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Choo, Chris Conlon, Jim Heckman, Sonia Jaffe, Robert McCann, Jean-Marc Robin, Aloysius Siow

and many seminar participants for useful comments and discussions. Part of the research underlying

this paper was done when Galichon was visiting the University of Chicago Booth School of Business
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Abstract

We investigate a model of one-to-one matching with transferable utility when some of the

characteristics of the players are unobservable to the analyst. We allow for a wide class of

distributions of unobserved heterogeneity, subject only to a separability assumption that

very significantly extends Choo and Siow (2006). We first show that the stable matching

maximizes a social gain function that trades off a sorting effect due to complementarities in

observable characteristics, and a randomization effect caused by the presence of unobserved

characteristics. We use this result to derive simple closed-form formulæ that identify the

joint surplus in every possible match and the equilibrium utilities of all participants, given

any known distribution of unobserved heterogeneity. If transfers are observed, then the

pre-transfer utilities of both partners are also identified. We present a a discussion of

computational issues, including an algorithm which can be extremely efficient in important

instances. We conclude by discussing some empirical approaches suggested by these results.
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Introduction

Since the seminal contribution of Becker (1973), many economists have modeled the mar-

riage market as a matching problem in which each potential match generates a marital

surplus. Given transferable utilities, the distributions of tastes and of desirable character-

istics determine equilibrium shadow prices, which in turn explain how partners share the

marital surplus in any realized match. This insight is not specific to the marriage market: it

characterizes the “assignment game” of Shapley and Shubik (1972), i.e. models of matching

with transferable utilities. These models have also been applied to competitive equilibrium

with hedonic pricing (Chiappori, McCann and Nesheim, 2010) and the market for CEOs

(Terviö, 2008 and Gabaix and Landier, 2008). We will show how our results can be used in

these three contexts; but for concreteness, we often refer to partners as men and women in

the exposition of the main results.

While Becker presented the general theory, he focused on the special case in which the

types of the partners are one-dimensional and are complementary in producing surplus.

As is well-known, the socially optimal matches then exhibit positive assortative matching :

higher types pair up with higher types. Moreover, the resulting configuration is stable, it is

in the core of the corresponding matching game, and it can be efficiently implemented by

classical optimal assignment algorithms.

This sorting result is both simple and powerful; but its implications are also quite

unrealistic and at variance with the data, in which matches are observed between partners

with quite different characteristics. To account for this wider variety of matching patterns,

one could introduce search frictions, as in Shimer and Smith (2000) or Jacquemet and Robin

(2011). But the resulting model is hard to handle, and under some additional conditions

it still implies assortative matching. An alternative solution consists in allowing the joint

surplus of a match to incorporate latent characteristics—heterogeneity that is unobserved

by the analyst. Choo and Siow (2006) have shown that it can be done in a way that yields

a highly tractable model in large populations, provided that the unobserved heterogeneities

enter the marital surplus quasi-additively and that they are distributed as standard type I
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extreme value terms. Then the usual apparatus of multinomial logit discrete choice models

applies, linking marriage patterns to marital surplus in a very simple manner. Choo and

Siow used this model to link the changes in gains to marriage and abortion laws; Siow and

Choo (2006) applied it to Canadian data to measure the impact of demographic changes.

It has also been used to study increasing returns in marriage markets (Botticini and Siow,

2008) and to test for complementarities across partner educations (Siow, 2009); and, in

a heteroskedastic version, to estimate the changes in the returns to education on the US

marriage market (Chiappori, Salanié and Weiss, 2012).

We revisit here the theory of matching with transferable utilities in the light of Choo and

Siow’s insights; and we extend this framework to quite general distributions of unobserved

variations in tastes. Our main contributions are threefold.

First, we show that the analysis can be carried much more generally outside of the very

restrictive logit framework. We prove that the optimal matching in our generalized setting

maximizes a very simple function: a term that describes matching on the observables; and

a generalized entropic term that describes matching on the unobservables. While the first

term tends to match partners with complementary observed characteristics, the second one

pulls towards randomly assigning partners to each other. The social gain from any matching

pattern trades off between these two terms. In particular, when unobserved heterogeneity

is distributed as in Choo and Siow (2006), the generalized entropy is simply the usual

entropy measure. The maximization of this social surplus function has very straightforward

consequences in terms of identification, both when equilibrium transfers are observed and

when they are not. In fact, most quantities of interest can be obtained from derivatives

of the terms that constitute generalized entropy. We show in particular that the joint

surplus from matching is (minus) a derivative of the generalized entropy, computed at the

observed matching. The expected and realized utilities of all groups of men and women

follow just as directly. Moreover, if equilibrium transfers are observed, then we also identify

the pre-transfer utilities on both sides of the market.

To prove these results, we use tools from convex analysis, and we construct the Legendre-
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Fenchel transform of the expected utilities of agents. In independent work, Decker et al.

(2012) proved the uniqueness of the equilibrium and derived some of its comparative static

properties in the Choo and Siow multinomial logit framework. Our approach shows that

the essence of these comparative static results holds beyond the logit framework. The

first conclusion of our paper is thus that the most important structural implications of the

Choo-Siow model are not a consequence of the logit framework, but hold under much more

plausible assumptions on the unobserved heterogeneity.

Our second contribution is to delineate an empirical approach to parametric estimation

in this class of models, using maximum likelihood. Indeed, our nonparametric identification

results rely on the strong assumption that the distribution of the unobservables is known,

while in practice the analyst will want to estimate its parameters; at the same time our

results imply that the matching surplus cannot be simultaneously estimated with the dis-

tribution of the unobservable because there would be more parameters than cells in the

data matrix. This suggests using a smaller number of parameters for the match surpluses.

Maximum likelihood estimation is thus a natural recourse, which we investigate below. In

practice, since evaluating the likelihood requires solving for the optimal matching, computa-

tional considerations loom large in matching models. We provide an efficient algorithm that

maximizes the social surplus and computes the optimal matching, as well as the expected

utilities in equilibrium. To do this, we adapt the Iterative Projection Fitting Procedure

(known to some economists as RAS) to the structure of this problem, and we show that it

is very stable and efficient. Finally, we discuss an alternative to the maximum likelihood,

a simple moment matching estimator based on minimizing a generalized entropy among

the matching distributions which fit a number of moments. This approach provides a very

simple semi-parametric specification test.

Our third contribution is to revisit the original Choo and Siow dataset making use of

the new possibilities allowed by this extended framework.

There are other approaches to estimating matching models with unobserved hetero-

geneity; see the handbook chapter by Graham (2011). Fox (2010) in particular exploits
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a “rank-order property” and pools data across many similar markets; see Fox (2011) and

Bajari and Fox (2013) for applications. More recently, Fox and Yang (2012) focus on identi-

fying the complementarity between unobservable characteristics. A recent contribution by

Menzel (2014) investigates the case when utility is assumed not transferable. We discuss

the pros and cons of various methods in our conclusion.

Section 1 sets up the model and the notation. We prove our main results in Section 2,

and we specialize them to leading examples in Section 3. Our results open the way to new

and richer specifications; Section 4 explains how to estimate them using maximum likelihood

estimation, and how to use various restrictions to identify the underlying parameter. We

also show there that a moment-based estimator is an excellent low-cost alternative in a

restricted but useful model. Finally, we present in Section 6 our IPFP algorithm, which

greatly accelerates computations in important cases.

1 The Assignment Problem with Unobserved Heterogeneity

Throughout the paper, we maintain the basic assumptions of the transferable utility model

of Choo and Siow (2006): utility transfers between partners are unconstrained, matching

is frictionless, and there is no asymmetric information among potential partners. We call

the partners “men” and “women”, but our results are clearly not restricted to the marriage

market.

Men are denoted by i ∈ I and women by j ∈ J . A matching (µ̃ij) is a matrix such that

µ̃ij = 1 if man i and woman j are matched, 0 otherwise. A matching is feasible if for every

i and j, ∑
k∈J

µ̃ik ≤ 1 and
∑
k∈I

µ̃kj ≤ 1,

with equality for individuals who are married. Single individuals are “matched with 0”:

µ̃i0 = 1 or µ̃0j = 1. For completeness, we should add the requirement that µ̃ij is integral

(µ̃ij ∈ {0, 1}). However it is known since at least Shapley and Shubik (1972) that this

constraint is not binding, and we will omit it.
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A hypothetical match between man i and woman j allows them to share a total utility

Φ̃ij ; the division of this total utility between them is done through utility transfers whose

value is determined in equilibrium. Singles get utilities Φ̃i0, Φ̃0j . Following Gale and Shapley

(1962) for matching with non-transferable utility, we focus on the set of stable matchings.

A feasible matching is stable if there exists a division of the surplus in each realized match

that makes it impossible for any man k and woman l to both achieve strictly higher utility

by pairing up together, and for any agent to achieve higher utility by being single. More

formally, let ũi denote the utility man i gets in his current match; denote ṽj the utility of

woman j. Then by definition ũi + ṽj = Φ̃ij if they are matched, that is if µ̃ij > 0; and

ũi = Φ̃i0 (resp. ṽj = Φ̃0j) if i (resp. j) is single. Stability requires that for every man k and

woman l, ũk ≥ Φ̃k0 and ṽl ≥ Φ̃0l, and ũk + ṽl ≥ Φ̃kl for any potential match (k, l).

Finally, a competitive equilibrium is defined as a set of prices ũi and ṽj and a feasible

matching µ̃ij such that

µ̃ij > 0 implies j ∈ arg max
j∈J∪{0}

(
Φ̃ij − ṽj

)
and i ∈ arg max

i∈I∪{0}

(
Φ̃ij − ũi

)
. (1.1)

Shapley and Shubik showed that the set of stable matchings coincides with the set of

competitive equilibria (and with the core of the assignment game); and that moreover, any

stable matching achieves the maximum of the total surplus∑
i∈I

∑
j∈J

ν̃ijΦ̃ij +
∑
i∈I

ν̃i0Φ̃i0 +
∑
j∈J

ν̃0jΦ̃0j

over all feasible matchings ν̃. The set of stable matchings is generically a singleton; on the

other hand, the set of prices ũi and ṽj (or, equivalently, the division of the surplus into

ũi and ṽj) that support it is a product of intervals. This discrete setting was extended by

Gretsky, Ostroy and Zame (1992) to a continuum of agents.

1.1 Observable characteristics

The analyst only observes some of the payoff-relevant characteristics that determine the

surplus matrix Φ̃. Following Choo and Siow, we assume that she can only observe which
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group each individual belongs to. Each man i ∈ I belongs to one group xi ∈ X ; and,

similarly, each woman j ∈ J belongs to one group yj ∈ Y. Groups are defined by the

intersection of characteristics which are observed by all men and women, and also by the

analyst. On the other hand, men and women of a given group differ along some dimensions

that they all observe, but which do not figure in the analyst’s dataset.

As an example, observed groups x, y = (E,R) may consist of education and income.

Education could take values E ∈ {D,G} (dropout or graduate), and income class R could

take values 1 to nR. Groups may also incorporate information that is sometimes available

to the econometrician, such as physical characteristics, religion, and so on. In this paper

we take the numbers of groups |X | and |Y| to be finite in number; we return to the case of

continuous groups in the conclusion.

Like Choo and Siow, we assume that there is an (uncountably) infinite number of men

in any group x, and of women in any group y. We denote nx the mass of men in group x,

and my the mass of women in group y, and as the problem is homogenous, we can assume

that the total mass of individuals is equal to one. More formally, we assume:

Assumption 1 (Large Market). There is an infinite total number of individuals on the

market. Letting nx be the mass of men of group x, and my the mass of women of group y,

the total mass of individuals is normalized to one, that is
∑

x nx +
∑

ymy = 1.

One way to understand intuitively this assumption is to consider a sequence of large

economies of total population of size N growing to infinity, that is

N =
∑
x∈X

Nx +
∑
y∈Y

My → +∞

while the proportion of each group remains constant, that is, the ratios nx = (Nx/N) and

my = (My/N) remain constant.

The effect of assuming an infinite number of individuals is that we will not have to worry

about sampling issues when dealing with the distributions of the unobserved heterogeneity in

Section 1.2. If the total number of individuals were finite, the distribution of the unobserved
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heterogeneity of, say, women of a given observable group would be an empirical distribution

affected by sample uncertainty.

Another benefit of Assumption 1 is that it mitigates concerns about agents misrepresent-

ing their characteristics. There is almost always a profitable deviation in finite populations;

but as shown by Gretsky, Ostroy and Zame (1999), the benefit from such manipulations

goes to zero as the population is replicated. In the large markets limit, the Walrasian prices

ũi and ṽj become generically unique. We will therefore write “the equilibrium” in what

follows.

The analyst does not observe some of the characteristics of the players, and she can only

compute quantities that depend on the observed groups of the partners in a match. Hence

she cannot observe µ̃, and she must focus instead on the matrix of matches across groups

(µxy). This is related to (µ̃ij) by

µxy =
∑
i,j

11 (xi = x, yj = y) µ̃ij .

The feasibility constraints on µxy ≥ 0 are µ ∈ M (n,m), where M (n,m) (or M in the

absence of ambiguity) is the set of (|X | |Y| + |X | + |Y|) non-negative numbers (µxy) that

satisfy the (|X |+ |Y|) following inequalities

M (n,m) = {µ ≥ 0 : ∀x ∈ X ,
∑
y∈Y

µxy ≤ nx ; ∀y ∈ Y,
∑
x∈X

µxy ≤ my} (1.2)

which simply means that the number of married men (women) of group x (y) is not greater

than the number of men (women) of group x (y). Each element ofM is called a “matching”

as it defines a feasible set of matches (and singles). For notational convenience, we shall

denote µx0 the number of single men of group x and µ0y the number of single women of

group y, and

X0 = X ∪ {0} , Y0 = Y ∪ {0}

where X0 and Y0 are the set of marital choices that are available to male and female agents,
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including singlehood. Obviously,

µx0 = nx −
∑
y∈Y

µxy and µ0y = my −
∑
x∈X

µxy.

1.2 Matching Surpluses

Several approaches can be used to take this model to the data. A computationally complex

method would use a parametric specification for the surplus Φ̃ij and solve the system of

equilibrium equations (1.1). The set of maximizers at the solution of this system defines

the stable matchings, and can be compared to the observed matching in order to derive

a minimum distance estimator of the parameters. However, there are two problems with

this approach: it is very costly, and it is not clear at all what drives identification of the

parameters. The literature has instead attempted to impose identifying assumptions that

allow for more transparent identification. We follow here the framework of Choo and Siow

(2006). We will discuss other approaches in the conclusion, including those of Fox (2010)

and Fox and Yang (2012).

Choo and Siow assumed that the utility surplus of a man i of group x (that is, such

that xi = x) who marries a woman of group y can be written as

αxy + τ + εiy, (1.3)

where αxy is the systematic part of the surplus, and τ represents the utility transfer (possibly

negative) that the man gets from his partner in equilibrium, and εiy is a standard type I

extreme value random variation. If such a man remains single, he gets utility εi0; that is to

say, the systematic utilities of singles αx0 are normalized to zero. Similarly, the utility of a

woman j of group yj = y who marries a man of group x can be written as

γxy − τ + ηxj , (1.4)

where τ is the utility transfer she leaves to her partner. A woman of group y gets utility

η0j if she is single, that is we adopt normalization γ0y = 0.

8



As shown in Chiappori, Salanié and Weiss (2012), the key assumption here is that the

joint surplus created when a man i of group x marries a woman j of group y does not allow

for interactions between their unobserved characteristics, conditional on (x, y). This leads

us to assume:

Assumption 2 (Separability). There exists a vector Φxy such that the joint surplus from

a match between a man i in group x and a woman j in group j is

Φ̃ij = Φxy + εiy + ηxj .

This assumption is reminiscent of the “pure characteristics” model of Berry and Pakes

(2007). In Choo and Siow’s formulation, the vector Φ is simply

Φxy = αxy + γxy,

which they call the total systematic net gains to marriage; and note that by construction,

Φx0 and Φ0y are zero. It is easy to see that Assumption 2 is equivalent to specifying that if

two men i and i′ belong to the same group x, and their respective partners j and j′ belong to

the same group y, then the total surplus generated by these two matches is unchanged if we

shuffle partners: Φ̃ij + Φ̃i′j′ = Φ̃ij′ + Φ̃i′j . Note that in this form it is clear that we need not

adopt Choo and Siow’s original interpretation of ε as a preference shock of the husband and

η as a preference shock of the wife. To take an extreme example, we could equally have men

who are indifferent over partners and are only interested in the transfer they receive, so that

their ex post utility is τ ; and women who also care about some attractiveness characteristic

of men, in a way that may depend on the woman’s group. The net utility of women of

group y would be εiy − τ ; the resulting joint surplus would satisfy Assumption 2 and all of

our results would apply1. In other words, there is no need to assume that the term εiyj was

“created” by man i, nor that the term ηjxi was “created” by the woman j; it may perfectly

be the opposite.

1It is easy to see that in such a model, a man i who is married in equilibrium is matched with a woman

in the group that values his attractiveness most, and he receives a transfer τ i = maxy∈Y εiy.
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While separability is a restrictive assumption, it allows for “matching on unobservables”:

when the analyst observes a woman of group y matched with a man of group x, it may

be because this woman has unobserved characteristics that make her attractive to men of

group x, and/or because this man has a strong unobserved preference for women of group

y. What separability does rule out, however, is sorting on unobserved characteristics on

both sides of the market, i.e. some unobserved preference of this man for some unobserved

characteristics of that woman.

The basic problem we address in this paper is how we can identify (Φxy) (an array of

unknowns of the same dimension) given the observation of (µxy) (an array of |X | × |Y|

numbers). In order to study the relation between these two objects, we need to make

assumptions on the distribution of the unobserved heterogeneity terms, which we now de-

scribe.

1.3 Unobserved Heterogeneity

In order to move beyond the multinomial logit setting of Choo and Siow, we allow for quite

general distributions of unobserved heterogeneity in the following way:

Assumption 3 (Distribution of Unobserved Variation in Surplus).

a) For any man i such that xi = x, εiy is a |Y0|-dimensional random vector drawn from

a zero-mean distribution Px;

b) For any woman j such that yj = y, ηxj is a |X0|-dimensional random vector drawn

from a zero-mean distribution Qy;

To summarize, a man i in this economy is characterized by his full type (xi, εi), where

xi ∈ X and εi ∈ RY0 ; the distribution of εi conditional on xi = x is Px. Similarly, a woman

j is characterized by her full type
(
yj , ηj

)
where yj ∈ Y and ηj ∈ RX0 , and the distribution

of ηj conditional on yj = y is Qy.

10



Parts (a) and (b) of Assumption 3 clearly constitute a substantial generalization with

respect to Choo and Siow. This extends the logit framework in several important ways: it

allows for different families of distributions, with any form of heteroskedasticity, and with

any pattern of correlation across partner groups.

As will be clear from the examples below, and unlike the standard logit (i.i.d. extreme

value) framework, Assumption 3 is flexible enough to allow for correlation between the

utility shocks: in the present framework, one individual may have, for instance, correlated

utility shocks for matching with partners of various education groups. The need to go

beyond the logit framework has long been felt in Industrial Organization and in consumer

demand theory, which has led to a large literature on Random Utility Models, initiated by

McFadden’s seminal work on Generalized Extreme Value theory (McFadden, 1978, see also

Anderson et al., 1992 for a good exposition and applications). The present assumption is

more general, as it does not require that the distribution of the terms εiy and ηxj should

belong to the GEV class.

2 Social Surplus, Utilities, and Identification

We derive most of our results by considering the “optimal” matching, maximizing the total

joint surplus, which is known since Shapley and Shubik (1972) to be equivalent to the

equilibrium matching. As Choo and Siow remind us (p. 177): “A well-known property of

transferable utility models of the marriage market is that they maximize the sum of marital

output in the society”. This is true when marital output is defined as it is evaluated by the

participants: the market equilibrium in fact maximizes
∑

i,j µ̃ijΦ̃ij over the set of feasible

matchings (µ̃ij). A very naive evaluation of the sum of marital output, computed from the

groups of partners only, would be ∑
xy

µxyΦxy, (2.1)

but this is clearly misleading. Realized matches by nature have a value of the unobserved

marital surplus (εiy + ηxj) that is more favorable than an unconditional draw; and as a
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consequence, the equilibrium marriage patterns µ do not maximize
∑

xy µxyΦxy over M.

In order to find the expression of the value function that µ maximizes, we need to account

for terms that reflect the value of matching on unobservables.

2.1 Separability and Discrete Choice

We first argue that separability (Assumption 2) reduces the choice of partner to a one-sided

discrete choice problem. To see this, note that by standard results in the literature (Shapley

and Shubik, 1972), the equilibrium utilities solve the system of functional equations

ũi = max
j

(
Φ̃ij − ṽj

)
and ṽj = max

i

(
Φ̃ij − ũi

)
,

where the maximization includes the option of singlehood.

Focus on the first one. It states that the utility man i gets in equilibrium trades off the

surplus his match with woman j creates and the share of the joint surplus he has to give

her, which is given by her own equilibrium utility. Now use Assumption 2: for a man i in

group x, Φ̃ij = Φxyj + εiyj + ηxj , so that

ũi = max
j

(
Φ̃ij − ṽj

)
= max

y
max
j:yj=y

(
Φ̃ij − ṽj

)
can be rewritten as ũi = maxy{Φxy + εiy −minj:yj=y

(
ṽj − ηxj

)
}. Denoting

Vxy = min
j:yj=y

(
ṽj − ηxj

)
and Uxy = Φxy − Vxy, it follows that:

Proposition 1. (Splitting the Surplus)

Under Assumptions 2 and 3, there exist two vectors Uxy and Vxy such that Φxy = Uxy +Vxy

and in equilibrium:

(i) Man i in group x achieves utility

ũi = max
y∈Y0

(Uxy + εiy)

and he matches with some woman whose group y achieves the maximum;
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(ii) Woman j in group y achieves utility

ṽj = max
x∈X0

(
Vxy + ηxj

)
and she matches with some man whose group x achieves the maximum.

This result, which will arise as a consequence of Theorem 1 below, also appears in Chi-

appori, Salanié and Weiss (2012), with a different proof. It reduces the two-sided matching

problem to a series of one-sided discrete choice problems that are only linked through the

adding-up formula Uxy +Vxy = Φxy. Men of a given group x match with women of different

groups, since they have idiosyncratic εiy shocks. But as a consequence of the separability

assumption, if a man of group x matches with a woman of group y, then he would be equally

well-off with any other woman of this group.

The vectors Uxy and Vxy depend on all of the primitives of the model (the vector Φxy,

the distributions of the utility shocks ε and η, and the number of groups n and m.) They

are only a useful construct, and they should not be interpreted as utilities. As we will see

in Section 2.3, there are at least three relevant definitions of utility, and U and V do not

measure any of them.

2.2 Identification of discrete choice problems

In this section we deal with the problem of recovering the utilities Uxy from the choice

probabilities µy|x = µxy/nx, and we introduce a general methodology to do so based on

“generalized entropy,” a name which arises from reasons which will soon become clear. In

the following, for any (Axy) we denote Ax· = (Ax1, . . . , Ax|Y|) and A·y = (A1y, . . . , A|X |y).

Consider a randomly chosen man in group x. His expected utility (conditional to be-

longing to this group) is

Gx(Ux·) = EPx max
y∈Y0

(Uxy + εy), (2.2)

where we set Ux0 = 0 and the expectation is taken over the random vector (ε0, . . . , ε|Y|) ∼

Px. First note that for any two numbers a, b and random variables (ε, η), the derivative of
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Emax(a+ε, b+η) with respect to a is simply the probability that a+ε is larger than b+η.

Applying this to the function Gx, we get

∂Gx
∂Uxy

(Ux·) = Pr(Uxy + εiy ≥ Uxz + εiz for all z ∈ Y0).

But the right-hand side is simply the probability that a man of group x partners with a

woman of group y; and therefore, for x ∈ X , and y ∈ Y0

∂Gx
∂Uxy

(Ux·) =
µxy
nx

= µy|x. (2.3)

As the expectation of the maximum of linear functions of the (Uxy), Gx is a convex function

of Ux·. Now consider the function

G∗x(µ·|x) = max
Ũx·=(Ũx1,...,Ũx|Y|)

∑
y∈Y

µy|xŨxy −Gx(Ũx.)

 (2.4)

whenever
∑

y∈Y µy|x ≤ 1, G∗x(µ·|x) = +∞ otherwise. Hence, the domain of G∗x is the set of

µ.|x which is the vector of choice probabilities of alternatives in Y. Mathematically speaking,

G∗x is the Legendre-Fenchel transform, or convex conjugate of Gx. Like Gx and for the same

reasons, it is a convex function. By the envelope theorem, at the optimum in the definition

of G∗x
∂G∗x
∂µy|x

(µ·|x) = Uxy (2.5)

As a consequence, for any y ∈ Y, Uxy is identified from µ·|x, the observed matching patterns

of men of group x. Going back to (2.4), convex duality implies that if µ·|x and Ux· are

related by (2.3), then

Gx(Ux·) =
∑
y∈Y

µy|xUxy −G∗x(µ·|x). (2.6)

The term −G∗x
(
µ.|x

)
is simply the expectation of the utility shock for the preferred al-

ternative associated with systematic probabilities Uxy which leads to the choice probabilities

µ.|x. Indeed, by first order conditions, the optimal U is such that µy|x = ∂Gx (Ux.) /∂Uxy,

thus U leads to the choice probabilities µ.|x. Hence, letting Y ∗i be the optimal choice of
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marital option y by a man of group x, one has

Gx(Ux·) = E
[
UxY ∗i + εiY ∗i

]
=
∑
y∈Y

µy|xUxy + E
[
εiY ∗i

]
,

and, making use of (2.6),

−G∗x
(
µ·|x

)
= E

[
εiY ∗i

]
. (2.7)

We now provide a useful characterization of −G∗x
(
µ.|x

)
using Optimal Transport theory,

and show that the evaluation of this quantity as well as Uxy can be reformulated as an

adjacent optimal matching problem.

Proposition 2. (General identification of the systematic surpluses) LetM
(
µ.|x, Px

)
the set of probability distributions π of the random joint vector (Y, ε), where Y ∼ µ.|x is a

random element of Y0, and ε ∼ Px is a random vector of RY0. For e ∈ RY0 and y ∈ Y0, let

Φh (y, e) = ey.

Then −G∗x(µ.|x) is the value of the optimal matching problem between distribution µ.|x of Y

and distribution Px of ε, when the surplus is Φh. That is,

−G∗x(µ.|x) = max
π∈M(µ.|x,Px)

Eπ
[
Φh (Y, ε)

]
. (2.8)

if
∑

y∈Y0 µy|x = 1, while G∗x(µ·|x) = +∞ otherwise.

Elaborating on this idea in the context of dynamic discrete games, Chiong, Galichon

and Shum (2013) propose in ongoing work to discretize the distribution of ε and solve for

the resulting linear program in order to identify the systematic part of the utilities.

2.3 Social surplus and its individual breakdown

We first give an intuitive derivation of our main result, Theorem 1 below. We define Hy

similarly as Gx: a randomly chosen woman of group y expects to get utility

Hy(V·y) = EQy

(
max
x∈X

(Vxy + ηx, η0)

)
,
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and the social surplus W is simply the sum of the expected utilities of all groups of men

and women:

W =
∑
x∈X

nxGx(Ux·) +
∑
y∈Y

myHy(V·y),

but by identity (2.6), we get

Gx(Ux·) =
∑
y∈Y

µy|xUxy −G∗x
(
µ·|x

)
and Hy(V·y) =

∑
x∈X

µx|yVxy −H∗y (µ·|y),

so summing over the total number of men and women, and using Uxy + Vxy = Φxy, and

defining

E(µ) :=
∑
x∈X

nxG
∗
x(µ·|x) +

∑
y∈Y

myH
∗
y (µ·|y), (2.9)

we get an expression for the value of the total surplus:

W =
∑
x∈X

nxGx(Ux·)︸ ︷︷ ︸
ux

+
∑
y∈Y

myHy(V·y)︸ ︷︷ ︸
vy

=
∑
x∈X
y∈Y

µxyΦxy − E(µ).

The first part of this expression explains how the total surplus W is broken down at the

individual level: the average expected equilibrium utility of men in group x is ux = Gx(Ux·),

and similarly for women. The second part of this expression explains how the total surplus

is broken down at the level of the couples. We turn this into a formal statement, which is

proved in Appendix A.

Theorem 1. (Social and Individual Surpluses) Under Assumptions 1, 2 and 3, the

following holds:

(i) the optimal matching µ maximizes the social gain over all feasible matchings µ ∈M,

that is

W (Φ, n,m) = max
µ∈M

∑
x∈X
y∈Y

µxyΦxy − E(µ). (2.10)

and equivalently, W is given by its dual expression

W (Φ, n,m) = min
U,V

∑
x∈X

nxGx (Ux.) +
∑
y∈Y

myHy (V.y) (2.11)

s.t. Uxy + Vxy = Φxy.
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(ii) A man i of group x who marries a woman of group y∗ obtains utility

Uxy∗ + εiy∗ = max
y∈Y0

(Uxy + εiy)

where Ux0 = 0, and the Uxy’s are solution to (2.11).

(iii) The average expected utility of the men of group x is ux = Gx(Ux·).

(iv) Parts (ii) and (iii) transpose to the other side of the market with the obvious changes.

The right-hand side of equation (2.10) gives the value of the social surplus when the

matching patterns are (µxy). The first term
∑

xy µxyΦxy reflects “group preferences”: if

groups x and y generate more surplus when matched, then they should be matched with

higher probability. On the other hand, the second and the third terms reflect the effect of

the dispersion of individual affinities, conditional on observed characteristics: those men i

in a group x that have more affinity to women of group y should be matched to this group

with a higher probability. In the one-dimensional Beckerian example, a higher x or y could

reflect higher education. If the marital surplus is complementary in the educations of the

two partners, Φxy is supermodular and the first term is maximized when matching partners

with similar education levels (as far as feasibility constraints allow.) But because of the

dispersion of marital surplus that comes from the ε and η terms, it will be optimal to have

some marriages between dissimilar partners.

To interpret the formula, start with the case when unobserved heterogeneity is dwarfed

by variation due to observable characteristics: Φ̃ij ' Φxy if xi = x and yj = y. Then we

know that the observed matching µ must maximize the value in (2.1); but this is precisely

what the more complicated expression in µ above boils down to if we scale up the values of

Φ to infinity. If on the other hand data is so poor that unobserved heterogeneity dominates

(Φ ' 0), then the analyst should observe something that, to her, looks like completely

random matching. Information theory tells us that entropy is a natural measure of statistical

disorder; and as we will see in Example 1, in the simple case analyzed by Choo and Siow

the function E is just the usual notion of entropy. For this reason, we call it the generalized

entropy of the matching. In the intermediate case in which some of the variation in marital
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surplus is driven by group characteristics (through the Φxy) and some is carried by the

unobserved heterogeneity terms εiy and ηxj , the market equilibrium trades off matching

on group characteristics (as in (2.1)) against matching on unobserved characteristics, as

measured by the generalized entropy terms in E(µ).

Theorem 1 is an equilibrium characterization result, which allows the analyst to predict

the joint and individual shares of surplus at equilibrium. As we show in section 3, this can

be done in closed form in a number of important cases. Note that there are three measures

of surplus:

• ex ante utility ux is the expected utility of a man, conditional on his being in group

x. Part (iii) gives a very simple formula to compute it;

• ex interim utility, if we also condition on this man marrying a woman of group y, is

E [Uxy + εiy|Uxy + εiy ≥ Uxz + εiz for all z ∈ Y] ;

this can be computed since the Uxz’s are identified from part (ii), although it may

require simulation for general distributions;

• ex post utility Uxy + εiy for these men, whose distribution can also be simulated.

In the special multinomial logit case studied by Choo and Siow, ex post utility is dis-

tributed as type I extreme value with mean (− log
µx0
nx ), which is the common value ux of

ex ante and ex interim utility; but the three definitions give different results in general, as

observed by de Palma and Kilani (2007).

2.4 Identification of matching surplus

There are two readings of Theorem 1, which are mathematically equivalent, but have very

different practical purposes: one may use it to obtain the expression of µ as a function of Φ:

this is an “equilibrium characterization” point of view. Conversely, one may use it to obtain

the expression of Φ as a function of µ: this is an “identification” point of view. Our next
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result, Theorem 2, illustrates the mathematical duality between the two points of view and

applies it for identification purposes. Indeed, relations (2.12) allow to express µ as a function

of U and V (“equilibrium characterization” point of view); they invert into relations (2.13)

which allow to express U and V (and thus Φ) as a function of µ (“identification” point of

view).

Note that the constraints associated to µ ∈M in (2.10) do not bind in the many datasets

in which there are no empty cells: then µxy > 0 for x ∈ X and y ∈ Y, and
∑

x∈X µxy < nx,∑
y∈Y µxy < my. In other words, µ then belongs to the interior ofM. It is easy to see that

this must hold under the following assumption:

Assumption 4 (Full support). The distributions Px and Qy all have full support.

Assumption 4 of course holds for the Choo and Siow model. It can be relaxed in the

obvious way: all that matters is that the supports of the distributions are wide enough

relative to the magnitude of the variations in the matching surplus. It is not essential to

our approach; in fact, one of our leading examples in section 3 violates it. But it allows us

to obtain very clean formulæ, as stated in the following theorem:

Theorem 2. Under Assumptions 1, 2, 3 and 4:

(i) Uxy is identified by the equivalent set of relations

µy|x =
∂Gx
∂Uxy

(Ux·) for y ∈ Y, or equivalently (2.12)

Uxy =
∂G∗x
∂µy|x

(
µ·|x

)
for y ∈ Y. (2.13)

(ii) As a result, Φxy is identified by

Φxy =
∂G∗x
∂µy|x

(
µ·|x

)
+
∂H∗y
∂µx|y

(
µ·|y

)
, (2.14)

that is

Φxy =
∂E
∂µxy

(µ). (2.15)
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Note that since the functions G∗x and H∗y are convex, they are differentiable almost

everywhere—and under Assumption 4 they actually are differentiable everywhere.

The previous result does not assume that transfers are observed. When they are, the

systematic parts of pre-transfer utilities (α, γ) are also observed. This case is unlikely

to occur in the context of family economics, where the econometrician typically does not

observe transfers between partners, but it is typically the case in other settings where

matching theory has been successfully applied, as the CEO compensation literature, for

instance, where the compensation amount is often available. In that case, Uxy = αxy + τxy

and Vxy = γxy−τxy, so the conjunction of the observation of τ along with the identification

of Φ = U+V ensures there is a sufficient number of equations to identify α and γ separately.

We state the following corollary:

Corollary 1. Under Assumptions 1, 2, 3 and 4, denote (α, γ) the systematic parts of

pre-transfer utilities and τ the transfers as in Section 1. Then αxy and γxy are identified

by

αxy =
∂G∗x
∂µy|x

(
µ·|x

)
− τxy and γxy =

∂H∗y
∂µx|y

(
µ·|y

)
+ τxy.

Therefore if transfers τxy are observed, both pre-transfer utilities αxy and γxy are also

identified.

As a result of Proposition 2, all of the quantities in Theorem 1 can be computed by

solving simple linear programming problems. This makes identification and estimation

feasible in practice.

2.5 Comparative statics

In this section, we use the results of Theorem 1 to show that the comparative statics results

of Decker et al. (2012) extend to our generalized framework. From the results of Section 2.3,
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recall that W (Φ, n,m) is given by the dual expressions

W (Φ, n,m) = max
µ∈M(n,m)

∑
xy

µxyΦxy − E (µ) , and (2.16)

W (Φ, n,m) = min
Uxy+Vxy=Φxy

∑
nxGx (Uxy) +

∑
myHy (Vxy) (2.17)

As a result, note that by (2.16), W is a convex function of Φ, and by (2.17) it is a concave

function of (n,m). By the envelope theorem in (2.16) and in (2.17), we get respectively

∂W
∂Φxy

= µxy and

∂W
∂nx

= Gx (Uxy) = ux and
∂W
∂my

= Hy (Vxy) = vy.

A second differentiation of ∂W/∂nx with respect to nx′ yields

∂ux
∂nx′

=
∂2W

∂nx∂nx′
=
∂ux′

∂nx
(2.18)

(and similarly ∂ux/∂my = ∂vy/∂nx and ∂vy/∂my′ = ∂vy′/∂my), which is the “unexpected

symmetry” result proven by Decker et al. (2012), Theorem 2, for the multinomial logit Choo

and Siow model: the variation in the systematic part of the surplus of individual of group

x when the number of individuals of group x′ varies by one unit equals the variation in the

systematic part of the surplus of individual of group x′ when the number of individuals of

group x varies by one unit. Formula (2.18) shows that the result is valid quite generally

in the framework of the present paper. The fact that W is a concave function of (n,m)

implies that the matrix ∂ux/∂nx′ is semidefinite negative; in particular, it implies that

∂ux/∂nx ≤ 0, which means that increasing the number of individuals of a given group

cannot increase the individual welfare of individuals of this group.

Similarly, the cross-derivative of W with respect to nx′ and Φxy yields

∂µxy
∂nx′

=
∂2W

∂nx′∂Φxy
=

∂ux′

∂Φxy
(2.19)

which is proven (again in the case of the multinomial logit Choo and Siow model) in Decker

et al. (2012), section 3. This means that the effect of an increase in the matching surplus

between groups x and y on the surplus of individual of group x′ equals the effect of the
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number of individuals of group x′ on the number of matches between groups x and y. Let us

provide an interpretation for this result. Assume that groups x and y are men and women

with a PhD, and that x′ are men with a college degree. Suppose that ∂µxy/∂nx′ < 0, so

that an increase in the number of men with a college degree causes the number of matches

between men and women with a PhD to decrease. This suggests that men with a college

degree or with a PhD are substitutes for women with a PhD. Hence, if there is an increase

in the matching surplus between men and women with a PhD, men with a college degree

will become less of a substitute for men with a PhD, and therefore their share of surplus

will decrease, hence ∂ux′/∂Φxy < 0.

Finally, differentiating W twice with respect to Φxy and Φx′y′ yields

∂µxy
∂Φx′y′

=
∂2W

∂Φxy∂Φx′y′
=
∂µx′y′

∂Φxy
. (2.20)

The interpretation is the following: if increasing the matching surplus between groups x and

y has a positive effect on marriages between groups x′ and y′, then increasing the matching

surplus between groups x′ and y′ has a positive effect on marriages between groups x and y.

In that case marriages (x, y) and (x′, y′) are complements. We emphasize here that all the

comparative statics derived in this section hold in any model satisfying our assumptions.

3 Examples

3.1 A bestiary of models

While Proposition 2 and Theorem 1 provide a general way of computing surplus and utilities,

they can often be derived in closed form. In all formulæ below, the proportions and numbers

of single men in feasible matchings are computed as

µ0|x = 1−
∑
y∈Y

µy|x and µx0 = nx −
∑
y∈Y

µxy, (3.1)

and similarly for women. In this section we will maintain Assumptions 1, 2.

Our first example is the classical multinomial logit model of Choo and Siow, which is
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obtained as a particular case of the results in Section 2 when the Px and Qy distributions

are iid standard type I extreme value:

Example 1 (Choo and Siow). Assume that Px and Qy are the distributions of i.i.d. stan-

dard type I extreme value random variables. Then

Gx(Ux·) = log

1 +
∑
y∈Y

exp(Uxy)


and G∗x(µ·|x) = µ0|x log(µ0|x) +

∑
y∈Y

µy|x logµy|x.

where the term µ0|x is a function of µ.|x defined in (3.1). Expected utilities are ux =

− logµ0|x and vy = − logµ0|y. The generalized entropy is

E(µ) =
∑
x∈X
y∈Y0

µxy logµy|x +
∑
y∈Y
x∈X0

µxy logµx|y, (3.2)

and surplus and matching patterns are linked by

Φxy = 2 log µxy − logµx0 − logµ0y, (3.3)

which is Choo and Siow’s (2006) identification result. See Appendix B.1 for details.

Note that as announced after Theorem 1, the generalized entropy E boils down here to

the usual definition of entropy. The multinomial logit Choo and Siow model is the simplest

example which fits into McFadden’s Generalized Extreme Value (GEV) framework, recalled

in Appendix B. This framework includes most specifications used in classical discrete choice

models. A simple variant of the Choo–Siow model is the heteroskedastic model considered

by Chiappori, Salanié and Weiss (2012); it allows the scale parameters of the type I extreme

value distributions to vary across genders or groups. Then Px has a scale parameter σx

and Qy has a scale parameter τy; the expected utilities are ux = −σx logµ0|x and vy =

−τy logµ0|y, and the general identification formula gives

Φxy = (σx + τy) logµxy − σx logµx0 − τy logµ0y. (3.4)

As a more complex example of a GEV distribution, we turn to a nested logit model.
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Example 2 (A two-level nested logit model). Suppose for instance that men of a given

group x are concerned about the social group of their partner and her education, so that

y = (s, e). We can allow for correlated preferences by modeling this as a nested logit in

which educations are nested within social groups. Let Px have cdf

F (w) = exp

(
− exp(−w0)−

∑
s

(∑
e

exp(−wse/σs)

)σs)
This is a particular case of the Generalized Extreme Value (GEV) framework described in

Appendix B, with g defined there given by g(z) = z0 +
∑

s

(∑
e z

1/σs
se

)σs
. The numbers 1/σs

describe the correlation in the surplus generated with partners of different education levels

within social group s. Then (dropping the x indices for notational simplicity, so that for

instance µs denotes the number of matches with women in social group s)

G(U·) = log

(
1 +

∑
s

(∑
e

exp(Use/σs)

)σs)
, and

G∗(µ·) = µ0 logµ0 +
∑
s

(1− σs)µs logµs +
∑
s

σs
∑
e

µse logµse.

where µ0 is again defined in (3.1). As in Example 1, the expected utility is u = − logµ0.

If the heterogeneity structure is the same for all men and all women (with possibly

different dispersion parameters σ for men and τ for women), then the expressions of E(µ)

and W(µ) can easily be obtained. The social surplus from a match between a man of group

x = (s, e) and a woman of group y = (s′, e′) is identified by

Φxy = log
µ
σx
s′+τ

y
s

xy µ
1−σx

s′
x,s′ µ1−τys

s,y

µx0µ0y

.

See Appendix B.2 for details.

Note that we recover the results of Example 1 when all σ parameters equal 1; also, if

there is only one possible social status, then we recover the heteroskedastic model.

Our next example considers a more complex but richer specification, which approximates

the distribution of unobserved heterogeneities through a mixture of logits whose location,

scale and weights may depend on the observed group:
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Example 3 (A mixture of logits). Take nonnegative numbers βxk such that
∑K

k=1 β
x
k = 1.

Let the distribution Px be a mixture of iid type I extreme value distributions with scale

parameters σxk, weighted by the probabilities βxk. Then

Gx(Ux·) =

K∑
k=1

βxkσ
x
k log

1 +
∑
y∈Y

eUxy/σ
x
k

 (3.5)

and

G∗x(µ·|x) = min∑K
k=1 µ

k
y=µy|x

K∑
k=1

σxk

µk0 log
µk0
βxk

+
∑
y∈Y

µky log
µky
βxk

 . (3.6)

Then Uxy is given by Uxy = σxk log(µky/µ
k
0), where

(
µky
)

is the minimizer of (3.6). See

Appendix B.3 for details.

While the GEV framework is convenient, it is common in the applied literature to allow

for random variation in preferences over observed characteristics of products. The modern

approach to empirical industrial organization, for instance, allows different buyers to have

idiosyncratic preferences over observed characteristics of products2. Closer to our frame-

work, hedonic models also build on idiosyncratic preferences for observed characteristics,

on both sides of a match3. Our setup allows for such specifications. Assume for instance

that men of group x care for a vector of observed characteristics of partners ζx(y), but the

intensity of the preferences of each man i in the group depends on a vector εi which is drawn

from some given distribution. Then we could for instance take Px to be the distribution of

ζx(y) · εi.

We investigate a particular case of this specification in the next example: the Random

Scalar Coefficient (RSC) model, where the dimension of ζx(y) and εi is one. As we argue

below, this assumption much simplifies the computations. Assuming further that the dis-

tribution of εi is uniform, one is led to what we call the Random Uniform Scalar Coefficient

Model (RUSC). This last model has one additional advantage: it yields simple closed-form

expressions, even though it does not belong to the Generalized Extreme Value (GEV) class.

2See the literature surveyed in Ackerberg et al (2007) or Reiss and Wolak (2007).
3See Ekeland et al (2004) and Heckman et al (2010).
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Example 4 (Random [Uniform] Scalar Coefficient (RSC/RUSC) models). Assume that for

each man i in group x,

εiy = εiζx(y),

where ζx(y) is a scalar index of the observable characteristics of women which is the same

for all men in the same group x, and the εi’s are iid random variables which are assumed

to be continuously distributed according to a c.d.f. Fε (which could also depend on x.) We

call this model the Random Scalar Coefficient (RSC) model; and we show in Appendix B.4

that the entropy is

E(µ) =
∑
xy

µxy
(
ζx(y)ēx(y) + ξy(x)f̄y(x)

)
,

where ēx(y) is the expected value of ε on the interval [a, b] defined by

Fε(a) =
∑

z|ζx(z)<ζx(y)

µz|x and Fε(b) =
∑

z|ζx(z)≤ζx(y)

µz|x,

and f̄y(x) is defined similarly.

Assuming further that the εi are uniformly distributed over [0, 1], we call this model the

Random Uniform Scalar Coefficient (RUSC) model. In this case, simpler formulæ can be

given. For any x ∈ X , let Sx be the square matrix with elements Sxyy′ = max (ζx(y), ζx (y′))

for y, y′ ∈ Y0. Define T x by T xyy′ = Sxy0 + Sx0y′ − Sxyy′ − Sx00, and let σxy = Sx00 − Sxy0.

Then G∗x is quadratic with respect to µ·|x:

G∗x(µ·|x) =
1

2
(µ·|x

′T xµ·|x + 2σx.µ·|x − Sx00).

If we now assume that preferences have such a structure for every group x of men and for

every group y of women (so that ηxj = ηjξy(x)), then the generalized entropy is quadratic

in µ:

E (µ) =
1

2
(µ′Aµ+ 2Bµ+ c),

where the expressions for A, B and c are given by (B.4)–(B.5) in Appendix B.4. As a

consequence, the optimal matching solves a simple quadratic problem. See Appendix B.4 for

details.
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The structure of heterogeneity in the RUSC/RSC models is reminiscent of the one

investigated in Ekeland et al. (2004) and Heckman et al. (2010), with continuous observed

characteristics. In Ekeland et al. (2004), the distribution of the εi’s is unknown, but

identified from a separability assumption on the marginal willingness to pay. In contrast,

closer to our paper is Heckman et al. (2010), where the distribution of the εi’s is fixed and

identification is obtained from a quantile transformation approach; however, in this setting,

there is heterogeneity only on one side of the market.

3.2 Discussion

In spite of all its insights, the Choo-Siow multinomial logit framework carries a number of

strong assumptions. This calls for caution when basing conclusions on it. To illustrate this

point, we would like to show that some of the very strong conclusions are in fact dependent

on the distributional assumptions made on the unobserved heterogeneity. The interest of

our general framework is to show that the expected utilities can be a much richer function

of observed matching patterns than in Choo and Siow’s multinomial logit model.

• Spillover effects. Choo and Siow’s original motivation was to generate a “marriage

function with spillover effects” which takes care of substitution effects in a coherent

way, in contrast with the previous demographic literature on marriage. This “match-

ing function” is the map which takes the number of groups nx and my as an input

and returns the number of marriages µxy as an output. The “substitution effects”

are expressed by constraint (3.1): if there are more marriages between group x and

group y, there will be mechanically fewer marriages between groups x and y′, and less

marriages between groups x′ and y. The explicit derivations in the above examples

allow us to compare the influence that the numerical values of µ have on the surplus

estimator Φxy, across the different models. This can be done by analyzing the term

∂Φxy/∂µx′y′ . In the case of Choo and Siow,

Φxy = log
µ2
xy(

nx −
∑

y′∈Y µxy′
) (
my −

∑
x′∈X µx′y

)
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so that Φxy is a function of µ2
xy and

∑
y′ 6=y µxy′ and

∑
x′ 6=x µx′y only. Therefore if

y′ 6= y′′ 6= y,
∂Φxy

∂µxy′
=

∂Φxy

∂µxy′′
. (3.7)

To interpret this, start from a given matching µ which is rationalized by some surplus

Φ, and suppose that a single man of group x marries a single woman of group y′ 6= y.

Then (3.7) tells us that our estimator of the surplus Φxy should change by exactly

the same amount as if the single woman had been of any other group y′′ 6= y, which

seems counterintuitive.

This problematic finding comes from the assumption of independence of irrelevant

alternatives (IIA) in the Choo-Siow model, just as restrictions on cross-elasticities

obtained in multinomial logit models. The RUSC model is much better able to capture

variation in cross-elasticities: the derivations in Appendix B.4 show that the effect of

changes in observed matching patterns on the estimated surplus ∂µxy/∂Φx′y′ allows

for much richer effects than (3.7).

• Comparative statics. Interestingly, the comparative statics discussed in Section 2.5

have explicit expressions in some cases. Take relation (2.18) for instance, which ex-

presses that the derivative of the expected utility ux of men of group x with respect

to the number of men of group x′ coincides with the derivative of ux′ with respect

to nx. For the Choo and Siow multinomial logit model investigated in Decker et al.

(2012), this derivative is a complicated term. In the RUSC model of Example 4, the

derivative is given by (B.7):

∂ux
∂nx′

=
∂ux′

∂nx
=

1

n2
xn

2
x′
µ′Rxx

′
µ

where Rxx
′

is a matrix whose expression is given in (B.8) of Appendix B.4. Similarly,

(2.19) and (2.20) are explicit and given respectively by (B.9) and (B.11).
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4 Parametric Inference

Theorem 1 shows that, given a specification of the distribution of the unobserved hetero-

geneities Px and Qy, any model that satisfies assumptions 1, 2, and 3 is nonparametrically

identified from the observation of a single market. There is therefore no way to test sepa-

rability using only data on one market. When multiple markets with identical Φxy, Px and

Qy are observed, then the model is nonparametrically overidentified given a fixed specifi-

cation of Px and Qy. The flexibility allowed by Assumption 3 can then be used to infer

information about these distributions.

In the present paper, we are assuming that a single market is being observed. While the

formula in Theorem 1(i) gives a straightforward nonparametric estimator of the systematic

surplus function Φ, with multiple surplus-relevant observable groups it will be very unre-

liable. Even our toy education/income example of Section 1.1 already has 4n2
R cells; and

realistic applications will require many more. In addition, we do not know the distributions

Px and Qy. Both of these remarks point towards the need to specify a parametric model in

most applications. Such a model would be described by a family of joint surplus functions

Φλ
xy and distributions Pλ

x and Qλ
y for λ in some finite-dimensional parameter space Λ.

We observe a sample of N̂ind individuals; N̂ind =
∑

x N̂x +
∑

y M̂y, where n̂x (resp. m̂y)

denotes the number of men of group x (resp. women of group y) in the sample. We let

n̂x = N̂x/N̂ind and m̂y = M̂y/N̂ind the rescaled number of individuals. Let µ̂ the observed

matching; we assume that the data was generated by the parametric model above, with

parameter vector λ0.

Recall the expression of the social surplus:

W(Φλ, n̂, m̂) = max
µ∈M(n̂,m̂)

{
∑
x,y

µxyΦ
λ
xy − Eλ (µ)}

Let µλ be the optimal matching. Of course, computing µλ is a crucial issue. We will

show in Section 6 how it can be computed, in some cases very efficiently. For now we focus

on statistical inference on λ. We propose two methods: a very general Maximum Likelihood
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method, and a more restrictive moment-based method.

4.1 Trade-off between observable and unobservable dimensions

In Theorem 2, we have kept fixed distributions for the unobservable heterogeneity terms

Px and Qy, and we have answered with formula (2.15) the question raised at the end of

Section 1.2: how can we achieve identification of Φxy (an array of |X | × |Y| unknowns)

given the observation of µxy (an array of |X | × |Y| observations)? Of course, fixing the

distribution of the unobserved heterogeneity terms is a strong assumption, while we do not

require full nonparametric identification of Φ. If we are content with a parametric form of Φ

whose parameter has dimensionality lower than |X | × |Y|, we get degrees of freedom which

we can use for inference on the distributions Px and Qy, appropriately parameterized.

For example, if X and Y are finite subsets of Rd, we could have a semiparametric

specification, in the spirit of Ekeland et al. (2004) Φ (x, y) = φ1 (y) + y′φ2 (x), where φ1 is

a function from Y to R, and φ2 is a function from X to Rd. With this assumption, Φ would

become an object of dimension |Y|+d×|X |, instead of |X |× |Y| in the nonparametric case.

The degrees of freedom gained by imposing the semi-parametric specification of Φ can be

used for inference purpose on the distribution of the unobservable heterogeneity terms.

4.2 Maximum Likelihood estimation

In this section we will use Conditional Maximum Likelihood (CML) estimation, where we

condition on the observed margins n̂x and m̂y. For each man of group x, the log-likelihood of

marital choice is
∑

y∈Y0(µ̂xy/n̂x) log(µλxy/n̂x), and a similar expression holds for each woman

of group y. Under Assumptions 1, 2 and 3,, the choice of each individual is stochastic in

that it depends on his vector of unobserved heterogeneity, and these vectors are independent

across men and women. Hence the log-likelihood of the sample is the sum of the individual
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log-likelihood elements:

logL (λ) =
∑
x∈X

∑
y∈Y0

µ̂xy log
µλxy
n̂x

+
∑
y∈Y

∑
x∈X0

µ̂xy log
µλxy
m̂y

(4.1)

= 2
∑
x∈X
y∈Y

µ̂xy log
µλxy√
n̂xm̂y

+
∑
x∈X

µ̂x0 log
µλx0

n̂x
+
∑
y∈Y

µ̂0y log
µλ0y
m̂y

.

The Conditional Maximum Likelihood Estimator λ̂
MLE

given by the maximization of

logL is consistent, asymptotically normal and asymptotically efficient under the usual set

of assumptions.

Example 2 continued. In the Nested Logit model of Example 2, where the group of men

and women are respectively (sx, ex) and (sy, ey), one can take σsxexsy and σ
sy ,ey
sx as param-

eters. Assume that there are Ns social categories and Ne classes of education. There are

N2
s × N2

e equations, so one can parameterize the surplus function Φθ by a parameter θ of

dimension less than or equal to N2
s ×N2

e − 2N2
s ×Ne. Letting λ =

(
σsxexsy , σ

sy ,ey
sx , θ

)
, µλ is

the solution in M to the system of equations

Φθ
xy = log

µ
σx
s′+τ

y
s

xy µ
1−σx

s′
x,s′ µ1−τys

s,y

(nx −
∑

y µxy)(my −
∑

x µxy)
, ∀x ∈ X , y ∈ Y

and the log-likelihood can be deduced by (4.1).

In some cases, the expression of the likelihood µλ can be obtained in closed form. This

is the case in the Random Uniform Scalar Coefficient model:

Example 4 continued. Assume that the data generating process is the RUSC model of

Example 4. We parameterize Φ, ζx (.), and ζy (.) by a parameter vector λ ∈ RK , hence

parameterizing S and T and thus A and B. If the solution is interior, then the optimal

matching is given by µλ = (Aλ)−1(Φλ−Bλ), and the log-likelihood can be deduced by (4.1).
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Maximum likelihood estimation has many advantages: (i) it allows for joint parametric

estimation of the surplus function and of the unobserved heterogeneities; (ii) it enjoys

desirable statistical properties in terms of statistical efficiency; (iii) its asymptotic properties

are well-known. However, there is no guarantee that the log-likelihood shall be a concave

function in general, and hence maximization of the likelihood may lead to practical problems

in some situations. In some of these cases, an alternative method, based on moments, is

available. This method is detailed in the next section.

4.3 Moment-based estimation: The Linear Model

The previous analysis involving maximum likelihood has one shortcoming: there is no

guarantee that the log-likelihood is a convex function, and so, if no proper care is taken, the

maximization of the log-likelihood may be trapped in a local maximum. Under additional

assumptions, we shall describe a method based on moments which is computationally very

efficient.

In this section we shall impose two strong assumptions. First, we shall assume that

the distribution of the unobservable heterogeneity is known and fixed, so that we won’t

parameterize the distribution of the unobservable heterogeneity. Next, we shall assume

that the surplus can be linearly parameterized by

Φλ
xy =

K∑
k=1

λkφ
k
xy (4.2)

where the parameter λ ∈ RK and the sign of each λk is unrestricted, and where φ1
xy,..., φ

K
xy

are K (known) basis surplus vectors which are linearly independent: no linear combination

of these vectors is identically equal to zero. We call this specification the “linear model”

because the surplus depends linearly on the parameters. Quite obviously, if the set of basis

surplus vectors is large enough, this specification covers the full set without restriction;

however, parsimony is often valuable in applications. Note that the linearity of Φλ with

respect to λ implies that W
(
Φλ, n,m

)
is convex with respect to λ.
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Return to the education/income example of Section 1.1, where x, y = (E,R) consists

of education and income; education takes values E ∈ {D,G} (dropout or graduate), and

income class R takes values 1 to nR. Then we could for instance assume that a match

between man i and woman j creates a surplus that depends on whether partners are matched

on both education and income dimensions. The corresponding specification would have basis

functions like 1(Ex = Ey = e) and 1(Rx = Ry = r), along with “one-sided” basis functions

to account for different probabilities of marrying: 1(Rx = r, Ex = e) and 1(Ry = r, Ey = e),

so that

Φλ
xy =

∑
e

λe1(Ex = Ey = e) +
∑
r

λr1(Rx = Ry = r)

+
∑
r′e′

λr′e′1(Rx = r′, Ex = e′) +
∑
r′′e′′

λr′′e′′1(Ry = r′′, Ey = e′′)

This specification only has (5nR+2) parameters, to be compared to 4n2
R for an unrestricted

specification (where for instance the matching surplus of a man in income class 3 with a

woman in income class 2 would also depend on both of their education levels). With more,

multi-valued criteria the reduction in dimensionality would be much larger. It is clear that

the relative importance of the λ’s reflects the relative importance of the criteria. They

indicate how large the systematic preference for complementarity of incomes of partners is

relative to the preference for complementarity in educations.

For any feasible matching µ, we define the associated comoments

Ck(µ) =
∑
x∈X
y∈Y

µxyΦ
k
xy.

In the case of the education/income example above, the empirical comoment associated

to basis function 1(Ex = Ey = D) is
∑

x,y µxy1(Ex = Ey = D), which is the number of

couples where partners are both dropouts.

The estimator we propose in this section consists in looking for a parameter vector λ

which is such that the comoments predicted by the model with parameter value λ coincide
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with the empirical comoments. To do this, introduce the Moment Matching estimator as

the value λ̂
MM

of the parameter vector solution to the following expression

λ̂
MM

:= arg max
λ∈Rk

∑
x∈X
y∈Y

µ̂xyΦ
λ
xy −W

(
Φλ, n,m

)
, (4.3)

whose objective function is concave, because, as mentioned above, W
(
Φλ, n,m

)
is convex

with respect to λ, and Φλ
xy is linear.

Theorem 3. Under Assumptions 1, 2 and 3, assume the distributions of the unobserved

heterogeneity terms Px and Qy are known. Then:

(i) The Moment Matching estimator is characterized by the fact that the predicted co-

moments coincide with the observed comoments, that is, equality Ck(µ̂) = Ck(µλ) holds for

all k whenever λ = λ̂
MM

.

(ii) Equivalently, the Moment Matching estimator λ̂
MM

is the vector of Lagrange mul-

tipliers of the moment constraints in the program

Emin (µ̂) = min
µ∈M

{
E (µ) : Ck(µ) = Ck(µ̂), ∀k

}
. (4.4)

Therefore the Moment Matching estimator matches the observed comoments to those

that are predicted by the model.

Example 1 continued. Fix the distributions of the unobservable heterogeneities to be

type I extreme value distributed as in the multinomial logit Choo-Siow setting, and assume

that surplus function Φλ
xy is linearly parameterized by a vector λ ∈ RK , as in (4.2). Then

the log-likelihood can be written as

logL (λ) =
∑

(x,y)∈X×Y

µ̂xyΦ
λ
xy −W (λ) . (4.5)

Therefore in this setting the Conditional Maximum Likelihood estimator and the Moment

Matching estimator are equivalent, that is λ̂
MM

= λ̂
MLE

. They consist in the maximization

of the map λ→
∑

k,x,y λkµ̂xyφ
k
xy −W (λ), which is smooth and strictly concave.
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The fact that λ̂
MM

and λ̂
MLE

coincide in the multinomial logit Choo-Siow setting is

quite particular to that setting. It is not the case in other models, such as the RUSC model

for instance. In fact, the RUSC model is interesting to study as one can obtain an explicit

expression of λ̂
MM

in the common case when no cell is empty (µxy > 0 for all (x, y)):

Example 4 continued. Assume that the data generating process is the RUSC model of

Example 4, where we fix ζx (.), and ζy (.), and where Φλ
xy is linearly parameterized by a

vector λ ∈ RK as in (4.2). Assume further that all µ’s are positive. Then

W (λ) =
1

2
((φ.λ−B)′A−1 (φ.λ−B)− c)

where φ =
(
φkxy
)
xy,k

is to be understood as a matrix, and λ = (λk)kas a vector. As a

consequence, the Moment Matching estimator is a simple affine function of the observed

comoments: λ̂
MM

=
(
φ′A−1φ

)−1 (
C(µ̂) + φ′A−1B

)
.

Note that Part (ii) of Theorem 3 is useful to provide a very simple semiparametric

specification test. Compare the actual value E (µ̂) of the entropy associated to the empirical

distribution to the value Emin (µ̂) of the program (4.4). By definition of Emin, one has

E (µ̂) ≥ Emin (µ̂). However, these two values coincide if and only if there is a value λ of the

parameter such that Φλ = Φ. We state this in the following proposition:

Proposition 3. (Semiparametric specification testing) Under Assumptions 1, 2 and

3, assume that the distributions of the unobserved heterogeneity terms Px and Qy are known.

Then E (µ̂) ≥ Emin (µ̂), with equality if and only if there is a value λ of the parameter such

that Φλ = Φ.

5 Empirical Application

[TO BE ADDED]
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6 Computation

Maximizing the conditional likelihood requires computing the optimal matching µλ for a

large number of values of λ. But the optimal matching will be a large-dimensional object

in realistic applications; and it is itself the maximizer of W in (2.10). It is therefore crucial

to be able to compute µλ efficiently. We show here how the Iterative Projection Fitting

Procedure (IPFP) often provides a solution to this problem.

Take the multinomial logit Choo-Siow model of Example 1 for instance. Fix a value of

λ and drop it from the notation: let the joint surplus function be Φ, with optimal matching

µ. Formula (3.3) can be rewritten as

µxy = exp

(
Φxy

2

)√
µx0µ0y. (6.1)

As noted by Decker et al. (2012), we could just plug this into the feasibility constraints∑
y µxy + µx0 = n̂x and

∑
x µxy + µ0y = m̂y and solve for the numbers of singles µx0 and

µ0y. Unfortunately, the resulting equations are still high-dimensional and highly nonlinear,

which makes them hard to handle. Even proving the uniqueness of the solution to this

system of equations is a hard problem.

On the other hand, to find a feasible solution of (3.3), we could start from an infeasible

solution and project it somehow on the set of feasible matchingsM(n̂, m̂). Moreover, IPFP

was precisely designed to find projections on intersecting sets of constraints, by projecting

iteratively on each constraint4. The intuition of the method is straightforward. Assume that

there exists a convex function E (µ) defined for any µ =
(
µxy, µx0, µ0y

)
≥ 0, and such that

E(µxy, nx −
∑

y µxy,my −
∑

x µxy) = E
(
µxy
)
, and E is almost everywhere strictly convex

and smooth. Problem (2.10) rewrites as the maximization of
∑

x∈X ,y∈Y µxyΦxy−E (µ) over

the set of vectors µ ≥ 0 satisfying the constraints on the margins
∑

y∈Y0 µxy = nx and∑
x∈X0

µxy = my. Introducing ux and vy the Lagrange multipliers of the constraints µ ∈M
4It is used for instance to impute missing values in data (and known for this purpose as the RAS method).
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yields

max
µ≥0

min
u,v

∑
x∈X

ux(nx −
∑
y∈Y0

µxy) +
∑
y∈Y

vy(my −
∑
x∈X0

µxy) +
∑

(x,y)∈X×Y

µxyΦxy − E (µ) (6.2)

whose first order conditions are ∂E/∂µxy = Φxy−ux−vy, ∂E/∂µx0 = −ux, and ∂E/∂µ0y =

−vy.

However, instead of computing the full problem (6.2), we shall solve iteratively: at step

2k + 1 the minmax problem with u and µ as variables keeping v fixed (= v2k), that is

min
u

max
µ≥0

∑
x∈X

ux(nx −
∑
y∈Y0

µxy)−
∑
y∈Y

∑
x∈X0

v2k
y µxy +

∑
(x,y)∈X×Y

µxyΦxy − E(µ) (6.3)

and, at step 2k+2, the minmax problem with v and µ as variables keeping u fixed (= u2k+1),

that is

min
v

max
µ≥0
−
∑
x∈X

∑
y∈Y0

u2k+1
x µxy +

∑
vy(my −

∑
x∈X0

µxy) +
∑

(x,y)∈X×Y

µxyΦxy − E(µ). (6.4)

This leads us to the following algorithm.

Algorithm 1 (Iterative Projection Fitting Procedure).

Step 0. Start with any initial choice of
(
u0, v0

)
and set k = 0.

Step 2k + 1. Keep v2k fixed and look for u and µ solution to (6.3). By F.O.C.,

∂E(µ)

∂µxy
= Φxy − ux − v2k

y ;
∂E(µ)

∂µx0

= −ux ;
∂E(µ)

∂µ0y

= −v2k
y (6.5)

and
∑

y∈Y0 µxy = nx. Call u2k+1 and µ2k+1 the solutions to this problem.

Step 2k+ 2. Keep u2k+1 fixed and look for v and µ such that (6.4) which yields F.O.C.

∂E(µ)

∂µxy
= Φxy − u2k+1

x − vy ;
∂E(µ)

∂µx0

= −u2k+1
x ;

∂E(µ)

∂µ0y

= −vy (6.6)

and
∑

x∈X0
µxy = my. Call v2k+2 and µ2k+2 the solutions. If µ2k+2 is close enough to

µ2k+1, then take µ = µ2k+2 to be the optimal matching and stop; otherwise add one to k

and go to step 2k+1.
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Note that the algorithm can be interpreted as a Walrasian tâtonnement process where

the prices of the x and the y are moved iteratively in order to adjust supply to demand on

each side of the market. We prove in Appendix A that:

Theorem 4. The algorithm converges to the solution µ of (2.10).

As remark of importance, note that there are many possible ways of extending E (which

is defined only on M) to the entire space of µ ≥ 0. In practice, good judgement should be

exercised, as the choice of E extending E is crucial for good practical performance of the

algorithm.

Example 1 continued. To illustrate, take the multinomial logit Choo and Siow model

from Example 1. Here, we take E (µ) =
∑

x∈X
∑

x∈Y0 µxy logµxy+
∑

x∈X0

∑
x∈Y µxy logµxy,

and we have ∂E/∂µxy = 2 + 2 logµxy, ∂E/∂µx0 = 1 + logµx0, and ∂E/∂µ0y = 1 + logµ0y.

Start with u0 = v0 = 0. At step 2k + 1, keep v2k fixed, and look for u and µ satisfying

equations (6.5), which yields µ2k+1
xy = (µ2k+1

x0 µ2k
0y)

1/2 exp(Φxy/2), so that

µ2k+1
x0 +

√
µ2k+1
x0

√
µ2k

0y exp

(
Φxy

2

)
= nx (6.7)

while at step 2k+2 do the converse.

According to computational experiments we ran, the convergence of this algorithm is

extremely fast compared to standard optimization methods. The results of our computa-

tional experiment (and benchmark with other methods) are reported in Appendix D. We

next illustrate the algorithm in the nested logit case.

Example 2 continued Consider the Nested Logit model of Example 2, and assume for

simplicity that there is only one social group, so the model boils down to a heteroskedastic

logit model with scale parameters σx and τy. Recall the equilibrium formula which comes

from (3.4)

µxy = µ
σx

σx+τy

x0 µ

τy
σx+τy

0y exp
Φxy

σx + τy
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At step 2k + 1, keep µ0y fixed, and look for µx0 such that

nx = µx0 +
∑
y∈Y

µ
σx

σx+τy

x0 µ

τy
σx+τy

0y exp
Φxy

σx + τy
(6.8)

while at step 2k + 2, keep µx0 fixed and look for µ0y such that

my = µ0y +
∑
x∈§

µ

τy
σx+τy

0y µ
σx

σx+τy

x0 exp
Φxy

σx + τy
. (6.9)

Note that steps (6.8) and (6.9) only require inverting a continuous and increasing real

function of one variable, and are hence extremely cheap computationally. This idea can be

extended to the fully general nested logit at the cost of having to invert systems of equations

whose number of variables depends on the size of the nests.

Concluding Remarks

As mentioned earlier, several other approaches to estimating matching models with hetero-

geneity exist. One could directly specify the equilibrium utilities of each man and woman,

as Hitsch, Hortacsu and Ariely (2010) did in a non-transferable utility model. Under sepa-

rability, this would amount to choosing a distribution Px and a parametrization λ of U and

fitting the multinomial choice model where men maximize Uxy(λ) + εiy over their marital

options y ∈ Y0. The downside is that unlike the joint surplus, the utilities U and V are not

primitive objects; and it is very difficult to justify a specification of equilibrium utilities.

An alternative class of approaches pools data from many markets in which the surplus

from a match is assumed to be the same. Fox (2010) starts from the standard monotonicity

property of single-agent choice models, in which under very weak assumptions, the prob-

ability of choosing an alternative increases with its mean utility. By analogy, he posits a

“rank-order property” for matching models with transferable utility: given the character-

istics of the populations of men and women, a given matching is more likely than another

when it produces a higher expected surplus. Unlike the results we derived from the multino-

mial logit Choo-Siow framework, the rank-order property is not implied by any theoretical
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model we know of. In our framework, it holds only when the generalized entropy is a

constant function, that is when there is no matching on unobservable characteristics. The

attraction of the identification results based on the rank-order property, on the other hand,

is that they extend easily to models with many-to-one or many-to-many matching.

It is worthwhile noting that Fox and Yang (2012) take an approach that is somewhat dual

to ours: while we use separability to restrict the distribution of unobserved heterogeneity so

that we can focus on the surplus over observables, they restrict the latter in order to recover

the distribution of complementarities across unobservables. To do this, they rely on pooling

data across many markets; in fact given the very high dimensionality of unobservable shocks,

their method, while very ingenious, has yet to be tested on real data.

We have left some interesting theoretical issues for future research. One such issue, for

instance, is the behavior of the finite population approximation of the model. We have

worked in an idealized model with an infinite number of agents within each observable

group; however, when there is a finite number of agents in each group, the surplus function

Φ̃ij = Φ (xi, yj) + εiy + ηxj becomes stochastic, and it is easy to see from the proof in the

Appendix that Theorem 1 is still valid with Gx and Hy replaced by Ĝx and Ĥy where

Ĝx (Ux·) =
1

nx

∑
i:xi=x

max
y∈Y0

{Uxy + εiy} and Ĥy (V·y) =
1

my

∑
j:yj=y

max
x∈X0

{
Vxy + ηxj

}
While the pointwise convergence Ĝx (Ux·) → Gx (Ux·) and Ĥy (V·y) → Hy (V·y) as the

number of individuals gets large follows from the law of large numbers, it is natural to

expect that the solutions µ̂ and (Û , V̂ ) of the finitely sampled primal and dual problems

converge to their large population analogs5. This goes beyond the scope of the present

paper and is left as a conjecture. Likewise, exploration of the rate of convergence is left for

future research.

To conclude, let us emphasize the wide applicability of the methods introduced in the

present paper, and the potential for extensions.

5What is needed is to show that the gradient of the sum of the Legendre transforms of the Ĝx and the

Ĥy maps converges to its population analog.
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On the applied front, the estimators introduced in this paper provide a tractable para-

metric estimator of the matching surplus and can be put to work in many applied settings.

Outside of the marriage market, Guadalupe et al. (2013) apply it to international trade;

Bojilov and Galichon (2013) to the labor market.

On the methodological front, a challenge is to extend the logit setting of Choo and Siow

to the case where the observable characteristics of the partners are possibly continuous.

This issue is addressed by Dupuy and Galichon (2013) using the theory of extreme value

processes; they also propose a test of the number of relevant dimensions for the matching

problem. In some cases, closed-form solutions exist: see Bojilov and Galichon (2013).

While the framework we used here is bipartite, one-to-one matching, our results open

the way to possible extensions to other matching problems. Among these, the “roommate

problem” drops the requirement that the two partners of a match are drawn from distinct

populations. Chiappori, Galichon and Salanié (2013) have shown that this problem is in

fact isomorphic, in a large population, to an associated bipartite matching problem; as a

consequence, the empirical tools from the present paper can be extended to the study of the

roommate problem. Although an extension to situations of “one-to-many matching” where

one entity on one side of the market (such as a firm) may match with several agents on

the other (such as employees) seems less direct, it is likely that the present approach would

be useful. It may also be insightful in the study of trading on networks, when transfers

are allowed (thus providing an empirical counterpart to Hatfield and Kominers, 2012, and

Hatfield et al., 2013). Finally, the approach proposed in Proposition 2 to identify utilities

in discrete choice problems has nothing specific to the matching setting; they are applied

in Chiong, Galichon and Shum (2013) in order to provide identification in dynamic discrete

choice problems in very general situations–in particular, outside of the GEV framework

commonly used in these problems.
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Appendix

A Proofs

A.1 Proof of Proposition 2

Replace the expression of Gx (2.2) in the formula for G∗x (2.4). It follows

G∗x(µ·|x) = −min
Ũx·

{EPx max
y∈Y

(
Ũxy + εiy, εi0

)
−
∑
y∈Y

µy|xŨxy}

= −min
Ūx·
{
∑
y∈Y0

µy|xŪxy + EPx max
y∈Y0

(
εiy − Ūxy

)
}

where Ūxy = −Ũxy and Ūx0 = 0 in the second line. The first term in the minimand is the

expectation of Ūx· under the distribution µY |X=x; therefore this can be rewritten as

G∗x(µ·|x) = − min
Ūxy+W̄x(εi·)≥εiy

{EµY |X=x
ŪxY + EPxW̄x(εi·)}

where the minimum is taken over all pairs of functions (Ūx·, W̄x(εi·)) that satisfy the in-

equality. We recognize the value of the dual of a matching problem in which the margins

are µY |X=x and Px and the surplus is εiy. By the equivalence of the primal and the dual,

this yields Expression (2.8).

A.2 Proof of Theorem 1

In the proof we denote ñ (x, ε) the distribution of (x, ε) where the distribution of x is n,

and the distribution of ε conditional on x is Px; formally, for S ⊆ X × RY0 , we get

ñ (S) =
∑
x

nx

∫
RY0

1 {(x, ε) ∈ S} dPx (ε) .

(i) By the dual formulation of the matching problem (see Gretsky, Ostroy and Zame,

1992), the market equilibrium assigns utilities ũ (x, ε) to man i such that xi = x and εi = ε

and ṽ (y, η) to woman j such that yj = y and ηj = η so as to solve

W = min

(∫
ũ (x, ε) dñ (x, ε) +

∫
ṽ (y, η) dm̃ (y, η)

)
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where the minimum is taken under the set of constraints ũ (x, ε) + ṽ (y, η) ≥ Φxy + εy + ηx,

ũ (x, ε) ≥ ε0, and ṽ (y, η) ≥ η0. For x ∈ X and y ∈ Y, introduce

Uxy = inf
ε
{ũ (x, ε)− εy} and Vxy = inf

η
{ṽ (y, η)− ηx} ,

so that ũ (x, ε) = maxy∈Y {Uxy + εy, ε0} and ṽ (y, η) = maxx∈X
{
Vxy + ηx, η0j

}
. Then W

minimizes
∫

maxy∈Y {Uxy + εy, ε0} dñ (x, ε)+
∫

maxx∈X {Vxy + ηx, η0} dm̃ (y, η) over U and

V subject to constraints Uxy + Vxy ≥ Φxy. Assign non-negative multipliers µxy to these

constraints. By convex duality, we can rewrite

W = max
µxy≥0

∑
x∈X
y∈Y

µxyΦxy −max
Uxy

 ∑
x∈X ,y∈Y

µxyUxy −
∫

max
y∈Y
{Uxy + εy, ε0} dñ (x, ε)


−max

Vxy

 ∑
x∈X ,y∈Y

µxyVxy −
∫

max
x∈X
{Vxy + ηx, η0} dm̃ (y, η)


 .

Now,
∫

maxy∈Y {Uxy + εy, ε0} dñ (x, ε) =
∑

x nxEPx [maxy∈Y Uxy + εy, ε0] = nxGx(Ux·),

where EPx denotes the expectation over the population of men in group x, and where we

have invoked Assumption 1 in order to replace the sum by an expectation. Adding the simi-

lar expression for women, we get thatW is the maximum over µ ≥ 0 of
∑

x∈X ,y∈Y µxyΦxy−

A (µ)−B (µ), where A (µ) = max(Uxy){
∑

x∈X ,y∈Y µxyUxy−
∑

x∈X nxGx(Ux·)}, and B has a

similar expression involving H and m instead of G and n. Consider the term with first sub-

script x in A(µ). It is nx(
∑

y∈Y µy|xUxy−Gx(Ux·)), that is nx times the Legendre transform

of G evaluated at µ·|x, so we can rewrite A(µ) and B(µ) in terms of the Legendre-Fenchel

transforms:

A (µ) =
∑
x∈X

nxG
∗
x

(
µ·|x

)
and B (µ) =

∑
y∈Y

myH
∗
y

(
µ·|y

)
.

Expression (2.10) follows, and points (ii), (iii) and (iv) are then deduced immediately.

A.3 Proof of Theorem 2

If Assumption 4 holds for Px, then the function Gx is increasing in each of its arguments;

since its derivatives are the probabilities µy|x at the optimum, they must be positive. More-
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over, G∗x(µ·|x) would be infinite if
∑

y µy|x were to equal one; and that is not compatible

with optimality. We can therefore neglect the feasibility constraints (2.10). By the first

order conditions in the program defining A in the proof of Theorem 1 above, one gets

Uxy =
(
∂G∗x/∂µy|x

)
(µ.|x) which is (2.13). The envelope theorem in the same program

gives us (2.12), which proves (i). Similarly, one gets Vxy =
(
∂H∗y/∂µx|y

)
(µ.|y) which, by

summation and using the fact that Φxy = Uxy + Vxy, yields (2.14), proving (ii).

A.4 Proof of Corollary 1

The result follows from the fact that Uxy = αxy+τxy and Vxy = γxy−τxy; thus if Uxy and Vxy

are identified and τxy is observed, then α and γ are identified by αxy = Uxy−τxy and γxy =

Vxy + τxy.

A.5 Proof of Theorem 3

(i) The Moment Matching estimator λ̂ is solution to problem (4.3). Hence, by F.O.C. λ̂ satis-

fies
∑

x,y µ̂xyΦ
k
xy = ∂W/∂λk(Φ

λ̂, n,m); but by the Envelope Theorem, ∂W/∂λk(Φ
λ̂, n,m) =∑

x,y µ
λ̂
xyΦ

k
xy.

(ii) Program (4.3) can be rewritten as

max
λ∈Rk

min
µ∈M

∑
k

λk
∑
x,y

(
µ̂xy − µxy

)
Φk
xy + E (µ)

that is µ minimizes E (µ) over the set of µ ∈M such that
∑

x,y

(
µ̂xy − µxy

)
Φk
xy = 0.

A.6 Proof of Proposition 3

Since µλ̂ maximizesW when λ = λ̂,
∑

x,y µ̂xyΦ
λ̂
xy−E (µ̂) ≤

∑
x,y µ

λ̂
xyΦ

λ̂
xy−E

(
µλ̂
)

, and, since

E is strictly convex in µ, equality holds if and only if µλ̂ = µ̂. But equality
∑

x,y µ̂xyΦ
λ̂
xy =∑

x,y µ
λ̂
xyΦ

λ̂
xy holds by construction, hence E (µ̂) ≥ E(µλ̂) with equality if and only if µλ̂ = µ̂.
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A.7 Proof of Theorem 4

The proof uses results in Bauschke and Borwein (1997), which builds on Csiszar (1975). The

map µ→ E(µ) is essentially smooth and essentially strictly convex; hence it is a “Legendre

function” in their terminology. Introduce D the associated “Bregman divergence” as

D (µ; ν) = E (µ)− E (ν)− 〈∇E (ν) , µ− ν〉 ,

and introduce the linear subspaces M (n) and M (m) by

M (n) = {µ ≥ 0 : ∀x ∈ X ,
∑
y∈Y0

µxy = nx} and M (m) = {µ ≥ 0 : ∀y ∈ Y,
∑
x∈X0

µxy = my}

so that M(n,m) = M (n) ∩ M (m). It is easy to see that µ(k) results from iterative

projections with respect to D on the linear subspaces M(n) and on M(m):

µ(2k+1) = arg min
µ∈M(n)

D
(
µ;µ(2k)

)
and µ(2k+2) = arg min

µ∈M(m)
D
(
µ;µ(2k+1)

)
. (A.1)

By Theorem 8.4 of Bauschke and Borwein, the iterated projection algorithm converges6

to the projection µ of µ(0) on M(n,m), which is also the maximizer µ of (2.10).

B Explicit examples

The Generalized Extreme Values Framework

Consider a family of functions gx : R|Y0| → R that (i) are positive homogeneous of degree

one; (ii) go to +∞ whenever any of their arguments goes to +∞; (iii) are such that their

partial derivatives (outside of 0) at any order k have sign (−1)k; (iv) are such that the

functions defined by F (w0, ..., wJ) = exp (−gx (e−w0 , ..., e−wJ )) are multivariate cumulative

distribution functions, associated to a distribution which we denote Px. Then introducing

utility shocks εx ∼ Px, we have by a theorem of McFadden (1978):

Gx(w) = EPx

[
max
y∈Y0

{wy + εy}
]

= log gx (ew) + γ (B.1)

6In the notation of their Theorem 8.4, the hyperplanes (Ci) are M(p) and M(q); and the Breg-

man/Legendre function f is our φ.
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where γ is the Euler constant γ ' 0.577. Therefore, if
∑

y∈Y0 py = 1, then G∗x (p) =∑
y∈Y0 pyw

x
y (p) −

(
log gx

(
ew

x(p)
)

+ γ
)
, where for x ∈ X , the vector wx (p) is a solution

to the system of equations py =
(
∂ log gx/∂w

x
y

) (
ew

x)
for y ∈ Y0. Hence, the part of the

expression of E(µ) arising from the heterogeneity on the men side is

∑
x∈X
{nx log gx

(
ew

x(µx·/nx)
)
−
∑
y∈Y0

µxyw
x
y (µx·/nx)}+ C

where C = γ
∑

x∈X nx. The derivative of this expression with respect to µxy (x, y ≥ 1) is

−wxy (µ/n).

B.1 Derivations for Example 1

Claims of Section 3.1. With type I extreme value iid distributions, the expected utility is

Gx(Ux·) = log(1+
∑

y∈Y exp(Uxy)), and the maximum in the program that defines G∗x(µ·|x)

is achieved by Uxy = log(µy|x/µ0|x). This yields

G∗x(µ·|x) =
∑
y∈Y

µy|x log
µy|x

µ0|x
− log

1 +
∑
y∈Y

µy|x

µ0|x

 = µ0|x log(µ0|x) +
∑
y∈Y

µy|x logµy|x

which gives equation (3.2). Equation (3.3) obtains by straightforward differentiation.

Claims of Section 4.3. We can rewrite L as

logL (λ) =
∑
x,y

µ̂xy log

(
µλxy
)2

µλx0µ
λ
0y

+
∑
x∈X

n̂x log
µλx0

n̂x
+
∑
y∈Y

m̂y log
µλ0y
m̂y

=
∑
x,y

µ̂xyΦ
λ
xy −W (λ) ,

which establishes (4.5). Now by the envelope theorem, ∂W/∂λ =
∑

x,y µ
λ
xy∂Φλ

xy/∂λ since

the entropy term does not depend on λ in the multinomial logit Choo and Siow model; this

proves that λ̂
MM

= λ̂
MLE

.

B.2 Derivations for Example 2

Consider a man of a group x; and as in the text, drop the x indices. By (B.1), the

expected utility of this man is G(U·) = log(1 +
∑

s(
∑

e e
Use/σs)σs), hence, by (2.3), it
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follows that µse/µ0 = (
∑

e e
Use/σs)σs−1eUse/σs . Thus log(µs/µ0) = σs log(

∑
e exp(Use/σs)),

and therefore Use = log(µs/µ0) + σs log(µse/µs). Now, by (2.6),

G∗(µ·) =
∑

µseUx,se − log

(
1 +

∑
s

(∑
e

eUse/σs

)σs)
= µ0 logµ0 +

∑
s

(1− σs)µs logµs +
∑
s,e

σsµse logµse.

Now if the nested logit applies for men of group x with parameters (σxs′) and for women of

group y with parameters (τys), we can write Ux,s′e′ = log(µx,s′/µx0) + σxs′ log(µx,s′e′/µx,s′)

and Vse,y = log(µs,y/µ0y) + τys log(µse,y/µs,y). Adding up gives the formula for Φxy in the

text. To obtain the expected utilities, we just substitute in the expression of G (U) the

values of Use.

B.3 Derivations for Example 3

When Px is a mixture of i.i.d. Gumbel distributions of scale parameters σxk with weights βxk,

the ex-ante indirect utility of man of group x is the weighted sum of the corresponding ex-

ante indirect utilities computed in Example 1, that is Gx (Ux.) =
∑

k β
x
kGxk (Ux.), where

Gxk (Ux.) = σxk log(1 +
∑

y∈Y e
Uxy/σxk). Still from the results of Example 1, G∗xk (µ) =

σxk
∑

y∈Y0 µy logµy. By standard results in Convex Analysis (see e.g. Rockafellar 1970,

section 20), the convex conjugate of a sum of functions is the infimum-convolution of the

conjugates of the functions in the sum. The convex conjugate of Ux. → βxkGxk (Ux.) is

f∗
(
µk.
)

= βxkG
∗
xk

(
µk.
βxk

)
; thus (3.6) follows. µy|x obtains by straightforward differentiation

of (3.5). Finally, it follows from the properties of the conditional logit model that the log

odds ratio log(µky/µ
k
0) must coincide with Uxy/σ

x
k, QED.

B.4 Derivations for Example 4

Claims of Section 3.1. From Proposition 2, G∗x(µ·|x) = −maxπ∈Mx Eπ [ζx(Y )ε], where

π has margins Fε and µ(Y |x = x). Since the function (ε, ζ) −→ εζ is supermodular, the

optimal matching must be positively assortative: larger ε’s must be matched with y’s with
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larger values of the index ζx(y). For each x, the values of ζx(y) are distinct and we let

ζ(1) < . . . < ζ(|Y|+1) denote the ordered values of distinct values of ζx(y) for y ∈ Y0; the

value ζ(k) occurs with probability

Pr(ζx(Y ) = ζ(k)|x) =
∑

ζx(y)=ζ(k)

µy|x. (B.2)

By positive assortative matching, there exists a sequence ε(0) = inf ε < ε(1) < . . . < ε(|Y|) <

ε(|Y|+1) = sup ε such that ε matches with a y with ζx(y) = ζ(k) if and only if ε ∈ [ε(k−1), ε(k)];

and since probability is conserved, the sequence is constructed recursively by

Fε
(
ε(k)

)
− Fε

(
ε(k−1)

)
=

∑
ζx(y)=ζ(k)

µy|x, (B.3)

giving Fε
(
ε(k)

)
=
∑

ζx(y)≤ζ(k) µy|x; and as a result, G∗x(µ·|x) = −
∑

1≤k≤|Y|+1 ζ(k)ek, where

ek =
∫ ε(k)
ε(k−1)

εf (ε) dε =
(
F (ε(k))− F (ε(k−1))

)
ēk, with ēk defined as the conditional mean

of ε in interval
[
ε(k−1), ε(k)

]
; then −nxG∗x(µ·|x) = nx

∑
1≤k≤|Y|+1 ζ(k)

∑
ζx(y)=ζ(k)

µy|xēk =∑
y µxy ēK(y), with K(y) the value of k such that ζx(y) = ζ(k); in the main text we use the

notation ēx(y) = ēK(y).

When ε is distributed uniformly over [0, 1], (B.3) becomes ε(k) =
∑

ζx(y)≤ζ(k) µy|x, and

E
[
ε1(ε ∈ [ε(k−1), ε(k)])

]
=
(
ε(k) − ε(k−1)

)
(ε(k) + ε(k−1))/2, we obtain

E
[
ε1(ε ∈ [ε(k−1), ε(k)])

]
=

∑
y|ζx(y)=ζ(k)

µy|x(
∑

y′|ζx(y′)<ζx(y)

µy′|x +
1

2

∑
y′|ζx(y′)=ζx(y)

µy′|x).

Summing up over k = 1, . . . , |Y| + 1, we get G∗x(µ·|x) = −1
2

∑
y,y′∈Y0 S

x
yy′µy|xµy′|x,where

Sxyy′ = max(ζx(y), ζx(y′)).

Therefore, using µ0|x = 1−
∑

y∈Y µy|x, we obtain

G∗x(µ·|x) = −1

2
(
∑
y,y′∈Y

(
Sxyy′ − Sxy0 − Sx0y′ + Sx00

)
µy|xµy′|x + 2

∑
y∈Y

(Sxy0 − Sx00)µy|x + Sx00).

Now define a matrix T x and a vector σx by T xyy′ = Sxy0 +Sx0y′−Sxyy′−Sx00 and σxy = Sx00−Sxy0;

this gives G∗x(µ·|x) = 1
2

(
µ·|x

′T xµ·|x + 2σx.µ·|x − Sx00

)
.
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Introducing

Axy,x′y′ =
1

nx
1
{
x = x′

}
T xyy′ +

1

my
1
{
y = y′

}
T yxx′ (B.4)

Bxy = σxy + σyx and c = −
∑
x∈X

nxS
x
00 −

∑
y∈Y

myS
y
00 (B.5)

leads to E (µ) = (µ′Aµ+ 2B.µ+ c)/2.where µ is the vector of µxy for x ∈ X and y ∈ Y.

Claims of Section 3.2. Note that µ is determined by

W = max
µ∈M(n,m)

Φ.µ− 1

2
(µ′Aµ+ 2B.µ+ c)

where Φ.µ is the vector product
∑

xy µxyΦxy. Hence, if µ is interior, i.e. if there are no empty

cells, the solution is given by µ = A−1 (Φ−B) and W = 1
2((Φ−B)′A−1 (Φ−B) − c),

where the invertibility of A follows from the fact that for each x, the values of ζx(y),

y ∈ Y0 have been assumed to be distinct. One has ∂A−1/∂nx = −A−1(∂A/∂nx)A−1 and

∂A/∂nx = −Mx/n2
x, where

Mx
x′y,x′′y′ = 1

{
x = x′ = x′′

}
T xyy′ (B.6)

hence, a calculation shows that ∂W/∂nx = (Φ−B)′A−1MxA−1 (Φ−B) /(2n2
x), thus

∂2W
∂nx∂nx′

=
1

n2
xn

2
x′
µ′Rxx

′
µ (B.7)

where

Rxx
′

= −nx1
{
x = x′

}
Mx +

Mx′A−1Mx +MxA−1Mx′

2
. (B.8)

Now, (2.19) yields
∂ux′

∂Φxy
=

∂2W
∂nx′∂Φxy

=
1

n2
x′
Zx
′

xy (B.9)

where

Zx
′

= A−1Mx′µ (B.10)

and it is recalled that the expression for Mx is given in (B.6). Finally (2.20) yields

∂µxy
∂Φx′y′

= A−1
xy,x′y′ . (B.11)
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C Geometric interpretation

Our approach to inference has a simple geometric interpretation. Consider the set of como-

ments associated to every feasible matching

F =

{(
C1, ..., CK

)
: Ck =

∑
xy

µxyΦ
k
xy, µ ∈M (n̂, m̂)

}

This is a convex polyhedron, which we call the covariogram; and if the model is well-

specified the covariogram must contain the observed matching µ̂. For any value of the

parameter vector λ, the optimal matching µλ generates a vector of comoments Cλ that

belongs to the covariogram; and it also has an entropy Eλ ≡ E(µλ). We already know that

this model is just-identified from the comoments: the mapping λ −→ Cλ is invertible on the

covariogram. Denote λ(C) its inverse. The corresponding optimal matching has entropy

Er (C) = Eλ(C). The level sets of Er (.) are the isoentropy curves in the covariogram; they are

represented on Figure 1. The figure assumes K = 2 dimensions; then λ can be represented

in polar coordinates as λ = r exp(it). For r = 0, the model is uninformative and entropy

is highest; the matching is random and generates comoments C0. At the other extreme,

the boundary ∂F of the covariogram corresponds to r = ∞. Then there is no unobserved

heterogeneity and generically over t, the comoments generated by λ must belong to a finite

set of vertices, so that λ is only set-identified. As r decreases for a given t, the corresponding

comoments follow a trajectory indicated by the dashed line on Figure 1, from the boundary

∂F to the point C0. At the same time, the entropy Eλ increases, and the trajectory crosses

contours of higher entropy (E ′ then E ′′ on the figure.) The CML Estimator λ̂ could also be

obtained by taking the normal to the isoentropy contour that goes through the observed

comoments Ĉk = Ck (µ̂), as shown on Figure 1. Indeed, the estimator λ̂
MM

of the parameter

vector is given by the gradient of Er (.) at the point Ĉ, that is ∂Er(Ĉ)/∂Ck = λ̂
MM

k .
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Figure 1: The covariogram and related objects
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D Computational experiments

Equation (6.7) is a quadratic equation in only one unknown,
√
µ2k+1
x0 ; as such it can be

solved in closed form.The convergence is extremely fast. We tested it on a simulation in

which we let the number of categories |X | = |Y| increase from 100 to 1,000. For each of

these ten cases, we draw 50 samples, with the nx and my drawn uniformly in {1, . . . , 100};

and for each (x, y) match we draw Φxy from N (0, 1). To have a basis for comparison, we

also ran two nonlinear equation solvers on the system of (X|+ |Y) equations

a2
x + ax

(∑
y

exp(Φxy/2)by

)
= nx (D.1)

and

b2y + by

(∑
x

exp(Φxy/2)ax

)
= my, (D.2)

which characterizes the optimal matching with µxy = exp(Φxy/2)
√
µx0µ0y, µx0 = a2

x, and

µ0y = b2y (see Decker et al. (2012)).

To solve system (D.1)–(D.2), we used both Minpack and Knitro. Minpack is probably

the most-used solver in scientific applications, and underlies many statistical and numerical

packages. Knitro7 is a constrained optimization software; but minimizing the function zero

under constraints that correspond to the equations one wants to solve has become popular

recently.

For all three methods, we used C/C++ programs, run on a single processor of a Mac

desktop. We set the convergence criterion for the three methods as a relative estimated error

of 10−6. This is not as straightforward as one would like: both Knitro and Minpack rescale

the problem before solving it, while we did not attempt to do it for IPFP. Still, varying

the tolerance within reasonable bounds hardly changes the results, which we present in

Figure 2. Each panel gives the distribution of CPU times over 50 samples (20 for Knitro)

for the ten experiments, in the form of a Tukey box-and-whiskers graph8.

7See Byrd, Nocedal and Waltz (2006).
8The box goes from the first to the third quartile; the horizontal bar is at the median; the lower (resp.
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The performance of IPFP stands out clearly—note the different vertical scales. While

IPFP has more variability than Minpack and Knitro (perhaps because we did not rescale

the problem beforehand), even the slowest convergence times for each problem size are at

least three times smaller than the fastest sample under Minpack, and fifteen times smaller

than the fastest time with Knitro. This is all the more remarkable that we fed the code for

the Jacobian of the system of equations into Minpack, and for both the Jacobian and the

Hessian into Knitro.

upper) whisker is at the first (resp. third) quartile minus (resp. plus) 1.5 times the interquartile range, and

the circles plot all points beyond that.
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Figure 2: Solving for the optimal matching
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