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Abstract

This paper investigates relational incentive contracts with a continuum of privately-

observed agent types that are persistent over time. For a sufficiently productive relation-

ship, a full pooling contract exists in which all agent types continuing the relationship

choose the same action. When some separation is feasible, the parties can do better

than with full pooling. When future actions are optimal, however, full separation of all

types is not possible. There is, though, an equilibrium with separation into pools each

containing a non-degenerate interval of types and fully separating individual types is

not generally optimal. Separation results in an increase in output.

Keywords: Relational incentive contracts, private information, ratchet effect, dy-

namic enforcement

JEL classification: C73, D82, D86



1 Introduction

In a variety of economic contexts, agents of different types are pooled together in

groups, with those within each group persistent over time and all treated the same

despite differences between them. Employees are grouped in grades, with those in a

grade all paid the same. Toyota, as described by Asanuma (1989), places its suppliers

into a small number of categories that receive differential treatment. In these examples,

pooling of types is only partial because the different grades or categories are treated

differently, and the set of agents in a particular pool is persistent over time.

Pooling of privately-observed, continuous and persistent agent types arises from

the ratchet effect in dynamic models of procurement, see Laffont and Tirole (1993,

Chapter 9). It occurs with a principal who makes “take it or leave it” offers and is

legally constrained from committing to contract terms for future periods, even those

conditioned on outcomes the principal can contract on when those future periods arrive.

Partial pooling of privately-observed, continuous but non-persistent types arises from

dynamic enforcement in the hidden information relational incentive contract model of

Levin (2003). The present paper combines insights underlying the ratchet effect and

dynamic enforcement to show that partial pooling is inherent to relational incentive

contracts with privately-observed, continuous and persistent agent types when the par-

ties cannot commit themselves to behave sub-optimally in the future. This pooling does

not depend on legal constraints on committing to future contract terms that are in princi-

ple contractible, nor on the principal making “take it or leave it” offers. It depends only

on efficient effort being unattainable and future payoffs if the agent’s type is revealed

being on the feasible Pareto frontier. When there is sufficient difference between types

for some separation to occur, there are however equilibria with multiple pools each

containing a non-degenerate interval of types with the set of agents in each persistent

over time, as in the examples of employment and Toyota suppliers. In general, it is not

optimal to fully separate individual types.

With a relational contract, parties make payments conditioned on non-contractible

outcomes only if the payoff from having the relationship continue is sufficient to make

that worthwhile. This imposes a constraint on the spread of rewards for performance

that Levin (2003) calls the dynamic enforcement constraint. That constraint leads to

pooling of agent types. In Levin (2003), optimal pooling takes the form of a single

pool consisting of an interval of types that always includes the most productive. If that

single pool does not include all types, there is an interval of less productive types each

of which is separated. But it is never optimal to have separate pools each containing a

non-degenerate interval of types. Moreover, because types are iid random draws each
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period, there is no systematic persistence of a particular agent in a particular pool.

With the ratchet effect, types are persistent. Pooling arises because, when the prin-

cipal cannot commit to future contract terms, the principal’s “take it or leave it” offers

extract all future rent if the agent’s type is revealed, so a more productive agent does

better by pretending to be a less productive agent and receiving a future informational

rent. The constraint on committing to future contract terms is appropriate for sovereign

bodies that cannot commit their successors, and for regulators who are not permitted

to do so. It is less appropriate for private sector principals who can bind themselves to

future contract terms conditioned on outcomes that are in principle contractible. The

inability to commit to future contract terms in the present paper is just as applicable to

private sector principals. Because the results here also do not depend on the principal

making “take it or leave it” offers, they significantly extend the set of circumstances

under which persistent types are necessarily pooled.

In the model used here, the agent’s type affects the cost of supplying effort to the

principal and is persistent over time. It is specific to the relationship with the principal

and privately observed by the agent. This framework corresponds to an extension of

the classic model in Shapiro and Stiglitz (1984) to private information about the agent

worker’s disutility of effort, though it also allows for a continuous, not just binary, effort

choice, as in MacLeod and Malcomson (1989).

In this model, provided the relationship is sufficiently productive, there always ex-

ists an equilibrium relational contract with full pooling of all agent types for which the

relationship continues. With such a contract, the agent ends the relationship if the cost

of effort is above a critical value but otherwise provides the same effort independent of

type and the principal pays the same remuneration to all agent types who continue the

relationship. So it is always an equilibrium for employers to expect the same amount of

work from employees with different characteristics and to pay them the same. If further

separation of agent types is feasible, such a contract is, however, dominated by one with

some separation of types who continue the relationship. Even with the agent’s type re-

vealed, it is not in general possible for a relational contract to sustain the efficient level

of effort that would be possible if outcomes were fully contractible. When efficient

effort is not sustainable, full separation of privately-observed, continuous and persis-

tent agent types is not feasible if future actions are optimal in the sense of attaining the

feasible Pareto frontier once type is revealed. Agent types can, however, be separated

into a finite number of pools each containing a non-degenerate interval of types. Fur-

thermore, where an individual type can be fully separated but can also be pooled with a

marginally lower type without detriment to other types, pooling them is better.

Dynamic enforcement has other implications. During the initial period of a rela-
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tional contract with some separation of types, effort for all but the least productive is

below that sustainable without private information, which is itself below the fully ef-

ficient level. So there is a cost to information being private except “at the bottom”,

that is, for the least productive feasible relationships. As in Watson (1999) and Watson

(2002), the relationship starts out “small”. As in MacLeod and Malcomson (1989) and

Levin (2003), remuneration consists of two components, one that does not depend on

performance and a bonus that does. Once separation has been completed, a higher fixed

component goes with the agent receiving more of the gains from the relationship.

Related papers include Yang (forthcoming), who considers persistent types that are

private information but allows for just two, so there is no possibility of multiple pools

containing more than one type. Kennan (2001) and Battaglini (2005) also analyse rev-

elation of two persistent types that are private information but without non-contractible

effort. Athey and Bagwell (2008) analyse a model of collusion between firms in an

oligopoly in which cost shocks are both private information and persistent. But collu-

sion between firms has very different characteristics from employment or supply rela-

tionships. In particular, only one side of the market participates in the relational contract

and monetary payments are not used because they make breach of antitrust rules more

apparent. Finally, MacLeod and Malcomson (1988) analyse relational incentive con-

tracts with a continuum of persistent, privately-observed agent types that are partitioned

into separate pools. There, however, restrictions on rewards and punishments drive the

partitioning. Here those restrictions are removed, so the result is more fundamental.

The structure of the paper is as follows. Section 2 sets out the model. Section 3

derives incentive compatibility conditions for the agent and the principal in a relational

contract. Section 4 derives equilibrium conditions for relational contracts, Section 5

for relational contracts with full pooling of continuing agent types. Section 6 studies

relational contracts with separation of types and shows that these exhibit partial pooling.

Section 7 contains concluding remarks. Proofs of propositions are in an appendix.

2 Model

A principal uses an agent to perform a specific task each period. The relationship be-

tween the two can, in principle, continue indefinitely. The principal’s payoff in period t

if matched with the agent is et−wt , where et ∈ [0,e] is the agent’s effort, and wt the pay-

ment to the agent, in period t. Effort et cannot be verified by third parties, so a legally

enforceable agreement for performance at the task is not possible. It can be thought of

as anything unverifiable the agent may do that affects the payoff to the principal. The

principal’s payoff for a period not matched with the agent is v≥ 0.
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Figure 1: Timing of events in period t

The agent’s payoff in period t if matched with the principal is wt − c(et ,a), where

c(et ,a) is the cost of effort et to agent type a ∈ [a,a], with a observed privately by the

agent. Agent type is distributed F(a), with dF(a)> 0 everywhere. The agent’s payoff

for a period not matched with the principal is u≥ 0, with u+v> 0. Principal and agent

have the same discount factor δ . The function c has the following standard properties.

Assumption 1 For all a ∈ [a,a]: (1) c(0,a) = 0 and c(e,a) is bounded above; (2) for

all ẽ ∈ [0,e], c(ẽ,a) is twice continuously differentiable, with c1(ẽ,a) > 0, c2(ẽ,a) ≤ 0

with strict inequality for ẽ∈ (0,e], c11(ẽ,a)> 0, c12(ẽ,a)< 0, and c(ẽ,a)> ẽ−(u+ v);

(3) c1(0,a)< 1 and c1(e,a)> 1.

The timing of events for period t is shown in Figure 1. In the first period of the

relationship (t = 1), the parties first decide (at stage 0a) whether to agree a relational

contract (to be formally defined shortly) and, if they do, make initial payment w0. Then

the agent (at stage 0b) observes a. The other stages are the same for all t. At stage 1, the

agent either incurs effort et or ends the relationship. At stage 2, the principal observes

et , pays the agent and decides whether to continue the relationship.

As in MacLeod and Malcomson (1989) and Levin (2003), payment has a fixed

component wt conditioned only on the relationship being continued by both parties

for period t (and not on effort at t). It also has a bonus component wt −wt that can be

conditioned on the agent’s effort in period t but is not legally enforceable because effort

is unverifiable. The magnitude and sign of wt are unrestricted (negative wt requires the

agent to pay the principal) but, to avoid a decision by the agent at stage 2 of whether to

accept the bonus, wt −wt is restricted to being non-negative. (This restriction does not

restrict the set of payoffs attainable with equilibrium relational contracts.)

Let ht = ht−1 ∪ (et−1,wt−1), for t ≥ 2, with h1 = {w0}, denote the commonly ob-

served history at stage 1 of period t conditional on the relationship not having ended
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before then. At that stage, the agent can condition actions on (a,ht). A strategy

σa for the agent consists of a decision rule for whether to accept w0, a decision rule

γt(a,ht) ∈ {0,1} for each t for whether to continue the relationship at stage 1, and an

effort choice et(a,ht) for each t conditional on continuation. At stage 2 of period t, the

principal can condition actions on (ht ,et). A strategy σ p for the principal consists of

a decision rule for whether to pay w0, a decision rule βt(ht ,et) ∈ {0,1} for each t for

whether to continue the relationship at stage 2, and a payment choice wt(ht ,et) for each

t conditional on continuation. Formally, a relational contract is a w0, a wt(ht) for each

ht and t, and a strategy pair (σ p,σa).1

The joint payoff gain to the principal and the agent from being matched in period

t conditional on a is et − c(et ,a)− (u+ v). Efficient effort e∗(a) maximises this joint

gain. Under Assumption 1, e∗(a) ∈ (0,e) for all a and is uniquely determined by

c1(e
∗(a) ,a) = 1. (1)

The natural equilibrium concept for this game is perfect Bayesian equilibrium in

the strategies of the parties to the relational contract. To avoid the measurability details

that can arise with mixed strategies when action spaces are continuous (see Mailath and

Samuelson (2006, Remark 2.1.1)), attention is restricted to pure strategies.

3 Incentive compatibility

This section analyses the relational contracts that are incentive compatible for principal

and agent. Start with the agent. Let At(ht) denote the set of agent types a with history

ht at t. For a best response effort, the payoff gain Ut(a,ht) to agent type a ∈ At(ht) from

continuing the relationship at stage 1 of period t given history ht is

Ut(a,ht) = max
ẽ∈[0,e]

{
−c(ẽ,a)−u+wt(ht)+βt(ht , ẽ)

[
wt(ht , ẽ)−wt(ht)

+ δ max
{

0,Ut+1(a,(ht , ẽ,wt(ht , ẽ)))
}]}

. (2)

1The timing used here has each party make decisions at only one stage in each period, which simplifies

the analysis by avoiding having to keep track of the parties’ payoffs at other stages within a period. A

party’s payoff from continuing the relationship is, however, at its lowest at the stage it takes its decisions.

So allowing a party to end the relationship at other stages within a period would not change the impact of

the individual rationality constraints. Having the principal make the stay or quit decision simultaneously

with the agent would make mutual quitting always a best response pair but would not affect the maximum

sustainable effort or the set of equilibrium payoffs.
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(Explicit dependence of payoff gains on the contract is suppressed to avoid cumbersome

notation.) The interpretation is as follows. A type a agent continuing the relationship

for period t and choosing effort ẽ incurs cost of effort c(ẽ,a), forgoes utility u avail-

able if not matched with the principal, and receives payment wt(ht). For βt(ht , ẽ) = 1,

the principal continues the relationship and pays the bonus wt(ht , ẽ)−wt(ht). In that

case, the agent receives payoff gain from the future of Ut+1(a,(ht , ẽ,wt (ht , ẽ))) if this

is non-negative, so continuing is worthwhile. For βt(ht , ẽ) = 0, the principal ends the

relationship, in which case paying a bonus is never a best response.

All agent types in At(ht) gain from continuing the relationship at t if wt(ht) > u

because payoff gain wt(ht)−u> 0 can then be guaranteed by setting et = 0 and quitting

at t+ 1. With c2 ≤ 0, Ut(a,ht) is non-decreasing in a, so there is a lowest agent type

αt(ht) that continues the relationship for period t given history ht that satisfies

Ut(αt(ht) ,ht)≥max [0,wt(ht)−u] , all ht , t,

Ut(a,ht)≤ 0, for a< αt(ht) , all a ∈ At(ht) , all ht , t, (3)

αt(ht) =mina ∈ At(ht) , if wt(ht)> u.

For notational convenience define, for a given relational contract,

A+t (ht) = {a | a ∈ At(ht) ,a≥ αt(ht)} , for all ht , t, (4)

a−t (a) = αt(ht) , for a ∈ A+t (ht) , all ht , t. (5)

A+t (ht) is the set of a with history ht who continue the relationship at t, a−t (a) the lowest

agent type pooled with a in that set. Also define

Ũt

(
a′,a,ht

)
=−c

(
et

(
a′,ht

)
,a
)

+δβt

(
ht ,et

(
a′,ht

))
max

{
0,Ut+1

(
a,
(
ht ,et

(
a′,ht

)
,wt

(
ht ,et

(
a′,ht

))))}
,

for all a,a′ ∈ A+t (ht) , all ht , t. (6)

Ũt(a
′,a,ht) consists of the components of the maximand in (2) that depend on the

agent’s actual type a evaluated at the effort for type a′ specified by et(a
′,ht).

Proposition 1 Necessary conditions for decision rules for agent types a ∈ At(ht) in a

relational contract to be best responses are, for all t,

γt(a,ht) =

{
1, if a≥ αt(ht) ,

0, otherwise;
(7)

Ũt(a,a,ht)−Ũt

(
a,a′,ht

)
≥Ut(a,ht)−Ut

(
a′,ht

)
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≥ Ũt

(
a′,a,ht

)
−Ũt

(
a′,a′,ht

)
, for all a,a′ ∈ A+t (ht) . (8)

These conditions are also sufficient if the continuation contracts following deviation

to et 6= et(a
′,ht) for any a′ ∈ A+t (ht) are the same as the continuation contract for

et = et(αt(ht) ,ht) except that (1) the principal pays no bonus at t (wt(ht ,et) = wt(ht))

and (2) the payment wt+1(ht ∪ (et ,wt(ht))) is such that agent type αt(ht) would receive

non-positive payoff gain from continuing the relationship at stage 1 of period t + 1

(Ut+1(αt(ht) ,ht ∪ (et ,wt(ht)))≤ 0).

That (7) defines a best response follows from the specification for αt(ht) in (3). The

other results in Proposition 1 are related to results familiar from mechanism design for

one-period models. A one-period model is equivalent to having δ = 0 so Ũt(a
′,a,ht) =

−c(et(a
′,ht) ,a) from (6). For that case, it is standard to divide all terms in (8) by a′−a

and take the limit as a′→ a to get a condition on the derivative c2(et(a,ht) ,a) that is

used to construct the difference between the payoffs of different types and also, given

c12 < 0, to establish the requirement that et(a,ht) is non-decreasing in a. Here the

additional terms in Ũt(a
′,a,ht) take account of the future consequences from t+1 on of

agent type a choosing the effort corresponding to type a′ at t. The derivative formulation

is less useful here because, for relevant continuation contracts, the additional terms in

Ũt(a
′,a,ht) are not differentiable in a at a′ = a.

When the agent’s performance is verifiable, deviation to effort that is not on the equi-

librium path for any agent type can be deterred by a sufficiently large monetary penalty.

With unverifiable performance (as here), the worst penalty that can be imposed on the

agent is to receive zero payoff gain following such a deviation because the agent can al-

ways quit. As in Abreu (1988), this would give the largest set of equilibria. Conditions

(7) and (8) are then not only necessary for best responses but also sufficient. Ending

the relationship is, however, inefficient when a mutually beneficial relationship is possi-

ble. In Levin (2003), the same penalty is achieved without the relationship ending by a

continuation equilibrium following deviation that is the same as the continuation equi-

librium with no deviation but with the agent paying the principal just enough to give

the agent zero payoff gain from continuation. With transferable utility, there is then no

efficiency loss. That approach is more complicated here because the principal may not

know the agent’s type and so the payment required to give the agent zero payoff gain

from continuation following deviation is not common knowledge. Proposition 1, how-

ever, shows that a weaker requirement suffices to ensure that conditions (7) and (8) are

sufficient, specifically that the payment following deviation at t by an agent with history

ht is such that the lowest agent type with that history who would, on the equilibrium

path, continue the relationship (formally αt(ht)) receives zero payoff gain from contin-
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uation. With this continuation contract, higher a would continue to receive a strictly

positive payoff gain from continuation following deviation but that is not sufficient to

make deviation worthwhile.

For the principal, let Pt(a,(ht ,et)) denote the payoff gain from continuing the rela-

tional contract with agent type a at stage 2 of period t given history (ht ,et), conditional

on paying the bonus wt(ht ,et)−wt(ht).

Proposition 2 Suppose the continuation contracts following the principal’s deviation

to wt 6= wt(ht ,et) are the same as that for wt = wt(ht ,et) except that the payment

wt+1(ht ∪ (et ,wt)) is such that the principal receives non-positive payoff gain from con-

tinuing the relationship at stage 2 of period t when paying wt = wt(ht). Then best

response decision rules for the principal are, for all ht , et and t,

βt(ht ,et) =

{
1, if Ea|ht,et

[Pt(a,(ht ,et))]≥ 0,

0, otherwise;
(9)

if wt(ht ,et)−wt(ht) > 0, pay wt(ht ,et) if and only if βt(ht ,et) = 1; otherwise, pay

wt(ht ,et) = wt(ht).

Most of this result follows directly from the definition of Pt(a,(ht ,et)). The prin-

cipal does not deviate to a bonus smaller than specified in the relational contract when

continuing the relationship because that would trigger a continuation equilibrium the

same as with no deviation but with the principal paying the agent just enough to give

the principal zero payoff gain from continuation. Because the principal’s type is com-

mon knowledge, the payment required for this is also common knowledge.

For stage 0a of the first period of the relationship, neither party has information

about the agent’s type beyond its initial distribution. The agent starts a relational con-

tract only if the initial payoff gain U0 satisfies

U0 ≡ w0+
∫ a

α1(h1)
U1(ã,h1)dF(ã)≥ 0. (10)

The principal starts a relational contract only if the expected payoff gain from starting

the relationship given the initial distribution of a, denoted P0, satisfies P0 ≥ 0.

4 Equilibrium relational contracts

The previous section derived conditions for decisions in a relational contract to be best

responses. This section is concerned with the effort functions et(a,ht), and the func-

tions αt(ht) specifying the lowest agent type who continues the relationship, that can
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be sustained as equilibria. In a Bayesian equilibrium, the principal’s beliefs about the

agent’s type when an event occurs that is on the equilibrium path for some type are

defined by Bayes’ rule. For an event at t that is not on the equilibrium path for any type

with history ht , the continuation contracts are taken to be those specified in Propositions

1 and 2. The former is consistent with the principal believing the agent to be the lowest

type in A+t (ht). A relational contract that is a perfect Bayesian equilibrium satisfying

these conditions is referred to as an equilibrium relational contract. Such contracts are

also referred to as self-enforcing. In describing equilibria, the history argument is omit-

ted for simplicity where that does not result in ambiguity; for pure strategy equilibria,

ht at each t of a continuing relationship is fully determined by the relational contract

and the agent’s type.

To be an equilibrium, the parties’ payoffs have to be consistent with the total output

produced. The joint gain to the principal and the agent (also called the surplus) from

continuing the relationship can be measured at stages 1 and 2 in each period. Let Si
t(a)

denote the joint gain from continuing the relationship at stage i of period t for given a

for a given relational contract. These two measures can be defined recursively as

S1
t (a) = et(a)− c(et(a) ,a)−u− v+βt(et(a))S

2
t (a) , all a, t; (11)

S2
t (a) = δγt+1(a)S

1
t+1(a) , all a, t. (12)

These joint gains depend only on agent type and effort, not the division between parties.

The joint gain to starting a relational contract is

S0 =
∫ a

α1

S1
1(a)dF(a) . (13)

A necessary condition for a relational contract to start is that S0≥ 0. Moreover, provided

S0 ≥ 0, there is always a w0 such that the agent’s and the principal’s initial payoff gains

U0, given by (10), and P0 are both non-negative. Equilibrium requires that the agent

receives that part of the joint gain not received by the principal. It follows from (2) that

Ut(a) =−c(et(a) ,a)−u+wt+βt(et(a))
[
S2

t (a)−Pt(a)
]
, all a, t. (14)

This condition is the budget balance constraint from which the dynamic enforcement

constraint in Levin (2003) is derived.

A continuation contract for hτ is the part of a relational contract applying from

period τ on to relationships with history hτ . Suppose type a is the only type with

history hτ and so is fully separated at τ from other types in [a,a]. In that case, both

parties know the joint gain S1
τ(a) from a given continuation contract for hτ . Because
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joint gains can be distributed in any proportions at stage 1 of period τ , it is optimal for

them to select a continuation contract that maximises S1
τ(a) subject to the feasibility

and incentive constraints, called here an optimal continuation contract for hτ . The set

of optimal continuation contracts corresponds to the feasible Pareto frontier at stage 1

of period τ . It allows for any division between the parties of the joint continuation gains

and so is independent of what determines that division.

Proposition 3 Suppose agent type a is the only agent type with history hτ at τ .

1. There exists a continuation contract for hτ for which continuation of the relation-

ship is an equilibrium if

max
ẽ∈[0,e]

[δ ẽ− c(ẽ,a)]≥ δ (u+ v) . (15)

2. For a satisfying (15), an optimal continuation contract for hτ has, for all t ≥ τ ,

stationary effort et(a) = e(a) that satisfies

δe(a)− c(e(a) ,a)−δ (u+ v)≥ 0. (16)

Moreover, for any continuation payoff gains Pt(a) ≥ 0 and Ut(a) ≥ 0 for t ≥ τ

consistent with the budget balance constraint (14) and independent of t, there

exists an optimal continuation contract for hτ with wt(e(a)) and wt independent

of t that has those continuation payoff gains.

3. If (15) is satisfied for type a but efficient effort e∗(a) does not satisfy (16), an

optimal continuation contract for hτ has effort e(a) the highest that satisfies (16)

with equality, Pt(a) = 0, Ut(a) = wt−u≥ 0 and

c(e(a) ,a) = S2
t (a) , for all t ≥ τ. (17)

Part 1 of Proposition 3 gives a condition for continuation of the relational contract

to be an equilibrium. By an argument in Levin (2003, Theorem 2), if an optimal con-

tract exists, there are stationary contracts that are optimal. For a satisfying (15), there

is certainly a stationary effort e(a) that satisfies (16). Part 2 of Proposition 3 shows

that effort in an optimal continuation contract must satisfy (16) because of the budget

balance constraint (14). When the principal and agent type a continue the relationship

at each date along an equilibrium path, γt(a) = βt(e(a)) = 1 for all t ≥ τ from (7) and

(9). Then, from (11) and (12),

S2
t (a) =

δ

1−δ
[e(a)− c(e(a) ,a)−u− v] , for all t ≥ τ. (18)
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Combined with the budget balance constraint (14), this gives

δe(a)−c(e(a) ,a)−δ (u+ v)= (1−δ )
[
Ut(a)+u−wt+Pt(a)

]
, for all t ≥ τ. (19)

With the agent’s type revealed to be a, continuation of the relationship requires Ut(a)≥
max [0,wt−u] and Pt(a) ≥ 0 (from (3) and (9)), so the right-hand side of (19) must

be non-negative. Thus (16) is necessary. Part 2 of Proposition 3 also establishes that,

for any stationary effort e(a) that satisfies (16), there exist equilibrium continuation

contracts with that stationary effort. It further establishes that there exist payments that

distribute the joint gain in any way consistent with individual rationality. The reason

can be seen from (19), which wt(e(a)) enters only through the payoff gains Ut(a) and

Pt(a) and cancels out in their sum. By changing wt(e(a)), these payoff gains can, for

given e(a), range from Ut(a) = wt − u to Pt(a) = 0 without changing the value of the

square bracket on the right-hand side. Moreover, wt can be set equal to u, so Ut(a) = 0

is also possible.2

Efficient effort for a is e∗(a) defined by (1). If this satisfies (16), it is optimal because

it maximizes the joint gain to be distributed between the parties. If it does not satisfy

(16), the parties jointly gain by choosing e(a) at the highest level that does, in which

case (16) holds with equality, as specified in Part 3 of Proposition 3. Denote by α̂ the

lowest a for which (15) is satisfied. It follows that, for any a≥ α̂ the only type with its

history, effort in an optimal continuation contract is

ê(a) =

{
e∗(a) , if e∗(a) satisfies (16);

maxe(a) that satisfies (16) with equality, otherwise;
for a ∈ [α̂,a] . (20)

Part 3 of Proposition 3 also establishes that, when efficient effort is not attainable,

the bonus is set to make Pt(a) = 0. A higher bonus makes it possible to induce higher

effort. So, when efficient effort is unattainable, it is optimal to have the bonus at the

2To see why Proposition 3 is robust to the changes in timing discussed in footnote 1, let Pt(a) be mea-

sured at stage 1 of period t. Then the budget balance constraint (14) becomes, for βt(e(a)) = γt+1(a) = 1,

Ut(a) =−c(et(a) ,a)−u+wt +
[
S2

t (a)+wt(e(a))−wt −δPt+1(a)
]
.

For et(a) = e(a) and with (18), which is unaffected by the change in timing, this changes (19) to

δe(a)− c(e(a) ,a)−δ (u+ v) = (1−δ )

[
Ut(a)+u−wt +δPt+1(a)− (wt(e(a))−wt)

]
.

With this timing, continuation of the relationship requires Ut(a) ≥ max [0,wt −u] and also δPt+1(a) ≥
wt(e(a))−wt because otherwise the principal will not pay the bonus wt(e(a))−wt . So, by the same

argument as for the timing in the text, (15) and (16) apply to the revised timing. The only change to the

proposition under the revised timing is to Part 3, for which Pt+1(a) = [wt(e(a))−wt ]/δ . This change

does not affect the results that follow.
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highest level consistent with the principal continuing the relationship. That requires

the principal’s future payoff gain from continuing the relationship by paying the bonus

to be zero. The agent’s payoff gain is Ut(a) = wt − u. This is the lowest payoff gain

consistent with the agent incurring the required effort because the agent can guarantee

payoff gain of at least wt − u by putting in no effort at t and ending the relationship

in period t + 1 even when the principal pays no bonus. The shares of the joint gain

are determined by wt . For wt − u = S1
t (a), Ut(a) = S1

t (a), so the agent receives all the

joint gain at stage 1 of period t. For lower wt , the principal receives some of the joint

gain at that stage (even though Pt(a), which is measured at stage 2 of period t, is zero).

For wt = u, the principal receives all of the joint gain. Because the joint gain can be

shared in any proportions in this way, it is in the interests of both parties to choose a

continuation contract for hτ that is optimal, independently of how the additional joint

gain is divided between them (and hence of any question of relative bargaining powers).

The best response criteria used in the proof of Proposition 3 are those in Proposi-

tions 1 and 2. In particular, with the agent’s type fully revealed, it is sufficient pun-

ishment for defection that the defecting party is required to make a monetary payment

that leaves it zero payoff gain from continuing the relationship but in other respects the

parties follow the original continuation equilibrium. Then for the optimal continuation

equilibria in Proposition 3, the continuation equilibrium following defection is also an

optimal continuation equilibrium, just one with a different division of the joint gains.

Thus these optimal continuation equilibria are strongly optimal in the sense of Levin

(2003, p. 841). Indeed, as shown by Goldlücke and Kranz (2013, Section 4.3), they

are also strong perfect (and hence also strong renegotiation-proof in the sense of Farrell

and Maskin (1989)). No other continuation contracts are.3

Proposition 3 applies to continuation contracts for an agent type fully separated

from other types in [a,a], that is, for a the only type with its history. Separation of agent

types may, however, be only partial. The next result applies to that case.

Proposition 4 Suppose, for a ∈ A+τ (hτ), (15) is satisfied but efficient effort e∗(a) does

not satisfy (16) for a−τ (a), so ê(a−τ (a)) < e∗(a−τ (a)). Conditional on types a ∈ A+τ (hτ)

all choosing the same effort e(a) for all t ≥ τ , a continuation contract for hτ satisfy-

ing Proposition 3 that is optimal for type a−τ (a) is optimal for all a ∈ A+τ (hτ). Any

continuation contract for hτ with effort ê(a−τ (a)) for all a ∈ A+τ (hτ) for all t ≥ τ has

Ut(a
−
τ (a)) = wt−u≥ 0, and

3If the parties were able to commit to a sub-optimal continuation contract for hτ , that would in general

affect the extent of separation possible in previous periods. But such commitment seems inappropriate

for parties who, as here, cannot commit not to renegotiate.
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Ut(a) =Ut

(
a−τ (a)

)
+

1

1−δ

[
c
(
ê
(
a−τ (a)

)
,a−τ (a)

)
− c
(
ê
(
a−τ (a)

)
,a
)]
,

for a ∈ A+τ (hτ) , t ≥ τ. (21)

Efficient effort is increasing in a. So if two agent types a′′ > a′ with the same

history hτ are to be pooled with stationary effort from τ on and efficient effort for a′ is

not achievable, effort for a′′ is below its efficient level. Thus what is optimal at τ for

type a′′ must be optimal for type a′. So, as Proposition 4 shows, if some types are to

be pooled indefinitely, an optimal continuation contract has the characteristics shown in

Proposition 3 to be optimal for the lowest type in the pool. Types a> a−τ (a) necessarily

receive the strictly positive payoff gain in (21) because of their lower cost of effort.

5 Contracts with full pooling of continuing types

This section gives necessary and sufficient conditions for there to exist an equilibrium

relational contract for the whole relationship in which all agent types who continue the

relationship are pooled, choosing the same effort and being paid the same.

Proposition 5 There exists an equilibrium pooling relational contract for the whole

relationship in which all agent types a ∈ [a′,a] continue the relationship and choose

effort e(a′) for all t, and all types a ∈ [a,a′) end it in the first period, if and only if

δe
(
a′
)
− c
(
e
(
a′
)
,a′
)
−δ (u+ v)≥ 0. (22)

Proposition 5 follows from the budget balance condition (14). For stationary effort,

this can be written as (19). With all a ∈ [a′,a] choosing the same effort and being paid

the same, Pt(a) = Pt(a
′) for all a ∈ [a′,a], so the principal continues the relationship

only if Pt(a
′) ≥ 0. Agent type a′ does so only if Ut(a

′) ≥ max [0,wt−u]. Substitution

of these into the right-hand side of (19) establishes that (22) is necessary. Moreover,

Ut(a) is strictly increasing in a for a given effort sequence, so continuing the relationship

and choosing et = e(a′) for all t ≥ 1 is better for all a ∈ (a′,a] than having it end if it

is for a′. The only effort choice permitted by the contract is e(a′) and that is a best

response for all a ∈ [a′,a] if Ut(a
′) ≥ 0. Furthermore, the contract can be chosen such

that Ut(a
′) = 0, so types a ∈ [a,a′) prefer to end the relationship in the first period.

Finally, there is always some w0 such that the initial participation conditions U0, given

by (10), and P0 are non-negative because Ut(a) ,Pt(a)≥ 0 for all a∈ [a′,a], α1(h1) = a′,

and the payoff gains for a ∈ [a,a′) are zero. Indeed, w0 can be chosen to give U0 = 0,

P0 = 0 or any convex combination of these.
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Clearly, (22) can be satisfied for some a′ if and only if (15) is satisfied for the

highest agent type a. Moreover, Proposition 4 applies to a pooling contract that satisfies

the conditions of Proposition 5. Thus, if efficient effort e∗(a′) does not satisfy (22), it is

optimal to set e(a′) at the level that satisfies (22) with equality.

The pooling contracts in Proposition 5 are inefficient in not tailoring et(a) to each

type a that continues the relationship, which is what full efficiency would do. The next

section explores equilibria with separation of types that continue the relationship.

6 Contracts with separation of continuing types

A natural question is whether there exist equilibrium contracts that fully separate all

agent types when the continuation equilibria for separated types are optimal. The fol-

lowing proposition gives conditions under which there do not.

Proposition 6 Consider period t of an equilibrium relational contract with [at ,at ] ⊆
A+t (ht). Suppose, under that contract, all types a∈ [at ,at ]∪

{
a | a−t+1(a) = at

}
continue

the relationship with effort eτ(a,hτ) = ê
(
a−t+1(a)

)
< e∗

(
a−t+1(a)

)
for all τ > t. Then

1. for a,a′ ∈ [at ,at ] with a > a′ and separated from a′ at t, et(a,ht)− et(a
′,ht) is

bounded below by some ε > 0;

2. the equilibrium relational contract cannot separate all a ∈ [at ,at ] at t;

3. et(a,ht)< ê(a) for a ∈ (at ,at ] and et(at ,ht)≤ ê(at);

4. for δ ≥ 1/2 and a′ ∈ [at ,at ] for which a′ = a−t+1(a
′), there exists a′′ ∈ (a′,at ] such

that a ∈ (a′,a′′] is not separated from a′.

Proposition 6 considers equilibrium relational contracts with agent types that have

the same history at t (including t = 1 when all agent types necessarily have the same

history) and that, from t+1 on, choose the effort level that is optimal for the lowest type

with which they still have the same history at t+1. (That is, eτ(a,hτ) = ê
(
a−t+1(a)

)
for

τ > t.) For type a fully separated from all other types at t, this implies eτ(a,hτ) = ê(a)

for τ > t, which has been shown in Proposition 3 to be optimal for a continuation

contract. Thus Proposition 6 covers as a special case full separation of a type with an

optimal continuation contract. The proposition considers a for which efficient effort is

not attained in the continuation equilibrium, so ê
(
a−t+1(a)

)
< e∗

(
a−t+1(a)

)
.

Part 1 of Proposition 6 establishes that, for a contract to separate type a from type

a′ < a in period t when both have the same history at t, the effort of type a at t must
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be discretely greater than that of a′. It follows that, as established in Part 2, it is not

possible for a contract to separate at t all types in an interval [at ,at ] who have the same

history ht because a monotone function defined on an interval cannot have a continuum

of jumps. To understand why separation requires a discrete jump in effort, consider the

case with the cost of effort multiplicatively separable in effort and agent type. Agent

type can then be normalized to write c(ẽ,a) = ĉ(ẽ)/a for some increasing function

ĉ(ẽ). (The proof in the Appendix does not rely on this special case.) Consider the

lowest type a> a′ to be separated from a′ at t. Under the conditions of the proposition,

eτ(a,hτ) = ê(a)< e∗(a) for τ > t if a separates from a′. By Proposition 4, this implies

payoff gain Uτ(a) = wτ −u≥ 0 for all τ > t. But any type less than a taking the action

for a in period t can guarantee the same payoff gain wt+1−u at t+1 as a by continuing

the relationship for t+1 (so forgoing outside opportunity with payoff u) and collecting

the fixed wage wt+1, but delivering no effort (so receiving no bonus at t+1) and quitting

for t+2. Moreover, by choosing the effort for a′ from t on, a can obtain an additional

payoff gain over a′ given by (21) for a−τ (a) = a′, amounting to ĉ(ê(a′))
(

1
a′ −

1
a

)
for each

period from t+ 1 on. From (8) in Proposition 1, for a to choose separation, efforts in

period t must therefore satisfy

− ĉ(et(a,ht))

(
1

a
− 1

a′

)
≥Ut(a,ht)−Ut

(
a′,ht

)
≥−ĉ

(
et

(
a′,ht

))(1

a
− 1

a′

)
− δ

1−δ
ĉ
(
ê
(
a′
))(1

a
− 1

a′

)
. (23)

(When the principal continues the relationship, βt(.) = 1.) For a> a′, (23) requires

ĉ(et(a,ht))≥ ĉ
(
et

(
a′,ht

))
+

δ

1−δ
ĉ
(
ê
(
a′
))
. (24)

The second term on the right-hand side of (24) is strictly positive. Thus, (24) implies

et(a,ht) must be greater than et(a
′,ht) by a discrete amount. This applies no matter

how close a is to a′ because the right-hand side of (24) is independent of a. Indeed,

(24) implies the same jump in effort no matter what a is to be separated from a′ but this

specific property applies only to the case c(ẽ,a) = ĉ(ẽ)/a.

The intuition behind (23) and (24) is related to that for the ratchet effect in the dy-

namic procurement model in Laffont and Tirole (1993, Chapter 9). For full separation,

there would have to be a different effort for each type. Suppose there was only one

period. With no future to consider, that corresponds to δ = 0. In that case, (24) im-

plies the standard incentive compatibility condition that et(a,ht) is non-decreasing in a.
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(More generally, this conclusion follows when c12(ẽ,a) < 0, which is always satisfied

when c(ẽ,a) = ĉ(ẽ)/a.) With the ratchet effect model, current output is contractible so

the principal can commit to rewarding current effort. With just one period, the optimal

contract then has an effort function that is continuous non-decreasing, which satisfies

(24) when δ = 0. Payment increases with effort sufficiently to compensate higher agent

types for higher effort. With two periods, because the principal does not commit to the

second-period contract before the agent chooses first-period effort and makes “take it or

leave it” contract offers, agent type a that is fully revealed receives no rent in the second

period. But the same second-period payoff can be obtained by type a′ < a that takes the

action in the first period intended for a by quitting for the second period. So, if choosing

the first-period effort for a, the only difference in payoff for a and a′ would be the first-

period one. Money is equally valuable to all types, so that payoff difference is just the

difference in the cost of effort, which corresponds to the term on the left-hand side of

the first inequality in (23). But, if choosing the first-period effort for a′, the difference

in payoff for a and a′ is not just the difference in the cost of effort (corresponding to the

first term on the right-hand side of the second inequality in (23)) but also the difference

in the informational rent that a can obtain in the second period because a has a lower

cost of effort than a′. That difference in rent corresponds to the one-period equivalent of

the second term on the right-hand side of the second inequality in (23). If effort was a

continuous function of type, the difference in the additional cost of effort from choosing

the first-period effort for a over that for a′ (that is, ĉ(et(a,ht))− ĉ(et(a
′,ht))) would go

to zero as a approaches a′. Then the gain in future informational rent to a from choosing

the first-period effort for a′ would always make that choice advantageous. So a contin-

uous effort function cannot induce full separation when δ > 0. An implication is that,

as noted in Laffont and Tirole (1993, p. 382), the revelation principle does not apply

to repeated relationships in the absence of commitment because truthful revelation of

types in one period would result in full separation in subsequent periods.

The relational contract model is, however, crucially different from the ratchet effect

model in what determines the payoff gain to an agent type that has been fully revealed.

With the ratchet effect, a fully revealed agent type receives no payoff gain in period

2 because the principal cannot commit in advance to a continuation contract, even on

outcomes that are contractible in future periods, and extracts all the continuation rent

by making a “take it or leave it” continuation contract offer. A lower type imitating

a higher type in period 1 can obtain that same payoff for period 2 by quitting. So

it is because the principal chooses the point on the feasible Pareto frontier following

revelation of the agent’s type that there is no difference in future payoff between a fully

revealed type and a lower type imitating that type in the first period. With the relational
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contract when efficient effort is not attainable, agent type a receives future payoff gain

Ut+1(a) = wt+1 − u at t + 1 following full revelation of type at t for every optimal

continuation contract, no matter how the joint gain from adopting such a contract is

divided between the parties. The reason is that optimal effort from t+1 on is the highest

effort consistent with dynamic enforcement and, if Ut+1(a)> wt+1−u, effort could be

increased without the agent preferring to choose zero effort and end the relationship next

period. But a lower type a′< a taking the action for a at t can also guarantee payoff gain

wt+1−u at t+1 by continuing the relationship for t+1 (so forgoing outside opportunity

with payoff u) and collecting the fixed wage wt+1, but delivering no effort (so receiving

no bonus at t+1) and quitting for t+2.4 Thus type a separating fully at t receives no

higher payoff from t+1 on than a′< a would by imitating a at t. That does not preclude

type a receiving some of the joint gain from continuation of the contract because wt+1

can be greater than u. But the characteristic that prevents full separation is not that type

a receives no payoff gain once fully revealed but that there is no difference in future

payoff between type a fully revealed at t and a′ < a that chooses the effort at t intended

for a. As long as that is the case, the argument in the previous paragraph applies.

This rationale for partial pooling when efficient effort is not attainable differs from

that for partial pooling in the hidden information model of Levin (2003). In that model,

types are iid draws each period, so all types are pooled at the start of each period and

revelation of type does not affect future payoffs. Thus, unlike here, full separation is

possible. But full separation is not optimal when efficient effort is unattainable because

the budget balance constraint restricts the spread of bonuses that are incentive compat-

ible. That, in turn, restricts the spread of incentive compatible efforts that are available

for separating types and pooling the most productive types is the optimal way to limit

the spread of efforts. This implication of the budget balance constraint plays no role in

the derivation of (24) and so is not the reason full separation is not achievable. But it

still limits how much separation is achievable. To see why in the case c(ẽ,a) = ĉ(ẽ)/a,

use the right-hand inequality in (23) to substitute for Ut(a) in the budget balance con-

straint (14), note that βt(et(a)) = 1 for et(a) the effort specified in the contract for some

a with history ht , use the value of S2
t (a) given in (17), and re-arrange to get

ĉ(et(a,ht))

a
+

[
ĉ
(
et

(
a′,ht

))
+

δ

1−δ
ĉ
(
ê
(
a′
))]( 1

a′
− 1

a

)
≤ ĉ(ê(a))

a
−Pt(a)−Ut

(
a′
)
−u+wt . (25)

4Allowing negative bonuses would not alter this conclusion because type a′ < a would not pay a

negative bonus in period t+1 if intending to quit for t+2.

17



The second term on the left-hand side of (25) is positive for a> a′. With the conditions

Pt(a)≥ 0 and Ut(a)≥max [0,wt−u], (25) thus places an upper bound on ĉ(et(a,ht))/a

in addition to the lower bound placed by (24). In particular, it implies ĉ(et(a,ht)) <

ĉ(ê(a)), and hence et(a,ht)< ê(a), for a> a′, which is the result in Part 3 of Proposition

6. It also restricts the set of types that can be separated from a′ to those types a for

which the upper bound on ĉ(et(a,ht)) implied by (25) is at least as great as the lower

bound required to satisfy (24). Thus, Proposition 6 combines the insight of Laffont and

Tirole (1993) that separation requires a discrete jump in effort between types (with the

implication that full separation is unattainable) with the insight of Levin (2003) that

dynamic enforcement restricts the spread of incentive compatible efforts (which limits

the extent to which partial separation can be attained). Moreover, by Assumption 1,

et(a
′,ht)≥ 0, ĉ(ẽ) is continuous and ĉ(0) = 0. So, with et(a,ht)< ê(a), (24) can never

be satisfied for a sufficiently close to a′ for δ/(1−δ ) ≥ 1, that is δ ≥ 1/2, which is

the result in Part 4 of Proposition 6. In that case, the form of separation Levin (2003)

finds optimal for non-persistent types (a single pool consisting of an interval of the most

productive types, with other types fully separated) is not feasible for persistent types.

It follows from (24) and (25) that separation is more easily achieved with lower

et(a
′,ht) and with lower ê(a′). The former illustrates the benefits of starting a rela-

tionship "small", as in Watson (1999) and Watson (2002). The latter illustrates the

limitations that arise from the parties being unable to commit themselves to inefficient

actions in the future. If the parties could commit to sub-optimal effort for type a′ in

period t+1, separation of types at t would be easier to achieve.

Proposition 6 applies to an interval of pooled agent types and hence to all agent

types in the first period of a relationship, so not all types can be separated in that period.

The next result extends Proposition 6 to the whole relationship.

Proposition 7 If there is more than one agent type a ∈ [a,a] for which a mutually ben-

eficial relational contract is possible, there exists no equilibrium relational contract

with optimal continuation that continues the relationship for all those types and fully

separates them.

When there is more than one agent type for which a mutually beneficial relational

contract is possible, Assumption 1 ensures that there is an interval of agent types a for

which efficient effort does not satisfy (16), so ê(a) < e∗(a). By Proposition 6, it is

not possible to separate in one period all such agent types with the same history. That

applies for any number of periods as long as the contract retains an interval of types

with the same history. Such contracts are not, however, the only possible continuation

contracts exhibiting partial separation. Laffont and Tirole (1993, p. 383) describe, in the
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context of a two-period procurement model, continuation equilibria that exhibit infinite

reswitching in which actions that generate the same outcome are chosen by different

types, but never by neighbouring types. That is, for any two types choosing the same

action, there is always some intermediate type that chooses an action that generates

a different outcome. Sun (2011) shows that, in the two-period procurement model,

such continuation contracts are not optimal. In the relational contract model used here,

contracts with infinite reswitching are no more effective at achieving full separation

with optimal continuation than are contracts with intervals of types that are pooled. So,

as stated in Proposition 7, not all agent types for which a mutually beneficial relational

contract is possible can be separated. The only restriction on continuation contracts

used to derive this result is that, conditional on full revelation of type a, effort for that

type is ê(a) thereafter. No restriction is imposed on effort in continuation contracts for

types that are still pooled.

Assumption 1 does not rule out efficient continuation effort being attainable for

some agent types that are fully revealed. For such types, effort in an optimal continua-

tion contract is efficient. Moreover, it may not require the agent’s payoff gain in periods

τ following revelation to equal wτ − u, so the argument used to establish Proposition

7 does not go through. But this is never the case for all types for which a mutually

beneficial relational contract is possible.5

Where, though, separation of types is possible, it is better than having these types

remain pooled indefinitely, as the next proposition shows.

Proposition 8 Consider period t of an equilibrium relational contract in which, for all

a ∈ [at ,at ] ⊆ A+t (ht), et(a,ht) = et(at ,ht) and eτ(a,ht) = ê(at) < e∗(at) for all τ > t.

If there exist a′ ∈ (at ,at ] and et(a
′,ht) < ê(a′) that satisfy the conditions for a′ to be

separated from at at t given et(at ,ht), the joint gain S1
t (a) can be increased for a ∈

[a′,at ] without being reduced for a ∈ [at ,a
′) by further partitioning [at ,at ] in period t.

The intuition for Proposition 8 is that the higher types in the further separation can

deliver higher, and therefore closer to efficient, effort without reducing the effort of the

lower types. This applies, in particular, to the case in which the original equilibrium

relational contract pools all agent types who continue the relationship, as in Proposition

5. So some separation, if feasible, always dominates full pooling of types that continue

the relationship. Moreover, Proposition 8 implies that, once all separation that is going

5For agent types a for which efficient effort is attainable following separation, as long as the difference

in future payoff between a > a′ being fully revealed at t and a′ choosing the effort for a at t is less than
δ

1−δ
ĉ(ê(a′))

(
1
a
− 1

a′
)
, the additional term on the left-hand side of (24) is insufficient to avoid the need for

a jump in effort to achieve separation. This certainly applies if the principal receives all the joint gain, so

a’s payoff gain following separation at t is Ut+1(a) = 0.
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to occur under an optimal contract has occurred, it is not possible to separate types

further given the history.

If some separation is feasible, it is always possible to fully separate some types.

For agent type distributions with no mass points, however, it is never optimal to fully

separate one type if a marginally lower type could be pooled with it without detriment

to other types, as the next result shows.

Proposition 9 Consider period t of an equilibrium relational contract with optimal

continuation for which [a′,a′′] ⊆ A+t (ht) for a′ sufficiently close to a′′, a′′ is fully sep-

arated at t from all a ∈ A+t (ht), eτ

(
a−t+1(a

′) ,hτ

)
= ê
(
a−t+1(a

′)
)

for τ ≥ t + 1, and

ê(a′′) < e∗(a′′). If F(a) is continuous at a′′ and it is feasible to separate a ∈ [a′,a′′)
from all a ∈ A+t (ht) with a< a′ at t without changing et

(
a−t+1(a

′) ,ht

)
, the overall joint

gain at t for a ∈ [a′,a′′],
∫ a′′

a′ S1
t (a)dF(a), can be increased by pooling a ∈ [a′,a′′] with-

out reducing S1
t (a) for a ∈ A+t (ht)− [a′,a′′].

While the statement of Proposition 9 is somewhat technical, the basic point is in-

tuitive. As shown in Proposition 6, separating a type from some lower type involves a

discrete jump in effort. Pooling a type with a marginally higher type requires at worst

only a marginal reduction in effort, now and in the future, for that higher type. So, when

the higher type is fully separated, the distribution of types is continuous and effort is

below the efficient level, the discrete jump in effort for the additionally separated type

increases the joint gain more than the marginal reduction in effort for the marginally

higher type reduces it. This applies even when the alternative is merely delaying the

additional separation for one period in order to achieve full separation of both types

without reducing the effort of the marginally higher type a′′. That is because the re-

duction in the discrete gain for a ∈ [a′,a′′) resulting from discounting outweighs the

marginal gain from higher effort for the marginally higher type. The proposition ap-

plies to fully separated types anywhere in the distribution of types. It may, of course,

be optimal to have some types fully separated, for example when a marginally lower

type cannot be induced to incur the discrete jump in effort required for separation. But

when marginally lower types can be induced to incur that effort, the joint payoff gain is

increased by having them do so. Propositions 8 and 9 motivate the following definitions.

Definition 1 A one-period partition contract is a relational contract with agent types

partitioned by a < a1 < .. . < an < a and the characteristics that, for given a1 and

e1

(
a1,h1

)
:

1. all agent types a ∈ [a,a1) end the relationship in period 1;
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2. all agent types a ∈ [ai,ai+1) for i= 1, . . .n, with an+1 defined as an+1 = a, choose

the same effort in period 1 and effort ê
(
ai
)

defined by (20) in subsequent periods.

Definition 2 A finest one-period partition contract is a one-period partition contract

for which ai, for i = 2, . . .n, is the lowest type that can be separated from ai−1, with n

given by the highest integer such that an < a when ai is defined in this way.

A one-period partition contract satisfies the assumptions of Proposition 6, so the

results in that proposition apply. Part 3 of Proposition 6 implies that effort in period

1 for all types a > a1 is below ê(a). There is thus a cost to information being private

except possibly “at the bottom”, that is, for the least productive relationships. Other

characteristics of one-period partition contracts are given in the next proposition for the

separable case c(ẽ,a) = ĉ(ẽ)/a.

Proposition 10 Consider c(ẽ,a) = ĉ(ẽ)/a with a> 0 and ê(a)< e∗(a) for all a∈ [a,a].
For given a1 = α1(h1) that satisfies (15) and e1

(
a1,h1

)
≤ ê
(
a1
)
, the following hold.

1. Necessary and sufficient conditions for a one-period partition contract to be sus-

tainable as an equilibrium contract are

ĉ
(
ê
(
ai+1

))
ai+1

−
i

∑
j=1

[
ĉ
(
e1

(
a j,h1

))
+

δ

1−δ
ĉ
(
ê
(
a j
))][ 1

a j
− 1

a j+1

]
≥

ĉ
(
e1

(
ai+1,h1

))
ai+1

≥
[

ĉ
(
e1

(
ai,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai
))] 1

ai+1
, i= 1, . . . ,n−1. (26)

For any such contract that maximizes S0, the first inequality holds with equality

for i= n−1.

2. For δ > 1/2, there exists a unique partition that satisfies the conditions for an

equilibrium finest one-period partition contract.6 It has a finite number of sub-

intervals, with ai for i= 2, . . . ,n given by

ê
(
a2
)
− (u+ v)

ê(a1)− (u+ v)
=

1

1−δ
−
[

1−
ĉ
(
e1

(
a1,h1

))
ĉ(ê(a1))

]
(27)

ê
(
ai+1

)
− (u+ v)

ê(ai)− (u+ v)
=

1

1−δ
, i= 2, . . . ,n−1, (28)

6The condition δ > 1/2 ensures that, by Part 4 of Proposition 6, the lowest sub-interval of the partition

is not degenerate. If that is not the case, (27) takes a different form for some e1

(
a1,h1

)
.
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and e1

(
ai,h1

)
for i= 2, . . . ,n by

ĉ
(
e1

(
ai+1,h1

))
= ĉ
(
e1

(
ai,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai
))
, i= 1, . . . ,n−1. (29)

3. There exists no continuation contract for histories h2 generated by the contract

in Part 2 that separates a ∈
(
ai,ai+1

)
from ai for i= 1, . . . ,n−1 when et(a,ht) =

ê
(
a−t (a)

)
for t > 2.

Part 1 of Proposition 10 uses (24) and (25) to put bounds on ĉ
(
e1

(
ai+1,h1

))
/ai+1

in an equilibrium one-period partition contract. The right-hand inequality in (26) is just

(24) for t = 1, a′ = ai and a= ai+1. The left-hand inequality corresponds to (25), again

for t = 1, a′ = ai and a = ai+1, with the value of U1

(
ai
)

determined by the efforts for

lower elements in the partition, w1 at the highest value (specifically u) with types below

a1 ending the relationship, and P1

(
ai+1

)
at the lowest value for which the principal

will continue the relationship, that is, zero. From (26), increasing e1

(
a j,h1

)
for j ≤ i

reduces the left-hand side of the first inequality. It thus has consequences for higher

sub-intervals in the partition because it reduces the upper bound on e1

(
ai+1,h1

)
further

below e∗
(
ai+1

)
. For i= n−1, however, there is no higher sub-interval in the partition,

so it is always optimal to raise e1(a
n,h1) to make the upper bound in (26) tight.

Even though full separation of agent types is not feasible when the parties can-

not commit to sub-optimal actions in the future, from Part 1 there exists an equilib-

rium relational contract with some separation if there exist a1 that satisfies (15), and

e1

(
a1,h1

)
≤ ê
(
a1
)

and e1

(
a2,h1

)
that satisfy (26) for a2 ≤ a. The minimum gap be-

tween ĉ
(
e1

(
ai+1,h1

))
and ĉ

(
e1

(
ai,h1

))
is given by the right-hand inequality in this

condition. Because ĉ
(
ê
(
ai
))

increases with ai, this minimum gap is greater for sub-

intervals of the partition with more productive types. That contrasts with a partition

equilibrium for the standard ratchet effect, for which the minimum gap for the special

case that corresponds to ĉ(ẽ) = bẽ/2 with b a positive constant (the only case for which

Laffont and Tirole (1993) derive the gap) is δ/b, which is independent of type.

An equilibrium finest one-period partition contract has ai+1 the lowest type that can

be separated from ai and thus for which the upper bound on ĉ
(
e1

(
ai+1,h1

))
/ai+1 in

(26) exceeds the lower bound. Because ĉ
(
ê
(
ai+1

))
/ai+1 is increasing in ai+1 and the

other terms in these bounds involving ai+1 are the same, the upper and lower bounds

are equal. There is thus a unique equilibrium finest one-period partition contract for

given a1 and e1

(
a1,h1

)
. Part 2 of Proposition 10 characterizes that. Effort ê

(
a1
)

is the

highest effort sustainable by a1. For e1

(
a1,h1

)
= ê
(
a1
)
, (27) has the same form as (28).

Part 3 of Proposition 10 establishes that, with separation of agent types in the first

period the finest achievable, no further separation with optimal continuation is possible
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in subsequent periods. The reason is that the continuation contract has et

(
ai,ht

)
= ê
(
ai
)

for t ≥ 2. With ai taking the place of a′ in (25), that increases the left-hand side because

in the finest one-period partition contract e1

(
ai,h1

)
< ê
(
ai
)

for i ≥ 2, which makes

the requirement (25) for separation more stringent. As a result, no further separation

is possible in subsequent periods. Moreover, Proposition 4 implies that ê
(
ai
)

is also

optimal from period 2 on for all a∈ [ai,ai+1) given that no further separation is possible.

The following example illustrates the requirements in Proposition 10 that (15) is

satisfied and that ê(a)< e∗(a).

Example 1 Consider ĉ(ẽ) = ẽ2/2. Efficient effort defined by (1) is then e∗(a) = a, so

this specification identifies an agent type with its efficient effort. By (20), for ê(a) <

e∗(a),

ê(a) = δa+

√
(δa)2−2δa(u+ v).

For a1 to satisfy (15), this must have a real root, which requires

a1 ≥ 2(u+ v)

δ
.

Moreover, ê(a)< e∗(a) for all a ∈ [a,a] whenever

u+ v

a
> 1− 1

2δ
.

Proposition 10 further establishes that, with a finest one-period partition contract,

types are separated into only a finite number of sub-intervals despite being continuous.

Even with continuous types, employees will be placed in a finite number of grades that

include different abilities, a characteristic of many employment situations, and suppliers

will be grouped into a finite number of bands, as Asanuma (1989) explains for Toyota.

A natural question for empirical application is how an equilibrium finest one-period

partition contract changes with the parameters of the model.

Corollary 1 For the conditions of Proposition 10, given a1 and e1

(
a1,h1

)
≤ ê
(
a1
)
,

1. an increase in δ increases ai for i = 2, . . . ,n such that ê
(
ai+1

)
− (u+ v) is in-

creased relative to ê
(
ai
)
− (u+ v) for i= 2, . . . ,n−1;

2. a decrease in u+ v increases ai for i = 2, . . . ,n such that ê
(
ai
)
− (u+ v) is in-

creased in the same proportion for all i= 2, . . . ,n;

3. n is non-increasing in δ ;

4. n is non-decreasing in a.
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Thus, for example, where the employees of a firm have less good outside opportuni-

ties (lower u), the difference between the output of workers in a sub-interval of the finest

partition and the joint value of separation (u+ v) increases in the same proportion for all

sub-intervals. With higher δ (which could be because the match has a lower probability

of ending for exogenous reasons), that difference increases more for sub-intervals with

more productive workers. The latter also (weakly) reduces the number of sub-intervals,

so workers are less finely separated. The reason is that an increase in δ increases the

value of the future rent from imitating a less productive type. This, as shown by (24),

increases the difference in effort required to separate types which, with a limited spread

of feasible efforts, increases the size of the sub-intervals in the partition and may thus

reduce the number of such sub-intervals. These characteristics have the potential for

empirical investigation.

MacLeod and Malcomson (1988) also derive an equilibrium relational contract with

a finite number of ranks that corresponds to a partition of continuous, privately-observed

agent types that are persistent. The reason for the finite partition is, however, different.

MacLeod and Malcomson (1988) follow the efficiency wage model of Shapiro and

Stiglitz (1984) in having no bonus component to pay. With no bonus, the only way

for the principal to induce agent effort is by the threat that the agent’s payoff will in

future be reduced to the level u per period that can be obtained outside the relationship.

Moreover, in MacLeod and Malcomson (1988), agent types are not specific to the re-

lationship, but equally valuable to competing principals, who can observe the payment

made to an agent. This corresponds to the payoff u being a function of information that

is revealed. Specifically, an agent dismissed for not complying with the relational con-

tract in one rank is believed by other principals to be appropriate for the rank below. The

discrete difference in payoff between ranks that results in discrete partitioning of types

thus corresponds to the difference in payoff between the employed and the unemployed

required to induce effort in Shapiro and Stiglitz (1984). These differences are required

to maintain incentive compatibility even after types have been partitioned into ranks.

In the model used here, bonuses are permitted and types are relationship-specific. The

discrete differences in payoff between ranks are not then necessary to maintain incen-

tive compatibility once types have been partitioned. They arise from the impossibility

of getting agents to reveal finer information about types in the first place.

In the relational contracts in Proposition 10, different partitions result from different

a1 and e1

(
a1,h1

)
and different values of these will in general result in different joint

gains S0 from the contract. Lowering a1, where that is feasible, increases the set of

types that continue the relationship and, from (27), also lowers a2. That, in turn, lowers

ai for i > 2 from (28). But it may be feasible only if e1

(
a1,h1

)
is also lowered. From
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(27), that lowers a2, and so on, but it reduces effort for all a ∈
[
a1,a2

)
. So which finest

one-period partition contract is optimal depends on the distribution of agent types.

There is also a question of when a finest one-period partition contract for some

a1 and e1

(
a1,h1

)
is optimal. To give insight into this, consider the case in which the

distribution of types F(a) has mass points at a′ and a > a′, with all other types having

negligible probability weights, and where a′ ≥ α̂ so that a continued relationship is

feasible for type a′. In this case, any gain from delaying separation until after the first

period is negligible, so candidates for optimality are:

1. set a1 = a, discontinuing the relationship for a< a;

2. set a1 = a′ and pool a with a′;

3. set a1 = a′ and a2 = a.

The first of these is a (degenerate) finest one-period partition contract for which it is

optimal to set effort in every period at the highest feasible level for a, ê(a). For the

second, it is optimal to set effort in every period at the highest feasible level for a′,

ê(a′). This is a finest one-period partition contract if and only if there is no a2 ≤ a that

satisfies (27) for a1 = a′ and e1

(
a1,h1

)
= ê
(
a1
)
. If there is such an a2, it increases

the joint gain to separate a from a′ by setting e1

(
a1,h1

)
= ê
(
a1
)

and setting a2 = a

because this gives higher effort for a in every period without reducing that for a′ in any

period and, with effort below the efficient level, an increase in effort increases the joint

gain. This outcome is a finest one-period partition contract unless the a2 that satisfies

(27) with e1

(
a1,h1

)
= ê
(
a1
)

is strictly less than a. If there is no a2 ≤ a that satisfies

(27) for a1 = a′ and e1

(
a1,h1

)
= ê
(
a1
)
, it may still be optimal to separate a from a′

by setting e1

(
a1,h1

)
such that (27) is satisfied for a2 = a (which is optimal conditional

on separation because, from (29), e1

(
a2,h1

)
is increasing in e1

(
a1,h1

)
). That is also

a finest one-period partition contract. So the only case in which a finest one-period

partition contract is not optimal is when there exists a2 < a that satisfies (27) for a1 = a′

and e1

(
a1,h1

)
= ê
(
a1
)
.

Now suppose there is a′′ ∈ (a′,a) with some probability mass for which (26) is

satisfied for a1 = a′ and a2 = a′′ for some e1

(
a1,h1

)
≤ ê(a′) but for which there is no

a3 ≤ a that satisfies (28) for a2 = a′′. Then a′,a′′ and a cannot all be separated in a

single period. Suppose though it is possible to separate a = a2 from a′ = a1 in period

1 for some e1

(
a1,h1

)
. It might then, depending on the magnitudes of their probability

weights, increase the joint gain to pool a′′ with a′ in period 1 in order to separate a

from a′′ and then separate a′′ from a′ in period 2. So it is not always optimal to do all

separation in one period.
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Even if not all separation takes place in the first period, however, Proposition 9 gives

conditions under which the optimal separation of types is into pools of sub-intervals.

Moreover, Proposition 8 implies bounds on the coarseness of the sub-intervals indepen-

dent of the distribution of agent types.

Proposition 11 Consider c(ẽ,a) = ĉ(ẽ)/a and ê(a)< e∗(a) for all a∈ [a,a] with a> 0.

If, in an equilibrium partition contract with optimal continuation, all separation that is

going to occur has occurred and there remain n sub-intervals of agent types continuing

the relationship, those sub-intervals are no coarser than implied by

ê
(
ai+1

)
− (u+ v)

ê(ai)− (u+ v)
=

1

1−δ
, i= 1, . . . ,n.

7 Conclusion

This paper combines insights from the ratchet effect in the literature on procurement

and dynamic enforcement in the literature on relational incentive contracts to analyse

relational incentive contracts when the agent’s type is privately known by the agent and

is persistent over time. It differs from the models of Levin (2003) and MacLeod (2003),

in which the agent’s type is an iid random draw each period. Applied to employment,

it generalizes the models of Shapiro and Stiglitz (1984) and MacLeod and Malcomson

(1989) to private information about workers’ disutility of effort. Provided the relation-

ship is sufficiently productive, there always exists a pooling contract in which the agent

ends the relationship if the disutility of effort is too high but otherwise, whatever the

agent’s type, the agent provides the same effort and the principal pays the same remu-

neration. Some separation between agent types who continue the relationship may be

feasible — necessary and sufficient conditions for this are derived. If such additional

separation of agent types is feasible, an optimal pooling contract is always dominated

by a contract with some separation of agent types who continue the relationship.

With relational contracts for which future actions are optimal once the agent’s type

is fully revealed (that is, are at any point on the Pareto frontier following full revelation

of a type), it may not be possible to achieve any separation of types that continue the

relational contract and full separation of such types is not feasible. Thus, the ratchet

effect result that some pooling of agent types is unavoidable applies even though the

parties are not legally constrained from committing to future contract terms and the

principal does not have the power to make “take it or leave it” contract offers. These

results significantly extend the set of circumstances under which persistent types are

pooled beyond the traditional ratchet effect.
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The essential reason behind this result is the following. In a relational contract with

the agent’s type fully revealed and efficient effort unattainable, optimal effort is the

highest effort consistent with dynamic enforcement, that is, consistent with the agent

being willing to choose that effort over choosing zero effort. That makes the agent’s

payoff following revelation of type the same as from choosing zero effort. Thus a less

productive type that chooses the effort for a more productive type in the period they

are to be separated can, by choosing zero effort in the following period, attain the same

future payoff as the more productive type. So there is no difference in future payoff

that makes the effort for the more productive type attractive to that type and not to

the less productive type. But, as with the ratchet effect, there is a difference in future

informational rent that makes it attractive for the more productive type to imitate the

less productive type. Because monetary rewards are equally attractive to both types,

the only way to make the effort for the more productive type attractive to that type

but not to the less productive type is to accompany monetary reward by sufficiently

higher effort to be unattractive to less productive types because of their higher disutility

of effort. But effort that is continuous in type is not sufficient for this because the

cost of the additional effort intended for the more productive type goes to zero for less

productive types sufficiently close to the more productive type. It is thus outweighed

by the difference in informational rent from the more productive type imitating the less

productive. To overcome that, there has to be a discrete jump in the effort for the more

productive type no matter how close the types are. But then not all types can be fully

separated because, with continuous types, it is not possible to have a discrete jump in

effort between each of them. Moreover, where an individual type can be fully separated

but can also be pooled with a marginally lower type without detriment to other types,

pooling them is better. This is because the jump in effort to separate the marginally

lower type from yet lower types more than outweighs the marginal reduction in effort

for the higher type.

When some separation is feasible, agent types (though continuous) can be parti-

tioned, with all types within a sub-interval of the partition delivering the same perfor-

mance, but the maximum number of sub-intervals is finite. This is similar in spirit to

a result in MacLeod and Malcomson (1988), also for relational contracts with persis-

tent private information about a continuum of agent types. But there restrictions on

rewards and punishments drive the partitioning. Here those restrictions are removed, so

the result is more fundamental.

Where it is possible to separate agent types who continue the relationship, an addi-

tional cost to inducing separation is that effort in the period in which types are revealed

is, for all but the least productive relationships, necessarily below the level that could
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be sustained without private information. As in MacLeod and Malcomson (1989) and

Levin (2003), remuneration consists of two components, one that does not depend on

performance and a bonus that does. Once separation has been completed, a higher fixed

component goes with the agent receiving more of the gains from the relationship.

Appendix: Proofs

Proof of Proposition 1. That (7) defines a best response continuation rule follows from

the specification of αt(ht) in (3).

Effort function et(a,ht) may not be a best response at t because agent type a prefers

to deviate to either (1) ẽ= et(a
′,ht) 6= et(a,ht) for some a′ ∈ A+t (ht) or (2) ẽ 6= et(a

′,ht)

for any a′ ∈ A+t (ht). Given a relational contract, let Ǔ(a′,a,ht) denote the maximand in

(2) for agent type a choosing ẽ = et(a
′,ht). Incentive compatibility to the first type of

deviation corresponds to Ut(a,ht) = Ǔ(a,a,ht). That in turn corresponds to

Ut(a,ht)≥ Ǔ
(
a′,a,ht

)
=Ut

(
a′,ht

)
+Ǔ

(
a′,a,ht

)
−Ǔ

(
a′,a′,ht

)
, ∀a,a′ ∈ A+t (ht) ,

and, with the roles of a and a′ interchanged,

Ut

(
a′,ht

)
≥ Ǔ

(
a,a′,ht

)
=Ut(a,ht)+Ǔ

(
a,a′,ht

)
−Ǔ(a,a,ht) , ∀a,a′ ∈ A+t (ht) .

These two conditions imply

Ǔ(a,a,ht)−Ǔ
(
a,a′,ht

)
≥Ut(a,ht)−Ut

(
a′,ht

)
≥ Ǔ

(
a′,a,ht

)
−Ǔ

(
a′,a′,ht

)
, ∀a,a′ ∈ A+t (ht) . (A.1)

For Ũt defined in (6), Ǔ(a,a,ht)− Ǔ(a,a′,ht) = Ũt(a,a,ht)− Ũt(a,a
′,ht) for a,a′ ∈

A+t (ht). The same holds with a and a′ interchanged. So (A.1) implies (8) is necessary. It

also implies (8) is sufficient to deter deviation to ẽ= et(a
′,ht) 6= et(a,ht) for a′ ∈A+t (ht).

Now consider deviation to ẽ 6= et(a
′,ht) for any a′ ∈ A+t (ht). To simplify notation

in the proof, let h′t+1 denote the history at t+1 conditional on the agent choosing effort

et(αt(ht) ,ht) and the principal paying the corresponding bonus. Formally

h′t+1 = ht ∪ (et(αt(ht) ,ht) ,wt(ht ,et(αt(ht) ,ht))) .

With the specified continuation contracts, βt(ht , ẽ) = 1, wt(ht , ẽ) = wt(ht) and

wt+1(ht ∪ (ẽ,wt(ht)))≤−
[
Ũt+1

(
αt(ht) ,αt(ht) ,h

′
t+1

)
−u+wt+1

(
h′t+1

)]
. (A.2)

The payoff gain at stage 1 of period t to a ≥ αt(ht) continuing the relationship while
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deviating to ẽ would, given (A.2), be

− c(ẽ,a)−u+wt(ht)

+δ
[
Ũt+1

(
αt(ht) ,a,h

′
t+1

)
−u+wt+1

(
h′t+1

)
+wt+1(ht ∪ (ẽ,wt(ht)))

]
≤−c(ẽ,a)−u+wt(ht)+δ

[
Ũt+1

(
αt(ht) ,a,h

′
t+1

)
−Ũt+1

(
αt(ht) ,αt(ht) ,h

′
t+1

)]
.

Choice of ẽ affects only the first term, so this payoff gain cannot be greater than for

ẽ= 0 so that c(ẽ,a) = 0. Thus, not deviating to ẽ is a best response if

Ut(a,ht)≥−u+wt(ht)+δ
[
Ũt+1

(
αt(ht) ,a,h

′
t+1

)
−Ũt+1

(
αt(ht) ,αt(ht) ,h

′
t+1

)]
,

for all a ∈ A+t (ht) . (A.3)

For a′ = αt(ht), (8) implies

Ut(a,ht)≥ Ũt(αt(ht) ,a,ht)−Ũt(αt(ht) ,αt(ht) ,ht)+Ut(αt(ht) ,ht) ,

for all a ∈ A+t (ht) . (A.4)

So, if the right-hand side of (A.4) is greater than that of (A.3), (8) is sufficient to deter

a ∈ A+t (ht) from deviating to ẽ 6= et(a
′,ht) for any a′ ∈ A+t (ht).

Type a ≥ αt(ht) imitating αt(ht) at t cannot receive a lower payoff than from con-

tinuing to imitate αt(ht) at t+1. So, from (2) and (6),

Ũt(αt(ht) ,a,ht)≥−c(et(αt(ht) ,ht) ,a)+δ
[
wt(ht ,et(αt(ht) ,ht))−wt+1

(
h′t+1

)
− u+wt+1

(
h′t+1

)
+Ũt+1

(
αt(ht) ,a,h

′
t+1

)]
, for all a≥ αt(ht) ,

and this holds with equality for a= αt(ht). Thus

Ũt(αt(ht) ,a,ht)−Ũt(αt(ht) ,αt(ht) ,ht)

≥−c(et(αt(ht) ,ht) ,a)+ c(et(αt(ht) ,ht) ,αt(ht))

+δ
[
Ũt+1

(
αt(ht) ,a,h

′
t+1

)
−Ũt+1

(
αt(ht) ,αt(ht) ,h

′
t+1

)]
, for all a ∈ A+t (ht) .

With c2(ẽ,a)< 0 for ẽ ∈ (0,e], (A.4) therefore implies

Ut(a,ht)≥ δ
[
Ũt+1

(
αt(ht) ,a,h

′
t+1

)
−Ũt+1

(
αt(ht) ,αt(ht) ,h

′
t+1

)]
+Ut(αt(ht) ,ht) , for all a ∈ A+t (ht) ,

and so, because (3) requires Ut(αt(ht) ,ht)≥ wt(ht)−u, (A.4) implies (A.3).

Lemma 1 Suppose a relational contract specifies eτ(a
′′,h′′τ ) ≥ eτ(a

′,h′τ) for all τ ≥ t,
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where a′,a′′ ∈ At(ht) and h′τ ,h
′′
τ are the histories at τ ≥ t from choosing the effort paths

for a′ and a′′ respectively from t on when the parties adhere to the relational contract.

If choosing eτ(a
′′,h′′τ ) for all τ ≥ t yields as high a payoff gain to agent type a′′ at t as

choosing eτ(a
′,h′τ), then it does so for all agent types a ∈ At(ht) with a≥ a′′.

Proof. Let Ǔ(a′,a,ht) denote the maximand in (2) for agent type a choosing ẽ =

et(a
′,ht) given the relational contract. Then the proposition certainly holds if

Ǔ
(
a′′,a,ht

)
−Ǔ

(
a′,a,ht

)
≥ Ǔ

(
a′′,a′′,ht

)
−Ǔ

(
a′,a′′,ht

)
, ∀a ∈ At(ht) ,a≥ a′′,

or, re-arranging, if

Ǔ
(
a′′,a,ht

)
−Ǔ

(
a′′,a′′,ht

)
≥ Ǔ

(
a′,a,ht

)
−Ǔ

(
a′,a′′,ht

)
, ∀a ∈ At(ht) ,a≥ a′′.

For Ũt defined in (6), Ǔ(ã,a,ht)−Ǔ(ã,a′′,ht) = Ũt(ã,a,ht)−Ũt(ã,a
′′,ht) for any a, ã∈

At(ht), so this condition is equivalent to

Ũt

(
a′′,a,ht

)
−Ũt

(
a′′,a′′,ht

)
≥ Ũt

(
a′,a,ht

)
−Ũt

(
a′,a′′,ht

)
, ∀a∈At(ht) ,a≥ a′′. (A.5)

For ã ∈ {a′,a′′} generating history h̃t ,

Ũt(ã,a,ht)−Ũt

(
ã,a′′,ht

)
=

∞

∑
τ=t

δ
τ−t
[
c
(
eτ

(
ã, h̃τ

)
,a′′
)
− c
(
eτ

(
a, h̃τ

)
,a
)]
.

By Assumption 1, c12(ẽ,a) < 0 for all (ẽ,a). Hence, (A.5) holds when eτ(a
′′,h′′τ ) ≥

eτ(a
′,h′τ) for all τ ≥ t.

Proof of Proposition 2. From the definition of Pt(a,(ht ,et)), the principal does

at least as well by continuing the relationship (βt(ht ,et) = 1) and paying the bonus

wt(ht ,et)−wt(ht) as by ending it if Ea|ht,et
[Pt(a,(ht ,et))]≥ 0. Moreover, if ending the

relationship at t (βt(ht ,et) = 0), the principal clearly cannot gain by paying a bonus at

t. Suppose the principal were to continue the relationship at t (βt(ht ,et) = 1) but pay

wt 6= wt(ht ,et) when wt(ht ,et)−wt(ht)> 0. Under the specified continuation contract,

the principal would receive non-positive payoff gain from continuation and so, given

(9), would not make a greater payoff gain than from paying wt(ht ,et).

Definition 3 A stationary pooling continuation contract for hτ has the continuation

contracts following deviation in Propositions 1 and 2 and, for a ∈ A+t (ht):

1. every agent type a choose the same effort et = e(a−τ (a)) at t ≥ τ;

2. the principal continue the relationship at t ≥ τ if et = e(a−τ (a)).
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Lemma 2 The following apply to stationary pooling continuation contracts for hτ :

1. There exists a stationary pooling continuation contract for hτ that is a continua-

tion equilibrium at τ if and only if

δe
(
a−τ (a)

)
− c
(
e
(
a−τ (a)

)
,a
)
−δ (u+ v)≥ 0, for all a ∈ A+τ (hτ) , (A.6)

or, equivalently,

S2
t−1

(
a−τ (a)

)
≥ c
(
e
(
a−τ (a)

)
,a−τ (a)

)
, for all a ∈ A+τ (hτ) and t ≥ τ. (A.7)

2. Consider continuation payoff gains Pt(a
−
τ (a)) ≥ 0 and Ut(a

−
τ (a)) ≥ 0 consis-

tent with (14) and independent of t ≥ τ . If e(a−τ (a)) satisfies (A.6) and either

A+τ (hτ) = Aτ(hτ) or Ut(a
−
τ (a)) = 0, there exists a stationary pooling continu-

ation contract for hτ with wt(e(a
−
τ (a))) and wt independent of t ≥ τ that is a

continuation equilibrium for hτ with those continuation payoff gains.

3. To be a continuation equilibrium for hτ , any stationary pooling continuation con-

tract for hτ for which e(a−τ (a)) satisfies (A.6) with equality for a = a−τ (a) has

Pt(a
−
τ (a)) = 0, Ut(a

−
τ (a)) = wt−u≥ 0 and

c
(
e
(
a−τ (a)

)
,a−τ (a)

)
= S2

t−1

(
a−τ (a)

)
, for all t ≥ τ. (A.8)

Proof. Part 1: Necessity. For stationary pooling continuation contracts for hτ ,

S2
t−1(a) is stationary, and γt(a) = βt(e(a)) = 1, for all a ∈ A+τ (hτ) and all t ≥ τ . Then,

from (11) and (12),

S2
t−1(a) =

δ

1−δ
[e(a)− c(e(a) ,a)−u− v] , for all a ∈ A+τ (hτ) and t ≥ τ. (A.9)

Combined with the budget balance constraint (14), this gives

δe(a)− c(e(a) ,a)−δ (u+ v)

= (1−δ )
[
Ut(a)+u−wt+Pt(a)

]
, for all a ∈ A+τ (hτ) and t ≥ τ. (A.10)

All a ∈ A+τ (hτ) have the same history for t ≥ τ , so Pt(a) is the same. Thus, from (9),

continuation of the relationship requires Pt(a)≥ 0 for a ∈ A+τ (hτ) and t ≥ τ . Moreover,

from (3) and Proposition 1, continuation by agent types a ∈ A+τ (hτ) implies

Ut(a)≥max [0,wt−u] , for all a ∈ A+τ (hτ) and t ≥ τ. (A.11)

Together with (A.10), these imply that, for e(a−τ (a)) to be a continuation equilibrium
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at τ for all a ∈ A+τ (hτ), it must satisfy (A.6). (A.9) for a = a−τ (a) implies that (A.7)

is equivalent to (A.6) for a = a−τ (a). That and c2 (ẽ,a) < 0 for ẽ > 0 imply (A.6) is

satisfied for all a≥ a−τ (a) if it is satisfied for a−τ (a), so (A.7) and (A.6) are equivalent.

Sufficiency. Suppose e(a−τ (a)) satisfies (A.6) and consider the stationary pool-

ing continuation contract for hτ that has et(a) = e(a−τ (a)), γt(a) = βt(e(a
−
τ (a))) = 1,

wt(e(a
−
τ (a))) = w, and wt = w for all a ∈ A+τ (hτ) and t ≥ τ for some w and w with

w ≥ w. Under this continuation contract, payoff gains are stationary. It follows from

(2) for the agent, and a corresponding calculation for the principal, that

Ut(a) =
−c(e(a−τ (a)) ,a)−u+w+(w−w)

1−δ
, for all a ∈ A+τ (hτ) , t ≥ τ, (A.12)

Pt(a) =
−(w−w)+δ [e(a−τ (a))− v−w]

1−δ
, for all a ∈ A+τ (hτ) , t ≥ τ. (A.13)

With (A.6) satisfied, there certainly exist w ≥ w such that U(a) ≥ max [0,w−u] and

P(a)≥ 0 for all a ∈ A+τ (hτ), specifically when

c
(
e
(
a−τ (a)

)
,a−τ (a)

)
+u−w≤ w−w≤ δ

[
e
(
a−τ (a)

)
− v−w

]
(A.14)

because, with c2 (ẽ,a) < 0 for ẽ > 0, c(e,a) is decreasing in a. With the continuation

contracts for deviation to ẽ 6= e(a−τ (a)) in Proposition 1, the only conditions for agent

types a−τ (a) to continue the relationship for t ≥ τ are those in (A.11). With Ut(a)

necessarily non-decreasing in a, this is sufficient to ensure that (A.11) is satisfied for

all a ∈ A+τ (hτ) and, by Proposition 1, do not deviate to ẽ 6= e(a−τ (a)). That and the

condition in (9) for it to be a best response for the principal to continue the relationship

are thus satisfied for the specified stationary pooling continuation contract. Moreover,

with the continuation contracts for deviation to wt 6= w in Proposition 2, it is a best

response for the principal to pay w. Thus the specified stationary pooling continuation

contract for hτ is a continuation equilibrium for hτ .

Part 2. The stationary pooling continuation contract specified in the proof of suffi-

ciency for Part 1 has wt(e(a
−
τ (a))) and wt independent of t ≥ τ . Consider w= u. Then

w satisfies (A.14) if

u+ c
(
e
(
a−τ (a)

)
,a−τ (a)

)
≤ w≤ u+δ

[
e
(
a−τ (a)

)
− v−u

]
.

By choosing w appropriately between the upper and lower bounds in this, Ut(a
−
τ (a))

and Pt(a
−
τ (a)) specified by (A.12) and (A.13) can take on any non-negative values in-

dependent of t ≥ τ that are consistent with (A.10) and thus (A.6). That establishes the

result for A+τ (hτ) = Aτ(hτ). For A+τ (hτ)⊂ Aτ(hτ), it may need to be that Ut(a
−
τ (a)) = 0

for a ∈ A+τ (hτ) for a /∈ A+τ (hτ) not to continue the relationship.
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Part 3. For (A.6) to hold with equality for a= a−τ (a), the right-hand side of (A.10)

must be zero for a = a−τ (a). That is consistent with Pt(a) ≥ 0 and (A.11) only if

Pt(a
−
τ (a)) = 0 and Ut(a

−
τ (a)) = wt − u ≥ 0. (A.8) follows from the equivalence of

(A.6) and (A.7).

Lemma 3 Consider a for which (15) is satisfied and let

ê(a) = argmax
ẽ
[ẽ− c(ẽ,a)] subject to (16).

1. Either ê(a) = e∗(a) or ê(a) satisfies (16) with equality.

2. If ê(a) satisfies (16) with equality, ê(a) increases with δ .

Proof. If (16) is not a binding constraint, ê(a) = e∗(a) by the definition of e∗(a).

That establishes Part 1. Kuhn-Tucker necessary conditions for the maximization prob-

lem, with λ a multiplier attached to (16), are

1− c1(ê(a) ,a)+λ [δ − c1(ê(a) ,a)] = 0

λ [δ ê(a)− c(ê(a) ,a)−δ (u+ v)] = 0

λ ≥ 0, (16) satisfied.

From these,

λ =− 1− c1(ê(a) ,a)

δ − c1(ê(a) ,a)
,

so λ ≥ 0 implies c1(ê(a) ,a) ∈ (δ ,1]. For ê(a) satisfying (16) with equality, differenti-

ation yields
∂ ê(a)

∂δ
=− ê(a)− (u+ v)

δ − c1(ê(a) ,a)
,

which must be strictly positive because for (16) to hold requires ê(a)> u+ v.

Proof of Proposition 3. The proof proceeds in two steps. Step 1 shows that, if (15)

is satisfied for a, there exists an equilibrium stationary pooling continuation contract

for hτ for a and establishes the proposition for continuation contracts restricted to the

class of stationary pooling continuation contracts, see Definition 3. Step 2 establishes

that no continuation contract with non-stationary effort can do as well, so any optimal

continuation contract must have stationary effort.

Step 1. If (15) is satisfied for a, there certainly exists e(a) that satisfies (16) and thus

satisfies (A.6) for a−τ (a) = a. By Part 1 of Lemma 2, (A.6) is sufficient for there to exist

a stationary pooling continuation contract for hτ that is a continuation equilibrium for a

(in this case with only one type in the pool). That establishes Part 1 of the proposition.
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By Part 1 of Lemma 2, (A.6) is also necessary for there to exist a stationary pooling

continuation contract for hτ that is a continuation equilibrium for a. Thus an optimal

continuation contract from that class must satisfy (16), as specified in Part 2 of the

proposition. It must, moreover, maximise S1
τ(a) subject to (16). For stationary pooling

continuation contracts for hτ with γτ(a) = 1, maximizing S1
τ(a) corresponds to maxi-

mizing S2
τ−1(a) from (12). For such contracts, S2

t (a) for t ≥ τ − 1, given by (A.9), is

a continuous function of e(a) to be maximised by choice of e(a) from the compact set

defined by (16), so an optimal e(a) certainly exists. It is, moreover, independent of

wt(e(a)) and wt . Because A+τ (hτ) = Aτ(hτ) for a the only type with history hτ , Part 2

of Lemma 2 suffices to complete the proof of Part 2 of the proposition for the class of

stationary pooling continuation contracts for hτ .

If efficient effort e∗(a) satisfies (16), then clearly that maximizes S2
τ−1(a) subject to

(16). If not, S2
τ−1(a) is maximized by effort ê(a) defined in Lemma 3 that satisfies (16)

with equality. It then follows from Part 3 of Lemma 2 with a−τ (a) = a that an optimal

stationary pooling continuation contract for hτ has Pt(a) = 0 and Ut(a) =wt−u≥ 0 for

all t ≥ τ , and has effort ê(a) that satisfies (17) for all t ≥ τ . That establishes Part 3 of

the proposition for the class of stationary pooling continuation contracts for hτ .

Step 2. Now consider whether it is possible to achieve as high or higher S2
τ−1(a)

with a continuation contract that has non-stationary effort. That cannot be the case if

efficient effort e∗(a) is attainable because efficient effort is stationary, non-stationary

effort must depart from efficient effort for some t ≥ τ and that must lower S2
τ−1(a).

Consider, therefore, an optimal contract among the class of those with stationary effort

ê(a)< e∗(a) and let Ŝ2(a) denote the joint gain S2
τ−1(a) with such a contract from τ on.

From Levin (2003, Theorem 2), no non-stationary continuation equilibrium contract

can achieve a higher joint gain than Ŝ2(a) at τ − 1. The same applies to any t ≥ τ so,

for any optimal continuation contract, S2
t (a) = Ŝ2(a). Thus any optimal continuation

contract must satisfy the budget balance constraint (14) with S2
t (a) = Ŝ2(a). For any

continuation contract with non-stationary effort to do as well as one with stationary

effort ê(a) < e∗(a), it must have et(a) > ê(a) for some t ≥ τ . By step 1, an optimal

contract with stationary effort ê(a) < e∗(a) has Pt(a) = 0 and Ut(a) = wt − u for all

t ≥ τ . It is thus not possible to satisfy (14) with S2
t (a) = Ŝ2(a), Pt(a)≥ 0, Ut(a)≥wt−u

(as required by (3)) and βt(ê(a))= 1 for all t ≥ τ with et(a)> ê(a) for some t ≥ τ . Thus,

any optimal continuation contract for hτ must have et(a) = ê(a) for all t ≥ τ .

Proof of Proposition 4. With (15) satisfied for a−τ (a), a continuation contract for

hτ optimal for agent type a−τ (a) satisfies Proposition 3 with a−τ (a) substituted for a.

Such a contract has stationary effort ê(a−τ (a)) and satisfies (16) for a = a−τ (a). With
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c2 ≤ 0, it also satisfies (A.6). It is, therefore, a stationary pooling contract for hτ that

satisfies (A.6) and so, by Lemma 2, is a continuation equilibrium for all a∈A+τ (hτ). For

ê(a−τ (a)) < e∗(a−τ (a)), ê(a−τ (a)) is the highest stationary effort sustainable for a−τ (a).

Thus it is the highest stationary effort sustainable subject to the best response con-

straints for all a ∈ A+τ (hτ). Because efficient effort e∗(a) is non-decreasing, ê(a−τ (a))<

e∗(a−τ (a)) implies ê(a−τ (a)) < e∗(a) for a ∈ A+τ (hτ). Thus, under the conditions of

the proposition, ê(a−τ (a)) is optimal for all a ∈ A+τ (hτ). Then, by Part 3 of Lemma 2,

Ut(a
−
τ (a)) = wt−u for all t ≥ τ and (21) follows from (2).

Proof of Proposition 5. It follows from Lemma 2 that, provided a < a′ end the

relationship at τ = 1, there exists a relational contract with the properties specified if

and only if (A.6) with a′ substituted for a−τ (a) is satisfied for A+τ (hτ) = [a
′,a]. With

c2 ≤ 0, condition (22) is necessary and sufficient for that. Lemma 2 also ensures there

exists such a contract for which Ut(a
′) = 0 for all t so, because Ut(a) is necessarily

strictly increasing in a for a given strictly positive effort sequence, that contract ensures

the best response condition in (7) for a< a′ to end the relationship in the first period is

satisfied. Thus all the conditions are satisfied for the contract specified to be a continua-

tion equilibrium in period 1. Moreover, from the definition of S1
t (a) in (11), that (22) is

satisfied implies that S1
t (a)≥ 0 for all a≥ a′, and S1

t (a)> 0 for all a> a′, for all t and

hence, from (13), that S0 > 0 for α1 = a′. There thus exists a w0 for which both parties

gain from starting the relational contract, establishing the proposition.

Lemma 4 Consider [a′,a′′]⊆ A+t (ht) and continuation contracts for ht , with continua-

tion histories denoted by

ĥt+1(a) = ht ∪ (et(a(ht) ,ht) ,wt(ht ,et(a(ht) ,ht))) , for a ∈
[
a′,a′′

]
,

for which, for ã ∈ (a′,a′′] separated from all a ∈ [a′, ã) at t, Ut+1

(
a, ĥt+1(a

′)
)

is dif-

ferentiable with respect to a and Ut+1

(
a, ĥt+1(ã)

)
= Ut+1

(
ã, ĥt+1(ã)

)
, for a ∈ [a′, ã].

Necessary conditions for there to exist such a continuation contract for ht that is a con-

tinuation equilibrium for all a ∈ [a′,a′′] and that separates agent type a′′ from agent

type a′ at t for given et(a
′,ht)> 0 are that there exists an ã ∈ (a′,a′′] and ẽ such that

c2(ẽ, ã)≤ c2

(
et

(
a′,ht

)
, ã
)
−δ

∂

∂a

[
Ut+1

(
a, ĥt+1

(
a′
))]

a=ã
(A.15)

and

c(ẽ, ã)+

{
c
(
et

(
a′,ht

)
,a′
)
− c
(
et

(
a′,ht

)
, ã
)
+δ

[
Ut+1

(
ã, ĥt+1

(
a′
))
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−Ut+1

(
a′, ĥt+1

(
a′
))]}

≤ S2
t (ã)−Pt(ã)−Ut

(
a′,ht

)
−u+wt(ht) . (A.16)

For a′ satisfying (15) and ê(a)< e∗(a) for all a ∈ [a′,a′′], (A.16) and

c2(ẽ,a)≤ c2

(
et

(
a′,ht

)
,a
)
−δ

∂Ut+1

(
a, ĥt+1(a

′)
)

∂a
, all a ∈

[
a′, ã

]
, (A.17)

satisfied for some ẽ, Pt(a
′)≥ 0, Ut(a

′,ht)≥max [0,wt(ht)−u], and ã ∈ (a′,a′′] are suf-

ficient for there to exist continuation contracts for ht with the characteristics specified

that are continuation equilibria for all agent types in [a′,a′′] for all τ ≥ t and sepa-

rate agent type a′′ from type a′ at t for given et(a
′,ht) ≤ ê(a′). In particular, there

exist equilibrium continuation contracts for ht with effort functions conditional on the

relationship continuing

et(a,ht) =

{
et(a

′,ht) , for a ∈ [a′, ã) ,
ẽ, for a ∈ [ã,a′′]∪

{
a | a−t+1(a) = ã

}
,

(A.18)

eτ(a,hτ) =

{
ê(a′) , for a ∈ [a′, ã) ,
ê(ã) , for a ∈ [ã,a′′]∪

{
a | a−t+1(a) = ã

}
,

for all τ > t, (A.19)

with ẽ such as to satisfy (A.16) and (A.17).

Proof. For a continuation contract for hτ to separate a′′ from a′ at t, either a′′ is

the lowest type in (a′,a′′] separated or there exists some lower type ã separated from

all a ∈ [a′, ã). For ã the lowest type separated from a′ at t, et(a,ht) = et(a
′,ht) for

a ∈ [a′, ã). Moreover, under the conditions specified in the lemma, βt(ht ,et(a,ht)) = 1

and Ut+1

(
a, ĥt+1(ã)

)
=Ut+1

(
ã, ĥt+1(ã)

)
for a∈ [a′, ã). So condition (8) for ã to choose

et(ã,ht) and a ∈ [a′, ã) to choose et(a,ht) = et(a
′,ht) at t, corresponds to

− c
(
et

(
a′,ht

)
,a
)
+δUt+1

(
a, ĥt+1

(
a′
))
+ c
(
et

(
a′,ht

)
, ã
)
−δUt+1

(
ã, ĥt+1

(
a′
))

≥Ut(a,ht)−Ut(ã,ht)

≥−c(et(ã,ht) ,a)+ c(et(ã,ht) , ã) , all a ∈
[
a′, ã

)
,

and, with re-arrangement,

c(et(ã,ht) ,a)− c(et(ã,ht) , ã)

≥Ut(ã,ht)−Ut(a,ht)

≥ c
(
et

(
a′,ht

)
,a
)
− c
(
et

(
a′,ht

)
, ã
)

+δ
[
Ut+1

(
ã, ĥt+1

(
a′
))
−Ut+1

(
a, ĥt+1

(
a′
))]

, all a ∈
[
a′, ã

)
. (A.20)
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By Assumption 1, c(ẽ,a) is differentiable, and hence continuous, in a and, as specified

in the statement of the lemma, so is Ut+1

(
a, ĥt+1(a

′)
)
, so to satisfy (A.20) requires

Ut(ã,ht) = lima→ã−Ut(a,ht).

Necessity. By Proposition 1, (8) is necessary for best response efforts and, hence,

(A.20) with et(ã,ht) 6= et(a
′,ht) is necessary for separation of ã from a ∈ [a′, ã) under

the conditions of the lemma. For (A.20) to hold with Ut(ã,ht) = lima→ã−Ut(a,ht), the

derivative of the left-hand side with respect to a must be no greater than the derivative of

the right-hand side when both are evaluated at a = ã. This implies (A.15) is necessary

for some ẽ= et(ã,ht). Use of the right-hand inequality in (A.20) for a= a′ to substitute

for Ut(ã,ht) given by (14) and of βt(et(ã,ht)) = 1 implies

Ut

(
a′,ht

)
+ c
(
et

(
a′,ht

)
,a′
)
− c
(
et

(
a′,ht

)
, ã
)
+δ

[
Ut+1

(
ã, ĥt+1

(
a′
))

−Ut+1

(
a′, ĥt+1

(
a′
))]
≤−c(et(ã,ht) , ã)−u+wt+S2

t (ã)−Pt(ã) .

Re-arrangement yields the necessary condition

c(et(ã,ht) , ã)+ c
(
et

(
a′,ht

)
,a′
)
− c
(
et

(
a′,ht

)
, ã
)

+δ
[
Ut+1

(
ã, ĥt+1

(
a′
))
−Ut+1

(
a′, ĥt+1

(
a′
))]

≤ S2
t (ã)−Pt(ã)−Ut

(
a′,ht

)
−u+wt(ht) . (A.21)

To satisfy (A.21), it is necessary that ẽ= et(ã,ht) satisfies (A.16).

Sufficiency. Consider τ > t for continuation contracts for ht with effort functions

satisfying (A.18) and (A.19). Continuation contracts for hτ with the efforts in (A.19)

satisfy Proposition 4, so Ut+1

(
ã, ĥt+1(ã)

)
= wt+1

(
, ĥt+1(a

′)
)
−u≥ 0 and

Ut+1

(
a, ĥt+1

(
a′
))
=Ut

(
a′, ĥt+1

(
a′
))
+

1

1−δ

[
c
(
ê
(
a′
)
,a′
)
− c
(
ê
(
a′
)
,a
)]
,

for a≥ a′,a ∈ A+t (ht) , (A.22)

which is differentiable with respect to a. Moreover, type a ∈ [a′, ã) taking the action for

ã in period t can achieve payoff gain Ut+1

(
a, ĥt+1(ã)

)
= wt+1

(
ĥt+1(a

′)
)
−u at t+1 by

continuing the relationship for t+ 1, collecting the fixed wage wt+1

(
ĥt+1(a

′)
)
, setting

et+1 = 0 and quitting for t+2. With Ut+1

(
a, ĥt+1(ã)

)
necessarily non-decreasing in a,

type a could clearly not do better than type ã at t+1 from taking the action for ã at t. So

Ut+1

(
a, ĥt+1(ã)

)
= wt+1

(
ĥt+1(a

′)
)
− u =Ut+1

(
ã, ĥt+1(ã)

)
. Thus the contract has the

characteristics specified for the lemma. By the same argument, the stationary pooling

continuation contract for a ∈ [a′, ã) is not a continuation equilibrium for hτ for a < a′,

so no a< a′ can have the same history as a′ for all τ > t. For stationary effort, S2
τ(a) is
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given by (18). Because ê(a) satisfies (16) with equality, and hence (17), for a= a′, ã,

S2
τ(a) = c

(
ê
(
a′
)
,a′
)
+

δ

1−δ

[
c
(
ê
(
a′
)
,a′
)
− c
(
ê
(
a′
)
,a
)]
, for a ∈

[
a′, ã

)
,τ > t,

S2
τ(ã) = c(ê(ã) , ã) , for τ > t.

Now consider period t conditional on these continuation equilibria for τ > t. The

efforts specified in (A.18) and (A.19) are the same for all a ∈ [a′, ã) for all τ ≥ t, so it

must be that Pt(a) = Pt(a
′) for a ∈ [a′, ã). Moreover, for et(a

′,ht) ≤ ê(a′), there exist

equilibrium payments such that Pt(a
′)≥ 0. Thus, with the efforts in (A.18) and (A.19),

the expressions just given for S2
τ(ã) and S2

τ(a) , and βt(et(ã)) = 1, (14) can be written

for a ∈ [a′, ã) and ã respectively as

Ut(a,ht) =−c
(
et

(
a′,ht

)
,a
)
−u+wt+ c

(
ê
(
a′
)
,a′
)

+
δ

1−δ

[
c
(
ê
(
a′
)
,a′
)
− c
(
ê
(
a′
)
,a
)]
−Pt

(
a′
)
, for a ∈

[
a′, ã

)
, (A.23)

Ut(ã,ht) =−c(ẽ, ã)−u+wt+ c(ê(ã) , ã)−Pt(ã) . (A.24)

Moreover, from (A.23) for a= a′,

Pt

(
a′
)
= c
(
ê
(
a′
)
,a′
)
− c
(
et

(
a′,ht

)
,a′
)
−Ut

(
a′,ht

)
−u+wt(ht) , (A.25)

so

Ut(a,ht) =−c
(
et

(
a′,ht

)
,a
)
+ c
(
et

(
a′,ht

)
,a′
)

+
δ

1−δ

[
c
(
ê
(
a′
)
,a′
)
− c
(
ê
(
a′
)
,a
)]
+Ut

(
a′,ht

)
, for a ∈

[
a′, ã

)
. (A.26)

From (A.24) and (A.26), for a ∈ [a′, ã),

Ut(ã,ht)−Ut(a,ht) =−
[
c(ẽ, ã)− c

(
et

(
a′,ht

)
,a
)]
+
[
c(ê(ã) , ã)− c

(
et

(
a′,ht

)
,a′
)]

− δ

1−δ

[
c
(
ê
(
a′
)
,a′
)
− c
(
ê
(
a′
)
,a
)]
−Pt(ã)−Ut

(
a′,ht

)
−u+wt(ht) . (A.27)

Provided Ut(a,ht) ≥ 0, (8) is sufficient for et(a,ht) to be a best response for a by

Proposition 1. For the efforts specified in (A.18) and (A.19), that implies (A.20) with

et(ã,ht) = ẽ is sufficient for best response efforts by ã and a ∈ [a′, ã). From (A.27),

∂

∂a
[Ut(ã,ht)−Ut(a,ht)] = c2

(
et

(
a′,ht

)
,a
)
+

δ

1−δ
c2

(
ê
(
a′
)
,a
)
, for a ∈

[
a′, ã

)
,

which is just the derivative of the right-most term in (A.20) for the efforts in (A.18)

and (A.19). So, for Ut(ã,ht) = lima→ã−Ut(a,ht), the right-hand inequality in (A.20) is
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satisfied with equality for all a ∈ [a′, ã). With (A.17) satisfied, integration of both sides

of (A.17) with respect to a from a0 ∈ [a′, ã) to ã, with et(ã,ht) set equal to ẽ> et(a
′,ht)

and the efforts in (A.18) and (A.19), ensures that the left-most term in (A.20) is no less

than the right-most term for a= a0 ∈ [a′, ã). Thus the efforts in (A.18) and (A.19) for ã

and for a ∈ [a′, ã) satisfy (A.20), and hence (8), and so are best responses.

Furthermore, from (A.27), Ut(ã,ht) = lima→ã−Ut(a,ht) requires

c(ẽ, ã)+ c
(
et

(
a′,ht

)
,a′
)
− c
(
et

(
a′,ht

)
, ã
)
+

δ

1−δ

[
c
(
ê
(
a′
)
,a′
)
− c
(
ê
(
a′
)
, ã
)]

= c(ê(ã) , ã)−Pt(ã)−Ut

(
a′,ht

)
−u+wt(ht) .

That ẽ satisfies (A.16) for Pt(ã) ≥ 0 and Pt(a
′) ≥ 0 imply that the principal’s best

response condition in (9) for continuing at t is satisfied for all a ∈ [a′, ã) and for all

a ∈ [ã,a′′]. Moreover, with c2 (ẽ,a) ≤ 0, Ut(a,ht) is non-decreasing in a for a ∈ [a′, ã)
from (A.26). Thus, with Ut(ã,ht) = lima→ã−Ut(a,ht), the agent’s condition in (7) for

continuing the relationship at t is satisfied for all a ∈ [a′, ã].
For any a∈ (ã,a′′]∪

{
a | a−t+1(a) = ã

}
, Lemma 1 ensures et(ã,ht)= ẽ is preferred to

et(a
′,ht) given that it is preferred by ã. Proposition 1 ensures that, for the continuation

contracts for deviation specified there, et(ã,ht) = ẽ is also preferred to any other effort.

Thus the continuation contract for ht specified is also a continuation equilibrium for

a ∈ (ã,a′′]∪
{

a | a−t+1(a) = ã
}

. Under the conditions specified, therefore, there exists

an equilibrium continuation contract for ht satisfying the specifications of the lemma

that separates a′′ ≥ ã from a′.

Lemma 5 Effort function ê(a), defined in (20), is strictly increasing for all a ∈ [α̂,a]
and c(ê(a) ,a) is strictly increasing in a for all a ∈ [α̂,a] such that ê(a)< e∗(a).

Proof. For ê(a) = e∗(a), the first result follows immediately from e∗(a) strictly

increasing. For ê(a)< e∗(a), from (16) and (20),

δ ê(a)− c(ê(a) ,a)−δ (u+ v) = 0, for a ∈ [α̂,a] , (A.28)

so, differentiating with respect to a,

[δ − c1(ê(a) ,a)]
∂

∂a
ê(a)− c2(ê(a) ,a) = 0, for a ∈ [α̂,a] . (A.29)

Define e0(a) by

e0(a) = arg max
ẽ∈[0,e]

[δ ẽ− c(ẽ,a)] , for a ∈ [α̂,a] . (A.30)
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Because, by definition, α̂ is the lowest value of a for which (15) is satisfied, ê(α̂) =

e0(α̂). Because c2(ẽ,a) < 0 for ẽ > 0, the maximand in (A.30) is increasing in a. So

ê(a)> e0(a) for all a> α̂ because ê(a) is the maximum e(a) that satisfies (16). But then

the square bracket in (A.29) is certainly negative for a > α̂ . Hence, with c2(ẽ,a) < 0

for ẽ> 0, it follows from (A.29) that ∂ ê(a)/∂a is strictly positive for a> α̂ . With ê(a)

strictly increasing in a, it follows from (A.28) that c(ê(a) ,a) is too for all a ∈ [α̂,a]
such that ê(a)< e∗(a).

Proof of Proposition 6. Part 1. The continuation efforts for agent type a for τ > t

specified in the proposition satisfy Proposition 4, which implies that the continuation

payoff gains of type a for τ > t satisfy the conditions of Lemma 4 and also

dUt+1(a)

da
|a−

t+1(a)
=− 1

1−δ
c2

(
ê
(
a−t+1(a)

)
,a
)
.

By Lemma 4, a necessary condition for a to be separated from a′ is that there exists

ã ∈ (a′,a] and ẽ satisfying (A.15). For the specification in the proposition, this becomes

c2(ẽ, ã)≤ c2

(
et

(
a′,ht

)
, ã
)
+

δ

1−δ
c2

(
ê
(
a−t+1

(
a′
))
, ã
)
. (A.31)

By Assumption 1, c2 (ẽ,a) < 0 for ẽ ∈ (0,e] and c12 (ẽ,a) < 0. It follows from (A.31)

that ẽ−et(a
′,ht) is bounded below by some ε > 0. By definition of a−t+1(a), et(a,ht) =

et

(
a−t+1(a) ,ht

)
for all a. If a−t+1(a) = ã, then et(a,ht) = et(ã,ht) = ẽ≥ et(a

′,ht)+ ε . If

a−t+1(a) > ã, then a−t+1(a) is separated from ã and hence also from a−t+1(ã), so (A.31)

must be satisfied when a−t+1(a) is substituted for ã and a−t+1(ã) for a′. That requires

et

(
a−t+1(a) ,ht

)
> et

(
a−t+1(ã) ,ht

)
. Thus et(a,ht) = et

(
a−t+1(a) ,ht

)
> et

(
a−t+1(ã) ,ht

)
=

et(ã,ht) = ẽ≥ et(a
′,ht)+ ε .

Part 2. From Part 1, for full separation et(a,ht) must have an upward jump dis-

continuity at every a ∈ [at ,at ]. It must, therefore, be monotone. But for a monotone

function defined on an interval, the set of jump continuities is at most countable, which

results in a contradiction because the set of a ∈ [at ,at ] is uncountable.

Part 3. Consider first at . Then et(at ,ht)≤ ê(at) because, by Proposition 4, ê(at) is

the highest sustainable effort for at in an equilibrium continuation contract for ht with

ê(at) < e∗(at). Now consider a ∈ (at ,at ]. One possibility is that a is not separated

from at at t, in which case et(a,ht) = et(at ,ht) ≤ ê(at) < ê(a), the final inequality

following because, by Lemma 5, ê(a) is strictly increasing in a. The other possibility

is that a is separated from at at t, in which case a−t+1(a) must be separated from at at t

because et

(
a−t+1(a) ,ht

)
= et(a,ht) by the definition of a−t+1(a) having the same history

at t+1 as a. That et

(
a−t+1(a) ,ht

)
< ê
(
a−t+1(a)

)
follows from (A.16). The term in braces
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on its left-hand side is necessarily positive for ã > a′. Also, Ut(at) ≥ max [0,wt−u],

Pt

(
a−t+1(a)

)
≥ 0 and, by Proposition 4, S2

t

(
a−t+1(a)

)
is given by (17) for a= a−t+1(a), so

the right-hand side cannot be greater than c
(
ê
(
a−t+1(a)

)
,a−t+1(a)

)
. But then et(a,ht) =

et

(
a−t+1(a) ,ht

)
< ê
(
a−t+1(a)

)
< ê(a), again with the final inequality following from ê(a)

strictly increasing in a.

Part 4. By Part 1, a necessary condition for a to be separated from a′ under the

conditions of the proposition is that there exists ã ∈ (a′,a] and ẽ satisfying (A.31). By

Part 3, ẽ< ê(ã). By Assumption 1, c2 (ẽ,a)< 0 for ẽ ∈ (0,e] and c12 (ẽ,a)< 0, so there

can exist an ã ∈ (a′,a] and an ẽ satisfying (A.31) only if

c2(ê(ã) , ã)<
δ

1−δ
c2

(
ê
(
a−t+1

(
a′
))
, ã
)
.

Also by Assumption 1, c is twice continuously differentiable, so c2 is continuous and so

is ê(a). Thus, with c2 (ẽ,a)< 0 for ẽ ∈ (0,e], there can exist an ã ∈ (a′,a] that satisfies

this condition as a approaches a′ only if δ/(1−δ )< 1; that is δ < 1/2.

Proof of Proposition 7. Under Assumption 1, if there is more than one agent

type for which a mutually beneficial relational contract is possible, there exists a non-

degenerate interval of such types
[
a0,a′′

]
with a′′ > a0 for which ê(a) < e∗(a) for all

a ∈
[
a0,a′′

]
. Suppose it were possible to separate all types for which a mutually benefi-

cial relational contract is possible. Then it must be possible to separate all a ∈
[
a0,a′′

]
.

Consider an equilibrium with a non-degenerate interval [at(ht) ,at(ht)] ⊆
[
a0,a′′

]
of types a with the same history ht for which ê(a) < e∗(a), where t is the period in

which full separation of a ∈
[
a0,a′′

]
first occurs. If all types a ∈ [at(ht) ,at(ht)] were

fully separated at t, optimal continuation contracts would, by Proposition 3, result in

eτ(a,hτ) = ê(a) for all τ > t, so the assumptions of Proposition 6 would be satisfied.

But then Part 2 of Proposition 6 would imply that full separation of a ∈ [at(ht) ,at(ht)]

is not feasible, a contradiction that establishes the proposition for this case.

The alternative to an equilibrium in which full separation follows directly from the

non-degenerate interval [at(ht) ,at(ht)] ⊆
[
a0,a′′

]
of types a with the same history ht

is one in which a ∈ [at(ht) ,at(ht)] are separated at t into pools that do not include an

interval of types, so every pooled type is separated from its immediate neighbours, with

full separation occurring only in some later period. Consider such an equilibrium, with

a,a′ ∈ [at(ht) ,at(ht)] with a′ > a to be separated into different pools at t. A necessary

condition for this separation is that (8) is satisfied for some et(a
′,ht) 6= et(a,ht). Let

k(a) denote the number of periods after t for which a has payoff gain strictly greater

than wτ−u for t < τ ≤ k(a), which must be finite if a is eventually to be fully separated

with optimal continuation because, by Part 3 of Proposition 3, the payoff gain to a once
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fully separated at τ is wτ −u. Also, let k̂(a,a′) denote the number of periods after t for

which it is optimal for a to continue imitating a′ conditional on deviating by doing so

at t. Certainly k̂(a,a′)≤ k(a′) because, if a′ has payoff gain wτ−u from continuing the

relationship at τ > t with strictly positive effort, a< a′ has payoff gain strictly less than

wτ−u from continuing to imitate a at τ but can get payoff gain wτ−u by choosing zero

effort. Under these conditions, (8) corresponds to

−
k(a)

∑
i=0

δ
i
[
c(et+i(a) ,a)− c

(
et+i(a) ,a

′)]− δ k(a)+1

1−δ

[
c(ê(a) ,a)− c

(
ê(a) ,a′

)]
≥Ut(a,ht)−Ut

(
a′,ht

)
≥−

k̂(a,a′)

∑
i=0

δ
i
[
c
(
et+i

(
a′
)
,a
)
− c
(
et+i

(
a′
)
,a′
)]
+

k(a′)

∑
i=k̂(a,a′)+1

δ
ic
(
et+i

(
a′
)
,a′
)
,

for a,a′ ∈ [at(ht) ,at(ht)] ,a< a′. (A.32)

By Assumption 1, c(ẽ,a) is continuous and differentiable in a. So, by the Mean Value

Theorem, there exist at+i,a
′
t+i,a

′′ ∈ (a,a′) such that

c
(
et+i(a) ,a

′)− c(et+i(a) ,a) = c2(et+i(a) ,at+i)
(
a′−a

)
c
(
et+i

(
a′
)
,a′
)
− c
(
et+i

(
a′
)
,a
)
= c2

(
et+i

(
a′
)
,a′t+i

)(
a′−a

)
c
(
ê(a) ,a′

)
− c(ê(a) ,a) = c2

(
ê(a) ,a′′

)(
a′−a

)
.

Use of these in (A.32), division by a′−a> 0, and re-arrangement gives the requirement

k(a)

∑
i=0

δ
ic2(et+i(a) ,at+i)−

k̂(a,a′)

∑
i=0

δ
ic2

(
et+i

(
a′
)
,a′t+i

)
≥−δ k(a)+1

1−δ
c2

(
ê(a) ,a′′

)
+

k(a′)

∑
i=k̂(a,a′)+1

δ
i c(et+i(a

′) ,a′)

a′−a
,

for a,a′ ∈ [at(ht) ,at(ht)] ,a< a′. (A.33)

For a′ to be separated from its immediate neighbours, (A.33) must hold in the limit as

a→ a′. As a gets close a′, k̂(a,a′) = k(a′) because as long as a′ has payoff gain strictly

greater than wτ − u, a sufficiently close to a′ also does from imitating a′, so the final

term on the right-hand side of (A.33) is zero. Thus, with at+i,a
′
t+i,a

′′ ∈ (a,a′), (A.33)

can, in the limit as a→ a′, be written

lim
a→a′

k(a)

∑
i=0

δ
ic2(et+i(a) ,a)−

k(a′)

∑
i=0

δ
ic2

(
et+i

(
a′
)
,a′
)
≥− lim

a→a′

δ k(a)+1

1−δ
c2(ê(a) ,a) . (A.34)
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Define

h(a) =−
k(a)

∑
i=0

δ
ic2(et+i(a) ,a) .

Then (A.34) implies

h
(
a′
)
− lim

a→a′
h(a)≥− lim

a→a′

δ k(a)+1

1−δ
c2(ê(a) ,a) . (A.35)

Because c2(ẽ,a) < 0 for ẽ > 0, the right-hand side of (A.35) is strictly positive for

k(a) finite, so h(a) must have an upward jump discontinuity at a′. But for all agent

types to be separated from their immediate neighbours, (A.35) must hold for all a′ ∈
(at(ht) ,at(ht)]. Thus, for full separation to occur, h(a) must have an upward jump

discontinuity at every a ∈ (at(ht) ,at(ht)]. Such a function is certainly monotone, so

the set of such continuities is at most countable, a contradiction because the set of a in

(at(ht) ,at(ht)] is uncountable.

Proof of Proposition 8. Consider a contract that is identical to the equilibrium rela-

tional contract in the proposition except that it separates a ∈ [a′,at ] from a ∈ [at ,a
′)

in period t but pools within these intervals, with continuation efforts for τ > t of

eτ(a,hτ) = ê(at) for a ∈ [at ,a
′) and eτ(a,hτ) = ê(a′) for a ∈ [a′,at ]. By the defini-

tion of ê(a) in (20), (A.6) is satisfied for a−τ (a) = at with effort ê(at) and for a−τ (a) = a′

with effort ê(a′), so Lemma 2 ensures that there exist equilibrium continuation contracts

for τ > t with these continuation efforts. For all a ∈ [at ,a
′), eτ(a,hτ) for τ > t is no

further from the efficient level e∗(a). By Lemma 5, the effort function ê(a), defined

by (20), is strictly increasing for a ∈ [α̂,at ], so ê(a′) > ê(at). Thus, for all a ∈ [a′,at ],

eτ(a,hτ) for τ > t is strictly closer to the efficient level e∗(a). So the joint gain for τ > t

is strictly greater for a ∈ [a′,at ], and no less for a ∈ [at ,a
′), with this relational contract

than with the original equilibrium contract.

Now consider period t. Under the conditions of the proposition, a′ ∈ (at ,at ] and ẽ=

et(a
′,ht) satisfy the sufficient conditions in Lemma 4 for a′ to be separated from at given

et(at ,ht). From Part 1 of Proposition 6 with a′ substituted for a and at for a′, et(a
′,ht)>

et(at ,ht). Moreover, by Lemma 4, there then exists an equilibrium continuation contract

for ht with pooling in period t of all a ∈ [a′,at ] with effort et(a
′,ht), and of all types a ∈

[at ,a
′) with effort et(at ,ht), and the equilibrium continuation contract specified above

for τ > t. Then, for all a ∈ [at ,a
′), et(a,ht) is no further from the efficient level e∗(a)

and, for all a ∈ [a′,at ], et(a,ht) is strictly closer to the efficient level e∗(a) than with

the original equilibrium continuation contract. Thus S1
t (a) is increased for a ∈ [a′,at ]

without being reduced for a ∈ [at ,a
′) by the additional separation.
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Proof of Proposition 9. Denote by Ss
t (a) the joint gain for a from t on for the

contract in the proposition with a′′ fully separated and by S
p
t (a) that for the alternative

contract with a′ pooled with a′′. The overall joint gains for all a ∈ [a′,a′′] from t on are

JGi
(
a′,a′′

)
≡
∫ a′′

a′
Si

t(a)dF(a) , for i ∈ {s, p} .

For Si
t(a) Riemann integrable and F(a) continuous, JGi(a′,a′′) is continuous in a′ by a

standard result (see Apostol (1957, Theorem 9-31, p. 214)), so lima′→a′′ JGi(a′,a′′) = 0.

Thus JGp(a′,a′′)> JGs(a′,a′′) as a′→ a′′ if the left derivative of the former with respect

to a′ is less than the left derivative of the latter as a′→ a′′. That is

lim
a′→a′′

{[
−S

p
t

(
a′
)
+Ss

t

(
a′
)]

dF
(
a′
)}
< 0.

Let a0 be the lowest type with which a′ is pooled at t under the contract that fully sep-

arates a′′. (Formally, a0 =
(
a−t+1(a

′) ,ht

)
given that contract.) Ss

t (a
′) cannot be greater

than if the continuation contract were to separate a ∈ [a′,a′′) from a0 in the following

period (at t + 1) without changing the continuation contract for a ∈ A+t (ht)− [a′,a′′].
(That may not be an equilibrium continuation contract but a continuation equilibrium

could not give higher joint gain than if it were.) S
p
t (a
′) cannot be less than if a ∈ [a′,a′′]

are pooled from t on with effort et(a
′,ht) at t and effort ê(a′) thereafter, which is feasible

under the conditions of the proposition. (With et

(
a0,ht

)
unchanged from the contract

that fully separates a′′, (A.15) and (A.16) with a′ replaced by a−t+1(ã) are unchanged for

ã ∈ [αt(ht) ,a
′), and lowering et(a

′′,ht) and reducing eτ(a
′′,hτ) from ê(a′′) to ê(a′) for

τ > t relaxes (A.15) and (A.16) with a′ replaced by a′′ for ã> a′′.) Thus[
−S

p
t

(
a′
)
+Ss

t

(
a′
)]

dF
(
a′
)

≤
{[

et

(
a0,ht

)
− c
(
et

(
a0,ht

)
,a′
)]
−
[
et

(
a′,ht

)
− c
(
et

(
a′,ht

)
,a′
)]

+δ

[[
et+1

(
a′,ht+1

)
− c
(
et+1

(
a′,ht+1

)
,a′
)]
−
[
ê
(
a′
)
− c
(
ê
(
a′
)
,a′
)]]}

dF
(
a′
)
.

(A.36)

By Proposition 6, et(a
′,ht) is discretely greater than et

(
a0,ht

)
for a′ to separate from a0

at t and ê(a′)> et+1(a
′,ht+1) when, as specified in the proposition, eτ

(
a0,hτ

)
= ê
(
a0
)

for τ ≥ t+ 1. Moreover, because all these efforts are strictly less than efficient effort

e∗(a′), ẽ− c(ẽ,a) is strictly increasing in ẽ for a ∈ [a′,a′′]. Thus the expression on the

right-hand side of (A.36) is strictly negative and there is, therefore, a strictly positive

overall joint gain from pooling a′ with a′′ as a′→ a′′.
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Proof of Proposition 10. Part 1. Efforts in a one-period partition contract satisfy

(A.18)–(A.19) in Lemma 4 for t = 1, a′′ = ai and a′ = ai−1 for all i ≥ 2. With the

continuity of Ut(a,ht) established there, (A.26) must therefore hold for t = 1, a′′ = ai

and a′ = ai−1 for all i≥ 2. With c(ẽ,a) = ĉ(ẽ)/a, (A.26) for t = 1 then becomes

U1

(
ai,h1

)
=

[
ĉ
(
e1

(
ai−1,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai−1

))][ 1

ai−1
− 1

ai

]
+U1

(
ai−1,h1

)
, i= 1, . . . ,n.

Recursive substitution for U1

(
ai−1,h1

)
yields

U1

(
ai,h1

)
=

i−1

∑
j=1

[
ĉ
(
e1

(
a j,h1

))
+

δ

1−δ
ĉ
(
ê
(
a j
))][ 1

a j
− 1

a j+1

]
+U1

(
a1,h1

)
, i= 1, . . . ,n. (A.37)

For a< a1 to end the relationship at t = 1 but a1 to continue it requires U1

(
a1,h1

)
= 0

which, from (3), implies w1 ≤ u because only a1 = α1(h1) > a can satisfy (15), as

specified in the proposition. For c(ẽ,a) = ĉ(ẽ)/a with a > 0 and the specified contin-

uation efforts, (A.15) and (A.17) correspond to (24), and (A.16) to (25), for t = 1 and

ẽ= e1(a,h1) so, by Lemma 4, (24) and (25) with a replaced by ai+1 and a′ by ai are nec-

essary and sufficient for a one-period partition contract to be an equilibrium contract.

Condition (26) follows from these by substitution for U1

(
ai,h1

)
from (A.37) and use of

U1

(
a1,h1

)
= 0, w1 ≤ u and P1

(
ai
)
≥ 0 for all i = 1, . . . ,n. Since e1(a

n,h1) < e∗(an),

and increasing it for given an has, in (26), no knock-on effect on ai for i < n or the

efforts for a< an, the joint gain S0 is maximized by maximizing e1(a
n,h1). That makes

the left-hand inequality in (26) hold with equality for i= n−1.

Part 2. For there to exist e1

(
ai+1,h1

)
that satisfies (26), the left-hand side of the

first inequality must be no less than the right-hand side of the second. That requirement

can be rearranged as

ĉ
(
ê
(
ai+1

))
ai+1

≥
[

ĉ
(
e1

(
ai,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai
))] 1

ai

+
i−1

∑
j=1

[
ĉ
(
e1

(
a j,h1

))
+

δ

1−δ
ĉ
(
ê
(
a j
))][ 1

a j
− 1

a j+1

]
,

i= 1, . . . ,n−1, (A.38)

with the summation term zero for i = 1. In a finest one-period partition contract, ai is

the lowest type that can be separated from ai−1. With ê(a) < e∗(a) for all a ∈ [a,a], it
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follows from Lemma 5 that c(ê(a) ,a), and hence ĉ(ê(a))/a in the specification in the

proposition, is strictly increasing in a for all a for which the relationship is continued.

Thus, the ai+1 closest to ai consistent with (A.38) has (A.38) hold with equality, pro-

vided this yields ai+1 > ai. Moreover, the ai+1 that satisfies this requirement is unique.

It also implies ĉ
(
e1

(
ai+1,h1

))
/ai+1 is given by equality in the right-hand inequality in

(26) and hence by (29).

By (16) and (20), for ê(a)< e∗(a) as in the proposition and c(ẽ,a) = ĉ(ẽ)/a,

ĉ(ê(a))

a
= δ [ê(a)− (u+ v)] , for a ∈

[
a1,a

]
. (A.39)

For i= 1, the summation term in (A.38) is zero. Thus, for i= 1, division of (A.38) hold-

ing with equality by ĉ
(
ê
(
a1
))
/a1 and use of (A.39) yields (27), which certainly implies

a2 > a1 for δ > 1/2 because ĉ
(
e1

(
a1,h1

))
≥ 0 necessarily. For i ≥ 2, subtraction of

(A.38) for i−1 from (A.38) for i when both hold with equality yields

ĉ
(
ê
(
ai+1

))
ai+1

−
ĉ
(
ê
(
ai
))

ai

=

[
ĉ
(
e1

(
ai,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai
))] 1

ai

+
i−1

∑
j=1

[
ĉ
(
e1

(
a j,h1

))
+

δ

1−δ
ĉ
(
ê
(
a j
))][ 1

a j
− 1

a j+1

]
−
[

ĉ
(
e1

(
ai−1,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai−1

))] 1

ai−1

−
i−2

∑
j=1

[
ĉ
(
e1

(
a j,h1

))
+

δ

1−δ
ĉ
(
ê
(
a j
))][ 1

a j
− 1

a j+1

]
, i= 2, . . . ,n−1,

or, cancelling terms under the summation signs,

ĉ
(
ê
(
ai+1

))
ai+1

−
ĉ
(
ê
(
ai
))

ai

=

[
ĉ
(
e1

(
ai,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai
))] 1

ai

−
[

ĉ
(
e1

(
ai−1,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai−1

))] 1

ai
, i= 2, . . . ,n−1.

Use of (29) to substitute for ĉ
(
e1

(
ai,h1

))
in this yields

ĉ
(
ê
(
ai+1

))
ai+1

−
ĉ
(
ê
(
ai
))

ai

=

[
ĉ
(
e1

(
ai−1,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai−1

))
+

δ

1−δ
ĉ
(
ê
(
ai
))] 1

ai
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−
[

ĉ
(
e1

(
ai−1,h1

))
+

δ

1−δ
ĉ
(
ê
(
ai−1

))] 1

ai

=
δ

1−δ

ĉ
(
ê
(
ai
))

ai
, i= 2, . . . ,n−1. (A.40)

Division by ĉ
(
ê
(
ai
))
/ai and use of (A.39) yields (28), which certainly implies ai+1 >

ai. It also implies ê
(
ai+1

)
> ê
(
ai
)

by an amount bounded away from zero. With ê(a)

bounded above by e∗(a), that is sufficient to ensure a finite number of partitions.

Part 3. For further separation with the continuation effort specified given history

h2 generated by a finest one-period partition contract, there must exist an a ∈
(
ai,ai+1

)
,

for some i= 1, . . . ,n−1, that can be separated from ai when et(a,ht) = ê(a) for t > 2.

From Definition 1, the continuation contracts for h2 are stationary pooling continuation

contracts with ai = a−t (a) for a ∈ [ai,ai+1) and et

(
ai,ht

)
= ê
(
ai
)

for i = 1, . . . ,n. So,

from Lemma 2 with a−τ (a) = ai, Ut

(
ai,ht

)
= wt(ht)− u for t ≥ 2. It follows from

(24) and (25) with a′ replaced by ai and from Pt(a) ≥ 0 that, to be feasible to separate

a ∈
(
ai,ai+1

)
from ai at t ≥ 2, it must be that[

ĉ
(
ê
(
ai
))
+

δ

1−δ
ĉ
(
ê
(
ai
))] 1

ai
≤ ĉ(ê(a))

a
(A.41)

or
1

1−δ

ĉ
(
ê
(
ai
))

ai
≤ ĉ(ê(a))

a
. (A.42)

By Lemma 5 and ê(a) < e∗(a) for all a ∈ [a,a], ĉ(ê(a))/a is strictly increasing for all

a for which the relationship will be continued, so that can hold only if ĉ(ê(a))/a <

ĉ
(
ê
(
ai+1

))
/ai+1. But (A.40) and (A.42) imply ĉ(ê(a))/a ≥ ĉ

(
ê
(
ai+1

))
/ai+1 for i ≥

2. For i = 1, the summation term in (A.38) is zero and necessarily ĉ
(
e1

(
ai,h1

))
≤

ĉ
(
ê
(
a1
))

, so (A.38) and (A.41) imply ĉ(ê(a))/a ≥ ĉ
(
ê
(
a1
))
/a1. Thus there can exist

no a ∈
(
ai,ai+1

)
for any i= 1, . . . ,n that can be separated from ai at t ≥ 2.

Proof of Proposition 11. Let t be a date at which all separation that is going to

occur under the equilibrium partition contract has occurred. Suppose, contrary to the

claim in the proposition,

ê
(
ai+1

)
− (u+ v)

ê(ai)− (u+ v)
>

1

1−δ
, for some i ∈ {1, . . . ,n} .

By (20), for ê(a)< e∗(a), it then follows from (16) that

1

1−δ

ĉ
(
ê
(
ai
))

ai
<

ĉ
(
ê
(
ai+1

))
ai+1

, for some i ∈ {1, . . . ,n} .

By Proposition 4, optimal continuation implies et

(
ai,ht

)
= ê
(
ai
)

and also Ut

(
ai,ht

)
=
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wt(ht)−u. By Lemma 5 and ê(a)< e∗(a) for all a ∈ [a,a], ĉ(ê(a))/a is strictly increas-

ing for all a ∈
[
ai,ai+1

]
. So there then exists a ∈

(
ai,ai+1

)
that satisfies (24) and (25)

for a′= ai and Pt(a) = 0 and so can be separated from ai with effort ê
(
ai
)
. Furthermore,

by Proposition 8, separation of a from ai is optimal, contradicting optimal continuation

in the equilibrium partition contract.
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