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Abstract

When not all objects are acceptable to all agents,
maximizing the number of objects actually as-
signed is an important design concern. We com-
pute the guaranteed size index of the Probabilistic
Serial mechanism, i.e., the worst ratio of the ac-
tual expected size to the maximal feasible size. It
converges decreasingly to 1 − 1

e ' 63.2% as the
maximal size increases. It is the best index of
any Envy-Free assignment mechanism.
We are especially grateful to our colleagues

David Manlove and Baharak Rastegari for in-
troducing us to their research project EPSRC
Grant # EP/K010042/1, and sharing the re-
sults already obtained with their colleagues at
the University of Liverpool. Special thanks also
to Jay Sethuraman for guiding us through the lit-
erature on online matching, and to Bettina Klaus
for stimulating conversations.

1 Introduction

1.1 The context

The assignment of indivisible objects to eco-
nomic agents by means of lotteries is an im-
portant example of a “market without money”,
where randomizing the allocation of objects,

or, equivalently in some contexts, implementing
time sharing, is the only way to achieve a fair
outcome. The familiar real life examples include
assigning workers to jobs, jobs to time slots,
classes or dormitory rooms to students, school
choice ([2], [18]), etc.. See [22] for a survey.

The three normative goals of mechanism de-
sign, effi ciency, incentive compatibility and fair-
ness, lead the discussion of the assignment prob-
lem in the economic literature. The recent lit-
erature on algorithmic mechanism design intro-
duces the fourth goal of maximizing a simple
measure of social optimality. One of the earli-
est instances of this approach is [21], discussing
the tradeoff between Strategy-Proofness and the
utilitarian minimization of aggregate cost. An-
other seminal example, closer to home, is in the
bilateral matching problem. When preferences
have ties and are incomplete (remaining single
is preferred to some potential partners) not all
stable matchings are of the same size (the "rural
hospital theorem" does not apply), so it is nat-
ural to look for a stable matching of maximal
size ([15]), or for a maximal cardinality match-
ing with the smallest number of blocking pairs
([5]): both questions turn out to be NP-hard.
The project [19], from which the present work
is born, explores the tradeoffs between Strategy-
Proofness on one hand, and maximizing the size
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of the match on the other, in a variety of assign-
ment and matching problems.

1.2 The problem and the punchline

In most practical instances of the assignment
problem, incomplete preferences are the norm:
in school choice, parents can opt out of the public
system; jobs have deadlines which render certain
time slots useless; students can live off campus,
and so on. Even with strict preferences, effi cient
assignments can then have very different sizes
(number of agents who receive an object), so the
goal of maximizing the size of the actual assign-
ment becomes important in its own right: filling
the largest possible number of slots/seats/jobs,
is a component of the system performance, to
which public shool administrators, the housing
offi ce on campus, etc.., are paying attention. We
define the size index of an assignment as the ra-
tio of the size of the actual assignment to the
maximal feasible size.
Note that the largest feasible size of an assign-

ment only depends upon the bipartite graph of
acceptability, and ignores the finer information
in the profile of individual preferences. This im-
plies that size maximization frequently conflicts
with the goals of fairness and incentive compat-
ibility, as is obvious in the following elementary
example with two objects a, b and two agents
Ann, Bob, who both prefer a to b. If both objects
are acceptable to Bob but Ann only accepts a,
then assigning a to Ann and b to Bob is the only
assignment of maximal size, but it is obviously
unfair to Bob, and makes it profitable for him to
report that only a is acceptable, if he prefers a
50% chance of getting a to a 100% chance of b.
Here, as in [8] and much of the subsequent lit-
erature, we interpret fairness as the well-known
Envy-Freeness property, and incentive compati-

bility as Strategy-Proofness (both defined in sec-
tion 4).
We define the guaranteed m-size index of a

random assignment mechanism as its worst size
index over all assignment problems such that
the maximal size of a feasible assignment is m.
We compute the largest guaranteed m-size in-
dex rm of any Envy-Free mechanism, and show
that it is achieved by the Probabilistic Serial
mechanism ([8], [7], [14]; see section 4), the
only known mechanism to date combining Envy-
Freeness with Ordinal Effi ciency. Moreover the
sequence rm converges decreasingly to 1 − 1

e as
m grows.
Although the Probabilistic Serial mechanism

is not strategy-proof, this result throws some
light on the tradeoff between size maximization
and Strategy-Proofness. Indeed the familiar as-
signment mechanism Random Priority (a.k.a.
serial dictatorship, see [1]) is strategy-proof, and
it was shown in [12] to have a smaller size in-
dex than Probabilistic Serial precisely for those
problems where the latter achieves its worst case
index rm (see section 6 for details). There-
fore rm is also an upper bound for the guar-
anteed m-size index of Random Priority. On
the other hand [20] show that a lower bound is
1 − (1 − 1

m+1)m − 1
m , and the latter sequence

converges increasingly to 1 − 1
e .
1 This confirms

the earlier results in [11] about the asymptotic
equivalence of these two benchmark mechanisms.
It may well be that the performance of Ran-

1This result is closely related to the well known on-
line algorithm maximizing the guaranteed size of a bilat-
eral matching, relative to the maximal size feasible offl ine.
The Ranking algorithm of [17] selects randomly and uni-
formly an ordering of the objects, then assign to the in-
coming agent the highest acceptable object in that order-
ing; its m-guaranteed size is no less than 1− (1− 1

m+1
)m

(see also [4] for a simpler proof and [16] for a generaliza-
tion to multiple objects).
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dom Priority cannot be improved by any other
strategy-proof mechanism.

2 Random assignment with
outside options

Fix N the set of agents and A of objects, with
respective cardinalities n and q. A preference Ri
of agent i ∈ N is a possibly empty ordered sub-
set of A, written Ri = (a1, a2, · · · , ak) where a1

is the best object for i and ak her least preferred
acceptable object. Abusing notation, a ∈ Ri
means that a is an acceptable object for i, and
Ri = ∅ means that no object is acceptable to i.
We write R(A) for the set of individual prefer-
ences.
A profile of preferences R ∈ R(A) defines

a compatibility bipartite graph E ⊆ N × A:
ia ∈ E(R) ⇔ a ∈ Ri, describing which objects
are acceptable to which agents. An assignment
problem is a triple ∆ = (N,A,R), and its com-
patibility graph is written E(∆).
An assignment is a N ×A substochastic ma-

trix P = [pia] ∈ RN×A+ :
∑

N pia ≤ 1 for all a
and

∑
A pia ≤ 1 for all i. It is feasible at R if,

in addition, pia > 0 ⇒ ia ∈ E(∆). We write
P(E(∆)), or simply P(E), for the set of feasible
assignments at ∆, and Pd(E) for the subset of
deterministic feasible assignments (pia = 0, 1 for
all i, a). A well known fact (a variant of Birk-
hof’s Theorem) is that the convex hull of Pd(E)
is P(E).
The expected number of objects (or agents)

assigned at P is s(P ) =
∑

N×A pia, we call it
the size of P . Note that s(P ) ≤ min{n, q}.
The following nice fact refines Birkhof’s Theo-
rem. A random assignment is implemented by
deterministic assignments of (almost) equal size:
any P ∈ P(E) is a convex combination of de-

terministic assignments of size bs(P )c or ds(P )e
(lower and upper integral part).2

In particular the program

s∗(E) = max
P∈P(E)

s(P ) (1)

has at least one deterministic solution, and every
solution is a convex combination of such deter-
ministic assignments. We call s∗(E(∆)) the size
of the problem ∆, i.e., the maximal number of
objects/agents it is feasible to assign. The set of
assignment problems of size m is denoted Am.
An assignment mechanism F associates to

every assignment problem ∆ a feasible assign-
ment F (∆) = P ∈ P(E(∆)). We focus in this
paper on the worst possible match size that a
mechanism can reach, relative to the size of the
problem. Define the guaranteed m-size index
of F as follows

σm(F ) = min
∆∈Am

1

m
s(F (∆))

The absolute guaranteed size index of F is
σ∞(F ) = infm≥2 σm(F ).

3 Effi ciency and guaranteed
size

Given a problem ∆ and two deterministic as-
signments P, P ′ ∈ Pd(E(∆)), we say that P is
Pareto superior to P ′ if P 6= P ′ and

{pia = 1 and p′ib = 1} ⇒ aRib

{pia = 0 for all a} ⇒ {p′ia = 0 for all a}

An effi cient (Pareto optimal) deterministic as-
signment is one that is not Pareto dominated.

2This follows from the results in [10].
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In any problem ∆ ∈ Am there is at least
one effi cient deterministic assignment of maxi-
mal size m. This follows because if an assign-
ment P ∈ Pd(E) is Pareto dominated by P ′,
then s(P ) ≤ s(P ′). On the other hand it is easy
to construct problems with effi cient determinis-
tic assignments of size m

2 . The example in sub-
section 1.2 is the simplest one:

Ann Bob
a a
∅ b

Here m = 2 yet {a → 2,∅ → 1} is an effi cient
assignment. If m is even (resp. odd), we can
replicate this two-agent×two-object pattern to
get a problem in Am with an effi cient assignment
of size m

2 (resp.
m+1

2 ).

A useful and well known observation is that in
any problem of size m, any effi cient determinis-
tic assignment is of size at least m

2 .
3 Therefore

any effi cient deterministic mechanism has a size
index of at least 1

2 .

For a general (random) assignment mecha-
nism F , the weakest effi ciency requirement is
Ex Post Effi ciency (EPE), requiring that the
assignment P be a convex combination of effi -
cient deterministic assignments. The above ob-
servation implies that any ex post effi cient as-
signment mechanism has a guaranteed size of at
least 1

2 . This good news is mitigated by the fact,
to which we now turn, that other normative re-
quirements of fairness and incentive compatibil-
ity place an upper bound on the guaranteed size
of the match.

3 If P ∈ Pd(E) is effi cient and of size m′, and both
agent i and object a are not matched at P , then ia /∈ E,
otherwise assigning a to i would be a Pareto improvement
of P . It follows that any edge used by a matching feasible
at E has at least one endnode matched in P , and there
are 2m′ such nodes.

4 Three main axioms

Given a problem ∆, agent i compares two fea-
sible assignments P, P ′ ∈ P(E(∆)) by means of
her own allocations p(i) = (pia)a∈A and p′(i),
the i-th rows of P and P ′ respectively. We de-
fine a familiar incomplete preference relation for
agent i such that Ri = (a1, · · · , ak), 1 ≤ k ≤ r
(this relation is empty if Ri = ∅). We say that
p(i) is sd-preferred to p′(i) (where sd stands
for stochastic dominance) if

t∑
1

piat ≥
t∑
1

p′iat for all t, 1 ≤ t ≤ k

and we write p(i)
sdi
� p′(i). Note that sd-

indifference is just equality. We say that p(i)

is strictly sd-preferred to p′(i) if p(i)
sdi
� p′(i)

and p′(i) 6= p(i), so that at least one of the in-

equalities above is strict; then we write p(i)
sdi�

p′(i). We now define the three normative proper-
ties key to the discussion of random assignment
mechanisms.
The feasible assignment P ∈ P(E(∆)) is

Ordinally Effi cient (OE) if for all P ′ ∈

P(E(∆)), {p′(i)
sdi
� p(i) for all i ∈ N} =⇒ P ′ =

P

Envy-Free (EF) if p(i)
sdi
� p(j) for all i, j ∈ N

For a deterministic assignment, OE and EPE
are the same thing, but for general random as-
signments OE is a strictly stronger requirement
than EPE.
A deterministic mechanism (i.e., selecting

F (∆) = P ∈ Pd(E(∆)) for any problem) can-
not be Envy-Free, so EF requires randomization.
The Probabilistic Serial mechanism, explained in
the next section, is Ordinally eficient and Envy-
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Free, and the only example to date of a random
mechanism with these two properties.
The assignment mechanism F is

Strategy-proof (SP) if for all ∆, all i ∈ N ,

and all R′i ∈ R(A) we have p(i)
sdi
� p′(i), where

F (N,A,R) = P and F (N,A, (R′i, R−i)) = P ′

The simplest example of a strategyproof mech-
anism is the Fixed π-Priority mechanism, where
π is an arbitrary ordering π = {i1, i2, · · · , in} of
the agents inN : agent i1 gets her best acceptable
object in Ri1 , next agent i2 gets his best remain-
ing acceptable object in Ri2 , if any, and so on.
This mechanism is clearly Strategy-Proof and
Ordinally Effi cient, thus its guaranteed size is at
least m

2 . By replicating the {Ann,Bob} × {a, b}
example in the previous section, we see that its
guaranteed size is exactly m

2 if m is even, and
m+1

2 if it is odd. Moreover, the same exam-
ple also shows that the guaranteed size of any
deterministic strategyproof mechanism cannot be
more than 1

2 if m is even, or 1
2(1 + 1

m) if it is
odd.4.
There is in fact no assignment mechanism

meeting OE, EF, and SP (Theorem 2 in [8]).
However the two benchmark mechanisms known
as Random Priority (RP ) and Probabilis-
tic Serial (PS) almost fit the bill. Here we
only discuss PS, postponing until section 7 the
discussion of RP.
The simplest definition of the Probabilistic Se-

rial (PS) mechanism PS is recursive.5 Each
agent fills his allocation by eating at constant
speed 1, from time t = 0 until at most time t = 1,

4At the profile where both Ann and Bob report that
only a is acceptable, if a is not assigned, the size index
is 0; if a is given to agent Bob, say, then by SP Bob still
gets a at the canonical example.

5See [6] for another, more compact, though somewhat
less transparent definition.

from her best acceptable object still available.
At time 0, one unit of each object is available.
For brevity we only illustrate the definition by
an example with 5 agents and 4 objects. Here a
is the best object for agents 1, 2, 3, b is best for
4, 5, and c, d for nobody. Then a is fully eaten
at time t = 1

3 , and 1, 2, 3 each get a 1
3 share

of it. Suppose agent 1 only accepts a, then she
is done; say the next acceptable object is b for
agent 2 and c for agent 3. Then starting from
t = 1

3 we have 2, 4, 5 eating the remaining 1
3 unit

of b, thus b is exhausted at t′ = 1
3 + 1

9 , and is
divided in 4

9 for each of 4 and 5, and 1
9 for agent

2; and so on.
The PS mechanism is Ordinally Effi cient,

Envy-Free, but not Strategy-Proof. That is, un-
der the premises of this axiom, the preference

p(i)
sdi
� p′(i) may not hold; however the reverse

strict preference p′(i)
sdi� p(i) does not hold ei-

ther: based on her ordinal preferences only, an
agent never has a compelling incentive to mis-
report his preferences. This latter property is
called Weak Strategy-Proofness.

5 Size versus Envy-Freeness:
the result

We compute first the guaranteed m-size index
σm(PS) of the PS mechanism. Then we show
that this is the best feasible guaranteed size in-
dex for any Envy-Free mechanism.
The main clue comes from considering the fol-

lowing canonical diagonal problem of size m,
denoted ∆∗m. This problem already played a role
in three relevant earlier papers: [17] , [12], and
[9]. There are m agents N = {1, · · · ,m} and m
objects A = {a1, · · · , am}, and agent i’s prefer-
ences are Ri = (am, am−1, · · · , ai). One interpre-
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tation is of a scheduling problem where objects
are time slots (higher label means earlier time)
and agents are jobs that are processed in exactly
one time slot; each job prefers an earlier slot,
and job i has a deadline at time i (cannot be
processed later than i). Here is ∆∗5:

5 4 3 2 1
a5 a5 a5 a5 a5

∅ a4 a4 a4 a4

∅ a3 a3 a3

∅ a2 a2

∅ a1

Problem ∆∗m is in Am because we can assign
object ai to agent i for all i. In the PS eating
algorithm, object am is eaten first by all agents,
who each get a share 1

m ; next object am−1 is
eaten by agents 1, · · · ,m − 1, , who each get a
share 1

m−1 ; and so on until the critical object
akm such that

1

km + 1
+

1

km + 2
+· · ·+ 1

m
≤ 1 <

1

km
+

1

km + 1
+· · ·+ 1

m

Object akm+1 is eaten in full, but not so object
akm : agents km, km−1, · · · , 1, can only eat a full
unit, therefore their share of akm is 1− ( 1

km+1 +
1

km+2 + · · ·+ 1
m) (which is less than 1

km
). Objects

akm−1, · · · , a1, are not eaten (consumed) at all.
Define for any integers 1 ≤ k < m

S(m, k) =
1

k + 1
+

1

k + 2
+ · · ·+ 1

m

so that km is defined by the inequalities
S(m, km) ≤ 1 < S(m, km− 1). We just saw that
the assignment matrix of PS(∆∗m) is as follows.
For all i ∈ N, aj ∈ A

piaj = 0 if i > j and/or j < km

piaj =
1

j
if i ≤ j and j ≥ km + 1

piaj = 1− S(m, km) if i ≤ j and j = km

so that

s(PS(∆∗m)) =
∑

1≤i,j≤m
piaj

= m−km+km(1−S(m, km)) = m−kmS(m, km)

⇒ 1

m
s(PS(∆∗m)) = 1− km

m
S(m, km)

def
= rm

Recalling ∆∗m ∈ Am, this implies σm(PS) ≤ rm.
Lemma The sequence rm is decreasing and

converges to 1 − 1
e = 0.632 at the speed O( 1

n).
For instance r2 = 0.750 , r3 = 0.722 , r4 = 0.708
, r5 = 0.687 , r10 = 0.662 , r20 = 0.648.

It turns out that the canonical diagonal profile
achieves the worst possible size index for the PS
mechanism, on all problems of Am.
Theorem

i) σm(PS) = rm
ii) The m-size index of any Envy-Free mecha-
nism is at most rm.

There are ineffi cient Envy-Free mechanisms
with a worst performance than PS: for instance
we can assign objects sequentially, uniformly
among all the still unmatched agents, throwing
the object away if it is not acceptable to the win-
ner; this gives the index m+1

2 at ∆∗m.
We conjecture that the following refinement

of statement ii) is true: the m-size index of any
Ordinally Effi cient and Envy-Free mechanism is
rm. The intuition comes from the following re-
sult about the class Dm of problems such that,
for a common ordering {a1, · · · , am} of the ob-
jects, all individual preferences take the form
Rk = (am, am−1, · · · , ak); thus Dm contains ∆∗m,
as well as problems with different numbers of
preferences Rk for each k. Theorem 1 in [9]
states that if F is Ordinally Effi cient and Envy-
Free, it coincides with PS on Dm. The conjec-
ture is that the problems ∆∗m are also the worst
case configuration for F .
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6 The Random Priority mech-
anism

The RP mechanism runs the Fixed π-Priority
mechanism after selecting π randomly and with
uniform probability on all orderings of N . It
is StrategyProof and Ex Post Effi cient, but not
Ordinally Effi cient. Moreover, RP is not Envy-
Free, that is to say in the assignment P =

RP (∆), the sd-preference p(i)
sdi
� p(j) may fail

for some i, j; however p(j)
sdi� p(i) cannot hold

either. In other words, based on her ordinal pref-
erences Ri only, agent i never has a compelling
reason to envy agent j’s allocation. This latter
property is called Weak Envy-Freeness.

Our Theorem is helpful to place an up-
per bound on the guaranteed m-size index of
RP . Recall that Theorem 1 in [12] states that
s(RP (∆)) ≤ s(PS(∆)) for allm and all ∆ ∈ Dm
(defined in the previous paragraph). In particu-
lar s(RP (∆∗m)) ≤ s(PS(∆∗m)), and this inequal-
ity is strict as soon as m ≥ 4. Combined with
our Theorem, this implies σm(RP ) ≤ rm.

Next [17] show that their Ranking algorithm
yields the lower bound 1 − (1 − 1

m+1)m, which
converges to 1− 1

e , precisely at the canonical di-
agonal profile ∆∗m. Now Ranking is the same
algorithm as Random Priority when preferences
are identical (but acceptable objects vary across
agents). From there [20] deduces the general
lower bound 1− (1− 1

m+1)m − 1
m for RP .

We conclude that the performance of RP is
inferior to that of PS, but not asymptotically
so.

7 Concluding comments

1. Other worst case indices to measure the wel-
fare performance of RP , PS, and other ran-
dom assignment mechanisms, are proposed in
[3]. Their linear welfare factor uses Borda scores
as a proxy for cardinal utilities; the performance
of PS is nearly 2

3 , and is superior to that of RP .
More work is needed to understand the connec-
tion of those results to ours.
2. Many concrete instances of assignments to

jobs, schools, etc.., forces participants to report
only a fixed number q0 of acceptable objects,
while other objects are deemed unacceptable by
the mechanism. It is therefore natural to look
for the the guaranteed sizes of RP and PS in
this context.
3. In many assignment instances, there are ex-

ogenous differences between the agents so that
it matters more to match some agents, or some
objects, than others. An example is the assign-
ment of overdemanded slots in Dutch universi-
ties, where a student record increases her proba-
bility of admission. The design objective is now
to maximize a weighted sum of the matches, as
discussed in [?] for bilateral matching, and in [13]
for the assignment problem. The hard question
is how should we adapt RP and PS to take this
new objective into account?

8 Appendix: proofs

8.1 Lemma

Step 1 k
mS(m, k) ≤ 1

e for all k, 1 ≤ k ≤ m− 1

The Euler constant is the positive number C

such that limm εm = 0 where εm
def
= ln(m)+C−

(
∑m

j=1
1
j ). It is easy to check that εm decreases

to zero, as εm+1 < εm ⇔ ln(1+ 1
n) > 1

n+1 , which
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follows from ln(1 + x) > x
x+1 for x > 0. This

implies

S(m, k) = ln(m)−εm−(ln(k)−εk) ≤ ln(
m

k
) (2)

Now for x ∈]0, 1] we have |x ln(x)| ≤ 1
e , hence

k
mS(m, k) ≤ k

m ln(mk ) ≤ 1
e as desired.

Step 2 km
m S(m, km) increases strictly in m.

Compare km and km+1. We have S(m+ 1, km−
1) > S(m, km − 1) > 1 hence km+1 ≥ km.
Moreover S(m + 1, km + 1) ≤ S(m, km) ≤ 1
implies km+1 ≤ km + 1. We distinguish two
cases. If km+1 = km = k we want to prove

1
m+1S(m+1, k) > 1

mS(m, k) which easily reduces
to S(m+ 1, k) < 1, and the latter is true by de-
finition of km+1, and the fact that S(m, k) = 1
holds only for m = 1, k = 0. If km+1 = km + 1,
and we write simply km = k, a straighforward
computation gives

k + 1

m+ 1
S(m+ 1, k + 1) >

k

m
S(m, k)

⇔ m− k
m(m+ 1)

S(m, k+1) >
k

m(k + 1)
− k + 1

(m+ 1)2

⇔ S(m+ 1, k) > 1

and the latter inequality follows from the as-
sumption km+1 > k.
Step 3 limm

km
m S(m, km) = 1

e

Set αm = km
m S(m, km). By definition of km we

have 1− 1
km
≤ S(m, km) ≤ 1, implying km

m −
1
m ≤

αm ≤ km
m . We know from Steps 1,2 that αm

converges to some α ≤ 1
e , so that limm

km
m = α

as well. In particular limm km = ∞, therefore
limm S(m, km) = 1. From the equality in (2)
we deduce limm ln( mkm ) = 1, and the conclusion
α = 1

e follows.

8.2 Theorem

8.2.1 Statement i)

It remains to prove σm(PS) ≥ m× rm.
Step 1 an auxiliary result
In this step we consider the variant of the

model where in addition to N,A,R, a problem
specifies a common positive capacity γ for each
agent, and a profile of non negative capacities
δ = (δa)a∈A for the objects. An augmented as-
signment problem is now ∆̃ = (N,A,R, γ, δ),
and an assignment is a N ×A non negative ma-
trix P = [pia] ∈ RN×A+ such that

∑
N pia ≤ δa

for all a and
∑

A pia ≤ γ for all i. We drop the
probabilistic interpretation of P , where pia was
the probabilty that agent i is assigned to object
a, and think instead of the deterministic assign-
ment of q divisible commodities, such that the
initial endowment of good a is δa and agent i
cannot consume more than γ units in total.The
size of P is s(P ) =

∑
N×A pia as before, and

represents now the total capacity assigned at P .
Note that s(P ) ≤ min{nγ,

∑
A δa}.

Although the RP mechanism is no longer de-
fined, the eating algorithm runs for γ units of
time and works as before, thus defining a feasi-
ble assignment PS(∆̃).

Lemma 2 Fix ε > 0 and two augmented prob-
lems ∆̃ = (N,A,R, γ, δ) , ∆̃′ = (N,A,R, γ, δ′),
such that δ ≤ δ′. Then

s(PS(∆̃)) ≤ s(PS(∆̃′)) ≤ s(PS(∆̃))+
∑
A

(δ′a−δa)

Proof By induction on the number of objects.
The statement is obvious if q = 1. Fix now
q and assume the property holds until q − 1.
Choose ∆̃, ∆̃′, two augmented problems with
q objects, that only differ in that δ′a = δa + ε
for a single object a and ε > 0. We must
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prove s(P ) ≤ s(P ′) ≤ s(P ) + ε, where P, P ′ are
the corresponding assignments under PS. We
write D,D′ for the two corresponding eating al-
gorithms, and δb(z), δ′b(z) for the remaining ca-
pacity of object b at time z in D,D′.

If in D object a is fully consumed at time γ,
then D′ = D and we are done. Now we assume
that a “dies”at some time t, t < γ. If any other
object dies at t in D, then D and D′ coincide up
to t, and the restriction of D[t,γ], D

′
[t,γ] to [t, γ] is

simply PS applied to two augmented problems
with at most q− 1 objects, capacities (γ − t) for
agents, δ(t) and δ′(t) for objects, that only differ
in that δ′a(t) = ε while δa(t) = 0, so we can apply
the inductive assumption. Thus we assume now
that only object a dies at t, and we define t′ to
be the first time after t where an object dies in
D′, or t′ = γ if there is no such object. Note that
in D′, a is not dead at t, and no agent can die or
switch objects during the interval [t, t′], because
this only happens when some object dies.

We check that δb(t′) ≤ δ′b(t
′) for all b ∈ A.

This is clear for a because δa(t) = 0, and also for
any b that nobody is eating at t inD (andD′): in
D′ nobody switches object in [t, t′], thus nobody
eats b in that interval. Consider finally b, b 6= a,
that the agents in the subset Nb are eating at t
in D (and D′): in D′ the agents in Nb and only
them continue to do so in [t, t′]; in D the agents
in Nb may be joined by new agents switching to
b, and if b does not die before t′ nobody switches
in Nb, thus δb(t′) ≤ δ′b(t

′) as desired; this is also
true if b dies in [t, t′].

We compare now D[t′,γ] and D′[t′,γ]: they are
PS applied to two augmented problems with at
most q−1 objects (for b dying at t′ in D′, we just
showed δb(t′) = 0 as well), so by the inductive

assumption

s(D[t′,γ]) ≤ s(D′[t′,γ]) ≤ s(D[t′,γ])+
∑
b∈A

(δ′b(t
′)−δb(t′))

(3)

= s(D[t′,γ]) + δ′a(t
′) +

∑
b∈A�{a}

(δ′b(t
′)− δb(t′))

We also have two accounting identities

s(D[t,t′]) =
∑
b∈A

(δb(t)−δb(t′)) =
∑

b∈A�{a}
(δb(t)−δb(t′))

s(D′[t,t′]) =
∑
b∈A

(δ′b(t)− δ′b(t′))

= ε− δ′a(t′) +
∑

b∈A�{a}
(δ′b(t)− δ′b(t′))

and the equalities D[0,t] = D′[0,t] , δb(t) = δ′b(t)
for all b 6= a. Combining those and the two pre-
vious equalities gives

s(D′[0,t′])−s(D[0,t′]) = ε−δ′a(t′)+
∑

b∈A�{a}
(δb(t

′)−δ′b(t′))

Plugging this in the right hand inequality in (3)
gives s(D′) ≤ s(D) + ε. For inequality s(D) ≤
s(D′), recall that in D′, no agent still alive at
t dies in [t, t′], and the agents still alive at t in
D are a subset of those, therefore s(D[t,t′]) ≤
s(D′[t,t′]) completing the proof.�
A useful consequence of Lemma 2 is the fol-

lowing monotonicity result:

Lemma 3 Consider two (non augmented)
problems ∆ = (N,A,R),∆′ = (N,A,R′) where
for all i ∈ N , R′i is a truncation of Ri: for all
i we have {R′i = Ri} or {Ri = (a1, · · · , ak),
k ≥ 2, and R′i = (a1, · · · , ak′) with k′ < k} or
{Ri = (a1) and R′i = ∅}. Then s(PS(∆′)) ≤
s(PS(∆)).
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Proof We use the the notation of the previ-
ous proof. It is enough to assume that a sin-
gle agent i truncates her preferences from Ri =
(a1, · · · , ak), k ≥ 2, to R′i = (a1, · · · , ak−1), or
from Ri = (a1) to R′i = ∅. If in the PS algo-
rithm D at R agent i eats no ak, then the PS al-
gorithm D′ at R′ is identical. If i eats αk units of
object ak starting at time t, then it is the last ob-
ject she eats. Therefore the restriction D̃ of D to
N�{i} and to interval [t, 1] is PS applied to the
augmented problem ∆̃ with capacities γ = 1− t
for agents, δb(t) for each b 6= ak, and δak(t)−αk
for object ak. On the other hand agent i dies in
D′ at time t, and the restriction D̃′ of D′ to [t, 1]
is PS applied to the augmented problem ∆̃′ on
N�{i} with capacities γ = 1 − t, and δb(t) for
all b. Therefore Lemma 2 implies

s(D′[t,1]) = s(D̃′[t,1]) ≤ s(D̃[t,1]) + αk = s(D[t,1])

and the conclusion follows from combining this
inequality with D′[0,t] = D[0,t].�
Step 2 proof of statement i)
We fix now an arbitrary (non augmented)

problem ∆0 = (N,A,R) of size m, and we must
prove s(PS(∆0)) ≥ mrm. We construct first
another problem ∆ resembling the canonical di-
agonal problem ∆∗m, and such that s(PS(∆)) ≤
s(PS(∆0)). Pick an effi cient deterministic as-
signment P ∈ Pd(E(∆0)) where m agents are
matched to m objects. It is well known, and
easy to check, that we can order these agents
{1, · · · ,m} and these objects {am, · · · , a1} in
such a way that P assigns object ai to agent
i, so ai ∈ Ri, and ai is the best object for agent
i among {ai, · · · , a1} (some of which may not be
acceptable to i). By Lemma 3 if we fix Ri = ∅
for all agents unmatched at P , and for each
i ∈ {1, · · · ,m} we truncate Ri at ai, thus mak-
ing all objects {ai, · · · , a1} unacceptable, then

the expected size of the resulting problem ∆ is
weakly smaller than at ∆0.
We now show s(PS(∆)) ≥ mrm. Let
{i1, i2, · · · , iH} the set of agents in {1, · · · ,m}
who do not get a full allocation in PS(∆)
(
∑

A pia < 1), ordered according to the time
t1 ≤ t2 ≤ · · · ≤ tH at which they die in the
PS algorithm. Set τh = th − th−1, with the
convention t0 = 0. Then agent ih eats

∑h
l=1 τ l,

therefore

s(PS(∆)) = m−H +

H∑
h=1

(H + 1− h)τh

We set k = m − H and list H inequalities that
the non negative numbers τh must satisfy:
(k + H)τ1 ≥ 1 , because at least object ai1 is
dead at t1;
(k+H)τ1 + (k+H − 1)τ2 ≥ 2 , because at least
objects ai1 , ai2 are dead at t2, and in [t1, t2] one
agent is absent;
and for all h, 1 ≤ h ≤ H:

h∑
l=1

(k +H + 1− l)τ l ≥ h (4)

because objects ai1 , · · · , aih are dead at th, and
l − 1 agents are dead in [tl−1, tl].
Define Θ = {τ = (τh) ∈ RH+ |τ meets (4)

for all h, 1 ≤ h ≤ H}. Then s(PS(∆)) ≥
k + minτ∈Θ

∑H
h=1(H + 1− h)τh. We claim that

the value of the latter program is
∑1

h=H
h

k+h .
To check this, we change variables to λh =
(k +H + 1− h)τh, so the program becomes

min

H∑
h=1

(H + 1− h)

k +H + 1− hλh

such that λ ≥ 0 and
h∑
l=1

λl ≥ h for all h, 1 ≤ h ≤ H

10



Its optimal solution is λh = 1 for all h. Indeed
if λ1 > 1, a transfer from λ1 to λ2 lowers the
objective, so λ1 must be 1; and so on.
We just proved s(PS(∆)) ≥ k +

∑1
h=H

h
k+h ,

and this sum is k +
∑1

h=H(1 − k
k+h) = m −

kS(m, k). Finally we check that the sequence
k → kS(m, k) is single-peaked with its peak at
km, implying s(PS(∆)) ≥ m − kmS(m, km) =
mrm. This is because the inequality kS(m, k) ≥
(k + 1)S(m, k + 1) (resp. <) is rearranged as
S(m, k) ≤ 1 (resp. S(m, k) > 1).

8.2.2 Statement ii)

Consider the canonical diagonal profile ∆∗m and
an Envy-Free assignment P ∈ P(E(∆∗m)). We
check s(P ) ≤ mrm.
Because am is the top object for everyone,

EF implies piam = pjam = xm for all i, j. Be-
cause am−1 is the second best object for agents
1, · · · ,m− 1, and they all eat the same amount
of am, EF implies piam−1 = pjam−1 = xm−1 for
all i, j ≤ m − 1. Repeating the argument we
see that for all k, piak = xk is independent of
i ≤ k. Feasibility w.r.t objects gives kxk ≤ 1,
and w.r.t. agent 1 it gives

∑m
k=1 xk ≤ 1. More-

over s(P ) =
∑m

k=1 kxk. Now we claim

mrm = max
x∈Rm+

{
m∑
k=1

kxk|
m∑
k=1

xk ≤ 1 ; kxk ≤ 1 all k}

If x is optimal, xk > 0 and xk+1 <
1

k+1 cannot
both be true, otherwise a transfer from xk to
xk+1 improves the objective. Hence there is at
most one k∗ such that 0 < xk∗ <

1
k∗ , and then

xk = 0 for k < k∗, and xk = 1
k for k > k∗. Call

this case 1. Case 2 is when no such k∗ exists,
then xk = 0 up to some k̃, after which xk = 1

k .
In Case 1 we have

∑m
k=1 xk = S(m, k∗)+xk∗ ≤

1, in particular S(m, k∗) ≤ 1. Moreover this con-

straint must be tight, else we can improve the ob-
jective by raising xk∗ . Therefore 1− S(m, k∗) =
xk∗ <

1
k∗ ⇔ S(m, k∗ − 1) > 1 ⇒ k∗ = km. Now∑m

k=1 kxk = m− k∗ + k∗xk∗ = m− kmS(m, km)
as desired.
In Case 2 we have

∑m
k=1 xk = S(m, k̃) ≤ 1,

implying k̃ ≥ km. Moreover
∑m

k=1 kxk = m −
k̃ ⇒

∑m
k=1 kxk ≤ m− km ≤ m− kmS(m, km).
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can Economic Review 93-3: 729-747, June
2003

[3] A. Bhalgat, D. Chakrabarty and S. Khanna,
Social Welfare in One-Sided Matching Mar-
kets without Money, Approx/Random 2011,
pp. 87-98, 2011

[4] Birnbaum B. and C. Mathieu, On-line
Bipartite Matching Made Simple, ACM
SIGACT News, vol 39, issue 1, March 2008

[5] P. Biró, D.F. Manlove and S. Mittal, Size
versus stability in the Marriage problem,
Theoretical Computer Science, 411 : 1828-
1841, 2010

[6] A. Bogomolnaia, Random Assignment: Re-
defining the Serial Rule, mimeo, Glasgow
University

11



[7] A. Bogomolnaia, and E. J. Heo, Probabilis-
tic Assignment of Objects: Characterizing
the Serial Rule, Journal of Economic The-
ory, vol. 147, 5, 2072-2082, 2012

[8] A. Bogomolnaia and H. Moulin, A New So-
lution to the Random Assignment Problem,
Journal of Economic Theory, 100, 295-328,
2001

[9] A. Bogomolnaia and H. Moulin, A Sim-
ple Random Assignment Problem with A
Unique Solution, Economic Theory, 19, 3,
623-636, 2002

[10] E. Budish, Y-K Che, F. Kojima, and P. Mil-
grom, Designing Random Allocation Mecha-
nisms: Theory and Applications, American
Economic Review, 2013

[11] Y-K Che and F. Kojima, Asymptotic equiv-
alence of probabilistic serial and random
priority mechanisms, Econometrica, Vol.
78, No. 5 (September, 2010), 1625—1672

[12] H. Cres and H. Moulin, Scheduling with
Opting Out: Improving upon Random Pri-
ority, Operations Research, 49, 4, 565-577,
2001

[13] S. Dughmi and A. Ghosh. Truthful Assign-
ment without Money, Proceedings of the
11th ACM conference on Electronic com-
merce (EC 10), 325-334, 2010

[14] T. Hashimoto, D. Hirata, O. Kesten, M.
Kurino, and U. Unver, Two Axiomatic Ap-
proaches to the Probabilistic Serial Mecha-
nism, Theoretical Economics, forthcoming

[15] R.W. Irving and D.F. Manlove, Finding
large stable matchings, ACM Journal of Ex-

perimental Algorithmics, volume 14, section
1, article 2, 30 pages, 2009

[16] B. Kalyanasundaram and K. R. Pruhs, An
optimal deterministic algorithm for online
b-matching, Theoretical Computer Science
233, 319-325, 2000

[17] R. Karp, U. Vazirani, V. Vazirani, An opti-
mal algorithm for online bipartite matching,
ACM Symposium on the Theory of Com-
puting, pp. 352-358, 1990

[18] F. Kojima and U. Unver The "Boston"
School-Choice Mechanism: An Axiomatic
Approach, Economic Theory, forthcoming

[19] P. Krysta, and D. Manlove, Effi cient
Algorithms for Mechanism Design With-
out Monetary Transfer, EPSRC Grants #
EP/K01000X/1 and EP/K010042/1, June
2013

[20] P. Krysta, D. Manlove, B. Rastegari and J.
Zhang, private communication, September
2013.

[21] A. Procaccia and M. Tennenholtz , Approx-
imate mechanism design without money,
Proceedings of the 10th ACM conference
on Electronic commerce (EC 09), 177-186,
2009

[22] T. Sonmez and U. Unver, Matching, Alloca-
tion, and Exchange of Discrete Resources,
Handbook of Social Economics, J. Ben-
habib, A. Bisin, and M. Jackson (eds.), vol
1A 781-852, North-Holland,2011

12


