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Abstract

We propose bootstrap prediction intervals for an observation h periods into the future and its
conditional mean. We assume that these forecasts are made using a set of factors extracted from
a large panel of variables. Because we treat these factors as latent, our forecasts depend both on
estimated factors and estimated regression coeffi cients.
Under regularity conditions, Bai and Ng (2006) proposed the construction of asymptotic inter-

vals under Gaussianity of the innovations. The bootstrap allows us to relax this assumption and to
construct valid prediction intervals under more general conditions. Moreover, even under Gaussian-
ity, the bootstrap leads to more accurate intervals in cases where the cross-sectional dimension is
relatively small as it reduces the bias of the OLS estimator as shown in a recent paper by Gonçalves
and Perron (2013).
Keywords: factor model, bootstrap, forecast, conditional mean.

1 Introduction

Forecasting using factor-augmented regression models has become increasingly popular since the semi-
nal paper of Stock and Watson (2002). The main idea underlying the so-called diffusion index forecasts
is that when forecasting a given variable of interest, a large number of predictors can be summarized
by a small number of indexes when the data follows an approximate factor model. The indexes are
the latent factors driving the panel factor model and can be estimated by principal components. Point
forecasts can be obtained by running a standard OLS regression augmented with the estimated factors.

In this paper, we consider the construction of prediction intervals in factor-augmented regression
models using the bootstrap. To be more specific, suppose that yt+h denotes the variable to be forecast
(where h is the forecast horizon) and let Xt be a N -dimensional vector of candidate predictors. We
assume that yt+h follows a factor-augmented regression model,

yt+h = α′Ft + β′Wt + εt+h, t = 1, . . . , T − h, (1)

whereWt is a vector of observed regressors (including for instance lags of yt) which jointly with Ft help
forecast yt+h. The r-dimensional vector Ft describes the common latent factors in the panel factor
model,

Xit = λ′iFt + eit, i = 1, . . . , N, t = 1, . . . , T, (2)

where the r × 1 vector λi contains the factor loadings and eit is an idiosyncratic error term.
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The goal is to forecast yT+h or its conditional mean yT+h|T = α′FT + β′WT using
{(yt, Xt,Wt) : t = 1, . . . , T}, the available data at time T . Since factors are not observed, the dif-
fusion index forecast approach typically involves a two-step procedure: in the first step we estimate Ft
by principal components (yielding F̃t) and in the second step we regress yt+h on Wt and F̃t to obtain
the regression coeffi cients. The point forecast is then constructed as ŷT+h|T = α̂′F̃T + β̂

′
WT .

The main goal of this paper is to propose bootstrap prediction intervals for yT+h and yT+h|T . Be-
cause we treat factors as latent, forecasts for yT+h and its conditional mean depend both on estimated
factors and regression coeffi cients. These two sources of parameter uncertainty must be accounted for
when constructing prediction intervals, as recently shown by Bai and Ng (2006). Under regularity
conditions, Bai and Ng (2006) derived the asymptotic distribution of regression estimates and the
corresponding forecast errors and proposed the construction of asymptotic intervals.

Our motivation for using the bootstrap as an alternative method of inference is twofold. First,
the finite sample properties of the asymptotic approach of Bai and Ng (2006) can be poor, especially
if N is not suffi ciently large relative to T . This was recently shown by Gonçalves and Perron (2013)
in the context of confidence intervals for the regression coeffi cients, and as we will show below, the
same is true in the context of prediction intervals. In particular, estimation of factors leads to an
asymptotic bias term in the OLS estimator if

√
T/N → c and c 6= 0. Gonçalves and Perron (2013)

proposed a bootstrap method that removes this bias and outperforms the asymptotic approach of Bai
and Ng (2006). Second, the bootstrap allows for the construction of prediction intervals for yT+h

that are consistent under more general assumptions than the asymptotic approach of Bai and Ng
(2006). In particular, the bootstrap does not require the Gaussianity assumption on the regression
errors that justifies the asymptotic prediction intervals of Bai and Ng (2006). As our simulations show,
prediction intervals based on the Gaussianity assumption perform poorly when the regression error
is asymmetrically distributed whereas the bootstrap prediction intervals do not suffer significant size
distortions.

The remainder of the paper is organized as follows. Section 2 introduces our forecasting model and
considers asymptotic prediction intervals. Section 3 describes two bootstrap prediction algorithms.
Section 4 presents a set of high level assumptions on the bootstrap idiosyncratic errors under which the
bootstrap distribution of the estimated factors at a given time period is consistent for the distribution
of the sample estimated factors. These results together with the results of Gonçalves and Perron
(2013) are used in Section 5 to show the asymptotic validity of wild bootstrap prediction intervals.
Section 6 presents our simulation experiments, and Section 7 concludes. Mathematical proofs appear
in the Appendix.

2 Prediction intervals based on asymptotic theory

This section introduces our assumptions and reviews the asymptotic theory-based prediction intervals
proposed by Bai and Ng (2006).

2.1 Assumptions

Let zt =
(
F ′t W ′t

)′
, where zt is p × 1, with p = r + q. Following Bai and Ng (2006), we make the

following assumptions.

Assumption 1

(a) E ‖Ft‖4 ≤M and 1
T

∑T
t=1 FtF

′
t →P ΣF > 0, where ΣF is a non-random r × r matrix.

(b) The loadings λi are either deterministic such that ‖λi‖ ≤M , or stochastic such that E ‖λi‖4 ≤M.
In either case, Λ′Λ/N →P ΣΛ > 0, where ΣΛ is a non-random matrix.
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(c) The eigenvalues of the r × r matrix (ΣΛΣF ) are distinct.

Assumption 2

(a) E (eit) = 0, E |eit|4 ≤M.

(b) E (eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s), |σij,ts| ≤ τ ts for all (i, j) . Furthermore,
∑T

s=1 τ ts ≤M,
for each t, and 1

NT

∑
t,s,i,j |σij,ts| ≤M.

(c) For every (t, s), E
∣∣∣N−1/2

∑N
i=1 (eiteis − E (eiteis))

∣∣∣4 ≤M.

(d) 1
NT 2

∑
t,s,l,u

∑
i,j |Cov (eiteis, ejleju)| < ∆ <∞.

(e) For each t, 1√
N

∑N
i=1 λieit →d N (0,Γt), where Γt ≡ limN→∞ V ar

(
1√
N

∑N
i=1 λieit

)
> 0.

Assumption 3 The variables {λi} , {Ft} and {eit} are three mutually independent groups. Depen-
dence within each group is allowed.

Assumption 4

(a) E (εt+h) = 0 and E |εt+h|4 < M.

(b) E (εt+h|yt, Ft, yt−1, Ft−1, . . .) = 0 for any h > 0, and Ft and εt are independent of the idiosyncratic
errors eis for all (i, s, t).

(c) E ‖zt‖4 ≤M and 1
T

∑T
t=1 ztz

′
t →P Σzz > 0.

(d) As T →∞, 1√
T

∑T−h
t=1 ztεt+h →d N (0,Ω) , where E

∥∥∥ 1√
T

∑T−h
t=1 ztεt+h

∥∥∥2
< M , and

Ω ≡ p limT→∞
1
T

∑T−h
t=1

(
ztz
′
tε

2
t+h

)
> 0.

Assumptions 1 and 2 are standard in the approximate factors literature, allowing in particular for
weak cross sectional and serial dependence in eit of unknown form. Assumption 3 assumes indepen-
dence among the factors, the factor loadings and the idiosyncratic error terms. We could allow for
weak dependence among these three groups of variables at the cost of introducing restrictions on this
dependence. Assumption 4 imposes moment conditions on {εt+h}, on {zt} and on the score vector
{ztεt+h}. Part c) requires {ztz′t} to satisfy a law of large numbers. Part d) requires the score to satisfy
a central limit theorem, where Ω denotes the limiting variance of the scaled average of the scores. We
make the same assumption as in Bai and Ng (2006) regarding the form of this covariance matrix.

2.2 Normal-theory prediction intervals

As described in Section 1, the diffusion index forecasts are based on a two step estimation procedure.
The first step consists of extracting the common factors F̃t from the N -dimensional panel Xt. In
particular, given X, we estimate F and Λ with the method of principal components. F is estimated
with the T × r matrix F̃ =

(
F̃1 . . . F̃T

)′
composed of

√
T times the eigenvectors corresponding to

the r largest eigenvalues of of XX ′/TN (arranged in decreasing order), where the normalization F̃ ′F̃
T =

Ir is used. The matrix containing the estimated loadings is then Λ̃ =
(
λ̃1, . . . , λ̃N

)′
= X ′F̃

(
F̃ ′F̃

)−1
=

X ′F̃ /T.
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In the second step, we run an OLS regression of yt+h on ẑt =
(
F̃ ′t W ′t

)′
, i.e. we compute

δ̂ ≡
(
α̂

β̂

)
=

(
T−h∑
t=1

ẑtẑ
′
t

)−1 T−h∑
t=1

ẑtyt+h, (3)

where δ̂ is p× 1 with p = r + q.
Suppose the object of interest is yT+h|T , the conditional mean of yT+h = α′FT + β′WT at time T .

The point forecast is ŷT+h|T = α̂′F̃T + β̂
′
WT and the forecast error is given by

ŷT+h|T − yT+h|T =
1√
T
ẑ′T
√
T
(
δ̂ − δ

)
+

1√
N
α′H−1

√
N
(
F̃T −HFT

)
, (4)

where δ ≡
(
α′H−1 β′

)′
is the probability limit of δ̂. The matrix H is defined as

H = Ṽ −1 F̃
′F

T

Λ′Λ

N
, (5)

where Ṽ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of
XX ′/NT , in decreasing order (cf. Bai (2003)). It arises because factor models are only identified
up to rotation, implying that the principal component estimator F̃t converges to HFt, and the OLS
estimator α̂ converges to H−1′α. It must be noted that forecasts do not depend on this rotation since
the product is uniquely identified.

The above decomposition shows that the asymptotic distribution of the forecast error depends on
two sources of uncertainty: the first is the usual parameter estimation uncertainty associated with
estimation of α and β, and the second is the factors estimation uncertainty. Under Assumptions 1-4,
and assuming that

√
T/N → 0 and

√
N/T → 0 as N,T → ∞, Bai and Ng (2006) show that the

studentized forecast error
ŷT+h|T − yT+h|T√

B̂T
→d N (0, 1) , (6)

where B̂T is a consistent estimator of the asymptotic variance of ŷT+h|T given by

B̂T = V̂ ar
(
ŷT+h|T

)
=

1

T
ẑ′T Σ̂δ ẑT +

1

N
α̂′Σ̂F̃T

α̂. (7)

Here, Σ̂δ consistently estimates Σδ = V ar
(√

T
(
δ̂ − δ

))
and Σ̂F̃T

consistently estimates

ΣF̃T
= V ar

(√
N
(
F̃T −HFT

))
. In particular, under Assumptions 1-4,

Σ̂α =

(
T−h∑
t=1

ẑtẑ
′
t

)−1(T−h∑
t=1

ẑtẑ
′
tε̂

2
t+h

)(
T−h∑
t=1

ẑtẑ
′
t

)−1

, (8)

and
Σ̂F̃T

= Ṽ −1Γ̃T Ṽ
−1, (9)

where Γ̃T is an estimator of ΓT = limN→∞ V ar
(

1√
N

∑N
i=1 λieiT

)
and depends on the cross sectional

dependence and heterogeneity properties of eiT . Bai and Ng (2006) provide three different estimators
of ΓT . Section 5 below considers such an estimator.

4



The central limit theorem result in (6) justifies the construction of an asymptotic 100(1− α)%
level prediction interval for yT+h|T given by(

ŷT+h|T − z1−α/2

√
B̂T , ŷT+h|T + z1−α/2

√
B̂T

)
, (10)

where z1−α/2 is the 1− α/2 quantile of a standard normal distribution.
When the object of interest is a prediction interval for yT+h, Bai and Ng (2006) propose(

ŷT+h|T − z1−α/2

√
ĈT , ŷT+h|T + z1−α/2

√
ĈT

)
, (11)

where
ĈT = B̂T + σ̂2

ε,

with B̂T as above and σ̂2
ε = 1

T

∑T
t=1 ε̂

2
t . The validity of (11) depends on the additional assumption

that εt is i.i.d.N
(
0, σ2

ε

)
.

An important condition that justifies (10) and (11) is that
√
T/N → 0. This condition ensures

that the term reflecting the parameter estimation uncertainty in the forecast error decomposition (4),√
T
(
δ̂ − δ

)
, is asymptotically normal with a mean of zero and a variance-covariance matrix that does

not depend on the factors estimation uncertainty. As was recently shown by Gonçalves and Perron
(2013), when

√
T/N → c 6= 0, √

T
(
δ̂ − δ

)
→d N (−c∆δ,Σδ) ,

where ∆δ is a bias term that reflects the contribution of the factors estimation error to the asymptotic
distribution of the regression estimates δ̂. In this case, the two terms in (4) will depend on the factors
estimation uncertainty and a natural question is whether this will have an effect on the prediction
intervals (10) and (11) derived by Bai and Ng (2006) under the assumption that c = 0. As we argue
next, these intervals remain valid even when c 6= 0. The main reason is that when

√
T/N → c 6= 0,

the ratio N/T → 0, which implies that the parameter estimation uncertainty associated with δ is
dominated asymptotically by the uncertainty from having to estimate FT .

More formally, when
√
T/N → c 6= 0, N/T → 0 and the convergence rate of ŷT+h|T is

√
N ,

implying that
√
N
(
ŷT+h|T − yT+h|T

)
=

√
N/T

√
T
(
δ̂ − δ

)′
ẑT + α′H−1

√
N
(
F̃T −HFT

)
= α′H−1

√
N
(
F̃T −HFT

)
+ oP (1) .

Thus, the forecast error is asymptotically N
(

0, α′H−1ΣF̃T
H−1′α

)
. Since NB̂T = (N/T ) ẑ′T Σ̂δ ẑT +

α̂′Σ̂F̃T
α̂ = α′H−1ΣF̃T

H−1′α + oP (1), the studentized forecast error given in (6) is still N (0, 1) as
N,T →∞. For the studentized forecast error associated with forecasting yT+h, the variance of ŷT+h

is asymptotically (as N,T → ∞) dominated by the variance of the error term σ2
ε, implying that

neither the parameter estimation uncertainty nor the factors estimation uncertainty contribute to the
asymptotic variance.

3 Description of bootstrap prediction intervals

Following Gonçalves and Perron (2013), we consider the following bootstrap DGP:

X∗t = Λ̃F̃t + e∗t , (12)

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h, (13)
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where
{
e∗t = (e∗1t, . . . , e

∗
Nt)
′} denotes a bootstrap sample from {ẽt = Xt − Λ̃F̃t

}
and

{
ε∗t+h

}
is a resam-

pled version of
{
ε̂t+h = yt+h − α̂′F̃t − β̂

′
Wt

}
. A specific method to generate e∗t and ε

∗
t+h is discussed

in Section 5.
We estimate the factors by the method of principal components using the bootstrap panel data

set {X∗t : t = 1, . . . , T}. We let F̃ ∗ =
(
F̃ ∗1 , . . . , F̃

∗
T

)′
denote the T × r matrix of bootstrap estimated

factors which equal the r eigenvectors of X∗X∗′/NT (multiplied by
√
T ) corresponding to the r largest

eigenvalues. The N × r matrix of estimated bootstrap loadings is given by Λ̃∗ =
(
λ̃
∗
1, . . . , λ̃

∗
N

)′
=

X∗′F̃ ∗/T . We then run a regression of y∗t+h on F̃
∗
t and Wt using observations t = 1, . . . , T − h. We let

δ̂
∗
denote the corresponding OLS estimator

δ̂
∗

=

(
T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1 T−h∑
t=1

ẑ∗t y
∗
t+h,

where ẑ∗t =
(
F̃ ∗′t ,W

′
t

)′
.

The steps for obtaining a bootstrap prediction interval for yT+h|T are as follows.

Algorithm 1 (Bootstrap prediction interval for yT+h|T )

1. For t = 1, . . . , T , generate
X∗t = Λ̃F̃t + e∗t ,

where {e∗it} is a resampled version of
{
ẽit = Xit − λ̃

′
iF̃t

}
.

2. Estimate the bootstrap factors
{
F̃ ∗t : t = 1, . . . , T

}
using X∗.

3. For t = 1, . . . , T − h, generate

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h,

where the error term ε∗t+h is a resampled version of ε̂t+h.

4. Regress y∗t+h generated in step 3 on the bootstrap estimated factors F̃
∗
t obtained in step 2 and

on the fixed regressors Wt and obtain the OLS estimator δ̂
∗
.

5. Obtain bootstrap forecasts

ŷ∗T+h|T = α̂∗′F̃ ∗T + β̂
∗′
WT ≡ δ̂

∗′
ẑ∗T ,

and bootstrap standard errors

B̂∗T =
1

T
ẑ∗′T Σ̂∗δ ẑ

∗
T +

1

N
α̂∗′Σ̂∗

F̃T
α̂∗, (14)

where the choice of Σ̂∗δ and Σ̂∗
F̃T
depends on the assumptions on εt+h and eit.

6. Let y∗T+h|T = α̂′F̃T + β̂
′
WT and compute bootstrap prediction errors:
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(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap prediction
errors as

s∗T+h =
ŷ∗T+h|T − y

∗
T+h|T√

B̂∗T

.

(b) For symmetric percentile-t bootstrap intervals, compute
∣∣s∗T+h

∣∣ .
7. Repeat this processB times, resulting in statistics

{
s∗T+h,1, . . . , s

∗
T+h,B

}
and

{∣∣∣s∗T+h,1

∣∣∣ , . . . , ∣∣∣s∗T+h,B

∣∣∣} .
8. Compute the corresponding empirical quantiles:

(a) For equal-tailed percentile-t bootstrap intervals, q∗1−α is the empirical 1 − α quantile of{
s∗T+h,1, . . . , s

∗
T+h,B

}
.

(b) For symmetric percentile-t bootstrap intervals, q∗|·|,1−α is the empirical 1 − α quantile of{∣∣∣s∗T+h,1

∣∣∣ , . . . , ∣∣∣s∗T+h,B

∣∣∣} .
A 100(1− α)% equal-tailed percentile-t bootstrap interval for yT+h|T is given by

EQ1−α
yT+h|T

≡
(
ŷT+h|T − q∗1−α/2

√
B̂T , ŷT+h|T − q∗α/2

√
B̂T

)
, (15)

whereas a 100(1− α)% symmetric percentile-t bootstrap interval for yT+h|T is given by

SY 1−α
yT+h|T

≡
(
ŷT+h|T − q∗|·|,1−α

√
B̂T , ŷT+h|T + q∗|·|,1−α

√
B̂T

)
, (16)

When prediction intervals for a new observation yT+h are the object of interest, the algorithm
reads as follows.

Algorithm 2 (Bootstrap prediction interval for yT+h)

1. Identical to Algorithm 1.

2. Identical to Algorithm 1.

3. Generate
{
y∗1+h, . . . , y

∗
T , y

∗
T+1, . . . , y

∗
T+h

}
using

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h,

where
{
ε∗1+h, . . . , ε

∗
T , ε
∗
T+1, . . . , ε

∗
T+h

}
is a bootstrap sample obtained from {ε̂1+h, . . . , ε̂T } .

4. Not making use of the stretch
{
y∗T+1, . . . , y

∗
T+h

}
, compute δ̂

∗
as in Algorithm 1.

5. Obtain the bootstrap point forecast ŷ∗T+h|T as in Algorithm 1 but compute its standard error as

Ĉ∗T = B̂∗T + σ̂∗2ε ,

where σ̂∗2ε is a consistent estimator of σ2
ε = V ar (εT+h) and B̂∗T is as in Algorithm 1.

6. Let y∗T+h = α̂′F̃T + β̂
′
WT + ε∗T+h and compute bootstrap prediction errors:
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(a) For equal-tailed percentile-t bootstrap intervals, compute studentized bootstrap prediction
errors as

s∗T+h =
ŷ∗T+h|T − y

∗
T+h√

Ĉ∗T

.

(b) For symmetric percentile-t bootstrap intervals, compute
∣∣s∗T+h

∣∣ .
7. Identical to Algorithm 1.

8. Identical to Algorithm 1.

A 100(1− α) % equal-tailed percentile-t bootstrap interval for yT+h is given by

EQ1−α
yT+h

≡
(
ŷT+h|T − q∗1−α/2

√
ĈT , ŷT+h|T − q∗α/2

√
ĈT

)
, (17)

whereas a 100(1− α) % symmetric percentile-t bootstrap interval for yT+h is given by

SY 1−α
yT+h

≡
(
ŷT+h|T − q∗|·|,1−α

√
ĈT , ŷT+h|T + q∗|·|,1−α

√
ĈT

)
. (18)

The main differences between the two algorithms is that in step 3 of Algorithm 2 we generate
observations for y∗t+h for t = 1, . . . , T instead of stopping at t = T − h. This allows us to obtain a
bootstrap observation for y∗T+h, the bootstrap analogue of yT+h, which we will use in constructing the
studentized statistic s∗T+h in step 6 of Algorithm 2. The point forecast is identical to Algorithm 1 and
relies only on observations for t = 1, . . . , T − h, but the bootstrap variance Ĉ∗T contains an extra term
σ̂∗2ε that reflects the uncertainty associated with the error εT+h associated with the new observation
yT+h.

4 Bootstrap distribution of estimated factors

The asymptotic validity of the bootstrap prediction intervals for yT+h and yT+h|T described in the
previous section depends on the ability of the bootstrap to capture two sources of estimation error: the
parameter estimation error and the factors estimation error. In particular, the bootstrap prediction
error for the conditional mean is given by

ŷ∗T+h|T − y
∗
T+h|T =

1√
T
ẑ∗′T
√
T
(
δ̂
∗ − δ∗

)
+

1√
N
α̂′H∗−1

√
N
(
F̃ ∗T −H∗FT

)
,

where δ∗ = Φ∗′−1δ̂ and Φ∗ = diag (H∗, Iq) . Here, H∗ is the bootstrap analogue of the rotation matrix
H defined in (5), i.e.

H∗ = Ṽ ∗−1 F̃
∗′F̃

T

Λ̃′Λ̃

N
,

where Ṽ ∗ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of
X∗X∗′/NT , in decreasing order. Note that contrary to H, which depends on unknown population
parameters, H∗ is fully observed.

Adding and subtracting appropriately, we can write

ŷ∗T+h|T − y
∗
T+h|T =

1√
T
ẑ′T
√
T
(

Φ∗′δ̂
∗ − δ̂

)
+

1√
N
α̂′
√
N
(
H∗−1F̃ ∗T − F̃T

)
+ oP ∗ (1) . (19)
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As usual in the bootstrap literature, we use P ∗ to denote the bootstrap probability measure, conditional
on a given sample; E∗ and V ar∗ denote the corresponding bootstrap expected value and variance
operators. For any bootstrap statistic T ∗NT , we write T

∗
NT = oP ∗ (1), in probability, or T ∗NT →P ∗ 0,

in probability, when for any δ > 0, P ∗ (|T ∗NT | > δ) = oP (1). We write T ∗NT = OP ∗ (1), in probability,
when for all δ > 0 there exists Mδ <∞ such that limN,T→∞ P [P ∗ (|T ∗NT | > Mδ) > δ] = 0. Finally, we
write T ∗NT →d∗ D, in probability, if conditional on a sample with probability that converges to one,
T ∗NT weakly converges to the distribution D under P ∗, i.e. E∗ (f (T ∗NT ))→P E (f (D)) for all bounded
and uniformly continuous functions f . See Chang and Park (2003) for similar notation and for several
useful bootstrap asymptotic properties.

The stochastic expansion (19) shows that the bootstrap prediction error captures the two forms of

estimation uncertainty in (4) provided: (1) the bootstrap distribution of
√
T
(

Φ∗′δ̂
∗ − δ̂

)
is a consistent

estimator of the distribution of
√
T
(
δ̂ − δ

)
, and (2) the bootstrap distribution of

√
N
(
H∗−1F̃ ∗T − F̃T

)
is a consistent estimator of the distribution of

√
N
(
F̃T −HFT

)
. Gonçalves and Perron (2013) dis-

cussed conditions for the consistency of the bootstrap distribution of
√
T
(
δ̂ − δ

)
. Here we propose

a set of conditions that justifies using the bootstrap to consistently estimate the distribution of the

estimated factors
√
N
(
F̃t −HFt

)
at each point t.

Condition A.

A.1. (a) T−1
∑T

t=1

∑T
s=1 |γ∗st|

2 = OP (1) , and (b) for each t,
∑T

s=1 |γ∗st|
2 = OP (1), where γ∗st =

E∗
(

1
N

∑N
i=1 e

∗
ite
∗
is

)
.

A.2. (a) 1
T 2
∑T

t=1

∑T
s=1E

∗
∣∣∣ 1√

N

∑N
i=1 (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1), and (b) for each t,

1
T

∑T
s=1E

∗
∣∣∣ 1√

N

∑N
i=1 (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1) .

A.3. For each t, E∗
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 F̃s (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∥∥∥2

= OP (1).

A.4. E∗
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 F̃tλ̃

′
ie
∗
it

∥∥∥2
= OP (1) .

A.5. 1
T

∑T
t=1E

∗
∥∥∥ 1√

N

∑N
i=1 λ̃ie

∗
it

∥∥∥2
= OP (1) .

A.6. For each t, Γ
∗−1/2
t

1√
N

∑N
i=1 λ̃ie

∗
it →d∗ N (0, Ir), in probability, where Γ∗t = V ar∗

(
1√
N

∑N
i=1 λ̃ie

∗
it

)
is uniformly definite positive.

Condition A is the bootstrap analogue of Bai’s (2003) assumptions used to derive the limiting

distribution of
√
N
(
F̃t −HFt

)
. Gonçalves and Perron (2013) also relied on similar high level as-

sumptions to study the bootstrap distribution of
√
T
(
δ̂
∗ − δ∗

)
. In particular, Conditions A.4 and

A.5 correspond to their Conditions B*(c) and B*(d), respectively. Since our goal here is to characterize
the limiting distribution of the bootstrap estimated factors at each point t, we need to complement
some of their other conditions by requiring boundedness in probability of some bootstrap moments at
each point in time t (in addition to boundedness in probability of the time average of these bootstrap
moments; e.g. Conditions A.1.(b) and A.2.(b) expand Conditions A*(b) and A*(c) in Gonçalves and
Perron (2013) in this manner). We also require that a central limit theorem applies to the scaled cross
sectional average of λ̃ie∗it, at each time t (Condition A.6). This high level condition ensures asymptotic
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normality for the bootstrap estimated factors. It was not required by Gonçalves and Perron (2013)
because their goal was only to consistently estimate the distribution of the regression estimates, not
of the estimated factors.

Theorem 4.1 Suppose Assumptions 1 and 2 hold. Under Condition A, as N,T → ∞ such that√
N/T 3/4 → 0, we have that for each t,

√
N
(
F̃ ∗t −H∗F̃t

)
= H∗Ṽ −1 1√

N

N∑
i=1

λ̃ie
∗
it + oP ∗ (1) ,

in probability, which implies that

Π
∗−1/2
t

√
N
(
H∗−1F̃ ∗t − F̃t

)
→d∗ N (0, Ir) ,

in probability, where Π∗t = Ṽ −1Γ∗t Ṽ
−1.

Theorem 1.(i) of Bai (2003) shows that under regularity conditions weaker than Assumptions

1 and 2 and provided
√
N/T → 0,

√
N
(
F̃t −HFt

)
→d N (0,Πt), where Πt = V −1QΓtQ

′V −1,

Q = p lim
(
F̃ ′F
T

)
. Theorem 4.1 is its bootstrap analogue. A stronger rate condition (

√
N/T 3/4 → 0

instead of
√
N/T → 0) is used to show that the remainder terms in the stochastic expansion of√

N
(
F̃ ∗t −H∗F̃t

)
are asymptotically negligible. This rate condition is a function of the number of

finite moments for Fs we assume. In particular, if we replace Assumption 1(a) with E ‖Ft‖q ≤M for
all t, then the required rate restriction is

√
N/T 1−1/q → 0. See Remarks 1 and 2 below.

To prove the consistency of Π∗t for Πt we impose the following additional condition.

Condition B. For each t, p lim Γ∗t = QΓtQ
′.

Condition B requires that Γ∗t , the bootstrap variance of the scaled cross sectional average of the
scores λ̃ie∗it, be consistent for QΓtQ

′. This in turn requires that we resample ẽit in a way that preserves
the cross sectional dependence and heterogeneity properties of eit.

Corollary 4.1 Under Assumptions 1 and 2 and Conditions A and B, we have that for each t, as
N,T → ∞ such that

√
N/T 3/4 → 0,

√
N
(
H∗−1F̃ ∗t − F̃t

)
→d∗ N (0,Πt), in probability, where Πt =

V −1QΓtQ
′V −1 is the asymptotic covariance matrix of

√
N
(
F̃t −HFt

)
.

Corollary 4.1 justifies using the bootstrap to construct confidence intervals for the rotated factors
HFt provided Conditions A and B hold. These conditions are high level conditions that can be
checked for any particular bootstrap scheme used to generate e∗it. We verify them for a wild bootstrap
in Section 5 when proving the consistency of bootstrap prediction intervals for the conditional mean.

The fact that factors and factor loadings are not separately identified implies the need to rotate
the bootstrap estimated factors in order to consistently estimate the distribution of the sample factor

estimates, i.e. we use
√
N
(
H∗−1F̃ ∗t − F̃t

)
to approximate the distribution of

√
N
(
F̃t −HFt

)
. A

similar rotation was discussed in Gonçalves and Perron (2013) in the context of bootstrapping the
regression coeffi cients δ̂.
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5 Validity of bootstrap prediction intervals

5.1 Intervals for yT+1|T

When prediction intervals for the conditional mean yT+1|T are the object of interest, we use a two-step
wild bootstrap scheme, as in Gonçalves and Perron (2013). Specifically, we rely on Algorithm 1 and
we let

ε∗t+1 = ε̂t+1 · vt+1, t = 1, . . . , T − 1, (20)

with vt+1 i.i.d.(0, 1), and
e∗it = ẽit · ηit, t = 1, . . . , T, i = 1, . . . , N, (21)

where ηit is i.i.d.(0, 1) across (i, t), independently of vt+1.

To prove the asymptotic validity of this method we strengthen Assumptions 1-4 as follows.

Assumption 5. λi are either deterministic such that ‖λi‖ ≤ M < ∞, or stochastic such that
E ‖λi‖12 ≤ M < ∞ for all i; E ‖Ft‖12 ≤ M < ∞; E |eit|12 ≤ M < ∞, for all (i, t) ; and
for some q > 1, E |εt+1|4q ≤M <∞, for all t.

Assumption 6. E (eitejs) = 0 if i 6= j.

With h = 1, our assumption 4(b) on εt+h becomes a martingale difference sequence assumption,
and this motivates the use of the wild bootstrap in (20). This assumption rules out serial correlation
in εt+1 but allows for conditional heteroskedasticity. Devising a bootstrap scheme that will be valid
for h > 1 would require some blocking method and is the subject of ongoing research. Some simulation
results with a particular scheme will be provided below.

Assumption 6 assumes the absence of cross sectional correlation in the idiosyncratic errors and
motivates the use of the wild bootstrap in (21). As the results in the previous sections show, predic-
tion intervals for yT+h or yT+h|T are a function of the factors estimation uncertainty even when this
source of uncertainty is asymptotically negligible for the estimation of the distribution of the regression
coeffi cients (i.e. even when

√
T/N → c = 0). Since factors estimation uncertainty depends on the

cross sectional correlation of the idiosyncratic errors eit (via ΓT = limN→∞ V ar
(

1/
√
N
∑N

i=1 λieiT

)
),

bootstrap prediction intervals need to mimic this form of correlation to be asymptotically valid. Con-
trary to the pure time series context, a natural ordering does not exist in the cross sectional dimension,
which implies that proposing a nonparametric bootstrap method (e.g. a block bootstrap) that repli-
cates the cross sectional dependence is challenging if a parametric model is not assumed. Therefore,
we follow Gonçalves and Perron (2013) and use a wild bootstrap to generate e∗it under Assumption 6.

The bootstrap percentile-t method, as described in Algorithm 1 and equations (15) and (16),
requires the choice of two standard errors, B̂T and its bootstrap analogue B̂∗T . To compute B̂T we use
(7), where Σ̂δ is given in (8). Σ̂F̃T

is given in (9), where

Γ̃T =
1

N

N∑
i=1

λ̃iλ̃
′
iẽ

2
iT

is estimator 5(a) in Bai and Ng (2006) , and it is a consistent estimator of (a rotated version of)

ΓT = limN→∞ V ar
(

1√
N

∑N
i=1 λieiT

)
under Assumption 6. We compute B̂∗T using (14) and relying on

the bootstrap analogues of Σ̂δ and Σ̂F̃T
.
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Theorem 5.1 Suppose Assumptions 1-6 hold and we use Algorithm 1 with ε∗t+1 = ε̂t+1 · vt+1 and
e∗it = ẽit · ηit, where vt+1 ∼ i.i.d.(0, 1) for all t = 1, . . . , T − 1 and ηit ∼ i.i.d.(0, 1) for all i = 1, . . . , N ;
t = 1, . . . , T , and vt+1 and ηit are mutually independent. Moreover, assume that E

∗ |ηit|4 < C for
all (i, t) and E∗ |vt+1|4 < C for all t. If

√
T/N → c, where 0 ≤ c < ∞, and

√
N/T 11/12 → 0, then

conditional on {yt, Xt,Wt : t = 1, . . . , T},

ŷ∗T+1|T − y
∗
T+1|T√

B̂∗T

→d∗ N (0, 1) ,

in probability.

Remark 1 The rate restriction
√
N/T 11/12 → 0 is slightly stronger than the rate used by Bai (2003)

(cf.
√
N/T → 0). It is weaker than the restriction

√
N/T 3/4 → 0 used in Theorem 4.1 and Corollary

4.1 because we have strengthened the number of factor moments that exist from 4 to 12 (compare
Assumption 5 with Assumption 1(a)). See Remark 2 in the Appendix.

5.2 Intervals for yT+1

In this section we provide a theoretical justification for bootstrap prediction intervals for yT+1 as
described in Algorithm 2. We add the following assumption.

Assumption 7. εt+1 is i.i.d.
(
0, σ2

ε

)
with a continuous distribution function Fε (x) = P (εt+1 ≤ x) .

Assumption 7 strengthens the m.d.s. Assumption 4.(b) by requiring the regression errors to be
i.i.d. However, and contrary to Bai and Ng (2006), Fε does not need to be Gaussian. The continuity
assumption on Fε is used below to prove that the Kolmogorov distance between the bootstrap dis-
tribution of the studentized forecast error and the distribution of its sample analogue converges in
probability to zero.

Let the studentized forecast error be defined as

sT+1 ≡
ŷT+1|T − yT+1√

B̂T + σ̂2
ε

,

where σ̂2
ε is a consistent estimate of σ

2
ε = V ar (εT+1) and B̂T = V̂ ar

(
ŷT+1|T

)
= 1

T ẑ
′
T Σ̂δ ẑT + 1

N α̂
′Σ̂F̃T

α̂.
Given Assumption 7, we use

σ̂2
ε =

1

T

T−1∑
t=1

ε̂2
t+1 and Σ̂δ = σ̂2

ε

(
T−1∑
t=1

ẑtẑ
′
t

)−1

. (22)

Our goal is to show that the bootstrap can be used to estimate consistently FT,s (x) = P (sT+1 ≤ x),
the distribution function of sT+1.

Note that we can write

ŷT+1|T − yT+1 =
(
ŷT+1|T − yT+1|T

)
+
(
yT+1|T − yT+1

)
= −εT+1 +OP (1/δNT ) ,

given that ŷT+1|T − yT+1|T = OP

(
1

δNT

)
, where δNT = min

(√
N,
√
T
)
(this follows under the as-

sumptions of Theorem 5.1). Since σ̂2
ε →P σ2

ε and B̂T = OP
(
1/δ2

NT

)
= oP (1), it follows that

sT+1 = −εT+1

σε
+ oP (1) . (23)
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Thus, as N,T →∞, sT+1 converges in distribution to the random variable − εT+1
σε
, i.e.

FT,s (x) ≡ P (sT+1 ≤ x)→ P

(
−εT+1

σε
≤ x

)
= 1− Fε (−xσε) ≡ F∞,s (x) ,

for all x ∈ R. If we assume that εt+1 is i.i.d. N
(
0, σ2

ε

)
, as in Bai and Ng (2006), then Fε (−xσε) =

Φ (−x) = 1 − Φ (x) , implying that FT,s (x) → Φ (x), i.e. sT+1 →d N (0, 1). Nevertheless, this is not
generally true unless we make the Gaussianity assumption. We note that although asymptotically the
variance of the prediction error ŷT+1|T−yT+1 does not depend on any parameter nor factors estimation
uncertainty (as it is dominated by σ2

ε for large N and T ), we still suggest using ĈT = B̂T + σ̂2
ε to

studentize ŷT+1|T − yT+1 since σ̂2
ε will underestimate the true forecast variance for finite T and N .

Next we show that the bootstrap yields a consistent estimate of the distribution of sT+1 with-
out assuming that εt+1 is Gaussian. Our proposal is based on a two-step residual based bootstrap
scheme, as described in Algorithm 2 and equations (17) and (18), where in step 3 we generate{
ε∗2, . . . , ε

∗
T , ε
∗
T+1, . . . , ε

∗
T+1

}
as a random sample obtained from the centered residuals

{
ε̂2 − ε̂, . . . , ε̂T − ε̂

}
.

Resampling in an i.i.d. fashion is justified under Assumption 7. We recenter the residuals because ε̂ is
not necessarily zero unlessWt contains a constant regressor. Nevertheless, since ε̂ = oP (1), resampling
the uncentered residuals is also asymptotically valid in our context. We compute B̂∗T and σ̂

∗2
ε using

the bootstrap analogues of Σ̂δ and σ̂2
ε introduced in (22). Note that σ̂

∗2
ε is a consistent estimator of

σ2
ε and B̂

∗
T = oP ∗ (1), in probability.

As above, we can write

ŷ∗T+1|T − y
∗
T+1 =

(
ŷ∗T+1|T − y

∗
T+1|T

)
+
(
y∗T+1|T − y

∗
T+1

)
= −ε∗T+1 +OP ∗ (1/δNT ) ,

in probability, which in turn implies

s∗T+1 ≡
ŷ∗T+1|T − y

∗
T+1√

B̂∗T + σ̂∗2ε

= −
ε∗T+1

σε
+ oP ∗ (1) . (24)

Thus, F ∗T,s (x) = P ∗
(
s∗T+1 ≤ x

)
, the bootstrap distribution of s∗T+1 (conditional on the sample) is

asymptotically the same as the bootstrap distribution of − ε∗T+1
σε

.
Let F ∗T,ε denote the bootstrap distribution function of ε

∗
t . It is clear from the stochastic expansions

(23) and (24) that the crucial step is to show that ε∗T+1 converges weakly in probability to εT+1, i.e.

d
(
F ∗T,ε, Fε

)
→P 0 for any metric that metrizes weak convergence. In the following we use Mallows

metric which is defined as d2 (FX , FY ) =
(

inf
(
E |X − Y |2

))1/2
over all joint distributions for the

random variables X and Y having marginal distributions FX and FY , respectively.

Lemma 5.1 Under Assumptions 1-7, and as T,N → ∞ such that
√
T/N → c, 0 ≤ c < ∞,

d2

(
F ∗T,ε, Fε

)
→P 0.

Corollary 5.1 Under the same assumptions as Theorem 5.1 strengthened by Assumption 7, we have
that

sup
x∈R

∣∣F ∗T,s (x)− F∞,s (x)
∣∣→ 0,

in probability.
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Corollary 5.1 implies the asymptotic validity of the bootstrap prediction intervals given in (17) and

(18). Specifically, we can show that P
(
yT+1 ∈ EQ1−α

yT+1

)
→ 1−α and P

(
yT+1 ∈ SY 1−α

yT+1

)
→ 1−α as

N,T →∞. See e.g. Beran (1987) and Wolf and Wunderli (2012, Proposition 3.1). For instance,

P
(
yT+1 ∈ EQ1−α

yT+1

)
= P

(
sT+1 ≤ q∗1−α/2

)
− P

(
sT+1 ≤ q∗α/2

)
= P

(
F ∗T,s (sT+1) ≤ 1− α/2

)
− P

(
F ∗T,s (sT+1) ≤ α/2

)
.

Given Corollary 5.1, we have that F ∗T,s (sT+1) = F∞,s (sT+1)+oP (1) , and we can show that F∞,s (sT+1)→d

U [0, 1] . Indeed, for any x,

P (F∞,s (sT+1) ≤ x) = P
(
sT+1 ≤ F−1

∞s (x)
)
≡ FT,s

(
F−1
∞,s (x)

)
→ F∞,s

(
F−1
∞,s (x)

)
= x.

6 Simulations

We now report results from a simulation experiment to analyze the properties of the normal asymptotic
intervals as well as their bootstrap counterpart analyzed above.

The data-generating process (DGP) is similar to the one used in Gonçalves and Perron (2013).We
consider the single factor model:

yt+1 = αFt + εt+1 (25)

where Ft is drawn from a standard normal distribution independently over time. Because we are
interested in constructing intervals for yT+1 (which depend on the distribution of εT+1 and require
homoskedasticity and independence over time), the regression error εt+1 will be homoskedastic and
independent over time with expectation 0 and variance 1. To analyze the effects of deviations from
normality, we have considered five distributions for εt+1 :

Normal: εt ∼ N (0, 1)

χ2 (2) : εt ∼
1

2

[
χ2 (2)− 2

]
Uniform : εt ∼

√
12

(
U (0, 1)− 1

2

)
Exponential: εt ∼ Exp(1)− 1

Mixture : εt ∼
1√
10

[pN (−1, 1) + (1− p)N (9, 1)] , p ∼ B (.9) ,

but we will report results only for the normal and mixture distributions as they illustrate our conclu-
sions. Results for the other cases are available from the authors upon request. The particular mixture
distribution we are using was proposed by Pascual, Romo and Ruiz (2004). Most of the data is drawn
from a N (−1, 1) but about 10% will come from a second normal with a much larger mean of 9.

The (T ×N) matrix of panel variables is generated as:

Xit = λiFt + eit

where λi is drawn from a U [0, 1] distribution (independent across i) and eit is heteroskedastic but
independent over i and t. The variance of eit is drawn from U [.5, 1.5] for each i.

As in Gonçalves and Perron (2013), we consider two values for the coeffi cient, either α = 0 or 1.
When α = 0, the OLS estimator of α is unbiased. When α = 1, the OLS estimator of α is biased
unless

√
T
N → 0.

We consider asymptotic and bootstrap confidence intervals at a nominal level of 95%. We use Al-
gorithms 1 and 2 described above to generate the bootstrap data with B = 499 bootstrap replications.
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We consider the same two types of intervals analyzed above (symmetric percentile-t and equal-tailed
percentile-t). We report experiments based on 5,000 replications and with two values for T (50 and
200) and 5 values for N (25, 50, 100, 150, and 200).

6.1 Results

We report graphically four sets of results: those for our quantities of interest yT+1 and the conditional
mean ŷT+1|T , and those for their components, the rotated factor at the end of the sample HFT and
the rotated coeffi cient H−1′α as these help understand some of the behavior. In the first two cases,
we report the frequency of times the true parameter is to the left or right of the corresponding 95%
confidence interval. For the rotated factor and coeffi cient, we only report the total rejection rate as
the side of rejection is not identified because of the sign indeterminacy associated with H. Each figure
has two rows corresponding to T = 50 and T = 200.

The distribution of εT+1 noticeably affects the results for yT+1 only. As a consequence, we only
report results with Gaussian εt+1 for each of the other three quantities. On the other hand, the results
of yT+1 are dominated by the behavior of εT+1. Given our single factor model, the asymptotic variance
of the conditional mean is:

V ar
(
ŷT+1|T

)
=

1

T
F̃ 2
TV ar

(√
T
(
δ̂ − δ

))
+

1

N
δ2V ar

(√
N
(
F̃T −HFt

))
and in our setup, V ar

(√
N
(
F̃T −HFt

))
= 3 and V ar

(√
T
(
δ̂ − δ

))
= 1. So even in the worst

scenario where N = 25 and T = 50, this variance is only 0.14 (the unconditional expectation of F̃ 2
T

is 1) compared to 1 in all setups for εT+1. This allows us to easily separate the contribution of the
conditional mean from the contribution of ε in the forecasts of yT+1.

Forecast of yT+1

We report four figures for this quantity. The first two correspond to case 1 where α = 0 with ε either
normal or from the mixture, while the second two figures provide the same information when α = 1.
As mentioned above, the behavior of forecast intervals are dominated by the distribution of εT+1 so
the value of α is not very important. This means that Figures 1 and 3 are almost identical and so are
Figures 2 and 4.

Figures 1 and 3 show that under normality, inference for yT+1 is quite accurate, and it is essentially
unaffected by the values of N and T as predicted as it is dominated by the behavior of ε.

Figures 2 and 4 reveal that when the errors are drawn from a mixture of normals, we see overrejec-
tions with asymptotic theory, and these almost exclusively come from the right side. The equal-tailed
intervals improve the under rejection on the left side to a large extent and pretty much eliminate the
over-rejection on the right side.

In the results we do not report, the results are similar with the other non-normal distributions.
We get under rejection with uniform errors (symmetrically on both sides), while in the case of χ2 (2)
and exponential errors, we get overall rejection rates that are essentially correct, but all rejections are
on the right side because of the asymmetry in the distributions. Again, the equal-tailed bootstrap
intervals perform best because they capture some of the asymmetry.

Conditional mean, ŷT+1|T

The results for the conditional mean are presented in Figures 5 and 6. Because the results are quite
insensitive to the distribution of εT+1, we only report results for the normal distribution. Figure 5
reports results for case 1 where α = 0 and Figure 6 does the same for α = 1.
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With α = 0, asymptotic intervals underreject the true conditional mean. This can be explained by
the fact that the true variance only depends on the variance of the coeffi cient, but when estimating it,
the second term in (7) contributes because α̂ is obviously not 0 in finite samples. Thus, the variance
is over estimated, and the t statistics are smaller than they should be. We see this underrejection
disappearing as the sample grows as expected.

In Figure 6, we see that with α = 1, there is some overrejection with asymptotic theory (a 95%
confidence interval would cover the true conditional mean roughly 91% of the time for N = T = 50),
but this disappears as N and T increase. This is due to a large bias in the estimation of the coeffi cient
documented by Gonçalves and Perron (2013) and that we discuss below. This bias comes from the
estimation of the factors and is reduced with an increasing N. The bootstrap corrects some of these
over rejections, in particular the symmetric intervals.

Factor, HFT

Figure 7 presents results for inference on the (rotated) factor at the end of the sample. Obviously, this
is independent of both the value of the parameter α and of the distribution of ε so we only report one
figure. As mentioned above, the side of rejection is not well-defined as it depends on the sign of H. A
left-side rejection with a positive H would be a right-side rejection with a negative H. Since the sign
of H is arbitrary, the side of rejection is also arbitrary. Thus, only total rejections are meaningful,
and this is the quantity we report.

The first thing to note is that there are notable size distortions, in particular when T = 50. The
true rotated factor is not in the confidence interval between 11 and 12% of the times instead of the
nominal 5% rate. For this smaller value of T, rejection rates are not sensitive to the value of N. For
the larger value of T, size distortions are much smaller, and we do see a slight decrease as N increases.

Again, the bootstrap succeeds in correcting these distortions to a large extent. Symmetric percentile-
t intervals are more accurate but still suffer from distortions for small values of N. The equal-tailed
intervals are less affected by the value of N , and they also offer a notable improvement over asymptotic
theory.

Coeffi cient, H−1′α

Finally, we report the results for the coeffi cients in figures 8 (α = 0) and 9 (α = 1). These results are
in line with those of Gonçalves and Perron (2013) . Asymptotic theory works well in all cases when
α = 0 in figure 8. The bootstrap has some problems because using the estimated OLS coeffi cient in the
bootstrap DGP introduces a bias in the bootstrap world. The equal-tailed intervals are particularly
affected, and this effect diminishes as N and T increase since the OLS estimator concentrates around
its true value of 0.

When α = 1, a bias appears in sample estimation, and this gets reflected in over-rejections (the
rejection rate is 33.6% instead of the nominal 5% with N = T = 50) which disappears as we increase N .
The bootstrap corrects most of this bias and reduces the rejection rate to about 12% with N = T = 50
for the symmetric intervals and 11% for the equal-tailed. The two types of intervals are remarkably
close.

One last interesting observation is that the behavior of the individual components does not translate
directly to the prediction intervals. For example, the asymptotic confidence intervals for both the factor
and coeffi cients tend to over reject with α = 1, but the interval for the conditional mean is reasonably
accurate. This is because, contrary to what the theory assumes, there is a negative correlation between
the two components of the forecast error in finite samples. This negative correlation arises from the

presence of F̃T in the first term and
(
F̃T −HFT

)
in the second term. This means that the variance
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of the sum of the two terms is less than the sum of the variances as is assumed in the asymptotic
approximation.

In summary, the bootstrap is particularly useful in two situations. The first one is in constructing
prediction intervals for yT+1 when the distribution of the innovation is non-Gaussian and its variance
is large relative to the uncertainty around the conditional mean. The second one is in constructing
confidence intervals for the conditional mean. With a non-zero coeffi cient on the factors, the OLS
estimator is severely biased unless N is large, and the bootstrap can correct this bias as documented
by Gonçalves and Perron (2013).

6.2 Multi-horizon forecasting

In a second set of experiments, we look at cases where h > 1. We introduce dynamics by letting the
factor be an autoregressive process of order 1:

Ft = γFt−1 + ut

and yt as:
yt+1 = αFt + vt+1.

Both error terms are iid N (0, 1) and the autoregressive parameter γ = .8. We look at the same
sample sizes as before.

We consider inference for yT+h and yT+h|T based on direct forecasts for h = 1, ..., 4. In other words,
we regress yt+h on yt and F̃t for t = 1, ..., T − h :

yt+h = δhF̃t + εt+h.

and generate ŷT+h = ŷT+h|T = δ̂hF̃T where δ̂h is the OLS estimate of the projection coeffi cient which
equals αγh−1 for any h. Note this coeffi cient converges to 0 with h, and as a consequence, the magnitude
of the bias of the OLS estimator also converges to 0 with the forecasting horizon. The error term εt+h
is serially correlated to order h− 2 in his design.

Asymptotic theory is conducted in two ways, either with homoskedastic covariance matrix as before
or using a HAC estimator (quadratic spectral kernel with pre-whitening and Andrews bandwidth
selection) to account for serial correlation.

We use the wild bootstrap for drawing e∗it as above. For generating v
∗
t+h, we consider two schemes.

The first one is the i.i.d. bootstrap and is the same as above. It is obviously not valid for h > 1 as it does
not reproduce the serial correlation. The second scheme is what we call a wild block bootstrap. In this
case, we separate the sample residuals ε̂t+h into non-overlapping blocks of h consecutive observations
and multiply each observation within a block by the same draw of an external variable. In other
words, we generate the error term as:

ε∗t = ε̂tηt

with η1 = ... = ηh, ηh+1 = ... = η2h,...,ηT−h+1 = ... = ηT .We report coverage rates based on symmetric
t intervals.

While we do not have a formal proof of validity, we expect that it will be valid in this context
as it preserves the serial dependence among the residuals. The simulation results in figures 10-13 are
supportive of this claim. Each figure is organized similarly. The results in the left column are for
T = 50, while those in the right column are for T = 200. Each row provides results for a given horizon.

Serial correlation affects mostly inference on the coeffi cients in figure 13. For the coeffi cient on
the factors, the large bias documented above adds to the distortions induced by serial correlation that
become apparent for h ≥ 3. Autocorrelation-robust inference reduces the distortions due to serial

17



correlation, but not those from the bias. The bootstrap reduces the bias and the wild block bootstrap
appears to be best.

Serial correlation does not seem to affect inference on yT+h. There are some effects when T = 50,
but this seems to be a finite-sample issue related to estimating the distribution of εT+h.

For the conditional mean, serial correlation affects asymptotic inference to some extent. HAC
correction reduces the distortions, but again the bootstrap helps for small values of N. The wild block
bootstrap seems to be best, but the gain is not dramatic.

7 Conclusion

In this paper, we have proposed the bootstrap to construct valid prediction intervals for models
involving estimated factors. We considered two objects of interest: the conditional mean yT+h|T and
the realization yT+h.. The bootstrap improves considerably on asymptotic theory for the conditional
mean when the factors are relevant because of the bias in the estimation of the regression coeffi cients.
For the realization, the importance of the bootstrap is in providing intervals without having to make
strong distributional assumptions such as normality as was done in previous work by Bai and Ng
(2006) .

One key assumption that we had to make to establish our results is that the idiosyncratic errors
in the factor models are cross-sectionally independent. This is certainly restrictive, but it allows for
the use of the wild bootstrap on the idiosyncratic errors. Non-parametric bootstrapping under more
general conditions remains a challenge. The results in this paper could be used to prove the validity
of a scheme in that context by showing the conditions A and B are satisfied.
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A Appendix

The proof of Theorem 4.1 requires the following auxiliary result, which is the bootstrap analogue of
Lemma A.2 of Bai (2003). It is based on the following identity that hold for each t:

F̃ ∗t −H∗F̃t = Ṽ ∗−1

 1

T

T∑
s=1

F̃ ∗s γ
∗
st︸ ︷︷ ︸

≡A∗1t

+
1

T

T∑
s=1

F̃ ∗s ζ
∗
st︸ ︷︷ ︸

≡A∗2t

+
1

T

T∑
s=1

F̃ ∗s η
∗
st︸ ︷︷ ︸

≡A∗3t

+
1

T

T∑
s=1

F̃ ∗s ξ
∗
st︸ ︷︷ ︸

≡A∗4t

 ,

where

γ∗st = E∗

(
1

N

N∑
i=1

e∗ise
∗
it

)
, ζ∗st =

1

N

N∑
i=1

(e∗ise
∗
it − E∗ (e∗ise

∗
it)) ,

η∗st =
1

N

N∑
i=1

λ̃
′
iF̃se

∗
it = F̃ ′s

Λ̃′e∗t
N

and ξ∗st =
1

N

N∑
i=1

λ̃
′
iF̃te

∗
is = η∗ts.

Lemma A.1 Assume Assumptions 1 and 2 hold. Under Condition A, we have that for each t, in
probability, as N,T →∞,

(a) T−1
∑T

s=1 F̃
∗
s γ
∗
st = OP ∗

(
1√

TδNT

)
+OP ∗

(
1

T 3/4

)
;

(b) T−1
∑T

s=1 F̃
∗
s ζ
∗
st = OP ∗

(
1√

NδNT

)
;

(c) T−1
∑T

s=1 F̃
∗
s η
∗
st = OP ∗

(
1√
N

)
;

(d) T−1
∑T

s=1 F̃
∗
s ξ
∗
st = OP ∗

(
1√

NδNT

)
.

Remark 2 The term OP ∗
(
1/T 3/4

)
that appears in (a) is of a larger order of magnitude than the corre-

sponding term in Bai (2003, Lemma A.2(i)), which is OP (1/T ). The reason why we obtain this larger
term is that we rely on Bonferroni’s inequality and Chebyshev’s inequality to bound max1≤s≤T ‖Fs‖ =
OP
(
T 1/4

)
using the fourth order moment assumption on Fs (cf. Assumption 1(a)). In general,

if E ‖Fs‖q ≤ M for all s, then max1≤s≤T ‖Fs‖ = OP
(
T 1/q

)
and we will obtain a term of order

OP ∗
(
1/T 1−1/q

)
.

Proof of Lemma A.1. The proof follows closely that of Lemma A.2 of Bai (2003). The only
exception is (a), where an additional O

(
1

T 3/4

)
term appears. In particular, we write

T−1
T∑
s=1

F̃ ∗s γ
∗
st = T−1

T∑
s=1

(
F̃ ∗s −H∗F̃s

)
γ∗st +H∗T−1

T∑
s=1

F̃sγ
∗
st = a∗t + b∗t .

We use Cauchy-Schwartz and Condition A.1 to bound a∗t as follows

‖a∗t ‖ ≤
(
T−1

T∑
s=1

∥∥∥F̃ ∗s −H∗F̃s∥∥∥2
)1/2(

T−1
T∑
s=1

|γ∗st|
2

)1/2

= OP ∗

(
1

δNT

)
OP

(
1√
T

)
= OP ∗

(
1

δNT
√
T

)
,
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where T−1
∑T

s=1

∥∥∥F̃ ∗s −H∗F̃s∥∥∥2
= OP ∗

(
δ−2
NT

)
by Lemma 3.1 of Gonçalves and Perron (2013) (note

that this lemma only requires Conditions A*(b), A*(c), and B*(d), which correspond to our Condition
A.1(a), A.2(a) and A.5). For b∗t , we have that (ignoring H∗, which is OP ∗ (1)),

b∗t = T−1
T∑
s=1

F̃sγ
∗
st = T−1

T∑
s=1

(
F̃s −HFs

)
γ∗st +HT−1

T∑
s=1

Fsγ
∗
st = b∗1t + b∗2t,

where b∗1t = OP

(
1/δNT

√
T
)
using the fact that T−1

∑T
s=1

∥∥∥F̃s −HFs∥∥∥2
= OP

(
δ−2
NT

)
under Assump-

tions 1 and 2 and the fact that T−1
∑T

s=1 |γ∗st|
2 = OP (1/T ) for each t by Condition A.1(b). For b∗2t,

note that (ignoring H = OP (1)),

‖b∗2t‖ ≤
(

max
s
‖Fs‖

)
︸ ︷︷ ︸
OP (T 1/4)

T−1
T∑
s=1

|γ∗st|︸ ︷︷ ︸
OP ( 1T )

= OP

(
1

T 3/4

)
,

where we have used the fact that E ‖Fs‖4 ≤M for all s (Assumption 1) to bound maxs ‖Fs‖. Indeed,
by Bonferroni’s inequality and Chebyshev’s inequality, we have that

P
(
T−1/4 max

s
‖Fs‖ > M

)
≤

T∑
s=1

P
(
‖Fs‖ > T 1/4M

)
≤

T∑
s=1

E ‖Fs‖4

M4T
≤ 1

M3
→ 0

for M suffi ciently large. For (b), we follow exactly the proof of Bai (2003) and use the second part of
Condition A.2 to bound T−1

∑T
s=1 ζ

∗2
st = OP ∗

(
1
N

)
for each t; similarly, we use Condition A.3 to bound

1
T

∑T
s=1 F̃sζ

∗
st for each t. For (c), we bound T

−1
∑T

s=1 F̃sη
∗
st = N−1H∗

∑N
i=1 λ̃ie

∗
it = OP ∗

(
1/
√
N
)
by

using Condition A.6. This same condition is used to bound T−1
∑T

s=1 η
∗2
st = OP ∗ (1/N) for each t.

Finally, for part (d), we use Condition A.4 to bound T−1
∑T

s=1 F̃sξ
∗
st = OP ∗

(
1√
NT

)
for each t and we

use Condition A.5 to bound T−1
∑T

s=1 ξ
∗2
st = OP ∗ (1/N) for each t.

Proof of Theorem 4.1.By Lemma A.1, it follows that the third term in
√
N
(
F̃ ∗t −H∗F̃t

)
is

the dominant one (it is OP ∗ (1)); the first term is OP ∗
( √

N√
TδNT

)
+OP

( √
N

T 3/4

)
= OP ∗

( √
N

T 3/4

)
= oP ∗ (1)

if
√
N/T 3/4 → 0 whereas the second and the fourth terms are OP ∗ (1/δNT ) = oP ∗ (1) as N,T → ∞.

Thus, we have that

√
N
(
F̃ ∗t −H∗F̃t

)
= Ṽ ∗−1 1

T

T∑
s=1

F̃ ∗s
1√
N

N∑
i=1

λ̃
′
iF̃se

∗
it + oP ∗ (1)

=

[
Ṽ ∗−1

(
F̃ ∗′F̃

T

)(
Λ̃′Λ̃

N

)](
Λ̃′Λ̃

N

)−1
1√
N

N∑
i=1

λ̃ie
∗
it + oP ∗ (1)

= H∗Ṽ −1Γ
∗1/2
t Γ

∗−1/2
t

1√
N

N∑
i=1

λ̃ie
∗
it︸ ︷︷ ︸

→d∗N(0,Ir) by Condition A.6

+ oP ∗ (1) , (26)

given the definition of H∗ and the fact that Ṽ = Λ̃′Λ̃
N . Since det (Γ∗t ) > ε > 0 for all N and some ε,

Γ∗−1
t exists and we can define Γ

∗−1/2
t =

(
Γ
∗1/2
t

)−1
where Γ

∗1/2
t Γ

∗1/2
t = Γ∗t . Let Π

∗−1/2
t = Γ

∗−1/2
t Ṽ and
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note that Π
∗−1/2
t is symmetric and it is such that

(
Π
∗−1/2
t

)(
Π
∗−1/2
t

)
= Ṽ Γ∗−1

t Ṽ = Π∗−1
t . The result

follows by multiplying (26) by Π
∗−1/2
t H∗−1 and using Condition A.6.

Proof of Corollary 4.1. Condition B and the fact that Ṽ →P V under our assumptions imply
that Π∗t →P Πt ≡ V −1QΓtQ

′V −1. This suffi ces to show the result.
Proof of Theorem 5.1. Using the decomposition (19) and the fact that

ẑ∗T = Φ∗ẑT +

(
F̃ ∗T −H∗F̃T

0

)
,

where Φ∗ = diag (H∗, Iq), it follows that

ŷ∗T+1|T − y
∗
T+1|T =

1√
T
ẑ′T
√
T
(

Φ∗′δ̂
∗ − δ̂

)
+

1√
N
α̂′
√
N
(
H∗−1F̃ ∗T − F̃T

)
+ r∗T ,

where the remainder is

r∗T =
1√
T

(
F̃ ∗T −H∗F̃T

)′√
T
(
α̂∗ −H∗−1′α̂

)
= OP ∗

(
1√
TN

)
.

First, we argue that
ŷ∗T+1|T − y

∗
T+1|T√

B∗T
→d∗ N (0, 1) , (27)

where B∗T is the asymptotic variance of ŷ∗T+1|T − y∗T+1|T , i.e. B∗T = aV ar∗
(
ŷ∗T+1|T − y

∗
T+1|T

)
=

1
T ẑ
′
TΣδ ẑT + 1

N α̂
′ΠT α̂. To show (27), we follow the arguments of Bai and Ng (2006, proof of their Theo-

rem 3) and show that (1) Z∗1T =
√
T
(

Φ∗′δ̂
∗ − δ̂

)
→d∗ N (−c∆δ,Σδ); (2) Z∗2T =

√
N
(
H∗−1F̃ ∗T − F̃T

)
→d∗

N (0,ΠT ); (3) Z∗1T and Z
∗
2T are asymptotically independent (conditional on the original sample). Con-

dition (1) follows from Gonçalves and Perron (2013) under Assumptions 1-6; (2) follows from Corollary
4.1 provided

√
N/T 11/12 → 0 and conditions A and B hold for the wild bootstrap (which we verify

next); (3) holds because we generate e∗t independently of ε
∗
t+1.

Proof of Condition A for the wild bootstrap. Starting with A.1, note that A.1(a) was
verified in Gonçalves and Perron (2013). We verify A.1(b) for t = T . We have that

∑T
s=1 |γ∗sT |

2 =(
1
N

∑N
i=1 ẽ

2
iT

)2
. Thus, it suffi ces to show that 1

N

∑N
i=1 ẽ

2
iT = OP (1). This follows by using the decom-

position

ẽit = eit − λ′iH−1
(
F̃t −HFt

)
−
(
λ̃i −H−1′λi

)′
F̃t,

which implies that

1

N

N∑
i=1

|ẽit|2 ≤ 3
1

N

N∑
i=1

|eit|2 + 3
1

N

N∑
i=1

‖λi‖2
∥∥H−1

∥∥2
∥∥∥F̃T −HFT∥∥∥2

+3
1

N

N∑
i=1

∥∥∥λ̃i −H−1′λi

∥∥∥2 ∥∥∥F̃T∥∥∥2
.

The first term is OP (1) given that E |eit|2 = O (1); the second term is OP (1) since E ‖λi‖2 = O (1)

and given that
∥∥∥F̃T −HFT∥∥∥2

= OP (1/N) = oP (1); and the third term is OP (1) given Lemma C.1.(ii)

of Gonçalves and Perron (2013) and the fact that
∥∥∥F̃T∥∥∥2

= OP (1) . Next, we verify A.2. Part (a)
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was verified already by Gonçalves and Perron (2013), so we only need to check part (b) for t = T .
Following the proof of Theorem 4.1 in Gonçalves and Perron (2013) (condition A*(c)), we have that

1

T

T∑
s=1

E∗

∣∣∣∣∣ 1√
N

N∑
i=1

(e∗iT e
∗
is − E∗ (e∗iT e

∗
is))

∣∣∣∣∣
2

=
1

T

T∑
s=1

1

N

N∑
i=1

ẽ2
iT ẽ

2
isV ar (ηiT ηis)︸ ︷︷ ︸

≤η̄

≤ η̄ 1

N

N∑
i=1

ẽ2
iT

(
1

T

T∑
s=1

ẽ2
is

)

≤ η̄

(
1

N

N∑
i=1

ẽ4
iT

)1/2(
1

NT

N∑
i=1

T∑
s=1

ẽ4
is

)1/2

= OP (1) , (28)

where the first factor in (28) can be bounded by an argument similar to that used above to bound
1
N

∑N
i=1 ẽ

2
iT , and the second factor can be bounded by Lemma C.1 (iii) of Gonçalves and Perron

(2013). A.3 follows by an argument similar to that used by Gonçalves and Perron (2013) to verify
Condition B*(b). In particular,

E∗

∥∥∥∥∥ 1√
TN

T∑
s=1

N∑
i=1

F̃s (e∗ise
∗
iT − E∗ (e∗ise

∗
iT ))

∥∥∥∥∥
2

=
1

T

T∑
s=1

F̃ ′sF̃s
1

N

N∑
i=1

ẽ2
iT ẽ

2
isV ar

∗ (ηiT ηis) ≤ η̄
1

N

N∑
i=1

ẽ2
iT

(
1

T

T∑
s=1

F̃ ′sF̃sẽ
2
is

)

≤ η̄

[
1

N

N∑
i=1

ẽ4
iT

]1/2 [
1

T

T∑
s=1

∥∥∥F̃s∥∥∥4 1

N

1

T

N∑
i=1

T∑
s=1

ẽ4
is

]1/2

= OP (1) ,

under our assumptions. Conditions A.4 and A.5 correspond to Gonçalves and Perron’s (2013) Con-
ditions B*(c) and B*(d), respectively. Finally, we prove Condition A.6 for t = T. Using the fact that
e∗iT = ẽiT ηiT , where ηiT ∼ i.i.d. (0, 1) across i, note that

Γ∗T = V ar∗

(
1√
N

N∑
i=1

λ̃ie
∗
iT

)
=

1

N

N∑
i=1

λ̃iλ̃
′
iẽ

2
iT →P QΓTQ

′,

by Theorem 6 of Bai (2003), where ΓT ≡ limN→∞ V ar
(

1√
N

∑N
i=1 λieiT

)
> 0 by assumption. Thus,

Γ∗T is uniformly positive definite. We now need to verify that

1√
N

N∑
i=1

`′Γ
∗−1/2
T λ̃ie

∗
iT =

1√
N

N∑
i=1

`′Γ
∗−1/2
T λ̃iẽiT ηiT︸ ︷︷ ︸

=ω∗iT

→d∗ N (0, 1) ,

in probability, for any ` such that `′` = 1. Since ω∗iT is an heterogeneous array of independent random
variables (given that ηit is i.i.d.), we apply a CLT for heterogeneous independent arrays. Note that
E∗ (ω∗iT ) = 0 and

V ar∗

(
1√
N

N∑
i=1

ω∗iT

)
= `′ (Γ∗T )−1/2 V ar∗

(
1√
N

N∑
i=1

λ̃iẽiT ηiT

)
(Γ∗T )−1/2 `

= `′ (Γ∗T )−1/2

(
1

N

N∑
i=1

λ̃iλ̃
′
iẽ

2
iT

)
(Γ∗T )−1/2 ` = `′` = 1.
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Thus, it suffi ces to verify Lyapunov’s condition, i.e. for some r > 1, 1
Nr

∑N
i=1E

∗ |ω∗iT |
2r →P 0. We

have that

1

N r

N∑
i=1

E∗ |ω∗iT |
2r ≤ 1

N r−1
‖`‖2r

∥∥∥(Γ∗T )−1/2
∥∥∥2r 1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2r
|ẽiT |2r E∗ |ηiT |2r︸ ︷︷ ︸

≤M<∞

≤ C
1

N r−1

∥∥∥(Γ∗T )−1/2
∥∥∥2r
(

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥4r
)1/2(

1

N

N∑
i=1

|ẽiT |4r
)1/2

= OP

(
1

N r−1

)
= oP (1) .

Proof of Condition B for the wild bootstrap. Γ∗T = 1
N

∑N
i=1 λ̃iλ̃

′
iẽ

2
iT →P QΓTQ

′, by Theorem
6 of Bai (2003).

The result for the studentized statistic (where we replace B∗T with an estimate B̂
∗
T ) then follows

by showing that ẑ∗′T Σ̂∗δ ẑ
∗
T − ẑ′TΣδ ẑT →P ∗ 0, and α̂∗′Σ̂∗

F̃T
α̂∗ − α̂′Σ̂F̃T

α̂ →P ∗ 0, in probability. This can

be shown using the arguments in Bai and Ng (2006, Theorems 3.1) and Bai (2003, Theorem 6).
Proof of Lemma 5.1. Recall that Fε (x) = P (εt ≤ x) and define the following empirical distri-

bution functions,

FT,ε̂−ε̃ (x) =
1

T − 1

T−1∑
t=1

1
{
ε̂t+1 − ε̃ ≤ x

}
and FT,ε (x) =

1

T − 1

T−1∑
t=1

1 {εt+1 ≤ x} ,

where ε̂ = 1
T−1

∑T−1
t=1 ε̂t+1. Note that FT,ε∗ (x) = FT,ε̂−ε̃ (x). It follows that

d2

(
FT,ε̂−ε̃, Fε

)
≤ d2

(
FT,ε̂−ε̃, FT,ε

)
+ d2 (FT,ε, Fε) ,

where d2 (FT,ε, Fε) = oa.s. (1) by Lemma 8.4 of Bickel and Freedman (1981). Thus, it suffi ces to

show that d2

(
FT,ε̂−ε̃, FT,ε

)
= oP (1). Let I be distributed uniformly on {1, . . . , T − 1} and define

X1 = ε̂I+1 − ε̂ and Y1 = εI+1. We have that(
d2

(
FT,ε̂−ε̃, FT,ε

))2
≤ E (X1 − Y1)2 = EI

(
ε̂I+1 − ε̂− εI+1

)2
=

1

T − 1

T−1∑
t=1

(
ε̂t+1 − ε̂− εt+1

)2
=

1

T − 1

T−1∑
t=1

(ε̂t+1 − εt+1)2 − 2
1

T − 1

T−1∑
t=1

(ε̂t+1 − εt+1) ε̂+
(
ε̂
)2 ≡ A1 +A2 +A3.

We can write
ε̂t+1 − εt+1 = −

(
F̃t −HFt

)′
α̂− (Φzt)

′
(
δ̂ − δ

)
,

where Φ = diag (H, Iq). This implies that

A1 ≤ 2
1

T − 1

T−1∑
t=1

∥∥∥F̃t −HFt∥∥∥2
‖α̂‖2 + 2

1

T − 1

T−1∑
t=1

‖Φzt‖2
∥∥∥δ̂ − δ∥∥∥2

= OP

(
1

δ2
NT

)
+OP

(
1

T

)
= oP (1) .

Similarly,

ε̂ =
1

T − 1

T−1∑
t=1

ε̂t+1 =
1

T − 1

T−1∑
t=1

(ε̂t+1 − εt+1) +
1

T − 1

T−1∑
t=1

εt+1 = OP

(
1

δNT

)
+ oP (1) ,

where the first term is bounded by an argument similar to that used to bound A1 (via the Cauchy-
Schwartz inequality). This implies that A2 and A3 are also oP (1).

Proof of Corollary 5.1. Lemma 5.1 implies that s∗T+1 →d∗ 1− Fε (−xσε), in probability. Since
sT+1 →d 1−Fε (−xσε) and Fε is everywhere continuous under Assumption 7, Polya’s Theorem implies
the result.
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Figure 1. Left and right rejection rates for y
T+1

 − ε
T+1

 is normal, α = 0
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Figure 2. Left and right rejection rates for y
T+1

 − ε
T+1

 is mixture, α = 0
Left−side rejection rate (%)
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Figure 3. Left and right rejection rates for y
T+1

 − ε
T+1

 is normal, α = 1
Left−side rejection rate (%)
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Figure 4. Left and right rejection rates for y
T+1

 − ε
T+1

 is mixture, α = 1
Left−side rejection rate (%)
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Figure 5. Left and right rejection rates for E(y
T+1

) − ε
T+1

 is normal, α = 0
Left−side rejection rate (%)
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Figure 6. Left and right rejection rates for E(y
T+1

) − ε
T+1

 is normal, α = 1
Left−side rejection rate (%)
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Figure 7.  Total rejection rates for HF
T
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Figure 8.  Total rejection rates for   δ, α = 0
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Figure 9.  Total rejection rates for  δ, α = 1
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Figure 10. Rejection rates for y
T+h

 − ε
T+h

 is normal, α = 1
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Figure 11. Rejection rates for E(y
T+h

) − ε
T+h

 is normal, α = 1
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Figure 12. Rejection rates for HF
T
 − ε

T+h
 is normal, α = 1
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Figure 13. Rejection rates for coefficient on F
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