (1)] or pF (1) = max

s

�
pe��sV (s) + pe��sF (1)

�
= pmax

s

�
e��sV (s) + e��sF (1)

�
. Thus the maximization which de�nes the optimal har-

vest age is independent of the price.

Proof of Lemma 2

First, we will prove that F (p; p0) is homogenous of degree one in (p; p0). De�ne �k as a
dichotomous variable taking the value 1 if species P is planted after the (k � 1)th harvest or
the value 0 otherwise. Similarly, �0k is a dichotomous variable taking the value 1 if species P
is planted after the (k � 1)th harvest or 0 if species P is planted at that time. Thus, �k and
�0k satisfy �k 2 f0; 1g, �0k 2 f0; 1g, and �k�0k = 0. F (p; p0) can be written as F (p; p0) =
max

f�k;�0k;akg
E
P1

k=1 e
�r�k

�
�kp�kV (ak) + �

0
kp
0
�k
V 0 (ak)

�
. Since p is a GBM, multiplying pt by

� implies that pt0 is multiplied by � for any t0 > t. Then F (p; p0) is homogenous of degree one
in (p; p0). Considering equations (12a) and (12b), the functions G(p; p0; a) and G0(p; p0; a) are
homogenous of degree one in (p; p0) as well. Now, suppose that species P is currently planted;
we want to prove that the optimal harvest age depends on �s only, where �s is the value of
� when the stand is optimally cut. As G(p; p0; a) = maxs>0Ee�rs [psV (s+ a) + F (ps; p0s)],

then G(1; �; a) = maxs>0

h
e��sV (s+ a) + Ee�rs ps

p
F (1; �s)

i
. Note that ps

p
is the value at

time s of a GBM with drift � and volatility � whose value is 1 at time 0; thus ps
p
is independent

of p (as ps
p
is a GBM with initial value 1). Since it is optimal to cut when

argmaxsEe
�rs [psV (s+ a) + F (ps; p

0
s)] = 0, the optimal harvest age depends on � only.

Let G(p; a) = pg(a) where g(a) is a function of the stand age to be determined. Except at
harvest age, G(p; a) satis�es Bellman�s equation E (dG(p; a)) = rG(p; a)da where EdG =

Gada+Gp�pda+
�2

2
p2Gppda+o(da), Ga = pga(a), Gp = g(a), and Gpp = 0. Consequently

EdG = pga(a) + �g(a)pda + o(da), and Bellman�s equation implies that g(a) must satisfy
�g(a) = ga(a) for a 2 [0; af ], where � � r � � and af is the optimal harvest age, the same
for all harvests by Lemma 1. At any harvest, G(p; a) should satisfy the value-matching and
smooth-pasting conditions linking G(p; af ) and V (af )p+ F (p). Dividing both conditions by
p yields g(af ) = V (af ) + f(�) and ga(af ) = Va(af ).

Solving in the usual fashion, one �nds that the forest and land value functions, together
with c, a constant, and the optimal harvest age are determined by the equations in the Lemma.

Proof Equation (18)

G(p; p0; a) = pg(�; a) must satisfy Bellman�s equation EdG(p; p0; a) = rG(p; p0; a)da.
As dG = Gada + Gpdp +

1
2
Gppdp

2 + Gp0dp
0 + 1

2
Gp0p0dp

02 + Gp0pdpdp
0 + o(da) where

Ga(p; p
0; a) = pga(�; a),

Gp(p; p
0; a) = g(�; a)� �g�(�; a),
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Gpp(p; p
0; a) = �2

p
g��(�; a),

Gp0(p; p
0; a) = g�(�; a),

Gp0p0(a; p; p
0) = 1

p
g��(�; a), and

Gpp0(p; p
0; a) = � �

p
g��(�; a).

Then EdG(p; p0; a)

= pgada+ �pgda+ p�g� (�
0 � �) da+ �2g��

�
�2

2
� ���0 + �02

2

�
da+ o(da)

and so �2

2
�2g�� + ��g� � �g + ga = 0 where �2 = �2 � 2���0 + �02 and � = �0 � �.

Note that � is a GBM with drift (�0 � �) + �2 � ���0 and volatility �2.
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