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Abstract

Firms make forward-looking decisions based on latent technological states. While the

true state is not observed by econometricians, the literature provides ways to construct

proxies. For dynamic discrete choice models of forward-looking firms where a continuous

state variable is unobserved but its proxy is available, we derive closed-form identification

of the conditional choice probability, the Markov law of state transition, and the under-

lying structural parameters by explicitly solving relevant integral equations. We use this

method to estimate the structures of firms and the option values of exit across industries.
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1 Introduction

A firm makes forward-looking decisions based on its technological state. Technology is not

directly observed by econometricians, but the literature provides various ways to construct a

proxy variable for it. If the true technology were observed, then one could directly apply the

existing econometric methods to estimate the structure of forward-looking firms. When the

true technological state is not observed, can we instead rely on a proxy variable for structural

estimation? Clearly, a naive substitution of the proxy in a nonlinear structure generally biases

the estimates of structural parameters, even if the proxy has only a classical error. We develop

methods to identify the common class of dynamic discrete choice structural models when a

proxy for an unobserved continuous state variable is available.

To be specific, suppose that firm j at time t makes exit decisions dj,t based on its technology

x∗
j,t. The production function in logs is given by yj,t = x∗

j,t + bllj,t + bkkj,t + εj,t where (lt, kt)

denotes factors of production and εt denotes Hicks-neutral shocks. The literature provides ways

to estimate the parameters (bl, bk).
1 The obtained residual xj,t := yj,t−bllj,t−bkkj,t can be used

as a proxy for the unobserved technology x∗
j,t up to Hicks-neutral shocks, i.e., xj,t = x∗

j,t + εj,t.

Using the constructed proxy xj,t for the true technology x∗
j,t, our proposed method allows the

structural parameters of forward-looking firms to be identified.

Estimation of dynamic structural model requires identification of two objects: (1) the con-

ditional choice probability (CCP) denoted by Pr(dt | x∗
t ); and (2) the law of state transi-

tion denoted by f(x∗
t | dt−1, x

∗
t−1). We show that these two core objects, Pr(dt | x∗

t ) and

1While instrumental variable approaches may be used to this end, common approaches in this literature take

advantage of structural restrictions, such as the nonparametric proxy models of Olley and Pakes (1996) and

Levinsohn and Petrin (2003) based on Robinson’s (1988)
√
N -consistent estimator. See also Ackerberg, Caves

and Frazer (2006) and Wooldridge (2009).
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f(x∗
t | dt−1, x

∗
t−1), are identified with closed-form expressions written in terms of observed prox-

ies and choices. This auxiliary identification result in turn leads to identification of structural

parameters. Dynamic discrete choice models with unobservables are studied by Aguirregabiria

and Mira (2007), Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011), and Hu and

Shum (2012), but these papers focus on finitely supported unobservables. On the other hand,

our problem is concerned about continuously supported unobserved states, which are more

relevant to production technologies in particular. We deal with continuously distributed unob-

servables at the expense of the requirement of a proxy variable.

The use of proxy variables in dynamic structural models is related to Cunha and Heckman

(2008), Cunha, Heckman, and Schennach (2010), and Todd and Wolpin (2012). We particularly

focus on forward-looking structures like Rust’s (1987) model, and propose to apply the proxy

approach to the CCP-based estimation method of Hotz and Miller (1993). The first step consists

of closed-form identification of the CCP and the law of state transition. For this step, we use

the identification strategy of Schennach (2004), with extensions by Hu and Sasaki (2013) to

non-unit proxy errors. In the second step, the CCP-based method (Hotz and Miller, 1993) is

applied to the preliminary non-/semi-parametric estimates of the Markov components to obtain

structural parameters of a current-time payoff in a simple closed-form expression. Because of

its closed form like the OLS, our estimator is robust and is free from common implementation

problems of convergence and global optimization.

We first present an informal overview and a practical guideline of our methodology in Section

2. Sections 3 and 4 present formal identification and estimation results. In Section 5, we apply

our methods and study the forward-looking structure of firms that make exit decisions based

on unobserved production technologies, and estimate the option value of exit for each industry.
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2 An Overview of the Methodology

In this section, we present a practical guideline of our methodology in the context of the problem

of firms’ decisions based on unobserved technologies. Formal identification and estimation

results behind this informal overview are followed up in Sections 3 and 4.

Firms with lower levels of technological productivity produce less values added even at the

optimal choice of inputs, and may well exit with a higher probability than firms with higher

levels of productivity. Let dj,t = 1 indicate the decision of a firm to stay, and let dj,t = 0

indicate the decision to exit. Firms choose dj,t given its technological level x∗
j,t, and based on

their knowledge of the stochastic law of motion of x∗
j,t. Suppose that the technological state

x∗
j,t of a firm evolves according to the first-order process

x∗
j,t = αt + γtx

∗
j,t−1 + ηj,t. (2.1)

As a reduced form of the underlying structural production process, a firm with its tech-

nological level x∗
j,t is assumed to receive the current payoff of the affine form θ0 + θ1x

∗
j,t + ωd

j,t

if it is in the market, where ωd
j,t is the choice-specific private shock. On the other hand, the

firm receives zero payoff if it is not in the market. Upon exit from the market, the firm may

receive a one-time exit value θ2, but they will not come back once exited. With this setting,

the choice-specific value of the technological state x∗
j,t can be written as

With stay (dj,t = 1) : v1(x
∗
j,t) = θ0 + θ1x

∗
j,t + ω1

j,t + E
[
ρV (x∗

j,t+1; θ) | x∗
j,t

]
With exit (dj,t = 0) : v0(x

∗
j,t) = θ0 + θ1x

∗
j,t + θ2 + ω1

j,t

where ρ ∈ (0, 1) is the rate of time preference, V ( · ; θ) is the value function, and the conditional

expectation E[ · | x∗
j,t] is computed based on the the knowledge of the law (2.1) including the

distribution of ηj,t.
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The fist step toward estimation of the structural parameters is to construct a proxy variable

xj,t for the unobserved technology x∗
j,t. This stage can take one of various routes. For example,

if we identify the parameters (bl, bk) of the production function yj,t = x∗
j,t + bllj,t + bkkj,t + εj,t

using the exiting methods from the production literature, one can take the residual xj,t :=

yj,t − bllj,t − bkkj,t as an additive proxy in the sense that xj,t = x∗
j,t + εj,t automatically holds,

where the Hicks-neutral shock εj,t is assumed to be exogenous.

The second step is to estimate the parameters (αt, γt) of the dynamic process (2.1) by the

method-of-moment approach, e.g., α̂t

γ̂t

 =

 1
∑N

j=1 xj,t−11{dj,t−1=1}∑N
j=1 1{dj,t−1=1}∑N

j=1 wj,t−11{dj,t−1=1}∑N
j=1 1{dj,t−1=1}

∑N
j=1 xj,t−1wj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}


−1 

∑N
j=1 xj,t1{dj,t−1=1}∑N

j=1 1{dj,t−1=1}∑N
j=1 xj,twj,t−11{dj,t−1=1}∑N

j=1 1{dj,t−1=1}


where wj,t−1 is some observed variable that is correlated with x∗

j,t−1, but uncorrelated with the

current technological shock ηj,t and the Hicks-neutral shocks (εj,t, εj,t−1). Examples include lags

of the proxy, xj,t−2. Note that the proxy xj,t as well as wj,t and the choice dj,t are observed,

provided that the firm is in the market. Because of the interaction with the indicator 1{dj,t−1 =

1}, all the sample moments in the above display are computable from observed data.

Having obtained (α̂t, γ̂t), the third step is to identify the distribution of the Hicks-netural

shock εj,t. Its characteristic function can be estimated by the formula

ϕ̂εt(s) =

∑N
j=1 e

isxj,t ·1{dj,t=1}∑N
j=1 1{dj,t=1}

exp

[∫ s

0

i·
∑N

j=1(xj,t+1−α̂t)·eis
′xj,t ·1{dj,t=1}

γ̂t·
∑N

j=1 e
is′xj,t ·1{dj,t=1}

ds′
] .

All the moments in this formula involve only the observed variables xj,t, xj,t+1 and dj,t. Note

also that the α̂t and γ̂t are already obtained in the previous step. Hence the right-hand side of

this formula is directly computable.

The fourth step is to estimate the CCP, Pr(dt | x∗
t ), of stay given the current technological

state x∗
t . Using the estimated characteristic function ϕ̂εt produced in the previous step, we can

5



estimate the CCP by the formula

pt(ξ) := P̂r(dj,t = 1 | x∗
j,t = ξ) =

∫ (∑N
j=1 1{dj,t = 1} · eis(xj,t−ξ)

)
· ϕ̂εj,t(s)

−1 · ϕK(sh)ds∫ (∑N
j=1 e

is(xj,t−ξ)
)
· ϕ̂εj,t(s)

−1 · ϕK(sh)ds

(2.2)

where ϕK is the Fourier transform of a kernel function K and h is a bandwidth parameter. For

example, ϕK(sh) = e−
1
2
s2h2

if the normal kernel is used. A similar remark to the previous ones

applies here: since dj,t and xj,t are observed, this CCP estimate is directly computable using

observed data, even though the true state x∗
j,t is unobserved.

The fifth step is to estimate the state transition law, f(x∗
j,t | x∗

j,t−1). Using the previously

estimated characteristic function ϕ̂εt , we can estimate the state transition law by the formula

f̂(x∗
j,t = ξt | x∗

j,t−1 = ξt−1) =
1

2π

∫
ϕ̂εj,t−1

(sγt)
∑N

j=1 e
is(xj,t−ξt) · eis(αt+γtξt−1)

ϕ̂εj,t(s)
∑N

j=1 e
is(αt+γtx∗

j,t−1)
· ϕK(sh)ds. (2.3)

As before, ϕK is the Fourier transform of a kernel function K and h is a bandwidth parameter.

Finally, by using the estimated CCP (2.2) and the estimated state transition law (2.3)

with the CCP-based method of Hotz and Miller (1993), we can in turn estimate the structural

parameters θ = (θ0, θ1, θ2). If we assume that the choice-specific private shocks independently

follow the standard Gumbel (Type I Extreme Value) distribution, then we obtain the restriction

ln pt(x
∗
t )− ln (1− pt(x

∗
t )) = v1(x

∗
t )− v0(x

∗
t ) = E[ρV (x∗

t+1; θ) | x∗
t ]− θ2,

where the discounted future value can be written in terms of the parameters θ as

E[ρV (x∗
t+1; θ) | x∗

t ] = E

[
∞∑

s=t+1

ρs−t (θ0 + θ1x
∗
s + θ2(1− ps(x

∗
s)) + ω̄

−(1− ps(x
∗
s)) log(1− ps(x

∗
s))− ps(x

∗
s) log ps(x

∗
s))

(
s−1∏

s′=t+1

ps′(x
∗
s′)

)∣∣∣∣∣x∗
t

]
,

where ω̄ denotes the Euler constant ≈ 0.5772. This conditional expectation can be computed

by the state transition law estimated with (2.3), and the CCP pt(x
∗
t ) is estimated with (2.2).
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Hence, with our auxiliary estimates, (2.2) and (2.3), the estimator θ̂ solves the equation

ln p̂t(x
∗
t )− ln (1− p̂t(x

∗
t )) = Ê

[
∞∑

s=t+1

ρs−t
(
θ̂0 + θ̂1x

∗
s + θ̂2(1− p̂s(x

∗
s)) + ω̄ (2.4)

−(1− p̂s(x
∗
s)) log(1− p̂s(x

∗
s))− p̂s(x

∗
s) log p̂s(x

∗
s))

(
s−1∏

s′=t+1

p̂s′(x
∗
s′)

)∣∣∣∣∣x∗
t

]
− θ̂2 for all x∗

t ,

which can be solved for θ̂ in an OLS-like closed form (e.g., Motz, Miller, Sanders and Smith,

1994). The practical advantage of the above estimation procedure is that every single formula

is provided with an explicit closed-form expression, and hence does not suffer from the common

implementation problems of convergence and global optimization.

Given the structural parameters θ = (θ0, θ1, θ2) estimated, one can conduct counter-factual

predictions in the usual manner. For example, consider the policy scenario where the exit value

of the current period is reduced by rate ρ at time t, i.e., the exit value becomes (1− ρ)θ2. To

predict the number of exits in under this experimental setting, we can estimate the counter-

factual CCP of stay by the formula

p̂ct(x
∗
t ; ρ) =

exp
(
ln p̂t(x

∗
t )− ln(1− p̂t(x

∗
t )) + ρθ̂2

)
1 + exp

(
ln p̂t(x∗

t )− ln(1− p̂t(x∗
t )) + ρθ̂2

) .
Integrating p̂ct( · ; ρ) over the the unobserved distribution of x∗

j,t yields the overall fraction of

staying firms, where this unobserved distribution can be in turn estimated by the formula

f̂(x∗
j,t = ξt) =

1

2π

∫ ∑N
j=1 e

is(xj,t−xit)

N · ϕ̂εj,t(s)

· ϕK(sh)ds.

In this section, we proposed a practical step-by-step guideline of our proposed method. For

ease of exposition, this informal overview of our methodology in the current section focused on

a specific economic problem and lacked formal justifications. Sections 3 and 4 provide formal

identification and estimation results in a more general framework.
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3 Markov Components: Identification and Estimation

Our basic notations are fixed as follows. A discrete control variables, taking values in
{
0, 1, · · · , d̄

}
,

is denoted by dt. For example, it indicates the discrete amounts of lumpy R&D investment, and

can take the value of zero which is often observed in empirical panel data for firms. Another

example is the binary choice of exit by firms that take into account the future fate of technolog-

ical progress. An observed state variable is denoted by wt. It is for example the stock of capital.

An unobserved state variable is denoted by x∗
t . In the context of the production literature, it is

the technological term x∗
t in the production function yj,t = x∗

j,t + bllj,t + bwwj,t + εj,t. Finally, xt

denotes a proxy variable for x∗
t . For example, the residual xj,t := yj,t−bllj,t−bwwj,t can be used

as a proxy in the sense that xj,t = x∗
j,t+ εj,t automatically holds by the structural construction.

Throughout this paper, we consider the dynamics of this list of random variables. The following

subsection presents identification of the components of the dynamic law for these variables.

3.1 Closed-Form Identification of the Markov Components

Our identification strategy is based on the assumptions listed below.

Assumption 1 (First-Order Markov Process). The quadruple {dt, wt, x
∗
t , xt} jointly follows a

first-order Markov process.

In the production literature, the first-order Markov process for unobserved productivity as

well as observed states and actions is commonly used as the core identifying assumption. This

Markovian structure is decomposed into four modules as follows.
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Assumption 2 (Independence). The Markov kernel can be decomposed as follows.

f
(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
= f (dt|wt, x

∗
t ) f

(
wt|dt−1, wt−1, x

∗
t−1

)
f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
f (xt|x∗

t )

where the four components represent

f (dt|wt, x
∗
t ) conditional choice probability (CCP);

f
(
wt|dt−1, wt−1, x

∗
t−1

)
transition rule for the observed state variable;

f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
transition rule for the unobserved state variable; and

f (xt|x∗
t ) proxy model.

Remark 1. Depending on applications, we can alternatively specify the transition rule for the

observed state variable as f (wt|dt−1, wt−1, x
∗
t ) which depends on the current unobserved state

x∗
t instead of the lag x∗

t−1. A similar closed-form identification result follows in this case.

In the context of the production models again, the four components of the Markov kernel

can be economically interpreted as follows. The CCP is the firm’s investment or exit decision

rule based on the observed capital stocks wt and the unobserved productivity x∗
t . The two

transition rules specify how the capital stock wt and the technology x∗
t co-evolve endogenously

with firm’s forward-looking decision dt. The proxy model is a stochastic relation between the

true productivity x∗
t and a proxy xt. We provide a concrete example after the next assumption.

Because the state variable x∗
t of interest is unit-less and unobserved, we require some restriction

to tie hands of its location and scale. To this goal, the transition rule for the unobserved state

variable and the state-proxy relation are semi-parametrically specified as follows.

Assumption 3 (Semi-Parametric Restrictions on the Unobservables). The transition rule for
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the unobserved state variable and the state-proxy relation are semi-parametrically specified by

f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: x∗

t = αd + βdwt−1 + γdx∗
t−1 + ηdt if dt−1 = d (3.1)

f (xt|x∗
t ) : xt = x∗

t + εt (3.2)

where εt and ηdt have mean zero for each d, and satisfy

εt ⊥⊥ ({dτ}τ , {x∗
τ}τ , {wτ}τ , {ετ}τ ̸=t) for all t

ηdt ⊥⊥ (dτ , x
∗
τ , wτ ) for all τ < t for all t.

Remark 2. The decomposition in Assumption 2 and the functional form for the evolution of

x∗
t in addition imply that ηdt ⊥⊥ wt for all d and t, which is also used to derive our result.

For the production models discussed earlier, these semi-parametric restrictions are inter-

preted as follows. In the special case of γd = 1, the semi-parametric model (3.1) of state

transition yields super-/sub-Martingale process for the evolution of unobserved technology x∗
t

depending on αd+βdwt > or < 0. In case where we consider the discrete choice dt of investment

decisions, it is important that the coefficients, (αd, βd, γd), are allowed to depend on the amount

d of investments since how much a firm invests will likely affect the technological developments.

The semi-parametric model (3.2) of the state-proxy relation is automatically valid as the proxy

being the residual xt := yt − bllt − bkkt equals the productivity x∗
t plus the Hicks-neutral shock

εt.
2

By Assumption 3, closed-form identification of the transition rule for x∗
t and the proxy model

for x∗
t follows from identification of the parameters (αd, βd, γd) for each d and from identification

of the nonparametric distributions of the unobservables, εt, x
∗
t , and ηdt for each d. We show that

2While this classical error specification is valid for the specific example of production functions, it may be

generally restrictive. We discuss how to relax this classical-error assumption in Section A.8 in the appendix.
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identification of the parameters (αd, βd, γd) follows from the empirically testable rank condition

stated as Assumption 4 below.3 We also obtain identification of the nonparametric distributions

of the unobservables, εt, x
∗
t , and ηdt , by deconvolution methods under the regularity condition

stated as Assumption 5 below.

Assumption 4 (Testable Rank Condition). Pr(dt−1 = d) > 0 and the following matrix is

nonsingular for each d.
1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]


Assumption 5 (Regularity). The random variables wt and x∗

t have bounded conditional mo-

ments given dt. The conditional characteristic functions of wt and x∗
t given dt = d do not

vanish on the real line, and is absolutely integrable. The conditional characteristic function of

(x∗
t−1, wt) given (dt−1, wt−1) and the conditional characteristic function of x∗

t given wt are abso-

lutely integrable. Random variables εt and ηdt have bounded moments and absolutely integrable

characteristic functions that do not vanish on the real line.

The validity of Assumptions 1, 2, and 3 can be discussed with specific economic structures as

we did using the production functions. Assumption 4 is empirically testable as is the common

rank condition in generic econometric contexts. Assumption 5 consists of technical regularity

conditions, but are automatically satisfied by common distribution families, such as the normal

distributions among others. Under this list of five assumptions, we obtain the following closed-

form identification result for the four components of the Markov kernel.

3This matrix consists of moments estimable at the parametric rate of convergence, and hence the standard

rank tests (e.g., Cragg and Donald, 1997; Robin and Smith, 2000; Kleibergen and Paap, 2006) can be used.
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Theorem 1 (Closed-Form Identification). If Assumptions 1, 2, 3, 4, and 5 are satisfied, then

the four components f (dt|wt, x
∗
t ), f

(
wt|dt−1, wt−1, x

∗
t−1

)
, f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
, f (xt|x∗

t ) of the

Markov kernel f
(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
are identified with closed-form formulas.

A proof is given in Section A.1 in the appendix. While the full closed-form identifying

formulas are provided in the appendix, we show them with short-hand notations for clarity of

exposition below. Let i :=
√
−1 denote the unit imaginary number. We introduce the Fourier

transform operators F and F2 defined by

Fϕ(ξ) =
1

2π

∫
e−isξϕ(s)ds for all ϕ ∈ L1(R) and ξ ∈ R

F2ϕ(ξ1, ξ2) =
1

4π2

∫
e−is1ξ1−is2ξ2ϕ(s1, s2)ds1ds2 for all ϕ ∈ L1(R2) and (ξ1, ξ2) ∈ R2.

First, with these notations, the CCP (e.g., the conditional probability of choosing the

amount d of investment given the capital stock wt and the technological state x∗
t ) is identi-

fied in closed form by

Pr (dt = d|wt, x
∗
t ) =

Fϕ(d)x∗
t |wt(x

∗
t )

Fϕx∗
t |wt(x

∗
t )

for each choice d ∈ {0, 1, · · · , d̄}, where ϕ(d)x∗
t |wt(s) and ϕx∗

t |wt(s) are identified in closed form

by

ϕ(d)x∗
t |wt(s) =

E[1{dt = d} · eisxt | wt]

ϕεt(s)
and ϕx∗

t |wt(s) =
E[eisxt | wt]

ϕεt(s)
,

respectively, where ϕεt(s) is identified in closed form by

ϕεt(s) =
E[eisxt | dt = d′]

exp
[∫ s

0
E[i(xt+1−αd′−βd′wt)·eis′xt |dt=d′]

γd′ E[eis
′xt |dt=d′]

ds′
] (3.3)

with any choice d′. For this closed form identifying formula, the parameter vector (αd, βd, γd)T
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is in turn explicitly identified for each d by the matrix composition
1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]



−1 
E[xt | dt−1 = d]

E[xtwt−1 | dt−1 = d]

E[xtwt | dt−1 = d]

 .

Second, the transition rule for the observed state variable wt (e.g., the law of motion of

capital) is identified in closed form by

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

F2ϕx∗
t−1,wt|dt−1,wt−1(x

∗
t−1, wt)∫

F2ϕx∗
t−1,wt|dt−1,wt−1(x

∗
t−1, wt)dwt

,

where ϕx∗
t−1,wt|dt−1,wt−1 is identified in closed form by

ϕx∗
t−1,wt|dt−1,wt−1(s1, s2) =

E[eis1xt−1+is2wt | dt−1, wt−1]

ϕεt−1(s1)
.

Third, the transition rule for the unobserved state variable x∗
t (e.g., the evolution of tech-

nology) is identified in closed form by

f(x∗
t | dt−1, wt−1, x

∗
t−1) = Fϕηdt

(x∗
t − αd − βdwt−1 − γdx∗

t−1),

where d := dt−1 for short-hand notation, and ϕηdt
is identified in closed form by

ϕηdt
(s) =

E[eisxt | dt−1 = d] · ϕεt−1(sγ
d)

E[eis(αd+βdwt−1+γdxt−1) | dt−1 = d] · ϕεt(s)
.

Lastly, the proxy model for x∗
t (e.g., the distribution of the Hicks-neutral shock as the proxy

error) is identified in closed form by

f(xt | x∗
t ) = Fϕεt(xt − x∗

t ),

where ϕεt(s) is identified in closed form by (3.3).

In summary, we obtained the four components of the Markov kernel identified with closed-

form expressions written in terms of observed data even though we do not observe the true
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state variable x∗
t . These identified components can be in turn plugged in to the structural

restrictions to estimate relevant parameters for the model of forward-looking firms. We present

how this step works in Section 4. Before proceeding with structural estimation, we first show

that these identified components of the Markov kernel can be easily estimated by their sample

counterparts.

3.2 Closed-Form Estimation of the Markov Components

Using the sample counterparts of the closed-form identifying formulas presented in Section 3.1,

we develop straightforward closed-form estimators of the four components of the Markov kernel.

Throughout this section, we assume homogeneous dynamics, i.e., time-invariant Markov kernel.

This assumption is not crucial, and can be easily removed with minor modifications. Let hw

and hx denote bandwidth parameters and let ϕK denotes the Fourier transform of a kernel

function K used for the purpose of regularization.

First, the sample-counterpart closed-form estimator of the CCP f(dt | wt, x
∗
t ) is given by

P̂r (dt = d|wt, x
∗
t ) =

∫
e−isx∗

t · ϕ̂(d)x∗
t |wt(s) · ϕK(shx)ds∫

e−isx∗
t · ϕ̂x∗

t |wt(s) · ϕK(shx)ds

for each choice d ∈ {0, 1, · · · , d̄}, where ϕ̂(d)x∗
t |wt(s) and ϕ̂x∗

t |wt(s) are given by

ϕ̂(d)x∗
t |wt(s) =

∑N
j=1

∑T
t=1 1{Dj,t = d} · eisXj,t ·K

(
Wj,t−wt

hw

)
ϕ̂εt(s) ·

∑N
j=1

∑T
t=1K

(
Wj,t−wt

hw

) and

ϕ̂x∗
t |wt(s) =

∑N
j=1

∑T
t=1 e

isXj,t ·K
(

Wj,t−wt

hw

)
ϕ̂εt(s) ·

∑N
j=1

∑T
t=1K

(
Wj,t−wt

hw

)
,

respectively, where ϕ̂εt(s) is given with any d′ by

ϕ̂εt(s) =

∑N
j=1

∑T
t=1 e

isXj,t · 1{Dj,t = d′}
/∑N

j=1

∑T
t=1 1{Dj,t = d′}

exp

[∫ s

0

i·
∑N

j=1

∑T−1
t=1 (Xj,t+1−αd′−βd′Wj,t)·eis

′Xj,t ·1{Dj,t=d′}

γd′ ·
∑N

j=1

∑T−1
t=1 eis

′Xj,t ·1{Dj,t=d′}
ds′
] . (3.4)
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While the notations may make them appear sophisticated, all these expressions are straight-

forward sample-counterparts of the corresponding closed-form identifying formulas provided in

the previous section.

Second, the sample-counterpart closed-form estimator of f(wt | dt−1, wt−1, x
∗
t−1) is given by

f̂
(
wt|dt−1, wt−1, x

∗
t−1

)
=∫ ∫

e−s1x∗
t−1−s2wt · ϕ̂x∗

t−1,wt|dt−1,wt−1(s1, s2) · ϕK(s1hx) · ϕK(s2hw)ds1ds2∫ ∫ ∫
e−s1x∗

t−1−s2wt · ϕ̂x∗
t−1,wt|dt−1,wt−1(s1, s2) · ϕK(s1hx) · ϕK(s2hw)ds1ds2dwt

,

where ϕ̂x∗
t−1,wt|dt−1,wt−1 is given by

ϕ̂x∗
t−1,wt|dt−1,wt−1(s1, s2) =

∑N
j=1

∑T
t=2 e

is1Xj,t−1+is2Wj,t · 1{Dj,t−1 = dt−1} ·K
(

Wj,t−1−wt−1

hw

)
ϕ̂εt−1(s1) ·

∑N
j=1

∑T
t=2 1{Dj,t−1 = dt−1} ·K

(
Wj,t−1−wt−1

hw

) .

Third, the sample-counterpart closed-form estimator of f(x∗
t | dt−1, wt−1, x

∗
t−1) is given by

f(x∗
t | dt−1, wt−1, x

∗
t−1) =

1

2π

∫
e−is(x∗

t−αd−βdwt−1−γdx∗
t−1) · ϕ̂ηdt

(s) · ϕK(shx)ds,

where d := dt−1 for short-hand notation, and ϕ̂ηdt
is given by

ϕ̂ηdt
(s) =

ϕ̂εt−1(sγ
d) ·
∑N

j=1

∑T
t=2 e

isXj,t · 1{Dj,t−1 = d}
ϕ̂εt(s) ·

∑N
j=1

∑T
t=2 e

is(αd+βdWj,t−1+γdXj,t−1) · 1{Dj,t−1 = d}
.

Lastly, the sample-counterpart closed-form estimator of f(xt | x∗
t ) is given by

f̂(xt | x∗
t ) =

1

2π

∫
e−is(xt−x∗

t ) · ϕ̂εt(s) · ϕK(shx)ds,

where ϕ̂εt(s) is given by (3.4).

In each of the above four closed-form estimators, the choice-dependent parameters (αd, βd, γd)
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are also explicitly estimated by the matrix composition:
1

∑N
j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 Xjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 W 2

jt1{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 WjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}



−1

×



∑N
j=1

∑T−1
t=1 Xj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wj,t+11{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

 .

Each element of the above matrix and vector consists of sample moments of observed data. In

fact, not only these matrix elements, but also all the expressions in the estimation formulas

provided in this section consist of sample moments of observed data. Thus, despite their

apparently sophisticated expressions, computation of these estimators is not that difficult.

4 Structural Dynamic Discrete Choice Models

In this section, we focus on a class of concrete structural models of forward-looking economic

agents. We apply our earlier auxiliary identification results to obtain closed-form estimation of

the structural parameters. Firms observe the current state (wt, x
∗
t ), where x∗

t is not observed

by econometricians. Recall that we deal with a continuous observed state variable wt and

a continuous unobserved state variable x∗
t , and it is not practically attractive to work with

nonparametric current-time payoff functions with respect to these continuous state variables.

As such, suppose that firms receive the the current payoff of the affine form

θ0d + θwd wt + θxdx
∗
t + ωdt

at time t if they make the choice dt = d under the state (wt, x
∗
t ), where ωdt is a private payoff

shock at time t that is associated with the choice of dt = d. We may of course extend this
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affine payoff function to higher-order polynomials at the cost of increased number of parame-

ters. Forward-looking firms sequentially make decisions {dt} so as to maximize the expected

discounted sum of payoffs

Et

[
∞∑
s=t

ρs−t
(
θ0ds + θwdsws + θxdsx

∗
s + ωdss

)]
,

where ρ is the rate of time preference. To conduct counterfactual policy predictions, economists

estimate these structural parameters, θ0d, θ
w
d , and θxd . The following two subsections introduce

closed-form identification and estimation of these structural parameters.

4.1 Closed-Form Identification of Structural Parameters

For ease of exposition under many notations, let us focus on the case of binary decision, where dt

takes values in {0, 1}. Since the payoff structure is generally identifiable only up to differences,

we normalize one of the intercept parameters to zero, say θ01 = 0.4 Furthermore, we assume

that ωdt is independently distributed according to the Type I Extreme Value Distribution in

order to obtain simple closed-form expressions, although this distributional assumption is not

essential. Under this setting, an application of Hotz and Miller’s (1993) inversion theorem and

some calculations yield the restriction

ξ(ρ;wt, x
∗
t ) = θ00 · ξ00(ρ;wt, x

∗
t ) + θw0 · ξw0 (ρ;wt, x

∗
t ) + θw1 · ξw1 (ρ;wt, x

∗
t )

+θx0 · ξx0 (ρ;wt, x
∗
t ) + θx1 · ξx1 (ρ;wt, x

∗
t ) (4.1)

4We may alternatively impose a system of restrictions and augment the least-square estimator following

Pesendorfer and Schmidt-Dengler (2007).
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for all (wt, x
∗
t ) for all t, where

ξ(ρ;wt, x
∗
t ) = ln f(1 | wt, x

∗
t )− ln f(0 | wt, x

∗
t ) + (4.2)

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) · ln f(0 | ws, x

∗
s) | dt = 1, wt, x

∗
t ] +

∞∑
s=t+1

ρs−t · E [f(1 | ws, x
∗
s) · ln f(1 | ws, x

∗
s) | dt = 1, wt, x

∗
t ]−

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) · ln f(0 | ws, x

∗
s) | dt = 0, wt, x

∗
t ]−

∞∑
s=t+1

ρs−t · E [f(1 | ws, x
∗
s) · ln f(1 | ws, x

∗
s) | dt = 0, wt, x

∗
t ]

ξ00(ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) | dt = 1, wt, x

∗
t ]− (4.3)

∞∑
s=t+1

ρs−t · E [f(0 | ws, x
∗
s) | dt = 0, wt, x

∗
t ]− 1

ξwd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · ws | dt = 1, wt, x

∗
t ]− (4.4)

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · ws | dt = 0, wt, x

∗
t ]− (−1)d · wt

ξxd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · x∗

s | dt = 1, wt, x
∗
t ]− (4.5)

∞∑
s=t+1

ρs−t · E [f(d | ws, x
∗
s) · x∗

s | dt = 0, wt, x
∗
t ]− (−1)d · x∗

t

for each d ∈ {0, 1}. See Section A.3 in the appendix for derivation of (4.1)–(4.5).

In the context of their models, Hotz, Miller, Sanders, and Smith (1994) propose to use (4.1)

to construct moment restrictions. We adapt this approach to our model with unobserved state

variables. To this end, define the function Q by

Q(ρ, θ;wt, x
∗
t ) = ξ(ρ;wt, x

∗
t )− θ00 · ξ00(ρ;wt, x

∗
t ) + θw0 · ξw0 (ρ;wt, x

∗
t )

−θw1 · ξw1 (ρ;wt, x
∗
t )− θx0 · ξx0 (ρ;wt, x

∗
t )− θx1 · ξx1 (ρ;wt, x

∗
t )
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where θ = (θ00, θ
w
0 , θ

w
1 , θ

x
0 , θ

x
1)

′. From (4.1), we obtain the moment restriction

E[R(ρ, θ;wt, x
∗
t )

′ Q(ρ, θ;wt, x
∗
t )] = 0 (4.6)

for any list (row vector) of bounded functions R(ρ, θ; ·, ·). This paves the way for GMM

estimation of the structural parameters (ρ, θ). Furthermore, if the rate ρ of time preference is

not to be estimated (which is indeed the case in many applications in the literature),5 then the

moment restriction (4.6) can even be written linearly with respect to the structural parameters

θ by defining the function R by

R(ρ;wt, x
∗
t ) = [ξ00(ρ;wt, x

∗
t ), ξw0 (ρ;wt, x

∗
t ), ξw1 (ρ;wt, x

∗
t ), ξx0 (ρ;wt, x

∗
t ), ξx1 (ρ;wt, x

∗
t )].

(Note that we can drop the argument θ from this function since none of the right-hand-side

components depends on θ.) In this case, the moment restriction (4.6) yields the structural

parameters θ by the OLS-like closed-form expression

θ = E [R(ρ;wt, x
∗
t )

′ R(ρ;wt, x
∗
t )]

−1
E [R(ρ;wt, x

∗
t )

′ ξ(ρ;wt, x
∗
t )] , (4.7)

provided that the following condition is satisfied.

Assumption 6 (Testable Rank Condition). E [R(ρ;wt, x
∗
t )

′ R(ρ;wt, x
∗
t )] is nonsingular.

While this result is indeed encouraging, an important remark is in order. Since the gen-

erated random variables R(ρ;wt, x
∗
t ) and ξ(ρ;wt, x

∗
t ) depend on the unobserved state variables

x∗
t and their unobserved dynamics by their definitional equations (4.2)–(4.5), they need to be

constructed properly based on observed variables. This issue can be solved by using the com-

ponents of the Markov kernel identified with closed-form formulas in Section 3.1. Note that

the elements of all these generated random variables R(ρ;wt, x
∗
t ) and ξ(ρ;wt, x

∗
t ) take the form

5This rate is generally non-identifiable together with the payoffs (Rust, 1994; Magnac and Thesmar, 2002).
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E[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] of the unobserved conditional expectations for various s > t, where

ζ(ws, x
∗
s) consists of the explicitly identified CCP f(ds | ws, x

∗
s) and its interactions with ws, x

∗
s,

and the log of itself in the formulas (4.2)–(4.5). We can recover these unobserved components

in the following manner. If s = t+ 1, then

E[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] =

∫ ∫
ζ(wt+1, x

∗
t+1) · f(wt+1 | dt, wt, x

∗
t )×

f(x∗
t+1 | dt, wt, x

∗
t ) dwt+1dx

∗
t+1 (4.8)

where f(wt+1 | dt, wt, x
∗
t ) and f(x∗

t+1 | dt, wt, x
∗
t ) are identified with closed-forms formulas in

Theorem 1. On the other hand, if s > t+ 1, then

E[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] =

1∑
dt+1=0

· · ·
1∑

ds−1=0

∫
· · ·
∫

ζ(ws, x
∗
s) · f(ws | ds−1, ws−1, x

∗
s−1)×

f(x∗
s | ds−1, ws−1, x

∗
s−1) ·

s−2∏
τ=t

f(dτ+1 | wτ , x
∗
τ ) · f(wτ+1 | dτ , wτ , x

∗
τ )×

·f(x∗
τ+1 | dτ , wτ , x

∗
τ ) dwt+1 · · · dws dx

∗
t+1 · · · dx∗

s, (4.9)

where f(dt | wt, x
∗
t ), f(wt+1 | dt, wt, x

∗
t ), and f(x∗

t+1 | dt, wt, x
∗
t ) are identified with closed-form

formulas in Theorem 1.

In light of the explicit decompositions (4.8) and (4.9), the generated random variables

ξ(ρ;wt, x
∗
t ) andR(ρ;wt, x

∗
t ) = [ξ00(ρ;wt, x

∗
t ), ξ

w
0 (ρ;wt, x

∗
t ), ξ

w
1 (ρ;wt, x

∗
t ), ξ

x
0 (ρ;wt, x

∗
t ), ξ

x
1 (ρ;wt, x

∗
t )]

defined in (4.2)–(4.5) are identified with closed-form formulas. Therefore, the structural pa-

rameters θ are in turn identified in the closed form (4.7). We summarize this result as the

following corollary.

Corollary 1 (Closed-Form Identification of Structural Parameters). Suppose that Assump-

tions 1, 2, 3, 4, 5, and 6 are satisfied. Given ρ, the structural parameters θ are identified

in the closed form (4.7), where the generated random variables ξ(ρ;wt, x
∗
t ) and R(ρ;wt, x

∗
t ) =
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[ξ00(ρ;wt, x
∗
t ), ξw0 (ρ;wt, x

∗
t ), ξw1 (ρ;wt, x

∗
t ), ξx0 (ρ;wt, x

∗
t ), ξx1 (ρ;wt, x

∗
t )] which appear in (4.7) are

in turn identified with closed-form formulas through Theorem 1, (4.2)–(4.5), (4.8), and (4.9).

Remark 3. We have left unspecified the measure respect to which the expectations in (4.6) and

thus in (4.7) are taken. The choice is in fact flexible because the original restriction (4.1) holds

point-wise for all (wt, x
∗
t ). A natural choice is the distribution of (wt, x

∗
t ), but it is unobserved.

In Section A.4 in the appendix, we propose how to evaluate those expectations with respect to

this unobserved distribution of (wt, x
∗
t ) using observed distribution of (wt, xt) while, of course,

keeping the closed form formulas. We emphasize that one can pick any distribution with which

the testable rank condition of Assumption 6 is satisfied.

4.2 Closed-Form Estimation of Structural Parameters

The closed-form identifying formulas obtained at the population level in Section 4.1 can be

directly translated into sample counterparts to develop a closed-form estimator of structural

parameters. Given Corollary 1 and Remark 3, we propose the following estimator.

θ̂ =

[
N∑
j=1

T−1∑
t=1

∫
R̂(ρ;Wj,t, x

∗
t )

′R̂(ρ;Wj,t, x
∗
t ) · f̂(Xj,t | x∗

t ) · f̂(x∗
t | Wj,t) dx

∗
t∫

f̂(Xj,t | x∗
t ) · f̂(x∗

t | Wj,t) dx∗
t

]−1

[
N∑
j=1

T−1∑
t=1

∫
R̂(ρ;Wj,t, x

∗
t )

′ξ̂(ρ;Wj,t, x
∗
t ) · f̂(Xj,t | x∗

t ) · f̂(x∗
t | Wj,t) dx

∗
t∫

f̂(Xj,t | x∗
t ) · f̂(x∗

t | Wj,t) dx∗
t

]
(4.10)

where closed-form formulas for f̂(Xj,t | x∗
t ), f̂(x

∗
t | Wj,t), ξ̂(ρ;Wj,t, x

∗
t ), and R̂(ρ;Wj,t, x

∗
t ) =[

ξ̂00(ρ;wt, x
∗
t ), ξ̂w0 (ρ;wt, x

∗
t ), ξ̂w1 (ρ;wt, x

∗
t ), ξ̂x0 (ρ;wt, x

∗
t ), ξ̂x1 (ρ;wt, x

∗
t )
]
are listed below.

First, f̂(xt | x∗
t ) is given by (A.5) in Section 3.2. For convenience of readers, we repeat it

here:

f̂(x | x∗) =
1

2π

∫
exp (−is(x− x∗)) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}

· ϕK(shx) ds.
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Second, f̂(x∗
t | wt) is given by (A.8) in Section A.4 in the appendix. We write it here too:

f̂(x∗ | w) =
1

2π

∑
d

∫
e−isx∗ ·

∑N
j=1

∑T−1
t=1 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wj,t−w

hw

) ×

exp

∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd − βdWj,t) · exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
γd ·

∑N
j=1

∑T−1
t=1 exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

) ds1

 ds.

Third, ξ̂(ρ;wt, x
∗
t ) and the elements of R̂(ρ;wt, x

∗
t ) are given by

ξ̂(ρ;wt, x
∗
t ) = ln f̂(1 | wt, x

∗
t )− ln f̂(0 | wt, x

∗
t ) +

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) · ln f̂(0 | ws, x

∗
s) | dt = 1, wt, x

∗
t

]
+

∞∑
s=t+1

ρs−t · Ê
[
f̂(1 | ws, x

∗
s) · ln f̂(1 | ws, x

∗
s) | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) · ln f̂(0 | ws, x

∗
s) | dt = 0, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(1 | ws, x

∗
s) · ln f̂(1 | ws, x

∗
s) | dt = 0, wt, x

∗
t

]

ξ̂00(ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(0 | ws, x

∗
s) | dt = 0, wt, x

∗
t

]
− 1

ξ̂wd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · ws | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · ws | dt = 0, wt, x

∗
t

]
− (−1)d · wt

ξ̂xd (ρ;wt, x
∗
t ) =

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · x∗

s | dt = 1, wt, x
∗
t

]
−

∞∑
s=t+1

ρs−t · Ê
[
f̂(d | ws, x

∗
s) · x∗

s | dt = 0, wt, x
∗
t

]
− (−1)d · x∗

t
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for each d ∈ {0, 1}, following the sample counterparts of (4.2)–(4.5). Of these four sets of

expressions, the components of the form f̂(dt | wt, x
∗
t ) are given by (A.2) in Section 3.2.

Following the sample counterparts of (4.8) and (4.9), the estimated conditional expectations

of the form Ê[ζ̂(ws, x
∗
s) | dt, wt, x

∗
t ] in the above expressions are in turn given in the following

manner. If s = t+ 1, then

Ê[ζ̂(ws, x
∗
s) | dt, wt, x

∗
t ] =

∫ ∫
ζ̂(wt+1, x

∗
t+1) · f̂(wt+1 | dt, wt, x

∗
t )×

f̂(x∗
t+1 | dt, wt, x

∗
t ) dwt+1dx

∗
t+1

where the closed-form estimator f̂(wt+1 | dt, wt, x
∗
t ) is given by (A.3), and the closed-form

estimator f̂(x∗
t+1 | dt, wt, x

∗
t ) is given by (A.4). On the other hand, if s > t+ 1, then

Ê[ζ(ws, x
∗
s) | dt, wt, x

∗
t ] =

1∑
dt+1=0

· · ·
1∑

ds−1=0

∫
· · ·
∫

ζ̂(ws, x
∗
s) · f̂(ws | ds−1, ws−1, x

∗
s−1)×

f̂(x∗
s | ds−1, ws−1, x

∗
s−1) ·

s−2∏
τ=t

f̂(dτ+1 | wτ , x
∗
τ ) · f̂(wτ+1 | dτ , wτ , x

∗
τ )×

·f̂(x∗
τ+1 | dτ , wτ , x

∗
τ ) dwt+1 · · · dws dx

∗
t+1 · · · dx∗

s.

where the closed-form estimator f̂(dt | wt, x
∗
t ) is given by (A.2), the closed-form estimator

f̂(wt+1 | dt, wt, x
∗
t ) is given by (A.3), and the closed-form estimator f̂(x∗

t+1 | dt, wt, x
∗
t ) is given

by (A.4). In summary, every component in (4.10) can be expressed explicitly by the previously

obtained closed-form estimators, and hence the estimator θ̂ of the structural parameters is given

in a closed form as well. Large sample properties for the estimator (4.10) is discussed in Section

A.6 in the appendix.

5 Exit on Production Technologies

Survival selection of firms based on their unobserved dynamic attributes is a long-lasting interest

in economics. Jovanovic (1982) discusses theories where firms make selections on their dynamic
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perception of productivity. Hopenhayn (1992) incorporates the endogenous selection of firms in

the concept of long-run equilibrium. Following the model of Jovanovic (1982) and others, Pakes

and Ericson (1998) and Abbring and Campbell (2004) use empirical data to study how firms

make exit decisions. Abbring and Campbell mention that their model violates Rust’s (1987)

assumption of independent unobservables, and hence they cannot rely on the identification

strategies of Hotz and Miller (1993).

Our proposed method extends the approach of Hotz and Miller by allowing for the model

to involve persistent unobserved state variables that are observed by the firms but are not

observed by econometricians, provided that we have a proxy variable for the unobserved states,

which are relevant to the aforementioned production technologies. In this section, we apply

our model and methods to study the forward-looking structure of firm’s decision of exit on

unobserved production technologies.6 We follow the model and the methodology presented in

Section 2, except that we allow for time-varying levels θ0 of the current-time payoff in order to

reflect idiosyncratic shocks.

Levinsohn and Petrin (2003) estimate the production functions for Chilean firms using

plant-level panel data. We use the same data set of an 18-year panel from 1979 to 1996.

Following Levinsohn and Petrin, we focus on the four largest industries, food products (311),

textiles (321), wood products (331) and metals (381). We also implement their method using

energy and material as two proxies to estimate the production function as the first step in the

methodological outline presented in Section 2. The residual xj,t := yj,t − bllj,t − bkkj,t of the

estimated production function is used as a proxy for the true technology x∗
j,t in the sense that

xj,t = x∗
j,t + εj,t holds by construction, where εj,t denotes Hicks-neutral shocks.

6The recent econometric literature provides alternative ways to model exit on unobservables – see Botosaru

(2011), Abbring (2012) and Sasaki (2012) for example.
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Mean of the Proxy xj,t

Year # Firms # Exits % Exits All Firms Exiting Firms Staying Firms

1980 1322 74 0.056 2.90 2.85 2.90

1981 1253 57 0.046 2.93 2.80 2.93

1982 1191 56 0.047 2.85 2.74 2.85

1983 1157 60 0.052 2.84 2.61 2.85

1984 1152 51 0.044 2.86 2.77 2.86

1985 1157 56 0.048 2.86 2.71 2.87

1986 1105 69 0.062 2.87 2.69 2.89

1987 1110 36 0.032 2.83 2.69 2.83

1988 1120 54 0.048 2.84 2.67 2.85

1989 1086 38 0.035 2.87 2.78 2.87

1990 1082 30 0.028 2.90 2.66 2.91

1991 1097 45 0.041 2.93 2.87 2.93

1992 1122 36 0.032 2.98 2.85 2.99

1993 1118 50 0.045 3.02 3.04 3.02

1994 1106 65 0.059 3.06 3.02 3.06

1995 1098 80 0.073 3.05 2.93 3.06

Table 1: Summary statistics for industry 311 (food products). Since there are entries too, the

difference in the number of firms across adjacent years does not correspond to the displayed

number of exits. The proxy xj,t for the unobserved technologies is constructed as the residual

of the estimated production function. Since the mean of the Hicks-neutral shocks εj,t is zero,

the mean of the proxy xj,t equals the mean of the truth x∗
j,t, but their distributions differ.
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Table 1 shows a summary of the data and construct proxy values for industry 311 (food

products). It shows the tendency that the number of firms decrease over time. The number

of exiting firms is displayed for each year. Note that, since there are some entering firms, the

difference in the number of firms across adjacent years does not necessarily correspond to the

number of exits. The last three columns of the table list the mean values of the constructed

proxy xj,t. The third-to-last column displays mean levels for all the firms in this industry. We

can see that the productivities steadily advanced since the late 1980s, a little while after the

Chilean recession during the 1982-1983. The second-to-last column displays mean levels among

the subset of firms exiting in the current year. The last column displays mean levels among

the subset of firms surviving in the current year. Comparing these two columns, it is clear that

exiting firms overall have lower proxy levels for the production technology. Similar patterns

result for the other three industries.

We follow the second and third steps in the practical guideline presented in Section 2 to

estimated the parameters in the law of technological growth (2.1) as well as the distribution

fεj,t of the Hicks-neutral shocks. These two auxiliary steps are followed by the fifth step in

which the conditional choice probability (CCP) of stay, Pr(Dj,t = 1 | x∗
j,t) is estimated by (2.2).

Figure 1 illustrates the estimated CCPs for years 1980, 1985, 1990 and 1995. The solid curves

indicate our estimates of the CCPs on the unobserved technological state x∗
j,t. The dashed

curves indicate the naive estimates that would be obtained assuming that the proxy xj,t were

the same as the true technologies x∗
j,t, i.e., they are the fake CCPs on the observed proxy xj,t.

These two curves indicating estimates of the true and fake CCPs differ from each other, though

not clearly so for some years and some localities of x. The probability of stay tends to be

higher as the technological level becomes higher. This is consistent with the presumption that

firms with lower levels of technologies are more likely to exit. Note also that the levels of the
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Figure 1: The estimated conditional choice probabilities of stay given the latent levels of pro-

duction technology, x∗
j,t, for industry 311 in years 1980, 1985, 1990 and 1995. The solid curves

indicate our estimates, and the dashed curves indicate the naive estimates that would be ob-

tained assuming that the proxy xj,t were the same as the true technologies x∗
j,t. The vertical

lines indicate the mean levels of the unobserved production technology, x∗
j,t.
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estimated CCPs change across time. This evidence implies that there are some idiosyncratic

shocks to the current-time payoffs. As such, it it natural to introduce time-varying intercepts

θ0 for the payoff parameters when we take these preliminary CCPs estimates to structural

estimation. Although the figure shows estimates only for industry 311 (food products), similar

remarks apply to the other three industries.

Along with the CCPs, we also estimate the transition kernel for the unobserved technology

by (2.3). These two preliminary estimates are taken to compute the elements in the restriction

(2.4), and we thus estimate the structural parameters with this restriction – see Section 4 for

the estimation strategy. The rate ρ of time preference is not to be estimated together with the

payoffs given the general non-identification results (Rust, 1994; Magnac and Thesmar, 2002).

We thus present estimates of the structural parameters that result under alternative values of

ρ ∈ {0.80, 0.90}. Table 2 shows our estimates for each of the four industries. The marginal

payoff of unit production technology is measured by θ1. The exit value is measured by θ2. The

magnitude of these parameter estimates are relative to the fixed logistic distribution of the

difference in private shocks. Hence, we also show the ratio θ2/θ1, which measures the option

value of exit relative to the payoffs produced by each unit of technology. Since the output is

log of a pecuniary measurement, so is the production technology x∗
j,t. Not surprisingly, these

option values vary across alternative rates ρ of time preference. However, the rankings of these

option values across the industries remain robust. Namely, industry 381 (metals) is associated

with the largest option value of exit, followed by industry 321 (textiles) and industry 311 (food

products). Industry 331 (wood products) is associated with the smallest option value of exit.

Given that the option value is determined by the value of sales and scarp of hard properties

relative to the current-time contributory value of technologies, this ranking is reasonable.
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Industry Size ρ θ1 θ2 θ2/θ1

311 Food Products 18,276 0.80 1.047 16.491 15.749

(0.007) ( 0.105) (0.002)

321 Textiles 5,039 0.80 1.357 24.772 18.261

(0.024) ( 0.434) (0.008)

331 Wood Products 4,650 0.80 0.596 8.288 13.899

(0.010) ( 0.126) (0.020)

381 Metals 5,286 0.80 1.673 34.273 20.482

(0.026) ( 0.532) (0.008)

311 Food Products 18,276 0.90 0.998 34.553 34.633

(0.006) ( 0.180) (0.018)

321 Textiles 5,039 0.90 0.850 31.637 37.198

(0.031) ( 1.083) (0.096)

331 Wood Products 4,650 0.90 0.550 16.505 29.934

(0.009) ( 0.225) (0.089)

381 Metals 5,286 0.90 1.275 51.636 40.493

(0.030) ( 1.140) (0.047)

Table 2: Estimated structural parameters. The sample size is the number of non-missing entries

in the unbalanced panel data used for estimation. The ratio θ2/θ1 measures how many units

of production technologies are worth the exit value in terms of the current value, and thus

indicates the option value of exit relative to the payoffs produced by each unit of technology.

The numbers in parentheses show standard errors based on the calculations presented in Section

A.6 in the appendix.
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A Appendix

A.1 Proof of Theorem 1

Proof. Our closed-form identification includes four steps.

Step 1: Closed-form identification of the transition rule f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: First,

we show the identification of the parameters and the distributions in transition of x∗
t . Since

xt = x∗
t + εt =

∑
d

1{dt−1 = d}[αd + βdwt−1 + γdx∗
t−1 + ηdt ] + εt

=
∑
d

1{dt−1 = d}[αd + βdwt−1 + γdxt−1 + ηdt − γdεt−1] + εt

we obtain the following equalities for each d:

E[xt | dt−1 = d] = αd + βd E[wt−1 | dt−1 = d] + γd E[xt−1 | dt−1 = d]

−E[γdεt−1 | dt−1 = d] + E[ηdt | dt−1 = d] + E[εt | dt−1 = d]

= αd + βd E[wt−1 | dt−1 = d] + γd E[xt−1 | dt−1 = d]

E[xtwt−1 | dt−1 = d] = αd E[wt−1 | dt−1 = d] + βd E[w2
t−1 | dt−1 = d] + γd E[xt−1wt−1 | dt−1 = d]

−E[γdεt−1wt−1 | dt−1 = d] + E[ηdtwt−1 | dt−1 = d] + E[εtwt−1 | dt−1 = d]

= αd E[wt−1 | dt−1 = d] + βd E[w2
t−1 | dt−1 = d] + γd E[xt−1wt−1 | dt−1 = d]

E[xtwt | dt−1 = d] = αd E[wt | dt−1 = d] + βd E[wt−1wt | dt−1 = d] + γd E[xt−1wt | dt−1 = d]

−E[γdεt−1wt | dt−1 = d] + E[ηdtwt | dt−1 = d] + E[εtwt | dt−1 = d]

= αd E[wt | dt−1 = d] + βd E[wt−1wt | dt−1 = d] + γd E[xt−1wt | dt−1 = d]
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by the independence and zero mean assumptions for ηdt and εt. From these, we have the linear

equation
E[xt | dt−1 = d]

E[xtwt−1 | dt−1 = d]

E[xtwt | dt−1 = d]

 =


1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]




αd

βd

γd


Provided that the matrix on the right-hand side is non-singular, we can identify the parameters

(αd, βd, γd) by
αd

βd

γd

 =


1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]



−1 
E[xt | dt−1 = d]

E[xtwt−1 | dt−1 = d]

E[xtwt | dt−1 = d]


Next, we show identification of f (εt) and f

(
ηdt
)
for each d. Observe that

E [exp (is1xt−1 + is2xt) |dt−1 = d]

= E
[
exp

(
is1
(
x∗
t−1 + εt−1

)
+ is2

(
αd + βdwt−1 + γdx∗

t−1 + ηdt + εt
))

|dt−1 = d
]

= E
[
exp

(
i
(
s1x

∗
t−1 + s2α

d + s2β
dwt−1 + s2γ

dx∗
t−1

))
|dt−1 = d

]
×E [exp (is1εt−1)] E

[
exp

(
is2
(
ηdt + εt

))]
follows from the independence assumptions for ηdt and εt. Taking the derivative with respect

to s2 yields[
∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d]

]
s2=0

=
E
[
i(αd + βdwt−1 + γdx∗

t−1) exp
(
is1x

∗
t−1

)
|dt−1 = d

]
E
[
exp

(
is1x∗

t−1

)
|dt−1 = d

]
= iαd + βdE[iwt−1 exp(is1x

∗
t−1) | dt−1 = d]

E[exp(is1x∗
t−1) | dt−1 = d]

+ γd ∂

∂s1
ln E

[
exp

(
is1x

∗
t−1

)
|dt−1 = d

]
= iαd + βdE[iwt−1 exp(is1xt−1) | dt−1 = d]

E[exp(is1xt−1) | dt−1 = d]
+ γd ∂

∂s1
ln E

[
exp

(
is1x

∗
t−1

)
|dt−1 = d

]
where the switch of the differential and integral operators is permissible provided that there

exists h ∈ L1(Fwt−1x∗
t−1|dt−1=d) such that

∣∣i(αd + βdwt−1 + γdx∗
t−1) exp

(
is1x

∗
t−1

)∣∣ < h(wt−1, x
∗
t−1)

31



holds for all (wt−1, x
∗
t−1), which follows from the bounded conditional moment given in Assump-

tion 5, and the denominators are nonzero as the conditional characteristic function of x∗
t given

dt does not vanish on the real line under Assumption 5. Therefore,

E
[
exp

(
isx∗

t−1

)
|dt−1 = d

]
= exp

[∫ s

0

[
1

γd

∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d]

]
s2=0

ds1

−
∫ s

0

iαd

γd
ds1 −

∫ s

0

βd

γd

E[iwt−1 exp(is1xt−1) | dt−1 = d]

E[exp(is1xt−1) | dt−1 = d]
ds1

]
= exp

[∫ s

0

E
[
i(xt − αd − βdwt−1) exp (is1xt−1) |dt−1 = d

]
γd E [exp (is1xt−1) |dt−1 = d]

ds1

]
.

From the proxy model and the independence assumption for εt,

E [exp (isxt−1) |dt−1 = d] = E
[
exp

(
isx∗

t−1

)
|dt−1 = d

]
E [exp (isεt−1)] .

We then obtain the following result using any d.

E [exp (isεt−1)] =
E [exp (isxt−1) |dt−1 = d]

E
[
exp

(
isx∗

t−1

)
|dt−1 = d

]
=

E [exp (isxt−1) |dt−1 = d]

exp

[∫ s

0

E[i(xt−αd−βdwt−1) exp(is1xt−1)|dt−1=d]
γd E[exp(is1xt−1)|dt−1=d]

ds1

] .
This argument holds for all t so that we can identify f (εt) with

E [exp (isεt)] =
E [exp (isxt) |dt = d]

exp

[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

] (A.1)

using any d.

In order to identify f
(
ηdt
)
for each d, consider

xt + γdεt−1 = αd + βdwt−1 + γdxt−1 + εt + ηd,

and thus

E [exp (isxt) |dt−1 = d] E
[
exp

(
isγdεt−1

)]
= E

[
exp

(
is(αd + βdwt−1 + γdxt−1)

)
|dt−1 = d

]
×E

[
exp

(
isηdt

)]
E [exp (isεt)]
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follows by the independence assumptions for ηdt and εt. Therefore, by the formula (A.1), the

characteristic function of ηdt can be expressed by

E
[
exp

(
isηdt

)]
=

E [exp (isxt) |dt−1 = d] · E
[
exp

(
isγdεt−1

)]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] E [exp (isεt)]

=

E [exp (isxt) |dt−1 = d] · exp
[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] · E [exp (isxt) |dt = d]

×

E
[
exp

(
isγdxt−1

)
|dt−1 = d

]
exp

[∫ sγd

0

E[i(xt−αd−βdwt−1) exp(is1xt−1)|dt−1=d]
γd E[exp(is1xt−1)|dt−1=d]

ds1

] .
The denominator on the right-hand side is non-zero, as the conditional and unconditional

characteristic functions do not vanish on the real line under Assumption 5. Letting F denote

the operator defined by

(Fϕ) (ξ) =
1

2π

∫
e−isξϕ(s)ds for all ϕ ∈ L1(R) and ξ ∈ R,

we identify fηdt by

fηdt (η) =
(
Fϕηdt

)
(η) for all η,

where the characteristic function ϕηdt
is given by

ϕηdt
(s) =

E [exp (isxt) |dt−1 = d] · exp
[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] · E [exp (isxt) |dt = d]

×

E
[
exp

(
isγdxt−1

)
|dt−1 = d

]
exp

[∫ sγd

0

E[i(xt−αd−βdwt−1) exp(is1xt−1)|dt−1=d]
γd E[exp(is1xt−1)|dt−1=d]

ds1

] .
We can use this identified density in turn to identify the transition rule f

(
x∗
t |dt−1, wt−1, x

∗
t−1

)
with

f
(
x∗
t |dt−1, xt−1, x

∗
t−1

)
=
∑
d

1{dt−1 = d}fηdt
(
x∗
t − αd − βdwt−1 − γdx∗

t−1

)
.
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In summary, we obtain the closed-form expression

f(x∗
t | dt−1, wt−1, x

∗
t−1) =

∑
d

1{dt−1 = d}
(
Fϕηdt

)
(x∗

t − αd − βdwt−1 − γdx∗
t−1)

=
∑
d

1{dt−1 = d}
2π

∫
exp

(
−is(x∗

t − αd − βdwt−1 − γdx∗
t−1)

)
×

E [exp (isxt) |dt−1 = d] · exp
[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (is(αd + βdwt−1 + γdxt−1)) |dt−1 = d] · E [exp (isxt) |dt = d]

×

E
[
exp

(
isγdxt−1

)
|dt−1 = d′

]
exp

[∫ sγd

0

E[i(xt−αd′−βd′wt−1) exp(is1xt−1)|dt−1=d′]
γd′ E[exp(is1xt−1)|dt−1=d′]

ds1

] ds.

using any d′. This completes Step 1.

Step 2: Closed-form identification of the proxy model f (xt | x∗
t ): Given (A.1), we can

write the density of εt by

fεt(ε) = (Fϕεt) (ε) for all ε,

where the characteristic function ϕεt is defined by (A.1) as

ϕεt(s) =
E [exp (isxt) |dt = d]

exp

[∫ s

0

E[i(xt+1−αd−βdwt) exp(is′xt)|dt=d]
γd E[exp(is′xt)|dt=d]

ds′
] .

Provided this identified density of εt, we nonparametrically identify the proxy model

f(xt | x∗
t ) = fεt(xt − x∗

t )

In summary, we obtain the closed-form expression

f(xt | x∗
t ) = (Fϕεt) (xt − x∗

t )

=
1

2π

∫
exp (−is(xt − x∗

t )) · E [exp (isxt) |dt = d]

exp

[∫ s

0

E[i(xt+1−αd−βdwt) exp(is1xt)|dt=d]
γd E[exp(is1xt)|dt=d]

ds1

]ds
using any d. This completes Step 2.
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Step 3: Closed-form identification of the transition rule f
(
wt|dt−1, wt−1, x

∗
t−1

)
: Con-

sider the joint density expressed by the convolution integral

f (xt−1, wt | dt−1, wt−1) =

∫
fεt−1

(
xt−1 − x∗

t−1

)
f
(
x∗
t−1, wt | dt−1, wt−1

)
dx∗

t−1

We can thus obtain a closed-form expression of f
(
x∗
t−1, wt | dt−1, wt−1

)
by the deconvolution.

To see this, observe

E [exp (is1xt−1 + is2wt) |dt−1, wt−1] = E
[
exp

(
is1x

∗
t−1 + is1εt−1 + is2wt

)
|dt−1, wt−1

]
= E

[
exp

(
is1x

∗
t−1 + is2wt

)
|dt−1, wt−1

]
E [exp (is1εt−1)]

by the independence assumption for εt, and so

E
[
exp

(
is1x

∗
t−1 + is2wt

)
|dt−1, wt−1

]
=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1]

E [exp (is1εt−1)]

=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1] · exp
[∫ s1

0

E[i(xt−αd−βdwt−1) exp(is′1xt−1)|dt−1=d]
γd E[exp(is′1xt−1)|dt−1=d]

ds′1

]
E [exp (is1xt−1) |dt−1 = d]

follows. Letting F2 denote the operator defined by

(F2ϕ) (ξ1, ξ2) =
1

4π2

∫ ∫
e−is1ξ1−is2ξ2ϕ(s1, s2)ds1ds2 for all ϕ ∈ L1(R2) and (ξ1, ξ2) ∈ R2,

we can express the conditional density as

f
(
x∗
t−1, wt|dt−1, wt−1

)
=
(
F2ϕx∗

t−1,wt|dt−1,wt−1

)
(wt, x

∗
t−1)

where the characteristic function is defined by

ϕx∗
t−1,wt|dt−1,wt−1(s1, s2)

=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1] · exp
[∫ s1

0

E[i(xt−αd−βdwt−1) exp(is′1xt−1)|dt−1=d]
γd E[exp(is′1xt−1)|dt−1=d]

ds′1

]
E [exp (is1xt−1) |dt−1 = d]

with any d. Using this conditional density, we can nonparametrically identify the transition

rule f(wt | dt−1, wt−1, x
∗
t−1) with

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

f
(
x∗
t−1, wt|dt−1, wt−1

)∫
f
(
x∗
t−1, wt|dt−1, wt−1

)
dwt

.
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In summary, we obtain the closed-form expression

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

(
F2ϕx∗

t−1,wt|dt−1,wt−1

)
(x∗

t−1, wt)∫ (
F2ϕx∗

t−1,wt|dt−1,wt−1

)
(x∗

t−1, wt)dwt

=
∑
d

1{dt−1 = d}
∫ ∫

exp
(
−is1wt − is2x

∗
t−1

)
· E [exp (is1xt−1 + is2wt) |dt−1 = d, wt−1]×

exp

[∫ s1
0

E
[
i(xt−αd′−βd′wt−1) exp(is′1xt−1)|dt−1=d′

]
γd′ E[exp(is′1xt−1)|dt−1=d′]

ds′1

]
E [exp (is1xt−1) |dt−1 = d′]

ds1ds2

/
∫ ∫ ∫

exp
(
−is1wt − is2x

∗
t−1

)
· E [exp (is1xt−1 + is2wt) |dt−1 = d, wt−1]×

exp

[∫ s1
0

E
[
i(xt−αd′−βd′wt−1) exp(is′1xt−1)|dt−1=d′

]
γd′ E[exp(is′1xt−1)|dt−1=d′]

ds′1

]
E [exp (is1xt−1) |dt−1 = d′]

ds1ds2dwt

using any d′. This completes Step 3.

Step 4: Closed-form identification of the CCP f (dt|wt, x
∗
t ): Note that we have

E [1{dt = d} exp (isxt) |wt] = E [1{dt = d} exp (isx∗
t + isεt) |wt]

= E [1{dt = d} exp (isx∗
t ) |wt] E [exp (isεt)]

= E [E [1{dt = d}|wt, x
∗
t ] exp (isx

∗
t ) |wt] E [exp (isεt)]

by the independence assumption for εt and the law of iterated expectations. Therefore

E [1{dt = d} exp (isxt) |wt]

E [exp (isεt)]
= E [E [1{dt = d}|wt, x

∗
t ] exp (isx

∗
t ) |wt]

=

∫
exp (isx∗

t ) E [1{dt = d}|wt, x
∗
t ] f (x∗

t |wt) dx
∗
t

This is the Fourier inversion of E [1{dt = d}|wt, x
∗
t ] f (x∗

t |wt). On the other hand, the Fourier

inversion of f (x∗
t |wt) can be found as

E [exp (isx∗
t ) |wt] =

E [exp (isxt) |wt]

E [exp (isεt)]
.

Therefore, we find the closed-form expression for CCP f (dt|wt, x
∗
t ) as follows.

Pr (dt = d|wt, x
∗
t ) = E [1{dt = d}|wt, x

∗
t ] =

E [1{dt = d}|wt, x
∗
t ] f (x∗

t |wt)

f (x∗
t |wt)

=

(
Fϕ(d)x∗

t |wt

)
(x∗

t )(
Fϕx∗

t |wt

)
(x∗

t )
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where the characteristic functions are defined by

ϕ(d)x∗
t |wt(s) =

E [1{dt = d} exp (isxt) |wt]

E [exp (isεt)]

=

E [1{dt = d} exp (isxt) |wt] · exp
[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

and

ϕx∗
t |wt(s) =

E [exp (isxt) |wt]

E [exp (isεt)]

=

E [exp (isxt) |wt] · exp
[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

by (A.1) using any d′. In summary, we obtain the closed-form expression

Pr (dt = d|wt, x
∗
t ) =

(
Fϕ(d)x∗

t |wt

)
(x∗

t )(
Fϕx∗

t |wt

)
(x∗

t )

=

∫
exp (−isx∗

t ) · E [1{dt = d} exp (isxt) |wt]×

exp

[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

ds

/
∫

exp (−isx∗
t ) · E [exp (isxt) |wt]×

exp

[∫ s

0

E
[
i(xt+1−αd′−βd′wt) exp(is1xt)|dt=d′

]
γd′ E[exp(is1xt)|dt=d′]

ds1

]
E [exp (isxt) |dt = d′]

ds

using any d′. This completes Step 4.

A.2 The Full Closed-Form Estimator

Let ϕ̂x∗
t |dt=d denote the sample-counterpart estimator of the conditional characteristic function

ϕx∗
t |dt=d, defined by

ϕ̂x∗
t |dt=d(s) = exp

[∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd − βdWjt) · exp (is1Xjt) · 1{Djt = d}
γd ·

∑N
j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d}

ds1

]
.
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The closed-form estimator of the CCP, f(dt | wt, x
∗
t ), is given by

f̂ (d|w, x∗) =

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d} ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wjt−w

hw

) ×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds

/
∫

exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wjt−w

hw

) ×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds (A.2)

with any d′, where hw denotes a bandwidth parameter and ϕK denotes the Fourier transform of

a kernel function K used for the purpose of regularization. We discuss appropriate properties of

K required for desired large sample properties in Section A.6 in the appendix. The closed-form

estimator of the transition rule, f(wt | dt−1, wt−1, x
∗
t−1), for the observed state variable wt is

given by

f̂ (w′∗) =

∫ ∫
exp (−is1w

′ − is2x
∗)×∑N

j=1

∑T−1
t=1 exp (is1Xjt + is2Wj,t+1) · 1{Djt = d} ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 1{Djt = d} ·K

(
Wjt−w

hw

) · ϕ̂x∗
t |dt=d′(s1)×

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d′}

· ϕK(s1hw) · ϕK(s2hx) ds1ds2

/
∫ ∫ ∫

exp (−is1w
′′ − is2x

∗)×∑N
j=1

∑T−1
t=1 exp (is1Xjt + is2Wj,t+1) · 1{Djt = d} ·K

(
Wjt−w

hw

)
∑N

j=1

∑T−1
t=1 1{Djt = d} ·K

(
Wjt−w

hw

) · ϕ̂x∗
t |dt=d′(s1)×

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d′}

· ϕK(s1hw) · ϕK(s2hx) ds1ds2dw
′′ (A.3)
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with any d′. The closed-form estimator of the transition rule, f(x∗
t | dt−1, wt−1, x

∗
t−1), for the

unobserved state variable x∗
t is given by

f̂(x∗′∗) =
1

2π

∫
exp

(
−is(x∗′d − βdw − γdx∗)

)
×∑N

j=1

∑T−1
t=1 exp (isXj,t+1) · 1{Djt = d}∑N

j=1

∑T−1
t=1 exp (is(αd + βdWjt + γdXjt)) · 1{Djt = d}

×∑N
j=1

∑T−1
t=1 exp

(
isγdXjt

)
· 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

·
ϕ̂x∗

t |dt=d′(s)

ϕ̂x∗
t |dt=d′(sγd)

ϕK(shx) ds(A.4)

with any d′. Finally, the the closed-form estimator of the proxy model, f(xt | x∗
t ), is given by

f̂(x | x∗) =
1

2π

∫
exp (−is(x− x∗))·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}

·ϕK(shx) ds (A.5)

using any d′.

In each of the above four closed-form estimators, the parameters (αd, βd, γd) for each d are

also explicitly estimated by the matrix composition:
1

∑N
j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 Xjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 W 2

jt1{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Wj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 WjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}

∑N
j=1

∑T−1
t=1 XjtWj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}



−1

×



∑N
j=1

∑T−1
t=1 Xj,t+11{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wjt1{Djt=d}∑N

j=1

∑T−1
t=1 1{Djt=d}∑N

j=1

∑T−1
t=1 Xj,t+1Wj,t+11{Djt=d}∑N
j=1

∑T−1
t=1 1{Djt=d}

 .

A.3 Derivation of Restriction (4.1)

Let v(d, w, x∗) denote the policy value function defined by

v(d, wt, x
∗
t ) = θ0d + θwd wt + θxdx

∗
t + ρE

[
V (wt+1, x

∗
t+1) | dt = d, wt, x

∗
t

]
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where V (wt, x
∗
t ) denotes the value of state (wt, x

∗
t ). With this notation, we can write the

difference in the expected value functions as

ρE
[
V (wt+1, x

∗
t+1) | dt = 1, wt, x

∗
t

]
− ρE

[
V (wt+1, x

∗
t+1) | dt = 0, wt, x

∗
t

]
= v(1, wt, x

∗
t )− v(0, wt, x

∗
t )− θw1 wt − θx1x

∗
t + θ00 + θw0 wt + θx0x

∗
t

= ln fDt|WtX∗
t
(1 | wt, x

∗
t )− ln fDt|WtX∗

t
(0 | wt, x

∗
t )− θw1 wt − θx1x

∗
t + θ00 + θw0 wt + θx0x

∗
t

where fDt|WtX∗
t
(dt | wt, x

∗
t ) is the conditional choice probability CCP, which we show is identified

in Section 3.1. On the other hand, this difference in the expected value functions can also be

explicitly written as

ρE
[
V (wt+1, x

∗
t+1) | dt = 1, wt, x

∗
t

]
− ρE

[
V (wt+1, x

∗
t+1) | dt = 0, wt, x

∗
t

]
=

∞∑
s=t+1

ρs−t · E
[
fDs|Ws,X∗

s
(0 | ws, x

∗
s) · (θ00 + θw0 ws + θx0x

∗
s + c− ln fDs|Ws,X∗

s
(0 | ws, x

∗
s)) +

fDs|Ws,X∗
s
(1 | ws, x

∗
s) · (θw1 ws + θx1x

∗
s + c− ln fDs|Ws,X∗

s
(1 | ws, x

∗
s)) | dt = 1, wt, x

∗
t

]
−

∞∑
s=t+1

ρs−t · E
[
fDs|Ws,X∗

s
(0 | ws, x

∗
s) · (θ00 + θw0 ws + θx0x

∗
s + c− ln fDs|Ws,X∗

s
(0 | ws, x

∗
s)) +

fDs|Ws,X∗
s
(1 | ws, x

∗
s) · (θw1 ws + θx1x

∗
s + c− ln fDs|Ws,X∗

s
(1 | ws, x

∗
s)) | dt = 0, wt, x

∗
t

]
by the law of iterated expectations, where c ≈ 0.577 is the Euler constant. Equating the above

two equalities yields (4.1).

A.4 Feasible Computation of Moments – Remark 3

This section is referred to by Remark 3, where otherwise-infeasible computation of the expec-

tation with respect to the unobserved distribution of (wt, x
∗
t ) is warranted to be feasible. We

show how to obtain a feasible computation of such moments. Suppose that we have a moment

restriction

0 =

∫ ∫
ζ(wt, x

∗
t ) dF (wt, x

∗)
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which is infeasible to evaluate because of the unobservability of x∗
t . By applying the Bayes’ rule

and our identifying assumptions, we can rewrite this moment equality as

0 =

∫ ∫
ζ(wt, x

∗
t ) dF (wt, x

∗)

=

∫ ∫ ∫
ζ(wt, x

∗
t ) · f(xt | x∗

t ) · f(x∗
t | wt) dx

∗
t∫

f(xt | x∗
t ) · f(x∗

t | wt) dx∗
t

dF (wt, xt) (A.6)

Now that the integrator dF (wt, x) is the observed distribution of (wt, xt), we can evaluate the

last line provided that we know f(xt | x∗
t ) and f(x∗

t | wt). By Theorem 1, we identify (wt, xt) in

a closed form as the proxy model. Hence, in order to evaluate the last line of the transformed

moment equality, it remains to identify f(x∗
t | wt). The next paragraph therefore is devoted to

this identification problem.

By the same arguments as in Step 1 of the proof of Theorem 1 in Section A.1 in the appendix,

we can deduce

E [exp (isx∗
t ) |dt = d, wt] = exp

[∫ s

0

E
[
i(xt+1 − αd − βdwt) exp (is1xt) |dt = d, wt

]
γd E [exp (is1xt) |dt = d, wt]

ds1

]
.

Therefore, we can recover the density f(x∗
t | dt = d, wt) by applying the the operator F to the

right-hand side of the above equality as

f(x∗
t | dt = d, wt) =

1

2π

∫
e−isx∗

t ·exp

[∫ s

0

E
[
i(xt+1 − αd − βdwt) exp (is1xt) |dt = d, wt

]
γd E [exp (is1xt) |dt = d, wt]

ds1

]
ds.

Since the conditional distribution of dt | wt is observed in data, dt can be integrated out from

the above equality as

f(x∗
t | wt) =

1

2π

∑
d

∫
e−isx∗

t · f(dt = d | wt)×

exp

[∫ s

0

E
[
i(xt+1 − αd − βdwt) · exp (is1xt) |dt = d, wt

]
γd · E [exp (is1xt) |dt = d, wt]

ds1

]
ds. (A.7)

Therefore, f(x∗
t | wt) is identified in a closed form. This shows that the expression in the last

line of (A.6) can be evaluated in a closed-form.
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Lastly, we propose a sample-counterpart estimation of (A.7). The conditional density f(x∗
t |

wt) is estimated in a closed form by

f̂(x∗ | w) =
1

2π

∑
d

∫
e−isx∗ ·

∑N
j=1

∑T−1
t=1 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
∑N

j=1

∑T−1
t=1 K

(
Wj,t−w

hw

) ×

exp

∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd − βdWj,t) · exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

)
γd ·

∑N
j=1

∑T−1
t=1 exp (is1Xj,t) · 1{Dj,t = d} ·K

(
Wj,t−w

hw

) ds1

 ds.

(A.8)

A.5 The Estimator without the Observed State Variable

With the observed state variable wt dropped, the moment restriction with the additional no-

tations we use for our analysis of large sample properties becomes

E [R(ρ, f ;x∗
t )

′∗
t )θ −R(ρ, f ; x∗

t )
′∗
t )] = 0

where

R(ρ, f ;x∗
t ) = [ξ00(ρ, f ;x

∗
t ), ξx0 (ρ, f ; x

∗
t ), ξx1 (ρ, f ; x

∗
t )]

and

ξ(ρ, f ; x∗
t ) = ln f(1 | x∗

t )− ln f(0 | x∗
t )

+
∞∑

s=t+1

ρs−t · (Ef [f(0 | x∗
s) · ln f(0 | x∗

s) | dt = 1, x∗
t ] + Ef [f(1 | x∗

s) · ln f(1 | x∗
s) | dt = 1, x∗

t ])

−
∞∑

s=t+1

ρs−t · (Ef [f(0 | x∗
s) · ln f(0 | x∗

s) | dt = 0, x∗
t ] + Ef [f(1 | x∗

s) · ln f(1 | x∗
s) | dt = 0, x∗

t ])

ξ00(ρ, f ;x
∗
t ) =

∞∑
s=t+1

ρs−t · (Ef [f(0 | x∗
s) | dt = 1, x∗

t ]− Ef [f(0 | x∗
s) | dt = 0, x∗

t ])− 1
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ξxd (ρ, f ; x
∗
t ) =

∞∑
s=t+1

ρs−t · Ef [f(d | x∗
s) · x∗

s | dt = 1, x∗
t ]−

∞∑
s=t+1

ρs−t · Ef [f(d | x∗
s) · x∗

s | dt = 0, x∗
t ]− (−1)d · x∗

t

for each d ∈ {0, 1}. The subscript f under the E symbol indicates that the conditional expec-

tation is computed based on the components f of the Markov kernel.

The components of the Markov kernel are estimated as follows. Let ϕ̂x∗
t |dt=d denote the

sample-counterpart estimator of the conditional characteristic function ϕx∗
t |dt=d, defined by

ϕ̂x∗
t |dt=d(s) = exp

[∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd) · exp (is1Xjt) · 1{Djt = d}

γd ·
∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d}

ds1

]

The CCP, f(dt | x∗
t ), is estimated in a closed form by

f̂ (d|x∗) =

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d}

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds

/
∫

exp (−isx∗) ·
∑N

j=1

∑T−1
t=1 exp (isXjt)

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(shx) ds

with any d′, where ϕK denotes the Fourier transform of a kernel functionK used for the purpose

of regularization. The transition rule, f(wt | dt−1, wt−1, x
∗
t−1), for the observed state variable wt

is no longer estimated given the absence of wt. The transition rule, f(x∗
t | dt−1, x

∗
t−1), for the

unobserved state variable x∗
t is estimated in a closed form by

f̂(x∗′∗) =
1

2π

∫
exp

(
−is(x∗′d − γdx∗)

)
×∑N

j=1

∑T−1
t=1 exp (isXj,t+1) · 1{Djt = d}∑N

j=1

∑T−1
t=1 exp (is(αd + γdXjt)) · 1{Djt = d}

×∑N
j=1

∑T−1
t=1 exp

(
isγdXjt

)
· 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

·
ϕ̂x∗

t |dt=d′(s)

ϕ̂x∗
t |dt=d′(sγd)

· ϕK(shx) ds
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with any d′. Finally, the proxy model, f(xt | x∗
t ), is estimated in a closed form by

f̂(x | x∗) =
1

2π

∫
exp (−is(x− x∗)) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}

· ϕK(shx) ds

using any d′. When each of the above estimators is evaluated at the j-th data point, the j-th

data point is removed from the sum for the leave-one-out estimation.

A.6 Large Sample Properties

In this section, we present theoretical large sample properties of our closed-form estimator of

the structural parameters. To economize our writings, we focus on a simplified version of the

baseline model and the estimator, where we omit the observed state variable wt, because the

unobserved state variable x∗
t is of the first-order importance in this paper. Accordingly, we

modify the estimator by simply removing the wt-relevant parts from the functions R and ξ as

well as from the components of the Markov kernel. Furthermore, we use a slight variant of our

baseline estimator of the Markov components for the sake of obtaining asymptotic normality

for the closed-form estimator of the structural parameters. See A.5 for the exact expressions of

the estimator that we obtain under this setting.

For convenience of our analyses of large sample properties, we make explicit the dependence

of the functions R and ξ on the Markov components by writing

R(ρ, f ;x∗
t ) = R(ρ;x∗

t ) R(ρ, f̂ ;x∗
t ) = R̂(ρ;x∗

t ) and

ξ(ρ, f ;x∗
t ) = ξ(ρ;x∗

t ) ξ(ρ, f̂ ;x∗
t ) = ξ̂(ρ; x∗

t ),

where f denotes the vector of the components of the Markov kernel, i.e., f(dt, x
∗
t , x

∗; dt−1, x
∗
t−1) =(

f(dt | x∗
t ), f(x∗

t | dt−1, x
∗
t−1), f(xt | x∗

t )
)
, and f̂ denotes its estimate. The moment restriction

is written as

E [R(ρ, f ; x∗
t )

′R(ρ, f ;x∗
t )θ −R(ρ, f ; x∗

t )
′ξ(ρ, f ;x∗

t )] = 0
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and the sample-counterpart closed form estimator θ̂ is obtained by substituting f̂ for f in this

expression. Furthermore, we simply take the above expectation with respect to the observed

distribution of xt, while Section 4 introduces a way to compute the expectation with respect to

the unobserved distribution of x∗
t . Note that the moment restriction continues to hold even after

this substitution of the integrators, because the population restriction (4.1) holds point-wise –

also see Remark 3.

With these new setup and notations, it is clear that our estimator is essentially the semi-

parametric two-step estimator, where f is an infinite-dimensional nuisance parameter. Reflect-

ing this characterization of the estimator, the score is denoted by

mN,T (ρ, θ, f) =
1

N(T − 1)

N∑
j=1

T−1∑
t=1

mj,t(ρ, θ, f ;X
∗
j,t),

where mj,t is defined by

mj,t(ρ, θ, f ;X
∗
j,t) = R(ρ, f ;X∗

j,t)
′R(ρ, f ;X∗

j,t)θ −R(ρ, f ;X∗
j,t)

′ξ(ρ, f ;X∗
j,t).

To derive asymptotic normality of our closed-form estimator θ̂ of the structural parameters, we

make the following set of assumptions.

Assumption 7 (Large Sample). (a) The data {Dj,t, X
∗
j,t}Tt=1 is i.i.d. across j. (b) θ0 ∈ Θ

where Θ is compact. (c) f0 ∈ F where F is compact with respect to some metric. (d) X ∗ =

supp(X∗
j,t) is bounded and convex. (e) The CCP f(dt | · ) is uniformly bounded away from

0 and 1 over X ∗. (f) ρ0 ∈ (0, 1). (g) supf∈F ∥mj,t(ρ0, θ0, f ; · )∥2,1,X ∗ < ∞, where ∥·∥2,1,X ∗

is the first-order L2 Sobolev norm on X ∗. (h) mjt(ρ0, θ, f, ·) is continuous for all (θ, f) ∈

Θ × F . (i) E
[
sup(θ,f)∈Θ×F |mjt(ρ0, θ, f,X

∗)|
]
< ∞. (j) mjt(ρ0, ·, f, x∗) is twice continuously

differentiable for all f ∈ F and for all x∗ ∈ X ∗. (k)
∑T−1

t=1 mj,t(ρ0, θ0, f0;X
∗
j,t) has finite (2+ r)-

th moment for some r > 0. (l) The density function of x∗
t is k1-time continuously differentiable
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and the k1-th derivative is Hölder continuous with exponent k2, i.e., there exists k0 such that∣∣f(k1)(x∗)− f (k1)(x∗ + δ)
∣∣ 6 k0 |δ|k2 for all x∗ ∈ X ∗ and δ ∈ R. Let k = k1 + k2 be the largest

number satisfying this property. (m) f(d | x∗) is l1-time continuously differentiable with respect

to x∗ and the l1-th derivative is Hölder continuous with exponent l2. Let l = l1 + l2 be the

largest number satisfying this property. (n) The conditional distribution of Xt given Dt = d is

ordinary-smooth of order q > 0 for some choice d, i.e.,
∣∣ϕxt|dt=d(s)

∣∣ = O
(
|s|−q) as t → ±∞.

(o) The bandwidth parameter is chosen so that hx → 0 and nh
4+4q+2min{k,l}
x → c as N → ∞ for

some nonzero constant c. (p) min{k, l} > 2 + 2q.

The major role of each part of Assumption 7 is as follows. The i.i.d. requirement (a) is

useful to obtain the asymptotic independence of the nonparametric estimator f̂ , which in turn

is important to derive the desired asymptotic normality result for θ̂. The compactness of the

parameter space Θ × F in (b) and (c) are used in the common manner to apply the uniform

weak law of large numbers among others. The boundedness of the state space X ∗ in (d) is

used primarily for two important objectives. First, together with the convexity requirement

in (d) as well as what is discussed later about (g), it can be used to guarantee the stochastic

equicontinuity of the empirical processes. Second, the bounded state space is necessary to

uniformly bound the density function of X∗
t away from 0, which in turn is convenient for us to

obtain a uniform convergence rate of the nonparametric estimator f̂ of the infinite dimensional

nuisance parameters f0 so as to prove the asymptotic independence. The assumption (f) that

the true rate ρ0 of time preference lies strictly between 0 and 1 is used to guarantee the existence

and continuity of the score and its derivatives. The bounded first-order Sobolev norm in (g)

is used to guarantee the stochastic equicontinuity of the empirical processes. Parts (h) and (i)

are used derive consistency together with parts (a) and (b) as well the uniform law of large
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numbers. The twice-continuous differentiability in (j) and bounded (2+r)-th moment in (k) are

used for the asymptotic normality of the part of the empirical process evaluated at (ρ0, θ0, f0) by

the Lyapunov central limit theorem. The Hölder continuity assumptions in (l) and (m) admit

use of higher-order kernels to mitigate the asymptotic bias of the nonparametric estimates of

the components of the Markov kernel sufficiently enough to achieve asymptotic independence.

The smoothness parameter in (n) determines the best convergence rate of the nonparametric

estimates of the Markov components. The bandwidth choice in (o) is to assure that the squared

bias and the variance of the nonparametric estimates of the Markov components converge at

the same asymptotic rate so we can control their order. Lastly, part (p) requires that the

marginal density f(x∗
t ) and the CCP f(dt | x∗

t ) are smooth enough with respect to x∗
t , and

that characteristic function ϕxt|dt=d vanish relatively slowly toward the tails. On one hand,

the smoothness of the marginal density f(x∗
t ) and the CCP f(dt | x∗

t ) helps to reduce the

asymptotic bias. On the other hand, the smoothness of the conditional distribution of xt

given dt exacerbates the asymptotic variance. This relative rate restriction balances the subtle

trade-offs, and is used to have the nonparametric nuisance parameters converge fast enough,

specifically at least the rate faster than n1/4. Under this set of assumptions, we obtain the

following asymptotic normality result for the estimator θ̂ of the structural parameters.

Proposition 1 (Asymptotic Normality). If Assumptions 1, 2, 3, 4, 5, 6, and 7 are satisfied,

then
√
N
(
θ̂ − θ0

)
d→ N(0, V ) as N → ∞, where V = M(ρ0, f0)

−1S(ρ0, θ0, f0)M(ρ0, f0)
−1 with

M(ρ0, f0) = E
[
R(ρ0, f0;X

∗
j,t)

′R(ρ0, f0;X
∗
j,t)
]

and

S(ρ0, θ0, f0) = Var

(
1

T − 1

T−1∑
t=1

mj,t(ρ0, θ0, f0;X
∗
j,t)

)
.

A proof is given in Section A.7.
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A.7 Proof of Proposition 1

Proof. First, note that identification of f0 ∈ F and θ0 ∈ Θ is already obtained in the previous

sections. We follow Andrews (1994) to prove the asymptotic normality of θ̂. First, we show

that mj,t(ρ0, ·, f ;x∗
t ) is continuously differentiable on Θ for all f ∈ F , x∗

t ∈ X ∗, i and t. This

is trivial from our definition of mj,t together with the boundedness of R(ρ0, f ;x
∗
j) that follows

from Assumption 7 (e) and (f).

Next, we show that
∑T−1

t=1 mj,t(ρ0, θ, f ;X
∗
j,t) satisfies the uniform weak law of large num-

bers in the limit N → ∞ over Θ × F . To see this, note the compactness of the param-

eter space by Assumption 7 (b) and (c). Furthermore,
∑T−1

t=1 mj,t(ρ0, θ, f ;X
∗
j,t) is contin-

uous with respect to (θ, f) due to Assumption 7 (e) and (f). The uniform boundedness

E sup(θ,f)∈Θ×F

∣∣∣∑T−1
t=1 mj,t(ρ0, θ, f ;X

∗
j,t)
∣∣∣ 6 ∞ also follows from Assumption 7 (b), (c), (e), and

(f). These suffice for
∑T−1

t=1 mj,t(ρ0, θ, f ;X
∗
j,t) to satisfy the conditions for the uniform weak law

of large numbers in the limit N → ∞ over Θ×F . Furthermore, under the same set of assump-

tions, m(ρ0, θ, f) =
1

T−1

∑T−1
t=1 Emj,t(ρ0, θ, f ;X

∗
j,t) exists and is continuous with respect to (θ, f)

on Θ×F . Similar lines of argument to show that the Hessian
∑T−1

t=1
∂
∂θ
mj,t(ρ0, θ, f ;X

∗
j,t) =

∑T−1
t=1

R(ρ0, θ, f ;X
∗
j,t)

′ R(ρ0, θ, f ;X
∗
j,t) also satisfies the uniform weak law of large numbers in the limit

N → ∞ over Θ×F , and that M(ρ0, f) = E ∂
∂θ
mj,t(ρ0, θ, f ;X

∗
j,t) = ER(ρ0, f ;X

∗
j,t)

′R(ρ0, f ;X
∗
j,t)

exists and is continuous with respect to f on F .

To vanish the terms in the score that follow from estimating f by f̂ , we require that that

the empirical process νNT (ρ0, θ0, f) :=
√
N (mNT (ρ0, θ0, f)− EmNT (ρ0, θ0, f)) is stochastically

equicontinuous at f = f0. This can be shown to hold under Assumption 7 (a), (d), and (g) by

applying the sufficient condition proposed by Andrews (1994).

To show that the empirical process under the true parameter values νNT (ρ0, θ0, f0) converge
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in distribution to a normal distribution as N → ∞, it suffices to invoke the Lyapunov central

limit theorem under Assumption 7 (a) and (k), where the N -asymptotic variance matrix is

given by S(ρ0, θ0, f0) = Var
(

1
T−1

∑T−1
t=1 mj,t(ρ0, θ0, f0;X

∗
j,t)
)
.

Next, we show the asymptotic independence
√
N EmNT (ρ0, θ0, f̂)

p−→ 0. To this end, we

show super-n1/4 rate of uniform convergence of the leave-one-out nonparametric estimates of

the components of the Markov kernel by the standard argument, but we need to perform

several steps of calculations. Since estimation of αd and γd does not affect the nonparametric

convergence rates of the component estimators, we take these parameters as given henceforth.

For a short-hand notation we denote the CCP by gd(x
∗
t ) := E[1{dt = d} | x∗

t ]. Our CCP

estimator is written as ̂gd(x∗)f(x∗)/f̂(x∗) where

̂gd(x∗)f(x∗) =
1

2π

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d}

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(sh) ds

and

f̂(x∗) =
1

2π

∫
exp (−isx∗) ·

∑N
j=1

∑T−1
t=1 exp (isXjt)

N(T − 1)
×

ϕ̂x∗
t |dt=d′(s) ·

∑N
j=1

∑T−1
t=1 1{Djt = d′}∑N

j=1

∑T−1
t=1 exp (isXjt) · 1{Djt = d′}

· ϕK(sh) ds

where ϕ̂x∗
t |dt=d is given by

ϕ̂x∗
t |dt=d(s) = exp

[∫ s

0

∑N
j=1

∑T−1
t=1 i(Xj,t+1 − αd) · exp (is1Xjt) · 1{Djt = d}

γd ·
∑N

j=1

∑T−1
t=1 exp (is1Xjt) · 1{Djt = d}

ds1

]
.

The absolute bias of f̂(x∗) is bounded by the following terms.

∣∣∣E f̂(x∗)− f(x∗)
∣∣∣ 6

∣∣∣∣E f̂(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds

∣∣∣∣+∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds− f(x∗)

∣∣∣∣
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The first term on the right-hand side has the following asymptotic order.

∣∣∣∣E f̂(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds

∣∣∣∣
=

∣∣∣∣∣ 12π
∫

e−isx∗
ϕK(sh)

{
E

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×∑N

j=1

∑T−1
t=1 eisXjt

∑N
j=1

∑T−1
t=1 1{Djt = d′}

N(T − 1)
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

]
− ϕx∗

t |dt=d′(s)
ϕxt(s)

ϕxt|dt=d′(s)

}
ds

6
∥ϕK∥∞

∥∥ϕx∗
t |dt=d′

∥∥
∞

2πh

∫ 1

−1

∫ s/h

0∥ϕxt
∥∞ E

∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ |γd′ | f(d′)

+
∥ϕxt∥∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ f(d′)
+

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt − E eisXjt

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣

+
∥ϕxt∥∞ E

∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣2 f(d′) + hot(s1) + hot(s/h)

 ds1ds

= O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

where the higher-order terms hot vanish faster than the leading terms uniformly as N → ∞

under Assumption 7 (d), since the empirical process

GN (s) :=
√
N

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′)eisXjt1{Djt = d′} − E(Xj,t+1 − αd′)eisXjt1{Djt = d′}


for example converges uniformly as E

(
(Xj,t+1 − αd′)eisXjt1{Djt = d′}

)2 6 E(Xj,t+1 − αd′)2 is

invariant from s. On the other hand, the second term has the following asymptotic order.

∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds− f(x∗)

∣∣∣∣
6

∣∣∣∣∫ f(x)h−1K

(
x− x∗

h

)
dx− f(x∗)

∣∣∣∣ = O
(
hk
)

where k is the Hölder exponent provided in Assumption 7 (l). Consequently, we obtain the
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following asymptotic order for the absolute bias of f̂(x∗).

∣∣∣E f̂(x∗)− f(x∗)
∣∣∣ = O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

+O
(
hk
)
.

Similarly, the absolute bias of ̂gd(x∗)f(x∗) is bounded by the following terms.

∣∣∣E ̂gd(x∗)f(x∗)− gd(x
∗)f(x∗)

∣∣∣
6

∣∣∣∣E ̂gd(x∗)f(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

E[eisXjt1{Djt = d}]
ϕxt|dt=d′(s)

ϕK(sh)ds

∣∣∣∣+∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
E[eisXjt1{Djt = d}]

ϕxt|dt=d′(s)
ϕK(sh)ds− gd(x

∗)f(x∗)

∣∣∣∣
The first term on the right-hand side has the following asymptotic order.

∣∣∣∣E f̂(x∗)− 1

2π

∫
e−isx∗

ϕx∗
t |dt=d′(s)

ϕxt(s)

ϕxt|dt=d′(s)
ϕK(sh)ds

∣∣∣∣
=

∣∣∣∣∣ 12π
∫

e−isx∗
ϕK(sh)

{
E

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d}

∑N
j=1

∑T−1
t=1 1{Djt = d′}

N(T − 1)
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

]
− ϕx∗

t |dt=d′(s)
E[eisXjt1{Djt = d}]

ϕxt|dt=d′(s)

}
ds

6
∥ϕK∥∞

∥∥ϕx∗
t |dt=d′

∥∥
∞

2πh

∫ 1

−1

∫ s/h

0∥∥ϕxt|dt=d

∥∥
∞ E

∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

∣∣∣ f(d)∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ |γd′ | f(d′)

+

∥∥ϕxt|dt=d

∥∥
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

∣∣∣ f(d)∣∣ϕxt|dt=d′(s/h)
∣∣ ∣∣ϕxt|dt=d′(s1)

∣∣ f(d′)
+

E
∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt − E eisXjt

∣∣∣∣∣ϕxt|dt=d′(s/h)
∣∣

+

∥∥ϕxt|dt=d

∥∥
∞ E

∣∣∣ 1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

∣∣∣ f(d)∣∣ϕxt|dt=d′(s/h)
∣∣2 f(d′) + hot(s1) + hot(s/h)

 ds1ds

= O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

where the higher-order terms hot vanish faster than the leading terms uniformly as N → ∞

under Assumption 7 (d). On the other hand, the second term has the following asymptotic

51



order.

∣∣∣∣ 12π
∫

e−isx∗
ϕx∗

t |dt=d′(s)
E[eisXjt1{Djt = d}]

ϕxt|dt=d′(s)
ϕK(sh)ds− gd(x

∗)f(x∗)

∣∣∣∣
6

∣∣∣∣∫ gd(x)f(x)h
−1K

(
x− x∗

h

)
dx− gd(x

∗)f(x∗)

∣∣∣∣ = O
(
hmin{k,l})

where k and l are the Hölder exponents provided in Assumption 7 (l) and (m), respectively.

Consequently, we obtain the following asymptotic order for the absolute bias of ̂gd(x∗)f(x∗).

∣∣∣E ̂gd(x∗)f(x∗)− gd(x
∗)f(x∗)

∣∣∣ = O

(
1

n1/2h2
∣∣ϕxt|dt=d′(1/h)

∣∣2
)

+O
(
hmin{k,l}) .

Next, the variance of f̂(x∗) has the following asymptotic order.

1

4π2
E

(∫
e−isx∗

ϕK(sh)

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt

)( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)
−

E exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt

) ( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)]
ds

)2
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=
1

4π2
E

(∫ ∫
e−i(s+r)x∗

ϕK(sh)ϕK(rh)ϕx∗
t |dt=d′(s)ϕx∗

t |dt=d′(r)

∫ s

0

∫ r

0ϕxt(s)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)γd′f(d′)

−
ϕxt(s)ϕ

′
x∗
t |dt=d′(s1)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt − E eisXjt

ϕxt|dt=d′(s)

−
ϕxt(s)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

)
ϕxt|dt=d′(s)2f(d′)

+ hot(s) + hot(s1)

×

ϕxt(r)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)γd′f(d′)

−
ϕxt

(r)ϕ′
x∗
t |dt=d′(r1)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt − E eirXjt

ϕxt|dt=d′(r)

−
ϕxt(r)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt1{Djt = d′} − E eirXjt1{Djt = d′}

)
ϕxt|dt=d′(r)2f(d′)

+ hot(s) + hot(s1)

 dr1ds1drds

6
∥ϕK∥2∞

∥∥∥ϕx∗
t |dt=d′

∥∥∥2
∞

4π2

∫ 1

−1

∫ 1

−1

∫ s/h

0

∫ r/h

0
I(s, r, s1, r1, h)dr1ds1drds = O

(
1

nh4
∣∣ϕxt|dt=d′(1/h)

∣∣4
)

where I(s, r, s1, r1, h) consists of the following ten terms and higher-order terms that vanish

faster uniformly.

I1 =
∥ϕxt

∥2∞∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣ · ∣∣ϕxt|dt=d′(r1)

∣∣ · f(d′)2 · (γd′)2
×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eir1Xjt1{Djt = d′}

2


1/2
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I2 =
∥ϕxt∥

2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥2
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · ∣∣ϕxt|dt=d′(r1)
∣∣ · f(d′)2 ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2

I3 =
1∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ ·
E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h − E eisXjt/h

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h − E eirXjt/h

2


1/2

I4 =
∥ϕxt∥

2
∞∣∣ϕxt|dt=d′(s/h)

∣∣2 · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d′} − E eisXjt/h1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

I5 =
2 ∥ϕxt∥

2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · ∣∣ϕxt|dt=d′(r1)
∣∣ · f(d′)2 · |γd′ |

×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2

I6 =
2 ∥ϕxt∥∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · f(d′) · |γd′ |
×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h − E eirXjt/h

2


1/2
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I7 =
2 ∥ϕxt∥

2
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′)2 · |γd′ |
×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

I8 =
2 ∥ϕxt∥∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · f(d′) ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h − E eirXjt/h

2


1/2

I9 =
2 ∥ϕxt∥

2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

I10 =
2 ∥ϕxt∥∞∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′) ·
E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h − E eisXjt/h

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2
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Similarly, the variance of ̂gd(x∗)f(x∗) has the following asymptotic order.

1

4π2
E

(∫
e−isx∗

ϕK(sh)

[
exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt1{Djt = d}

)( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)
−

E exp

(
i

∫ s

0

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′)eis1Xjt1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eis1Xjt1{Djt = d′}

ds1

)
×(

1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt1{Djt = d}

) ( ∑N
j=1

∑T−1
t=1 1{Djt = d′}

γd′
∑N

j=1

∑T−1
t=1 eisXjt1{Djt = d′}

)]
ds

)2

=
1

4π2
E

(∫ ∫
e−i(s+r)x∗

ϕK(sh)ϕK(rh)ϕx∗
t |dt=d′(s)ϕx∗

t |dt=d′(r)

∫ s

0

∫ r

0ϕxt|dt=d(s)f(d)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)γd′f(d′)

−
ϕxt|dt=d(s)ϕ

′
x∗
t |dt=d′(s1)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

)
ϕxt|dt=d′(s)ϕxt|dt=d′(s1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d} − E eisXjt1{Djt = d}

ϕxt|dt=d′(s)

−
ϕxt|dt=d(s)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eisXjt1{Djt = d′} − E eisXjt1{Djt = d′}

)
ϕxt|dt=d′(s)2f(d′)

+ hot(s) + hot(s1)

×

ϕxt|dt=d(r)f(d)
(

1
N(T−1)

∑N
j=1

∑T−1
t=1 (Xj,t+1 − αd′

)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)γd′f(d′)

−
ϕxt|dt=d(r)ϕ

′
x∗
t |dt=d′(r1)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

)
ϕxt|dt=d′(r)ϕxt|dt=d′(r1)f(d′)

+

1
N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt1{Djt = d} − E eirXjt1{Djt = d}

ϕxt|dt=d′(r)

−
ϕxt|dt=d(r)f(d)

(
1

N(T−1)

∑N
j=1

∑T−1
t=1 eirXjt1{Djt = d′} − E eirXjt1{Djt = d′}

)
ϕxt|dt=d′(r)2f(d′)

+ hot(s) + hot(s1)

 dr1ds1drds

6
∥ϕK∥2∞

∥∥∥ϕx∗
t |dt=d′

∥∥∥2
∞

4π2

∫ 1

−1

∫ 1

−1

∫ s/h

0

∫ r/h

0
J(s, r, s1, r1, h)dr1ds1drds = O

(
1

nh4
∣∣ϕxt|dt=d′(1/h)

∣∣4
)

where J(s, r, s1, r1, h) consists of the following ten terms and higher-order terms that vanish
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faster uniformly.

J1 =

∥∥ϕxt|dt=d

∥∥2
∞ f(d)2∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · ∣∣ϕxt|dt=d′(r1)
∣∣ · f(d′)2 · (γd′)2

×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eir1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eir1Xjt1{Djt = d′}

2


1/2

J2 =

∥∥ϕxt|dt=d

∥∥2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥2
∞

f(d)2∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣ · ∣∣ϕxt|dt=d′(r1)

∣∣ · f(d′)2 ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2

J3 =
1∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d} − E eisXjt/h1{Djt = d}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d} − E eirXjt/h1{Djt = d}

2


1/2

J4 =

∥∥ϕxt|dt=d

∥∥2
∞ f(d)2∣∣ϕxt|dt=d′(s/h)

∣∣2 · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d′} − E eisXjt/h1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2
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J5 =
2
∥∥ϕxt|dt=d

∥∥2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

f(d)2∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣ · ∣∣ϕxt|dt=d′(r1)

∣∣ · f(d′)2 · |γd′ |
×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eir1Xjt1{Djt = d′} − E eir1Xjt1{Djt = d′}

2


1/2

J6 =
2
∥∥ϕxt|dt=d

∥∥
∞ f(d)∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣ · f(d′) · |γd′ |
×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d} − E eirXjt/h1{Djt = d}

2


1/2

J7 =
2
∥∥ϕxt|dt=d

∥∥2
∞ f(d)2∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(s1)
∣∣ · ∣∣ϕxt|dt=d′(r/h)

∣∣2 · f(d′)2 · |γd′ |
×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

(Xj,t+1 − αd′
)eis1Xjt1{Djt = d′} − E(Xj,t+1 − αd′

)eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

J8 =
2
∥∥ϕxt|dt=d

∥∥
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

f(d)∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣ · f(d′) ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d} − E eirXjt/h1{Djt = d}

2


1/2
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J9 =
2
∥∥ϕxt|dt=d

∥∥2
∞

∥∥∥ϕ′
x∗
t |dt=d′

∥∥∥
∞

f(d)2∣∣ϕxt|dt=d′(s/h)
∣∣ · ∣∣ϕxt|dt=d′(s1)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′)2 ×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eis1Xjt1{Djt = d′} − E eis1Xjt1{Djt = d′}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

J10 =
2
∥∥ϕxt|dt=d

∥∥
∞ f(d)∣∣ϕxt|dt=d′(s/h)

∣∣ · ∣∣ϕxt|dt=d′(r/h)
∣∣2 · f(d′) ×E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eisXjt/h1{Djt = d} − E eisXjt/h1{Djt = d}

2


1/2

×

E

 1

N(T − 1)

N∑
j=1

T−1∑
t=1

eirXjt/h1{Djt = d′} − E eirXjt/h1{Djt = d′}

2


1/2

Consequently, under Assumption 7 (n), the bandwidth parameter choice prescribed in As-

sumption 7 (o) equates the asymptotic orders of the squared bias and the variance of ̂gd(x∗)f(x∗)

as n−1h−4
∣∣ϕxt|dt=d′

∣∣−4 ∼ h2min{k,l} holds if and only if nh
4+4q+2min{k,l}
x ∼ 1 holds. Substitut-

ing this asymptotic rate of the bandwidth parameter into the bias or the square-root of the

variance, we obtain(
E
[

̂gd(x∗)f(x∗)− gd(x
∗)f(x∗)

]2)1/2

= O
(
n

−min{k,l}
2(2+2q+min{k,l})

)
.

By similar lines of argument, we have(
E
[
f̂(x∗)− f(x∗)

]2)1/2

= O
(
n

−k
2(2+2q+min{k,l})

)
.

Since the MSE of the CCP estimator is given by

1

f(x∗)2
MSE

(
̂gd(x∗)f(x∗)

)
+

gd(x
∗)2

f(x∗)2
MSE

(
f̂(x∗)

)
,

it follows that (
E
[
ĝd(x∗)− f(x∗)

]2)1/2

= O
(
n

−min{k,l}
2(2+2q+min{k,l})

)
.
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Now, notice that this convergence rate is faster than n−1/4 as min{k, l}/(2(2+2q+min{k, l})) >

1/4 under Assumption 7 (p). Moreover, this rate is invariant across x∗ over the assumed

compact support, implying that the CCP estimator converges uniformly at the rate faster than

n−1/4. Similar calculations show that the same conclusion is true for the other components of

the Markov kernel. By the continuity of R(ρ0, f ;x
∗) and ξ(ρ0, f ; x

∗) with respect to f under

Assumption 7 (e) and (f), the asymptotic independence is satisfied.

With all these arguments, applying Andrews (1994) yields the desired asymptotic normality

result for the estimator θ̂ of the structural parameters under the stated assumptions.

A.8 Extending the Proxy Model

The baseline model presented in Section 3.1 assumes classical measurement errors. To relax

this assumption, we may allow the relationship between the proxy and the unobserved state

variable to depend on the endogenous choice made in previous period. This generalization is

useful if the past action can affect the measurement nature of the proxy variable. For example,

when the choice dt leads to entry and exit status of a firm, what proxy measure we may obtain

for the unobserved productivity of the firm may differ depending whether the firm is in or out

of the market.

To allow the proxy model to depend on edogeneous actions, we modify Assumptions 2, 3, 4

and 5 as follows.

Assumption 2′. The Markov kernel can be decomposed as follows.

f
(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
= f (dt|wt, x

∗
t ) f

(
wt|dt−1, wt−1, x

∗
t−1

)
f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
f (xt|dt−1, x

∗
t )

where the proxy model now depends on the endogenous choice dt−1 made in the last period.
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Assumption 3′. The transition rule for the unobserved state variable and the state-proxy

relation are semi-parametrically specified by

f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: x∗

t = αd + βdwt−1 + γdx∗
t−1 + ηdt if dt−1 = d

f (xt|dt−1, x
∗
t ) : xt = δdx∗

t + εdt if dt−1 = d

where εt and ηdt have mean zero for each d, and satisfy

εdt ⊥⊥ ({dτ}τ , {x∗
τ}τ , {wτ}τ , {ετ}τ ̸=t) for all t

ηdt ⊥⊥ (dτ , x
∗
τ , wτ ) for all τ < t for all t.

where εt = (ε0t , ε
1
t , · · · , εd̄t ).

Assumption 4′. For each d, ((dt−1 = d) > 0 and the following matrix is nonsingular for each

of d′ = d and d′ = 0.
1 E[wt−1 | dt−1 = d, dt−2 = d′] E[xt−1 | dt−1 = d, dt−2 = d′]

E[wt−1 | dt−1 = d, dt−2 = d′] E[w2
t−1 | dt−1 = d, dt−2 = d′] E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[wt | dt−1 = d, dt−2 = d′] E[wt−1wt | dt−1 = d, dt−2 = d′] E[xt−1wt | dt−1 = d, dt−2 = d′]



Assumption 5′. The random variables wt and x∗
t have bounded conditional moments given

(dt, dt−1). The conditional characteristic functions of wt and x∗
t given (dt, dt−1) do not vanish on

the real line, and is absolutely integrable. The conditional characteristic function of (x∗
t−1, wt)

given (dt−1, dt−2, wt−1) and the conditional characteristic function of x∗
t given (wt, dt−1) are

absolutely integrable. Random variables εt and ηdt have bounded moments and absolutely

integrable characteristic functions that do not vanish on the real line.

Because x∗
t is unit-less unobserved variable, there would be a continuum of observationally

equivalent set of (δ0, · · · , δd̄) and distributions of (ε0t , · · · , εd̄t ), unless we normalize δd for one
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of the choices d. We therefore make the following assumption in addition to the baseline

assumptions.

Assumption 8. WLOG, we normalize δ0 = 1.

Under this set of assumptions that are analogous to those we assumed for the baseline model

in Section 3.1, we obtain the following closed-form identification result analogous to Theorem

1.

Theorem 2 (Closed-Form Identification). If Assumptions 1, 2′, 3′, 4′, 5′, and 8 are sat-

isfied, then the four components f (dt|wt, x
∗
t ), f

(
wt|dt−1, wt−1, x

∗
t−1

)
, f

(
x∗
t |dt−1, wt−1, x

∗
t−1

)
,

f (xt|dt−1, x
∗
t ) of the Markov kernel f

(
dt, wt, x

∗
t , xt|dt−1, wt−1, x

∗
t−1, xt−1

)
are identified by closed-

form formulas.

A proof and a set of full closed-form identifying formulas are given in Section A.9 in the

appendix. This section demonstrated that, even if endogenous actions of firms, such as the de-

cision of exit, can potentially affect the measurement nature of proxy variables through market

participation status, we still obtain similar closed-form estimator with slight modifications.

A.9 Proof of Theorem 2

Proof. Similarly to the baseline case, our closed-form identification includes four steps.

Step 1: Closed-form identification of the transition rule f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
: First,

we show the identification of the parameters and the distributions in transition of x∗
t . Since

xt =
∑
d

1{dt−1 = d}[δdx∗
t + εdt ]

=
∑
d

1{dt−1 = d}[αdδd + βdδdwt−1 + γdδdx∗
t−1 + δdηdt + εdt ]

=
∑
d

∑
d′

1{dt−1 = d}1{dt−2 = d′}
[
αdδd + βdδdwt−1 + γd δ

d

δd′
xt−1 + δdηdt + εdt − γd δ

d

δd′
εd

′

t−1

]
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we obtain the following equalities for each d and d′:

E[xt | dt−1 = d, dt−2 = d′] = αdδd + βdδd E[wt−1 | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
E[xt−1 | dt−1 = d, dt−2 = d′]

E[xtwt−1 | dt−1 = d, dt−2 = d′] = αdδd E[wt−1 | dt−1 = d, dt−2 = d′]

+βdδd E[w2
t−1 | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[xtwt | dt−1 = d, dt−2 = d′] = αdδd E[wt | dt−1 = d, dt−2 = d′]

+βdδd E[wt−1wt | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
E[xt−1wt | dt−1 = d, dt−2 = d′]

by the independence and zero mean assumptions for ηdt and εdt . From these, we have the linear

equation
E[xt | dt−1 = d, dt−2 = d′]

E[xtwt−1 | dt−1 = d, dt−2 = d′]

E[xtwt | dt−1 = d, dt−2 = d′]

 =


1 E[wt−1 | dt−1 = d, dt−2 = d′] E[xt−1 | dt−1 = d, dt−2 = d′]

E[wt−1 | dt−1 = d, dt−2 = d′] E[w2
t−1 | dt−1 = d, dt−2 = d′] E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[wt | dt−1 = d, dt−2 = d′] E[wt−1wt | dt−1 = d, dt−2 = d′] E[xt−1wt | dt−1 = d, dt−2 = d′]




αdδd

βdδd

γd δd

δd′


Provided that the matrix on the right-hand side is non-singular, we can identify the composite

parameters
(
αdδd, βdδd, γd δd

δd′

)
by

αdδd

βdδd

γd δd

δd′

 =


1 E[wt−1 | dt−1 = d, dt−2 = d′] E[xt−1 | dt−1 = d, dt−2 = d′]

E[wt−1 | dt−1 = d, dt−2 = d′] E[w2
t−1 | dt−1 = d, dt−2 = d′] E[xt−1wt−1 | dt−1 = d, dt−2 = d′]

E[wt | dt−1 = d, dt−2 = d′] E[wt−1wt | dt−1 = d, dt−2 = d′] E[xt−1wt | dt−1 = d, dt−2 = d′]



−1

×


E[xt | dt−1 = d, dt−2 = d′]

E[xtwt−1 | dt−1 = d, dt−2 = d′]

E[xtwt | dt−1 = d, dt−2 = d′]

 .
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Once the composite parameters γd δd

δ0
and γd = γd δd

δd
are identified by the above formula, we can

in turn identify

δd =
γd δd

δ0

γd δd

δd

for each d by the normalization assumption δ0 = 1. It in turn can be used to identify (αd, βd, γd)

for each d from the identified composite parameters
(
αdδd, βdδd, γd δd

δ0

)
by

(αd, βd, γd) =
1

δd

(
αdδd, βdδd, γd δ

d

δ0

)
.

Next, we show identification of f
(
εdt
)
and f

(
ηdt
)
for each d. Observe that

E [exp (is1xt−1 + is2xt) |dt−1 = d, dt−2 = d′]

= E
[
exp

(
is1

(
δd

′
x∗
t−1 + εd

′

t−1

)
+ is2

(
αdδd + βdδdwt−1 + γdδdx∗

t−1 + δdηdt + εdt
))

|dt−1 = d, dt−2 = d′
]

= E
[
exp

(
i
(
s1δ

d′x∗
t−1 + s2α

dδd + s2β
dδdwt−1 + s2γ

dδdx∗
t−1

))
|dt−1 = d, dt−2 = d′

]
×E

[
exp

(
is1ε

d′

t−1

)]
E
[
exp

(
is2
(
δdηdt + εdt

))]
follows for each pair (d, d′) from the independence assumptions for ηdt and εdt for each d. We

may then use the Kotlarski’s identity

[
∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d, dt−2 = d′]

]
s2=0

=
E
[
i(αdδd + βdδdwt−1 + γdδdx∗

t−1) exp
(
is1δ

d′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is1δd

′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
= iαdδd + βdδd

E[iwt−1 exp(is1δ
d′x∗

t−1) | dt−1 = d, dt−2 = d′]

E[exp(is1δd
′x∗

t−1) | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
∂

∂s1
ln E

[
exp

(
is1δ

d′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
= iαdδd + βdδd

E[iwt−1 exp(is1xt−1) | dt−1 = d, dt−2 = d′]

E[exp(is1xt−1) | dt−1 = d, dt−2 = d′]

+γd δ
d

δd′
∂

∂s1
ln E

[
exp

(
is1δ

d′x∗
t−1

)
|dt−1 = d, dt−2 = d′

]

64



Therefore,

E
[
exp

(
isδd

′
x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
= exp

[∫ s

0

[
δd

′

γdδd
∂

∂s2
ln E [exp (is1xt−1 + is2xt) |dt−1 = d, dt−2 = d′]

]
s2=0

ds1

−
∫ s

0

iαdδd
′

γd
ds1 −

∫ s

0

βdδd
′

γd

E[iwt−1 exp(is1xt−1) | dt−1 = d, dt−2 = d′]

E[exp(is1xt−1) | dt−1 = d, dt−2 = d′]
ds1

]

= exp

∫ s

0

E
[
i( δ

d′

δd
xt − αdδd

′ − βdδd
′
wt−1) exp (is1xt−1) |dt−1 = d, dt−2 = d′

]
γd E [exp (is1xt−1) |dt−1 = d, dt−2 = d′]

ds1

 .

From the proxy model and the independence assumption for εt,

E [exp (isxt−1) |dt−1 = d, dt−2 = d′] = E
[
exp

(
isδd

′
x∗
t−1

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
isεd

′

t−1

)]
.

We then obtain the following result using any d.

E
[
exp

(
isεd

′

t−1

)]
=

E [exp (isxt−1) |dt−1 = d, dt−2 = d′]

E
[
exp

(
isδd′x∗

t−1

)
|dt−1 = d, dt−2 = d′

]
=

E [exp (isxt−1) |dt−1 = d, dt−2 = d′]

exp

[∫ s

0

E

[
i( δ

d′

δd
xt−αdδd′−βdδd′wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt−1)|dt−1=d,dt−2=d′]

ds1

] .

This argument holds for all t so that we can identify f
(
εdt
)
for each d with

E
[
exp

(
isεdt

)]
=

E [exp (isxt) |dt = d′, dt−1 = d]

exp

[∫ s

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

] . (A.9)

using any d′.

In order to identify f
(
ηdt
)
for each d, consider

E [exp (isxt) |dt−1 = d, dt−2 = d′] E

[
exp

(
isγd δ

d

δd′
εd

′

t−1

)]
= E

[
exp

(
is(αdδd + βdδdwt−1 + γd δ

d

δd′
xt−1)

)
|dt−1 = d, dt−2 = d′

]
×E

[
exp

(
isδdηdt

)]
E
[
exp

(
isεdt

)]
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by the independence assumptions for ηdt and εdt . Therefore,

E
[
exp

(
isδdηdt

)]
=

E [exp (isxt) |dt−1 = d, dt−2 = d′]

E
[
exp

(
is(αdδd + βdδdwt−1 + γd δd

δd
′ xt−1)

)
|dt−1 = d, dt−2 = d′

]
×
E
[
exp

(
isγd δd

δd′
εd

′
t−1

)]
E
[
exp

(
isεdt

)]
and the characteristic function of ηdt can be expressed by

E
[
exp

(
isηdt

)]
=

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd′
xt−1)

)
|dt−1 = d, dt−2 = d′

]
× 1

E
[
exp

(
is 1

δd
εdt
)]

E
[
exp

(
−isγd 1

δd
′ εd

′
t−1

)]
=

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd′
xt−1)

)
|dt−1 = d, dt−2 = d′

]

×
exp

[∫ s/δd

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]
E
[
exp

(
is 1

δd
xt

)
|dt = d′, dt−1 = d

]
×

E
[
exp

(
isγd 1

δd′
xt−1

)
|dt−1 = d, dt−2 = d′

]
exp

[∫ sγd/δd
′

0

E

[
i( δ

d′

δd
xt−αdδd′−βdδd′wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt)|dt−1=d,dt−2=d′]

ds1

]
by the formula (A.9). We can then identify fηdt by

fηdt (η) =
(
Fϕηdt

)
(η) for all η,

where the characteristic function ϕηdt
is given by

ϕηdt
(s) =

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd
′ xt−1)

)
|dt−1 = d, dt−2 = d′

]

×
exp

[∫ s/δd

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]
E
[
exp

(
is 1

δd
xt

)
|dt = d′, dt−1 = d

]
×

E
[
exp

(
isγd 1

δd
′ xt−1

)
|dt−1 = d, dt−2 = d′

]
exp

[∫ sγd/δd
′

0

E

[
i( δ

d′

δd
xt−αdδd

′−βdδd
′
wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt)|dt−1=d,dt−2=d′]

ds1

] .
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We can use this identified density in turn to identify the transition rule f
(
x∗
t |dt−1, wt−1, x

∗
t−1

)
with

f
(
x∗
t |dt−1, xt−1, x

∗
t−1

)
=
∑
d

1{dt−1 = d}fηdt
(
x∗
t − αd − βdwt−1 − γdx∗

t−1

)
.

In summary, we obtain the closed-form expression

f
(
x∗
t |dt−1, xt−1, x

∗
t−1

)
=

∑
d

1{dt−1 = d}
(
Fϕηdt

) (
x∗
t − αd − βdwt−1 − γdx∗

t−1

)
=

∑
d

1{dt−1 = d}
2π

∫
exp

(
−is(x∗

t − αd − βdwt−1 − γdx∗
t−1)

)
×

E
[
exp

(
is 1

δd
xt

)
|dt−1 = d, dt−2 = d′

]
E
[
exp

(
is(αd + βdwt−1 + γd 1

δd
′ xt−1)

)
|dt−1 = d, dt−2 = d′

] ×
exp

[∫ s/δd

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]
E
[
exp

(
is 1

δd
xt

)
|dt = d′, dt−1 = d

] ×

E
[
exp

(
isγd 1

δd′
xt−1

)
|dt−1 = d, dt−2 = d′

]
exp

[∫ sγd/δd
′

0

E

[
i( δ

d′

δd
xt−αdδd

′−βdδd
′
wt−1) exp(is1xt−1)|dt−1=d,dt−2=d′

]
γd E[exp(is1xt)|dt−1=d,dt−2=d′]

ds1

]

using any d′. This completes Step 1.

Step 2: Closed-form identification of the proxy model f (xt | dt−1, x
∗
t ): Given (A.9), we

can write the density of εdt by

fεdt (ε) =
(
Fϕεdt

)
(ε) for all ε,

where the characteristic function ϕεdt
is defined by (A.9) as

ϕεdt
(s) =

E [exp (isxt) |dt = d′, dt−1 = d]

exp

[∫ s

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

] .
Provided this identified density of εdt , we nonparametrically identify the proxy model

f(xt | dt−1 = d, x∗
t ) = fεdt |dt−1=d(xt − δdx∗

t ) = fεdt (xt − δdx∗
t )
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by the independence assumption for εdt . In summary, we obtain the closed-form expression

f(xt | dt−1, x
∗
t ) =

∑
d

1{dt−1 = d}
(
Fϕεdt

)
(xt − δdx∗

t )

=
∑
d

1{dt−1 = d}
2π

∫
exp

(
−is(xt − δdx∗

t )
)
· E [exp (isxt) |dt = d′, dt−1 = d]

exp

[∫ s

0

E
[
i( δd

δd
′ xt+1−αd′δd−βd′δdwt) exp(is1xt)|dt=d′,dt−1=d

]
γd′ E[exp(is1xt)|dt=d′,dt−1=d]

ds1

]ds
using any d′. This completes Step 2.

Step 3: Closed-form identification of the transition rule f
(
wt|dt−1, wt−1, x

∗
t−1

)
: Con-

sider the joint density expressed by the convolution integral

f (xt−1, wt | dt−1, wt−1, dt−2 = d) =

∫
fεdt−1

(
xt−1 − δdx∗

t−1

)
f
(
x∗
t−1, wt | dt−1, wt−1, dt−2 = d

)
dx∗

t−1

We can thus obtain a closed-form expression of f
(
x∗
t−1, wt | dt−1, wt−1, dt−2

)
by the deconvolu-

tion. To see this, observe

E [exp (is1xt−1 + is2wt) |dt−1, wt−1, dt−2 = d]

= E
[
exp

(
is1δ

dx∗
t−1 + is1ε

d
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
= E

[
exp

(
is1δ

dx∗
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
E
[
exp

(
is1ε

d
t−1

)]
by the independence assumption for εdt , and so

E
[
exp

(
is1δ

dx∗
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
=

E [exp (is1xt−1 + is2wt) |dt−1, wt−1, dt−2 = d]

E
[
exp

(
is1εdt−1

)]
= E [exp (is1xt−1 + is2wt) |dt−1, wt−1, dt−2 = d]

×
exp

[∫ s1
0

E
[
i( δd

δd
′ xt−αd′δd−βd′δdwt−1) exp(is′1xt−1)|dt−1=d′,dt−2=d

]
γd′ E[exp(is′1xt−1)|dt−1=d′,dt−2=d]

ds′1

]
E [exp (is1xt−1) |dt−1 = d′, dt−2 = d]
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follows with any choice of d′. Rescaling s1 yields

E
[
exp

(
is1x

∗
t−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
= E

[
exp

(
is1

1

δd
xt−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
×

exp

[∫ s1/δd

0

E
[
i( δd

δd
′ xt−αd′δd−βd′δdwt−1) exp(is′1xt−1)|dt−1=d′,dt−2=d

]
γd′ E[exp(is′1xt−1)|dt−1=d′,dt−2=d]

ds′1

]
E
[
exp

(
is1

1
δd
xt−1

)
|dt−1 = d′, dt−2 = d

] .

We can then express the conditional density as

f
(
x∗
t−1, wt|dt−1, wt−1, dt−2 = d

)
=
(
F2ϕx∗

t−1,wt|dt−1,wt−1,dt−2=d

)
(wt, x

∗
t−1)

where the characteristic function is defined by

ϕwt,x∗
t−1|dt−1,wt−1,dt−2=d(s1, s2) = E

[
exp

(
is1

1

δd
xt−1 + is2wt

)
|dt−1, wt−1, dt−2 = d

]
×

exp

[∫ s1/δd

0

E
[
i( δd

δd
′ xt−αd′δd−βd′δdwt−1) exp(is′1xt−1)|dt−1=d′,dt−2=d

]
γd′ E[exp(is′1xt−1)|dt−1=d′,dt−2=d]

ds′1

]
E
[
exp

(
is1

1
δd
xt−1

)
|dt−1 = d′, dt−2 = d

] .

Using this conditional density, we nonparametrically identify the transition rule

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=

∑
d f
(
x∗
t−1, wt|dt−1, wt−1, dt−2 = d

)
Pr(dt−2 = d | dt−1, wt−1)∫ ∑

d f
(
x∗
t−1, wt|dt−1, wt−1, dt−2 = d

)
Pr(dt−2 = d | dt−1, wt−1)dwt

.
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In summary, we obtain the closed-form expression

f
(
wt|dt−1, wt−1, x

∗
t−1

)
=
∑
d

1{dt−1 = d} ×

∑
d′

(
F2ϕx∗

t−1,wt|dt−1=d,wt−1,dt−2=d′

)
(wt, x

∗
t−1) · Pr(dt−2 = d′ | dt−1 = d,wt−1)∫ ∑

d′

(
F2ϕx∗

t−1,wt|dt−1=d,wt−1,dt−2=d′

)
(wt, x∗t−1) · Pr(dt−2 = d′ | dt−1 = d,wt−1)dwt

=
∑
d

1{dt−1 = d}

{∑
d′

Pr(dt−2 = d′ | dt−1 = d,wt−1)

∫ ∫
exp

(
−is1wt − is2x

∗
t−1

)
×

E
[
exp

(
is1

1
δd

′ xt−1 + is2wt

)
|dt−1 = d,wt−1, dt−2 = d′

]
E
[
exp

(
is1

1
δd

′ xt−1

)
|dt−1 = d′′, dt−2 = d′

] ×

exp

∫ s1/δd
′

0

E
[
i( δd

′

δd′′
xt − αd′′δd

′ − βd′′δd
′
wt−1) exp (is

′
1xt−1) |dt−1 = d′′, dt−2 = d′

]
γd′′ E [exp (is′1xt−1) |dt−1 = d′′, dt−2 = d′]

ds′1

 ds1ds2


/

{∑
d′

∫
Pr(dt−2 = d′ | dt−1 = d,wt−1)

∫ ∫
exp

(
−is1wt − is2x

∗
t−1

)
×

E
[
exp

(
is1

1
δd′

xt−1 + is2wt

)
|dt−1 = d,wt−1, dt−2 = d′

]
E
[
exp

(
is1

1
δd

′ xt−1

)
|dt−1 = d′′, dt−2 = d′

] ×

exp

∫ s1/δd
′

0

E
[
i( δd

′

δd
′′ xt − αd′′δd

′ − βd′′δd
′
wt−1) exp (is

′
1xt−1) |dt−1 = d′′, dt−2 = d′

]
γd′′ E [exp (is′1xt−1) |dt−1 = d′′, dt−2 = d′]

ds′1

 ds1ds2dwt


using any d′ and d′′ This completes Step 3.

Step 4: Closed-form identification of the CCP f (dt|wt, x
∗
t ): Note that we have

E [1{dt = d} exp (isxt) |wt, dt−1 = d′] = E
[
1{dt = d} exp

(
isδd

′
x∗
t + isεd

′

t

)
|wt, dt−1 = d′

]
= E

[
1{dt = d} exp

(
isδd

′
x∗
t

)
|wt, dt−1 = d′

]
E
[
exp

(
isεd

′

t

)]
= E

[
E [1{dt = d}|wt, x

∗
t , dt−1 = d′] exp

(
isδd

′
x∗
t

)
|wt, dt−1 = d′

]
E
[
exp

(
isεd

′

t

)]
by the independence assumption for εd

′
t and the law of iterated expectations. Therefore,

E [1{dt = d} exp (isxt) |wt, dt−1 = d′]

E
[
exp

(
isεd

′
t

)]
= E

[
E [1{dt = d}|wt, x

∗
t , dt−1 = d′] exp

(
isδd

′
x∗
t

)
|wt, dt−1 = d′

]
=

∫
exp

(
isδd

′
x∗
t

)
E [1{dt = d}|wt, x

∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′) dx∗
t
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and rescaling s yields

E
[
1{dt = d} exp

(
is 1

δd
′ xt

)
|wt, dt−1 = d′

]
E
[
exp

(
is 1

δd′
εd

′
t

)]
=

∫
exp (isx∗

t ) E [1{dt = d}|wt, x
∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′) dx∗
t

This is the Fourier inversion of E [1{dt = d}|wt, x
∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′). On the other

hand, the Fourier inversion of f (x∗
t |wt, dt−1) can be found as

E [exp (isx∗
t ) |wt, dt−1 = d′] =

E
[
exp

(
is 1

δd′
xt

)
|wt, dt−1 = d′

]
E
[
exp

(
is 1

δd′
εd

′
t

)] .

Therefore, we find the closed-form expression for CCP f (dt|wt, x
∗
t ) as follows.

Pr (dt = d|wt, x
∗
t ) =

∑
d′

Pr (dt = d|wt, x
∗
t , dt−1 = d′) Pr (dt−1 = d′ | wt, x

∗
t )

=
∑
d′

E [1{dt = d}|wt, x
∗
t , dt−1 = d′] Pr (dt−1 = d′ | wt, x

∗
t )

=
∑
d′

E [1{dt = d}|wt, x
∗
t , dt−1 = d′] f (x∗

t |wt, dt−1 = d′)

f (x∗
t |wt, dt−1 = d′)

Pr (dt−1 = d′ | wt, x
∗
t )

=
∑
d′

(
Fϕ(d)x∗

t |wt(d′)

)
(x∗

t )(
Fϕx∗

t |wt(d′)

)
(x∗

t )
Pr (dt−1 = d′ | wt, x

∗
t )

where the characteristic functions are defined by

ϕ(d)x∗
t |wt(d′)(s) =

E
[
1{dt = d} exp

(
is 1

δd
′ xt

)
|wt, dt−1 = d′

]
E
[
exp

(
is 1

δd
′ εd

′
t

)]
= E

[
1{dt = d} exp

(
is

1

δd′
xt

)
|wt, dt−1 = d′

]

×
exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

]
and

ϕx∗
t |wt(d′)(s) =

E
[
exp

(
is 1

δd′
xt

)
|wt

]
E
[
exp

(
is 1

δd′
εd

′
t

)]

=

E
[
exp

(
is 1

δd′
xt

)
|wt

]
· exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

]
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by (A.9) using any d′′. In summary, we obtain the closed-form expression

Pr (dt = d|wt, x
∗
t ) =

∑
d′

(
Fϕ(d)x∗

t |wt(d′)

)
(x∗

t )(
Fϕx∗

t |wt(d′)

)
(x∗

t )
Pr (dt−1 = d′ | wt, x

∗
t )

=
∑
d′

Pr (dt−1 = d′ | wt, x
∗
t )

∫
exp (−isx∗

t )×

E

[
1{dt = d} exp

(
is

1

δd′
xt

)
|wt, dt−1 = d′

]
×

exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

] ds

/
∫

exp (−isx∗
t ) · E

[
exp

(
is

1

δd′
xt

)
|wt

]
×

exp

[∫ s/δd
′

0

E

[
i( δd

′

δd
′′ xt+1−αd′′δd

′−βd′′δd
′
wt) exp(is1xt)|dt=d′′,dt−1=d′

]
γd′′ E[exp(is1xt)|dt=d′′,dt−1=d′]

ds1

]
E
[
exp

(
is 1

δd′
xt

)
|dt = d′, dt−1 = d′′

] ds.

This completes Step 4.
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