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Abstract
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coincides with the random-effects likelihood of Chamberlain and Imbens (2004), and that
the maximum likelihood estimator of the parameter of interest coincides with the limited
information maximum likelihood (liml) estimator.
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drop the assumption of Gaussianity. In this case, liml is no longer optimal, and I derive a
new, more efficient estimator based on a minimum distance objective function that imposes a
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1 Introduction

This paper provides a principled and unified way of doing inference in a linear instrumental
variables model with homoscedastic errors in which the number of instruments is potentially
large. The presence of a large number of instruments creates an incidental parameter problem
(Neyman and Scott, 1948) because the number of first-stage coefficients corresponds to the number
of instruments. To capture this problem in asymptotic approximations, I follow Kunitomo (1980),
Morimune (1983), and Bekker (1994) and employ many instrument asymptotics that allow the
number of instruments to increase in proportion with the sample size, thus allowing the number
of incidental parameters in the model to diverge to infinity. I focus on the case in which each
instrument is weak in the Staiger and Stock (1997) sense, but collectively the instruments have
substantial predictive power, so that the concentration parameter grows at the same rate as the
sample size. I allow the rate of growth of the instruments to be zero, in which case the asymptotics
reduce to standard strong instrument asymptotics.

One possible way of dealing with the incidental parameter problem is to simply ignore it, and
base inference on full likelihood of the model. This turns out to work for estimation, but not
for testing or construction of confidence sets. In particular, the maximum likelihood estimator
of the coefficient on the endogenous variable, β, known as the limited information maximum
likelihood (liml, Anderson and Rubin, 1949) estimator, remains consistent (Bekker, 1994) under
many instrument asymptotics. Moreover, liml is also efficient among estimators that are invariant
to rotations of the instruments if the errors are Normal (Chioda and Jansson, 2009). However, the
curvature of the likelihood is too large, and likelihood-based tests and confidence sets suffer from
size-distortions.

In this paper, I address the incidental parameter problem directly. In particular, I show that
if the errors are Normally distributed, an invariance property of the model and a Bernstein-von
Mises type argument can be used to construct an integrated likelihood, which by design delivers
inference procedures that are valid under many-instrument asymptotics, and asymptotically
optimal under rotation invariance. I show that this likelihood coincides with the random-effects
(re) likelihood of Chamberlain and Imbens (2004), and that the maximum likelihood estimator of
β coincides with liml. Therefore, a simple and principled way of doing inference is to use liml

with standard errors based on the inverse Hessian of the re likelihood, which I show has a simple
closed form.

I derive this basic result in three steps. The first step is to orthogonalize the first stage
coefficients so that the information matrix is block-diagonal in the new parametrization. This
helps to separate the problem of inference about the parameter of interest β from that of inference
about the nuisance parameters.

The second step is to appeal to the invariance principle to reduce the dimensionality of the
model. I decompose the orthogonalized first-stage coefficients into a high-dimensional parameter

2



ωn on the unit sphere which governs the direction of the coefficients a scalar parameter λn,
proportional to the concentration parameter of Rothenberg (1984), that governs their norm.
ωn thus measures the relative strength of the individual instruments, while λn measures their
collective strength. Under rotation invariance, the parameter ωn drops out, so that the maximal
invariant on the parameter space has fixed dimension even as the number of instruments increases
to infinity. Imposing invariance is equivalent to assuming a uniform prior for ωn, and the
likelihood for the maximal invariant (invariant likelihood) is equivalent to an integrated likelihood
which integrates ωn out using this uniform prior.

Since the invariant model is locally asymptotically Normal (Chioda and Jansson, 2009),
inference based on the invariant likelihood will be asymptotically efficient in the class of invariant
procedures. Moreira (2009) shows that the maximum invariant likelihood estimator of β in the
case when the reduced-form covariance matrix Ω is known coincides with limlk. I generalize
this result along two dimensions. First, if Ω is not known, then the maximum invariant likelihood
estimator coincides with liml. This equivalence explains why liml is a consistent and efficient
invariant estimator despite being based on the concentrated likelihood which in general does not
produce consistent estimators in incidental parameter problems. Second, constraining λn to equal
to a particular value does not affect the maximum invariant likelihood estimate of β.

This result motivates the third step, to put prior a over λn in addition to a prior over ωn

and integrate the likelihood over both priors. This additional prior will not affect the maximum
integrated likelihood estimator of β, which will still be liml. If the prior is suitably chosen, the
resulting integrated likelihood will yield simpler inference procedures than those based on the
invariant likelihood which involve numerical optimization. Moreover, so long as the prior is not
dogmatic, it will get dominated in large samples, so that imposing it will not affect asymptotic
validity of inference about β either.

The prior I use is a scaled chi-square prior with an unknown scale parameter. This prior,
together with a uniform prior on ωn is equivalent to the random effects prior on the orthogonalized
first-stage coefficients proposed by Chamberlain and Imbens (2004): a Normal prior with zero
mean and unknown variance (which corresponds to the scale parameter). Therefore, my approach
yields an integrated likelihood that is identical to the re likelihood. Consequently, the random-
effects quasi-maximum likelihood estimator of β coincides with liml.

This analysis yields new insights into the sources of identification in the instrumental variables
model, and I use these insights to relax two assumptions that underlie the basic setup. First, I drop
the assumption that the errors are Normally distributed. I show that liml is no longer efficient
and derive a new, more efficient estimator. In particular, in the linear instrumental variables model,
the coefficients on the instruments in the first-stage regression are proportional to the coefficients
in the reduced-form outcome regression. This proportionality restriction implies a rank restriction
on the matrix of second moments of the reduced form coefficients, which governs the distribution
of the maximal invariant, and is the source of identification of β in the invariant model. I use this
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rank restriction to construct a minimum distance objective function and show that the re estimator
of the model parameters minimizes this minimum distance objective function with respect to a
particular weight matrix. This weight matrix is optimal if the errors in the instrumental variables
model are Normally distributed, but not otherwise; using weights proportional the inverse of the
asymptotic covariance matrix of the moment conditions yields a more efficient estimator. The
validity of standard errors for liml based on the Hessian of the re likelihood also depends on the
assumption of Normality; standard errors based on the conventional gmm/minimum distance
formula are robust to non-normality.

Second, I derive an unrestricted minimum distance estimator that does not impose the rank
restriction. I show that this estimator coincides with a version of the bias-corrected two-stage least
squares estimator (Nagar, 1959; Donald and Newey, 2001), and derive its asymptotic variance
without assuming proportionality of the reduced form coefficients. These results thus provide
a way of doing inference that is robust, for example, to heterogeneity in the causal effect, as in
Imbens and Angrist (1994). When the causal effect is heterogeneous, the reduced-form coefficients
are no longer proportional, but the instrumental variables estimand β can be interpreted as
a weighted average of the derivative of the effect of the endogenous variable on the outcome
(Angrist, Graddy and Imbens, 2000).

The minimum distance objective function is also helpful in deriving a specification test that
is robust to many instruments. A test of the rank restriction is equivalent to a test proposed by
Cragg and Donald (1993), but with an adjusted critical value. The adjustment ensures that the
test is valid under strong as well as many instrument asymptotics. In contrast, when the number
of covariates is allowed to increase with the sample size, the size of the standard Sargan (1958)
specification test converges to one.

This paper draws on two separate strands of literature. First is the literature on many
instruments that builds on the on the work by Kunitomo (1980), Morimune (1983), Bekker (1994)
and Chao and Swanson (2005). Like Anatolyev (2011), I relax the assumption that the dimension
of covariates is fixed, and I allow them to grow with the sample size. Hahn (2002), Chamberlain
(2007), Chioda and Jansson (2009), and Moreira (2009) focus on optimal inference with many
instruments when the errors are Normal and homoscedastic, and my optimality results build
on theirs. An interesting new development is to employ shrinkage techniques to obtain more
efficient estimators (see, for example, Belloni, Chen, Chernozhukov and Hansen, 2012, Gautier
and Tsybakov, 2011, or Carrasco, 2012), although these results rely on an additional sparsity
assumption on the first-stage coefficients. In contrast, I do not make any assumptions about the
first-stage coefficients in this paper apart from assuming that collectively, the instruments are
relevant. Papers by Hansen, Hausman and Newey (2008), Anderson, Kunitomo and Matsushita
(2010) and van Hasselt (2010) relax the Normality assumption. Hausman, Newey, Woutersen,
Chao and Swanson (2012), Chao, Swanson, Hausman, Newey and Woutersen (2012), Chao,
Hausman, Newey, Swanson and Woutersen (2010) and Bekker and Crudu (2012) also allow for
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heteroscedasticity.
The second strand of literature is the literature on incidental parameters started by the seminal

paper of Neyman and Scott (1948). Lancaster (2000) and Arellano (2003) discuss the incidental
parameter problem in a panel data context. Chamberlain and Moreira (2009) relate invariance
and random effects approaches to the incidental parameters problem in a dynamic panel data
model. My results on the relationship between these two approaches in an instrumental variables
model build on theirs. Sims (2000) proposes a similar random-effects solution in a dynamic
panel data model. Moreira (2009) proposes to use the invariance principle. Lancaster (2002)
proposes to put a flat prior on the orthogonalized nuisance parameters, rather than the Normal
prior with finite unknown variance used here. Cox and Reid (1987) suggest conditioning the
likelihood on a maximum likelihood estimate of the orthogonalized incidental parameters. In
the instrumental variables model, both proposals yield the concentrated limited information
likelihood, and therefore don’t deliver valid inference.

The remainder of this paper is organized as follows. Section 2 sets up the instrumental
variables model, introduces the notation, and finds an orthogonal reparametrization. Section 3
reviews the limited information likelihood approach to inference. Section 4 uses invariance and
Bernstein-von Mises arguments to construct the integrated likelihood and study its properties.
Section 5 relaxes the Normality assumption and considers a minimum distance approach to
inference. Section 6 considers minimum distance estimation without imposing proportionality
of the reduced-form coefficients. Section 7 studies tests of overidentifying restrictions. Section 8
concludes. Proofs and derivations are collected in the Appendix. The online Supplementary
Appendix contains additional derivations.

2 Setup

In this section, I first introduce the model, notation, and the many instrument asymptotic sequence
that allows both the number of instruments and the number of covariates to increase in proportion
with the sample size. Second, I reduce the data to its sufficient statistics and find an orthogonal
reparametrization of the first-stage coefficients.

2.1 Model and Assumptions

There is a sample of individuals i = 1, . . . , n, whose outcomes yi are determined by the structural
equation

yi = xiβ + w′iδn + εi. (1)

The parameter of interest is β, which governs the causal effect of xi on the outcome yi. δn is the
coefficient from regressing yi − xiβ onto an `n-dimensional vector of covariates wi (including an
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intercept), so that wi is by definition uncorrelated with the structural error εi. However, xi may be
endogenous in that it may be correlated with εi.

The assumption underlying identification of β in the linear instrumental variables model is
that there is a kn-dimensional vector of instruments zi, correlated with xi, but uncorrelated with
the structural error:

Assumption LIV (Linear Instrumental Variables Model). E[ziεi] = 0.

This assumption requires that (i) zi only affects outcome through its effect on the endogenous
variable—this is known as the exclusion restriction; and (ii) there is no heterogeneity in the effect
of xi on yi. In Section 6, I relax this assumption to allow for such heterogeneity, and for certain
violations of the exclusion restriction. If kn > 1, then the model is overidentified in the sense that
Assumption LIV is testable; I discuss tests of this assumption in Section 7.

It will be convenient to work with an orthogonalized version of the original instruments.
To describe the orthogonalization, let W denote the n × `n matrix of covariates with ith row
equal to w′i, and let Z denote the n × kn matrix of instruments with ith row equal to z′i. Let
Z̃ = Z−W(W ′W)−1W ′Z denote the residuals from regressing Z onto W. Then the orthogonalized
instruments Z⊥ ∈ Rn×kn are given by the rotation Z⊥ = Z̃(R′)−1, where the lower-triangular
matrix R ∈ Rkn×kn is the Cholesky factor of Z̃′Z̃. Now, by construction, the columns of Z⊥ are
orthogonal to each other as well as to the columns of W. This orthogonalization is sometimes
called a standardizing transformation (see Phillips (1983) for discussion).

Let Y = (y, x) ∈ Rn×2 with rows Y′i = (yi, xi) pool all endogenous variables in the model.
Then the reduced-form regression of the endogenous variables onto Z⊥ and W can be compactly
written as

Y = Z⊥
(

π1,n π2,n

)
+ W

(
ψ1,n ψ2,n

)
+ V, (2)

where V ∈ Rn×2 with rows v′i = (v1i, v2i) pools the reduced-form errors. Under Assumption LIV,
the structural error is related to the reduced-form errors by εi = v1i− v2iβ, and π1,n is proportional
to π2,n, with the constant of proportionality given by β,

π1,n = π2,nβ.

Throughout the paper, I assume that the reduced-form errors vi are i.i.d. and conditionally
homoscedastic:

E[vi |W, Z] = 0, E[viv′i |W, Z] = Ω. (3)

The consistency results in this paper will rely on the additional structure on second moments of the
data that the conditional homoscedasticity provides. Recent papers by Hausman et al. (2012), Chao
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et al. (2012), Bekker and Crudu (2012) and Kolesár (2012) propose to use jackknife type estimators
that are consistent under many instruments even in the presence of heteroscedasticity. Those
estimators are, however, less efficient under homoscedasticity than the estimators considered here.

In order to employ sufficiency and invariance arguments, I will also assume that the errors
follow a bivariate Normally distribution:

Assumption N (Normality). vi |W, Z ∼ N2(0, Ω).

This assumption has no effect on consistency results. Normality, however, does have an effect on
asymptotic distributions and asymptotic efficiency properties of estimators. I relax this assumption
in Section 5 when I discuss a minimum-distance approach to inference in this model.

Apart from being excluded from the structural equation, the instruments also have to be
relevant in the sense that they have to be correlated with the endogenous variable. To measure the
strength of identification, I follow Chamberlain (2007) and Andrews, Moreira and Stock (2008)
and I use

λn = π′2,nπ2,n · a′Ω−1a/n, a =

β

1

 . (4)

This parameter is related to the concentration parameter of Rothenberg (1984), which is given
by π′2,nπ2,n/(nΩ22). Instead of dividing π′2,nπ2,n/n by the variance of v2i, λn multiplies it by the
(2,2) element of the precision matrix of (εi, v2i), which is given by a′Ω−1a. Therefore, if there is no
endogeneity problem, so that the correlation between εi and v2i is zero, the two measures coincide.
Otherwise, they are proportional to each other.

The goal is to construct inference procedures that work well even if the number of instruments
kn and the number of covariates `n is large relative to sample size. To capture the finite-sample
behavior in these settings in asymptotic approximations, I follow Anatolyev (2011) and Kolesár,
Chetty, Friedman, Glaeser and Imbens (2011) and allow for many-instrument asymptotics with
both kn and `n potentially growing in proportion to the sample size:

Assumption MI (Many instruments). (i) kn/n = αk + o(n−1/2) and `n/n = α` + o(n−1/2) for
some α`, αk ≥ 0 such that αk + α` < 1; (ii) {(zi, wi, vi) ∈ Rkn ×R`n ×R2 : i = 1, . . . , n; kn + `n <

n}n≥1 is a triangular array of i.i.d. random variables; (iii) (W, Z) is full column rank with
probability one; and (iv) λn → λ for some λ > 0.

Assumption MI (i) weakens the many instrument sequence of Bekker (1994) by allowing `n to
grow with the sample size. The motivation for this is twofold. First, often the presence of a large
number of instruments is the result of interacting a few basic instruments with many covariates
(as in, for example Angrist and Krueger, 1991), in which case both `n and kn are large. Second,
oftentimes the instruments are valid only conditional on a large set of covariates wi, such as
higher-level fixed effects in multilevel sampling; for example, if the set of instruments randomly

7



assigned within a school, we need to condition on school fixed effects. The remaining parts are
standard. Part (ii) allows the distribution of the random variables to change with the sample size.
To reflect this, I should index the random variables by n. I drop this index for ease of notation, and
only use the subscript n for parameters which change with the sample size. Part (iii) normalizes
the first-stage regressors to be full rank, so that the orthogonalized instruments Z⊥ are uniquely
defined. Finally, Part (iv) is the many-instruments equivalent of the relevance assumption. It is
equivalent to assuming that the Rothemberg concentration parameter grows at the same rate as
the sample size. By allowing αk = α` = 0, Assumption MI nests the standard strong instrument
asymptotic sequence in which the number of instruments and covariates is fixed.

2.2 Sufficient statistics

Under Normality, the set of sufficient statistics is given by the least-squares estimator of the
reduced form coefficients, Π̂

Ψ̂

 =

 Z′⊥Y

(W ′W)−1W ′Y

 ∈ R(kn+`n)×2,

and an unbiased estimator of the reduced-form covariance matrix Ω based on the residual sum of
squares,

S = V̂ ′V̂/(n− kn − `n) ∈ R2×2, V̂ = Y− Z⊥Π̂−WΨ̂.

The virtue of working with the orthogonalized instruments is that now the rows of Π̂ are mutually
independent. Rather than working with the full set of sufficient statistics, I base inference on Π̂
and S only1 as in Moreira (2003) and Chamberlain and Imbens (2004). Since the distribution of
Ψ̂ is unrestricted, dropping it from the model does not result in loss of information. This step
eliminates the potentially high-dimensional nuisance parameters ψ1,n and ψ2,n, so that the model
parameters are now given by the triplet (β, π2,n, Ω).

It will be useful to define the following functions of the statistics Π̂ and S:

T = Π̂′Π̂/n,

QS (β, Ω) =
b′Tb
b′Ωb

, QT (β, Ω) =
a′Ω−1TΩ−1a

a′Ω−1a
, b =

 1

−β

 ,

mmin = min eig(S−1T), mmax = max eig(S−1T).

The functions QS (β, Ω) and QT (β, Ω) of T will appear in several objective functions. The

1Formally, this requirement can be justified by requiring invariance to location shifts in Ψ̂ in the sample space, and
invariance to location shifts in (ψ1,n, ψ2,n) in the parameter space. Since the goal is to make inferences about β, the loss
function will not depend on (ψ1,n, ψ2,n), and will therefore also be invariant to this transformation.
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properties of QS (β, Ω) and QT (β, Ω) are discussed in Andrews, Moreira and Stock (2006).2 The
bigger eigenvalue, mmax will help to determine instrument relevance. On the other hand, the
smaller eigenvalue mmin plays a key role in testing Assumption LIV.

2.3 Orthogonal parametrization

To help separate the problem of inference about β from that of the nuisance parameters, I rescale
π2,n as

ηn = π2,n

√
a′Ω−1a/n,

so that the strength of identification is given by λn = η′nηn. The advantage of the (β, ηn, Ω)

parametrization is that the parameter of interest β is information-orthogonal to the nuisance
parameters (ηn, Ω) in the sense that the information matrix is block-diagonal.3 In terms of this
parametrization, the distribution of the statistics Π̂ and S is given by

vec(Π̂) ∼ N2kn

(
(a′Ω−1a/n)−1/2a⊗ ηn, Ω⊗ Ikn

)
, (5)

(n− kn − `n)S ∼ W2(n− kn − `n, Ω), (6)

with Π̂ independent of S, whereW2(n− kn− `n, Ω) denotes a Wishart distribution with n− kn− `n

degrees of freedom, and scale matrix Ω.

3 Limited information likelihood

In this Section, I briefly review the failure of the model likelihood, called the limited information
likelihood, to deliver asymptotically valid inference.4

The problem with likelihood-based inference under many-instrument asymptotics is that the
dimension of the nuisance parameter ηn increases with the number of instruments to infinity.
Therefore, the standard results about optimality of likelihood-based inference do not apply since
they require the dimension of the parameter space to remain fixed.

The model likelihood based on the statistics Π̂ and S is known as the limited-information
likelihood after a seminal paper by Anderson and Rubin (1949). It turns out that maximizing it
actually delivers a consistent estimator of β despite incidental parameter problem (Bekker, 1994).

2While the statistics QS (β, Ω) and QT (β, Ω) correspond to those in Andrews et al. (2006), my statistics S and T do
not correspond to theirs.

3See Cox and Reid (1987) for a discussion of the consequences of orthogonal parametrization in problems with
nuisance parameters.

4The derivation of the results in this section is given in the Supplementary Appendix.
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This estimator, known as the limited information maximum likelihood (liml) estimator, solves

β̂liml = argmax
β

QT (β, S) = argmin
β

QS (β, S) =
T12 −mminS12

T22 −mminS22
. (7)

Unfortunately, inference about β based on the limited information likelihood fails for two reasons.
First, the curvature of the likelihood is too big—the block of the information matrix corre-

sponding to β is given by Ili,11 = n · b′Ωb · a′Ω−1a/λn, while the asymptotic distribution of β

under Assumptions LIV, N and MI is given by (see Bekker, 1994 and Kolesár et al., 2011 for
derivation) √

n
(

β̂liml − β
)
⇒ N1 (0,Vliml,N) , (8)

where

Vliml,N =
b′Ωb · a′Ω−1a

λ

(
1 +

αk(1− α`)

1− αk − α`

1
λ

)
. (9)

Unless αk = α` = 0 as the standard asymptotic sequence assumes, the (1,1) element of the inverse
information matrix5 (I−1

li
)11 = I−1

li,11 will miss the correction factor in the parentheses. This
correction factor can be substantial even when the ratio of instruments to sample size, αk, is small
if the normalized concentration parameter λ is small. The presence of many covariates, the case
when α` > 0, has a negligible impact on the asymptotic variance unless α` is large. (On the other
hand, their presence does have a big impact on tests for overidentifying restrictions as I discuss in
Section 7.) As a result, confidence intervals for β̂liml based on I−1

li,11 will undercover.
Second, the maximum likelihood estimates of λn and Ω are inconsistent:

λ̂liml =
n− `n

n− kn − `n
mmax

p→ 1− α`

1− αk − α`
(λ + αk), (10a)

Ω̂liml =
n− kn − `n

n− `n
S +

nmmin

n− `n

(
S− âliml â′

liml

â′
liml

S−1 âliml

)
p→ Ω− αk

1− α`

aa′

a′Ω−1a
. (10b)

Consequently, a plug-in estimator of the inverse information matrix Ili,11(β̂liml, λ̂liml, Ω̂liml)−1

will be asymptotically biased downward, so that the feasible confidence intervals that use the
estimated information matrix will undercover even more than infeasible intervals that use the true
information matrix I−1

li,11. Similarly, a plug-in estimator based on the correct asymptotic variance
formula (9) will also be asymptotically downward biased. Bekker (1994) and Hansen et al. (2008)
therefore suggest using different estimators λ and Ω that are consistent under MI when α` = 0.
These asymptotic variance estimators, however, have to be modified again if we want to allow
α` > 0 (Anatolyev, 2011; Kolesár et al., 2011).

In the next section, I introduce an alternative (quasi-) likelihood approach which will by
construction avoid these problems.

5Recall that the information matrix is block-diagonal under the (β, ηn, Ω) parametrization.

10



4 Equivalence between Integrated and Random Effects Likelihoods

This section derives the basic result of the paper that combining (i) an invariance argument; and
(ii) a Bernstein-von Mises argument, we can construct an integrated likelihood that has a simple
closed form and addresses the incidental parameter problem.

4.1 Using invariance to reduce the dimension of the parameter space

The idea behind using an invariance argument is that if we require inference to be invariant to
suitably chosen group actions, the maximal invariant in the parameter space will preserve β, and
it will have a fixed dimension even as the number of instruments grows. Therefore, the number of
parameters in the invariant likelihood will be independent of the number of instruments, and, so
long as the invariant likelihood is sufficiently smooth, inference based on it will be consistent and
efficient among invariant procedures by standard likelihood-efficiency arguments.

I follow Andrews et al. (2006), Chamberlain (2007), Chioda and Jansson (2009), and Moreira
(2009), and I consider transformations given by

m1(g, (Π̂, S)) = (gΠ̂, S), m2(g, (β, ηn, Ω)) = (β, gηn, Ω), g ∈ O(kn),

where O(kn) is the group of kn × kn orthogonal matrices. Here m1 is the action on the sample
space, and it rotates the direction of the instruments. Correspondingly, m2, the action on the
parameter space, rotates the direction of the first-stage coefficients ηn, preserving the collective
strength of the instruments as measured by λn = η′nηn. It is straightforward to show that the
maximal invariants are given by T = Π̂′Π̂/n and S on the sample space, and (β, λn, Ω) on the
parameter space. The potentially high-dimensional vector of first-stage coefficients ηn has been
reduced to a scalar.

Intuitively, imposing invariance means that estimation and inference should not depend on
the choice of basis for the instruments—if we re-order the instruments, change their scale, or use a
different orthogonalization procedure to construct Z⊥—we should get the same point estimate and
confidence intervals for β. If the decision rule (the rule used for constructing the point estimates
and confidence intervals from the data) depends on the data only through the maximal invariants
S and T, it will have this property.

A simple way to construct such invariant decision rules would be to use the likelihood based
on S and T. Since the parameter space of the maximal invariant (S, T) is given by the maximal
invariant on the parameter space, (β, λn, Ω), which has a fixed dimension irrespective of the
number of instruments, the number of parameters in this likelihood, Linv,n(β, λn, Ω; S, T), which
I call the invariant likelihood, is now fixed, thus avoiding the nuisance parameter problem.
Moreover, since this likelihood, is sufficiently smooth, so that it is locally asymptotically Normal
under many-instrument asymptotics (Chioda and Jansson, 2009), inference based on it will be
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asymptotically efficient among invariant procedures by standard arguments (see, for example,
van der Vaart, 1998, Chapter 8).

Moreira (2009) shows that if Ω is known, the maximum invariant likelihood estimator for β

coincides with limlk, which is indeed asymptotically efficient among invariant estimators. The
next proposition generalizes this result:

Proposition 1. The mle based on the invariant likelihood Linv,n(β, λn, Ω; S, T) is given by β̂liml. This
result also holds if λn is fixed at an arbitrary value.

The first part of the proposition generalizes Moreira’s result to the case when Ω is not known,
and shows that the maximal invariant likelihood estimator then coincides with liml. Since liml

is efficient among regular invariant estimators, this result confirms that maximizing the invariant
likelihood indeed produces an efficient invariant estimator. Furthermore, this result also explains
why the limited-information likelihood produces an estimator that is robust to many instruments:
it is because liml happens to coincide with the maximum invariant likelihood estimator.

The second part of the proposition shows that constraining λn to be equal to a particular
value does not affect the maximum invariant likelihood estimate. This result is similar to that in
Chamberlain (2007) who shows that the Bayes rule under a particular loss function and prior for
β does not depend on the prior for λn. Since the information matrix of the invariant likelihood is
block-diagonal between λn and β, the maximum likelihood estimate of β when λn is given should
vary only slowly with λn (see Cox and Reid, 1987, Section 2.2). The proposition shows that the
dependence is even more limited: the estimate does not vary with λn at all.

There is an alternative way of building the invariant likelihood that will allow me to use
this result to build a connection between it and the random-effects likelihood of Chamberlain
and Imbens (2004). The argument is similar to that in Chamberlain and Moreira (2009), who
relate invariant likelihood to a correlated random effects likelihood in a dynamic panel data
model. In particular, imposing invariance is equivalent to assuming a particular prior distribution
for the model parameters, induced by the Haar measure on O(kn), called the invariant prior
distribution (Eaton, 1989). Since the group O(kn) is compact, this prior is unique. Consider a
polar decomposition of the first stage coefficients, ηn = ωnλ1/2

n , where

ωn = ηn/‖ηn‖, λn = ‖ηn‖2.

The potentially high-dimensional nuisance parameter ωn is a point on the unit sphere that mea-
sures the direction of ηn; it can be thought of as measuring the relative strength of the individual
instruments. Under this decomposition, the invariant prior is given by the uniform distribution
over the unit sphere Skn−1 in Rkn , the parameter space for the parameter ωn. Furthermore, the
invariant likelihood is equivalent to the integrated (marginal) likelihood that uses this invariant
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prior as a prior distribution. Denoting the prior by Fωn(·), this relationship can be written as

Linv,n(β, λn, Ω; S, T) =
∫

Skn−1
Lli,n(β, λn, ωn, Ω; Π̂, S)dFωn(ωn), (11)

where Lli,n is the limited information likelihood, the likelihood for the statistics Π̂ and S.

4.2 Integrated likelihood and random effects likelihood

One disadvantage of the invariant likelihood is that due to the presence of Bessel functions in
the likelihood expression, estimates of λn and Ω are not available in closed form and have to
be computed by maximizing the invariant likelihood numerically. This makes construction of
likelihood-based confidence intervals for β difficult, since these estimates are needed for evaluating
the Hessian. Therefore, although the inverse Hessian evaluated at maximum likelihood estimates
is a consistent estimator of the asymptotic variance of β̂liml, getting Hessian-based standard error
estimates involves numerical optimization.

This motivates an introduction of a prior over λn, in addition to the uniform prior over ωn.
If this additional prior is appropriately chosen, integrating the limited information likelihood
over both priors will yield an integrated likelihood that is more convenient to work with than
the invariant likelihood. Since by Proposition 2, constraining λn does not affect the maximum
invariant likelihood estimator for β, introducing a prior for λn will not affect it either: it will
still be given by β̂liml. Moreover, so long as this low-dimensional prior is not dogmatic, the
Bernstein-von Mises theorem should apply, and the prior should get dominated in large samples.
Therefore inference based on the integrated likelihood should agree with inference based on the
invariant likelihood in large samples.

The family of priors I consider is a scaled chi-square family with an unknown scale parameter
λ > 0:

λn ∼
λ

kn
χ2(kn). (12)

The hyperparameter λ in this prior corresponds to the limit of λn under Assumption MI. I allow
it to be determined by the data, so that the prior will be dominated in large samples. Combined
with the uniform prior over ωn, these two priors are equivalent to a single Normal prior over the
scaled first-stage coefficients ηn,

ηn ∼ N (0, λ/kn · Ikn). (13)

This Normal prior is the random-effects prior proposed in Chamberlain and Imbens (2004)—it
says that we should treat the the first-stage coefficients as random with a zero-mean Normal
distribution. Therefore, the integrated likelihood obtained after integrating the limited information
likelihood over the invariant prior on ωn and the chi-square prior on λn coincides with the re

likelihood that integrates the limited information likelihood over a single Normal prior (13). The
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re likelihood, unlike the invariant likelihood, has a simple closed form (see the Supplementary
Appendix for derivation):6

Lre,n(β, λ, Ω) =
∫

Rkn
Lli,n(β, ηn, ωn, Ω; Π̂, S)dFηn|λ(ηn | λ)

=
∫

R

∫
Skn−1
Lli,n(β, λn, ωn, Ω; Π̂, S)dFωn(ωn)dFλn|λ(λn | λ)

=

(
1 +

n
kn

λ

)−kn/2

|Ω|−(n−`n)/2e−
1
2 tr(Ω−1((n−kn−`n)S+nT))+ n

2
λ

kn/n+λ QT (β,Ω).

(14)

This equivalence shows that there are two ways of thinking about the re assumption (13) that
the first-stage coefficients ηn are Normally distributed with zero mean and unknown variance
that is to be estimated from the data. The first, which was the motivation in Chamberlain and
Imbens (2004), is to view it as a modeling tool: since the prior has zero mean, it captures the
idea that the individual instruments may not be very relevant, and it reduces the original high-
dimensional model to a smooth model in which the parameter space stays 5-dimensional even
as `n → ∞ and kn → ∞. Hence, if the re assumption holds, so that the first-stage coefficients
are actually generated according to (13), inference based on the re likelihood will have the usual
asymptotic optimality properties—maximum likelihood estimators, Wald, LM and LR test will be
asymptotically efficient, and the inverse Hessian will be a consistent estimator for the asymptotic
variance.

The second way of thinking about the re prior (13) is to view it as arising from two priors.
The uniform prior over ωn can be motivated by invariance arguments. Moreover, Chamberlain
(2007) shows this prior is least favorable, so that it can also be motivated by finite-sample minimax
considerations. The prior on λn is used to make inference more convenient and will not matter
asymptotically. Therefore, even if the first-stage coefficients are not actually drawn according to
(13)—in particular, even if they are viewed as fixed—inference based on the re likelihood will
stay asymptotically valid, and it will be asymptotically optimal among invariant procedures.

Proposition 2. Consider the model (1)–(3).
(i) Suppose that mmax > kn/n. Then the maximum likelihood estimators based on the re likelihood (14)

are given by:

β̂re = β̂liml,

λ̂re = mmax − kn/n,

Ω̂re =
n− kn − `n

n− `n
S +

n
n− `n

(
T − λ̂re

â′
re

S−1 âre

âre â′
re

)
.

6Chamberlain and Imbens (2004) also consider putting a random effects prior only on some coefficients; the
coefficients on the remaining instruments are then assumed to be fixed. When referring to the random-effects
likelihood, I assume that we put a random-effects prior on all coefficients.
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(ii) Under Assumptions LIV, N, and MI, (λ̂re, Ω̂re)
p→ (λ, Ω).

Part (i) of Proposition 2 formalizes the claim that the estimator of β remains unchanged under the
additional chi-square prior for λn. Part (ii) of Proposition 2 shows that, unlike estimators based
on the limited information likelihood given in Equation (10), the re estimators of λ and Ω are
consistent under many instrument asymptotics. The assumption that mmax ≥ kn/n makes sure
that the constraint λ ≥ 0 does not bind when maximizing the likelihood. It will hold in large
samples if Assumption MI (iv) holds.

Proposition 3. Consider the model (1)–(3).
(i) The (1,1) element of the inverse Hessian of the re likelihood (14), evaluated at (β̂re, λ̂re, Ω̂re), is

given by:

Ĥ11
re

=
b̂′

re
Ω̂reb̂re(λ̂re + kn/n)

nλ̂re

(
Q̂SΩ̂re,22 − T22 +

ĉ
1− ĉ

Q̂S
â′

re
Ω̂−1

re âre

)−1

,

where Q̂S = QS (β̂re, Ω̂re) and ĉ = λ̂reQ̂S
(kn/n+λ̂re)(1−`n/n)

.

(ii) Under Assumptions LIV, N, and MI, −nĤ11
re

p→ Vliml,N , where Vliml,N is given in Equation (9).

This result proves that the extra prior on λn gets dominated in large samples so that the inverse
Hessian can be used to estimate the asymptotic variance of β̂re.

The key condition underlying Proposition 3 is that the extra prior on λn is not dogmatic. For
example, Lancaster (2002) suggests to deal with incidental parameters in panel data models by
first orthogonalizing them, and then integrating them out with respect to a suitable uniform prior.
In the instrumental variables model the parameter space for the orthogonalized parameters ηn is
Rk, so that a “uniform prior” corresponds to a flat prior on Rk, which in turn corresponds to a
uniform prior on ωn, and an improper prior on λn, obtained by taking the limit as λ→ ∞ of the
chi-square prior (12). The integrated likelihood based on this prior corresponds to the limit of the
re likelihood (14) as λ→ ∞:

lim
λ→∞
Lre,n(β, λ, Ω) = |Ω|−(n−`n)/2e−

1
2 tr(Ω−1((n−kn−`n)S+nT))+ n

2 QT (β,Ω).

This objective function coincides with the concentrated limited information likelihood that concen-
trates ηn out, and therefore does not produce valid confidence intervals, since the prior on λ puts
all its mass far away from regions near zero. On the other hand, this dogmatic prior on λn does
not affect the consistency of the maximum integrated likelihood estimator of β as the second part
of Proposition 1 predicts.
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5 Efficient minimum distance estimation under non-Normal errors

Identification in the invariant model comes from restrictions on the expectation of the invariant
statistics S and T imposed by the exclusion restriction. The Normality assumption on the errors
plays no role. Therefore, another way to construct invariant decision rules is to use a minimum
distance estimator that minimizes distance between the maximal invariants S and T and their
expected values. If the weight function weighs the restrictions efficiently, this approach will still
deliver estimators and inference procedures that are efficient among invariant rules. Moreover,
unlike inference based on the random effects likelihood, minimum-distance-based inference will
be asymptotically valid even if the reduced-form errors are not Normally distributed.

In this section, I first show that the random effects estimator is in fact equivalent to a minimum
distance estimator that uses a particular weight matrix. This weight matrix weighs the restrictions
efficiently under Normality, but not otherwise. I then use this equivalence result to construct
minimum-distance based standard errors for liml that are valid under non-Normality. Finally, I
derive an efficient minimum distance estimator when the Normality assumption is dropped.

To simplify the expressions in this section, let D2 denote the duplication matrix, L2 the
elimination matrix and N2 the symmetrizer matrix. The duplication matrix transforms the vech
operator into a vec operator7, and the elimination operator performs the reverse operation, so that
Dd vech(A) = vec(A), and Ld vec(A) = vech(A), where A ∈ Rd×d. The symmetrizer matrix has
the property that Nd vec(A) = (1/2) vec(A + A′). Other properties of these matrices are given in
Appendix A.

5.1 Random effects and minimum distance

The reduced form (2)–(3) of the instrumental variables model without any further assumptions
implies

E[S] = Ω, (15a)

E[T − (kn/n)S] = Ξn, where Ξn =
1
n

(
π1,n π2,n

) (
π1,n π2,n

)′
. (15b)

Since the parameters Ω, π1,n and π2,n are unrestricted, these two expectations are unrestricted.
Under Assumption LIV, however, the second-stage coefficients π1,n are restricted to be proportional
to the first stage coefficients: π1,n = π2,nβ. This restriction leads to a rank restriction on the matrix

7The operator vec(A) stacks columns of A into a single column. The operator vech(A) transforms the lower-
triangular part of A into a single column—when A is symmetric, the operator can be though of as vectorizing A while
removing the duplicates.
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of second moments of the reduced form coefficients, Ξn, namely that Ξn = Ξ22,naa′, where

Ξ22,n = π′2,nπ2,n/n = λn/(a′Ω−1a).

This restriction can be used to build a minimum distance objective function

Qn(β, Ξ22,n; Ŵn) = vech (T − (kn/n)S− Ξ22,naa′)′ Ŵn vech (T − (kn/n)S− Ξ22,naa′) , (16)

where Ŵn ∈ R3×3 is some weight matrix. Since the nuisance parameter Ω only appears in the
first moment condition (15a), which is unrestricted, minimizing an objective function (16) that
only uses the second moment condition with respect to an efficient weight matrix will yield an
estimator of β that has the same asymptotic variance as the efficient minimum distance that uses
both of them (Chamberlain, 1982, Section 3.2).

In the random effects model, the identification of the model coefficients is based on the same
restriction. The only difference is that the parameter Ξ22,n = λn/(a′Ω−1a) is replaced by its
expectation under the chi-square prior (12) on λn, Ξ22 = λ/(a′Ω−1a). There should therefore exist
a weight matrix such that the random effects estimator of (β, Ξ22) is asymptotically equivalent to
a minimum distance estimator with respect to this weight matrix. The next proposition shows
that if the weight matrix is chosen carefully, the minimum distance and random effects estimators
are in fact identical.

Proposition 4. Suppose that tr(S−1T) ≥ 2kn/n. Then the minimum distance estimator based on the
objective function (16) with respect to the weight matrix Ŵre = D′2(S

−1⊗ S−1)D2 is given by (β̂re, Ξ̂22,re).

The condition that tr(S−1T) > 2kn/n makes sure that the objective function is not minimized
at a boundary. It will hold in large samples if λ > 0. The next Proposition shows that if the
errors are Normally distributed, then the random effects weight matrix Ŵre weighs the moment
condition (15b) efficiently under many-instrument asymptotics.

Proposition 5. Consider the model (1)–(3), and suppose that Assumptions LIV, N, and MI hold. Consider
a minimum distance estimator based on the objective function (16). Suppose that, for some constants
c > 0, c ≥ 0, the weight matrix satisfies

Ŵn
p→ cD′2

[
Ω⊗Ω + cΩ⊗ (aa′) + c(aa′)⊗Ω

]−1 D2.

Then the minimum distance estimator for (β, Ξ22, Ω) is optimal among the class of minimum distance
estimators.

When αk > 0, then setting c = Ξ22/τ, and c = 2/τ, where τ = αk(1− α`)/(1− αk − α`) in the
limit weight in Proposition 5 yields the inverse of the asymptotic covariance of the moment
condition (15b). The proposition shows that it is possible to misspecify Ξ22 in the optimal weight
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without affecting the asymptotic distribution of the minimum distance estimator.8 In particular,
the weight matrix Ŵre satisfies the condition in Proposition 5 with c = 0. When αk = 0 (standard
asymptotics case), then the variance of the moment condition is reduced-rank since one of the
three moment conditions is redundant, and in this case any positive definite weight matrix will
yield an asymptotically optimal estimator.

The result that the random effects estimators can be obtained by minimizing a minimum
distance objective function with respect to an efficient weight matrix is similar to Goldberger and
Olkin (1971), who consider a minimum distance objective function based on the proportionality
restriction that the exclusion restriction imposes on the expectation of Π̂

Qgo,n(β, π2,n) = vec
(
Π̂− π2,na′

)′ (S−1 ⊗ Ikn

)
vec

(
Π̂− π2,na′

)
. (17)

Goldberger and Olkin (1971) show that this objective function is minimized at β̂liml. The weight
matrix S−1 ⊗ Ikn consistently estimates the inverse of the asymptotic variance of vec(Π̂) under
standard asymptotics.

5.2 Minimum distance estimation under non-Normal errors

The efficiency result in Proposition 5 as well expression for asymptotic distribution of β̂liml given
in (9) depend on the Normality assumption N. This sensitivity to the assumption of Normality
is similar to the result in panel-data models in which identification is based on covariance
restrictions; there the weight matrix used by the maximum likelihood estimator is only optimal
under Normality (Arellano, 2003, Chapter 5.4).

In order to derive the optimal weight matrix as well as the correct asymptotic variance formulae
under non-Normality, we first need the limiting distribution of the moment condition (15b). The
moment condition depends on the data through the three-dimensional statistic vech(T− (kn/n)S),
which can be written as a quadratic form

T − (kn/n)S = n(Z⊥π2,na′ + V)′H(Z⊥π2,na′ + V),

where
H = Z⊥Z′⊥ −

kn

n− kn − `n
(In −W(W ′W)−1W ′ − Z⊥Z′⊥).

We need to impose some regularity conditions on the components H, Z⊥π2,na′, and V of the
quadratic form:

Assumption RC (Regularity conditions). (i) The reduced-form errors vi are iid with finite fourth
moments; (ii) For some δ, µ ∈ R, d′d/n→ δ and n−1π′2,nZ′⊥d→ µ where d = diag(H) ∈ Rn; and

8The standard condition that the weight matrix converges to the inverse of the asymptotic covariance matrix of the
moment conditions is sufficient, but not necessary for asymptotic efficiency (Newey and McFadden, 1994, Section 5.2).
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(iii) For some constant C ∈ R, supn sup1≤i≤n‖(Z⊥)′iπ2,n‖ < C and supn sup1≤i≤n ∑n
s=1(|(Z⊥Z′⊥)is|+

|(W(W ′W)−1W ′)is|) < C.

Part (i) relaxes the Normality assumption on the errors. Part (ii) ensures that all terms in the
asymptotic covariance matrix are well-defined. Part (iii) implies that a Lindeberg-type condition
holds.

Lemma 1. Consider the model (1)–(3). Then, under Assumptions LIV, MI, and RC:
(i) √

n vech(T − (kn/n)S− Ξ22,naa′)⇒ N (0, ∆), ∆ = L2(∆1 + ∆2 + ∆3 + ∆′3)L′2,

where

∆1 = 2N2
(
Ξ22aa′ ⊗Ω + Ω⊗ Ξ22aa′ + τΩ⊗Ω,

)
τ = αk(1− α`)/(1− αk − α`),

∆2 = δ
[
Ψ4 − vec(Ω) vec(Ω)′ − 2N2(Ω⊗Ω)

]
, Ψ4 = E[(viv′i)⊗ (viv′i)],

∆3 = 2N2(µΨ′3 ⊗ a), Ψ3 = E[(viv′i)⊗ vi].

(ii) Let M = In − Z⊥Z′⊥ −W(W ′W)−1W ′, and let V̂ = MY with rows v̂i denote estimates of the
reduced-form errors. If the errors vi have finite eighth moments and αk > 0, then

Ψ̂3 =
∑i[(v̂iv̂′i)⊗ v̂i]

∑i,j M3
ij

p→ Ψ3,

Ψ̂4 =
∑i(v̂iv̂′i)⊗ (v̂iv̂′i)−

[
∑i M2

ii −∑i,j M4
ij

]
(2N2Ω̂⊗ Ω̂ + vec(Ω̂) vec(Ω̂)′)

∑i,j M4
ij

p→ Ψ4.

Part (i) shows that the asymptotic variance consists of three distinct terms. If the errors are
Normally distributed, then ∆2 = ∆3 = 0. The term ∆2 accounts for excess kurtosis of the errors,
and the term ∆3 accounts for skewness. Part (ii) provides consistent estimators for the third
and fourth moments of the errors. Since the probability limits of S and T do not depend on
Assumption N, the other components of ∆1, ∆2 and ∆3 can be consistently estimated by β̂re, Ω̂re,
and Ξ̂22,re = λ̂re/(â′

re
Ω̂−1

re
âre). Therefore, a consistent estimator of the asymptotic covariance

matrix ∆ is given by
∆̂ = L2(∆̂1 + ∆̂2 + ∆̂3 + ∆̂′3)L′2, (18)

where the terms ∆̂j are given by replacing β, Ξ22, and Ω in the definitions of ∆1, ∆2 and ∆3 by
their random-effects estimators, and replacing Ψ3 and Ψ4 by Ψ̂3 and Ψ̂4.

Since β̂liml is a distance estimator, its asymptotic variance under Assumptions LIV, MI and RC
is given by the (1,1) element of the matrix

(G′WG)−1G′W∆WG(G′WG)−1, (19)
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where W = D′2(Ω
−1 ⊗Ω−1)D2 = plim Ŵre. This element evaluates as

Vliml = Vliml,N +
2µ

Ξ2
22

E[v2\εε2] +
δ

Ξ2
22

E[ε2v2
2\ε − |Ω|],

where v2\ε = v2 − b′Ωe2 · (b′Ωb)−1ε is the part of the first-stage error that is uncorrelated with
ε = v1 − v2β, the error in the structural equation. The term Vliml,N (given in Equation (9))
corresponds to the asymptotic variance of β̂liml under Normal errors. The two remaining terms
are corrections for skewness and excessive kurtosis. Anatolyev (2011) derives the same asymptotic
variance expression by working with the explicit definition of β̂liml. If α` = 0, then Vliml reduces
to the asymptotic variance given in Hansen et al. (2008), Anderson et al. (2010), and van Hasselt
(2010).

Due to the presence of the two extra terms, the inverse Hessian will no longer estimate the
asymptotic variance consistently. However, a consistent plug-in estimator of this variance can
easily be computed by replacing ∆ by ∆̂ and replacing a and Ω in the expressions for G and W by
âre and Ω̂re, and plugging the estimates Ĝ, Ŵ, and Ω̂ into the expression (19).

Using the inverse of the variance estimator (18) as a weight matrix in the minimum distance
objective function yields an efficient minimum distance (emd) estimator

(β̂emd, Ξ̂22,emd) = argmin
β,Ξ22

Qsimp,n(β, Ξ22; ∆̂−1).

Since the objective function is a fourth-order polynomial in two arguments, the solution can be
easily found numerically. It then follows by standard arguments (see, for example, Newey and
McFadden, 1994), that when αk > 0,

√
n(β̂emd − β)⇒ N (0,Vemd),

where Vemd is given by the (1,1) element of the matrix (G′∆−1G)−1, where G is the derivative of
the moment condition

G = L2

(
Ξ22

(
a⊗

(
1
0

)
+
(

1
0

)
⊗ a
)

a⊗ a
)

.

The expression evaluates as

Vemd = Vliml −
1

Ξ2
22(b′Ωb)2

(
µE[ε3] + δE[v2\εε3]

)2

2τ + δE[ε4/(b′Ωb)2 − 3]
. (20)

A consistent plug-in estimator of Vemd can be easily constructed by replacing ∆ by ∆̂, and replacing
Ξ22 and β in the expression for G by their random-effects, or emd estimators.

The second term in (19) represents the efficiency gain relative to liml. This efficiency gain
is zero in two important cases. First, if the structural error has zero skewness, and when
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the dependence between ε and v2 is linear so that E[v2\εε3] = 0. This is the case when the
reduced-form errors are Normal, but it also holds more generally. For example, Anderson et al.
(2010) show that when the errors belong to the family of elliptically contoured distributions,9

then liml is efficient in the class of estimators that depend on the data only through smooth
functions of S and T. Indeed, for elliptically contoured distributions, Ψ3 = 0, so that E[ε3] = 0
and Ψ4 is proportional to vec(Ω) vec(Ω)′ + 2N2Ω⊗Ω (Wong and Wang, 1992), which implies
E[v2\εε3] = (b′ ⊗ b′)Ψ4(b⊗ (v2 − (b′Ωe2)/(b′Ωb)b)) = 0, so that the re weight matrix remains
efficient for β (although it is not efficient for Ξ22,n).

Second, when δ = 0, which by the Cauchy-Schwarz inequality, µ2 ≤ δΞ22, implies µ = 0. The
term δ measures how balanced the design is. By definition of the matrix H, 0 ≤ δ < τ. If the
diagonal elements of the projection matrices (Z⊥Z′⊥)ii and (W(W ′W)−1W)ii (called the leverage
of i) are equal to kn/n and `n/n, respectively, then δ = 0. This situation arises, for example, when
the instruments are group indicators, and the group sizes are all equal. Therefore, for relatively
balanced designs in which no observations have a large influence on the reduced-form estimates
as measured by their leverage, the term δ, and the efficiency gain, will be small. Consequently, the
efficiency loss of β̂liml relative to the optimal minimum distance estimator will be small unless the
design is unbalanced, and distribution of the reduced-form errors displays substantial skewness
or kurtosis.

6 Minimum distance estimation without rank restriction

Assumption LIV imposes a proportionality restriction on the reduced form (2) in that π1,n = π2,nβ.
This proportionality restriction implies that the matrix Ξn is reduced rank. In particular, it implies
that there are two sources of information for estimating β,

Ξ11,n = Ξ12,nβ, and (21a)

Ξ12,n = Ξ22,nβ. (21b)

The minimum distance objective function (16) weighs both sources of identification. In this
section, I consider estimation without imposing the rank restriction, and I show that a version of
the bias-corrected two-stage least squares estimator (Nagar, 1959; Donald and Newey, 2001) is
equivalent to a minimum distance estimator that does not use Equation (21a) to estimate β.

6.1 Motivation for relaxing the rank restriction

If Assumption LIV fails, then it is no longer the case that π1,n is proportional to π2,n, and
the matrix Ξn is no longer reduced-rank. However, there are two important cases in which

9A mean-zero random vector v has an elliptically contoured distribution if its characteristic function can be written
as ϕ(t′V t), for some matrix V . The multivariate Normal distribution is a special case, with ϕ(t) = e−t/2.
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the ratio Ξ12,n/Ξ22,n, which is the estimand of the two-stage least squares estimator under
standard asymptotics (Kolesár, 2012), is still of interest. Consequently, estimators that only
use Equation (21b) to identify β will be robust to these two failures of Assumption LIV.

The first case arises when the effect of xi on yi is heterogeneous, as in Imbens and Angrist
(1994), so that the true structural model is yi = h1(xi, εi), where εi is a vector of individual
unobserved heterogeneity, and h1 is some unknown function. For simplicity, suppose there
are no covariates wi beyond a constant. Suppose that (i) Exclusion restriction holds: εi ⊥⊥ zi,
so that the instrument only affects the outcome through its effect on xi; and (ii) Monotonicity
holds: xi = h2(zi, ui), and for any pair (z1, z0), P(h2(z1, ui) ≥ h2(z0, ui)) equals either zero or one.
Then Ξ12,n/Ξ22,n can be written as a particular weighted average of average partial derivatives
β(z) = E[∂h1(h2(z, ui), εi)/∂x] (see Angrist and Imbens (1995) and Angrist et al. (2000) for details).
On the other hand, the ratio Ξ11,n/Ξ12,n may be outside of the convex hull of the average partial
derivatives (Kolesár, 2012).

The second case arises when the exclusion restriction fails and the instrument has a direct effect
on the outcome. In this case, the error in the structural equation has the form εi = z′⊥,iγn + νi,
where E[z⊥,iνi] = 0 and γn measures the strength of the direct effect. Consequently, the coefficient
π1,n in the reduced-form regression of the outcome on instruments is given by π1,n = π2,nβ + γn.
Without any restrictions on γn, the parameter β is no longer identified. However, Kolesár et al.
(2011) show that if the direct effects are orthogonal to the effects of the instruments on the
endogenous variable in the sense that

π′2,nγn/n→ 0, (22)

then β can still be consistently estimated. In particular, under this condition Ξ12,n/Ξ22,n = β +

γ′nπ2,n/π′2,nπ2,n → β. In contrast, Ξ11,n/Ξ12,n → β only if direct effects disappear asymptotically
so that γ′nγn/n→ 0.

To explain the motivation behind the condition (22), consider an example from Chetty, Fried-
man, Hilger, Saez, Schanzenbach and Yagan (2011). Chetty et al. (2011) are interested in estimating
the effect of early childhood achievement, as measured by kindergarten test scores, on subsequent
outcomes, using data from the Tennessee STAR experiment. For concreteness, take the outcome of
interest to be first-grade scores. In the STAR experiment, children and teachers were randomly
assigned to kindergarten classrooms, generating an exogenous variation in kindergarten test
scores. Assuming that teachers only affect subsequent outcomes through their effect on test scores,
we should therefore be able to use kindergarten teacher indicators as instruments for kindergarten
test scores. However, since classes mostly stay together in subsequent years, the instrument
also affects outcomes directly: the kindergarten teacher indicator coincides with kindergarten
classroom indicator, which also has an effect on outcomes through the first-grade teacher. We
cannot partial out the effect of first-grade teachers since their assignment is perfectly correlated
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with kindergarten teacher assignment. However, in the STAR experiment, the first-grade teachers
are randomly assigned. Hence, the first-grade teacher effects γn are orthogonal to the kindergarten
teacher effects, π2,n so that the condition (22) is satisfied.

6.2 Unrestricted minimum distance estimation

To relax rank restriction on Ξn, the matrix of second moments of the reduced-form vectors π2,n

and π1,n, parametrize it as

Ξn = Ξ(Ξ11,n, Ξ22,n, βn) =

 Ξ11,n Ξ22,nβn

Ξ22,nβn Ξ22,n

 ,

so that now βn is defined simply as the ratio Ξ12,n/Ξ22,n. This parametrization leads to the
objective function

Qn(β, Ξ11, Ξ22; Ŵn) =

vech (T − (kn/n)S− Ξ(Ξ11, Ξ22, β))′ Ŵn vech (T − (kn/n)S− Ξ(Ξ11, Ξ22, β)) , (23)

where Ŵn ∈ R3×3 is some weight matrix. If we restrict Ξ11,n to equal to Ξ22,nβ2, then minimizing
this objective function is equivalent to minimizing the original objective function (16). If Ξ11,n is
unrestricted, the weight matrix does not matter since then the model is exactly identified. The
unrestricted minimum distance estimators will be given by their sample counterparts,

Ξ̂22,umd = T22 − (kn/n)S22, Ξ̂11,umd = T11 − (kn/n)S11,

and
β̂umd =

T12 − (kn/n)S12

T22 − (kn/n)S22
.

The unrestricted minimum distance estimator for βn coincides with the modified bias corrected
two-stage least squares estimator (Kolesár et al., 2011), a version of the bias-corrected two-stage
least squares estimator. The version proposed by Donald and Newey (2001) multiplies S12 and S22

by kn−2
n

n−kn−`n
n−kn+2 instead of kn/n. The motivation for introducing the mbtsls estimator in Kolesár

et al. (2011) was to modify the Donald and Newey btsls estimator to make it consistent when
α` > 0. However, it can also be viewed as a minimum distance estimator that puts no restrictions
on the reduced form. The next proposition derives its large sample properties.

Proposition 6. Consider the reduced form (2)–(3). Suppose that Assumptions N and MI (i)–(iii) holds
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and that Ξn → Ξ, where Ξ is some positive semi-definite matrix with Ξ22 > 0. Then

√
n
(

β̂umd − βn
)
⇒ N (0, Vumd),

where

Vumd =
b′Ωb
Ξ22

(
1 +

τ

a′Ω−1a · Ξ22

)
+

Ω22|Ξ|
Ξ3

22
+

2τ(Ω12 − βΩ22)2

Ξ2
22

, (24)

and τ = αk(1− α`)/(1− αk − α`).

The asymptotic distribution of β̂umd follows from a central limit theorem for T− (kn/n)S, and the
delta method. It is possible to relax the Normality assumption and generalize Lemma 1; I focus
on the Normal case here for simplicity. A consistent plug-in estimator of the asymptotic variance
can easily be constructed using the fact that T − (kn/n)S

p→ Ξ, and S
p→ Ω.

The asymptotic variance consists of three components. The first term coincides with the
asymptotic variance of liml given in Equation (8). The second component, Ω22|Ξ|/Ξ3

22 represents
the increase in asymptotic variance due to the failure of rank restriction; when Assumption LIV
holds, |Ξ| = 0, and this term drops out. The last term represents the asymptotic efficiency loss
relative to liml when Assumption LIV holds; the price for the for the extra robustness is that the
estimator does not use the information contained in (21a) when the rank restriction holds. This
price is zero under the standard asymptotics when τ = 0, and also when there is no endogeneity,
since in this case 0 = E[εv2i] = E[b′Vv2i] = Ω12 − βΩ22.

It is possible to reduce the asymptotic mean-squared error of the minimum distance estimator
by minimizing the minimum distance objective function subject to the constraint that Ξ be
positive semi-definite,10 which is equivalent to the constraint Ξ11,n ≥ β2

nΞ22,n. If the random-
effects weight matrix is used, then the resulting estimator will be a mixture between β̂liml and
β̂umd: when T − (kn/n)S is positive semi-definite, then the estimator equals β̂umd; otherwise, the
minimum distance objective is minimized at a boundary Ξ̂11 = β̂2Ξ̂22, and the estimator equals
β̂liml. When Ξ is full rank, then the constrain won’t bind in large samples, and the estimator
will be asymptotically equivalent to β̂umd. However, when Ξ is reduced-rank, the mixing will
deliver a smaller asymptotic mean-squared error. The disadvantage is that the estimator will be
asymptotically biased, which makes inference about β complicated. I provide additional details
on how to do inference using this estimator in the Supplementary Appendix.

7 Tests of overidentifying restrictions

Assumption LIV imposes a proportionality restriction on the reduced form (2) that π1,n = π2,nβ.
If Assumption LIV does not hold, the reduced-form coefficients are unrestricted. A variety of tests

10Since Ξ is a matrix of second moments of π2,n and π1,n, it has to be positive semi-definite.
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of this restriction that work under the standard asymptotics that hold kn and `n fixed have been
proposed in the literature. First, I will discuss the robustness of three such tests to the presence
of many instruments and many covariates. I will then relate these tests to a test based on the
minimum distance objective function.

The most popular test, due to Sargan (1958), is based on the observation that the nR2 from
regressing the estimated residuals in the structural equation (1) on the instruments and covariates
is asymptotically distributed according to χ2

k−1 under Assumption LIV and standard asymptotics
that hold the number of instruments and covariates fixed, so that kn = k, `n = `. If liml is used
to estimate β and δn, the estimated residuals can be written as (I −W ′(W ′W)−1W)Yβ̂liml, and
consequently, the R2 is given by

Ĵs =
b̂′

liml
Tb̂liml

b̂′
liml

(T − (kn/n)S)b̂liml

=
mmin

1− kn/n− `n/n + mmin
.

The Sargan test therefore rejects if nĴs is greater than q
χ2

k−1
1−ns, the 1−ns quantile of a χ2

k−1 distribution
where ns denotes the desired nominal size.

A closely related alternative is the generalized likelihood ratio test based on the limited
information likelihood of Anderson and Rubin (1949). The test statistic is given by nĴar, where
Ĵar = log(nmmin/(n− kn − `n) + 1). It is also asymptotically distributed according to χ2

k−1 under
the null and standard asymptotics.

Third, Cragg and Donald (1993) suggest a test based on the minimum distance objective
function (17). They show that the minimum of the objective function is given by

Ĵcd =
b̂′

liml
Tb̂liml

b̂′
liml

Sb̂liml

= mmin.

Compared to the Sargan test statistic, Ĵcd replaces T − (kn/n)S by S in the denominator. Cragg
and Donald (1993) also show that nmmin ⇒ χ2

k−1 under standard asymptotics.
All three tests are equivalent in the sense that they all reject for large values of mmin. Therefore,

the only difference between them in finite samples is how well the chi-squared approximation
controls size in each case. While under standard asymptotics their asymptotic distributions
coincide and therefore do not provide any guidance as to which test has the best size control,
allowing for αk, α` > 0 reverses this conclusion:

Lemma 2. Consider the model (1)–(3). Then, under Assumptions LIV, N and MI:

n1/2
(

Ĵs − αk
1−α`

)
⇒ N

(
0, 2αk(1−αk−α`)

(1−α`)3

)
, (25)

n1/2
(

Ĵar − log
(

1−α`
1−αk−α`

))
⇒ N

(
0, 2τ/(1− α`)

2) , (26)

n1/2 ( Ĵcd − αk
)
⇒ N (0, 2τ), (27)
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where τ = αk(1−α`)
1−αk−α`

. Moreover, if αk > 0,

P

(
nĴs ≥ q

χ2
kn−1

1−ns

)
→

Φ(Φ−1(ns)/
√

1− αk) if α` = 0,

1 otherwise.

P

(
nĴar ≥ q

χ2
kn−1

1−ns

)
→ 1,

P

(
nĴcd ≥ q

χ2
kn−1

1−ns

)
→ Φ

(
Φ−1(ns)

√
(1− αk − α`)/(1− α`)

)
,

where Φ(·) is the cdf of a standard Normal distribution.

Anatolyev and Gospodinov (2011) and Anatolyev (2011) derive the results for the Sargan test. The
results for the Anderson-Rubin overidentification test and the Cragg-Donald test are new.

When αk > 0 and α` = 0, the Sargan test is mildly conservative. With αk = 0.1 for example,
the asymptotic size of the test with nominal size 0.05 is given by 0.04. Anatolyev and Gospodinov
(2011) therefore propose an adjustment to the critical value of the Sargan test to match the

asymptotic size with the nominal size—instead of using the q
χ2

kn−1
1−ns critical value, they suggest

using q
χ2

kn−1

1−Φ(
√

1−αkΦ−1(ns)). As the Lemma demonstrates, the problem with this solution is that it
breaks down when α` > 0: in this case, the size distortion of the test gets worse as the sample
size increases. Furthermore, it is no longer possible to adjust the critical value to correct the
asymptotic size because the test statistic is centered at the wrong value—αk/(1− α`) rather than
E[χ2

kn−1/n] ≈ αk. Similar conclusions apply to the Anderson-Rubin overidentification test.
The Cragg-Donald test is also size-distorted, although the size distortion is rather small.

With αk = α` = 0.1 for example, the asymptotic size of the test with nominal size 0.05 is
given by 0.06. Moreover, we can apply the Anatolyev and Gospodinov (2011) adjustment to
the critical value to correct the size distortion. In particular, comparing nmmin against the
1− Φ(

√
(1− α`)/(1− αk − α`)Φ−1(ns)) quantile of the χ2

kn−1 distribution will yield a critical
value that will control size under standard as well as many-instrument asymptotics.

An alternative to size-correcting existing tests of overidentification to make them robust to
the presence of many instruments is to make use of the invariant model. In this model, a test of
Assumption LIV is equivalent to testing whether Ξn is reduced-rank against the alternative that it
is positive definite. A simple way to implement the test is to compare the value of the minimum
distance objective function (23) minimized subject to the restriction that |Ξ| is reduced rank with
its value when it is minimized subject to |Ξ| being positive definite. When Ŵre is used as a weight
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matrix, the test statistic is given by

Ĵmd = min
Ξ11=Ξ22β2

Qn(β, Ξ11, Ξ22; Ŵre)− min
Ξ11≥Ξ22β2

Qn(β, Ξ11, Ξ22; Ŵre)

=

0 if mmin ≤ kn/n,

(mmin − kn/n)2 otherwise.

The test is equivalent to the Sargan, Anderson-Rubin and Cragg-Donald tests of overidentification
in the sense that all tests reject for large values of mmin. It follows from (27) that in large samples,
the nĴmd will be distributed as a mixture between a χ2

1 distribution scaled by 2τ, and a degenerate
distribution with point mass on 0. Moreover, it follows from the previous discussion that a test

that rejects whenever nĴmd/2τ ≥ qχ2
1

1−ns will be asymptotically equivalent to the size-corrected
Cragg-Donald test. This result suggests that the preferred test for overidentifying restrictions is
given by the size-corrected Cragg-Donald test.

8 Conclusion

In this paper, I outlined an integrated likelihood approach to inference in the instrumental
variables model when the number of instruments is large. This approach addresses the incidental
parameter problem that the large number of instruments create. It it principled and unified, as
it explicitly uses an invariance argument to deal with the incidental parameters and it is based
on a well-motivated and well-behaved objective function. I show that this integrated likelihood
coincides with the random effects likelihood of Chamberlain and Imbens (2004), and that the
maximum likelihood estimator of β coincides with liml. Moreover, maximizing this integrated
likelihood is equivalent to minimizing a minimum distance objective function that imposes a
rank restriction on the matrix of second moments of the reduced-form coefficients. I use this
equivalence to show that when the reduced-form errors are not Normal, a minimum distance
estimator with respect to an efficient weight matrix is more efficient than liml. Finally, I show
that when the rank restriction is relaxed, the resulting minimum distance estimator corresponds
to a version of the bias-corrected two-stage least squares estimator.
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Appendix A Definitions and identities

First I state a couple of simple identifies that are used throughout the appendix. Then, in Appendix
B I state and prove some auxiliary Lemmata that are helpful for proving the main results. The
propositions and theorems stated in the text are derived in Appendix C.

Let e1 = (1, 0)′, and e2 = (0, 1)′. For any symmetric matrix Ω ∈ R2×2, and vectors a = (β, 1)′

and b = (1,−β)′, β ∈ R:

QS (β, Ω) + QT (β, Ω) = tr(Ω−1T), (28a)

|Ω| aΩ−1a = b′Ωb, (28b)

|nT + (n− kn − `nS)| =
(

n2mmaxmmin + (n− kn − `n)
2 + n(n− kn − `n) tr(S−1T)

)
|S| . (28c)

All equalities follow from simple algebra. Secondly, I use the following properties of the Kronecker
product:

a⊗ b′ = b′ ⊗ a = ab′, vec(ACB) = (B′ ⊗ A) vec(C), (29)

for some vectors a, b ∈ Rd, and conformable matrices A, B, C.
Denote the duplication, elimination, and commutation matrices by Dd, Ld and Kd (see Magnus

and Neudecker (1980) for definitions of these matrices). Let Nd = (Id2 +Kdd)/2 be the symmetrizer
matrix. Then for arbitrary matrices A ∈ Rm×n, B ∈ Rp×q (Magnus and Neudecker, 1979, 1980),

Km1 = K1m = Im, (B⊗ A)Kqn = Kpm(A⊗ B), (30a)

KdDd = Dd, DdLdNd = Nd. (30b)

Appendix B Auxiliary Lemmata

Lemma 3. Suppose P ∼ Wd(νn, V, Mn), a d× d-non-central Wishart distribution with νn degrees of
freedom, scale matrix V, and non-centrality parameter Mn.11 Then:

(i) [Magnus and Neudecker, 1979, Theorem 4.4] The mean and variance of P are given by:

E[P] = νnV + Mn, var(vec(P)) = 2Nd [νn(V ⊗V) + V ⊗Mn + Mn ⊗V] ,

where Nd is the symmetrizer matrix.
(ii) Suppose Mn/n→ M, and νn/n = α + o(n−1/2) where α < 1. Then, as n→ ∞

√
n vec (P/n−E[P/n])⇒ Nd2 (0, 2Nd[α(V ⊗V) + V ⊗M + M⊗V]) .

11Hence, if Xi ∼ Nd(µi, V), then ∑νn
i=1 XiX′i ∼ Wd(νn, V, ∑νn

i=1 µiµ
′
i)
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Proof. To prove part (ii), decompose P as P = ∑νn
i=1 XiX′i , where Xi ∼ Nd(µi, V) such that Mn = ∑i µiµ

′
i . Suppose

first that α > 0. Then it follows by the Central Limit Theorem that:

ν−1/2
n vec(P−E[P])⇒ N (0, 2Nd [(V ⊗V) + V ⊗M/α + M⊗V/α]) ,

which implies the result. If α = 0, then

var vec
(

n−1/2 ∑i(Xi − µi)(Xi − µi)
′
)
→ 0,

so that vec
(

n−1/2 ∑i(Xi − µi)(Xi − µi)
′ − νnV

)
= op(1). Therefore, we have:

√
n vec (P/n−E[P/n]) = n−1/2 vec

(
∑i(Xi − µi)(Xi − µi)

′ − νnV + ∑i(Xiµ
′
i + µiX′i − 2µiµi)

)
= n−1/2 ∑i vec

(
Xiµ

′
i + µiX′i − 2µiµ

′
i
)
+ op(1)

= n−1/2 ∑i ((Xi − µi)⊗ µi + µi ⊗ (Xi − µi)) + op(1).

(31)

Now,

E[(Xi − µi)⊗ µi + µi ⊗ (Xi − µi)]
2

= V ⊗ µiµ
′
i + E[(Xi − µi)µ

′
i ⊗ µi(Xi − µi)

′] + [µi(Xi − µi)
′ ⊗ (Xi − µi)µ

′
i ] + µiµ

′
i ⊗V

= (I + Kdd)
(
V ⊗ µiµ

′
i + µiµ

′
i ⊗V

)
,

where the last line uses the identity ab′ ⊗ ba′ = a⊗ (bb′ ⊗ a) = Kdd(bb′ ⊗ aa′) for any vectors a, b ∈ Rd that follows
from Equations (29) and (30a). Hence

∑
i
((Xi − µi)⊗ µi + µi ⊗ (Xi − µi)) ∼ Nd2 (0, (I + Kdd) (V ⊗Mn + Mn ⊗V) , )

which, combined with (31), yields the result. �

Corollary 1. Consider the model (1)–(3) and suppose Assumptions LIV, N and MI hold. Then:

√
n vec (S−Ω)⇒ N4

(
0,

1
1− αk − α`

2N2(Ω⊗Ω)

)
√

n vec
(

T − αkΩ− λn

a′Ω−1a
aa′
)
⇒ N4 (2N2Φ)

where Φ = αkΩ⊗Ω + λ
a′Ω−1a Ω⊗ (aa′) + λ

a′Ω−1a (aa′)⊗Ω, and N2 is the symmetrizer matrix.

Proof. The result follows from Lemma 3 (ii). �

Lemma 4. Consider an invertible matrix V ∈ Rd×d, a vector m ∈ Rd and a constant c. Then:

(
V ⊗V + c(mm′)⊗ (mm′)

)−1
= V−1 ⊗V−1 − c(V−1mm′V−1)⊗ (V−1mm′V−1)

1 + c(m′V−1m)2 ,

(D′d(V ⊗V + c(mm′)⊗ (mm′))Dd)
−1 = LdNd

(
V ⊗V + c(mm′)⊗ (mm′)

)−1 NdL′d,

(LdN′d(V ⊗V + c(mm′)⊗ (mm′))L′d)
−1 = D′d

(
V ⊗V + c(mm′)⊗ (mm′)

)−1 Dd.

29



Proof. The first identity can be checked by direct calculation. The second identity follows from Lemma 4.4 in Magnus
and Neudecker (1980). �

Lemma 5. Consider the quadratic form Q = (V + M)′P(M + V), where P ∈ Rn×n is symmetric with
tr(P2) = r, V, M ∈ Rn×g, the rows vi ∼ [0, Ω] of V are iid with finite fourth moments, and M is
non-random.

(i) The variance of Q is given by:

var(vec(Q)) = (Ig + Kgg)(M′PM⊗Ω + Ω⊗M′PM + (r− d′d)Ω⊗Ω)

+ d′d
[
E(vv′)⊗ (vv′)− vec(Ω) vec(Ω)′

]
+ E[vv′ ⊗ (mv′ + vm′)] + E[(mv′ + vm′)⊗ vv′],

where m = M′P diag(P) and d = diag(P).
(ii) Suppose in addition that for some constant D,

(a) supi≥1‖mi‖ < D < ∞;

(b) M′PM/n
p→ Λ;

(c) m/n→ µ;
(d) r/n→ τr and tr(P) = τP + o(n−1/2);
(e) d′d/n→ δ; and
(f) supn sup1≤i≤n ∑n

s=1|psi| < D < ∞
Then:

n−1/2 vec(Q−M′PM− tr(P)Ω)⇒ N (0, plim(var(vec(Q))/n)).

Proof. Proof of part (i) follows by a tedious but straightforward calculation, and it is given in the Supplementary
Appendix. Proof of part (ii) follows from part (i) and Theorem 1 in van Hasselt (2010). �

Appendix C Proofs

Proof of Proposition 1. The density of T is proportional to (Moreira, 2009, Theorem 4.1):

fT(T | β, λn, Ω) ∝ e−
n
2 (λn+tr(Ω−1T)) |Ω|−kn/2

(
n
√

λnQT (β)

)−(kn−2)/2
I(kn−2)/2

(
n
√

λnQT (β)

)
, (32)

where Iν(·) is modified Bessel function of the first kind of order ν. Using the integral representation of the Bessel
function (Abramowitz and Stegun, 1965, Equation 9.6.18, p. 376),

Iν(t) =
(t/2)ν

π1/2Γ(ν + 1/2)
G2ν+2(t), where Gν(t) =

∫
[−1,1]

ets(1− s2)(ν−3)/2 ds,

and Γ is the gamma function. The density (32) can therefore be written (up to a constant) as:

fT(T | β, λn, Ω) ∝ e−
n
2 (λn+tr(Ω−1T)) |Ω|−kn/2 Gkn

(
n
√

λnQT (β)

)
.
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Combining this expression with the density for S, which, by Equation (6), is given by

fS(S; Ω) = |Ω|−(n−kn−`n)/2|S|(n−kn−`n−3)/2e−
n−kn−`n

2 tr(Ω−1S),

yields the invariant likelihood

logLinv,n(β, λn, Ω; S, T) ∝ −1
2

(
(n− `n) log |Ω|+ tr(Ω−1S̃) + nλn − 2 log Gkn (n

√
λnQT (β, Ω))

)
,

where S̃ = (n− kn − `n)S + nT. Dropping the kn index from the G function to avoid clutter, the derivative with respect
to Ω is given by:

∂ logLinv,n

∂Ω
=

1
2

[
Ω−1S̃Ω−1 − (n− `n)Ω−1 − G′(·)

G(·)
nλ1/2

n

QT (β, Ω)1/2

(
Ω−1TΩ−1 − QS (β, Ω)

b′Ωb
bb′
)]

, (33)

where the derivative ∂QT (β, Ω)/∂Ω, given by the expression in parentheses, is computed using the identity (28a). Fix
λn. Denote the ml estimates of β and Ω given λn by (β̂λn , Ω̂λn ). Since G(·) is a monotone function, it follows from the
expression for the invariant likelihood that:

β̂λn = argmax
β

QT (β, Ω̂λn ) = argmin
β

QS (β, Ω̂λn ). (34)

Secondly, the derivative (33) evaluated at (β̂λn , Ω̂λn ) has to be equal to zero. Pre-multiplying and post-multiplying
Equation (33) by b̂′λn

Ω̂λn and Ω̂λn b̂λn therefore yields:

(n− `n)b̂′λn
Ω̂λn b̂λn = b̂′λn

S̃b̂λn (35)

This implies:
β̂λn = argmin

β

QS (β, Ω̂λn ) = argmin
β

QS (β, S̃) = β̂liml

as required. By similar arguments, Equations (34) and (35) must also hold when the likelihood is maximized over λn as
well, so that β̂inv = β̂liml. �

Proof of Proposition 2. It follows from Equation (14) that the log-likelihood, parametrized in terms of (ψ, λ, Ω)

where ψ = Ω−1a, can be written as:

logLre,n(ψ, λ, Ω) = −1
2

(
(n− `n) log|Ω|+ kn log

(
1 +

n
kn

λ

)
+ tr(Ω−1S̃)− nλ

kn/n + λ
QS (ψ, Ω)

)
,

where QS (ψ, Ω) = ψ′Tψ/(ψ′Ωψ), and S̃ = nT + (n− kn − `n)S. The derivative with respect to λ is given by

∂

∂λ
logLre,n(ψ, λ, Ω) = −1

2
kn

kn/n + λ

(
1− QS (ψ, Ω)

kn/n + λ

)
.

Now suppose that
QS (ψ, Ω) > kn/n. (36)

Then the ml estimator of λ with ψ and Ω given is given by:

λ̂ψ,Ω = QS (ψ, Ω)− kn/n.
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Therefore, the likelihood with λ concentrated out is given by:

logLre,n(ψ, λ̂ψ,Ω, Ω) ∝ −1
2

(
(n− `n) log|Ω|+ kn log (QS (ψ, Ω)) + tr(Ω−1S̃)− nQS (ψ, Ω)

)
.

The derivative with respect to Ω is given by:

∂

∂Ω
logLre,n(ψ, λ̂ψ,Ω, Ω) = Ω−1S̃Ω−1 − (n− `n)Ω−1 +

kn − nQS (ψ, Ω)

ψ′Ωψ
ψψ′. (37)

Setting the derivative to zero, and pre-multiplying it by Ω̂ψ and ψ′Ω̂ψ, and post-multiplying it by Ω̂ψψ yields:

ψ′Sψ = ψ′Ω̂ψψ, and
1

(n− kn − `n + nQS (ψ, S))
S̃ψ = Ωψ, (38)

where QS (ψ, S) = QS (ψ, Ω̂ψ). Plugging these expressions back into (37) yields:

(n− `n)Ω̂ψ = S̃ +
kn − nQS (ψ, S)

ψ′Sψ

1
(n− kn − `n + nQS (ψ, S))2 S̃ψψ′S̃. (39)

Hence:

|Ω̂ψ| =
1

(n− `n)

|S̃|
n− kn − `n + nQS (ψ, S)

tr(Ω̂−1
ψ S̃) = 2(n− `n)− kn + nQS (ψ, S)

Therefore, the likelihood with both λ and Ω concentrated out is given by:

logLre,n(ψ, λ̂ψ, Ω̂ψ) ∝
1
2
((n− `n) log(n− kn − `n + nQS (ψ, S))− kn log (QS (ψ, S)))

This expression is increasing in QS if QS > kn/n. The maximum is obtained at QS (ψ̂re, S) = mmax, Equation (36)
holds, and λ̂re = mmax − kn/n.

The estimator ψ̂re is given by the eigenvector that corresponds to the mmax, the larger eigenvalue of S−1T. Therefore,
S−1Tψ̂re = mmaxψ̂re. Secondly, since QS (ψ̂re, S) = QT (β̂liml, S), it follows that ψ̂re = S−1 âliml. Combining these
two observations yields S̃ψ̂re = S(n− kn − `n + nmmax)ψ = (n− kn − `n + nmmax)âliml, and ψ̂′

re
Sψ̂re = â′

liml
Sâliml.

Plugging these result into Equations (38) and (39) yields:

âre = Ω̂reψ̂re = âliml Ω̂re =
1

n− `n

(
S̃− λ̂re

â′
re

S−1 âre

âre â′
re

)

Next, to prove consistency of λ̂re, note that by continuity of the trace operator, and Corollary 1

mmax = tr(S−1T)−mmin = tr(S−1T)− b̂′
liml

Tb̂liml

b̂′
liml

Sb̂liml

p→ 2αk + λ− αk = λ + αk.

The consistency of Ω̂re follows by consistency of λ̂re and β̂re, Corollary 1, and Slutsky’s Theorem. �

Proof of Proposition 3. To avoid clutter, I write (β̂, λ̂, Ω̂) and Q̂S in place of (β̂re, λ̂re, Ω̂re) and QS (β̂re, Ω̂re).
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The score equations based on the random-effects likelihood (14) are given by:

Sβ(β, λ, Ω) =
nλ

kn/n + λ

e′2 (T −QS (β, Ω)Ω) b
b′Ωb

, (40a)

Sλ(β, λ, Ω) = −1
2

kn

kn/n + λ

(
1− QT (β, Ω)

kn/n + λ

)
, (40b)

SΩ(β, λ, Ω) =
1
2

D′ vec
[

Ω−1S̃Ω−1 − (n− `n)Ω−1 − nλ

kn/n + λ

(
Ω−1TΩ−1 − QS

b′Ωb
bb′
)]

, (40c)

where S̃ = (n− kn − `n)S + nT. The Hessian, evaluated at ml estimates, is given by:

Hre(β̂, λ̂, Ω̂) =


nλ̂

(kn/n+λ̂)b̂′Ω̂b̂
(Q̂S Ω̂22 − T22) 0 Ĥ1,3:5

0 − 1
2

kn
(kn/n+λ̂)2 Ĥ2,3:5

Ĥ′1,3:5 Ĥ′2,3:5 Ĥ3:6,3:5

 ,

where

H1,3:5 = −1
2

ĉ(n− `n)

b̂′Ω̂b̂

(
2

e′2Ω̂b̂
b̂′Ω̂b̂

b̂⊗ b̂− b̂⊗ e2 − e2 ⊗ b

)′
D,

Ĥ2,3:5 = −1
2

kn

(kn/n + λ̂)2

(
Q̂S
b̂Ω̂b̂

b̂⊗ b̂− vec(Ω̂−1TΩ̂−1)

)′
D,

Ĥ3:5,3:5 = − (n− `n)

2
D′
((

Ω̂−1 − ĉb̂b̂′

b̂′Ω̂b̂

)
⊗
(

Ω̂−1 − ĉb̂b̂′

b̂′Ω̂b̂

)
− (2ĉ− ĉ2)

b̂b̂′

b̂′Ω̂b̂
⊗ b̂b̂′

b̂′Ω̂b̂

)
D.

By the formula for block inverses, the upper 2× 2 submatrix of the inverse Hessian is given by:

H1:2,1:2(β̂, λ̂, Ω̂) =
(

Ĥ1:2,1:2 − Ĥ1:2,3:5Ĥ−1
3:5,3:5Ĥ′1:2,3:5

)−1
. (41)

Applying Lemma 4 yields:

Ĥ−1
3:5,3:5 = − 2

n− `n
LN

[(
Ω̂ +

ĉ
1− ĉ

Ω̂b̂b̂′Ω̂
b̂′Ω̂b̂

)
⊗
(

Ω̂ +
ĉ

1− ĉ
Ω̂b̂b̂′Ω̂
b̂′Ω̂b̂

)
+

ĉ2 − 2ĉ
(1− ĉ)2

Ω̂b̂b̂′Ω̂⊗ Ω̂b̂b̂′Ω̂
(b̂′Ω̂b̂)2

]
NL′,

where L is the elimination matrix and N is the symmetrizer matrix. It follows that

Ĥ1:2,3:5Ĥ−1
3:5,3:5Ĥ′1:2,3:5 = − (n− `n)ĉ2

1− ĉ
|Ω|

(b′Ωb)2 .

Finally, since Ĥ2,3:6Ĥ−1
3:6,3:6Ĥ′1,3:6 = 0, Equation (41) combined with the expression above yields

Ĥ11
re

=
(

Ĥ11 − Ĥ1,3:5Ĥ−1
3:5,3:5Ĥ′1,3:5

)−1
=

b̂′Ω̂b̂(λ̂ + kn/n)
nλ̂

(
Q̂S Ω̂22 − T22 +

ĉ
1− ĉ

Q̂S
â′Ω̂−1 â

)−1

,

which yields the result.
Now, consider its probability limit. We have:

Q̂S = (n− `n)
b̂′Tb̂
b̂′S̃b̂

=
(n− `n)b̂′Tb̂

(n− kn − `n)b̂′Sb̂ + nb′Tb̂
=

(
1

1− `n/n
+

n− kn − `n

(n− `n)mmin

)−1 p→ αk,
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since mmin
p→ αk. Hence,

ĉ
1− ĉ

p→ αkλ

αk(1− α`) + (1− αk − α`)λ
,

so that

−nĤ11
re

p→ − b′Ωb(αK + λ)

λ

(
− λ

a′Ω−1a
+

λα2
K

a′Ω−1a ((1− αK − α`)λ + (1− α`)αK)

)−1

=
b′Ωba′Ω−1a

λ2

(
λ +

(1− α`)αK
1− α` − αK

)
= V

liml,N ,

which completes the proof. �

Proof of Proposition 4. The objective function evaluates as:

Qn(β, Ξ22; Ŵre) = tr((TS−1 − (kn/n)I2)
2)− 2Ξ22a′S−1TS−1a + 2(kn/n)Ξ22a′S−1a + Ξ2

22(a′S−1a)2. (42)

Setting derivative wrt Ξ22 to zero yields

Ξ̂22(β) =
QT (β, S)− kn/n

a′S−1a
. (43)

Therefore, the objective function with Ξ22 concentrated out is given by

Qn(β, Ξ̂22(β)) = tr((TS−1 − (kn/n)I2)
2)− (QT (β, S)− kn/n)2,

which is maximized at maxβ QT (β, S), since by the identity (28a), tr(S−1T) > 2kn/n implies QT (β, S) − kn/n >

kn/nQS (β, S), and minβ QS (β, S) = minβ QT (β, S) = mmin. Hence, β̂md = β̂liml. Using the notation S̃ = (n− kn −
`n)S + nT, we have

â′
re

Ω̂−1
re

âre = (n− `n)â′
re

(
S̃− n

mmax − kn/n
â′

re
S−1 âre

âre â′
re

)−1
âre

= −(n− `n)
â′

re
S̃−1 âre â′

re
S−1 âre

n(mmax − kn/n)âreS̃−1 âre − â′
re

S−1 âre

= −(n− `n)

(
nmmax − kn −

|S̃|
|S|

b̂′
re

Sb̂re

b̂reS̃b̂re

)−1

â′
re

S−1 âre

= â′
re

S−1 âre

(44)

where first line follows from the definition of Ω̂re and λ̂re given in Proposition 2, the second line follows by the
Woodbury identity, the third line follows from Equation (28b), and the fourth line follows from Equation (28c).
Therefore, we have that

Ξ̂22,re =
λ̂re

â′
re

Ω̂−1
re

âre

=
mmax − kn/n

â′
re

S−1 âre

, (45)

which, by Equation (43) equals Ξ̂22,md, as asserted. �

Proof of Proposition 5. Let Wc,t, t = c/Ξ22, denote the probability limit of Ŵn given in the statement of the
Proposition. This limit weight can be written as

Wc,t = cD′2Φ−1
t D2, where Φt = Ω⊗Ω + Ω⊗ tmm′ + tmm′ ⊗Ω,

34



and m = Ξ1/2
22 a. By Lemma 4, and the identity λ = m′Ω−1m,

Φ−1
t = (Ω−1 ⊗Ω−1)

[(
Ω− tmm′

1 + tλ

)
⊗
(

Ω− tmm′

1 + tλ

)
+

t2(mm′)⊗ (mm′)
(1 + 2tλ)(1 + tλ)2

]
(Ω−1 ⊗Ω−1).

By Corollary 1, the asymptotic variance of the moment condition

vech(T − (kn/n)S− Ξ22,naa′) (46)

is given by
∆ = 2L2N2

[
τΩ⊗Ω + Ω⊗ (mm′) + (mm′)⊗Ω

]
L′2. (47)

If αk > 0, then ∆ is invertible, and a necessary and sufficient condition for optimality is that for some matrix Ct (Newey
and McFadden, 1994, Section 5.2)

G′Wc,t = CtG′∆−1, (48)

where G is the derivative of the moment condition (46), given by:

G = −L2(m⊗M + M⊗m), where M =
dm

d(β, Ξ22)
=

(
Ξ1/2

22 e1
1

2Ξ1/2
22

a
)

.

To prove the Proposition for the case αk > 0, we therefore need to find Ct such that (48) holds. We have:

Wc,tG = −cD′2Φ−1
t (m⊗M + M⊗m),

∆−1G = − 1
2τ

D′2Φ−1
1/τ(m⊗M + M⊗m),

since ∆−1 = 1
2τ D′2Φ−1

1/τ D2 by Lemma 4. After some algebra, it therefore follows that the equality (48) holds with

Ct =
2c

1 + tλ

(
(τ + λ)I2 +

1− τt
(1 + 2tλ)

mM′−1 ⊗M′Ω−1m
)

.

If τ = 0, then the asymptotic variance ∆ given in Equation (47) is degenerate, since one of the three moment
conditions given in Equation (46) is asymptotically redundant: the first moment condition equals 2β times the second
minus β2 times the third. In this case, any positive definite weight matrix will be optimal, and in particular Wt is
optimal. �

Proof of Lemma 1. Part (i) of the Lemma follows from Lemma 5. Next, it it follows from Lemma A.5 in Anatolyev
(2011) that

∑
i

v̂i ⊗ v̂i ⊗ v̂′i = ∑
ij
(Mij)

3E[vi ⊗ vi ⊗ v′i ] + Op(1),

∑
i

v̂i v̂′i ⊗ v̂i v̂′i = ∑
ij
(M)4

ijE[viv′i ⊗ viv′i ]

+

∑
i

M2
ii −∑

ij
M4

ij

 ((I4 + K2,2)Ω⊗Ω + vec(Ω) vec(Ω)′) + Op(1).

Part (ii) then follows. �

Proof of Proposition 6. It follows from Lemma 3 and the fact that T and S are uncorrelated that

√
n vec (T − (kn/n)S−Ω)⇒ N4(0, 2N2 (τΩ⊗Ω + Ξ⊗Ω + Ω⊗ Ξ))
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Since β̂umd = g(vec(T − (kn/n)S)), where g(T) = T3/T4, it follows by the Delta method that

√
n
(

β̂umd − Ξ12,n/Ξ22,n
)
⇒ N (0, Vumd),

where

Vumd =
2

Ξ2
22
(e2 ⊗ b)′N2 (τΩ⊗Ω + Ξ⊗Ω + Ω⊗ Ξ) (e2 ⊗ b)

=
1

Ξ2
22
(e2 ⊗ b + b⊗ e2)

′ (τΩ⊗Ω + Ξ⊗Ω + Ω⊗ Ξ) (e2 ⊗ b).

Expanding this expression using the identity |Ω| = b′ΩbΩ22 − (b′Ωe2)
2 and the identity (28b) yields the result. �

Proof of Lemma 2. We have:

√
n(mmin − αk) =

√
n

b̂′
liml

(T − αkS)b̂liml

b̂′
liml

Sb̂liml

=
b̂′

liml

√
n(T − αkS− λnaa′/(a′Ω−1a))b̂liml

b̂′
liml

Sb̂liml

+

√
nλn(a′ b̂liml)2

(a′Ω−1a)b̂′
liml

Sb̂liml

=

√
n(b̂liml ⊗ b̂liml)′ vec

(
T − αkS− λnaa′/(a′Ω−1a)

)
b̂′

liml
Sb̂liml

+

√
nλn(b̂liml − β)2

(a′Ω−1a)b̂′
liml

Sb̂liml

=

√
n(b̂liml ⊗ b̂liml)′ vec

(
T − αkS− λnaa′/(a′Ω−1a)

)
b̂′

liml
Sb̂liml

+ op(1),

where the first line follows from the identity mmin = QS (β̂liml, S), the second line follows by algebra, the third line
follows from Equation (29), and the fourth line follows from β̂liml − β = Op(n−1/2). Using Corollary 1, consistency of
β̂liml, the continuous mapping theorem and Equation (30a), we obtain:

√
n(b̂liml ⊗ b̂liml)

′ vec
(

T − αkS− λnaa′/(a′Ω−1a)
)
⇒ N

(
0, 2τ(b′Ωb)2

)
. (49)

Combining these results, we get: √
n(mmin − αk)⇒ N (0, 2τ) .

The results for Ĵs and Ĵar follow by the Delta method. To prove the remainder of the Lemma, I use the approximation
from Peiser (1943) (see also (Anatolyev and Gospodinov, 2011)) that as k→ ∞,

qχ2
k

1−ns = k + Φ−1(1− ns)
√

2k + O(1).

Therefore,

P

(
nĴcd ≥ q

χ2
kn−1

1−ns

)
= P

(√
nĴcd ≥ kn/

√
n + Φ−1(1− ns)

√
2αk + o(1)

)
= P

(√
n( Ĵcd − αk)/

√
2τ ≥ Φ−1(1− ns)

√
αk/τ + o(1)

)
= P

(
N (0, 1) + op(1) ≥ Φ−1(1− ns)

√
αk/τ + o(1)

)
= 1−Φ

(
Φ−1(1− ns)

√
αk/τ

)
+ o(1)

→ Φ
(

Φ−1(ns)
√

αk/τ
)

.
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Secondly,

P

(
nĴs ≥ q

χ2
kn−1

ns

)
= P

(√
nĴs ≥ kn/

√
n + Φ−1(1− ns)

√
2αk + o(1)

)
= P

(
N (0, 1) + op(1) ≥

(
(1− α`)

3

2αk(1− αk − α`)

)1/2 (
−
√

n
αkα`

1− α`
+ Φ−1(1− ns)

√
2αk

)
+ o(1)

)
.

Now, if αk > 0, then the right-hand side converges to −∞, so that the rejection probability converges to one. If αk = 0,
then

P

(
nĴs ≥ q

χ2
kn−1

ns

)
= P

(
N (0, 1) + op(1) ≥

Φ−1(1− ns)
(1− αk)1/2 + o(1)

)
→ Φ

(
Φ−1(ns)

(1− αk)1/2

)
.

Thirdly,

P

(
nĴar ≥ q

χ2
kn−1

ns

)
= P

(√
nĴar ≥ kn/

√
n + Φ−1(1− ns)

√
2αk + o(1)

)
= P

(
N (0, 1) + op(1) ≥

1− α`√
2τ

(√
n
[

αk − log
(

1− α`
1− αk − α`

)]
+ Φ−1(1− ns)

√
2αk + o(1)

))
.

Now, since αk < − log(1− αk),

αk − log
(

1− α`
1− αk − α`

)
< log

(
1

1− αk

)
− log

(
1− α`

1− αk − α`

)
= log

(
1− αk − α`

(1− αk)(1− α`)

)
< log(1) = 0,

so that the right-hand side of the expression converges to −∞, and the rejection probability converges to 1. �
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