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1 Introduction

Since the work of Kelso and Crawford (1982) the 2-sided many-to-many matching model

has emerged as the prominent tool to analyze labor markets whenever firms and workers

are heterogeneous. The assumption underlying many results in this literature is that firms’

preferences over sets of workers exhibit “gross-substitutability”. The Kelso and Crawford

model assumes that workers and firms negotiate over a single parameter, the worker’s salary,

and the particular details of the job are given (such as working hours, shifts, vacation days,

insurance). Hatfield and Milgrom (2005) generalize this matching-based model to a ‘contracts

model’ where a multi-dimensional set of feasible contracts between firms and workers exists.

In such a model the productivity of a set of workers is not just based on their identity as in

Kelso and Crawford but also on the nature of the contract. Hatfield and Milgrom go on and

show that in this more general model gross-substitutability (suitably defined) drives many

similar results (such as existence of non-empty core and efficiency). Echenique (2012) shows

that under this assumption both models are equivalent.1

The notion of stability, initially due to Gale and Shapley (1962), is the standard solution

concept for matching models in general and for labor markets in particular. A stable outcome

is an allocation of workers to firms (of which one firm is the outside option of unemployment)

and a salary vector for the workers such that no combination of a single firm and a set

of workers can improve their position while disregarding the others (there is no ‘blocking

coalition’). Underlying the logic of this solution concept is the notion of a free, unregulated,

competitive market, where any coalition can withdraw from the market if the market does

not provide them with a desired outcome.

However, many existing labor markets are regulated and allow various degrees of job

security. In most European countries many employees have indefinite contracts which make

it very difficult and very costly for an employer to terminate a contract. In the UK, for

example, the tenure necessary to qualify for such protection was lowered in 1999 from 24

to 12 months (Marinescu, 2009). In Germany, the 1951 Dismisal Protection Act which is

still largely valid today acknowledges that workers have the right to keep their jobs, and, for

example, fixed term contracts are allowed only for a period of up to 18 months (Emmenegger

and Marx, 2011). High job security exists in many non-European countries as well. In India,

1Recent work by Hatfield and Kojima (2010) demonstrate the limitation of the Echenique critique regard-
ing Hatfield and Milgrom’s ‘contracts model’ and shows that when considering larger classes of production
functions the two models diverge. Sönmez and Switzer (2013) leverage these observations to solve the
problem of cadet assignment in the US army where the standard substitutability assumption does not hold.
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as another example, the Industrial Disputes Act of 1976 requires that written permission

to retrench workers be obtained, normally from the relevant state government (Fallon and

Lucas, 1991). Thus, practically, many countries worldwide implement what is known as

“tenure” in universities, but across a large part of the economy.

What is the natural solution concept when markets are regulated, in particular when

workers enjoy regulation related to employment security? The theoretical literature on

matching seems to be mute about the possibility and implications of job security. In this

work we revise the notion of stability so it accounts for a regulated labor market. In particu-

lar we would like to model a regulated market where firms cannot unilaterally fire employees

(or where such costs of firing are prohibitively high). In such labor markets for a firm to

be part of a blocking coalition it must account for its current employees and ensure their

utility is not compromised. More simply, such a firm must retain its workers at their current

salary level. Technically, such regulation implies fewer blocking coalitions and consequently

the requirements underlying the implied notion of stability, which we refer to as JS-stability

(where JS stands for Job Security) becomes easier to satisfy.

It is no surprise, therefore, that we can guarantee the existence of JS-stable outcomes in

some markets where no stable outcomes exist. A key assumption for most results on labor

markets is that of gross-substitutability. In the Kelso and Crawford model that we adopt,

such gross-substitutability is a necessary and sufficient condition for a variety of results

(see, among others, Kelso and Crawford (1982), Gul and Stacchetti (1999) and Ausubel

(2006)). Our treatment, on the other hand, goes substantially beyond the scope of gross-

substitutability and allows for a broader class of preferences. In fact, existence and optimality

of a JS-stable outcome is guaranteed for the class of ‘Almost Fractionally Sub-additive’

valuations (AFS), which we formally define in the sequel. Furthermore, it is shown that this

class is a maximal class for which such existence and optimality of a JS-stable allocation

hold.

The ‘gross substitutes’ assumption, and in fact any assumption on substitutability, obvi-

ously rules out the treatment of markets where complementarities exist among the workers.

Such complementarity is vital for the analysis of many particular markets. Two leading

examples are those of the matching between players and sports clubs — as clubs are focused

on generating a team spirit and building synergy among their players — and of the match-

ing between universities and academics.2 The class of AFS production functions, which is

2As an example for this complementarity we note that this research might not have been conducted had
Lavi and Smorodinsky or Fu and Kleinberg not been members of the same department.
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central to our analysis, allows for some limited form of complementarity among workers (see

Example 1) and so we can undoubtedly argue that our work goes beyond substitutability.3

In addition, it is straightforward to verify that the class of AFS production functions is a

superset of the class of gross substitutes. In fact, it has been shown by Lehmann et al.

(2006) to be substantially larger than the class of gross substitutes in some natural measure

theoretic terms.4

In fact, the existence of stable outcomes under weaker notions of substitutability has

received recent attention in the literature on matching with contracts. In particular, Hatfield

and Kojima (2010) define two notions, ‘bilateral substitutes’ and ‘unilateral substitutes’, that

extend the original substitutes condition of Hatfield and Milgrom (2005) and still ensure

existence of stable outcomes. Sönmez and Switzer (2013) and Sönmez (2013) demonstrate

the applicability of these extended classes in the context of the ‘cadet-branch matching

problem’. In order to interpret these classes within the original model of Kelso and Crawford

(1982) one should embed the latter model in the former as follows. Consider the set of all

contracts which are of the form of a triplet (m,n, s), interpreted as a contract where worker

m is employed by firm n for the salary s. With this in mind it turns out that the classes of

‘bilateral substitutes’, ‘unilateral substitutes’ and ‘gross substitutes’ are one and the same

and so the results of Hatfield and Kojima (2010) have no bite in the Kelso and Crawford

model. This is no surprise given the maximality theorem of Gul and Stacchetti (1999) which

argues that one cannot go beyond the class of ‘gross substitutes’ without considering weaker

notions of stability as we do.

1.1 Our contribution

Our contribution is conceptual as well as technical.

• Our conceptual contribution is two-fold:

1. We introduce a new solution concept for the many-to-many matching model —

JS-stability. This solution concept, tailored to analyze labor markets with em-

ployment protection, is inspired by the prevalence of regulation in many countries

3In the neoclassical matching literature, starting with Becker (1973), the assumption of complementarities
(otherwise known as ‘positive assortative matching’) is cardinal for many of the results. Note that the notion
of complementarities assumed in that literature is related to the synergy between a firm and a (single) worker.
In contrast, we refer to complementarities among workers with respect to a firm’s production function.

4Technically, for a natural measure over the set of all production functions, the set of all functions
exhibiting gross-substitutes has measure zero while the class AFS has positive measure.
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(in the EU in particular) which puts significant restrictions on firms’ ability to

fire employees. The on-going public debate of such regulation has not been part

of the matching literature so far and JS-stability provides a (preliminary) means

of such analysis.

2. We introduce a new class of production functions, dubbed ‘almost fractionally sub-

additive’ (AFS) functions. Recall that a production function is called submodular

if it exhibits decreasing productivity. It is well-known that the class of submodular

production functions strictly contains the class of gross-substitutes production

functions (and in fact significantly expands it). Our class AFS strictly contains

and significantly expands the class of submodular production functions.

• For these new concepts we prove the following theorems:

1. We provide analogs of the welfare theorems to markets with job security. On

the one hand, if firms’ production functions are almost fractionally sub-additive

(AFS) then any efficient outcome is sustained as a JS-stable outcome. On the

other, although there may be inefficient JS-stable outcomes, we provide a tight

bound on the efficiency loss such an outcome entails. In fact, in cardinal terms,

summing over all players’ utilities (as expressed with a numeraire good), the social

welfare of any JS-stable outcome is at least 50% of the most efficient outcome.

2. We show that the family of AFS production functions is maximal with respect to

obtaining our welfare theorems.

3. We provide a natural decentralized mechanism which yields a JS-stable outcome

in equilibrium.

1.2 Literature on job security

The lion’s share of the theoretical literature on job security and employment protection

legislation makes use of partial and general equilibrium in dynamic models. A common

thread of all these models is that the work force is assumed homogeneous (e.g., Gavin,

1986, Lazear, 1990, Acemoglu and Shimer, 2000, Bertola, 2004), which is in sharp contrast

with our heterogeneity assumption. Typically, a firm’s productivity depends on the size

of the workforce but not on the exact composition of workers it employs. Whereas our

model is static and with complete information these models are dynamic and information

stochastically unravels with time (e.g., workers’ productivity and firms’ technology).
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Our paper also departs from the aforementioned body of literature in the main question

posed. Whereas our focus is on existence and efficiency of a given solution concept (JS-

stability) the aforementioned body of literature primarily attempts to study the impact of the

introduction and regulation of job security measures on the unemployment level. On the one

hand job security implies that fewer employees are fired but on the other hand employers are

more cautious in their hiring process and are reluctant to employ low productivity employees.

The study of these two countervailing forces is an important common thread of previous

work. Interestingly, the findings of this literature, both theoretically and empirically, are

inconclusive. The exact nature of the model as well as the underlying assumptions, on the

one hand, and the econometric model deployed, on the other hand, lead to conclusions which

are often inconsistent with each other. The reader is referred to a survey by Bertola (1999) to

learn more about this. Although our work does not discuss the impact of regulation around

job security on unemployment rates we argue for the relevance of the new notion of stability

to such an analysis. In particular, comparison of unemployment rates in stable vs. JS-stable

outcomes may shed light on this important topic.

1.3 Other matching markets

The notion of JS-stability is primarily motivated by regulatory intervention designed to

increase job security in labor markets. However, it may also have relevance in the study

of immigration and community formation. In this context, matching takes place between

countries on the one hand and citizens on the other hand. Thus, firms are replaced by

countries and workers by citizens. In such a matching market there is also clear asymmetry

in the flexibility to divorce. Typically, once citizenship is granted to someone it is (almost)

impossible to revoke. On the other hand, although there exists a barrier for citizens to

immigrate and replace their current citizenship with a different one such a barrier is clearly

lower (which can be evidenced empirically). Thus, a variant of JS-stability to such a NTU

setting may correctly represent the feasible community structure in a model of immigration.5

In fact, there may be additional many-to-many matching markets where divorce costs on

both sides of the market are highly asymmetric and so the notion of JS-stability becomes an

adequate tool for their analysis.

5We thank Yoram Weiss for pointing out this connection between JS-stability and community formation.
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1.4 Paper structure

Section 2 introduces the model and details the new solution concept as well as the class

of production functions we study. One particular aspect of our model is that each worker

requires a minimal wage in order to work for any given firm. These minimal wages not only

differ across workers but may differ across firms for any given worker and so the model is quite

asymmetric. Section 3 focuses on a special case of our model where such asymmetry does not

exist and the minimal wage is set to zero for all workers and all firms. It furthermore shows

that this reduction is technically meaningless and results which are true for the special case

are true for the more general model with asymmetry. Section 4 provides the main results,

and Section 5 discusses future research.

2 Model

A labor market is composed of a set of N firms and M workers such that each firm hires as

many workers as it wishes, but each worker is allowed to work only at one firm. Each firm

pays its workers a salary and the utility of each worker depends on which firm he works for

and the salary he receives. The firms’ objective function is their profit and each firm’s profit

is the difference between the value of its production (in salary units) and the salaries it pays

out. Note, in particular, there are no externalities among workers nor among firms.

The formal model we use is due to Kelso and Crawford (1982) — A labor market is a tuple

(N,M, v, b) where N is a finite set of firms and M is a finite set of workers with quasi-linear

utility function (in the sequel we abuse notation and use N and M to denote the cardinality

of these sets as well). v = {vn}n∈N , where vn : 2M → <+ is firm n’s monotonically increasing

production function, as measured in the same units as salaries.6 We calibrate vn(∅) = 0.

b = {bnm}m∈M,n∈N , where −bnm is the valuation, in salary terms, of worker m for working at

firm n without being paid. In fact we typically think of bnm as the minimal salary requested

by worker m for working at firm n and hence the negation sign. Thus, the quasi-linear utility

for this worker is um(n, s) = s − bnm when her salary is s.7 Hereinafter firm 0 will denote

6vn is monotonically increasing if C ⊂ D =⇒ vn(C) ≤ vn(D).
7The model and results in Kelso and Crawford (1982) make use of an abstract utility function for workers,

not necessarily of a quasi-linear form. In particular the units of such functions are abstract utilities in contrast
with our quasi-linear functions whose units are in salary terms. Thus, as opposed to the Kelso-Crawford
model, we can discuss a cardinal measure of social welfare and consequently measure efficiency levels, which
is central to our results. However, we do so without ignoring non-salary related components of the work-
package as these are embedded in the minimal salary component (b in our model) which is dependent on the
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unemployed workers and we calibrate b0
m = 0 for all m.

As productivity is measured in salary units, the profit of firm n from employing a set

of workers C when workers’ salaries are {sm}m∈M is Πn(C; s) = vn(C) −
∑

m∈C sm. We

often abbreviate the tuple (N,M, v, b) to (v, b) as the sets of workers and firms are implicitly

encoded in (v, b).

For any two disjoint sets of employees, C and D, we denote by v(D|C) = v(D∪C)−v(C)

the marginal productivity of D given C and we also abuse notation and write m to denote

the singleton set {m} as well (hence v(m) will denote the productivity of a single worker,

m).

An assignment of workers is a partition A = {A0, A1, . . . , AN} of the set of workers, where

An denotes all workers employed by firm n, with A0 interpreted as the set of unemployed

workers.

An allocation is a pair (A, s) where A is an assignment of workers and s ∈ <M+ is a vector

of salaries. Such an allocation implies that any employee m ∈ An works for firm n at a salary

sm, whenever n > 0 and m ∈ A0 implies that m is unemployed and receives no salary.

Definition 1. An allocation (A, s) is individually rational (IR) if (1) vn(An)−
∑

m∈An sm ≥
0 ∀n ∈ N ; and (2) sm ≥ bnm for all n ∈ N and m ∈ An.

The first part of this definition requires that each firm has a non-negative net profit and

the second part requires that each employed worker is paid her minimal required salary.

2.1 Stability and Job Security

The central solution concept we adopt is that of stability. However our notion of stability

is a central innovation of our work and is weaker than the standard stability notions in

two-sided markets. The stability notion we introduce is inspired by markets where job

security is guaranteed by regulatory means. In particular, we consider the following simple

yet somewhat extreme assertion - once a worker is employed by a firm for a certain salary

only the worker can decide to quit whereas the firm cannot lower the salary nor can it fire

the worker. Thus, the stability notion we introduce is an adaptation of the standard notion

of stability to such regulatory restrictions. Formally:

Definition 2. A coalition {n,C} is a blocking coalition for an allocation (A, s) if and only

if C ⊂M \ An and there exists a vector of salaries, ŝ ∈ <M+ , such that:

specific worker and the specific firm.
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• um(n, ŝm) ≥ um(k, sm) ∀k ∈ N,m ∈ Ak ∩ C (workers in C are better-off),

• vn(C|An) ≥
∑

m∈C ŝm (firm n is better-off),

with at least one of the inequalities being strict.

The following alternative definition of a blocking coalition is more intuitive although less

convenient for the proofs that follow:

Definition 3. A coalition {n, Ĉ} is a JS-blocking coalition for an allocation (A, s) if and

only if An ⊂ Ĉ and there exists a vector of salaries, ŝ ∈ <M+ , such that:

• um(n, ŝm) ≥ um(k, sm) ∀k ∈ N,m ∈ Ak ∩ Ĉ,

• vn(Ĉ)−
∑

m∈Ĉ ŝm ≥ vn(An)−
∑

m∈An sm,

with at least one of the inequalities being strict.

The classical notion of a blocking coalition, as in Kelso and Crawford (1982), is similar

to the above definition except it does not require that An ⊂ Ĉ. The connection between

these two definitions is as follows:

Lemma 1. Let C ⊂ M \ An. The coalition {n,C} is a blocking coalition for the allocation

(A, s) if and only if {n,An ∪ C} is a JS-blocking coalition for the allocation (A, s).

Proof. Note that, without loss of generality, we may assume that ŝm = sm for any m ∈ An

in the definition of JS-blocking. With this at hand the proof is immediate.

Definition 4. An allocation (A, s) is called Job Security stable (JS-stable) if it is IR and

there exist no blocking coalitions.8 9

In words, the requirement for JS-stability, beyond IR, is that there exists no firm and no

set of agents currently not working for this firm such that the firm can offer better working

terms for these agents (first set of inequalities) while maintaining its current set of workers

8Arguably, one could consider a stronger notion of stability where blocking coalitions may involve more
than a single firm. To demonstrate this consider the JS-stable allocation of example 2. Note that by switching
between workers b and c we improve the firms’ utility without jeopardizing any of the workers. This suggests
that for an alternative notion of a blocking coalition, involving more than a single firm, the allocation in
the example might not be stable. We re-visit this issue in our concluding remarks where we introduce the
JS-Core.

9Requiring individual rationality as part of the definition of JS-stability implies that a firm that is not
profitable, and thus in danger of bankruptcy, need not comply with job security regulation.
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and increasing its profits (second inequality). This is a weaker notion than the core allocation

defined by Kelso and Crawford (1982). While Kelso and Crawford require that an allocation

be immune to a deviation by a coalition of workers and a firm where such workers may

(partly) replace the firm’s current working force, our notion ignores this possibility as it is

banned by regulation.

JS-stability models an extreme version of regulation related to job security. Thus, the

inefficiency induced under JS-stability may be seen as a lower bound on the efficiency impli-

cations of some more realistic regulation. Indeed, as we demonstrate in this work, in spite of

our modeling choice, efficiency partly prevails. This suggests that weaker forms of regulation

designed for job security do not necessarily contradict efficiency.

2.2 AFS production functions

Throughout the paper we assume a certain structure on the production technology of each

of the firms. To define this structure we recall the following definition from cooperative

game theory: For any C ⊆M , a vector of non-negative weights {λD}D⊆C,D 6=∅ is a “fractional

cover” of C if for any m ∈ C,
∑
{D⊆C:m∈D} λD = 1.10 An example of a fractional cover of

the set {a, b, c} is λD = 1
2

for any subset with two workers and λD = 0 otherwise.

Definition 5. A firm’s production function v is Fractionally Sub-additive on C ⊆ M if for

any fractional cover {λD}D⊆C,D 6=∅ of C, v(C) ≤
∑

D⊆C,D 6=∅ λDv(D).

To understand the intuition behind this notion assume a firm can either make use of the

set C of workers during a single period or it can break C into subsets of workers (possibly

overlapping) and deploy the subsets sequentially, each for a fraction of a period, such that any

employee works a full period of time. The production function is fractionally sub-additive

on C if the latter option is always at least as productive as the former. In the example of a

fractional cover preceding Definition 5, the firm will (weakly) prefer having the three workers

work in three shifts of pairs, each for half of a time period, over employing all three workers

simultaneously for a single time period.

Definition 6. A firm’s production function v is Fractionally Sub-additive, denoted v ∈ FS ,

if for any C ⊆M , v is Fractionally Sub-additive on C.11

10The term used in cooperative game theory is “balanced collection of weights”, see Osborne and Rubin-
stein (1994).

11Originally, a similar notion was introduced by Bondareva (1963) and Shapley (1967) in the context
of value functions for cooperative games. However, Bondareva and Shapley actually take interest in the
reversed inequalities and refer to such value functions as balanced.
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Definition 7. A vector of salaries, s, is called a supporting salary vector for the production

function v and a subset of workers C ⊂M if (1)
∑

m∈C sm = v(C); and (2) For any D ⊂ C,∑
m∈D sm ≤ v(D).12

A well known result relating these two concepts is the Bondareva-Shapley Theorem:

Theorem 1 (Bondareva-Shapley Theorem). v is Fractionally Sub-additive on C ⊆ M

if and only if there exists a non-negative supporting vector of salaries for v on C.13

We expand the class of production functions beyond FS as follows:

Definition 8. A firm’s production function v is Almost Fractionally Sub-additive, denoted

v ∈ AFS , if:

1. For any C ⊂M (excluding C = M) v is Fractionally Sub-additive on C; and

2. v(M) ≤
∑

m∈M v(M\m)

|M |−1
.

Clearly FS ⊂ AFS.

Throughout the paper we focus on this new class of production functions. One thing

to note is that, in contrast with the class of of production functions that exhibit Gross

Substitutes (GS) which is most prevalent in the labor market literature, AFS may exhibit

complementarities. This is demonstrated in the following example:

Example 1. Assume there are 3 workers, denoted a, b, c and let the production function u be

defined by: u(a) = u(b) = u(c) = 3, u({a, b}) = u({a, c}) = 6, u({b, c}) = 4, u({a, b, c}) = 8.

We leave it to the reader to verify that u ∈ AFS (but not in FS). Note that the worker a

and the pair {b, c} are complementarities.

Note that the complementarity displayed in Example 1 is possible as we do not require

the fractional sub-additivity to hold on the full set of workers but only on strict subsets.

A technical observation about functions in AFS which we use in the sequel is:

Lemma 2. v ∈ AFS =⇒
∑

m∈M v(m|M \m) ≤ v(M) ≤
∑

m∈M v(m).

12Originally, Bondareva (1963) and Shapley (1967) consider the case where these inequalities are reversed
and refer to a collection of such vectors as the core of a cooperative game

13Bondareva and Shapley actually prove that the core is not empty if and only if the value function is
balanced, which is equivalent to the stated theorem.
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Proof. To prove the left inequality note that:∑
m∈M

v(m|M\m) =
∑
m∈M

v(M)−v(M\m) = |M |·v(M)−
∑
m∈M

v(M\m) ≤ |M |·v(M)−(|M |−1)·v(M),

where the last inequality follows from the definition of AFS . Thus,
∑

m∈M v(m|M \m) ≤
v(M).

To prove the right inequality we proceed by induction on |M |. The base, |M | = 1, is

trivial. For |M | > 1,

v(M) ≤
∑

m∈M v(M \m)

|M | − 1
≤
∑

m∈M
∑

k∈M\m v(k)

|M | − 1
=
∑
k∈M

v(k),

where the second inequality follows from the induction hypothesis.

2.3 On a hierarchy of domains of production functions

In this section we remind the reader of additional domains of production functions which

have been studied in the literature and we shed some light on how FS and AFS fit in the

larger picture. This section is informal and provides no original definitions nor results. The

reader can look up the formal definitions in various papers and in particular in Lehmann

et al. (2006).

The most restricted class is that of Gross Substitutes, denoted GS and introduced by

Kelso and Crawford (1982). A production function is in GS if, whenever it is optimal for the

firm to hire a worker m at a given vector of salaries, it remains optimal to hire m whenever

the salaries of workers other than m are increased while fixing the salary of m.

A production function v is called submodular if it exhibits decreasing marginal produc-

tivity. More formally, for every two sets of workers S ⊂ T and for any worker x 6∈ T ,

v(x|T ) ≤ v(x|S). We denote by SM the set of submodular production functions. Lehmann

et al. (2006) show that GS ⊂ SM ⊂ FS and consequently GS ⊂ AFS .

In fact, AFS is substantially larger than GS in the following sense. A production function

can be represented by a vector in (2M−1)-dimensional Euclidean space that specifies the value

of the production function on every non-empty set. Under this representation, Lehmann et al.

(2006) prove that the set GS has Lebesgue measure zero while SM (and consequently FS

and AFS) have positive measure.
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2.4 Efficiency

The efficiency level of an assignment A is P (A) =
∑

n v
n(An)−

∑
m∈An bnm (recall that vn(·)

and bnm are all measured in salary units). An assignment is efficient if it maximizes the

efficiency, over all possible assignments.

3 Salary Driven Workers

Before we state our results we consider a variation of a labor market which we refer to as

labor markets with salary driven workers. We use the notion of ‘salary-driven’ to emphasize

that workers do not care about any aspect of their job, except for their salary. This manifests

itself by setting the minimal wage requested by all workers to zero, across all firms (bnm =

0 ∀m ∈M,n ∈ N).

For labor markets with salary driven workers the notions of individual rationality and

JS-stability become simpler:

Lemma 3. Let bnm = 0 ∀m ∈M,n ∈ N . An allocation (A, s) is individually rational (IR) if

and only if vn(An)−
∑

m∈An sm ≥ 0 ∀n ∈ N .

The proof is straightforward and therefore omitted.

Lemma 4. Let (A, s) be an allocation in a salary driven market (v, 0). Then (n,C) is a

blocking coalition if and only if vn(C|An) >
∑

m∈C sm.

Proof. A sufficient condition: Clearly if vn(C|An) >
∑

m∈C sm then by setting ŝ = s the

coalition (n,C) is a blocking coalition.

A necessary condition: Assume now that (n,C) is a blocking coalition and so there exits

some vector of salaries ŝ such that vn(C|An) ≥
∑

m∈C ŝm and ŝm ≥ sm ∀m ∈ C, with one

of the inequalities being strict. Assume the strict inequality is vn(C|An) >
∑

m∈C ŝm then

clearly vn(C|An) >
∑

m∈C sm as well and we are done. If, on the other hand, vn(C|An) =∑
m∈C ŝm but for some m̂ ∈ C, ŝm̂ > sm̂ then once again we have vn(C|An) >

∑
m∈C sm and

we are done.

As before an allocation (A, s) is called Job Security stable (JS-stable) if it is IR and there

exist no blocking coalitions.14

14The model of salary driven workers may be viewed as a combinatorial auction model with a seller who
owns goods (the “workers”) and buyers (the “firms”) who have valuations for subsets of goods and compete
for these goods. The interpretation of IR and efficiency in this model is straightforward, however the notion
of a ‘blocking coalition’ and hence the notion of JS-stability forms a technical relaxation of the notion of a
core for which the authors have compelling explanation.
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3.1 Labor markets, without loss of generality, have salary driven

workers

In this section we construct tools that will enable us to prove results about labor markets by

restricting attention to labor markets that have salary driven workers. Let (v, b) be a labor

market. We denote by (v − b, 0) a labor market with salary driven workers and production

functions (v − b)n(B) = vn(B)−
∑

m∈B b
n
m. Similarly if (A, s) is some allocation then s− b

is the following vector of salaries: If m ∈ Ak then (s− b)m = sm − bkm.

Lemma 5. Let (v, b) be a labor market. vn ∈ AFS if and only if (v − b)n ∈ AFS.

Proof. We prove the first direction and assume vn ∈ AFS . To prove that (v − b)n ∈ AFS

we need to show two things:

1. For any C ⊂ M,C 6= M , v − b is fractionally Sub-additive on C. Indeed, let

{λD}D⊆C,D 6=∅ be a fractional cover of C and so
∑

m∈C bm =
∑

D⊆C,D 6=∅ λD
∑

m∈D bm.

Consequently:

(v−b)(C) = v(C)−
∑
m∈C

bm ≤
∑

D⊆C,D 6=∅

λDv(D)−
∑

D⊆C,D 6=∅

λD
∑
m∈D

bm =
∑

D⊆C,D 6=∅

λD(v−b)(D).

2. (v − b)(M) ≤
∑

m∈M (v−b)(M\m)

|M |−1
. Indeed

(v−b)(M) = v(m)−
∑
m

bm ≤
∑

m∈M v(M \m)

|M | − 1
−
∑

m

∑
k 6=m bk

|M | − 1
=

∑
m∈M(v − b)(M \m)

|M | − 1
.

The opposite direction of the proof is similar and hence omitted.

Let P(v,b)(A) be the efficiency level of the assignment A for the labor market (v, b).

Lemma 6. P(v,b)(A) = P(v−b,0)(A).

Proof. This is quite straightforward:

P(v,b)(A) =
∑
n

(vn(An)−
∑
m∈An

bnm) =
∑
n

(v − b)n(An) = P(v−b,0)(A).

Lemma 7. A is an efficient assignment for (v−b, 0) if and only if it is an efficient assignment

for (v, b).

14



Proof. This follows directly from Lemma 6.

Lemma 8. The allocation (A, s) is an (IR) allocation for the labor market (v, b) if and only

if (A, s− b) is an (IR) allocation for (v − b, 0).

Proof. Let (A, s) be an (IR) allocation for (v, b). Then, for each firm n, vn(An) ≥
∑

m∈An sm

which can be rewritten as (v − b)n(An) ≥
∑

m∈An(sm − bnm) =
∑

m∈An(s− b)m. In addition,

for each worker, m, sm ≥ bnm, where m ∈ An. Equivalently , (s− b)m ≥ 0 which means that

(A, s− b) is (IR) in the labor market (v − b, 0).

The proof of the opposite direction is similar and hence omitted.

Lemma 9. The coalition (n,C) is a blocking coalition for the allocation (A, s) in the labor

market (v, b) if and only if it is a blocking coalition for the allocation (A, s− b) in the labor

market (v − b, 0).

Proof. Assume that (n,C) is a blocking coalition for the allocation (A, s) in the labor market

(v, b). Then there exists some vector of salaries {ŝm}m∈C such that:

• ŝm − bnm ≥ sm − bkm for all k and for all m ∈ C ∩ Ak,

• vn(C|An) ≥
∑

m∈C ŝm, implying (v − b)n(C|An) ≥
∑

m∈C ŝm − bnm

with at least one of the inequalities being strict.

Let us set s̄m = ŝm − bnm, ∀m ∈ C. The above system of inequalities is equivalent to:

• s̄m ≥ sm − bkm = (s− b)m ∀k and m ∈ Ak ∩ C,

• (v − b)n(C|An) ≥
∑

m∈C s̄m,

with at least one of the inequalities being strict, implying the desired conclusion.

The proof of the opposite direction is similar and hence omitted.

Lemma 10. The allocation (A, s) is a JS-stable allocation for (v, b) if and only if the allo-

cation (A, s− b) is a JS-stable allocation for (v − b, 0).

Proof. This is a direct consequence of Lemmas 8 and 9.
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4 Results

We now return to general labor markets and state our four main results. The first two connect

JS-stability with efficiency and can be viewed as analogs for the First and Second Welfare

Theorems. In particular, we show that whenever production functions are in AFS, efficient

outcomes are JS-stable. In our third result we show that one cannot extend these results

beyond the class of AFS production functions. Our final result makes a connection between

the notion of JS-stability and, inspired by cooperative game theory, a Nash equilibrium

of a natural auction-like non-cooperative game played among the firms. All these four

results parallel central results in the literature on stability in labor markets. We informally

summarize our results and their parallels towards the end of this section.

4.1 A 1
2-First Welfare Theorem

As one can expect, JS-stability does not guarantee efficiency. On the other hand the ineffi-

ciency of any JS-stable outcome is bounded:

Theorem 2. If (A, s) is a JS-stable allocation and Ā is an efficient assignment, then P (A) ≥
1
2
P (Ā).

Note that this result assumes no restrictions on production technologies.

Proof. We first prove our result for labor markets with salary driven workers, denoted (v, 0).

Indeed, for every firm n we have vn(Ān \ An|An) ≤
∑

m∈Ān\An sm. Thus, we have

vn(Ān) ≤ vn(Ān ∪ An) ≤
∑

m∈Ān\An

sm + vn(An)

Therefore

n∑
i=1

vn(Ān) ≤
n∑
i=1

 ∑
m∈Ān\An

sm + vn(An)

 ≤ n∑
i=1

(∑
m∈Ān

sm + vn(An)

)
≤

≤
∑
m∈M

sm +
n∑
i=1

vn(An) =
n∑
i=1

∑
m∈An

sm +
n∑
i=1

vn(An) ≤ 2
n∑
i=1

vn(An),

where the last inequality follows from (IR) of the assignment A = (An)n∈N . This proves the

claim for labor markets with salary driven workers.
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Now let (A, s) be a JS-stable allocation for an arbitrary labor market (v, b) and let Ā be

an efficient assignment for (v, b). Therefore, (A, s− b) is a JS-stable allocation for (v − b, 0)

(Lemma 10) and Ā is efficient for (v − b, 0) (Lemma 7). Now:

P(v,b)(A) = P(v−b,0)(A) ≥ 1

2
P(v−b,0)(Ā) =

1

2
P(v,b)(Ā),

where the left and right equalities follow from Lemma 6 and the inequality follows from

the first part of the proof.

This bound on the efficiency loss is tight as suggested by the following example:

Example 2. Consider a labor market with four salary-driven workers a, b, c, d and two firms

with production functions, v1, v2, defined as follows. For any non-empty subset of workers

S ⊆ {a, b, c, d}, v1(S) is 1 unless {a, c} ⊆ S, in which case v1(S) is 2; similarly, v2(S) is 1

unless {b, d} ⊆ S, in which case v2(S) is 2.

Let S1 = {a, b}, S2 = {c, d} and set wages p(b) = p(c) = 1, p(a) = p(d) = 0. It is

straightforward to verify this is a JS-stable allocation and the social welfare is 2, whereas

the social welfare of the efficient assignment is 4.

4.2 A Second Welfare Theorem

Theorem 3. Let (v, b) be a labor market. If vn ∈ AFS for all n ∈ N then for any efficient

assignment A there is a salary vector s, such that (A, s) is a JS-stable allocation.

Note, in particular, that the existence of a JS-stable outcome is guaranteed under the

conditions of Theorem 3

Proof. We begin by proving our result for an arbitrary salary driven labor market (v, 0),

with production functions in AFS.

Case 1: No efficient assignment assigns all workers to a single firm: Therefore

if A = (A1, · · · , An) is some efficient assignment then Ak 6= M for any firm k. Thus,

we can apply Theorem 1 (which is our version of the Bondareva Shapley theorem) and

conclude that for each k ∈ N , there exists a supporting vector of salaries, {skm}m∈Ak , for

(vk, Ak). For any m ∈ M let n(m) denote the firm for which m ∈ An(m) and set sm =

s
n(m)
m . We show that the allocation (A, s) is JS-stable. IR follows immediately from the

definition of a supporting vector of salaries. To finish our proof we must show that an

arbitrary coalition, (n,B), where B ⊂ M \ An, cannot be a blocking coalition. Denote

17



Rk = Ak ∩ B. As A is efficient vn(An ∪ B) +
∑

k 6=n v
k(Ak \ Rk) ≤

∑
k∈N v

k(Ak). Therefore

vn(An)+vn(B|An) ≤
∑

k∈N v
k(Ak)−

∑
k 6=n v

k(Ak \Rk) = vn(An)+
∑

k 6=n v
k(Rk|Ak \Rk). As

{skm}m∈Ak is a vector of supporting salaries for (vk, Ak) we have vn(B|An) ≤
∑

k 6=n v
k(Rk|Ak\

Rk) ≤
∑

k 6=n
∑

m∈Rk skm =
∑

m∈B sm, implying that (n,B) is not a blocking coalition.

Case 2: There is an efficient assignment that assigns all workers to firm n: Ef-

ficiency implies that for any k 6= n and any m ∈ M , vk(m) + vn(M \ m) ≤ vn(M) =

vn(m|M \m) + vn(M \m), therefore vk(m) ≤ vn(m|M \m).

Now set sm = vn(m|M \ m) for every m ∈ M . We show that this yields a JS-stable

allocation:

• IR: By Lemma 2 vn(M) ≥
∑

m∈M vn(m|M \ m) =
∑

m∈M sm, and IR follows from

Lemma 3.

• No blocking coalition: For every firm k 6= n and for every subset B ⊆M , we apply

Lemma 2:

vk(B) ≤
∑
m∈B

vk(m) ≤
∑
m∈B

vn(m|M \m) =
∑
m∈B

sm,

Thus no blocking coalition follows from Lemma 4.

So far we have proven our claim for a salary driven labor market. The proof for an

arbitrary labor market follows from Lemmas 5, 7 and 10.

Note that the proof of Theorem 3 is constructive and so it is suggestive of an algo-

rithm that, given an efficient allocation, computes the salaries that support it as a JS-stable

outcome.

4.3 The maximality of the set of production technologies AFS

We now turn to show that the set of production functions, AFS , is maximal with respect to

the property that any efficient assignment can also be supported as a JS-stable allocation.

In other words, if one of the firms has a production function that is not in AFS it could

be the case that some efficient assignment is not supported by a JS-stable allocation. In

fact, we will show that it could be that none of the efficient assignments are supported by a

JS-stable allocation. Formally:

Theorem 4. If v̄ 6∈ AFS then there exists a labor market (v, 0), where v1 = v̄ and for all

n > 1 vn ∈ AFS and if A is an efficient assignment then for no vector of salaries s is (A, s)

a JS-stable allocation of the market (v, 0).
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Theorem 4 argues that AFS is a maximal domain of production functions such that

the second welfare theorem holds. In particular if v ∈ AFS then a JS-stable outcome is

guaranteed to exist. However, Theorem 4 does not argue maximality of AFS with respect

to the existence of JS-stable outcomes (that are not necessarily efficient). We take a slight

detour before returning to prove Theorem 4 and show that such general existence cannot

be guaranteed outside the class of Symmetrically Fractionally Sub-additive (SFS) functions,

defined as follows:

Definition 9. A valuation v is called symmetrically fractionally sub-additive if for any B ⊆
M with |B| ≥ 2, v(B) ≤ 1

|B|−1

∑
x∈B v(B \ x). Let SFS denote the set of all symmetric

fractionally sub-additive valuations.

An example of a symmetrically fractionally sub-additive function is production function,

v, that satisfies v(B) = max{v(x) : x ∈ B} for any B ⊆ M . In words, a coalition can only

produce as much as its top producing member. Such production functions are called unit

demand production function.

Clearly AFS ⊂ SFS . In addition:

Lemma 11. v ∈ SFS =⇒
∑

m∈M v(m|M \m) ≤ v(M) ≤
∑

m∈M v(m).

Note that this result is similar to Lemma 2 and in fact the proof of Lemma 2 applies

verbatim to this lemma as well and so the proof is omitted.

With this at hand we turn to the following proposition that sheds some light on the

structure of maximal domains which guarantee the existence of JS-stable allocations:

Proposition 1. If u 6∈ SFS then there exist unit-demand production functions v1, ..., vn such

that the salary driven labor market with n + 1 workers, ((v1, ..., vn, u), 0)), does not admit a

JS-stable allocation.

Proof. Since u /∈ SFS , Lemma 11 implies that there exists B ⊆M such that
∑

x∈B u(x|B \
x) > u(B). We construct the following tuple of unit-demand valuations. For every worker

x ∈M \B we have two unit-demand valuations v
(1)
x = v

(2)
x such that v

(i)
x (x) = u(M) + 1 and

v
(i)
x (y) = 0 for any worker y 6= x. Additionally define a unit-demand valuation vB as follows.

Choose a small enough ε > 0 such that (i)
∑

x∈B(u(x|B \ x) − ε) > u(B), and (ii) ∀x ∈ B
such that u(x|B \ x) > 0, ε < u(x|B \ x). Then define

vB(x) =

{
max(0, u(x|B \ x)− ε) x ∈ B
0 x /∈ B

19



We show that that there does not exist a JS-stable allocation for this labor market. Note

that in every possible JS-stable allocation in this labor market, every worker x ∈M \B must

be allocated to either the firm with valuation v
(1)
x or v

(2)
x and its salary must be v

(1)
x (x). As a

result, note that if in some JS-stable allocation a firm with valuation v
(i)
x is being allocated

some worker y ∈ B, y’s salary must be zero. Suppose by contradiction that there exists a

JS-stable allocation with salaries p and in which the firm with valuation u is allocated a set

of workers Tu, the firm with valuation vB is allocated a set of workers Tv, and Tu ∪ Tv ⊆ B.

If Tv = ∅ or vB(Tv) = 0 (in which case p(Tv) is 0), then we have p(B) =
∑

x∈Tu px ≤
u(Tu) ≤ u(B) <

∑
x∈B(u(x|B \ x) − ε). Thus, there exists a worker x ∈ B \ Tv with

px < u(x|B \ x)− ε ≤ vB(x). Since in this case the firm with valuation vB will desire such a

worker x, this cannot be a JS-stable allocation.

Otherwise, vB(Tv) > 0. Let x∗ = arg maxx∈Tv vB(x), then vB(x∗) = u(x∗|B \ x∗) − ε.

Since p(B \ Tu) = p(Tv) ≤ vB(x∗) we have,

u(B \ Tu|Tu)− p(B \ Tu) > u(B \ Tu|Tu)− u(x∗|B \ x∗)

= (u(B)− u(Tu))− (u(B)− u(B \ x∗))

= u(B \ x∗)− u(Tu) ≥ 0,

where the last inequality follows since Tu ⊆ B \ x∗. Once again this contradicts the assump-

tion that the allocation is JS-stable.

We now turn to some interim observations needed in order to prove Theorem 4:

For any valuation v and a positive number r let v+ r be the valuation defined as follows:

(v + r)(D) = v(D) + r, ∀D ⊆M .

Lemma 12. For any monotone valuation v, there exists some positive number R such that

for any r ≥ R, v + r ∈ FS

Proof. If v(M) = 0, then v is already in FS. Otherwise, let R be (|M | − 1)v(M), and we

show for any r > R, v+ r ∈ FS, by constructing supporting salary vectors for every S ⊆M

(Definition 7). For any S ⊆ M , consider the vector s ∈ RS, where sx = r+v(S)
|S| , for each

x ∈ S. It is straightforward to see that
∑

x∈S sx = r + v(S) = (v + r)(S). Then for any

proper subset T ( S,

(v + r)(T ) ≥
∑
x∈T

r

|T |
=
∑
x∈T

r · |S|
|T |
· 1

|S|
≥
∑
x∈T

r

(
1 +

1

|M | − 1

)
· 1

|S|
≥
∑
x∈T

r + v(S)

|S|
=
∑
x∈T

sx.
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In the second inequality we used the fact |S||T | ≥
|M |
|M |−1

, and in the last inequality we used the

fact r > R ≥ (|M | − 1)v(S). This shows that indeed s is a supporting salary vector, and

therefore v + r is in FS by Theorem 1.

For any T ⊂M let v|T (·) denote the restriction of v(·) to T .

Lemma 13. If v 6∈ FS and for any proper subset T ⊂ M , v|T ∈ FS then for any proper

subset T ⊂M , v(T ) < v(M).

Proof. For the sake of contradiction, suppose for T (M , v(T ) = v(M). By the assumption

that v|T is in FS, there exists a supporting salary vector s on T . We extend s by padding

0 for all elements in M \ T and argue that we obtain a supporting salary vector for M ,

contradicting v /∈ FS . To see this, observe that
∑

x∈M sx =
∑

x∈T sx = v(T ) = v(M), and

for any S (M ,
∑

x∈S sx =
∑

x∈S∩T sx ≤ v(S ∩ T ) ≤ v(S).

We are now ready to prove Theorem 4:

Proof. (Theorem 4): We split the proof into two cases:

Case 1: If for some B ⊆ M, v̄(B) >
∑

m∈B
v̄(B\m)
|B|−1

then the conclusion follows from Propo-

sition 1.

Case 2: Assume that for all B ⊂M, v̄(B) ≤
∑

m∈B
v̄(B\m)
|B|−1

. As v̄ 6∈ AFS there exists some

strict subset T ⊂ M such that v̄|T 6∈ FS . In particular, let T be a minimal such subset,

namely any strict subset of T is in FS . By Lemma 13 for any T ′ that is a strict subset of

T , v̄(T ′) < v̄(T ). In particular we may choose ε̄ > 0 be such that for any T ′ that is a strict

subset of T , v̄(T ′) + ε̄ < v̄(T ).

For any ε̄ > ε > 0 we define the valuation uε on M as follows: uε(D) = r− v̄(Dc) ∀D 6= T c

and uε(T c) = r− v̄(T ) + ε, where r = r(ε) is large enough to guarantee that uε ∈ FS (recall

Lemma 12).15 Monotonicity of uε is straightforward from the construction and the choice of

ε.

Allocating T to the firm with production function v̄ and T c to the agent with production

function uε is the unique optimal allocation. Note that it generates a social welfare of r + ε

whereas any other allocation generates r.

Assume the theorem is false and that for any ε the unique optimal assignment of (v̄, uε)

can be supported by a JS-stable allocation ((T, T c), sε). By IR
∑

m∈T s
ε
m ≤ v̄(T ), however

15The set Dc = M \D denotes the complementary set of D in M .
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by increasing the salary of some single worker in T we can assume, without loss of generality,

that
∑

m∈T s
ε
m = v̄(T ).

For any D ⊆ T , JS-stability implies∑
m∈D

sεm ≥ uε(D|T c) = uε(D ∪ T c)− uε(T c) = v̄(T )− v̄(T \D)− ε =
∑
m∈T

sεm − v̄(T \D)− ε.

Therefore, for any D ⊆ T ,
∑

m∈T\D s
ε
m ≤ v̄(T \D) + ε. This can be equivalently stated as

follows: ∑
m∈D

sεm ≤ v̄(D) + ε ∀D ⊆ T.

Let ε̄ > εn > 0 be decreasing sequence with limn εn = 0 and let s be an accumulation point

of the set of salary vectors {sεn}∞n=1. Then
∑

m∈T sm = v̄(T ) and
∑

m∈D sm ≤ v̄(D) ∀D ⊂ T

which implies that s is a supporting vector of salaries for v̄|T on the set T , contradicting the

assumption that v̄|T 6∈ FA.

Note that the results of this section leave open the question of the maximal set of pro-

duction functions that guarantee the existence of a JS-stable allocation. In particular, we

do not know whether such an allocation necessarily exists in SFS \ AFS .

4.4 JS-stability as an outcome of a decentralized mechanism

A labor market, (v, b), naturally induces the following complete information normal-form

game played among the firms. Each firm proposes a vector of salaries, one for each worker

(and firm 0 proposes the vector 0). Each worker is then assigned to the firm that proposed the

best salary, while receiving a salary that would make him indifferent between his best offer

and his second best offer. We refer to this game as the Second-Price Item Bidding (SPIB)

game. Our last result shows that a JS-stable allocation is also an equilibrium outcome of

the SPIB game.

Formally, each firm proposes a salary schedule pn = {pnm}m∈M . Given a vector of

proposals ~p = (p1, . . . , pN) and given a worker m, let km = arg maxn∈N∪{0} p
n
m − bnm and

sm = min{s : s− bkmm ≥ pnm − bnm∀n 6= km}.
Note that the existence of a pure Nash equilibrium is guaranteed. In fact, in any profile

of bids where one firm proposes an “infinite” salary to all workers, while all other firms

propose a minimal salary (one that makes workers indifferent between working and staying

unemployed) is such an equilibrium.
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In what follows we rule out such equilibria by following ideas proposed in Christodoulou

et al. (2008) and Bhawalkar and Roughgarden (2011). We restrict attention to Nash equilibria

with no overbidding, which are those Nash equilibria, ~p, in which, for any firm n and any

subset of workers D ⊆M , vn(D) ≥
∑

m∈D p
n
m. In words, firms’ proposals are such that they

recognize no loss no matter which workers they are eventually assigned. In fact we consider

here a weaker restriction which we refer to as Nash equilibria with weak no-overbidding,

which are those Nash equilibria ~p in which for any firm n, vn(Dn(~p)) ≥
∑

n∈Dn(~p) p
n
m, where

Dn(~p) is the set of workers actually assigned to firm n for the vector of proposals ~p. In other

words, the no-overbidding restriction involves only the set of workers the firm is eventually

allocated. 16

Theorem 5. For any labor market (v, b) there exists a pure Nash equilibrium with weak

no-overbidding in the induced SPIB game if and only if there exists JS-stable allocation in

the market. Moreover, the underlying mapping between the NE and the JS-stable allocation

preserves the assignment of workers to firms.

Proof. Let ~p be a pure Nash equilibrium with weak no-overbidding for the SPIB game

induced by (v, b). We construct a JS-stable allocation in the following way: the set of

workers Dn assigned to firm n is exactly Dn(~p) the set of workers assigned to n in the

equilibrium of the SPIB game. The salary of worker m ∈ M will be sm = maxn∈N p
n
m. By

definition, for every firm n and every m ∈ Dn, pnm = sm. Thus, by weak no-overbidding,

vn(Dn) ≥
∑

m∈Dn sm, implying the individual rationality requirement. Since ~p is a Nash

equilibrium, for any firm n and any T ⊂ M \ Dn, vn(T |Dn) ≤
∑

m∈T sm, since otherwise

firm n can strictly increase utility in the SPIB game by proposing very high salary to the

workers in T .

Now suppose that there exists a JS-stable outcome ((S1, · · · , SN), (p1, . . . , pN)) for (v1, ..., vN).

We claim that the following bid vector~b is a pure Nash equilibrium with weak no-overbidding

for SPIB with (v1, ..., vN).

bji =

 pj j ∈ Si

0 j /∈ Si
16To appreciate why weak no-overbidding is a significant relaxation of the no-overbidding criterion recall

that production functions are not necessarily sub-additive. Thus, with weak no-overbidding a firm may end
up with a profitable allocation of workers, for which there exists a partition of the allocated coalition of
workers such that the sum of the bids over each element is larger than its productivity. This cannot occur
with the original no over-bidding criterion and so the original no-overbidding condition may effectively limit
the firms to bid very low (relative to their actual value) on certain sets of workers.
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Note that with this bid vector, each player i wins Si, and pays zero. Clearly player i cannot

increase her utility by changing any bid for a worker in Si, as she pays zero for these workers.

She also cannot increase utility by bidding higher on workers in some subset T ⊂ Ω \ Si, as

she will have to additionally pay
∑

j∈T pj ≥ vi(T |Si) for these workers, where the inequality

follows from JS-stability. Thus ~b is indeed a Nash equilibrium. By individual rationality,

vi(Si) ≥
∑

j∈Si
pj, implying that ~b satisfies weak no-overbidding, and the claim follows.

4.5 Summary of Results

The following table informally summarizes our main results while comparing these with the

existing literature on unregulated labor markets:

TYPE OF LABOR UNREGULATED REGULATED

MARKET (existing literature) (our contribution)

Solution concept Stable allocations JS-stable allocations

Set of production function GS AFS and SFS

First welfare theorem Stable allocations are efficient. JS-stable allocations obtain

half the maximal efficiency.

Second welfare theorem Pareto efficient allocations are Efficient allocations are

stable in GS. JS-stable in AFS.

Maximality Stable allocations are not Efficient JS-stable allocations

guaranteed outside GS. are not guaranteed

outside AFS.

JS-stable allocations are

not guaranteed outside SFS.

Non-cooperative Stable allocations are JS-Stable allocations are

foundations Nash equilibria of the Nash equilibria of the

first price item bidding game second price item bidding game

(Bikhchandani, 1999). (with no over-bidding).

5 Discussion and Future Research

In this work we introduce JS-stability as a new solution concept for many-to-many matching

markets. This concept is inspired by regulated labor markets where costs for firing employees

are prohibitively high. Clearly any stable outcome, in the classical sense, is also JS-stable.
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However, there are JS-stable outcomes which are not stable. In fact, there is a large family

of production functions which do not admit stable outcomes, yet JS-stable outcomes not

only exist for them but in fact support all efficient outcomes. Unfortunately, JS-stability

does not always guarantee efficiency. Surprisingly, it does guarantee a (multiplicative) upper

bound of 50% on efficiency loss.

5.1 Regulated labor markets

Harnessing the many-to-many matching model for studying regulation in labor markets is

novel, to the best of our knowledge. Thus, our work must be viewed as the first step of a

research agenda that studies implications of regulatory intervention in labor markets. We

highlight some natural follow-up questions which we leave for future research:

• Unemployment rates: Much of the work done by labor theorists around termination

costs for workers focuses on the implications of such costs on the unemployment level.

Two contradicting forces come into play. First, due to high termination costs employees

will not be fired and hence unemployment should decrease. Second, at the hiring stage

firms take the termination costs into account and so tend to hire less. The lion’s share

of the related work uses partial or general equilibrium analysis. In particular it assumes

a homogeneous workforce. Our model, on the other hand, assumes heterogeneity of

the workers and so may lead to conclusions that are different from those reached via

the homogeneity assumption. In future work we shall compare employment levels in

stable outcomes with those of JS-stable outcomes, when both exist (e.g., under gross-

substitutes assumption). It can be demonstrated that, in general, such comparative

statics can swing both ways. Consider the market in the following example, due to

Fuhito Kojima, where JS-stable outcomes exhibit lower unemployment levels combined

with a lower social welfare, when compared with a stable outcome of the same market:

Example 3. There are two firms, A and B, and three workers a, b, c. Let bAa = 1 and

bnm = 0 otherwise. Firm A has a unit demand and vA(a) = 0, vA(b) = 1, vA(c) = 1.5.

For firm B, vB(a) = 4, vB(b) = 6, vB(c) = 2 and vB(X) = 6 otherwise.

Note that matching b with B and c with A, both with zero salary, is a stable matching

which leaves a unemployed. On the other hand matching b with A at a salary of 1,

a and c with B at salaries 4 and 2 respectively, yields a JS-stable outcome with no

unemployment (note that this matching is not efficient nor stable as B and b at a

salary of 5 is a blocking coalition).
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We leave it to the reader to find an example that demonstrates the opposite. Thus,

one should refine the analysis and focus on specific domains of production functions

where the outcome is conclusive. In addition, computing bounds on differences of

unemployment under the two stability concepts is interesting. We leave these questions

to future research.

• Severance payments: As mentioned, JS-stability is inspired by prohibitive firing

costs for employers. For example, a recent trend in labor theory is to study the im-

plications of a requirement for severance payments when firms layoff employees (e.g.,

as suggested in Blanchard and Tirole (2008)). In fact, some countries, like Denmark,

already implement such a policy (Andersen, 2012). It will be interesting to replace the

notion of JS-stability with an alternative solution concept which models more moder-

ate regulation than tenure within the framework of many to many matching models.

One thing to note is that the conclusions of such a model may also depend on the

recipient of such severance payments. Does the employee or the state enjoy them (in

which case they could be modeled as deadweight costs)? The research agenda may

well go beyond severance payments and study other regulatory means designed for job

protection and job security such as insurance institutions.

• Risk-averse workers: Recall that some of our results refer to a cardinal notion of

efficiency. For this notion to make sense we require that all utilities, for firms and for

workers, are given in the same ‘currency’. As a result our model assumes that firms’

and workers’ utilities are given in terms of money. Whereas for firms this is natural (as

we identify utility with profits), for workers this is a limitation. Therefore, a study of

JS-stability is called for when workers’ utility functions go beyond additive-separable

functions. This is particularly important if one would like to account for uncertainty

without assuming workers are necessarily risk neutral.

5.2 The structure of the set of JS-stable outcomes

Apart from the natural appeal of stability as a solution concept in matching models it also

exhibits a very elegant mathematical structure, as the set of stable outcomes forms a lattice

under a natural order. A variety of observations then follows. These observations may have

natural counterparts when considering the larger set of JS-stabile outcomes:

• A basic question we leave open refers to the maximal class of production functions

which guarantees the existence of a JS-stable outcome (albeit not necessarily an efficient
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one). We do not know if there is a unique maximal such class of production functions,

much less how to characterize the production functions in a maximal such class.

• Is there a similar lattice structure for the set of JS-stable outcomes? What kinds of

production functions allow for such a lattice structure? We suspect that the answers

will typically be negative but have not studied this in depth so far.

• A central corollary one can derive from the lattice structure of stable outcomes is the

existence of ‘best’ and ‘worst’ stable outcomes for the firms as well as for the workers.

However, such best and worst allocations may exist even without a lattice structure

(e.g., see Hatfield and Kojima (2010)). Thus, the study of extreme allocations that

are JS-stable may take place even prior to our full understanding of the existence of a

lattice structure for JS-stable outcomes.

5.3 The JS-Core

The solution concept we focus on, JS-stability, is based on the inexistence of blocking coali-

tions composed of a single firm and some workers. However, a JS-stable allocation can

conceivably allow for a situation where there exists a set of more than a single firm for which

these firms can shuffle their current joint set of workers and possibly recruit additional work-

ers to obtain an outcome that is better for all involved (the firms in the set, the current set

of workers and the additional workers). Thus, the set of workers of such firms will happily

agree with being laid-off, conditional on being recruited by some other firm in the set of

firms. Such a possibility may imply that what we refer to as a JS-stable allocation may not

necessarily be stable, even when Job-security provisions are instated.

This situation is demonstrated in the JS-stable outcome of Example 2 where two firms

can switch workers, in particular workers b and c, and consequently improve the situation

for all. This observation begs a definition of a stronger notion of stability, the JS-core:

Definition 10. Given an allocation (A, s), we say that a coalition composed of a set of firms

N̂ ⊂ N , and a set of workers C such that ∪n∈N̂An ⊂ C, is a big blocking coalition if there

exists an allocation (Â, ŝ) such that ∪n∈N̂ Ân = C and:

• um(n, ŝm) ≥ um(k, sm) ∀k ∈ N, n ∈ N̂ ,m ∈ Ak ∩ Ân ∩ C (workers in C are better off

in allocation (Â, ŝ)),

• vn(Ân)−
∑

m∈Ân ŝm ≥ vn(An)−
∑

m∈An sm for all n ∈ N̂ ,
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with at least one of the inequalities being strict.

Definition 11. An allocation (A, s) is in the Job Security Core (JS-Core) if it is IR and

there exist no big blocking coalitions.

Dropping the requirement in Definition 10 that ∪n∈N̂An ⊂ C gives the definition of the

Core. Some immediate observations are:

Proposition 2. The following holds for the JS-Core:

• Any allocation in the JS-core is JS-stable.

• There are allocations that are JS-stable but are not in the JS-Core (see Example 2).

• Any allocation in the JS-core is Pareto optimal (otherwise the grand coalition is a

blocking coalition).

• The Core is a subset of the JS-Core.

Consider an allocation that is JS-stable yet not in the JS-core. For the big blocking

coalition to succeed in pulling off a deviation all changes must occur simultaneously or

alternatively there must exist strong guarantees in place for a job for those workers who

voluntarily leave their current employer as well as strong guarantees for firms who commit

to hiring new workers that some of their current workforce will voluntarily quit. Such a set of

cross guarantees may be highly unreasonable when more than a single firm is involved. Thus,

although the study of the JS-Core may shed additional light on the regulatory implications

of tenure, the notion of JS-stability makes for a reasonable starting point for such analysis.

5.4 Matching with contracts

The simple many-to-many matching model that we use was extended by Hatfield and Mil-

grom (2005) to a model of ‘matching with contracts’. In such a model a contract between

a firm and an agent may specify various aspects related to employment, beyond the salary.

It may specify working hours, shifts, insurance, job description, and many more. Therefore

there may exist many possible contracts between a worker and a firm. Consequently, the

firm’s output (and, consequently, its profit) will not depend only on the set of employees

it employs but also on the specific contracts signed between the employees and the firm.

Milgrom and Hatfield extend the results from the many-to-many matching model to the

new matching-with-contracts paradigm under the gross-substitutes assumption. Echenique
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(2012) showed that under the gross substitutes assumption the two models are in fact equiv-

alent and the seemingly multi-dimensional extension from wages to contracts boils down to a

single-dimensional set. However, Hatfield and Kojima (2008; 2010) demonstrate the richness

of the matching-with-contracts paradigm by extending some of the results beyond the famil-

iar domain of gross substitutes. In particular they propose new notions of substitutability,

called bilateral and unilateral substitutes. Sönmez and Switzer (2013) and Sönmez (2013)

provide a realistic example of a market where these weaker assumptions hold and, as a result,

offer new and more efficient allocation mechanisms for such markets.

A major component of our analysis is the domain of production function which we ana-

lyze. In particular this domain, AFS, goes far beyond gross substitutes. Thus, the matching-

with-contracts model is indeed a more general model and is not subject to the Echenique

critique. Studying JS-stability in such a model is left to future research.

5.5 Auction theory

As noted frequently in the literature, matching models have natural connections with com-

binatorial auctions, where the buyers (the “firms”) who have valuations for subsets of goods

need to pay the sum of item prices (the “wages”) in a bundle in order to keep the bundle.

Our solution concept of JS-stability is then a relaxation of the Walrasian equilibrium in the

auction context. A Walrasian equilibrium consists of allocations and item prices such that

no bidder can improve her utility by adding items or dropping items or doing both. In

comparison, equilibria corresponding to JS-stability would not allow bidders to drop items,

although they are allowed to add items at current prices. If we refer to such equilibria as

equilibria conditional on buying at least a pre-specified subset of items (abbreviated condi-

tional equilibria), all of our results can be translated as properties of conditional equilibria.

For example, the social welfare at a conditional equilibrium, whenever it exists, is always

a 2-approximation to the optimal; the AFS valuation class is maximal with respect to the

property that any welfare-optimal allocation can be supported as a conditional equilibrium.

The SPIB game that we discussed in Section 4.4 corresponds to a natural simultaneous

second-price item auction. In this auction, all bidders simultaneously submit their bids on

all items, and then each wins the items on which she bids highest and pays the sum of

second highest bids on those items. Previous work (Christodoulou et al., 2008; Bhawalkar

and Roughgarden, 2011) showed that allocations at Nash equilibria with no overbidding in

this auction give 2-approximation to the optimal social welfare when bidders’ valuations

are complement free. Our results immediately imply that for all valuations, as long as a
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Nash equilibrium under weak no-overbidding exists, it achieves a 2-approximation to the

optimal social welfare. Our study also sheds light on the question of which valuation classes

guarantee the existence of pure Nash equilibria in the simultaneous item auction.
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Christodoulou, G., Kovács, A., and Schapira, M. (2008). Bayesian combinatorial auctions.

In Proceedings of the 35th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP), pages 820–832.

Echenique, F. (2012). Contracts vs. salaries in matching. American Economic Review,

102(1):594–601.

Emmenegger, P. and Marx, P. (2011). Business and the development of job security regula-

tions: the case of germany. Socio-Economic Review, 9(4):729–756.

Fallon, P. R. and Lucas, R. E. (1991). The impact of changes in job security regulations in

india and zimbabwe. The World Bank Economic Review, 5(3):395–413.

Gale, D. and Shapley, L. (1962). College admissions and the stability of marriage. The

American Mathematical Monthly, 69(1):9–15.

Gavin, M. K. (1986). Labor market rigidities and unemployment: the case of severance costs.

International Finance Discussion Papers 284, Board of Governors of the Federal Reserve

System (U.S.).

Gul, F. and Stacchetti, E. (1999). Walrasian equilibrium with gross substitutes. Journal of

Economic Theory, 87:95–124.

Hatfield, J. W. and Kojima, F. (2008). Matching with contracts: Comment. American

Economic Review, 98(3):1189–1194.

Hatfield, J. W. and Kojima, F. (2010). Substitutes and stability for matching with contracts.

Journal of Economic Theory, 145(5):1704–1723.

Hatfield, J. W. and Milgrom, P. R. (2005). Matching with contracts. American Economic

Review, 95(4):913–935.

Kelso, A. S. and Crawford, V. (1982). Job matching, coalition formation and gross substi-

tutes. Econometrica, 50(6):1483–1504.

Lazear, E. P. (1990). Job security provisions and employment. The Quarterly Journal of

Economics, 105(3):699–726.

Lehmann, B., Lehmann, D., and Nisan, N. (2006). Combinatorial auctions with decreasing

marginal utilities. Games and Economic Behavior, 55(2):270–296.

31



Marinescu, I. (2009). Job security legislation and job duration: Evidence from the united

kingdom. Journal of Labor Economics, 27(3):465–486.

Osborne, M. and Rubinstein, A. (1994). A Course in Game Theory. MIT Press.

Shapley, L. S. (1967). On balanced sets and cores. Naval Research Logistics Quarterly,

14:453–460.

Sönmez, T. (2013). Bidding for army career specialties: Improving the ROTC branching

mechanism. Journal of Political Economy, 121(1):186 – 219.

Sönmez, T. and Switzer, T. (2013). Matching with (branch-of-choice) contracts at the united

states military academy. Econometrica, 81(2):451–488.

32


	Introduction
	Our contribution
	Literature on job security
	Other matching markets
	Paper structure

	Model
	Stability and Job Security
	AFS production functions
	On a hierarchy of domains of production functions
	Efficiency

	Salary Driven Workers
	Labor markets, without loss of generality, have salary driven workers

	Results
	A 12-First Welfare Theorem
	A Second Welfare Theorem
	The maximality of the set of production technologies AFS
	JS-stability as an outcome of a decentralized mechanism
	Summary of Results

	Discussion and Future Research
	Regulated labor markets
	The structure of the set of JS-stable outcomes
	The JS-Core
	Matching with contracts
	Auction theory


