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1 Introduction

About half of students entering college in the United States do not earn a bachelor’s
degree within five years, a proportion that has been stable since the 1970’s (Bound &
Turner 2011). Given that there is a large wage premium to completing a bachelor’s
degree, this suggests that the arrival of new information about costs and benefits of
schooling is likely to be an important driving force behind this pattern. In this paper, we
focus on the role of learning about academic ability and labor market productivity as an
explanation for the observed rate of college attrition and re-entry. We are particularly
interested in quantifying the importance of informational frictions in explaining the
observed school-to-work transitions, and to evaluate the value of information in this
context. Noteworthy, in the current environment where high college attrition rates
are considered a major issue, doing so is important to understand (i) whether these
attrition rates should be a concern, and (ii) which type of policies would be effective in
reducing attrition rates.

In order to quantify the importance of information frictions in the decision to leave
or return to college, we estimate a dynamic model of schooling and work decisions
where such decisions depend on the arrival of information on schooling ability and work
productivity. A key feature of the model is that students have imperfect information
about their ability and productivity. After graduating from high school, individuals
decide among some combination of postsecondary schooling and work options. When
entering college, individuals have some beliefs about their ability and productivity. At
the end of each school year, they learn about their ability, using their grades to update
their beliefs. Since schooling ability and productivity will in general be correlated,
individuals will also use their grades to update their beliefs about their labor market
productivity. Likewise, in the same vein as Miller (1984), employed individuals update
both their productivity and ability beliefs after receiving a wage.

We estimate a richer model than previously possible by making use of recent innova-
tions in the computation of dynamic models of correlated learning. James (2011) shows
that (i) integrating out over actual abilities as opposed to the signals and (ii) using
the EM algorithm where at the maximization step ability is treated as known, results
in models that are computationally very fast. James (2011) builds on the results from
Arcidiacono & Miller (2011) to show that estimation is computationally simple even in
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the presence of unobserved heterogeneity that is known to the individual. Using this
approach in our current context makes estimation of our correlated learning model both
feasible and fast. Importantly, it also allows us to take into account heterogeneity in
schooling investments by distinguishing between two-, four-year colleges and graduate
school, as well as Science and non-Science majors for four-year colleges.1

We then use the estimates of our model to quantify the importance of informational
frictions in explaining the observed school-to-work transitions, and to evaluate the value
of information in this context. Our results suggest that learning about schooling ability
and labor market productivity plays an important role in the decision to dropout or
re-enter college. In particular, those who have stopped out of college have learned that
their academic abilities are relatively low but that their productivity in the unskilled
sector is also low. In contrast, dropouts perform poorly academically and stay out of
school because their productivity in the unskilled sector is sufficiently high.

Our analysis builds on seminal research by Manski & Wise (1983) and Manski
(1989), which argued that college entry can be seen as an experiment that may not lead
to a college degree. According to these authors, an important determinant of college
dropout lies in the fact that, after entering college, students get new information and
thus learn about their ability. Altonji (1993) shows that that this experimentation also
applies to college major, a key determinant of future wage benefits. More recently,
several other papers in the literature on college completion stress the importance of
learning about schooling ability to account for college attrition (see, e.g., Light & Strayer
2000, Arcidiacono 2004, Stratton et al. 2008, and Stange 2012). Of particular relevance
to us is the work by Stinebrickner & Stinebrickner (2012), who provide direct evidence,
using subjective expectations data from Berea College, that learning about schooling
ability is a major determinant of the college drop-out decision.

Much of the learning literature assumes that the labor market is an absorbing state,
implying that the decision to leave college is irreversible. By relaxing this assumption,
we are able to predict the substantial college re-entry rates of over 36% which are
observed in the data.2 This is an important step towards a comprehensive analysis
of school-to-work transitions, building on the insights of Pugatch (2012) who provides

1See the recent survey by Altonji et al. (2012), who discuss the importance of heterogeneity in
human capital investments.

2Note that because of right-censoring, this underestimates the actual re-entry rate.
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evidence from South African data that the option to re-enroll in high school is a key
determinant of the decisions to leave school and enter the labor market.

The remainder of the paper is organized as follows. Section 2 presents the data.
Section 3 describes a dynamic model of schooling and work decisions, where individuals
have imperfect information about their schooling ability and labor market productivity,
and update their beliefs through the observation of grades and wages. Section 4 infor-
mally discusses the identification of the model, with Section 5 detailing the estimation
procedure. Section 6 presents our preliminary estimation results. Section 7 concludes.

2 Data

The model is estimated using data from the National Longitudinal Survey of Youth
1997 (NLSY97). The NLSY97 is a longitudinal, nationally representative survey of
8,984 American youth who were born between January 1, 1980 and December 31,
1984. Respondents were first interviewed in 1997 and have continued to be interviewed
annually (for a total of 14 Rounds as of 2010, which corresponds to the most recent
data used in the current version of the paper) on such topics as labor force activities,
education, and marriage and fertility, among many others.

Of particular importance for our analysis is the choice variable, dt, which is con-
structed at each period as follows:

1. Any individual attending a college in the month of October is classified as being
in college for this year (either in a two- or a four-year college). For four-year col-
leges, our definition of “Science” majors includes majors in Sciences, Technology,
Engineering, Mathematics or Economics.

2. Any individual reporting college attendance who also reports working at least one
week in October and at least 10 hours per week is classified as working part-time
while in school, with full-time work requiring at least 35 hours per week and four
weeks worked in October.

3. Any individual not in college (according to the criterion above) is classified as
working part-time or full-time according to the criteria above.3

3These criteria for labor force participation resemble those of Keane and Wolpin (1997).
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4. Finally, all other cases are classified as home production.4

The other dependent variables in the analysis are college GPA and wages. College
GPA is measured on a four-point scale and calculated as the average GPA across all
semesters in the calendar year. Wages are calculated as follows:

1. We compute the median of hourly wages across weeks in October, converted to
1996 dollars.

2. If a person worked multiple jobs in a certain week, we use the hourly earnings for
the job with the most hours.

3. If a person does not report earnings for jobs worked in October, we impute earn-
ings as annual income divided by annual hours worked (4.7% of our sample).

4. Finally, we top- and bottom-code the resulting earnings distribution at the 99.5
percentile and 2.5 percentile.

It is worth noting that GPA are missing quite frequently in our data (19% of college
GPAs are missing in our sample, disproportionately in the first two years of college en-
rollment). We address this issue by imputing the GPAs which are missing, for the first
time, in the first two periods of college. Specifically, we impute those missing observa-
tions as a function of the AFQT, high school GPA, major (for four-year college) and
previous GPA interacted with type of college attended in previous year, separately for
each type of college and college enrollment status in the following period.5 We further
drop all current and future observations for any respondents missing wage observations
while choosing a work activity (respectively missing GPA after the first two periods of
college enrollment).6

Tables 1 through 10 below present some descriptives for our subsample, by college
enrollment, major and completion status. Table 1 shows that individuals who attend
college at some point and start at a four-year institution have, on average, higher AFQT

4Following this criterion, any individual who is unemployed in October is classified in the home
production sector. Our results do not appear to be sensitive to the inclusion of the unemployment
status in the work, rather than in the home production alternative.

5The validity of this method relies on the assumption that GPA is missing at random, once condi-
tioning on the aforementioned set of characteristics.

6For further details on our sample selection, see Table 1 in Appendix section A.
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scores, with science majors having higher scores than other majors.7 The proportion of
blacks and Hispanics is also lower among four-year college attendees, with white males
disproportionately choosing science majors. Conversely, it is worth noting that those
starting at a two-year college tend to have a lower AFQT score, and disproportionately
come from minorities. Overall, this difference in composition between two and four-
year colleges (and between majors in four-year colleges) stresses the need to distinguish
between college and major type when modeling college enrollment decisions.

Table 2 reports the mean GPA (on a scale between 0 and 4) by type of college
attended, major and period of enrollment.8 Looking at the individuals enrolled in a
four-year college with a science major, the evolution of the GPA provides clear evidence
of selection over time. Individuals who leave college or switch to a two-year institution
or other type of major have lower GPA than those who stay enrolled in a four-year
college science major. We find a similar pattern for two-year college enrollees, with the
GPA being on average lower for these students than for either type of four-year college
enrollees. Overall, these descriptive findings are consistent with two stories, which may
not be mutually exclusive: (i) individuals decide to leave or switch college/major as
they learn about their schooling ability, or (ii) those who leave or switch college/major
tend to have a lower ability, that they observe perfectly even before starting college.
Telling apart these two explanations is a key objective of our structural estimations,
which will be discussed in the following section.

Table 3 lists the frequencies of continuous enrollment until graduation (either in four
or two-year colleges), stopping-out (i.e. leaving college before graduation and returning
to school at some point) and dropping-out (i.e. permanently leaving college, before
graduation) in the NLSY97 full sample, our estimation subsample, and type of col-
lege/major first enrolled in. Our subsample slightly understates dropping-out because
we discarded observations in right-censored missing interview spells, and missing an
interview is positively correlated with dropping-out of college. Also evident from Table
3 is the fact that dropping-out and stopping-out are more common in two-year colleges
relative to four-year colleges. Four-year science majors have the lowest proportions of
dropping-out and stopping-out. This again points at the need to distinguish between
these two types of colleges and majors in our model. Due to the ongoing nature of the

7AFQT is standardized to be zero-mean and standard deviation 1 for our estimation subsample.
8Note that these periods of college enrollment may not be consecutive.
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survey and the fact that some respondents are still in college, Table 4 aims to identify
the lower bound of the stopout rate. For example, of those who had graduated with
a four-year college degree by round 14 of the survey, 12.3% were stopouts. For those
beginning college in a four-year university science major, this number is 5.3%, com-
pared with 10.9% for humanities majors. For those originating in a two-year college,
the figure is 29.2%.

Table 5 shows that those who continuously complete college have higher AFQT
scores, higher high school GPA, and come from families with higher income and mothers
who are more educated. It is also interesting to note that stopouts on average straddle
the continuous completion and dropout categories. This highlights the importance
of studying stopping out as a third category of college completion. The descriptive
evidence presented in Table 5 also points to the fact that family background variables
are important to include in an analysis of college completion.

Table 6 breaks out Table 2 by college completion status. Similar to Table 2, there
is evidence of selection over time and over (eventual) completion status. This further
supports the idea that those who leave college may do so because of a bad signal on
ability in the form of low grades. To illustrate this more fully, Table 7 expounds this
point by presenting differences between actual and expected grades in the first period
of college (when dropout rates are highest), where expected grades are taken as a
function of race, gender, AFQT, work status, and age. Interestingly, this shows that
the selection patterns discussed above still hold after controlling for this set of observed
characteristics.

Table 9 further describes the evolution of GPA over time by work-in-school status.
For both major types in four-year colleges, average GPA is roughly decreasing in work
intensity, and increasing over time within each work intensity category. For two-year
colleges, GPA is decreasing in work intensity only in the first period. By periods 3 and
4, the opposite is true. This illustrates a substitution effect between school and work
intensity—those working hardest take longer than two years to complete a two-year
degree.

Finally, to illustrate learning on wages as a reason for stopouts to return to college,
Table 10 lists the difference between actual and expected log wages for those who
have stopped out, broken out by next-period decision. Those who have left college for
the labor force and choose to return to school have 8% lower wages on average the
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year before returning to school, even when conditioning on a rich set of individual,
family background, and labor force experience characteristics. This provides suggestive
evidence that learning on wages contributes to the decision to return to college.

3 The model

3.1 Overview

After graduating from high school, individuals in each period make a joint schooling
and work decision. For those who have not graduated from a four-year college, their
schooling options include whether to attend a two-year, a four-year institution as a
science major, or a four-year institution as a non-science major. After graduating from
a four-year college, the schooling option includes whether or not to enroll in graduate
school. individuals choose whether to enroll in graduate school, and whether to work
part-time or full-time.

In addition to choosing among the different schooling options, individuals also choose
whether to work full-time, part-time, or not at all. All three of these decisions are avail-
able regardless of their schooling choice.9 Working while in college may be detrimental
to academic performance (see, e.g., Stinebrickner & Stinebrickner, 2003) but is also
likely to be a channel through which individuals learn about their productivity. Our
framework incorporates this tradeoff.

Individuals only have imperfect information about (i) their schooling ability and
(ii) their labor market productivity. If they attend college, they learn about their
ability by observing their schooling performance, as measured by their Grade Point
Average (GPA) at the end of the academic year. The gap between the observed and
predicted GPA then provides a noisy signal for their ability, which is used to update their
belief in a Bayesian fashion. Since schooling ability and productivity will in general be
correlated, the GPA also provides some information about labor market productivity.
Individuals will therefore use their GPA to update their productivity belief. Similarly,
those who participate to the labor market update their beliefs about their labor market

9See also Joensen (2009) who estimates a dynamic structural model of schooling and work decisions
allowing for work while in college.
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productivity as well as their beliefs about their schooling ability after receiving their
wage.

Individuals are forward-looking and choose the sequence of actions yielding the
highest value of expected lifetime utility. Hence, when making their schooling and
labor market decisions, individuals take into account the option value associated with
the new information acquired on different choice paths. Individuals who choose to
work while in college will get two signals, through their GPA and their wage, on their
ability and productivity. Interestingly, without the need to invoke a credit constraint
argument, the value of information implies that working while in college may be optimal
for some students in spite of a detrimental impact on their academic performance.

We now detail the main components of the model, namely the grade equations and
the labor market, together with the learning process, and the flow utility functions for
each alternative.

3.2 Grades

We denote by j ∈ {a, bs, bn} the type of college and major attended, where a (for Asso-
ciate) denotes a two-year college, bs (for Bachelor, Science) a four-year college Science
major, and bn (for Bachelor, non-Science) a four-year college non-Science major. We
assume that grades depend on Aij where Aij is the unobserved schooling ability about
which individuals have some beliefs initially given by the prior distribution N (0, σ2

Aj).
Grades also depend on a set of covariates, Xict, that are known to the individual and
include observed ability measures and past decisions.

Denoting by t calendar time and τ the period of college enrollment, grades in two-
year colleges and in the first two years of four-year colleges are given by:

Gijτ = γ0j +Xictγ1j + Aij + εijτ

The idiosyncratic shocks εijτ are distributed N (0, σ2
jτ ) and are independent from the

other state variables. Define the type-j (college, major) academic index of i at time t,
AIijt, as:

AIijt = γ0j +Xictγ1j + Aij

The academic index AIijt gives expected grades conditional on knowing Aij but not the
idiosyncratic shock εijτ .
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For four-year colleges and periods τ > 2, we express grades relative to AIijt as
follows:10

Gijτ = λ0j + λ1jAIijt + εijτ

Hence, the return to the academic index varies over period of college enrollment and
across majors. In particular, consistent with Hansen et al. (2004), our specification
allows the effect of latent ability on grades to vary with the number of years spent in
college.

3.3 A two-sector labor market

Individuals who choose one of the work options (either full-time or part-time) receives
an hourly wage that depends on his graduation status. We assume that there are two
sectors in the labor market, which are referred to in the following as skilled (four-year
college graduates and individuals with a graduate school degree) and unskilled (all the
others labor market participants, including high school graduates or GED recipients,
college dropouts and stopouts as well as two-year college graduates).

Wages in sector l depend on productivity Ail, a set of observed characteristics Xilt,
time dummies δlt, and idiosyncratic shocks εst:

ln(Wist) = δlt +Xiltγ1l + Ail + εilt

We account for nonstationarity in wages by including calendar year dummies, δlt, thus
incorporating business cycle effects. The time dummies at t are observed in period t but
individuals must form expectations over this variable for periods t+1 and beyond. The
idiosyncratic shocks, εlt, are assumed to be distributed N (0, σ2

l ) and are independent
over time and independent of the other state variables.

3.4 Flow utilities

We denote in the following by dit = (j, k) the choice for individual i at time t over
school, where j ∈ {a, bs, bn, 0} (respectively j ∈ {gs, 0}) before (resp. after) graduation

10See Arcidiacono (2004) for a similar ability index specification.
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from a four-year college, and work k ∈ {p, f, 0}, where gs refers to graduate school, and
p and f refer to part-time and full-time work. The choice dit = (0, 0) then indicates
the home production option: no work and no school.

Up to an intercept term and an idiosyncratic preference shock, we assume that the
utility of the choice (j, k) is additively separable. Let Z1it denote variables that affect
the utility of school and Z2it denote the variables that affect the utility of working. The
flow payoff for choice (j, k) is given by:

Ujkt(Zit, εijk) = αjk + Z1itαj + Z2itαk + εijkt (3.1)

= ujk(Zit) + εijkt (3.2)

where Zit includes characteristics such as AFQT, race, as well as the previous choice.
Controlling for the previous choice allows for switching costs, in a similar spirit as
in Keane & Wolpin (1997). The idiosyncratic preference shocks εijkt are assumed to
follow a (standard) Type-I extreme value distribution. Embedded in Z1it are expected
abilities in sector j, with the exception of graduate school for which the flow payoff
depends on the expected abilities in both four-year college Science and non-Science
majors. Embedded in Z2it are expected log-wages in sector k.11

Finally, the home production sector (dit = (0, 0)) is chosen as a reference alternative,
and we normalize accordingly the corresponding flow utility to zero. The flow utility
parameters therefore need to be interpreted relative to this alternative.

3.5 The optimization problem

Individuals are forward-looking, choosing the sequence of college enrollment and labor
market participation decisions yielding the highest present value of expected lifetime
utility. The individual chooses dit to sequentially maximize the discounted sum of
payoffs:

E

 T∑
t=1

βt−1∑
j

∑
k

(ujkt(Zit) + εijkt)1{dit = (j, k)}


11Both of these covariates will vary given the choices. However, to conserve on notation we do not
put jk subscripts on the Z’s.
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where β ∈ (0, 1) is the discount factor. The expectation is taken with respect to the
distribution of the future idiosyncratic shocks as well as the signals associated with the
different choice paths.

Let Vt(Zit) denote the ex ante value function at the beginning of period t, the
expected discounted sum of current and future payoffs just before εt is revealed. Denote
the conditional value function vijkt as the value of is given by:

vjkt(Zit) = ujkt(Zit) + βEt(Vt+1(Zt+1)|Zit, dit = (j, k))

Given the assumption that the ε’s are i.i.d. Type 1 extreme value,

vjkt(Zit) = ujkt(Zit) + βEt

 ln
∑

j

∑
k

exp(vjkt+1(Zit+1))
∣∣∣∣∣∣Zit, dit = (j, k)

+ βγ

where γ denotes Euler’s constant.

3.6 Beliefs

Individuals are uncertain about i) their future preference shocks, ii) their schooling
ability and labor market productivity, and iii) the evolution of the market shocks (the
δlt’s). The first we have discussed as expectations over future preference shocks are
encompassed in the ex ante value function. We next describe beliefs over abilities and
productivities as well as the market shocks.

3.6.1 Beliefs over schooling ability and labor market productivity

We denote Ai as the five dimensional ability vector, Ai ≡ (Aia, Aibs, Aibn, Ais, Aiu)′

(simply referred to as ability in the following). Individuals update their beliefs in a
Bayesian fashion. Their initial ability beliefs are given by the population distribution of
A, which is supposed to be multivariate normal with mean zero and covariance matrix
∆. Importantly, we do not restrict ∆ to be diagonal, thus allowing for correlated
learning across the five different ability components.12

Namely, at each period t of college attendance, individuals use their GPA to update
their belief about their schooling ability in all college options (Aia, Aibs, Aibn), as well as

12See also Antonovics & Golan (2012), James (2011) and Sanders (2010) who estimate occupational
choice models with correlated learning.
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their labor market productivity in both sectors (Ais, Aiu). The GPA provides a noisy
signal for their ability, which is denoted by Sijτ for type-j college option and period
of enrollment τ . For two-year colleges and the first two years of four-year colleges, the
signal is given by:

Sijt = Gijτ − γ0j −Xictγ1j

For four-year colleges and subsequent periods (τ > 2), the index specification yields:

Sijt = Gijτ − λ0j − λ1j(γ0j +Xictγ1j)
λ1j

Similarly, individuals who participate to the labor market update their ability beliefs
after receiving their wages. The signal is given by, for sector l and period t:

Silt = ln(Wilt)− γ0l −Xiltγ1l

Finally, individuals may choose to work while in college, in which case they will receive
two ability signals (Sijτ , Silt).

It follows from the normality assumptions on the initial prior ability distribution
and on the idiosyncratic shocks that the posterior ability distributions are also normally
distributed. Specifically, denoting by Et(Ai) and Σt(Ai) the posterior ability mean and
covariance at the end of period t, we have (see DeGroot, 1970):

Et(Ai) = (Σ−1
t−1(Ai) + Ωit)−1(Σ−1

t−1(Ai)Et−1(Ai) + ΩitS̃it) (3.3)

Σt(Ai) = (Σ−1
t−1(Ai) + Ωit)−1 (3.4)

where Ωit is a (5 × 5) matrix with zeros everywhere except for the diagonal terms
corresponding to the occupations of the individual in period t (namely two-year college,
four-year college Science major, four-year college non-Science major, skilled or unskilled
labor), which are given by the inverse of the idiosyncratic shock variances (multiplied
by λ2

1j for four-year colleges in junior and senior years). S̃it a (5× 1) vector with zeros
everywhere except for the elements corresponding to the occupations of the individual
in period t, which are given by the ability signals received in this period. Individuals
then integrate out over the possible signals they could receive for each possible decision.
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3.6.2 Beliefs over market shocks

We also need to specify how individuals form beliefs about the market. Individuals
observe the current values of δst and δut. Their beliefs are the process governing the
δt’s is an AR1:

δlt+1 = φ0l + φ1δlt−1 + ζlt (3.5)

We assume that ζlt is distributed N(0,σζ) and that individuals believe it is independent
over time and across sectors. Given the realizations of the δlt’s, individuals then in-
tegrate over possible realizations of the ζlt’s when forming their expectations over the
future.

4 Identification

Before turning to the estimation procedure, we discuss below the identification of the
model.13 As is common for these types of dynamic discrete choice models (see, e.g.,
Rust,1994, Magnac & Thesmar, 2002, and Arcidiacono & Miller, 2013), identification
of the flow utility parameters hinges on the distributional assumptions imposed on the
idiosyncratic shocks, the normalization of the home production utility and the discount
factor β, which is set equal to 0.9 in the following.

Let us consider the identification of the outcome equations (grades and log-wages).
The GPA Gijτ is only observed for the individuals who are enrolled in a type-j (college,
major) in their τ -th period of college enrollment. To the extent that college enrollment
decisions depend on the ability (Ai), this raises a selection issue. We show the identifi-
cation of the grade equation parameters by using, for each period τ , the prior ability at
the beginning of the period (Et−1(Aij)) as a control function in the grade equation (see
Navarro, 2008, for an insightful review of the control function approach). Specifically,
we consider the following augmented regression for j ∈ {bs, bn} and τ > 2:

Gijτ = λ0j + λ1j(γ0j +Xictγ1j) + λ1jEt−1(Aij) + νijτ

where it follows from the bayesian updating rule (see Equation (2.1), p.8) that Et−1(Aij)
can be expressed as a weighted sum of all the past ability signals. Under the key

13For the sake of exposition, we first consider the case of the model without type-specific unobserved
heterogeneity, before discussing the identification of the unobserved heterogeneity parameters.
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assumption, consistent with the specification of the flow utilities in Subsection 2.5,
that college enrollment decisions only depend on ability through the ability beliefs,
application of ordinary least squares to this equation identifies the parameters (λ0j, λ1j),
with the ability index coefficients (γ0j, γ1j) being identified from the first and second
period grades.

Identification of the ability index coefficients also follows from the assumption that
enrollment decisions only depend on ability through the past ability signals. Specifically,
grades in the first two years of four-year college as well as in two-year colleges can be
expressed as follows:

Gijτ = γ0j +Xictγ1j + Et−1(Aij) + νijτ

Application of ordinary least squares therefore directly identifies (γ0j, γ1j). Similar
arguments can be used for the identification of the log-wage equations in each sector.

Finally, the signal-to-noise ratios as well as the ability covariance matrix ∆ are
identified from the past ability signal coefficients. Of particular interest here are the
correlations between the different ability components, which are identified from indi-
viduals switching occupations.

In our specification with R latent heterogeneity types, we also need to tell apart
the type-specific unobserved (to the econometrician only) heterogeneity components
from the ability beliefs. For instance, low AFQT individuals who choose to enroll in
a four-year college right after high school graduation should have a high unobserved
preference for four-year college. Furthermore, individuals with low AFQT who are
enrolled in college may decide to leave college after getting a high GPA. It follows from
this type of behavior that these individuals will be predicted to have a high type-specific
unobserved schooling ability.

5 Estimation

We first detail the estimation procedure for the specification without type-specific unob-
served heterogeneity. Assuming that the idiosyncratic shocks are mutually and serially
uncorrelated, estimation proceeds in two stages, which consists of (i) estimation of
the grade and log-wage equations and (ii) estimation of the flow utility parameters.
The validity of this sequential approach follows from the key assumption that choices
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only depend on ability through the (observed) sequence of signals. This results in the
likelihood being separable in the outcome and choice contributions.

5.1 Additive separability

Specifically, we consider the case of an individual i attending college during Tc peri-
ods, who participate to the unskilled (resp. skilled) labor market during Tu (resp. Ts)
periods and for whom we observe a sequence of Td decisions. We write the individual
contributions to the likelihood of the grades, log-wages and choices by integrating out
the unobserved ability terms A = (Aa, Abs, Abn, As, Au)′, which breaks down the de-
pendence across the grades, log-wages, choices and between all of these variables. The
contribution to the likelihood writes, denoting by Gi the grades, wiu (resp. wis) the
unskilled (resp. skilled) log-wages and di the decisions, as a five-dimensional integral:

l(di1, . . . , diTd
, Gi1, . . . , GiTc , wiu1, . . . , wiuTu , wis1, . . . , wisTs)

=
∫
l(di1, . . . , diTd

, Gi1, . . . , GiTc , wiu1, . . . , wiuTu , wis1, . . . , wisTs|A)l(A)dA

where l(A) is the pdf. of the ability distribution N (0,∆).
From the law of successive conditioning, and using the fact that choices depend on

A only through the signals, we obtain the following partially separable expression:

l(di1, . . . , diTd
, Gi1, . . . , GiTc , wiu1, . . . , wiuTu , wis1, . . . , wisTs) = Ldi

× LGi,wiu,wis

Where the contribution of the sequence of decisions is given by:

Ldi = l(di1)l(di2|di1, Gi1) . . . l(diTd
|di1, di2, . . . , diTd−1, Gi1, Gi2, . . . wiu1, wiu2, . . . , wis1, wis2, . . .)

This simply corresponds to the product over Td periods of the type-1 extreme value
choice probabilities obtained from the dynamic discrete choice model.

The contribution of the observed sequence of grades, unskilled and skilled log-wages
is given by:

LGi,wiu,wis
=

∫
l(Gi1|di1, A) . . . l(GiTc |di1, di2, . . . , A)l(wiu1|di1, A) . . . l(wiuTu |di1, di2, . . . , A)

×l(wis1|di1, A) . . . l(wisTs|di1, di2, . . . , A)l(A)dA

Where l(wiut|di1, . . . , A), l(wist|di1, . . . , A), and l(Git|A) are Gaussian pdf of respec-
tively, the unskilled, skilled log-wage and GPA distributions.
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5.2 Estimation of grade and wage parameters

Estimation of the parameters of the outcome equations proceeds as follows. Instead of
maximizing directly the likelihood of the outcomes, which would be computationally
costly because of the ability integration, we compute the parameter estimates using
the EM algorithm (Dempster et al., 1977). The estimation procedure iterates over the
following two steps, until convergence:

• E-step: update the posterior ability distribution from all the observed outcome
data (log-wages and grades), using the outcome equation parameters obtained
from the previous iteration. This follows from the bayesian updating formulas
(3.3)-(3.4), for the posterior ability mean and covariance, given in Section 3.6.1.
The (population) variance of the ability distribution is then updated as follows,
for each iteration k of the EM estimation:

∆k = 1
N

N∑
i=1

(
Σk
i (A) + Ek

i (A)Ek
i (A)′

)
where N denotes the number of individuals in the sample, Ek

i (A) the posterior
ability mean (Ek

i (A)′ its transposed) and Σk
i (A) the posterior ability covariance

computed at the beginning of the E-step.

• M-step: given the posterior ability distribution obtained at the E-step, maximize
the expected complete log-likelihood of the outcome data, which is separable
across sectors (two-year college, four-year college Science major, four-year college
non-Science major, skilled or unskilled labor).

Namely, at the M-step of each iteration k of the EM estimation, denoting by lik(A)
the posterior ability distribution computed at the E-step, we maximize the expected
complete log-likelihood Elik:

Elik =
∫

ln(l(Gi1|di1, A) . . . l(GiTc |di1, di2, . . . , A)l(wiu1|di1, A) . . . l(wuiTu|di1, di2, . . . , A))lik(A)dA

= Elik,a + Elik,bs + Elik,bn + Elik,s + Elik,u

For instance, the parameters of the unskilled wage equation are updated by maxi-
mizing the contribution Elik,u, which writes, denoting by lik(Au) the marginal posterior
distribution of Au:

Elik,u =
∫

(ln(l(wiu1|di1, Au)) + . . .+ ln(l(wiuTu|di1, di2, . . . , Au)))lik(Au)dAu
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Note that this term is additively separable over time. For any given period τ of un-
skilled labor market participation, it follows from the normality assumptions on the
idiosyncratic productivity shocks and the unobserved ability that:

∫
ln(l(wiuτ |di1, di2, . . . , Au))lik(Au)dAu =

−1
2 ln(2πσ2

u)−
1

2σ2
u

(
Σk
iuu(A) + (wiuτ −Xiutγ1u − δut − Ek

iu(A))2
)

where t refers to calendar time (which should be understood as individual-specific here),
Ek
iu(A) and Σk

iuu(A) denote respectively the posterior mean and variance of the abil-
ity in the unskilled sector (computed at the E-step). This equality implies that the
wage equation parameters (γ1u, δut) can be simply updated by regressing (via OLS) the
log-wages in the unskilled sector on the set of observed characteristics, calendar time
dummies, and the posterior (unskilled) ability mean which plays the role of a selection
correction term. Besides, the idiosyncratic shock variance (σ2

u) is updated as follows:

σ2
u,k+1 =

∑
i,τ

(
Σk
iuu(A) + (wiuτ −Xiutγ1u − δut − Ek

iu(A))2
)

N obs
u

where N obs
u is the total number of wage observations in the unskilled sector. Skilled

wage equation parameters are updated similarly.
The updating rule above needs to be adjusted to account for the ability index specifi-

cation of the grade equations along with the time-varying variances of the idiosyncratic
shocks. For instance, for four-year colleges (period of enrollment τ > 2), the contribu-
tion to the log-likelihood writes: ∫

ln(l(Gijτ |di1, di2, . . . , Aj))lik(Aj)dAj =

−1
2 ln(2πσ2

jτ )−
1

2σ2
jτ

(
λ2

1jΣk
ijj(A) + (Gijτ − λ0j − λ1jAI

k
ijt)2

)
where j ∈ {bs, bn}, Σk

ijj(A) denotes the posterior variance of the college-j ability (com-
puted at the E-step), and AIkijt = γ0j + Xictγ1j + Ek

ij(A) is the posterior mean of the
ability index in college j. It follows that the parameters (γ0j, γ1j, λ0j, λ1j, (σ2

jτ )τ ) are
updated by solving the following minimization problem:

min
∑
i,τ

(
ln(σ2

jτ ) + 1
σ2
jτ

(
λ2

1jτΣk
ijj(A) + (Gijτ − λ0jτ − λ1jτAI

k
ijt)2

))
where (λ0jτ , λ1jτ ) = (0, 1) for τ ≤ 2, and (λ0jτ , λ1jτ ) = (λ0j, λ1j) otherwise.
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5.3 Estimation of the flow payoffs

With the estimates of the grade, graduation, and wage transitions taken as given, we
estimate the flow payoffs in a second state. Following Arcidiacono & Miller (2011), we
express the future payoffs in such a way that avoids solving the full backwards recursion
problem. Namely, the expected value function at time t+1 can be expressed relative to
the conditional value function for one of the choices plus a function of the conditional
choice probabilities. With the assumption that the preference shocks are distributed
Type 1 extreme value, the expected value function can be expressed as:

Et [Vt+1(Zit+1|dit = (j, k)] = Et [vj′k′t+1(Zit+1)− ln(pj′k′t+1(Zit+1))|dit = (j, k)]

for any choice (j′, k′), where pj′k′t+1(Zit+1) is the conditional choice probability (CCP)
of choosing dit+1 = (j′, k′).

Recall that in estimation it is difference in the conditional value functions that are
relevant, not the conditional value functions themselves. Consider any choice (j′, k′)
as well as the choice (0, 0) (home). Given these initial choices, it is straightforward to
show that there exists a sequence of choice such that, in expectation, individuals will
be in the same state three periods ahead, namely:

Et [Vt+3(Zit+3)|dit = (0, 0), dit+1 = (j′, k′), dit+2 = (0, 0)] =

Et [Vt+3(Zit+3)|dit = (j′, k′), dit+1 = (0, 0), dit+2 = (0, 0)]

We can then reformulate the problem in terms of two-period ahead flow payoffs and
conditional choice probabilities and then estimate the conditional choice probabilities
(CCPs) in a first stage. The differenced conditional value function is then:

vjkt(Zit)− v00t(Zit) =


ujk(Zit)− βEt (ln [p00t+1(Zt+1)] |Zit, dit = (j, k))

+βEt (ln [pjkt+1(Zt+1)]− ujk(Zt+1)|Zit, dit = (0, 0))
+β2Et (ln [p00t+2(Zt+2)] |Zit, dit = (0, 0), dit+1 = (j, k))
−β2Et (ln [p00t+2(Zt+2)] |Zit, dit = (j, k), dit+1 = (0, 0))


Estimation of the flow utility parameters then involves the following steps:

1. Estimate the CCPs via a flexible multinomial logit model.14

14The CCPs are identified from the data and could in principle be estimated nonparametrically.
However, we choose to estimate them using a parametric specification to avoid the curse of dimension-
ality.
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2. For, the expected differenced future value terms along the finite depends paths.

3. Estimate the flow utility parameters after expressing the future value function as
a function of the CCPs. Having estimated the CCPs in a first step, this simply
amounts to estimating a multinomial logit with an offset term.

5.4 Estimation with permanent unobserved heterogeneity

We account for permanent unobserved unobserved heterogeneity by assuming that in-
dividuals are one of R types where type is orthogonal to the covariates at t = 1.
Accounting for type-specific unobserved heterogeneity breaks down the separability be-
tween the choice and outcome components of the likelihood described above as our full
likelihood function is: ∑

i

ln
[
R∑
r=1

πr(Ld,i|rLG,wu,ws,i|r)
]

(5.1)

But note that we were already using the EM algorithm in estimation which, as illus-
trated in Arcidiacono & Jones (2003), restores the additive separability of the likelihood
function.

Following Arcidiacono & Miller (2011), we then use an adaptation of the EM algo-
rithm where, rather than updating the structural parameters of the decision process at
each step, we use their two stage approach and approximate the decision process with
a reduced form. Let L∗d,i|r give the reduced form likelihood conditional on being of type
r. The probability of i being the rth type follows from Bayes rule:

qir =
πr(L∗d,i|rLG,wu,ws,i|r)∑R

r′=1 πr′(L∗d,i|r′LG,wu,ws,i|r′)
(5.2)

In the first stage we recover the parameters of the grade and wage processes, the (type-
specific) CCPs, and the conditional probabilities of being each type.

The second stage boils down to a weighted multinomial logit with an offset term.
This is identical to the case without unobserved heterogeneity except that now the qir’s
are used as weights. Relative to full solution methods, this estimation procedure yields
very substantial computational savings, and only uses the CCPs two periods ahead.
Thanks to the latter feature, our estimates do not hinge on any behavioral assumptions
of the model far into the future.
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5.5 Missing college majors

In our data, four-year college majors are missing at a fairly high rate. This is especially
true for the first period of college enrollment, where close to 30% of majors are miss-
ing. We take this issue into account within our estimation procedure, by treating the
unobserved major in the first year of college enrollment as another unobserved latent
variable. The estimation procedure discussed above can be easily adjusted to allow for
this additional latent variable.

Specifically, along with the type-specific unobserved heterogeneity distribution, the
distribution of (unobserved) majors, conditional on each heterogeneity type, is going
to be estimated within the first stage of our estimation procedure. The distribution
of the unobserved majors is then taken as given in the second stage of the estimation,
which still corresponds to a weighted multinomial logit where the weights are given by
Pr(Type,Major|data) instead of Pr(Type|data), and the log-likelihood is conditional
on both the heterogeneity type and the major.

6 Preliminary results

In this section, we discuss a set of preliminary results, which were obtained for the
subsample of males. All the estimation results discussed below were obtained assuming
the existence of R = 2 unobserved heterogeneity types. Type 1 (respectively Type 2)
individuals account for 60.3% (resp. 39.7%) of the population.

6.1 Grade parameters

The parameter estimates for the grade equations are presented in Table 11. Conditional
on observables, blacks are found to have lower GPA than whites across the board, in
particular in 4-year colleges science majors as well as in 2-year colleges. While both
grades in high school and AFQT score are significant predictors of grades at both
schools and majors, it is worth noting that the former plays a major role, especially
in 4-year colleges science majors. Working generally seems to have little effect on
grades, regardless of time spent working. Interestingly, returns to ability are found to
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be larger after junior year for humanities majors in 4-year colleges, a pattern which does
not show up significantly for science majors. Finally, type-specific unobserved ability
(known to the agent) plays an important role, with students in the Type 1 group having
significantly lower GPA for both types of schools and majors.

6.2 Wage parameters

Estimates of the wage equations are given in Table 12. All else being equal, blacks have
lower wages in both sectors, with a larger wage gap in the unskilled sector. The opposite
is actually true for Hispanics in the skilled sector. Returns to experience are higher in
the skilled sector. Interestingly, experience in the unskilled sector does not translate
into higher labor market earnings in the skilled sector. Returns to schooling in the
unskilled sector are positive and significant, even though they are quantitatively fairly
small. However, working while in school results in a substantial wage loss, particularly
while at a four-year college. We also find positive returns to graduate schooling in
the skilled sector (with the exception of the first year of graduate school). Finally, our
results point to the existence of heterogeneity in productivity across the two unobserved
types, with type 1 individuals being receiving significantly higher wages in both sectors.

6.3 Learning

Table 13 presents the correlation matrix for the unobserved abilities (initially unknown
to the individual) in each sector, along with their variances. With the exception of
4-year Sciences and 2-year colleges, schooling ability is highly correlated across college
types and majors. A similar picture emerges across skilled and unskilled sectors within
the labor market, which are strongly correlated. Importantly, even though the correla-
tions are smaller, schooling abilities are generally found to be positively correlated with
labor market productivity in each sector. An exception to this is the negligibly small
correlation between ability in 4-year humanities and productivity in the skilled sector.
Finally, it is worth noting that the unobserved ability variance is larger for 4-year sci-
ences and the skilled sector (even after rescaling by the variance of the corresponding
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outcomes), which suggests that the role played by unobserved ability is relatively more
important in those sectors.
Table 14 further shows that, even though our approach allows to account for both
types of unobserved ability (known and unknown to the individuals), residual variation
in log-wages and GPA remains sizeable. Our estimates also suggest that grades in 2-
year colleges are noisier signals of ability than in 4-year colleges, with the precision of
the signals increasing over time for all types of colleges and majors.

6.4 Sorting

Given the estimates of the learning portion of the model, we can measure sorting by
unobserved ability. Table 15 shows the mean for each unobserved ability for different
choice paths. Namely, we take individuals in the final year of our data (2010), calculate
their posterior abilities and then average across those who chose a particular path.

Though sorting effects are relatively small, the signs are generally in the expected
direction. Those who go continuously to college and do not work while in school are
relatively high in all schooling abilities, as well as in the skilled and unskilled labor
market productivity. Those who work while enrolled in college have lower ability across
the board and this may be part of the reason they chose to work, having received a
relatively weaker signal on their academic ability. While working, these individuals
discover that their unobserved ability in the unskilled sector is low and hence remain
in school. Those who stopout but then graduate also have lower schooling ability
than those continuously enrolled in college and not working, but they have a higher
productivity in the unskilled sector than those continuously enrolled and working.

The last two rows consider those who stopped out but then did not graduate and
those for whom dropping out was an absorbing sate. Individuals in these two groups
have relatively low schooling ability for all college types and majors. It is particularly
interesting to note that those who stopout but do not graduate have particularly low
productivity in the unskilled sector, which is much lower than that of the dropouts.
These individuals bounce back and forth between schooling and work and unfortunately
find that they are not particularly productive in school or in the unskilled sector.
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6.5 Flow payoffs

Finally, Table 16 reports the structural parameter estimates obtained from the proce-
dure described in Subsection 5.3. Notably, the results indicate that individuals with
higher prior ability have a higher utility for four-year college (relative to home produc-
tion), with a larger coefficient for Science majors. Similarly, individuals with higher
AFQT have a higher utility for four-year college, especially again for Science majors.
The same holds true for high school grades, which are positively associated with the
utility for all schooling options. Overall, this pattern is consistent with a cost of effort
decreasing with these ability measures. Consistent with the existence of higher mone-
tary costs of attending a four-year college (as opposed to a two-year college), individuals
whose parents went to college also have a higher utility for four-year colleges, but not
for two-year colleges. As expected, individuals with higher expected log-wages have a
higher utility for work. Futhermore, the estimated coefficients on previous activities
point to the existence of substantial switching costs across types of colleges and majors.
Finally, type-1 individuals are found to have higher preferences for four-year colleges,
even though the corresponding coefficients are quite small.

7 Conclusion

This paper examines the determinants of college attrition, in a situation where in-
dividuals have imperfect information about their schooling ability and labor market
productivity. Using longitudinal data from the NLSY97, we estimate a dynamic model
of college attendance, major choice and work decisions. A key feature of our framework
is to account for correlated learning about ability and productivity through college
grades and wages. Estimation results show that a sizable fraction of the dispersion in
college grades as well as log-wages is attributable to the ability components which are
gradually revealed to the individuals as they accumulate more signals. These ability
components are highly correlated across college types and majors, skilled and unskilled
labor market, and we also find clear evidence of correlation between schooling ability
and labor market productivity. Finally, we document the existence of sorting on ability
and labor market productivity based on college enrollment and labor market partici-
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pation decisions, suggesting that school-to-work transitions are partly driven by ability
learning. In particular, those who have stopped out of college have learned that their
academic abilities are relatively low but that their productivity in the unskilled sector
is also low. In contrast, dropout perform poorly academically but stay out of school
because their productivity in the unskilled sector is sufficiently high.
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A Data

This appendix section details the criteria we use to select our estimation subsample.
Table 1 outlines each of these criteria.
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Table 1: Sample Selection

Selection criterion Resultant persons Resultant person-years
Full NLSY97 sample 8,984 125,776
Drop females 4,599 64,386
Drop missing AFQT, HS grades or Parental education 3,408 47,712
Drop HS Dropouts (or those not receiving GED) 3,027 42,378
Drop observations before HS graduation 3,027 31,772
Drop right-censored missing interview spells 3,027 30,096
Drop any who attend college at a young age or graduate college in 2 or fewer years 3,023 29,957
Drop any who are not in HS at age 15 or under or have other outlying data 2,689 27,066
Drop those who don’t report a 4-year college major after the first year 2,532 24,141
Drop observations after someone has a missing wage 2,395 20,903
Drop observations after someone has a missing grade in year 3+ of college 2,395 20,562
Drop anyone reporting college attendance after college graduation 2,395 20,560
Final estimation subsample 2,395 20,560
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Table 1: AFQT, gender and race, broken down by college enrollment
status

Full Descriptive Sample College, start in two-year
Variable Obs Mean Std. Dev. Obs Mean Std. Dev.
AFQT 6,105 0.000 1.000 1,882 -0.129 0.877
male 6,105 0.500 0.500 1,882 0.468 0.499
black 6,105 0.246 0.431 1,882 0.248 0.432

hispanic 6,105 0.180 0.384 1,882 0.226 0.419

College, start in four-year sci College, start in four-year hum
AFQT 370 0.811 0.835 1,102 0.491 0.895
male 370 0.616 0.487 1,102 0.391 0.488
black 370 0.189 0.392 1,102 0.240 0.427

hispanic 370 0.114 0.318 1,102 0.112 0.315

Table 2: GPA over time by type of college attended

Four-year college Sci Four-year college Hum Two-year college
Period Obs Mean Std Dev Obs Mean Std Dev Obs Mean Std Dev
year 1 295 3.042 0.757 855 3.058 0.655 870 3.048 0.746
year 2 290 3.141 0.594 866 3.127 0.545 580 3.045 0.651
year 3 259 3.223 0.545 960 3.198 0.492 336 3.149 0.517
year 4 237 3.280 0.493 910 3.248 0.486 154 3.093 0.612

31



Table 3: Outcomes of college enrollees

Estimation College Type
Full Sample Subsample Two-Year Four-Year Sci Four-year Hum

Continuous college (CC) 41.10% 28.97% 29.15% 61.69% 56.49%
Stopped-out (SO) 23.81% 31.43% 31.75% 16.61% 18.48%
Dropped-out (DO) 35.10% 39.60% 39.10% 21.69% 25.03%
Total N 5,217 2,006 856 295 855

Notes: College Type refers to the first type of college enrolled in. Estimation subsample refers to the subsample over
which we estimate the structural model.

Table 4: Outcomes of college enrollees, conditional on having gradu-
ated by Round 14 of NLSY97

Type of college first attended
Two-year Four-Year Sci Four-year Hum Any
N % N % N % N %

CC 197 67.5% 245 91.8% 620 86.1% 1,062 83.0%
SO 95 32.5% 22 8.2% 100 13.9% 217 17.0%
Total 292 100.0% 267 100.0% 720 100.0% 1,279 100.0%

Table 5: Background characteristics of college enrollees

AFQT High School GPA Mother with BA 1996 Family Income ($1996)
CC 0.67 3.28 32.52% 65,670
SO 0.29 2.94 18.97% 49,284
DO 0.11 2.88 17.27% 49,552
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Table 6: Average GPA over time by college completion status

Four-Year Sci Four-Year Hum Two-Year
Period CC DO/SO CC DO/SO CC DO/SO
1 3.18 2.82 3.14 2.96 3.24 2.97
2 3.24 2.96 3.19 3.03 3.20 2.97
3 3.27 3.09 3.24 3.11 3.23 3.11
4 3.33 3.13 3.29 3.13 3.21 3.04
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Table 7: Difference between actual and expected period-t grades (by
t+ 1 period college decision)

Mean diff T
Mean residual Std Dev N (p-val)

4-year Science Majors:
Drop out from 4-year college & science -0.242 0.708 98 4.43

Complement 0.020 0.548 1167 (0.00)
Switch to 4-year college & humanities -0.003 0.543 160 0.07

Complement 0.000 0.570 1105 (0.94)
Switch to 2-year college -0.280 1.094 22 2.35

Complement 0.005 0.552 1243 (0.02)

4-year Humanities Majors:
Drop out from 4-year college & humanities -0.142 0.604 434 6.27

Complement 0.016 0.482 3894 (0.00)
Switch to 4-year college & science 0.023 0.542 121 0.53

Complement -0.001 0.497 4207 (0.60)
Switch to 2-year college -0.206 0.658 76 3.65

Complement 0.004 0.494 4252 (0.00)

2-year students:
Drop out from 2-year college -0.118 0.750 583 5.29

Complement 0.046 0.584 1499 (0.00)
Switch to 4-year college (any major) 0.105 0.514 228 2.63

Complement -0.013 0.652 1854 (0.01)
Switch to 4-year college & science 0.078 0.543 29 0.66

Complement -0.001 0.640 2053 (0.51)
Switch to 4-year college & humanities 0.076 0.514 170 1.63

Complement -0.007 0.648 1912 (0.10)

Note: regression covariates include sex and race dummies, AFQT, age, and work intensity dummies
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Table 8: Major transition matrix for stopouts

Major when returned after stopping out
Major before stopping out science humanities 2-year college don’t know / unreported N

science 22.50% 27.50% 20.00% 30.00% 80
humanities 4.01% 54.32% 21.91% 19.75% 324

2-year college 4.44% 21.56% 49.05% 24.95% 473
don’t know / unreported 4.62% 21.94% 37.64% 35.80% 433

Total 5.50% 30.15% 36.79% 27.56% 1,310

Note: Table only includes first instance of stopping out
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Table 9: Average GPA over time by college type and work intensity

(a) 4-year Sciences

Period
1 2 3 4

Work FT 3.02 3.09 3.11 3.24
Work PT 2.97 3.09 3.16 3.18
No Work 3.07 3.18 3.30 3.37
Total 3.04 3.14 3.22 3.28

(b) 4-year Humanities

Period
1 2 3 4

Work FT 3.02 3.09 3.22 3.15
Work PT 3.04 3.13 3.19 3.26
No Work 3.07 3.14 3.20 3.27
Total 3.06 3.13 3.20 3.25

(c) 2-year college

Period
1 2 3 4

Work FT 3.08 3.10 3.21 3.18
Work PT 2.98 3.08 3.15 3.10
No Work 3.10 2.95 3.07 2.96
Total 3.05 3.04 3.15 3.09
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Table 10: Difference between actual and expected wages in time t for
stopouts (by t+ 1 decision)

Mean diff T
Mean residual Std Dev N (p-val)

Stay in work 0.026 0.491 6,583 2.77
Return to school -0.054 0.369 297 (0.01)

Total 0.022 0.487 6,880

Note: regression covariates include levels and interactions of the following
variables: sex, race, and year dummies; AFQT; experience; age; and work
intensity dummies

Table 11: Estimates of 2 and 4 year GPA Parameters

4 year Science 4 year Humanities 2 year
Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Constant 3.31 (0.164) 3.14 (0.101) 3.23 (0.050)
Black -0.17 (0.076) -0.03 (0.040) -0.12 (0.025)
Hispanic 0.03 (0.071) 0.04 (0.045) 0.03 (0.023)
AFQT 0.07 (0.037) 0.09 (0.020) 0.07 (0.011)
HS Grades 0.24 (0.033) 0.18 (0.020) 0.18 (0.010)
Work FT 0.04 (0.066) -0.02 (0.041) 0.02 (0.022)
Work PT 0.02 (0.048) 0.00 (0.031) 0.03 (0.021)
Year 2+ -0.06 (0.021)
λ0 (ability index intercept) -0.50 (0.296) -0.88 (0.256) 0.00 (—)
λ1 (ability index loading) 1.12 (0.089) 1.28 (0.082) 1.00 (—)
Unobserved type 1 -0.32 (0.045) -0.19 (0.030) -0.10 (0.018)
Person-years obs. 935 1,828 1,584
Note: Controls for parental education (college dummy) and age were also included.

37



Table 12: Estimates of Skilled and Unskilled Wage Parameters

Skilled Unskilled
Coeff. Std. Error Coeff. Std. Error

Constant 2.25 (0.064) 1.78 (0.024)
Black -0.05 (0.017) -0.09 (0.006)
Hispanic 0.05 (0.019) 0.00 (0.006)
Age 0.01 (0.005) 0.02 (0.002)
Unskilled Experience -0.01 (0.004) 0.05 (0.002)
Skilled Experience 0.07 (0.004)
PT -0.06 (0.017) -0.01 (0.006)
PT 2 year -0.10 (0.012)
PT 4 year -0.17 (0.011)
FT 2 year -0.03 (0.012)
FT 4 year -0.04 (0.013)
PT graduate school -0.05 (0.033)
FT graduate school -0.03 (0.027)
1 year graduate school -0.03 (0.026)
2 years graduate school 0.02 (0.026)
3 years graduate school 0.13 (0.044)
4+ years graduate school 0.07 (0.060)
1 year college 0.04 (0.007)
2 years college 0.06 (0.008)
3 years college 0.11 (0.010)
4+ years college 0.14 (0.010)
Unobserved type 1 0.29 (0.011) 0.10 (0.005)
person-years 2,273 13,140
Note: Controls for AFQT, High School GPA, parental education (college dummy) and cal-

endar year dummies were also included.
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Table 13: Correlation Matrix and Variances for Unobserved Abilities

Skilled Unskilled 4 year Science 4 year Humanities 2 year
Correlation matrix
Skilled 1.000 0.723 0.178 0.036 0.223
Unskilled 0.723 1.000 0.267 0.215 0.251
4 year Science 0.178 0.267 1.000 0.604 0.206
4 year Humanities 0.036 0.215 0.604 1.000 0.763
2 year 0.223 0.251 0.206 0.763 1.000
Variances 0.129 0.077 0.130 0.076 0.086

Table 14: Idiosyncratic Variances

Period Skilled Unskilled 4 year Science 4 year Humanities 2 year
1 0.129 0.158 0.314 0.316 0.367
2 0.159 0.137 0.277
3 0.108 0.105 0.175
4 0.057 0.069
5+ 0.137 0.140

Table 15: Average Posterior Ability in 2010 for Different Choice Paths

Choice Path Skilled Unskilled 4 year Science 4 year Humanities 2 year N
Continuous College, no work 0.02 0.02 0.05 0.03 0.02 104
Continuous College, work -0.01 -0.01 -0.01 0.00 0.00 368
Stopout, graduate 0.02 0.02 0.01 0.00 0.00 136
Stopout then Dropout -0.05 -0.05 -0.04 -0.02 -0.02 108
Dropout -0.01 -0.01 -0.01 -0.01 -0.01 381
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Table 16: Flow Utility Estimates

2-year 4-year Sci 4-year Hum Work PT Work FT Grad School
Constant -1.992 -7.507 -6.993 -3.678 -4.079 -6.308
AFQT 0.016 2.176 1.093 0.245 -0.066
Black -0.251 1.701 1.547 -0.300 -0.623

Hispanic 0.079 -1.368 -0.781 -0.057 0.105
HS grades 0.258 1.153 1.344 -0.185 0.053

Parent college -0.189 1.609 1.185 -0.362 -0.398
Prior Academic Ability 0.002 1.376 0.301
Expected Log Wage 1.513 1.513

Previous HS 0.677 1.817 1.500 0.370 0.084
Previous 2-year 2.636 1.139 0.902 0.147 0.106

Previous 4-year Sci 1.042 4.730 2.229 0.460 0.313 0.029
Previous 4-year Hum 0.368 1.945 3.547 0.553 0.606 0.571
Previous Work PT 0.093 0.364 0.421 1.495 1.125 0.024
Previous Work FT -0.068 0.004 0.276 0.962 1.825 0.189

Previous Grad School 0.057 0.951 4.816
Graduated 4-year college -4.646 -1.314

Work PT -1.406 -7.262 -5.071 -1.160
Work FT -1.489 -3.748 2.866 -2.292

4yr Sci weight -0.193
4yr Hum weight 0.603

Unobserved type 1 -0.120 0.251 0.224 -0.026 -0.014 -0.651
log likelihood -25,191
person-years 20,560
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