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Abstract

We study the asymptotic inference for a conditional moment equality model using high-

frequency data sampled within a fixed time span. The model involves the latent spot variance

of an asset as a covariate. We propose a two-step semiparametric inference procedure by first

nonparametrically recovering the volatility path from asset returns and then conducting infer-

ence by matching integrated moment conditions. We show that, due to the first-step estima-

tion error, a bias-correction is needed for the sample moment condition to achieve asymptotic

(mixed) normality. We provide feasible inference procedures for the model parameter and estab-

lish their asymptotic validity. Empirical applications on VIX pricing and the volatility-volume

relationship are provided to illustrate the use of the proposed method.
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1 Introduction

Inference methods based on moment equalities have been a powerful tool in empirical economists’

arsenal since the invention of the generalized method of moments (GMM) (Hansen (1982), Hansen

and Singleton (1982)). In their application, moment conditions often arise from conditional

moment equalities as orthogonality conditions between instruments and random disturbances.

Asymptotic properties of these methods are determined by the properties of sample moments,

which are well known (White (2001)) in the classical “large T” setting with an asymptotically ex-

panding time span. In this paper, we study a novel variant of the GMM for estimating conditional

moment equality models using high-frequency (intraday) data that are sampled within a relatively

short sample period. We derive an asymptotic theory in a setting where data are sampled at

asymptotically increasing frequencies within a fixed time span, allowing for general forms of de-

pendence and heterogeneity in the data. Our study is mainly motivated by financial applications

such as the estimation of certain types of option pricing models and market microstructure models,

where high-frequency data are rapidly becoming more readily available.

An important aspect of financial models is that they often involve volatility processes of finan-

cial time series. This is not surprising since volatility is the primary measure of risk in modern

finance (Engle (2004)). Since volatility is unobservable, its appearance in the model poses a sub-

stantial challenge for inference. The common solution to the latent volatility problem is to impose

auxiliary parametric restrictions on volatility dynamics; see Bollerslev, Engle, and Nelson (1994),

Ghysels, Harvey, and Renault (1995) and Shephard (2005) for reviews. Since an incorrect para-

metric specification of the auxiliary model may affect the inference of the primary model, it is

prudent to consider a nonparametric approach as a complement.1 Indeed, a large literature on

nonparametric inference for volatility has emerged during the past decade by harnessing the rich

information in high-frequency data; see Jacod and Protter (2012), Hautsch (2012) and Andersen,

Bollerslev, Christoffersen, and Diebold (2013) for recent reviews.

This paper proposes a simple, yet general, two-step semiparametric procedure for estimating

conditional moment equality models that include volatility as a latent variable. In the first step,

we nonparametrically recover the volatility process from high-frequency asset returns via a spot

realized variance estimator (Foster and Nelson (1996), Comte and Renault (1998)) with truncation

for price jumps (Mancini (2001), Jacod and Protter (2012)). In the second step, we construct

sample versions of instrumented conditional moment equalities. Unlike the classical GMM, the

population moment condition here takes form of an integrated stochastic process that involves the

1Although it is subject to the risk of misspecification, a tight parametric specification may have several advantages
over a nonparametric approach, such as better statistical efficiency, better finite and out-of-sample performance,
simplicity of interpretation and real-time control, etc. Pseudo-true parameters (White (1982)) for misspecified
parametric models may be worth considering in practice as well.
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spot variance and other state variables over a fixed time span, instead of an unconditional moment.

We thus refer to the proposed framework as the generalized method of integrated moments (GMIM).

The GMIM estimator for a finite-dimensional model parameter is constructed as the minimizer

of a sample criterion function of the quadratic form. Our analysis also extends the scope of the

high-frequency literature on volatility estimation: while prior work focused on the inference of

the volatility itself, we treat its estimation only as a preliminary step and mainly consider the

subsequent inference of parameters in economic models.

Since we treat the volatility process in a nonparametric manner, our method is semiparametric

in this particular aspect. The key distinctive feature of our semiparametric procedure is that the

nonparametric object here (i.e., the volatility process) is a nonsmooth stochastic process rather

than a smooth deterministic function. Indeed, the sample path of the volatility process in a

typical stochastic volatility model (Heston (1993), Duffie, Pan, and Singleton (2000)) is nowhere

differentiable because of Brownian volatility shocks and is often discontinuous due to volatility

jumps. This feature gives rise to an interesting theoretical result: the first-step volatility estimation

leads to a “large” bias in the sample moment function, in the sense that the bias cannot be

made asymptotically negligible in the derivation of central limit theorems by just restricting the

asymptotic behavior of tuning parameters. We hence consider an explicit bias-correction to the

sample moment function and show that the bias-corrected sample moment function enjoys a central

limit theorem. This result extends the theory of Jacod and Rosenbaum (2013) and is one of our

main technical contributions. In contrast, in typical kernel- or sieve-based methods, the bias from

the nonparametric estimation can be “tuned” to be asymptotically small by undersmoothing (or

overfitting) the unknown function, under the assumption that the function is sufficiently smooth;

see, for example, Newey (1994) and Gagliardini, Gouriéroux, and Renault (2011).

The GMIM estimator is constructed using the bias-corrected sample moment function. We

show that the GMIM estimator is consistent and has a mixed Gaussian asymptotic distribution.

The asymptotic covariance matrix is random and consists of two additive components. The first

component is due to the random disturbances (e.g., pricing errors in an option pricing model)

that implicitly define the conditional moment equalities. We allow the random disturbance to be

serially weakly dependent and propose a heteroskedasticity and autocorrelation consistent (HAC)

estimator for it. The HAC estimator is nonstandard (cf. Newey and West (1987)) due to its

involvement with discretized processes including, in particular, the latent volatility process, in an

in-fill asymptotic setting. The second component is contributed by the first-step estimation error,

for which new consistent estimators are also provided in closed form. Overidentification tests

(Hansen (1982)) and Anderson–Rubin–type confidence sets (Anderson and Rubin (1949), Stock

and Wright (2000), Andrews and Soares (2010)) are also discussed as by-products.

We illustrate the proposed method with two empirical applications. The first application
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concerns the pricing of the CBOE volatility index (VIX). We exploit a simple idea: a large (but

far from exhaustive) class of structural models for the risk-neutral volatility dynamics with linear

mean-reversion implies that the squared VIX is linear in the spot variance of the S&P 500 index.

We test the specification of this class of models via the GMIM overidentification test and find that

these models are rejected in 14 out of 23 quarters (2007Q1–2012Q3) at the 5% significance level.

In the second application, we investigate the relationship between return variance and trading

volume for stock data. Using daily data, Andersen (1996) found that a conditional Poisson model

for trading volume is broadly consistent with data and outperforms early models considered by

Tauchen and Pitts (1983) and Harris (1986). We estimate and conduct specification tests for these

models using high-frequency data under the GMIM framework and find further support for the

findings of Andersen (1996).

This paper is organized as follows. Section 2 presents the setting. Section 3 presents the main

theory. Section 4 shows simulation results, followed by two empirical applications in Section 5.

We discuss related literature in Section 6. Section 7 concludes. The appendix contains all proofs.

2 Generalized method of integrated moments

2.1 The setting

We observe a data sequence (Xt, Zt, Yt) at discrete times t = 0,∆n, 2∆n, . . . within a fixed time span

[0, T ], with the sampling interval ∆n → 0 asymptotically. In applications, Xt typically denotes the

(logarithmic) asset price, Zt denotes observable state variables and Yt denotes dependent variables

such as prices of derivative contracts, trading volumes, etc. In this subsection, we formalize the

probabilistic setting underlying our analysis, with concrete empirical examples given in Section

2.2.

Let (Ω(0),F , (Ft)t≥0,P(0)) be a filtered probability space. Without further mention, we assume

that all processes defined on this space are càdlàg (i.e., right continuous with left limit) adapted

and take values in some finite-dimensional real space. We endow this probability space with the

processes Xt, Zt and βt that, respectively, take values in X , Z and B. The process βt is not

observable; instead, we observe

Yi∆n = Y (βi∆n , χi) , i = 0, . . . , [T/∆n] , (2.1)

where χi is a random disturbance, Y (·) is a deterministic transform taking values in a finite-

dimensional real space Y and [T/∆n] is the integer part of T/∆n.

We shall assume the random disturbances (χi)i≥0 to be F-conditionally stationary and weakly

dependent. To be precise, we describe the formal setting as follows. We consider another probabil-

4



ity space (Ω(1),G,P(1)) that is endowed with a stationary ergodic sequence (χi)i∈Z, where Z denotes

the set of integers and χi takes value in a Polish space with its marginal law denoted by Pχ. We

stress from the outset that we do not assume the sequence (χi)i≥0 to be serially independent. Let

Ω = Ω(0)×Ω(1) and P = P(0)⊗P(1). Processes defined on each space, Ω(0) or Ω(1), are extended in

the usual way to the product space (Ω,F ⊗G,P), which serves as the probability space underlying

our analysis. For the sake of notational simplicity, we identify the σ-fields F and Ft with their

trivial extensions F ⊗
{
∅,Ω(1)

}
and Ft ⊗

{
∅,Ω(1)

}
on the product space. By construction, the

sequence (χi)i∈Z is independent of F .

We note that the variable Yi∆n is a noisy transform of βi∆n with χi being the confounding

random disturbance. In its simplest form, (2.1) may have a signal-plus-noise appearance: Yi∆n =

βi∆n+χi. That noted, (2.1) often takes more complicated forms in many applications, as illustrated

by the examples in Section 2.2. Heuristically, the formulation (2.1) highlights two distinct model

components for the sequence (Yi∆n)i≥0: information “inside” the information set F (e.g., F-

conditional temporal heterogeneity) is captured by the process βt and information “outside” F is

captured by (χi)i≥0.2

The basic regularity condition for the underlying processes is the following.

Assumption H: (i) The process Xt is a one-dimensional Itô semimartingale on

(Ω(0),F , (Ft)t≥0,P(0)) with the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
R
δ (s, z)µ (ds, dz) ,

where the process bt is locally bounded; the process σt is strictly positive; Wt is a standard Brownian

motion; δ : Ω × R+ × R 7→ R is a predictable function and µ is a Poisson random measure with

compensator ν of the form ν (dt, dz) = dt ⊗ λ (dz) for some σ-finite measure λ on R. Moreover,

for some constant r ∈ (0, 1), a sequence of stopping times (Tm)m≥1 and λ-integrable deterministic

functions (Jm)m≥1, we have |δ(ω(0), t, z)|r ∧ 1 ≤ Jm (z) for all ω(0) ∈ Ω(0), t ≤ Tm and z ∈ R.

(ii) The process Z̃t ≡ (βᵀt , Z
ᵀ
t , σt)

ᵀ is also an Itô semimartingale on (Ω(0),F , (Ft)t≥0,P(0)) with

the form

Z̃t = Z̃0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdW̃s

+

∫ t

0

∫
R
δ̃ (s, z) 1{‖δ̃(s,z)‖≤1} (µ− ν) (ds, dz)

+

∫ t

0

∫
R
δ̃ (s, z) 1{‖δ̃(s,z)‖>1}µ (ds, dz) ,

2This formal setting for introducing weakly dependent random disturbances into high-frequency data has been
considered by, for example, Jacod, Li, and Zheng (2013), who consider Y (·) with a location-scale form.
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where b̃t and σ̃t are locally bounded processes, W̃t is a (multivariate) Brownian motion and δ̃

is a predictable function such that for some deterministic λ-integrable function J̃m : R 7→ R,

‖δ̃(ω(0), t, z)‖2 ∧ 1 ≤ J̃m(z) for all ω(0) ∈ Ω(0), t ≤ Tm and z ∈ R.

The key condition in Assumption H is that the process Xt is an Itô semimartingale. In appli-

cations, Xt is typically the (logarithmic) price of an asset and σt is its stochastic volatility process.

We set Vt ≡ σ2
t and refer to it as the spot variance process; it takes values in V ≡ (0,∞).

Assumption H accommodates many models in finance and is commonly used for deriving in-fill

asymptotic results for high-frequency data; see, for example, Jacod and Protter (2012) and the ref-

erences therein. There is no stationarity requirement on the processes Xt, βt, Zt and σt. Although

the sequence χi is stationary, the sequence Yi∆n is allowed to be highly nonstationary through

its dependence on βi∆n . Assumption H also allows for price and volatility jumps and imposes

no restriction on the dependence among various components of studied processes. In particular,

the Brownian shocks dWt and dW̃t can be correlated, which accommodates the “leverage” effect

(Black (1976)). The constant r in Assumption H(i) serves as an upper bound for the generalized

Blumenthal–Getoor index, or the “activity,” of jumps. Assumption H(ii) also restricts the processes

βt, Zt and σt to be Itô semimartingales. We note that this assumption accommodates stochastic

volatility models with multiple factors (see, e.g., Chernov, Gallant, Ghysels, and Tauchen (2003)),

provided that each factor is an Itô semimartingale. This assumption also allows general forms for

volatility-of-volatility and volatility jumps, where the latter may have infinite activity and even

infinite variation. While Assumption H(ii) admits many volatility models in finance, it does ex-

clude an important class of long-memory volatility models that are driven by fractional Brownian

motion; see Comte and Renault (1996, 1998). The generalization in this direction seems to deserve

a focused research on its own and is left to future study.

2.2 The conditional moment equality model and examples

The primary interest of this paper is the asymptotic inference for a finite-dimensional parameter

θ∗ that satisfies the following conditional moment equality:

E [ψ (Yi∆n , Zi∆n , Vi∆n ; θ∗) |F ] = 0, almost surely (a.s.), (2.2)

where ψ : Y × Z × V 7→ Rq1 , q1 ≥ 1, is a measurable function with a known functional form up to

the unknown parameter θ∗, and the conditional expectation integrates out the random disturbance

χi. We suppose that the true parameter θ∗ is deterministic and takes value in a compact parameter

space Θ ⊂ Rdim(θ∗). In the sequel, we use θ to denote a generic element in Θ. The transpose of a

matrix A is denoted by Aᵀ.

To motivate model (2.2), we consider a few empirical examples.
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Example 1 (Linear regression model): Let Xt denote the logarithm of the S&P 500

index and let VIXt denote the CBOE volatility index. We set Yt ≡ VIX2
t . For a large (but far

from exhaustive) class of risk-neutral dynamics for the spot variance process Vt, the theoretical

value of the squared VIX has a linear form θ∗1 + θ∗2Vt; see Section 5.1 for details. Empirically, we

can model the observed Yi∆n as the theoretical price plus a pricing error ai∆nχi, that is,

Yi∆n = θ∗1 + θ∗2Vi∆n + ai∆nχi, E[χi|F ] = 0, E[χ2
i |F ] = 1, (2.3)

where we allow the scaling factor at of the pricing error to be stochastic with the condition

E[χ2
i |F ] = 1 being a normalization. Note that (2.3) can be written in the form of (2.1) with

βt ≡ (θ∗1 + θ∗2Vt, at), where Y (·) takes a location-scale form. The pricing error ai∆nχi is intro-

duced to capture price components that standard risk-neutral pricing models do not intend to

capture. The pricing errors can be serially dependent as we allow the process at and the se-

quence (χi)i≥0 both to be serially dependent in a nonparametric manner; allowing for general

statistical structure on the pricing errors is important, as emphasized by Bates (2000). By setting

ψ (Yt, Vt; θ) = Yt − θ1 − θ2Vt, we verify (2.2).

Example 2 (Nonlinear regression model): Let Xt be the price process of an underlying

asset and Yt be the price vector of q1 options written on it. We set Zt = (t,Xt, rt, dt) where rt is

the short interest rate and dt is the dividend yield. If, under the risk-neutral measure, the process

(Zt, Vt) is Markovian,3 then the theoretical prices of the collection of q1 options can be written as

a Rq1-valued function f (Zt, Vt; θ
∗), where θ∗ arises from the risk-neutral model for the dynamics

of the state variables. Empirically, it is common to model the observed option price vector Yt as

the theoretical price plus a pricing error, that is,

Yi∆n = f (Zi∆n , Vi∆n ; θ∗) + ai∆nχi, E[χi|F ] = 0, E[χiχ
ᵀ
i |F ] = Iq1 , (2.4)

where at is a q1 × q1 matrix-valued process that denotes the stochastic covolatility of the pricing

errors with the condition E[χiχ
ᵀ
i |F ] = Iq1 being a normalization. Note that (2.4) can be written in

the form of (2.1) with βt ≡ (βᵀ1,t, β
ᵀ
2,t)

ᵀ, β1,t ≡ f(Zt, Vt; θ
∗) and β2,t ≡ vec(at), where vec(·) denotes

the vectorization operator. Setting ψ (Yt, Zt, Vt; θ) = Yt − f (Zt, Vt; θ), we verify (2.2).

3Assuming that Vt is the only unobservable Markov state variable excludes derivative pricing models with multiple
volatility factors under the risk-neutral measure, which have been considered by, for example, Christoffersen, Heston,
and Jacobs (2009), Bates (2012) and Andersen, Fusari, and Todorov (2013). Note that this assumption does not
imply (Zt, Vt) is Markov under the physical measure (i.e. P), as the equivalence between measures imposes little
restriction on drift and jump components of (Zt, Vt). Hence, it is useful to consider the general Itô semimartingale
setting (Assumption H) under the physical measure even if one imposes additional restrictions under the risk-neutral
measure.
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Example 3 (Parametrized conditional heteroskedasticity): Consider the same set-

ting as Example 2. The process At = vec(ata
ᵀ
t ) is an economically relevant quantity as it can

be interpreted as a summary measure of market quality (Hasbrouck (1993), Aı̈t-Sahalia and Yu

(2009)). To investigate whether At depends on other state variables, one may further model At as

At = h (Zt, Vt; θ
∗) for some deterministic function h (·).4 Then we can verify (2.2) by setting

ψ (Yt, Zt, Vt; θ) =

(
Yt − f (Zt, Vt; θ)

vec((Yt − f (Zt, Vt; θ)) (Yt − f (Zt, Vt; θ))
ᵀ)− h (Zt, Vt; θ)

)
.

Example 4 (Scaled Poisson regression model): Andersen (1996) proposes a Poisson

model for the volatility–volume relationship for daily data, in which the conditional distribution

of daily volume given the return variance is a scaled Poisson distribution. Here, we consider a

version of his model for intraday data. Let Yi∆n denote the trading volume of an asset within

the interval [i∆n, (i + 1)∆n). Suppose that Yi∆n |Vi∆n ∼ θ∗1· Poisson(θ∗2 + θ∗3Vi∆n). To cast this

model in the form (2.1), we represent the Poisson distribution with time-varying mean in terms

of a time-changed Poisson process: let χi = (χi(β))β≥0 be a standard Poisson process indexed by

β and then set βt ≡ θ∗2 + θ∗3Vt and Yi∆n = θ∗1χi(βi∆n). In Section 5.2, we estimate this model by

using the first two conditional moments of Yt. This amounts to setting

ψ (Yt, Vt; θ) =

(
Yt − θ1 (θ2 + θ3Vt)

Y 2
t − θ2

1 (θ2 + θ3Vt)
2 − θ2

1 (θ2 + θ3Vt)

)
, (2.5)

which readily verifies (2.2).

As shown in the above examples, the conditional moment equality model (2.2) arises in a

variety of empirical settings. These settings naturally involve the spot variance process Vt, but are

agnostic regarding the precise form of its dynamics (under the physical measure). This reaffirms

the relevance of including Vt in (2.2) and treating it nonparametrically in our econometric theory.

We also note that it is desirable to allow the studied processes to be nonstationary in these

empirical settings. For example, option pricing usually includes time and the underlying asset

price as observed state variables, both of which render the process Zt nonstationary. Moreover,

while it may be reasonable to assume that the stochastic volatility process is stationary in the

classical large-T setting for daily or weakly data, the stationarity assumption is more restrictive

for high-frequency data due to intradaily seasonalities.

Finally, we note that while Xi∆n is assumed to be observed without microstructure noise, we

do allow Yi∆n to be noisy in a quite general fashion. In particular, in option pricing settings such

as Examples 1–3, Yi∆n has the form of a semimartingale plus a noise (i.e., pricing error) term,

4Upon a reparametrization, we can assume that f(·) and h(·) share the same parameter without loss of generality.
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which is commonly used in the study of noise-robust estimations of integrated volatility.5 Our

“asymmetric” treatment for microstructure noise in Xi∆n and Yi∆n is reasonably realistic as the

option market is less liquid than the stock market, so microstructure effects play a less important

role for the latter than the former.6

2.3 Integrated moment equalities and the GMIM estimator

Our inference is based on matching a set of integrated moment equalities that are implied by

(2.2). To construct these integrated moment conditions, we consider a measurable function ϕ :

Z ×V ×Θ 7→ Rq2 for some q2 ≥ 1. Below, we refer to ϕ (·) as the instrument. We set q = q1q2 and

consider a Rq-valued function

g (y, z, v; θ) ≡ ψ (y, z, v; θ)⊗ ϕ (z, v; θ) , (2.6)

with which we associate

ḡ (β, z, v; θ) ≡
∫
g (Y (β, χ), z, v; θ)Pχ (dχ) . (2.7)

Since Zi∆n and Vi∆n are F-measurable, (2.2) implies that E [g(Yi∆n , Zi∆n , Vi∆n ; θ∗)|F ] = 0 or,

equivalently,

ḡ (βi∆n , Zi∆n , Vi∆n ; θ∗) = 0, i = 0, . . . , [T/∆n] . (2.8)

If ḡ (β, z, v; θ) is continuous in (β, z, v), then the process (ḡ (βt, Zt, Vt; θ))t≥0 is càdlàg, so we can

define

G (θ) ≡
∫ T

0
ḡ (βs, Zs, Vs; θ) ds, θ ∈ Θ. (2.9)

By (2.8) and a Riemann approximation, we obtain a vector of integrated moment equalities given

by

G (θ∗) = 0. (2.10)

In Section 3.2, we construct an estimator Gn(·) for the random function G (·) and show that

Gn(·) converges in probability toward G (·) uniformly. Following Sargan (1958) and Hansen (1982),

5See, for example, Zhang, Mykland, and Aı̈t-Sahalia (2005), Hansen and Lunde (2006), Bandi and Russell (2008),
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Xiu
(2010).

6We note that our analysis is based on general integrated volatility functionals, for which little is known in
noisy settings in the current literature. To the best of our knowledge, the most general class of estimators is the
pre-averaging method of Jacod, Podolskij, and Vetter (2010), which can be used to estimate integrated volatility

functionals of the form
∫ T

0
V j
s ds for positive integer j. This class of integrated volatility polynomials, however, is

quite restrictive for our purpose of estimating general nonlinear models. Since estimating general integrated volatility
functionals in the noisy setting is a very challenging task by itself, we leave the extension with noisy X to future
research, so as to focus on the main idea of the current paper.
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we estimate θ∗ by making Gn(θ) as close to zero as possible according to some metric. More

precisely, we consider a sequence Ξn of weighting matrices and define the GMIM estimator θ̂n as

θ̂n ≡ argmin
θ∈Θ

Qn(θ), where Qn(θ) ≡ Gn (θ)ᵀ ΞnGn (θ) . (2.11)

The GMIM estimator clearly resembles the classical GMM estimator. Moreover, transforming

the conditional moment equality (2.2) into the integrated moment equality (2.10) is analogous to

the common practice of estimating conditional moment equality models by forming unconditional

moment conditions.

That being said, there are fundamental differences between the two settings. The classical

GMM setting requires a large sample with an expanding time span in order to recover the invariant

distribution of the studied processes. In the in-fill setting here, we do not require the existence

of an invariant distribution. In the continuous-time limit, the integrated moment function G (·),
rather than being an unconditional moment, arises naturally as the limiting, or “population,”

version of the sample moment condition. The phenomenon that stochastic limits take the form

of temporally integrated quantities is common in the econometrics for high-frequency data; see

Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard (2004a), Jacod

and Protter (2012) and references therein. As is typical in the high-frequency literature, our in-fill

asymptotic results require only mild conditions on the sample-path regularity of the processes

βt, Zt, Xt and Vt (see Assumption H), while allowing for general forms of nonstationarity and

dependence; the current setting is actually non-ergodic, as the integrated moment function G (·)
is itself a random function.

3 Asymptotic theory

In Section 3.1, we discuss regularity conditions. In Sections 3.2 and 3.3, we present the key

theoretical results of the current paper, that is, the asymptotic properties of the bias-corrected

sample moment function (Section 3.2) and consistent estimators of its asymptotic covariance matrix

(Section 3.3). Asymptotic results for the GMIM estimator then follow straightforwardly and are

presented in Section 3.4.

3.1 Assumptions

In this subsection, we collect and discuss some regularity conditions that are used repeatedly in

the sequel. This subsection is technical in nature and may be skipped by readers interested in our

main results during their first reading.
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Assumption MIX: The sequence (χi)i∈Z is stationary and α-mixing with mixing coefficient

αmix(·) of size −k/ (k − 2) for some k > 2.7

Assumption MIX imposes a mixing condition on the sequence (χi)i∈Z so that, conditional on

F , the sequence (Yi∆n)i≥0 is also α-mixing with mixing coefficients bounded by αmix(·). Note that

Assumption MIX only concerns (χi)i∈Z. We do not need processes defined on (Ω(0),F ,P(0)) to be

mixing. Our use of α-mixing coefficients is only for concreteness; other types of mixing concepts

can also be used. The degree of dependence is controlled by the constant k. A larger value of k

makes Assumption MIX weaker, but demands stronger dominance conditions as shown below (see

Assumption D).

We need some notation for introducing additional assumptions. Let ‖·‖ denote the Euclidean

norm. For j ≥ 0, p ≥ 1, θ ∈ Θ, β, β′ ∈ B, z, z′ ∈ Z and v, v′ ∈ V, we set
ḡj,p (β, z, v; θ) ≡

(∫
‖∂jvg(Y (β, χ), z, v; θ)‖p Pχ(dχ)

)1/p

,

ρp
(
(β, z, v), (β′, z′, v′)

)
≡
(∫
‖g(Y (β, χ), z, v; θ∗)− g(Y (β′, χ), z′, v′; θ∗)‖p Pχ(dχ)

)1/p

,

(3.1)

provided that the jth partial derivative ∂jvg exists. The functions ḡj,p(·) compute the Lp-norms

of g (Y (·, χi) , ·, ·)) and its partial derivatives. The function ρp(·, ·) computes the Lp-distance

between g (Y (β, χi) , z, v; θ∗) and g (Y (β′, χi) , z
′, v′; θ∗) under the probability measure P(1). This

semimetric is useful for considering the smoothness of the F-conditional moments (such as the

covariance and autocovariance) of the sequence (g (Y (β, χi) , z, v; θ∗))i≥0 as functions of (β, z, v).

It is also convenient to introduce a few classes of functions. Let A be the collection of all

measurable functions that are defined on B × Z × V and take values in some finite-dimensional

real space. For p ≥ 0, we set

P(p) ≡

{
f ∈ A : for each bounded set K ⊆ B × Z, there exists a constant K > 0,

such that ‖f (β, z, v)‖ ≤ K(1 + vp) for all (β, z) ∈ K and v ∈ V

}

and C (p) ≡ {f ∈ P(p) : f is continuous}. We denote by C2,3 the subclass of functions in A that

are twice continuously differentiable in (β, z) ∈ B × Z and three times continuously differentiable

in v ∈ V. We then set, for p ≥ 3,

C2,3(p) ≡

{
f ∈ C2,3 : for each bounded set K ⊆ B × Z, there exists a constant K > 0, such

that ‖∂jvf (β, z, v) ‖ ≤ K(1 + vp−j) for all (β, z) ∈ K, v ∈ V and j = 0, 1, 2, 3

}
.

7The mixing coefficients are of size −a, a > 0, if they decay at polynomial rate a+ε for some ε > 0. See Definition
3.45 in White (2001).
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The constant K in the definitions of P(p) and C2,3(p) is uniform with respect to β and z, but

this requirement is not strong, because we only need the uniformity to hold over a bounded set

K and we allow K to depend on K.8 The key restriction on P(p), C (p) and C2,3 (p) is that their

member functions, as well as the derivatives of these functions with respect to v for the third,

have at most polynomial growth in v. In our analysis, the argument v often takes value at some

estimate of the spot variance, and the polynomial growth condition is used for controlling the effect

of approximation error between the spot variance and its estimate.

Our main regularity conditions on g (·) are given by Assumptions S, D and LIP below.

Assumption S: (i) The function g (y, z, v; θ) is continuously differentiable in θ and twice

continuously differentiable in v; (ii) for some p ≥ 3 and each θ ∈ Θ, we have ḡ(·; θ) ∈
C2,3(p), ∂θḡ (·; θ) ∈ C (p) and ∂θ∂

2
v ḡ (·; θ) ∈ C (p− 2); (iii) for each θ ∈ Θ and (β, z, v) ∈

B × Z × V, we have ∂jv ḡ(β, z, v; θ) =
∫
∂jvg(Y (β, χ), z, v; θ)Pχ(dχ) and ∂θ∂

j
v ḡ(β, z, v; θ) =∫

∂θ∂
j
vg(Y (β, χ), z, v; θ)Pχ(dχ) for j = 0, 1, 2.

Assumption S mainly concerns smoothness. Assumption S(i) specifies the basic smoothness

requirement on the function g (·). Assumption S(ii) imposes additional smoothness conditions on

ḡ(·; θ). We consider ḡ (·) directly because, as an integrated version of g(·) (recall (2.7)), it is often

smooth even if the latter is not. Assumption S(iii) is a mild condition that allows us to change

the order between differentiation and integration. We do not elaborate primitive conditions for it,

because they are well known.

In Assumption D below, the function ∂θgj,k(·, θ) is defined by (3.1) with g(·) replaced by ∂θg(·).

Assumption D: For some k > 2, p ≥ 3 and κ ∈ (0, 1], we have (i) ḡ0,k(·; θ) ∈
P ((p/2) ∨ (2p/k)), ∂θg0,k(·, θ) ∈ P(p) and ḡ2,k (·; θ), ∂θg2,k (·; θ) ∈ P (p− 2) for each θ ∈ Θ;

(ii) for any bounded set K ⊆ B × Z, there exists a finite constant K > 0 such that, ρk (z̃, z̃′) ≤
K(1 + |v|p/2−1 + |v′|p/2−1) ‖z̃ − z̃′‖κ for all z̃, z̃′ ∈ K × V with ‖z̃− z̃′‖ ≤ 1, where z̃ ≡ (β, z, v) and

z̃′ ≡ (β′, z′, v′).

Assumption D is of the dominance type. Assumption D(i) restricts the kth F-conditional

absolute moments to have at most polynomial growth in the spot variance and is mainly needed

for using mixing inequalities. Assumption D(ii) is a local dominance condition for the semimetric

ρk (·, ·). This condition is weaker when the Hölder exponent κ is closer to zero. The multiplicative

factor K(1 + |v|p/2−1 + |v′|p/2−1) is uniform in (β, z, β′, z′) on bounded sets and has at most

polynomial growth in the arguments that correspond to the spot variance.

Definition 1 (Class LIP): Let j, p be integers such that 0 ≤ j ≤ p. A function (y, z, v, θ) 7→
g (y, z, v; θ) on Y × Z × V×Θ is said to be in the class LIP(p, j) if, for each 0 ≤ i ≤ j, there exists a

8Our theory does not need the processes βt and Zt to be bounded. However, by a localization argument, we can
assume these processes to be bounded without loss of generality when deriving limit theorems.
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function Bi (y, z, v) such that ‖∂ivg (y, z, v; θ)−∂ivg (y, z, v; θ′) ‖ ≤ Bi (y, z, v) ‖θ−θ′‖ for all θ, θ′ ∈ Θ

and (y, z, v) ∈ Y × Z × V, and the function (β, z, v) 7→ B̄i(β, z, v) ≡
√∫

Bi(Y (β, χ), z, v)2Pχ(dχ)

belongs to P(p− i).

Assumption LIP: (i) g (·) ∈ LIP(p, 2); (ii) ∂θg (·) ∈ LIP(p, 2).

Assumption LIP imposes a type of Lipschitz condition for g (·; θ) and its partial derivatives.

This condition is used for establishing uniform (w.r.t. θ) convergence in probability of various

sample moment functions. It is also used to show that the effect of replacing the true parameter

value with its estimate is asymptotically negligible in the HAC estimation.

For concreteness, we illustrate how to verify the above regularity conditions in the setting of

Example 4, which is the main focal point of our numerical work in Sections 4 and 5. Focusing on

this example is instructive because it illustrates the key technical argument which is common to

many applications.

Example 4—Continued: To simplify the discussion, we take the constant k in Assumptions

MIX and D as an integer. We use K to denote a positive constant which may vary from line to line.

We consider an instrument of the form ϕ(v) = vι for some integer ι ≥ 0, while noting that setting

ϕ(·) to be scalar-valued is without loss of generality for the purpose of verifying Assumptions S,

D and LIP. It is easy to see

g(y, v; θ) =

(
y − θ1 (θ2 + θ3v)

y2 − θ2
1 (θ2 + θ3v)2 − θ2

1 (θ2 + θ3v)

)
vι,

ḡ(β, v; θ) =

(
θ∗1β − θ1 (θ2 + θ3v)

θ∗21 (β + β2)− θ2
1 (θ2 + θ3v)2 − θ2

1 (θ2 + θ3v)

)
vι.

Assumption S is verified for any p ≥ max{3, ι + 2} by direct inspection. By properties of the

Poisson distribution, E[|Yt|k|F ] ≤ K(|βt|+ |βt|k). It is then easy to see that ḡj,k(·; θ) ∈ P(ι+2− j)
for j ∈ {0, 1, 2}, so Assumption D(i) is verified for p ≥ max{2, k/2}(ι + 2). In addition, for

β and β′ in a bounded set with |β − β′| ≤ 1, we have E|χi(β) − χi(β
′)|2k ≤ K|β − β′|. By

the Cauchy–Schwarz inequality, E|χi(β)2 − χi(β′)2|k ≤ K|β − β′|1/2. It is then easy to see that

ρk ((β, v), (β′, v′)) ≤ K(1 + |v|ι+1 + |v′|ι+1)(|β − β′|1/2k + |v − v′|). Hence, Assumption D(ii) is

verified for κ = 1/2k and p ≥ 2(ι + 2). Turning to Assumption LIP, we note that ‖∂jvg(y, v; θ) −
∂jvg (y, v; θ′) ‖ ≤ K(1+vι+2−j)‖θ−θ′‖ for θ, θ′ in the compact set Θ. Assumption LIP(i) is verified

for p ≥ ι+2. Assumption LIP(ii) can be verified similarly. To sum up, for any k > 2, Assumptions

S, D and LIP are verified for p ≥ max{2, k/2}(ι+ 2) and κ = 1/2k.
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3.2 The bias-corrected sample moment function and its asymptotic properties

In this subsection, we construct a sample moment function Gn(·) for estimating the integrated

moment function G (·) in (2.9). We then present the asymptotic properties of Gn (·).
We first nonparametrically recover the spot variance Vi∆n by using a spot truncated realized

variation estimator. To this end, we consider a sequence kn of integers with kn →∞ and kn∆n → 0,

which plays the role of the local window for spot variance estimation. The spot variance estimate

is given as follows: for each i = 0, . . . , [T/∆n]− kn,

V̂i∆n ≡
1

kn∆n

kn∑
j=1

(
∆n
i+jX

)2
1{|∆n

i+jX|≤ᾱ∆$
n }, where ∆n

i+jX ≡ X(i+j)∆n
−X(i+j−1)∆n

,

and ᾱ > 0, $ ∈ (0, 1/2) are constants that specify the truncation threshold. This estimator is a

localized version of the estimator proposed by Mancini (2001), where the truncation is needed so

that the spot variance estimate V̂i∆n is robust to jumps in X.9 Below, we denote Nn ≡ [T/∆n]−kn.

We start with a (seemingly) natural sample-analogue estimator for G(θ), which is given by

Ĝn (θ) ≡ ∆n

Nn∑
i=0

g
(
Yi∆n , Zi∆n , V̂i∆n ; θ

)
, θ ∈ Θ.

Theorem 1 shows that Ĝn(·) is a consistent estimator for G(·) under the uniform metric.

Theorem 1. Suppose (i) Assumptions H and MIX hold for some r ∈ (0, 1) and k > 2; (ii) for

some p ≥ 0 and each θ ∈ Θ, ḡ (·; θ) ∈ C (p) and ḡ0,k(·; θ) ∈ P(p); (iii) if p > 1, we further assume

that $ ≥ (p− 1)/(2p− r); (iv) g(·) ∈ LIP(p, 0); (v) kn →∞ and kn∆n → 0. Then Ĝn(·) P−→ G (·)
uniformly on compact sets.

We also need a central limit theorem for the sample moment function (evaluated at θ∗), which

is useful for conducting asymptotic inference. It turns out that the “raw” sample analogue Ĝn(θ)

does not admit a central limit theorem due to a high-order bias; see Corollary 1 below for a formal

statement. Nevertheless, Theorem 1 is useful for establishing the consistency of various estimators,

such as that of the asymptotic variance.

We hence consider a bias-corrected sample moment function given by

Gn(θ) ≡ Ĝn(θ)− 1

kn
B̂n(θ), where B̂n(θ) ≡ ∆n

Nn∑
i=0

∂2
vg
(
Yi∆n , Zi∆n , V̂i∆n ; θ

)
V̂ 2
i∆n

. (3.2)

This sample moment function is used for defining the GMIM estimator in (2.11). As shown in

9The estimation of spot variance can be dated at least back to Foster and Nelson (1996) and Comte and Renault
(1998), in a setting without jumps. Also see Renò (2008), Kristensen (2010), and references therein.
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Theorem 2 below, ∆
−1/2
n Gn(θ∗) enjoys a central limit theorem with a mixed Gaussian asymptotic

distribution.

To describe the asymptotic covariance matrix, we need more notation. For each l ≥ 0, we

denote the joint distribution of (χi, χi−l) by Pχ,l and set, for (β, z, v) ∈ B × Z × V,

γl (β, z, v) ≡
∫
g(Y (β, χ), z, v; θ∗)g(Y (β, χ′), z, v; θ∗)ᵀPχ,l(dχ, dχ′). (3.3)

We then set 
γ̄ (β, z, v) ≡ γ0 (β, z, v) +

∞∑
l=1

(γl (β, z, v) + γl (β, z, v)ᵀ) ,

Γ̄ ≡
∫ T

0
γ̄ (βs, Zs, Vs) ds.

(3.4)

Here, γl(β, z, v) is the F-conditional autocovariance of the sequence g (Y (β, χi) , z, v; θ∗) at lag l,

and γ̄ (β, z, v) is the corresponding “long-run” covariance matrix.10 Finally, we set

S̄ ≡ 2

∫ T

0
∂v ḡ(βs, Zs, Vs; θ

∗)∂v ḡ(βs, Zs, Vs; θ
∗)ᵀV 2

s ds. (3.5)

The (F-conditional) asymptotic covariance matrix of ∆
−1/2
n Gn(θ∗) is given by

Σg ≡ Γ̄ + S̄, (3.6)

where Γ̄ arises from the serially dependent random disturbances (χi)i≥0 and S̄ arises from the

first-step sampling error in V̂i∆n .

We are now ready to state the asymptotic properties of Gn(·). We then characterize the afore-

mentioned high-order bias of the raw estimator Ĝn(θ∗) as a direct corollary (Corollary 1). In the

sequel, we use
L-s−→ to denote F-stable convergence in law11 and, for a generic F-measurable posi-

tive semidefinite matrix Σ, we use MN (0,Σ) to denote the centered mixed Gaussian distribution

with F-conditional covariance matrix Σ. We shall assume the following for the local window kn.

Assumption LW: k2
n∆n → 0 and k3

n∆n →∞.

10The process γ̄ (βt, Zt, Vt) may be more properly referred to as the local long-run covariance matrix, as it is
evaluated locally at time t. It arises from a large number of adjacent observations that are serially dependent
(through χi), but all these observations are sampled from an asymptotically shrinking time window. In other words,
γ̄ (βt, Zt, Vt) is long-run in tick time, but local in calendar time. The series in (3.4) is absolutely convergent. Indeed,
under Assumption MIX, by the mixing inequality, ‖γ0(β, z, v)‖+

∑∞
l=1 ‖γl(β, z, v)‖ ≤ Kḡ0,k(β, z, v; θ∗)2. Therefore,

γ̄ (β, z, v) is finite whenever ḡ0,k(β, z, v; θ∗) is finite, for which Assumption D suffices.
11Stable convergence in law is slightly stronger than the usual notion of weak convergence. It requires that

the convergence holds jointly with any bounded F-measurable random variable defined on the original probability
space. Its importance for our problem stems from the fact that the limiting variable of our estimator is an F-
conditionally Gaussian variable and stable convergence allows for feasible inference using a consistent estimator for
its F-conditional variance. See Jacod and Shiryaev (2003) for further details on stable convergence.
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Theorem 2. Suppose (i) Assumptions H, MIX, S, D and LW hold for some r ∈ (0, 1), k > 2 and

p ≥ 3; (ii) $ ≥ (2p− 1)/2(2p− r). Then

(a) under Assumption LIP(i), B̂n(θ)
P−→
∫ T

0 ∂2
v ḡ(βs, Zs, Vs; θ)V

2
s ds and Gn(θ)

P−→ G(θ), uni-

formly in θ on compact sets;

(b) ∆
−1/2
n Gn(θ∗)

L-s−→MN (0,Σg).

Corollary 1. Under the conditions in Theorem 2, knĜn(θ∗)
P−→
∫ T

0 ∂2
v ḡ(βs, Zs, Vs; θ

∗)V 2
s ds.

Comments. (i) Theorem 2(a) shows the uniform consistency of Gn (·). This result is a simple

consequence of Theorem 1 and is used for establishing the consistency of the GMIM estimator.

(ii) Theorem 2(b) characterizes the stable convergence of ∆
−1/2
n Gn (θ∗). The rate of convergence

is parametric, as is typical in semiparametric problems. Note that Gn(θ∗) is centered at zero

because of (2.10). We only consider Gn(·) evaluated at the true value θ∗ because this is enough

for conducting asymptotic inference on the basis of (2.10).

(iii) In the special case where g (y, z, v; θ∗) does not depend on y and z, Theorem 2(b) coincides

with Theorem 3.2 of Jacod and Rosenbaum (2013), which concerns the estimation of integrated

volatility functionals of the form
∫ T

0 g(Vs)ds. For the same technical reasons as here, Jacod and

Rosenbaum (2013) (see (3.6) there) also adopt Assumption LW to restrict the range of rates at

which kn grows to infinity. Jacod and Rosenbaum (2013) show12 that ∆
−1/2
n Ĝn(θ∗) contains sev-

eral bias terms of order Op(kn
√

∆n) which arise from border effects, diffusive movement of the

spot variance process, and volatility jumps, with the latter two being very difficult (if possible) to

correct. As a consequence, the condition k2
n∆n → 0 is needed to make these bias terms asymptoti-

cally negligible. However, an additional bias term (which is characterized by Corollary 1) remains

in ∆
−1/2
n Ĝn(θ∗), which is of the order Op(1/kn

√
∆n) and is explosive when k2

n∆n → 0. This bias

term has to be explicitly corrected for the purpose of deriving a well-behaved limit theorem; the

correction term k−1
n B̂n(·) in (3.2) exactly fulfills this task.

3.3 Estimation of asymptotic covariance matrices

In this subsection, we describe estimators for the asymptotic covariance matrix Σg. These estima-

tors are essential for conducting feasible inference. We start with the estimation of Γ̄ (recall (3.4)).

Let θ̂n be a preliminary estimator of θ∗. We consider the sample analogue of
∫ T

0 γl (βs, Zs, Vs; θ
∗) ds,

l ≥ 0, given by

Γ̂l,n(θ̂n) ≡ ∆n

Nn∑
i=l

g
(
Yi∆n , Zi∆n , V̂i∆n ; θ̂n

)
g
(
Y(i−l)∆n

, Z(i−l)∆n
, V̂(i−l)∆n

; θ̂n

)ᵀ
. (3.7)

12See Theorem 3.1 in Jacod and Rosenbaum (2013).
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Following Newey and West (1987), we consider a kernel function w (j,mn) and a bandwidth se-

quence mn of integers. The estimator for Γ̄ is then given by

Γ̂n(θ̂n) ≡ Γ̂0,n(θ̂n) +

mn∑
j=1

w (j,mn)
(

Γ̂j,n(θ̂n) + Γ̂j,n(θ̂n)ᵀ
)
. (3.8)

We need the following condition for studying the asymptotics of Γ̂n(θ̂n).

Assumption HAC: (i) The kernel function w (·, ·) is uniformly bound and for each j ≥ 1,

limm→∞w (j,m) = 1; (ii) mn → ∞ and mnk
−κ/2
n → 0, where κ ∈ (0, 1] is the constant given in

Assumption D; (iii) the function ḡ0,2k(·; θ∗) is bounded on bounded sets.

As in Newey and West (1987), when the kernel function w (·, ·) is chosen properly, Γ̂n(θ̂n) is

positive semidefinite in finite samples; one example is to take w (j,m) = 1 − j/(m + 1), that is,

the Bartlett kernel. In this paper, we restrict attention to kernels with bounded support. It is

possible to consider estimators with more general forms as considered by Andrews (1991). Since

the efficient estimation of the asymptotic covariance matrix is not the primary focus of the current

paper, we leave this complication to a future study.

We consider two estimators for S̄. The first estimator is applicable in a general setting. We

choose a sequence of integers k′n and set

η̂ni (θ̂n) ≡ 1

k′n

k′n−1∑
j=0

∂vg
(
Y(i+j)∆n

, Z(i+j)∆n
, V̂i∆n ; θ̂n

)
, i ≥ 0.

The variable η̂ni (θ̂n) serves as an approximation of ∂v ḡ(βi∆n , Zi∆n , Vi∆n ; θ∗). We then set

Ŝ1,n(θ̂n) ≡ 2∆n

Nn∧([T/∆n]−k′n+1)∑
i=0

η̂ni (θ̂n)η̂ni (θ̂n)ᵀV̂ 2
i∆n

.

We need Assumption AVAR1 below for the consistency of Ŝ1,n(θ̂n) toward S̄.

Assumption AVAR1: (i) ḡ1,k(·; θ∗), ∂β∂v ḡ(·; θ∗) and ∂z∂v ḡ(·; θ∗) belong to P (p/2− 1); (ii)

k′n →∞ and k′n∆n → 0.

Assumption AVAR1(i) imposes dominance conditions for the moments, as well as their deriva-

tives with respect to β and z, of ∂vg(Y (·, χ), ·, ·; θ∗). Assumption AVAR1(ii) imposes mild con-

ditions on the sequence k′n. While k′n is allowed to be different from kn, setting k′n = kn is a

convenient choice.

The second estimator for S̄ is designed to exploit a special structure of regression models, which

is formalized by the following assumption.
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Assumption AVAR2: There exists a function (z, v; θ) 7→ ϕ̃ (z, v; θ) with a known functional

form such that for some p ≥ 1, (i) ∂v ḡ (βt, Zt, Vt; θ
∗) = ϕ̃ (Zt, Vt; θ

∗) for all t ∈ [0, T ]; (ii) ϕ̃(·; θ∗) ∈
C(p− 1); (iii) ϕ̃(·) ∈ LIP(p− 1, 0).

Assumption AVAR2(i) posits that the value of ∂v ḡ (βt, Zt, Vt; θ
∗) can be computed from the

realizations of Zt and Vt, provided that θ∗ is known. Assumption AVAR2(ii) imposes some mild

smoothness requirements on ϕ̃(·; θ∗). Assumption AVAR2(iii) says that ϕ̃(·) is smooth in θ, so

that replacing θ∗ with its preliminary estimator results in an asymptotically negligible effect. The

example below shows that, in a nonlinear regression setting such as Example 2, Assumption AVAR2

imposes essentially no additional restrictions beyond Assumptions S(ii) and LIP(i).

Example 2—Continued: Under the setting of Example 2, it is easy to see that

∂v ḡ (βt, Zt, Vt; θ) = (β1,t − f (Zt, Vt; θ)) ⊗ ∂vϕ (Zt, Vt; θ) − ∂vf(Zt, Vt; θ) ⊗ ϕ (Zt, Vt; θ). We set

ϕ̃(z, v; θ) ≡ −∂vf(z, v; θ)⊗ϕ (z, v; θ) and note that Assumption AVAR2(i) readily follows because

β1,t ≡ f (Zt, Vt; θ
∗). Assumptions AVAR2(ii) and AVAR2(iii) are related to and are somewhat

weaker than Assumptions S(ii) and LIP(i), respectively. To see the connection, we note that

∂v ḡ (β, z, v; θ∗) = (β1 − f(z, v; θ∗))⊗ ∂vϕ (z, v; θ∗) + ϕ̃(z, v; θ∗),

∂vg (y, z, v; θ) = (y − f (z, v; θ))⊗ ∂vϕ (z, v; θ) + ϕ̃(z, v; θ).

While Assumptions S(ii) and LIP(i) imply that ∂v ḡ(·; θ∗) ∈ C(p − 1) and ∂vg (·) ∈ LIP(p− 1, 0),

Assumptions AVAR2(ii) and AVAR2(iii) only require the second component in each of the two

displayed decompositions above to satisfy the same regularity condition.

The second estimator for S̄ is given by

Ŝ2,n(θ̂n) ≡ 2∆n

Nn∑
i=0

ϕ̃(Zi∆n , V̂i∆n ; θ̂n)ϕ̃(Zi∆n , V̂i∆n ; θ̂n)ᵀV̂ 2
i∆n

.

Theorem 3. Suppose (i) the conditions in Theorem 2 (ii) ∆
−1/2
n (θ̂n − θ∗) = Op(1). Then

(a) under Assumption HAC, Γ̂n(θ̂n)
P−→ Γ̄;

(b) under Assumption AVAR1, Ŝ1,n(θ̂n)
P−→ S̄;

(c) under Assumption AVAR2, Ŝ2,n(θ̂n)
P−→ S̄.

Consequently, under Assumptions HAC and AVAR1 (resp. AVAR2), Σ̂g,n(θ̂n) ≡ Γ̂n(θ̂n) +

Ŝ1,n(θ̂n) (resp. Σ̂g,n(θ̂n) ≡ Γ̂n(θ̂n) + Ŝ2,n(θ̂n)) is a consistent estimator of Σg.

Comments. (i) The preliminary estimator θ̂n is assumed to be ∆
−1/2
n -consistent. The GMIM

estimator satisfies this condition; see Proposition 1 below.

(ii) The HAC estimator Γ̂n(θ̂n) is valid under the assumption that (χi)i≥0 is weakly dependent.

If it is known a priori that (χi)i≥0 forms an independent sequence, then Γ̄ =
∫ T

0 γ0 (βs, Zs, Vs) ds,
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which can be consistently estimated by Γ̂0,n(θ̂n). Indeed, an intermediate step of the proof of

Theorem 3(a) is to show that Γ̂l,n(θ̂n)
P−→
∫ T

0 γl (βs, Zs, Vs) ds for each l ≥ 0.

As a direct consequence of Theorems 2 and 3, we can construct Anderson–Rubin–type confi-

dence sets for θ∗ by inverting tests. To this end, we consider a function L(·, ·) : Rq×Rq×q 7→ R and

a test statistic of the form Ln (θ) ≡ L(∆
−1/2
n Gn(θ), Σ̂g,n(θ)), where Σ̂g,n(·) is given by Theorem 3.

We let α ∈ (0, 1) denote the significance level.

Corollary 2. Suppose (i) the conditions in Theorem 3 hold; (ii) the function (u,A) 7→ L(u,A) is

continuous at (u,A) for all u ∈ Rq and for almost every A under the distribution of Σg. Then

(a) Ln(θ∗)
L-s−→ L(ξ,Σg), where the variable ξ is defined on an extension of the space (Ω,F⊗G,P)

and, conditional on F , is centered Gaussian with covariance matrix Σg.

(b) Let U be a generic q-dimensional standard normal variable that is indepedent of F ⊗ G.

If, in addition, the F-conditional distribution of L(ξ,Σg) is continuous and strictly increasing

at its 1 − α quantile cv1−α, then the 1 − α quantile of the F ⊗ G-conditional distribution of

L(Σ̂g,n(θ∗)1/2U, Σ̂g,n(θ∗)), denoted by cvn,1−α(θ∗), converges in probability to cv1−α. Consequently,

P (Ln(θ∗) ≤ cvn,1−α(θ∗))→ 1− α.

Corollary 2(a) establishes the asymptotic distribution of the test statistic Ln(θ∗). Corol-

lary 2(b) further shows that cvn,1−α forms an asymptotically valid sequence of critical values,

as it consistently estimates the 1 − α F-conditional quantile of the limit variable L (ξ,Σg). We

can then construct a sequence of confidence sets CSn ≡ {θ ∈ Θ : Ln(θ) ≤ cvn,1−α(θ)}. Since

P (Ln(θ∗) ≤ cvn,1−α(θ∗))→ 1− α, we have P(θ∗ ∈ CSn)→ 1− α. That is, CSn forms a sequence

of confidence sets for θ∗ with asymptotic level 1− α.

The confidence set CSn is similar to that proposed by Stock and Wright (2000) when the test

statistic takes a quadratic form (i.e. L (u,A) = uᵀA−1u). In this case, the distribution of the limit

variable L(ξ,Σg) is chi-square with degree of freedom q and, hence, the critical value can be chosen

as a constant. Since CSn is of the Anderson–Rubin type, it is asymptotically valid even if θ∗ is

only “weakly identified,” with the lack of identification considered as an extreme form of weak

identification. The test statistic may also take other forms, such as the maximum of t-statistics

(i.e., L(u,A) = max1≤j≤q |uj |/A1/2
jj ), as considered by Andrews and Soares (2010). In general, the

critical value cvn,1−α(θ) depends on θ and does not have a closed-form expression, but it can be

easily computed by simulation.

3.4 Asymptotic properties of the GMIM estimator

We now describe the asymptotic behavior of the GMIM estimator θ̂n defined by (2.11). With

the limit theorems for sample moment functions (Theorems 1 and 2) in hand, we can derive
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the asymptotics of θ̂n by using standard techniques from the classical GMM literature (see, e.g.,

Hansen (1982), Newey and McFadden (1994) and Hall (2005)). Below, we collect a standard set

of assumptions, with some slight modifications made so as to accommodate the current setting.

Assumption GMIM: (i) Θ is compact; (ii) θ∗ is in the interior of Θ; (iii) Ξn
P−→ Ξ, where Ξ

is an F-measurable (random) matrix that is positive semidefinite a.s.; (iv) ΞG(θ) = 0 a.s. only if

θ = θ∗; (v) for H ≡
∫ T

0 ∂θḡ (βs, Zs, Vs; θ
∗) ds, the random matrix HᵀΞH is nonsingular a.s.

Assumption GMIM(i) imposes compactness on the parameter space. This condition is used to

establish the consistency of the GMIM estimator. Assumption GMIM(ii) allows us to derive a linear

representation for the GMIM estimator through a Taylor expansion for the first-order condition

of the minimization problem (2.11). Assumption GMIM(iii) specifies the limiting behavior of the

weighting matrix Ξn. Unlike in the standard GMM setting, the limit Ξ may be random, which is

important because the limiting optimal weighting matrix is typically random in the current setting.

Assumption GMIM(iv) is an identification condition, which guarantees the uniqueness of θ∗ as a

minimizer of the population GMIM criterion function Q(θ) ≡ G (θ)ᵀ ΞG (θ), up to a P-null set.

This condition is a joint restriction on the population moment function G(·) and the weighting

matrix Ξ. In particular, when Ξ has full rank, Assumption GMIM(iv) amounts to saying that θ∗

is the unique solution to G(θ) = 0. This condition is commonly used to specify identification in

a GMM setting, but it takes a somewhat nonstandard form here because the population moment

function G (·) is itself a random function. It is instructive to further illustrate the nature of this

condition in the simple setting of Example 1: if we set the instrument ϕ(v) to be (1, v)ᵀ as for

ordinary least squares, then

G (θ) =

(
T

∫ T
0 Vsds∫ T

0 Vsds
∫ T

0 V 2
s ds

)(
θ∗1 − θ1

θ∗2 − θ2

)
.

We see that θ∗ is the unique solution to G(θ) if and only if T
∫ T

0 V 2
s ds − (

∫ T
0 Vsds)

2 6= 0. By the

Cauchy–Schwarz inequality, T
∫ T

0 V 2
s ds − (

∫ T
0 Vsds)

2 ≥ 0 and the inequality is strict unless the

process Vt is time-invariant over [0, T ]. In other words, the identification is achieved as soon as

the process Vt is not colinear, in a pathwise sense, with the constant term. Finally, Assumption

GMIM(v) is used to derive an asymptotic linear representation of the GMIM estimator.

The asymptotic behavior of the GMIM estimator θ̂n is summarized by Proposition 1 below.

Proposition 1. Suppose (i) Assumptions H, MIX, S, D, LIP, LW and GMIM hold for some

r ∈ (0, 1), k > 2 and p ≥ 3; (ii) $ ≥ (2p− 1)/2(2p− r). Then

(a) θ̂n
P−→ θ∗.

(b) ∆
−1/2
n (θ̂n − θ∗)

L-s−→MN (0,Σ), where Σ ≡ (HᵀΞH)−1HᵀΞΣgΞH(HᵀΞH)−1.
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(c) Suppose, in addition, Assumptions HAC and AVAR1 (resp. AVAR2) and let Ŝn(θ̂n) ≡
Ŝ1,n(θ̂n) (resp. Ŝ2,n(θ̂n)). Denote Hn ≡ ∂θGn(θ̂n), Σ̂g,n(θ̂n) ≡ Γ̂n(θ̂n) + Ŝn(θ̂n) and Σ̂n ≡
(Hᵀ

nΞnHn)−1Hᵀ
nΞnΣ̂g,n(θ̂n)ΞnHn(Hᵀ

nΞnHn)−1. We have Σ̂n
P−→ Σ.

Comment. Proposition 1(a) shows the consistency of the GMIM estimator θ̂n. Part (b)

shows the associated stable convergence in law, where the asymptotic distribution is centered

mixed Gaussian with (F-conditional) asymptotic covariance matrix Σ. The asymptotic covariance

matrix can be consistently estimated by Σ̂n as shown by part (c).

The asymptotic covariance matrix Σ has a familiar form as in the classical GMM setting

(Hansen (1982)), although Σ is a random matrix here. Similar to the well-known result in the

GMM literature, the asymptotic covariance matrix Σ is minimized in the matrix sense when

Ξ = Σ−1
g , provided that Σg is nonsingular a.s. A feasible efficient GMIM estimator can be ob-

tained by first computing a preliminary GMIM estimator, say θ̃n, with the identity weighting

matrix and then conduct the GMIM estimation with the weighting matrix Ξn = Σ̂g,n(θ̃n)−1. Here,

the efficiency is with respect to the choice of weighting matrix while taking the instrument ϕ(·) as

given. The choice of optimal instrument and, as a matter of fact, the characterization of the semi-

parametric efficiency bound in the current in-fill setting for nonstationary dependent data remain

open questions. Efficient estimation of integrated volatility functionals of the form
∫ T

0 g(Vs)ds has

been recently tackled by Clément, Delattre, and Gloter (2013), Jacod and Rosenbaum (2013) and

Renault, Sarisoy, and Werker (2013). Efficiency may also be improved by considering a continuum

of instruments as in Carrasco, Chernov, Florens, and Ghysels (2007). Extending these results to

the analysis of GMIM appears to be very challenging and is left to future research.

Hansen’s (1982) overidentification test can be adapted to the current setting with the familiar

chi-square distribution, as shown by the following proposition.

Proposition 2. Suppose (i) conditions in Proposition 1; (ii) Σg is non-singular a.s. and Ξ = Σ−1
g .

Then ∆−1
n Qn(θ̂n)

L-s−→ χ2
q−dim(θ).

4 Simulation results

In this section, we examine the asymptotic theory above in a simulation setting that mimics the

setup of our empirical application in Section 5.2. Throughout the simulations, we fix T = 21 days

and consider two sampling frequencies: ∆ = 1 or 5 minutes. The window size kn in the spot

variance estimation is taken to be 120, 150, and 180 for the 1-minute sample, and 40, 45, and 50

for the 5-minute sample. The perturbation on kn is reasonably large for checking robustness. We

set k′n = kn. For each day, the truncation parameters are taken as $ = 0.49 and ᾱ = 3
√
BV
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where BV is the daily bipower variation (Barndorff-Nielsen and Shephard (2004b)). There are

2, 000 Monte Carlo trials in total.

We simulate Xt and Vt according to{
dXt = (0.05 + 0.5Vt)dt+

√
VtdWt + JXdNt + 0.02λNdt,

Vt = exp (−2.8+6Ft) , dFt = −4Ftdt+ 0.8dW̃t + JFdNt − 0.02λNdt,
(4.1)

with E[dWtdW̃t] = −0.75dt, JX ∼ N (−0.02, 0.052), JF ∼ N (0.02, 0.022), and Nt being a Pois-

son process with intensity λN = 25. Given the path of Vt, the sequence (Yi∆n)i≥0 is simulated

independently with the marginal conditional distribution c·Poisson(m0 +m1Vi∆n), where c = 10,

cm0 = 20, and cm1 = 80 are calibrated to data used in Section 5.2. The parameter of interest is

θ∗ = (c, cm0, cm1); this reparametrization is also used in the empirical study in Section 5.2 as in

Andersen (1996).

We conduct this estimation using the first two conditional moments of Yt as described by

(2.5) in Example 4. We set the instrument as ϕ(Vt) = (1, Vt)
ᵀ, which results in four integrated

moment conditions, leaving one degree of freedom for overidentification. Our goal in this exercise

is to examine the finite-sample properties of the GMIM estimator, as well as the rejection rates of

the overidentification test. The estimator for the asymptotic covariance matrix Σg is taken to be

Γ̂0,n(θ̂n) + Ŝ1,n(θ̂n); see comment (ii) of Theorem 3. For comparison, we also report results for the

uncorrected procedure, which is implemented according to the classical GMM theory but with the

spot variance estimate V̂i∆n treated as if it were the true spot variance Vi∆n . Note that, for the

uncorrected procedure, the asymptotic covariance matrix Σg only contains the component Γ̄.

Figure 1 presents finite-sample distributions of the efficient GMIM estimator and the “efficient”

uncorrected estimator. We see that the uncorrected estimators exhibit evident biases, while the

GMIM estimators are properly centered at the true values. This finding is further confirmed by

Table 1, from which we see that, in all Monte Carlo scenarios, the bias of the GMIM estimator is

much smaller than that of the uncorrected estimator and fairly close to zero. Moreover, we find

that the bias-correction also reduces the root mean squared error (RMSE) of the estimates in most

cases.

Figure 2 compares finite-sample distributions of the standardized GMIM and the standardized

uncorrected estimators with the asymptotic N (0, 1) distribution; the standardization is feasible

(i.e., estimators of asymptotic variances are used). As predicted by the asymptotic theory, the

distribution of the standardized GMIM estimator is well approximated by the asymptotic N (0, 1)

distribution for both 1-minute and 5-minute sampling, although some distortion can be seen for

the latter. On the contrary, the distribution of the standardized uncorrected estimator differs

substantially from N (0, 1).
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Figure 1: Histograms of Non-standardized Estimators
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Note: This figure compares the finite-sample distributions of the “efficient” uncorrected estimators (solid)

and the efficient GMIM estimators (shaded area). The dashed lines highlight the true parameter values.

The sampling interval is ∆ = 1 (left) and 5 minutes (right). We set T = 21 days and kn =150 and 45 for

1-minute and 5-minute sampling, respectively. There are 2,000 Monte Carlo trials.

Finally, Table 2 reports the finite-sample rejection rates of overidentification tests using the

GMIM procedure, along with results from the uncorrected procedure as a comparison. We find that

tests based on the uncorrected procedure almost always falsely reject the null hypothesis, which is

not surprising in view of the findings above. The rejection rates of the GMIM overidentification

test are fairly close to, although slightly lower than, the nominal level for 1-minute sampling. For

5-minute sampling, the GMIM overidentification tests become more undersized. This evidence

suggests that in small samples, the GMIM overidentification test tends to be conservative, at least

for the Monte Carlo setting considered here.
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Table 1: Summary of Monte Carlo Estimation Results

Panel A. ∆ = 1 minute
Uncorrected GMIM

kn = 120 kn = 150 kn = 180 kn = 120 kn = 150 kn = 180
c Bias 0.077 0.079 0.072 0.020 0.032 0.033

RMSE 0.280 0.286 0.283 0.186 0.204 0.213

c ·m0 Bias 0.706 0.611 0.560 0.029 0.049 0.083
RMSE 1.035 0.977 0.905 0.660 0.684 0.661

c ·m1 Bias -7.864 -6.598 -6.398 0.744 0.566 -0.286
RMSE 12.969 12.564 12.217 10.749 11.236 10.853

Panel B. ∆ = 5 minutes
kn = 40 kn = 45 kn = 50 kn = 40 kn = 45 kn = 50

c Bias 0.143 0.140 0.123 0.015 0.029 0.018
RMSE 0.569 0.555 0.544 0.518 0.498 0.502

c ·m0 Bias 1.712 1.656 1.510 0.034 0.145 0.100
RMSE 2.348 2.283 2.165 1.845 1.824 1.740

c ·m1 Bias -19.717 -19.484 -17.768 1.808 0.011 0.355
RMSE 28.202 28.282 27.218 30.774 30.078 28.878

Note: We report the bias and the root mean squared error (RMSE) of the “efficient” uncorrected and the

efficient GMIM estimators in the simulation for various kn values. We set T = 21 days. The sampling

interval is ∆ = 1 or 5 minutes. The true parameter values are c = 10, c ·m0 = 20 and c ·m1 = 80. There

are 2,000 Monte Carlo trials.

5 Empirical applications

5.1 Application 1: VIX pricing models

To illustrate the use of the proposed method, we first apply it to study the specification of the

risk-neutral dynamics of the stochastic volatility process by using intraday data of the S&P 500

index and the VIX. Starting with the setup, we suppose that the dynamics of the logarithm of the

S&P 500 index Xt under the risk-neutral measure, henceforth the Q-measure, follows

Xt = X0 +

∫ t

0
bQs ds+

∫ t

0

√
VsdW

Q
s +

∫ t

0

∫
R
z
(
N(ds, dz)− νQ(Vs, dz)ds

)
, (5.1)
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Figure 2: Histograms of Standardized Estimators
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Note: This figure compares the finite-sample distributions of the standardized “efficient” uncorrected es-

timators (solid) and efficient GMIM estimators (shaded area). The N (0, 1) density function is plotted for

comparison (dashed). The sampling interval is ∆ = 1 (left) and 5 minutes (right). We set T = 21 days and

kn =150 and 45 for 1-minute and 5-minute sampling, respectively. There are 2,000 Monte Carlo trials.

where the drift bQt is determined by the no-arbitrage condition, WQ
t is a Brownian motion under

the Q-measure, and N(dt, dz) is the jump measure of X with compensator νQ(Vt, dz)dt which is

allowed to depend on the spot variance.13 We assume that the predictable compensator of the jump

quadratic variation is an affine function in the spot variance, that is,
∫
R z

2νQ(Vt, dz) = η0 + η1Vt,

where η0 and η1 are constants. While this assumption is commonly adopted in empirical work,14

the discussion below does rely on its validity.

The main focus of this empirical exercise is on the risk-neutral dynamics of the stochastic

variance process, which is given by:

Vt = V0 +

∫ t

0
κQ(v̄Q − Vs)ds+MQ

t , (5.2)

13See Duffie (2001), Singleton (2006) and Garcia, Ghysels, and Renault (2010) for comprehensive reviews of the
no-arbitrage pricing theory and related econometric methods.

14This assumption is trivially satisfied if the compensator νQ(·) does not depend on Vt. It is also satisfied if Xt

has compound Poisson jumps with its stochastic arrival rate for jumps being a linear function in Vt. See Chapter
15 of Singleton (2006) and many references therein for detailed examples.
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Table 2: Comparison of Monte Carlo Null Rejection Rates

Uncorrected Procedure GMIM Procedure

∆ Level kn = 120 kn = 150 kn = 180 kn = 120 kn = 150 kn = 180
1 % 84.35 84.75 84.10 0.55 0.85 0.80

1 min 5 % 87.85 88.40 87.90 3.10 3.65 4.40
10% 90.00 90.15 89.95 7.70 7.60 8.25

Level kn = 40 kn = 45 kn = 50 kn = 40 kn = 45 kn = 50
1% 85.70 85.60 83.80 0.20 0.15 0.15

5 min 5% 88.80 89.15 87.55 1.05 1.40 1.95
10% 90.65 91.25 89.35 3.90 3.90 4.50

Note: We report the finite-sample rejection rates (%) of the overidentification tests for the uncorrected

procedure (left) and the GMIM procedure (right) at significance levels 1%, 5% and 10% for various kn
values. We set T = 21 days. The sampling interval is ∆ = 1 or 5 minutes. There are 2,000 Monte Carlo

trials.

where κQ and v̄Q are model parameters and MQ is a martingale under the Q-measure that captures

both Brownian movements and (compensated) jumps of Vt. We note that (5.2) only imposes a

mean-reverting parametric restriction on the drift term while leaving the martingale component

MQ completely nonparametric. In particular, we allow for general forms of volatility-of-volatility

and volatility jumps. This setting allows us to focus on the specification of the risk-neutral drift

of the spot variance. We also note that, since (5.2) only parametrizes the drift term under the

Q measure, the equivalence between P and Q, which is implied by no-arbitrage, does not further

restrict the dynamics of Vt under the P-measure. This class of risk-neutral volatility models has

been widely studied in empirical option pricing and financial econometrics.15 While it has proven

very useful for modeling option prices at the daily or weekly frequency, whether it fulfills the more

challenging task of providing a satisfactory pricing specification for intraday data is an open and

important question.

We investigate this empirical question by examining the pricing of the VIX. Below, we refer to

the squared VIX as the implied variance. As shown by Jiang and Tian (2005) and Carr and Wu

15Examples include those studied by Bakshi, Cao, and Chen (1997), Bates (2000), Chernov and Ghysels (2000), Pan
(2002), Eraker, Johannes, and Polson (2003), Eraker (2004), Aı̈t-Sahalia and Kimmel (2007) and Broadie, Chernov,
and Johannes (2007), among others, where jumps may be driven by the compound Poisson process with time-varying
intensity or the CGMY process (Carr, Geman, Madan, and Yor (2003)). This class also include non-Gaussian OU
processes considered by Barndorff-Nielsen and Shephard (2001); see also Shephard (2005) for a collection of similar
models.
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(2009), the theoretical value of the implied variance is given by

Y ∗t ≡ EQ
[∫ t+τ

t
Vsds+

∫ t+τ

t

∫
R
z2νQ(Vs, dz)ds

∣∣∣∣Ft] , (5.3)

where τ = 21 trading days and EQ is the expectation operator under Q. To derive an analytical

expression for Y ∗t , we first observe that (5.2) implies that dEQ[Vs|Ft]/ds = κQ(v̄Q − EQ[Vs|Ft]).
We solve this differential equation for EQ[Vs|Ft], which is then plugged into (5.3), yielding

Y ∗t = θ∗1 + θ∗2Vt, (5.4)

where θ∗1 ≡ η0 + v̄Q(1 + η1)(1− (1− e−κQτ )/κQτ) and θ∗2 ≡ (1 + η1)(1− e−κQτ )/κQτ .

Equation (5.4) highlights the key aspect for using the VIX to study the risk-neutral volatility

dynamics. The aforementioned large class of models, although potentially very different from

each other with distinct pricing implications for individual options, all imply a linear pricing

function for the implied variance. Consequently, specification tests for this class of structural

models can be carried out by examining the linear specification (5.4). We do so by conducting

the overidentification test (see Proposition 2). As described in Example 1, we suppose that the

observed implied variance Yt ≡VIX2
t is the theoretical price plus a pricing error such that E[Yt−θ∗1−

θ∗2Vt|F ] = 0. We implement the GMIM procedure with the instrument ϕ(Vt) = (1, Vt, 1/(Vt + c))ᵀ

for c = 0.001.16 Note that the third instrument 1/(Vt+c) gives more weight to low volatility levels,

while the second instrument Vt does the opposite.

Our sample period ranges from January 2007 to September 2012, as constrained by data avail-

ability; the data source is TickData Inc. The VIX is updated by the CBOE roughly every 15

seconds. The S&P 500 index data is updated more frequently. In order to reduce the asyn-

chronicity between the two time series, we resample the data at every minute. At this frequency,

microstructure effects on the S&P 500 index are negligible in our sample. We remind the reader

that we allow Yt to contain general forms of noise (i.e. pricing error), so microstructure noise in the

VIX data is readily accommodated. Days with irregular trading hours are eliminated, resulting

in a sample of 1,457 days spanning 23 quarters. Tuning parameters are chosen as follows: the

truncation parameters ᾱ and $ are set as in the simulation, kn = 150, the estimator of asymp-

totic covariance matrix is given by Proposition 1(c) with Ŝn(θ̂n) = Ŝ1,n(θ̂n), using mn = 12 and

k′n = 150.

For each quarter, we estimate parameters in (5.4) via the efficient GMIM estimator. In the

upper two panels of Figure 3, we plot the parameter estimates of θ∗1 and θ∗2 and their confidence

16Setting c > 0, instead of c = 0, facilitates the verification of regularity conditions in Proposition 2. In particular,
notice that 1/(Vt + c) is three-times continuously differentiable in Vt with bounded derivatives.
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Figure 3: Results for the VIX Pricing Model
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Note: We plot the time series of quarterly estimates (solid) of the intercept (θ1) and slope (θ2) in the linear

VIX pricing model, along with their 90% two-sided pointwise confidence bands (shaded area). The lower

bound of each confidence band is the 95% lower confidence bound. The bottom panel plots the scaled

overidentification test statistic (i.e. ∆−1n Qn(θ̂n)) (asterisk), and the dashed line indicates the 95% critical

value. We fix kn = k′n = 150 and mn = 12.

intervals. We see that these quarterly estimates exhibit substantial temporal variation. We also

conduct an overidentification test for each quarter and plot the value of the test statistic on the

bottom panel of Figure 3. We find that the linear specification (5.4) is rejected at the 5% level for

14 out of 23 quarters. The evidence here points away from the linear specification of VIX pricing

and, hence, the linear mean-reversion specification of the risk-neutral volatility dynamics given

by (5.2), even in sample periods as short as a quarter. This finding suggests that some form of

nonlinearity (e.g., an exponential Ornstein–Uhlenbeck specification) needs to be incorporated in

the risk-neutral drift term of the spot variance process.

5.2 Application 2: Volatility-volume relationship

In the second application, we use high-frequency equity data to investigate the Mixture of Distri-

bution Hypothesis (MDH). The MDH posits a joint dependence between returns and volume on
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a latent information flow variable and has spurred a sizable literature in financial economics.17 A

key implication of the MDH is the relationship between return volatility and trading volume. In its

classical form, the volatility-volume relationship predicts that the conditional distribution of the

trading volume Yt given the return variance Vt is N (µMDHVt, σ
2
MDHVt), where µMDH and σ2

MDH

are parameters and the normal distribution is motivated by an asymptotic argument; see Tauchen

and Pitts (1983). We refer to this model as the standard MDH. Andersen (1996) proposes a modi-

fied MDH on the basis of the Glosten and Milgrom (1985) model. The modified MDH features the

random arrival of uninformed and informed traders and predicts that the conditional distribution

of trading volume given the spot variance is scaled Poisson, that is, Yt|Vt ∼ c · Poisson(m0 +m1Vt).

Using Hansen’s (1982) overidentification test on daily data, Andersen (1996) (p. 201) finds that the

modified MDH is broadly consistent with the data and performs vastly better than the standard

MDH.

Motivated by the fact that the trading activity has increased substantially over the past decade,

we take Andersen’s model one step further to address intraday data. As described in Example 4,

we set Yi∆n to be the trading volume within the time interval [i∆n, (i + 1)∆n) and suppose that

Yi∆n |Vi∆n ∼ c · Poisson(m0 + m1Vi∆n). We implement the efficient GMIM estimation procedure

and, subsequently, the overidentification test on the basis of the first two conditional moment

conditions given by (2.5). We conduct the same exercise for the standard MDH, for which the first

two conditional moment conditions are given by (2.2) with

ψ(Yt, Vt; (µMDH , σ
2
MDH)) = (Yt − µMDHVt, Y

2
t − µ2

MDHV
2
t − σ2

MDHVt)
ᵀ.

The same instrument ϕ(Vt) = (1, Vt)
ᵀ is used for both the standard MDH and the modified MDH,

so as to maintain a fair comparison.

Our sample comprises transaction price and volume data for five tickers: GE, IBM, JPM,

MMM, and PG; the data source is the TAQ database. The sample contains 20 quarters from

January 2008 to December 2012. In our analysis, each quarter is treated on its own. This sample

period includes some of the most volatile periods in modern financial history. Data preprocessing

takes a few steps. First, we keep transactions from major exchanges at which most of the trading

of these tickers take place.18 Second, we sample transaction price with a sampling interval ∆ = 5

minutes using the previous-tick approach. The volume Yi∆ is the total volume within [i∆, (i+1)∆)

across all exchanges. To mitigate the impact of block trades, we omit before aggregation all

17See, for example, Clark (1973), Epps and Epps (1976), Tauchen and Pitts (1983), Harris (1986), Harris (1987),
Richardson and Smith (1994), Andersen (1996) and references therein.

18These exchanges include National Association of Securities (ADF), NYSE, NYSE Arca, NASDAQ, Direct Edge
A and X, BATS, and BATS Y-Exchanges. NYSE is the exchange where the studied companies are listed, whereas
the other exchanges are electronic communication networks. Our results do not change qualitatively when using
transactions only from NYSE.
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transactions with volumes exceeding 10,000 shares. Next, we delete the U.S. holidays and half-

trading days, as well as May 6, 2010 when the “Flash Crash” occurred. As the economic mechanism

around opening and closing auctions is very different from the regular intraday trading, we remove

data during the first and the last 5 minutes of regular trading hours. Overnight returns and

volumes are also eliminated. We do not de-trend the trading volume series, as the trend (if there is

any) is unlikely to be important for the quarterly horizon. The unit of the volume series is 10,000

shares. Tuning parameters are chosen as follows: the truncation parameters ᾱ and $ are set as

in the simulation, kn = 45, the estimator of asymptotic covariance matrix is given by Proposition

1(c) with Ŝn(θ̂n) = Ŝ1,n(θ̂n), using mn = 12 and k′n = 45.

Figure 4 plots the quarterly time series of the efficient GMIM estimates for the modified MDH

model. To save space, we only plot the estimates for cm0 and cm1, in that these two parameters

determine the conditional mean of volume given the spot variance, that is, E [Yt|Vt] = cm0 +cm1Vt.

The findings are summarized as follows. First, consistent with Andersen (1996), the point estimates

of cm0 and cm1 are almost always positive. We further report in Panels A and B of Table 3

the numbers of quarters with statistically significant estimates, which show that the estimates

are indeed significant in most cases. Second, while we observe some temporal variation of the

parameter estimates, the parameter instability is not very severe, in the sense that estimates in

many adjacent quarters appear to be statistically indifferent. Third, we find that for all tickers, the

estimates of cm1 have quite small values during the financial crisis in 2008. This finding suggests

that the underlying information flow has higher price impact during the crisis period than normal

periods, which is likely due to the increased level of information asymmetry in the marketplace

during the crisis.

We further examine the specification of the modified and the standard MDH for each ticker-

quarter using the GMIM overidentification test. In Panel C of Table 3, we report the number of

quarters for which the modified MDH is rejected by the test. We see that the modified MDH is

rarely rejected and the number of rejections is in line with the Type-I error of our test. By contrast,

we see from Panel D of Table 3 that the standard MDH is rejected by the GMIM overidentification

test for a majority of quarters for all tickers. These findings are consistent with those of Andersen

(1996), and provide further support to the prior findings in a high-frequency setting.

6 Related literature

This paper is related to several strands of literature. First, it is closely related to prior work on

nonparametric inference for integrated volatility functionals; see Andersen, Bollerslev, Diebold,

and Labys (2003), Barndorff-Nielsen and Shephard (2004a), Jacod and Protter (2012) and many

references therein. The most closely related paper is the recent work of Jacod and Rosenbaum
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Figure 4: Quarterly Parameter Estimates for the Modified MDH Model
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Note: For each ticker, we plot the time series of quarterly estimates (solid) of cm0 (left) and cm1 (right) in
the modified MDH model, along with their 90% two-sided pointwise confidence bands (shaded area). The
lower bound of each confidence band is the 95% lower confidence bound. From top to bottom, the tickers
are GE, IBM, JPM, MMM and PG. We fix kn = k′n = 45 and mn = 12.
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Table 3: Summary of Testing Results for MDH Models

Sig. Level GE IBM JPM MMM PG

Panel A. H0 : cm0 = 0 vs. H1 : cm0 > 0.
5% 19 19 18 18 18
10% 19 19 18 18 18

Panel B. H0 : cm1 = 0 vs. H1 : cm1 > 0.
5% 11 10 14 11 15
10% 16 10 19 15 15

Panel C. H0 : Modified MDH is correctly specified.
5% 2 1 0 1 1
10% 2 3 0 2 2

Panel D. H0 : Standard MDH is correctly specified.
5% 17 15 14 16 14
10% 17 16 14 18 16

Note: For each ticker, we report the number of quarters (out of 20 quarters in total) in which the null

hypothesis of interest is rejected at the 5% or 10% significance level. Panel A (resp. Panel B) reports

one-sided testing results for the null hypothesis with cm0 = 0 (resp. cm1 = 0). Panel C (resp. Panel D)

reports overidentification testing results for the modified MDH (resp. standard MDH).

(2013), who use the spot volatility estimates to construct estimators for a large class of integrated

volatility functionals of the form
∫ T

0 g(Vs)ds. The use of spot volatility estimates can be dated back

to early work such as Foster and Nelson (1996) and Comte and Renault (1998), to the best of our

knowledge. Jacod and Rosenbaum (2013) provide a detailed analysis of the bias from the first-step

estimation and propose a bias-correction that is similar to ours. The integrated moment condition

G(·) in the current paper has a more general form because it not only depends on Vt, but also

depends on the observable process Zt and the unobservable process βt; moreover, the functional

form of ḡ(·) is in general unknown as it is partially determined by the unknown distribution

Pχ. These complications make our analysis notably different from Jacod and Rosenbaum (2013).

Conceptually, the scope of our analysis is very different from the existing literature: while prior

work focused on the inference of the volatility itself, we treat its estimation only as a preliminary

step and mainly consider the subsequent inference of parameters in economic models.

Second, our semiparametric method can be considered as one with nonparametrically gener-

ated regressors.19 From this viewpoint, the method can be further compared with the literature

19Although the first-step spot variance estimation can be considered as a “noisy measurement” of the true spot

32



on estimating stochastic volatility models using joint in-fill and long-span asymptotics, see, for

example, Bollerslev and Zhou (2002), Barndorff-Nielsen and Shephard (2002), Bandi and Phillips

(2003), Corradi and Distaso (2006), Gloter (2007), Kanaya and Kristensen (2010), Bandi and Renò

(2012) and Todorov and Tauchen (2012). These papers use realized volatility measures formed

from high-frequency data to proxy volatility functionals defined in continuous time. The realized

measures can then be used to perform parametric or nonparametric estimation with an appeal to

the “large T” asymptotics. These methods rely crucially on the in-fill approximation error being

dominated by the sampling variability in the long-span asymptotics, so that the former can be

considered negligible for asymptotic inference. In contrast, the “fixed T” setting here allows us

to explicitly characterize the asymptotic bias induced by the in-fill approximation error, construct

bias-correction, and incorporate the effect of the approximation error into the asymptotic vari-

ance of the GMIM estimator. That being said, the role of the current paper for this literature is

completely complementary, because inference concerning certain quantities, such as the drift term

(and hence the law) of a stochastic volatility model, demands an asymptotic setting with a long

span.

Finally, when specialized in an option pricing setting, the current paper can be compared with

Andersen, Fusari, and Todorov (2013). These authors consider a setting where the pricing errors

of a large number of option contracts are weakly dependent so that they can be averaged out by

virtue of the central limit theorem. This “large cross section” setting simplifies the analysis of

option pricing models with multiple latent factors, because the risk factors in each day can be

identified from the large cross section as random parameters. Our method is limited to pricing

models with one volatility factor, but does not require a large panel of options with cross-sectionally

independent or weakly dependent pricing errors. Indeed, we allow the errors in pricing equations

to be arbitrarily correlated across option contracts, as is typical in GMM.

7 Conclusion

The proposed GMIM framework extends the classical GMM for estimating conditional moment

equality models using high-frequency data. Such data have become increasingly available in fi-

nancial markets during the past decade and provide rich information for studying econometric

models. Our asymptotic framework is in-fill with a fixed time span and allows for general forms

of nonstationarity and dependence. Since the method can be applied to relatively short samples,

it conveniently allows for time-varying parameters across short (e.g., quarterly) subsamples.

The key to our analysis is the derivation of the asymptotic properties of the bias-corrected

variance, the nature of our econometric analysis is very different from the literature on errors-in-variables models
(see, e.g., Hausman, Newey, Ichimura, and Powell (1991), Schennach (2004, 2007)).
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sample moment function, which depends on the noisy process Y , the observable semimartingale

Z and the spot variance estimate V̂ . Our analysis on the estimator of its asymptotic covariance

matrix is also new. Given these technical innovations, inference methods in the classical GMM lit-

erature, such as overidentification tests and Anderson–Rubin–type confidence sets, can be adapted

to the GMIM setting. The theory is derived under a reasonably general setting, as we allow for

complications such as price and volatility jumps, the leverage effect and serially dependent noise in

the Y variable. The usefulness of the proposed method is demonstrated with two distinct empirical

examples.
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A Proofs

The following notations are used throughout the proofs below. We denote the conditional expec-

tation operator E [·|F ] by EF . For a random variable ξ and p ≥ 1, we write ‖ξ‖F ,p = (EF ‖ξ‖p)1/p.

Recall that Nn ≡ [T/∆n] − kn. We write
∑

i for
∑Nn

i=0 and write
∑

i,j for
∑Nn

i,j=0. We use K

to denote a generic positive constant that may vary from line to line; we sometimes write Ku to

indicate its dependence on some constant u. As is typical in this type of problems, by a classical

localization argument, we can replace Assumption H with the following assumption without loss

of generality.

Assumption SH: We have Assumption H. Moreover, the processes βt, Zt, σt, b̃t and σ̃t

are bounded and, for some λ-integrable function J : R 7→ R, we have |δ(ω, t, z)| ≤ J(z) and

‖δ̃(ω, t, z)‖2 ≤ J(z), for all ω(0) ∈ Ω(0), t ≥ 0 and z ∈ R.

We recall some known, but nontrivial, estimates that are repeatedly used below. Consider a

continuous process X ′t given by

X ′t = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs.

We then set, for each i = 0, . . . , Nn,

V̂ ′i∆n
=

1

kn∆n

kn∑
j=1

(∆n
i+jX

′)2, ṽni = V̂ ′i∆n
− Vi∆n . (A.1)

Lemma A.1. Suppose that Assumption SH holds for some r ∈ (0, 1). Let u ≥ 1 be a constant.

Then for some deterministic sequence an → 0, we have
E|V̂i∆n − V̂ ′i∆n

|u ≤ Kuan∆(2u−r)$+1−u
n ,

E|ṽni |u ≤ Ku(k−u/2n + (kn∆n)(u/2)∧1),

E|V̂i∆n |u ≤ Ku +Ku∆(2u−r)$+1−u
n .

(A.2)

Proof: The first inequality is by (4.8) in Jacod and Rosenbaum (2013). The second inequality

is by (4.11) in Jacod and Rosenbaum (2013) and Jensen’s inequality. The third inequality readily

follows from the first two inequalities and the boundedness of Vt. Q.E.D.

A.1 Proof of Theorem 1

We start with a technical lemma.
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Lemma A.2. Let β̃t = (βᵀt , Z
ᵀ
t )

ᵀ
. Suppose (i) Assumption H; (ii) for some p ≥ 0, we have

f ∈ C(p) and h ∈ P (2p); (iii) if p > 1, we further assume $ ∈ [(p−1)/(2p−r), 1/2); (iv) kn →∞
and kn∆n → 0. Then (a) ∆n

∑
i f(β̃i∆n , V̂i∆n)

P−→
∫ T

0 f(β̃s, Vs)ds; (b) ∆2
n

∑
i h(β̃i∆n , V̂i∆n)

P−→ 0.

Proof: (a) By a localization argument, we suppose Assumption SH without loss of generality.

We first prove the assertion under the assumption that f is bounded. Construct two processes, β̃+
t

and V̂ +
t , as follows: for each i ≥ 1 and t ∈ [(i− 1) ∆n, i∆n), we set β̃+

t ≡ β̃i∆n and V̂ +
t ≡ V̂i∆n .

Observe that

E

∣∣∣∣∣∆n

∑
i

f(β̃i∆n , V̂i∆n)−
∫ T

0
f(β̃s, Vs)ds

∣∣∣∣∣
≤ Kkn∆n +

∫ Nn∆n

0
E
∣∣∣f(β̃+

s , V̂
+
s )− f(β̃s, Vs)

∣∣∣ ds.
By Theorem 9.3.2 in Jacod and Protter (2012), we have V̂ +

s
P−→ Vs for each s ≥ 0. By the right

continuity of the process β̃, we have β̃+
s → β̃s for each s ≥ 0, which further implies (β̃+

s , V̂
+
s )

P−→
(β̃s, Vs). By the continuity of f (·), f(β̃+

s , V̂
+
s )

P−→ f(β̃s, Vs). By the bounded convergence theorem,∫ Nn∆n

0 E|f(β̃+
s , V̂

+
s )− f(β̃s, Vs)|ds→ 0, yielding

∆n

∑
i

f(β̃i∆n , V̂i∆n)
P−→
∫ T

0
f(β̃s, Vs)ds for bounded f . (A.3)

We now prove the assertion of part (a) with the boundedness condition on f relaxed. Let

φ(·) be a C∞ function R+ 7→ [0, 1], with 1[1,∞) (x) ≤ φ (x) ≤ 1[1/2,∞) (x), and for m ≥ 1,

we set φm (v) ≡ φ (|v| /m), φ′m (v) ≡ 1 − φm (v). We define fm(β̃, v) ≡ f(β̃, v)φm(v) and

f ′m(β̃, v) ≡ f(β̃, v)φ′m(v), so f(β̃, v) = fm(β̃, v) + f ′m(β̃, v). Since f ′m is bounded and continuous,

(A.3) yields ∆n
∑

i f
′
m(β̃i∆n , V̂i∆n) =

∫ T
0 f ′m(β̃s, Vs)ds + op(1). Since the process Vt is bounded,∫ T

0 f ′m(β̃s, Vs)ds =
∫ T

0 f(β̃s, Vs)ds for m large enough. By Proposition 2.2.1 in Jacod and Protter

(2012) and Markov’s inequality, it remains to show that

lim
m→∞

lim sup
n→∞

E

∣∣∣∣∣∆n

∑
i

fm(β̃i∆n , V̂i∆n)

∣∣∣∣∣ = 0. (A.4)

By condition (ii), for all m ≥ 1, |fm(β̃i∆n , V̂i∆n)| ≤ K(1 + |V̂i∆n |p)φm(V̂i∆n) ≤
K|V̂i∆n |p1{V̂i∆n≥m/2}

. Under the same condition on X, Jacod and Protter (2012) show that

(see (9.4.7)), for some deterministic sequence an → 0, E[|V̂i∆n |p1{V̂i∆n≥m/2}
] ≤ Km−p +

K∆
1−p+$(2p−r)
n an. Under condition (iii), we have 1 − p + $ (2p− r) ≥ 0 and, hence,

E|∆n
∑

i fm(β̃i∆n , V̂i∆n)| ≤ Km−p + O (an). From here, (A.4) follows. The proof of part (a)

is now complete.
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(b) By Lemma A.1 and h ∈ P (2p),

E

[
∆2
n

∑
i

h(β̃i∆n , V̂i∆n)

]
≤ E

[
∆2
n

∑
i

(1 + |V̂i∆n |2p)

]
≤ K∆n +K∆2−2p+$(4p−r)

n an.

Note that condition (iii) implies that 2− 2p+$(4p− r) ≥ 0 and, hence, the majorant side of the

above inequality is o(1). The assertion in part (b) readily follows. Q.E.D.

Proof of Theorem 1: By a componentwise argument, we can assume that g(·) is R-valued

without loss of generality. We first show that Ĝn(θ)
P−→ G(θ) for each θ ∈ Θ. We decompose

Ĝn (θ) = Ĝ1,n (θ) + Ĝ2,n (θ), where

Ĝ1,n (θ) ≡ ∆n

∑
i

ζni , ζni ≡ g(Yi∆n , Zi∆n , V̂i∆n ; θ)− ḡ(βi∆n , Zi∆n , V̂i∆n ; θ),

Ĝ2,n (θ) ≡ ∆n

∑
i

ḡ(βi∆n , Zi∆n , V̂i∆n ; θ).

Since (βi∆n , Zi∆n , V̂i∆n) is F-measurable, ḡ(βi∆n , Zi∆n , V̂i∆n ; θ) = EF [g(Yi∆n , Zi∆n , V̂i∆n ; θ)] by

the definition of ḡ (·). Hence, the variables (ζni )i≥0 have zero F-conditional mean. Under the

transition probability P(1), the α-mixing coefficient of these variables is bounded by αmix(·). Set-

ting ani ≡ ḡ0,k(βi∆n , Zi∆n , V̂i∆n ; θ) + 1 and ζ̄ni ≡ ζni /a
n
i , we have EF |ζ̄ni |k ≤ 1 for all i. Since∑

l≥0 αmix (l)(k−2)/k <∞, by the mixing inequality (see, e.g., Theorem 3 in Yoshihara (1978)), we

have

EF
[∣∣∣Ĝ1,n(θ)

∣∣∣2] ≤ K∆2
n

∑
i

(ani )2 ≤ K∆n +K∆2
n

∑
i

ḡ0,k(βi∆n , Zi∆n , V̂i∆n ; θ)2.

Since ḡ0,k(·; θ) ∈ P (p), we can apply Lemma A.2 (with h (·) = ḡ0,k(·; θ)2 ∈ P (2p)) to deduce that

the majorant side of the above display is op(1). From here, it follows that Ĝ1,n(θ) = op(1). In

addition, since ḡ (·; θ) ∈ C (p), we can apply Lemma A.2 again (with f (·) = ḡ(·; θ)) to derive

Ĝ2,n (θ)
P−→
∫ T

0
ḡ(βs, Zs, Vs; θ)ds ≡ G(θ).

Hence, Ĝn(θ)
P−→ G (θ) for each θ ∈ Θ.

To show the asserted uniform convergence in probability, it remains to show that Ĝn(·) is

stochastically equicontinuous. Since g(·) ∈ LIP(p, 0), we see that for θ, θ′ ∈ Θ,∣∣∣Ĝn (θ)− Ĝn
(
θ′
)∣∣∣ ≤ B0,n

∥∥θ − θ′∥∥ , where B0,n ≡ ∆n

∑
i

B0(Yi∆n , Zi∆n , V̂i∆n)

for some function B0(·) as described in Definition 1, which satisfies B̄0 ∈ P (p). Hence, EF [B0,n] ≤
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∆n
∑

i B̄0(βi∆n , Zi∆n , V̂i∆n) ≤ K∆n
∑

i(1 + |V̂i∆n |p). By Lemma A.1, EF [B0,n] = Op(1). Since

B0,n is positive, we further derive B0,n = Op(1). From here, it follows that Ĝn(·) is stochastically

equicontinuous. Q.E.D.

A.2 Proof of Theorem 2

We need two lemmas. Lemma A.3 is used to combine stable convergence and convergence in condi-

tional law (see Definition 2 below). Lemma A.4 generalizes Theorem 3.2 in Jacod and Rosenbaum

(2013).

Definition 2 (Convergence in conditional law): Let ζn be a sequence of Rd-valued

random variables defined on the space (Ω,F⊗G,P) and L be a transition probability from (Ω,F⊗
{∅,Ω(1)}) to an extension of (Ω,F ⊗ G,P). We write ζn

L|F−→ L if and only if the F-conditional

characteristic function of ζn converges in probability to the F-conditional characteristic function

of L. If a variable ζ defined on the extension has F-conditional law L, we also write ζn
L|F−→ ζ.

Lemma A.3. Let ξn and ζn be two sequences of random vectors defined on (Ω,F ⊗ G,P) and let

ξ and ζ be variables defined on an extension of (Ω,F ⊗ G,P). Suppose that ξn is F-measurable,

ξn
L-s−→ ξ and ζn

L|F−→ ζ. Then (ξn, ζn)
L-s−→ (ξ, ζ), with ξ and ζ being F-conditionally independent.

Proof: The joint convergence (ξn, ζn)
L-s−→ (ξ, ζ) is by Proposition 5 in Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008). It remains to show that ξ and ζ are F-conditionally inde-

pendent. Let f (·) and g (·) be bounded continuous functions and U be a bounded F-measurable

variable. It remains to verify

E [f (ξ) g (ζ)U ] = E [EF [f (ξ)]EF [g (ζ)]U ] . (A.5)

Since ξn
L-s−→ ξ, E[f (ξn)EF [g (ζ)]U ] → E[f (ξ)EF [g (ζ)]U ]. By repeated conditioning, we see

that the limit coincides with the right-hand side of (A.5). By the assumption on ζn, we have

EF [g (ζn)]
P−→ EF [g (ζ)]. Then, by the bounded convergence theorem, E[f (ξn)EF [g (ζn)]U ] −

E[f (ξn)EF [g (ζ)]U ] → 0. Since ξn is F-measurable, E[f (ξn)EF [g (ζn)]U ] = E[f (ξn) g (ζn)U ].

Therefore, the right-hand side of (A.5) is also the limit of E[f (ξn) g (ζn)U ]. But, since (ξn, ζn)
L-s−→

(ξ, ζ), we see that E[f (ξn) g (ζn)U ] also converges to the left-hand side of (A.5). Hence, (A.5)

must hold. Q.E.D.

Lemma A.4. Let β̃t = (βᵀt , Z
ᵀ
t )

ᵀ
and let f be a Rd-valued function for some d ≥ 1. Suppose

that (i) Assumption H holds for some r ∈ (0, 1); (ii) f ∈ C2,3 (p) for some p ≥ 3; (iii) $ ≥
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(2p− 1) /2(2p− r); (iv) Assumption LW. Then the sequence of variables

∆−1/2
n

(
∆n

∑
i

(
f(β̃i∆n , V̂i∆n)− 1

kn
∂2
vf(β̃i∆n , V̂i∆n)V̂ 2

i∆n

)
−
∫ T

0
f(β̃s, Vs)ds

)
(A.6)

converges F-stably in law to MN (0,Σf ), where Σf ≡ 2
∫ T

0 ∂vf(β̃s, Vs)∂vf(β̃s, Vs)
ᵀV 2

s ds.

Proof: This lemma generalizes Theorem 3.2 in Jacod and Rosenbaum (2013) by allowing

f (·) to depend on the additional process β̃. The proof is adapted from Jacod and Rosenbaum

(2013). To avoid repetition, we only emphasize the modifications. By localization, we suppose that

Assumption SH holds without loss of generality. For notational simplicity, we set, for (β, z, v) ∈
B × Z × V,

h(β, z, v) = ∂2
vf (β, z, v) v2. (A.7)

Recall (A.1). The variable in (A.6) can be decomposed as
∑5

j=1 Fj,n, where

F1,n ≡ ∆1/2
n

∑
i

(
f(β̃i∆n , V̂i∆n)− f(β̃i∆n , V̂

′
i∆n

)
)

−∆1/2
n k−1

n

∑
i

(
h(β̃i∆n , V̂i∆n)− h(β̃i∆n , V̂

′
i∆n

)
)
,

F2,n ≡ ∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

(
f(β̃i∆n , Vi∆n)− f(β̃s, Vs)

)
ds−∆−1/2

n

∫ T

(Nn+1)∆n

f(β̃s, Vs)ds,

F3,n ≡ ∆1/2
n

∑
i

∂vf(β̃i∆n , Vi∆n)k−1
n

kn∑
u=1

(
V(i+u−1)∆n

− Vi∆n

)
,

F4,n ≡ ∆1/2
n

∑
i

(
f(β̃i∆n , Vi∆n + ṽni )− f(β̃i∆n , Vi∆n)

−∂vf(β̃i∆n , Vi∆n)ṽni − k−1
n h(β̃i∆n , V̂

′
i∆n

)
)
,

F5,n ≡ ∆−1/2
n k−1

n

∑
i

(
∂vf(β̃i∆n , Vi∆n)

kn∑
u=1

(
(∆n

i+uX
′)2 − V(i+u−1)∆n

∆n

))
.

The proof will be completed by showing the following claims:{
Fj,n = op(1), for j = 1, 2, 3, 4,

F5,n
L-s−→MN (0,Σf ) .

(A.8)

We first consider (A.8) for the case with j = 1. Since f ∈ C2,3(p) and β̃i∆n is bounded

by Assumption SH, we have for all i ≥ 0 and v ∈ V, ‖∂vf(β̃i∆n , v)‖ ≤ K(1 + vp−1) and
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‖∂vh(β̃i∆n , v)‖ ≤ K(v + vp−1). Hence, by a mean–value expansion,

E ‖F1,n‖ ≤ K∆1/2
n

∑
i

E
[(

1 + |V̂ ′i∆n
|p−1 + |V̂i∆n − V̂ ′i∆n

|p−1
)
|V̂i∆n − V̂ ′i∆n

|
]
.

As shown in Lemma 4.4 in Jacod and Rosenbaum (2013) (see case v = 1), the majorant side of the

above inequality can be bounded by Kan∆
(2p−r)$+1/2−p
n for some deterministic sequence an → 0.

Since $ ≥ (2p− 1)/2(2p− r), we derive (A.8) for j = 1.

Now, consider (A.8) with j = 2. Since f(β̃s, Vs) is uniformly bounded, it is easy to see that∥∥∥∥∥∆−1/2
n

∫ T

(Nn+1)∆n

f(β̃s, Vs)ds

∥∥∥∥∥ ≤ Kkn∆1/2
n → 0,

where the convergence is due to Assumption LW. Moreover, the first term in F2,n is also op(1)

due to a standard estimate (see, e.g., p. 153–154 in Jacod and Protter (2012)) for the Riemann

approximation error of Itô semimartingales.

Next, consider (A.8) with j = 3. We set ζn3,i ≡ k−1
n

∑kn
u=1

(
V(i+u−1)∆n

− Vi∆n

)
, ζ ′n3,i ≡

E[ζn3,i|Fi∆n ] and ζ ′′n3,i ≡ ζn3,i − ζ ′n3,i. We then decompose F3,n = F ′3,n + F ′′3,n, where

F ′3,n ≡ ∆1/2
n

∑
i

∂vf(β̃i∆n , Vi∆n)ζ ′n3,i, F ′′3,n ≡ ∆1/2
n

∑
i

∂vf(β̃i∆n , Vi∆n)ζ ′′n3,i .

Under Assumption SH, it is easy to see E|ζ ′n3,i| ≤ Kkn∆n. Since ‖∂vf(β̃t, Vt)‖ is bounded, we

further have E‖F ′3,n‖ ≤ Kkn∆
1/2
n → 0. Hence, F ′3,n = op(1). Moreover, by a standard estimate

for Itô semimartingales, we have, for any u = 1, . . . , kn, E|V(i+u−1)∆n
− Vi∆n |2 ≤ Kkn∆n. From

here, a use of the Cauchy–Schwarz inequality yields E|ζ ′′n3,i |2 ≤ KE|ζn3,i|2 ≤ Kkn∆n. By con-

struction, E[ζ ′′n3,i |Fi∆n ] = 0 and ζ ′′n3,i is F(i+kn−1)∆n
measurable. Hence, ∂vf(β̃i∆n , Vi∆n)ζ ′′n3,i and

∂vf(β̃l∆n , Vl∆n)ζ ′′n3,l are uncorrelated whenever |i− l| ≥ kn. We then use the Cauchy–Schwarz

inequality to derive

E‖F ′′3,n‖2 ≤ Kkn∆n

∑
i

E
∥∥∥∂vf(β̃i∆n , Vi∆n)ζ ′′n3,i

∥∥∥2
≤ Kk2

n∆n → 0,

which further implies F ′′3,n = op(1). From here, (A.8) with j = 3 readily follows.

To prove (A.8) with j = 4, we set

ζ ′n4,i =
1

2
∂2
vf(β̃i∆n , Vi∆n)

(
(ṽni )2 − 2k−1

n V 2
i∆n

)
,

ζ ′′n4,i = f(β̃i∆n , Vi∆n + ṽni )− f(β̃i∆n , Vi∆n)

−∂vf(β̃i∆n , Vi∆n)ṽni −
1

2
∂2
vf(β̃i∆n , Vi∆n) (ṽni )2
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+k−1
n h(β̃i∆n , Vi∆n)− k−1

n h(β̃i∆n , V̂
′
i∆n

).

We can then decompose F4,n = F ′4,n + F ′′4,n, where

F ′4,n ≡ ∆1/2
n

∑
i

(
E
[
ζ ′n4,i|Fi∆n

]
+ ζ ′′n4,i

)
, F ′′4,n ≡ ∆1/2

n

∑
i

(
ζ ′n4,i − E

[
ζ ′n4,i|Fi∆n

])
.

Since f ∈ C2,3 (p) and β̃i∆n is uniformly bounded, we have ‖∂2
vf(β̃i∆n , v)‖ ≤ K

(
1 + vp−2

)
and

‖∂3
vf(β̃i∆n , v)‖ ≤ K(1 + vp−3) for all v ∈ V. We can then use the mean–value theorem to derive

‖ζ ′′n4,i‖ ≤ K(1 + |ṽni |
p−3) |ṽni |

3 +Kk−1
n (1 + |ṽni |

p−1) |ṽni |. Now, we can use the same argument in the

proof of Lemma 4.4 in Jacod and Rosenbaum (2013) (see case v = 4 there) to derive F ′4,n = op(1).

Moreover, note that ζ ′n4,i−E[ζ ′n4,i|Fi∆n ] and ζ ′n4,l−E[ζ ′n4,l|Fl∆n ] are uncorrelated whenever |i− l| ≥ kn,

we have E‖F ′′4,n‖2 ≤ Kkn∆n
∑

i E|ζ ′n4,i|2 ≤ Kkn
(
k−2
n + kn∆n

)
, where the first inequality is by the

Cauchy–Schwarz inequality and the second inequality is by the second line of (A.2). From here, it

follows that E‖F ′′4,n‖2 → 0. Hence, F4,n = F ′4,n + F ′′4,n = op(1), as claimed in (A.8).

Finally, we notice that the stable convergence in (A.8) follows essentially the same proof as

that of Lemma 4.5 in Jacod and Rosenbaum (2013). (To be precise, the only modification needed

is to replace the weight ∂lmg (cni ) in their definition of V n,5
t by ∂vf(β̃i∆n , Vi∆n).) The proof is now

complete. Q.E.D.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2: (a) We first verify that the conditions in Theorem 1 hold when

replacing the function g(y, z, v; θ) with h(y, z, v; θ) ≡ ∂2
vg(y, z, v; θ)v2. We define h̄ (·) and h̄j,p(·)

via (2.7) and (3.1) but with h replacing g. By Assumption S(iii), h̄(β, z, v; θ) = ∂2
v ḡ(β, z, v; θ)v2.

Since ḡ(·; θ) ∈ C2,3(p), we see that ∂2
v ḡ(·; θ) ∈ C(p − 2) and, hence, h̄(·; θ) ∈ C (p). Further

observe that h̄0,k(·; θ) = ḡ2,k(·; θ)v2, which belongs to P(p) by Assumption D(i). The condition

$ ≥ (2p− 1)/2(2p− r) clearly implies that $ ≥ (p− 1)/(2p− r). Under Assumption LIP(i), it is

easy to verify that h(·) ∈LIP(p, 0). Now, we can apply Theorem 1 with g(·) replaced by h(·) and

derive the first assertion of part (a).

As a result, Ĝn(·) −Gn(·) = op(1) uniformly on compact sets. Under Assumptions S(ii), D(i)

and LIP(i), we can apply Theorem 1 to derive that Ĝn(·) − G(·) = op(1) uniformly on compact

sets. From here, the second assertion of part (a) readily follows.

(b) Step 1. We outline the proof of part (b) in this step. Without loss of generality, we suppose

Assumption SH. To simplify notation, we suppress the appearance of θ∗ by writing g(y, z, v) (resp.

ḡ(β, z, v)) in place of g(y, z, v; θ∗) (resp. ḡ(β, z, v; θ∗)). We also set h (y, z, v) = ∂2
vg (y, z, v) v2 and

h̄ (β, z, v) = ∂2
v ḡ (β, z, v) v2.
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The proof relies on the decomposition ∆
−1/2
n Gn (θ∗) = R1,n +R2,n +R3,n, where

R1,n ≡ ∆1/2
n

∑
i

(
ḡ(βi∆n , Zi∆n , V̂i∆n)− k−1

n h̄(βi∆n , Zi∆n , V̂i∆n)
)
,

R2,n ≡ ∆1/2
n k−1

n

∑
i

(
h̄(βi∆n , Zi∆n , V̂i∆n)− h(Yi∆n , Zi∆n , V̂i∆n)

)
,

R3,n ≡ ∆1/2
n

∑
i

(
g(Yi∆n , Zi∆n , V̂i∆n)− ḡ(βi∆n , Zi∆n , V̂i∆n)

)
.

By Lemma A.4 with f(·) = ḡ (·), we have R1,n
L-s−→ MN (0, S̄); recall (3.5) for the definition

of S̄. Below, we show R2,n = op(1) in step 2. We then show (recalling Definition 2 and (3.4))

R3,n
L|F−→MN (0, Γ̄) in step 4, after preparing some preliminary results in step 3. The assertion of

part (b) then follows from Lemma A.3.

Step 2. In this step, we show that R2,n = op(1). By using a componentwise argument, we

can assume that R2,n is scalar without loss of generality. We set h̃ni ≡ h̄(βi∆n , Zi∆n , V̂i∆n) −
h(Yi∆n , Zi∆n , V̂i∆n) and rewrite R2,n = ∆

1/2
n k−1

n

∑
i h̃

n
i . By Assumption S(iii) and the F-

measurability of (βi∆n , Zi∆n , V̂i∆n), we have EF [h̃ni ] = 0. Furthermore, since ḡ2,k ∈ P (p− 2)

(Assumption D(i)),

‖h̃ni ‖F ,k ≤ Kḡ2,k(βi∆n , Zi∆n , V̂i∆n)V̂ 2
i∆n
≤ K(1 + |V̂i∆n |p). (A.9)

By Assumption MIX, conditional on F , the α-mixing coefficient of the sequence (h̃ni )i≥0 is bounded

by αmix(·). Observe that

EF
[
R2

2,n

]
≤ ∆nk

−2
n

∑
i,j

∣∣∣EF [h̃ni h̃
n
j ]
∣∣∣

≤ K∆nk
−2
n

∑
i,j

αmix (|i− j|)1−2/k ‖h̃ni ‖F ,k‖h̃nj ‖F ,k,
(A.10)

where the first inequality is by the triangle inequality, and the second inequality follows from

the mixing inequality. We also note that the condition $ ≥ (2p − 1)/2(2p − r) implies $ ≥
(2p− 1)/(4p− r); hence, by the third line of (A.2),

E|V̂i∆n |2p ≤ K. (A.11)

By (A.9)–(A.11), as well as the assumption that αmix(·) has size −k/(k − 2), we derive E[R2
2,n] ≤

Kk−2
n → 0. Therefore, R2,n = op(1) as wanted.

Step 3. It remains to show R3,n
L|F−→MN (0, Γ̄). By the Cramer–Wold device, we can assume

that R3,n is one-dimensional without loss of generality. In this step, we collect some preliminary
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results. For notational simplicity, we set ẑni = (βi∆n , Zi∆n , V̂i∆n), zni = (βi∆n , Zi∆n , Vi∆n) and

ξi (β, z, v) = g (Y (β, χi) , z, v)− ḡ (β, z, v). We can rewrite

R3,n = ∆1/2
n

∑
i

ξi (ẑni ) . (A.12)

By (A.2),

E|V̂i∆n − Vi∆n |2 ≤ Kān, where ān ≡ ∆(4−r)$−1
n + k−1

n + kn∆n. (A.13)

Since $ ≥ (2p − 1)/2(2p − r), r < 1 and p ≥ 3, it is easy to see (4 − r)$ > 1. Hence, ān → 0.

Under Assumption SH, we have E‖zni−j − zni ‖2 ≤ K(1 ∧ j∆n) by a standard estimate for Itô

semimartingales. By (A.13), we further have E‖ẑni−j − ẑni ‖2 ≤ K(ān + 1 ∧ j∆n). Recall from

Assumption D the constant κ ∈ (0, 1]. Then we have, by Jensen’s inequality,

E
[∥∥ẑni−j − ẑni ∥∥2κ

]
≤ K(ān + 1 ∧ j∆n)κ. (A.14)

Observe that, for i, j ≥ 0,∣∣∣EF [ξi (ẑni ) ξi−j(ẑ
n
i−j)− ξi (zni ) ξi−j(z

n
i )]
∣∣∣

≤ Kαmix(j)1−2/k‖ξi (ẑni ) ‖F ,k‖ξi−j(ẑni−j)− ξi−j(zni )‖F ,k
+Kαmix(j)1−2/k‖ξi−j(zni )‖F ,k‖ξi (ẑni )− ξi (zni ) ‖F ,k
≤ Kαmix(j)1−2/k

(
ḡ0,k(ẑ

n
i )ρk(ẑ

n
i−j , z

n
i ) + ḡ0,k(z

n
i )ρk (ẑni , z

n
i )
)
,

(A.15)

where the first inequality is obtained by using the triangle inequality and then the mixing inequal-

ity; the second inequality follows from ‖ξi(·)‖F ,k ≤ Kḡ0,k(·) and (3.1). Note that Assumption D

implies ḡ0,k(·) ∈ P (p/2) and ρk(ẑ
n
i−j , z

n
i ) ≤ K(1+ V̂

p/2
(i−j)∆n

)‖ẑni−j−zni ‖κ. Therefore, (A.15) implies

∣∣EF [ξi (ẑni ) ξi−j(ẑ
n
i−j)− ξi (zni ) ξi−j(z

n
i )]
∣∣

≤ Kαmix(j)1−2/k
(

1 + V̂
p/2
i∆n

)(
1 + V̂

p/2
(i−j)∆n

) (
‖ẑni−j − zni ‖κ + ‖ẑni − zni ‖κ

)
.

(A.16)

By the Cauchy–Schwarz inequality, (A.11) and (A.14), we further deduce that

E
∣∣EF [ξi (ẑni ) ξi−j(ẑ

n
i−j)− ξi (zni ) ξi−j(z

n
i )]
∣∣ ≤ Kαmix(j)1−2/k(ān + 1 ∧ j∆n)κ/2. (A.17)
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Next, we set
Γn ≡ ∆n

∑
i

EF
[
ξi (ẑni )2

]
+ 2∆n

Nn∑
j=1

Nn∑
i=j

EF
[
ξi (ẑni ) ξi−j(ẑ

n
i−j)

]
,

Γ̃n ≡ ∆n

∑
i

EF
[
ξi (zni )2

]
+ 2∆n

Nn∑
j=1

Nn∑
i=j

EF [ξi (zni ) ξi−j(z
n
i )] .

(A.18)

By (A.17) and
∑

l≥0 αmix(l)1−2/k <∞, we deduce

E
∣∣∣Γn − Γ̃n

∣∣∣ ≤ Kāκ/2n +K∆n

Nn∑
j=1

Nn∑
i=j

αmix(j)1−2/k(ān + 1 ∧ j∆n)κ/2

≤ Kāκ/2n +K∆κ/2
n

Nn∑
j=1

jκ/2αmix(j)1−2/k.

As mentioned above, ān → 0. Moreover, by Kronecker’s lemma, ∆
κ/2
n
∑Nn

j=1 j
κ/2αmix(j)1−2/k → 0.

Hence,

Γn − Γ̃n
P−→ 0. (A.19)

We now show

Γ̃n
P−→ Γ̄. (A.20)

To simplify notation, we denote γl,s ≡ γl(βs, Zs, Vs) and γ̄s ≡ γ̄(βs, Zs, Vs) for l ≥ 0 and s ≥ 0. We

note that ḡ(zni ) ≡ 0 because of (2.2). Hence, we can rewrite Γ̃n as

Γ̃n = ∆n

∑
i

γ0,i∆n + 2∆n

∞∑
j=1

Nn∑
i=j

γj,i∆n ,

where empty sums are set to zero by convention. Therefore,

Γ̃n − Γ̄ =

(
∆n

Nn∑
i=0

γ0,i∆n −
∫ T

0
γ0,sds

)
+ 2

∞∑
j=1

∆n

Nn∑
i=j

γj,i∆n −
∫ T

0
γj,sds

 . (A.21)

By an argument similar to (indeed simpler than) (A.16), it is easy to see that γj(β, z, v) is

continuous in (β, z, v). Under Assumption SH, the process (γj,t)t≥0 is càdlàg and uniformly

bounded. Hence, by invoking the Riemann approximation, we deduce that, for each j ≥ 0,
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∆n
∑Nn

i=j γj,i∆n −
∫ T

0 γj,sds→ 0. Moreover, observe that

∞∑
j=1

∣∣∣∣∣∣∆n

Nn∑
i=j

γj,i∆n −
∫ T

0
γj,sds

∣∣∣∣∣∣ ≤ K sup
t∈[0,T ]

ḡ0,k (βt, Zt, Vt)
2 ≤ K,

where the first inequality is by the mixing inequality and
∑

j≥1 αmix (j)1−2/k <∞, and the second

inequality holds because (βᵀt , Z
ᵀ
t , Vt)

ᵀ
is bounded under Assumption SH and ḡ0,k (·) is bounded on

bounded sets. This dominance condition allows us to use the dominated convergence theorem to

obtain the limit of the right-hand side of (A.21). From here, (A.20) readily follows.

Finally, we note that EF [R2
3,n] = Γn. Combining (A.19) and (A.20), we derive

EF
[
R2

3,n

] P−→ Γ̄. (A.22)

Step 4. We now show that R3,n
L|F−→MN (0, Γ̄). Consider a subset Ω̄ of Ω given by Ω̄ ≡ {Γ̄ > 0}

and let Ω̄c be the complement of Ω̄. Clearly, Ω̄ is F-measurable. In restriction to Ω̄c, EF
[
R2

3,n

]
=

op(1) and, thus, the F-conditional law of Rn,3 converges to the degenerate distribution at zero.

We now restrict attention on the event Ω̄, so we can assume Γ̄ > 0. We consider an arbitrary

subsequence N1 ⊆ N. By the subsequence characterization of convergence in probability, it is

enough to show that there exists a further subsequence N2 ⊆ N1 such that, as n→∞ along N2, the

F-conditional distribution function of R3,n converges uniformly to the F-conditional distribution

function of MN (0, Γ̄) on P-almost every path in Ω̄.

By (A.22), we can extract a subsequence N2 ⊆ N1 such that, along N2, EF
[
R2

3,n

]
→ Γ̄ > 0 for

almost every path in Ω̄. Recall from (A.12) that R3,n = ∆
1/2
n
∑

i ξi (ẑni ). Under Assumption MIX,

ξi (ẑni ) forms a sequence with zero mean and α-mixing coefficients bounded by αmix (·) under the

transition probability P(1). Moreover, E|ξi (ẑni ) |k ≤ KE |ḡ0,k(ẑ
n
i )|k ≤ K, where the first inequality

is by repeated conditioning, Minkowski’s and Jensen’s inequalities; the second inequality is by

ḡ0,k ∈ P(2p/k) and (A.11). We are now ready to apply Theorem 5.20 in White (2001) and

Pólya’s theorem under the transition probability P(1) and deduce that, along N2, the F-conditional

distribution function of R3,n converges uniformly to the F-conditional distribution function of

MN (0, Γ̄) for almost every path in Ω̄. As mentioned in the previous paragraph, we can use a

subsequence argument to further deduce that R3,n
L|F−→ MN (0, Γ̄). As discussed in step 1, the

proof of Theorem 2(b) is now complete. Q.E.D.
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A.3 Proof of Theorem 3

Proof of Theorem 3: (a) As is typical in this type of problem, by a polarization argument,

we can consider a one-dimensional setting without loss of generality. We henceforth suppose that

g(·) is scalar-valued. By localization, we also suppose that Assumption SH holds.

To simplify notation, we set ĝni (θ) = g(Yi∆n , Zi∆n , V̂i∆n ; θ) and gni (θ) = g(Yi∆n , Zi∆n , Vi∆n ; θ)

for i ≥ 0 and θ ∈ Θ. We can rewrite (3.8) as

Γ̂n(θ̂n) = ∆n

Nn∑
i=0

ĝni (θ̂n)2 + 2

mn∑
j=1

w (j,mn) ∆n

Nn∑
i=j

ĝni (θ̂n)ĝni−j(θ̂n).

We consider a progressive list of approximations to Γ̂n(θ̂n) given by

Γ̂(1)
n ≡ ∆n

Nn∑
i=0

gni (θ∗)2 + 2

mn∑
j=1

w (j,mn) ∆n

Nn∑
i=j

gni (θ∗) gni−j (θ∗) ,

Γ̂(2)
n ≡ ∆n

Nn∑
i=0

EF
[
gni (θ∗)2

]
+ 2

mn∑
j=1

w (j,mn) ∆n

Nn∑
i=j

EF
[
gni (θ∗) gni−j (θ∗)

]
,

Γ̂(3)
n ≡ ∆n

Nn∑
i=0

EF
[
gni (θ∗)2

]
+ 2∆n

Nn∑
j=1

Nn∑
i=j

EF
[
gni (θ∗) gni−j (θ∗)

]
.

We note that gni (θ∗) is identical to ξi(z
n
i ) defined in step 3 of the proof of Theorem 2, because

ḡ(βi∆n , Zi∆n , Vi∆n ; θ∗) = 0 as a result of (2.8). Therefore, Γ̂
(3)
n has the same form as Γn defined in

(A.18) after replacing ξi(ẑ
n
i ) and ξi−j(ẑ

n
i−j) in the latter with ξi(z

n
i ) and ξi−j(z

n
i−j), respectively.

From here, we can use an argument that is similar to that in step 3 of the proof of Theorem 2

to show that Γ̂
(3)
n

P−→ Γ̄; this is actually simpler to prove because V̂i∆n is replaced with the true

value Vi∆n . To prove Γ̂n(θ̂n)
P−→ Γ̄, it remains to verify Γ̂n(θ̂n)− Γ̂

(1)
n , Γ̂

(1)
n − Γ̂

(2)
n and Γ̂

(2)
n − Γ̂

(3)
n

are op(1).

First consider Γ̂n(θ̂n)− Γ̂
(1)
n . Observe that∣∣∣Γ̂n(θ̂n)− Γ̂(1)

n

∣∣∣
≤ K

mn∑
j=0

∆n

Nn∑
i=j

|ĝni (θ̂n)ĝni−j(θ̂n)− gni (θ∗) gni−j (θ∗) |

≤ K
mn∑
j=0

∆n

Nn∑
i=j

(
|ĝni (θ̂n)||ĝni−j(θ̂n)− gni−j (θ∗) |+ |ĝni (θ̂n)− gni (θ∗) ||gni−j (θ∗) |

)
≤ Kmn

(
∆n

∑
i

(
ĝni (θ̂n)2 + gni (θ∗)2

))1/2(
∆n

∑
i

∣∣∣ĝni (θ̂n)− gni (θ∗)
∣∣∣2)1/2

,

(A.23)

52



where the first inequality is from the triangle inequality and the boundedness of the kernel function

w (·, ·); the second inequality is from the triangle inequality; the third inequality follows from the

Cauchy–Schwarz inequality. We further observe that, for i ≥ 0,

∆n

∑
i

∣∣∣ĝni (θ̂n)− gni (θ∗)
∣∣∣2

≤ K∆n

∑
i

|ĝni (θ̂n)− ĝni (θ∗) |2 +K∆n

∑
i

|ĝni (θ∗)− gni (θ∗)|2

≤ K∆n

∑
i

B0(Yi∆n , Zi∆n , V̂i∆n)2‖θ̂n − θ∗‖2 +K∆n

∑
i

|ĝni (θ∗)− gni (θ∗)|2 ,

(A.24)

where the first inequality is from the triangle inequality and the second inequality follows from As-

sumption LIP(i) (recall Definition 1). Under Assumption LIP(i), we see E[B0(Yi∆n , Zi∆n , V̂i∆n)2] =

E[B̄0(βi∆n , Zi∆n , V̂i∆n)2] ≤ K, where the first inequality is obtained by repeated conditioning, and

the second inequality is from B̄0 ∈ P (p) and (A.11). Since θ̂n − θ∗ = Op(∆
1/2
n ) by assumption,

∆n

∑
i

B0(Yi∆n , Zi∆n , V̂i∆n)2‖θ̂n − θ∗‖2 = Op(∆n). (A.25)

Moreover, by Assumption D(ii), for each i ≥ 0,

EF |ĝni (θ∗)− gni (θ∗)|2 ≤ ρk

(
(βi∆n , Zi∆n , V̂i∆n), (βi∆n , Zi∆n , Vi∆n)

)2

≤ K(1 + |V̂i∆n |p−2)
∣∣∣V̂i∆n − Vi∆n

∣∣∣2κ (A.26)

≤ K

(∣∣∣V̂i∆n − Vi∆n

∣∣∣2κ +
∣∣∣V̂i∆n − Vi∆n

∣∣∣p) .
By (A.2) and Jensen’s inequality,{

u ≥ 1 ⇒ E|V̂i∆n − Vi∆n |u ≤ Ku(∆(2u−r)$+1−u
n + k−u/2n + (kn∆n)(u/2)∧1),

0 < u < 1 ⇒ E|V̂i∆n − Vi∆n |u ≤ Ku(∆(2−r)$u
n + k−u/2n + (kn∆n)u/2).

(A.27)

Note that (2p− r)$ + 1 − p ≥ 1/2, (2 − r)$ ≥ 1/4 and ∆
1/2
n ≤ Kk−1

n . Then, by (A.26) and

(A.27), we derive

E |ĝni (θ∗)− gni (θ∗)|2 ≤ Kk−κn . (A.28)

From (A.24), (A.25) and (A.28), we derive

∆n

∑
i

∣∣∣ĝni (θ̂n)− gni (θ∗)
∣∣∣2 = Op(k

−κ
n ). (A.29)
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It is easy to see that E |gni (θ∗)|2 ≤ K. By (A.29), we further have

∆n

∑
i

(
|ĝni (θ̂n)|2 + |gni (θ∗) |2

)
= Op(1). (A.30)

Combining (A.23), (A.29) and (A.30), as well as Assumption HAC(ii), we have∣∣∣Γ̂n(θ̂n)− Γ̂(1)
n

∣∣∣ = Op(mnk
−κ/2
n ) = op(1).

Next, we consider Γ̂
(1)
n − Γ̂

(2)
n . We denote ζnj,i ≡ gni (θ∗)gni−j(θ

∗)− EF [gni (θ∗)gni−j(θ
∗)] and ζ̄nj ≡

∆n
∑Nn

i=j ζ
n
j,i. We can then rewrite

Γ̂(1)
n − Γ̂(2)

n = ζ̄n0 + 2

mn∑
j=1

w (j,mn) ζ̄nj . (A.31)

Note that, conditional on F , the sequence (gni (θ∗))i≥0 is α-mixing with size −k/(k − 2). By the

mixing inequality, for i, j ≥ 0 and l ≥ i,

∣∣EF [ζnj,iζnj,l]∣∣ ≤ Kαmix

(
(l − i− j)+

)1−2/k ∥∥ζnj,i∥∥F ,k ∥∥ζnj,l∥∥F ,k ,
where (·)+ denotes the positive part. By the Cauchy-Schwarz inequality,

‖ζnj,i‖F ,k ≤ Kḡ0,2k(βi∆n , Zi∆n , Vi∆n ; θ∗)ḡ0,2k(β(i−j)∆n
, Z(i−j)∆n

, V(i−j)∆n
; θ∗).

Since ḡ0,2k(·) is bounded on bounded set (Assumption HAC(iii)), we further have |EF [ζnj,iζ
n
j,l]| ≤

Kαmix ((l − i− j)+)
1−2/k

. From here, it follows that

E
[
(ζ̄nj )2

]
≤ 2∆2

n

Nn∑
i=j

Nn∑
l=i

E
∣∣EF [ζnj,iζnj,l]∣∣

≤ K∆2
n

Nn∑
i=j

Nn∑
l=i

αmix

(
(l − i− j)+

)1−2/k

≤ K∆n (j + 1) .

Then, by the triangle inequality and Jensen’s inequality, as well as the boundedness of the kernel

function w (·, ·), we derive from (A.31) that

E
∣∣∣Γ̂(1)
n − Γ̂(2)

n

∣∣∣ ≤ K∆1/2
n

mn∑
j=0

(j + 1)1/2 = O(∆1/2
n m3/2

n ).
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Since mn = o(k
κ/2
n ) by Assumption HAC(ii) and kn ≤ K∆

−1/2
n by Assumption LW, we have

mn = o(∆
−1/4
n ). Hence, Γ̂

(1)
n − Γ̂

(2)
n = op(1).

Finally, we show that Γ̂
(2)
n − Γ̂

(3)
n = op(1). Note that

Γ̂(3)
n − Γ̂(2)

n = 2

Nn∑
j=mn+1

∆n

Nn∑
i=j

EF
[
gni (θ∗) gni−j (θ∗)

]
+2

mn∑
j=1

(1− w (j,mn)) ∆n

Nn∑
i=j

EF
[
gni (θ∗) gni−j (θ∗)

]
.

Observe

E

∣∣∣∣∣∣2
Nn∑

j=mn+1

∆n

Nn∑
i=j

EF
[
gni (θ∗) gni−j (θ∗)

]∣∣∣∣∣∣
 ≤ K Nn∑

j=mn+1

αmix (j)1−2/k → 0,

where the inequality is by the triangle inequality and the mixing inequality and the convergence

is due to
∑

j≥1 αmix(j)1−2/k <∞ and mn →∞. Similarly,

E

∣∣∣∣∣∣2
mn∑
j=1

(1− w (j,mn)) ∆n

Nn∑
i=j

EF
[
gni (θ∗) gni−j (θ∗)

]∣∣∣∣∣∣ ≤ K
mn∑
j=1

|1− w (j,mn)|αmix(j)1−2/k.

Note that for each j, 1 − w (j,mn) → 0 as n → ∞. Since
∑

j≥1 |1− w (j,mn)|αmix(j)1−2/k ≤
K
∑

j≥1 αmix(j)1−2/k <∞, the majorant side of the above inequality converges to zero as n→∞
by the dominated convergence theorem. From here, it follows that Γ̂

(2)
n − Γ̂

(3)
n = op(1) as claimed.

The proof of part (a) is now complete.

(b) By a polarization argument, we consider the one-dimensional setting without loss of gen-

erality. We set

ηni ≡ ∂v ḡ(βi∆n , Zi∆n , V̂i∆n ; θ∗), Sn ≡ 2∆n

∑
i

(ηni )2V̂ 2
i∆n

.

Note that ḡ(·) ∈ C2,3(p) implies that the function (β, v, z) 7→ 2∂v ḡ(β, z, v; θ∗)2v2 is in C(2p).
Moreover, the condition $ ≥ (2p − 1)/2(2p − r) implies that $ ≥ (2p − 1)/(4p − r). Hence, by

applying Lemma A.2 to the function (β, v, z) 7→ 2∂v ḡ(β, z, v; θ∗)2v2, we derive Sn
P−→ S̄. It remains

to show that Ŝ1,n(θ̂n) − Sn
P−→ 0. Below, we complete the proof by showing Ŝ1,n(θ̂n) − Ŝ1,n(θ∗)

and Ŝ1,n(θ∗)− Sn are op(1).

By the triangle inequality, we see that |Ŝ1,n(θ̂n)− Ŝ1,n(θ∗)| ≤ K (SR1,n + SR2,n), where

SR1,n ≡ ∆n

∑
i

∣∣∣η̂ni (θ̂n)− η̂ni (θ∗)
∣∣∣2 V̂ 2

i∆n
,
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SR2,n ≡ ∆n

∑
i

∣∣∣η̂ni (θ̂n)− η̂ni (θ∗)
∣∣∣ |η̂ni (θ∗)| V̂ 2

i∆n
.

Recall the notations in Definition 1. By Assumption LIP(i), SR1,n ≤ D̄1,n‖θ̂n − θ∗‖2, where

D̄1,n ≡ ∆n

∑
i

 1

k′n

k′n−1∑
j=0

B1(Y(i+j)∆n
, Z(i+j)∆n

, V̂i∆n)

2

V̂ 2
i∆n

.

Note that EF [D̄1,n] ≤ K∆n
∑

i(1 + V̂
2(p−1)
i∆n

)V̂ 2
i∆n

. By (A.11), D̄1,n = Op(1). Since θ̂n − θ∗ =

op(1), SR1,n = op(1). By the Cauchy–Schwarz inequality, SR2,n ≤ SR
1/2
1,n D̄

1/2
2,n , where D̄2,n ≡

∆n
∑

i η̂
n
i (θ∗)2V̂ 2

i∆n
. Note that Assumption AVAR1(i) implies that ḡ1,2(·; θ∗) ∈ P (p− 1). Hence,

EF [η̂ni (θ∗)2] ≤ K(1 + |V̂i∆n |2(p−1)). By repeated conditioning and (A.11), we further deduce that

D̄2,n = Op(1). Hence, SR2,n is also op(1). We have Ŝ1,n(θ̂n)− Ŝ1,n(θ∗) = op(1) as wanted.

Finally, we show Ŝ1,n(θ∗)− Sn
P−→ 0. Observe that, by the triangle inequality,

EF
∣∣∣Ŝ1,n(θ∗)− Sn

∣∣∣ ≤ K∆n

∑
i

(
|ηni |EF |η̂ni (θ∗)− ηni |+ EF |η̂ni (θ∗)− ηni |

2
)
V̂ 2
i∆n

. (A.32)

We set for each i, j ≥ 0,

ζni,j ≡ ∂vg
(
Y(i+j)∆n

, Z(i+j)∆n
, V̂i∆n ; θ∗

)
− ∂v ḡ

(
β(i+j)∆n

, Z(i+j)∆n
, V̂i∆n ; θ∗

)
,

η̄ni ≡ 1

k′n

k′n−1∑
j=0

∂v ḡ
(
β(i+j)∆n

, Z(i+j)∆n
, V̂i∆n ; θ∗

)
.

By Assumption S(iii), EF [ζni,j ] = 0. We can write η̂ni (θ∗)− η̄ni = (1/k′n)
∑k′n−1

j=0 ζni,j . Hence,

EF |η̂ni (θ∗)− η̄ni |
2 ≤ 1

k′2n

k′n−1∑
j,l=0

∣∣EF [ζni,jζni,l]∣∣
≤ K

1

k′2n

k′n−1∑
j,l=0

αmix(|l − j|)1−2/k
(

1 + V̂ p−2
i∆n

)
≤ K(1 + V̂ p−2

i∆n
)/k′n,

(A.33)

where the first inequality is by the triangle inequality; the second inequality is obtained by first

using the mixing inequality and then the assumption that ḡ1,k(·; θ∗) ∈ P ((p− 2)/2); the third

inequality is by Assumption MIX.

We set, for each i ≥ 0, Dn
i = (1/k′n)

∑k′n−1
j=0 (‖β(i+j)∆n

−βi∆n‖+‖Z(i+j)∆n
−Zi∆n‖). Note that,
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by a mean-value expansion and the assumption that ∂β∂v ḡ(·; θ∗) and ∂z∂v ḡ(·; θ∗) are in P (p/2− 1),

|η̄ni − ηni | ≤ K(1 + V̂
p/2−1
i∆n

)Dn
i . (A.34)

Since η̄ni and ηni are F-measurable, we combine (A.33) and (A.34) to derive

EF |η̂ni (θ∗)− ηni |
2 ≤ K(1 + V̂ p−2

i∆n
)((Dn

i )2 + 1/k′n). (A.35)

Next, note that under Assumptions S(iii) and AVAR1(i), ∂v ḡ (·; θ∗) ∈ P (p/2− 1). By (A.32) and

(A.35),

EF
∣∣∣Ŝ1,n(θ∗)− Sn

∣∣∣ ≤ K∆n

∑
i

(
1/
√
k′n +Dn

i + (Dn
i )2
)(

1 + V̂ p
i∆n

)
. (A.36)

Further note that E |Dn
i |

2 + E |Dn
i |

4 ≤ Kk′n∆n. Hence, by the Cauchy–Schwarz inequality, (A.36)

and (A.11), we derive E|Ŝ1,n(θ∗)−Sn| ≤ K(
√
k′n∆n + 1/

√
k′n)→ 0. Hence, Ŝ1,n(θ∗)−Sn = op(1).

The proof of part (b) is now complete.

(c) Denote f (z, v; θ) ≡ 2ϕ̃(z, v; θ∗)ϕ̃(z, v; θ∗)ᵀv2. Since ϕ̃ (·; θ∗) ∈ C(p − 1), f ∈ C (2p). By

Lemma A.2, Ŝ2,n(θ∗)
P−→ S̄. Since ϕ̃ (·; θ∗) ∈ C (p− 1) and ϕ̃ (·) ∈ LIP(p − 1, 0), it is easy to

see that supθ∈Θ0
‖ϕ̃(·; θ)‖ ∈ P (p− 1) for any compact subset Θ0 that contains θ0. Hence, with

probability approaching one,∣∣∣Ŝ2,n(θ̂n)− Ŝ2,n(θ∗)
∣∣∣

≤ K∆n

∑
i

(1 + V̂ p−1
i∆n

)
∥∥∥ϕ̃(Zi∆n , V̂i∆n ; θ̂n)− ϕ̃(Zi∆n , V̂i∆n ; θ∗)

∥∥∥ V̂ 2
i∆n

≤ K∆n

∑
i

(
1 + V̂ 2p

i∆n

)∥∥∥θ̂n − θ∗∥∥∥ .
By (A.11) and θ̂n − θ∗ = op(1), we see Ŝ2,n(θ̂n) − Ŝ2,n(θ∗) = op(1). From here, the assertion in

part (c) readily follows. Q.E.D.

Proof of Corollary 2: Part (a) follows from Theorems 2, 3 and the continuous mapping

theorem. To show part (b), we first show that cvn,1−α(θ∗)
P−→ cv1−α. Fix an arbitrary subsequence

N1 ⊆ N. By Theorem 3, Σ̂g,n(θ∗)
P−→ Σg and, hence, there exists a further subsequence N2 ⊆ N1,

along which Σ̂g,n(θ∗)
a.s.−→ Σg. Consider a path ω ∈ Ω on which L(·, ·) is continuous at Σg and

Σ̂g,n(θ∗)→ Σg holds along N2; such paths form a P-full event. By the continuous mapping theorem,

on path ω, the F⊗G-conditional distribution function of L(Σ̂g,n(θ∗)1/2U, Σ̂g,n(θ∗)) converges weakly

to the F-conditional distribution of L(ξ,Σg). By assumption, 1−α is a continuity point of the F-

conditional quantile function of L(ξ,Σg). Hence, on path ω, we have cvn,1−α → cv1−α along N2. By

a subsequence characterization of convergence in probability, we deduce that cvn,1−α(θ∗)
P−→ cv1−α.

This result, combined with that in part (a), implies P (Ln(θ∗) ≤ cvn,1−α(θ∗))→ 1− α. Q.E.D.
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A.4 Proof of Propositions 1 and 2

Proof of Proposition 1: (a) Let Q(θ) ≡ G(θ)ᵀΞG (θ). By Theorem 2(a), Gn(·) P−→ G(·) and,

hence, Qn(·) P−→ Q(·) uniformly over Θ. It is easy to see from Assumption LIP(i) that G (·) is

continuous and so is Q(·). Under Assumption GMIM, Q(·) is uniquely minimized at θ∗. Since

Θ is compact, θ̂n
P−→ θ∗ follows from a standard argument (see, e.g., Theorem 2.1 in Newey and

McFadden (1994)).

(b) Under Assumptions S and D, for each θ ∈ Θ, the functions (β, z, v) 7→ ∂θg(β, z, v; θ)

and (β, z, v) 7→ ∂θ∂
2
vg (β, z, v; θ) v2 satisfy condition (ii) of Theorem 1. Moreover, by Assumption

LIP(ii), the functions ∂θg (y, z, v; θ) and ∂θ∂
2
vg(y, z, v; θ)v2 belong to LIP(p, 0). By Theorem 1, we

have,

∂θGn(θ)
P−→
∫ T

0
∂θḡ (βs, Zs, Vs; θ) ds, uniformly in θ ∈ Θ. (A.37)

In particular, for any sequence θ̃n that satisfies θ̃n
P−→ θ∗, we have ∂θGn(θ̃n) = H + op(1). Then,

under Assumption GMIM, a routine manipulation yields,

∆−1/2
n

(
θ̂n − θ∗

)
= − (HᵀΞH)−1HᵀΞ∆−1/2

n Gn (θ∗) + op(1). (A.38)

The assertion then follows from Theorem 2(b).

(c) By (A.37), Hn
P−→ H. Since ∆

−1/2
n (θ̂n − θ∗) = Op(1) from part (b), the assertion of part

(c) readily follows from Theorem 3. Q.E.D.

Proof of Proposition 2: Denote A ≡ (Iq −H (HᵀΞH)−1HᵀΞ)Σ
1/2
g . Observe that

∆−1/2
n Gn(θ̂n) = ∆−1/2

n Gn(θ∗) +H∆−1/2
n

(
θ̂n − θ∗

)
+ op(1)

= AΣ−1/2
g ∆−1/2

n Gn(θ∗) + op(1),

where the first equality is by a mean-value expansion, θ̂n
P−→ θ∗ and the uniform convergence given

by (A.37); the second equality is obtained by using the asymptotic linear representation (A.38).

Note that Σ
−1/2
g ∆

−1/2
n Gn(θ∗)

L-s−→ N (0, Iq) by Theorem 2. It is also straightforward to show that

AᵀΞA is idempotent with rank q−dim (θ). The assertion of the proposition readily follows.Q.E.D.
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