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Abstract

We investigate the dynamic signaling incentives of an entrepreneur who is willing to sell

her firm. The underlying value of the firm is known only to the seller, and potential buyers

learn through noisy signals like sales or dividends. Before the firm is sold the entrepreneur

decides between efficient management or inefficient but revenue-generating activities, such as

secret price cuts, covered loans, etc. We provide a full characterization of the equilibrium

set of the model, which is set in discrete time and with infinite horizon. We find that, in all

equilibria, when the underlying value is high, the entrepreneur efficiently manages her firm.

When, instead, the underlying value is low, the entrepreneur keeps switching between efficient

managing and inefficient signaling in order to slow down the learning about the value, and

therefore increasing the probability of receiving a high offer. By mapping our model into a

reputations model, we show that reputation may be a permanent phenomenon even under

imperfect monitoring, and it can be sustained without building-milking reputation phases.
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1 Introduction

Entrepreneurs have private information about their firms. Not only dot they have inside

information about their firms’ underlying value, but also most of their management deci-

sions cannot be observed by outsiders. When they try to sell their firms, potential buyers

make inferences about such private information using noisy signals (such as sales, dividends,

etc.). Hence, entrepreneurs face a trade-off between efficient management to ensure a high

flow payoff and signal-enhancing inefficient activities (such as secret price cuts, suboptimal

advertising, etc.) to generate high offers. This paper studies how these incentives interact

over time and how they affect trade dynamics.

In our model, an entrepreneur (seller) wants to sell her firm (asset), which can have a low

or a high underlying value (quality). Only the seller observes the quality of her asset, and

she can exert costly management effort that generates observable noisy returns. We assume

that the optimal management effort is different for different qualities of the asset. Short-lived

buyers arrive over time, observe the history of returns and make an offer to the seller. If she

accepts the offer, the asset is sold, and the game ends. Otherwise, the entrepreneur continues

managing her firm until the arrival of the next buyer.

We show that Diamond’s paradox holds in a dynamic (noisy) signaling model. Namely,

buyers extract all surplus from the high-type seller in all equilibria. As a consequence, in

equilibrium, buyers never offer more than the reservation (autarchy) value of the high-quality

seller, and there is pooling on the decision to accept offers across the types of seller. Also, the

high-quality seller has strict incentives to manage her firm optimally, even in the presence of

signaling motives. Hence, most of the action in our model is driven by the incentives of the

low-quality seller to slow the learning about her asset type down.

At every period, the low-quality seller balances choosing the optimal (low) managerial

effort versus masquerading her type by exerting a suboptimal (high) effort. These two in-

centives exactly balance at most of the histories. The reason is that when the low-quality

entrepreneur is supposed to efficiently manage her firm, the signal becomes very informative.

Indeed, if the seller does not undertake cost-inefficient (but revenue-generating) activities, low

returns strongly indicate that the asset is of low quality, while high returns convince future

buyers that the quality of the asset is high. Therefore, the low-quality seller can greatly

increase the posterior of future buyers about the quality being high at a relatively low cost,

so she has incentives to masquerade herself. The reverse is also true when she is supposed to

put effort into signaling. We find that the effort put into masquerading is small when buyers’

beliefs about the quality are close to being degenerated, since then learning is slow.

One of the main contributions of this paper is a full characterization of the set of Nash

equilibria in a fully dynamic noisy signaling model.1 To do this, we develop new techniques

1Different from most of the previous literature (see the literature review below), we do not impose any restriction

on players’ behavior (for example, measurability conditions on strategies, etc.) and we do not restrict our focus to
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that allow us to construct the “equilibrium payoffs correspondence,” which provides the equi-

librium continuation payoffs for each prior about the quality of the firm being high. To do

this, we separate the continuation payoffs dynamics from the beliefs dynamics. This is crucial

for the solvability of our model since, despite the discreteness of types, effort, signals and

time, endogenous learning implies that the space of posteriors cannot be discretized, since

mixing probabilities cannot be restricted. We also show that the equilibrium public outcome

(distribution) is generically unique.

We provide insights on why dynamic learning models are, in general, difficult to solve in

discrete time. We show that when the action undertaken for one of the agents (in our case

the buyers) is discontinuous as a function of some relevant variable (in our case the posterior

about the quality of the asset), this generates a discontinuity in the possible continuation

payoffs that replicates itself an infinite number of times. This generates a step structure that

may have the form of a devil’s staircase, that is, a non-constant continuous function that

is flat almost everywhere. As a consequence, we find that if we endogenize the composition

of the market by introducing an entry fee, the equilibrium market composition is highly

discontinuous with respect to the entry fee.

We show that our model is equivalent to a reputations model where a seller repeatedly sells

goods at a given fixed price to short lived-customers, who only observe noisy signals (internet

reviews, awards, etc.) about the quality of the product sold in the previous periods. In this

case, efficient and inefficient management correspond, respectively, to “reputation milking”

and “reputation building.” We show that in equilibrium there are no reputation building-

milking cycles. Also, under some parametric assumptions, we find that reputation can be a

permanent phenomenon, even when monitoring is imperfect.

In the next section we review the literature related to our paper. In Section 2, we set our

base model and the main results of the paper. Section 3 concludes. The Appendix provides

the proofs omitted in the previous sections and some omitted developments.

1.1 Literature Review

Recently there has been an interest in dynamic noisy signaling models. These models analyze

how the revelation of information prevents the Swinkels (1999) inexistence result from hold-

ing.2 Among others, Kremer and Skrzypacz (2007), Kim (2012), Kaya and Kim (2013) and

Daley and Green (2012) analyze the dynamic effects of introducing exogenous information in

a lemons market. Our goal is to endogenize the information released and make the speed of

learning consistent with incentives. Also, our model features repeated signaling instead of a

repeated screening, since the rejection of offers is (endogenously) not informative, while types

a particular equilibrium subset (Markov strategies, refinements.)
2Swinkels (1999) shows that if there is no signal other than the time spent in school and offers are private and

frequent enough, the only equilibrium of the dynamic version of the standard Spence (1973) model is pooling.

3



separate on the effort choice.

As in Dilmé (2013), we introduce a hidden action that is necessary for the signal to be

informative. Nevertheless, signaling is productive in our model, and buyers randomly arrive

over time. This implies that, in our model, the action is driven by the incentives of the low-

quality sellers to mimic the high-quality sellers, rather than the incentives of the high-quality

sellers to separate. This allows us to construct a model that is more tractable, without the

need to restrict the focus to a subset of equilibria.

In the previous literature, results have been proven to sharply depend on the existence of

public or private offers. For example, Nöldeke and van Damme (1990) show that if offers are

public, the dynamic version of the Spence (1973) model has separating equilibria. Hörner and

Vieille (2009) show that the assumption of public or private offers has a high effect on the

trade dynamics in lemon markets. We abstract from this distinction by assuming that there

are no gains from trade from the sale of low-quality assets. In this environment, Diamond’s

(1971) paradox makes the different types of seller pool on the decision to accept offers that

do not generate losses to the buyer, independently of whether if they are public or private.

Our model is also related to the reputations literature, inaugurated by the seminal works

of Kreps and Wilson (1982) and Milgrom and Roberts (1982), since it can be reinterpreted as

a reputations model. In particular, we show that the vanishing reputations result in Cripps,

Mailath and Samuelson (2004) may not hold when short-lived players’ payoff is a function of

the type, not the action. So, we show that reputation may be sustained without building-

milking cycles (in the previous literature, among other mechanisms, building-milking cycles

were generated through bounded recall (Liu, 2011), through replenishing types (Mailath and

Samuelson, 2001, Board and Meyer-ter-Vehn, 2013) and through moral hazard (Dilmé, 2012)).

2 Basic Model

2.1 Setting

Time is discrete, t = 0, 1, ... There is an entrepreneur (seller) who wants to sell a firm (or

asset.) The asset is either of low quality (θ = L) or high quality (θ = H.) The seller discounts

future payoffs at a discount factor δ ∈ (0, 1).

There is a pool of homogeneous short-lived buyers. At every period, there is a probability

1 − λ that no buyer arrives, and a probability λ that (exactly) one buyer arrives.3 Buyers

value an asset of quality θ ∈ {L,H} at Uθ, with UL < UH . If a buyer arrives at t, he makes

a take-it-or-leavie-it offer to the seller Pt ∈ R. If the seller accepts the offer, the asset is sold

and the game ends. Otherwise, the game continues.

3The random arrival of buyers has recently been introduced in bargaining models (for example Fuchs and

Skrzypacz (2007)) and dynamic lemons markets (for example, Kim (2013)), where it is interpreted as a search

friction.
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At every period t, the entrepreneur decides on the effort et ∈ {0, 1} put into managing the

firm. If the effort exerted at t is et, the asset generates returns at t equal to πG ≡ π > 0 with

probability ν et and πB ≡ 0 with probability 1− ν et, for some ν ∈ (0, 1). We use ξt ∈ {B,G}

to denote the realization of the returns at time t, where B denotes that returns were low at

t (“bad” signal), while G denotes that returns are were high at t (“good” signal). The timing

of the game is schematically displayed in Figure 1.

The cost of providing effort e is type-dependend and normalized to cθ ν e for θ ∈ {L,H}.

Note that cθ can be interpreted as “the cost per unit of the probability of generating high

returns.” We assume that cH < π < cL. This implies that, in autarchy, high effort is optimal

for the H-seller, but not for the L-seller. We define VL ≡ 0 and VH ≡ ν π−cH
1−δ as the autarchy

values of the L-seller and the H-seller, respectively. Also, we assume UH > VH (gains from

trade for the H-asset) and UL < VL (no gains from trade for the L-asset).4

A (unterminated) public history is an element of H ≡ ∪∞
t=0{B,G}

t and it encodes the re-

turns realized in the past. A (unterminated) private history is an element of H̃ ≡ ∪∞
t=0

(
{B,G}×

{0, 1} × ({−∞} ∪ R)
)t

, that is, a public history plus the effort choices by the seller and the

offers made by the buyers, where an offer equal to −∞ at time t corresponds to no buyer

arriving in this period. A terminated private history (h̃t, P ) ∈ H̃×R is composed of a private

history and the offer accepted after it (at time t+ 1).

A strategy of a buyer who arrives at time t with public history ht is given by a distribution

over the price offers P̃ (ht) ∈ ∆(R). A strategy by the θ-seller, for θ ∈ {L,H}, is an acceptance

decision rule βθ : H̃×R → [0, 1], where βθ(h̃
t, P ) is the probability of accepting an offer P at

history h̃t, and an effort choice αθ : H̃ × (R ∪ {−∞}) → [0, ν], where α/ν is the probability

of choosing effort equal to 1.5 Given a terminated private history ((ξt, et, P t), Pt), the payoff

of the corresponding payoff for the θ-seller at time 0 is given by

Vθ,0(h̃
t, Pt) =

t−1∑

s=0

δs
(
πξs − ν cθ es

)
+ δt Pt . (2.1)

The payoff of a never-terminated path of play (i.e., no offer is accepted by the seller) is defined

as usual. Given a strategy profile, the expected payoff at 0 is defined as the expected payoff

over the terminated and the never-terminated paths of play.

We use ψt ≡ ψt(h
t) ≡ Pr(θ = H|ht) to denote the posterior of the buyers about the type

of the seller being H at t. Also, we use Vθ,t ≡ Vθ(h
t) to denote the highest continuation value

4Since VL = 0 we have UL < 0, which may seem counter-intuitive, especially given the usual assumption of free

disposal of the asset. Nevertheless, note that πB = 0 is just a normalization, so in general VL = πB

1−δ . Furthermore,

transaction (legal/taxes) costs may reduce the buyers’ valuation of the asset.
5It is notationally convenient to use the probability of generating high returns as the choice of the seller, instead

of the effort. It is clear that if the probability of issuing a dividend is restricted to belong to [0, ν], the two modeling

choices are equivalent. Also, since the action at period t is taken after the rejection of an offer (or if there has been

no offer at all; see Figure 1), α is a function of H̃ × (R ∪ {−∞}).
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Figure 1: Timing of the model.

of the seller at time t. Note that it only depends on the public history and the type, even if

the seller follows a non-public strategy. The reason is that previous previous effort choices or

offers received are not observed by future buyers, so the distribution of future offers depends

only on the current (and future) public history. Also, past effort choices do not change the

payoffs of a continuation play.

Definition 2.1. A Nash equilibrium (NE) (or just an equilibrium) is a strategy profile for

the seller (β∗θ , α
∗
θ)θ∈{L,H} and a strategy for the buyers P̃ ∗ that satisfy:

1. P̃ ∗(ht) solves the following problem:

P̃ ∗ ∈ argmax
P̃ ′

Et

[
ψt βH,t(P̃

′)UH + (1− ψt)βL,t(P̃
′)UL − P̃ ′|P̃ ′

]
. (2.2)

2. (β∗θ , α
∗
θ) are optimal policy functions of the θ-seller’s problem, for θ ∈ {L,H}:

Vθ(h
t) = λEt

[

max
βθ∈[0,1]

(βθ P̃t + (1− βθ)Wθ(h
t)

]

+ (1− λ)Wθ(h
t) , (2.3)

Wθ(h
t) = max

α∈[0,ν]

(
α (π − cθ) + δ

(
αVθ(h

t, G) + (1− α)Vθ(h
t, B)

))
. (2.4)

Remark 2.1. Note that in our model signaling is productive, in the sense that high manage-

rial effort generates high returns that are valuable for the seller. Nevertheless, this is very

different from the usual productive signaling models of education, where the signal increases

the productivity of the student, and therefore the value that she has for the uninformed part

of the market.

2.2 Equilibrium Characterization

Existence

We begin with a result stating the existence of equilibria.

Proposition 2.1. For all ψ0, an equilibrium exists.

Proof. Proof in the Appendix on page 20.
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Buyers’ Behavior

Let ψ⋆ be the lowest posterior such that if a buyer offers VH and it is accepted by the seller

for sure (independently of her type), the buyer makes non-negative profits. Formally:

ψ⋆ UH + (1− ψ⋆)UL − VH = 0 ⇒ ψ⋆ ≡
VH − UL
UH − UL

∈ (0, 1) .

The next proposition establishes the equilibrium behavior of the buyers. In this proposition,

as in those in the rest of the paper, the phrase “In any equilibrium” will be omitted.

Proposition 2.2. Fix a public history ht ∈ H.

1. If ψ(ht) < ψ⋆ then no equilibrium offer at ht is accepted.

2. If ψ(ht) = ψ⋆ then an equilibrium offer P (ht) is accepted only if P (ht) = VH .

3. If ψ(ht) > ψ⋆ then Pr
(
P (ht) = VH

)
= 1.

Proof. Proof in the Appendix on page 20.

Part 1 derives from the assumption UL < VL. Indeed, an offer that is accepted only by

the L-seller is clearly suboptimal, since there are no gains from trade for the L-quality asset.

Also, since ψ(ht) < ψ⋆, attracting the H-seller (by offering at least VH) generates losses.

The rationale behind part 3 is very similar to “Diamond’s Paradox” and can be explained as

follows. Assume that the maximum continuation value for the H-seller is V ∗
H > VH . This is

only possible if there is an equilibrium offer higher than V ∗
H . Nevertheless, a buyer can always

offer slightly less than V ∗
H and, given that the seller discounts the future, she accepts the offer

for sure, which generates a profitable deviation.

High-Quality Seller

Let’s now determine the behavior of the high-quality buyer.

Proposition 2.3. The H-seller always exerts high effort and accepts all offers equal to VH .

Proof. Proof in the Appendix on page 21.

The first part of Proposition 2.3 is a consequence of Proposition 2.2. Indeed, given that

equilibrium offers do not exceed VH , exerting low effort lessens the continuation payoff below

VH . Since the H-seller can guarantee herself a payoff of VH , exerting low effort is strictly

suboptimal. The second part comes from the fact that if the H-seller accepts an equilibrium

offer with probability less than one, the buyer can increase it an arbitrarily small amount so

that the seller accepts it for sure. This would be a profitable deviation.
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Pooling on Accepting Offers, Separation on Effort Choices

Given that the behavior of the H-seller is fully determined by Proposition 2.3, we now focus

on the behavior of the L-seller. In order to save notation we will drop the subindexes in the

continuation values and strategies of the L-seller, using Vt to denote VL,t and αt to denote

αL,t.

A trivial corollary of Propositions 2.2 and 2.3 is that the L-seller accepts with probability

one equilibrium offers equal to VH and rejects all other equilibrium offers. Indeed, given that

cL > cH , it is clear that V (ht) < VH for all histories ht ∈ H. Therefore, at every history, the

posterior is updated using only the returns ξt−1 and the expected equilibrium effort of the

L-seller α(ht−1).6 In particular, ψ(ht) = ψξt−1
(ψ(ht−1), α(ht−1)) for all ht ∈ H, where7

ψG(ψ,α) ≡
ν ψ

ν ψ + α (1−ψ)
and ψB(ψ,α) ≡

(1−ν)ψ

(1−ν)ψ + (1−α) (1−ψ)
, (2.5)

If α = ν (i.e. th L-seller pools with the H-seller) the signal is totally uninformative, so

ψξ(ψ, ν) = ψ for all ξ ∈ {B,G}. This is likely to happen when the cost of mimicking is low.

The following proposition establishes a sufficient condition in order to have separation in the

effort decision:

Proposition 2.4. If cL − π > δ λVH , the L-seller never fully mimics the H-seller, i.e.,

α(ht) < ν for all ht ∈ H.

Proof. Proof in the Appendix on page 21.

Proposition 2.4 is very helpful in simplifying the arguments and intuitions. The reason is

that, at each history, one could interpret the strategy of the L-seller “as if” she could choose

the realization of the returns (generating high returns at cost cL,) that is, as if she had a

perfect control over the realized public history. In order to provide a neat characterization of

the equilibrium set in our model and clear intuitions about our results, in the remainder of

the paper we will assume that cL− π > δ λ VH , except for Section 2.4, where we will relax it.

Continuation Payoffs Dynamics

Let v ≡ λVH be the expected revenue from selling the asset at a given period, provided that

if a buyer arrives he offers VH to the seller. Note that, by Proposition 2.2, if ψ(ht) > ψ⋆ then

V (ht) ≥ v. Also, let v̄ ≡ λVH

1−(1−λ) δ be the upper bound on the payoff that can be achieved by

6We use α(ht) ≡ E[α(h̃t−1, P̃ (ht−1))|ht−1] to denote the “expected equilibrium effort” of the L-seller. Note

that even though the seller could possibly be using a non-public strategy (and therefore conditioning the mixing

probability on the private history), only the expected equilibrium effort is relevant for updating the posterior.
7Note that, since ν ∈ (0, 1), Bayes’ rule is well defined except for the case ψ = 0 and α ∈ {0, 1}. Nevertheless,

note that buyers are never perfectly convinced that the type of the seller is L. Indeed, there is no public history

that has 0 probability when the type of the seller is H .
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the L-seller. This consists of the continuation payoff for the L-seller if she does not exert any

effort in the continuation play, and whenever a buyer arrives, he offers VH to the seller.

For any v ∈ R, let’s define

VB(v) ≡
v − v

δ
and VG(v) ≡

v + (1− λ) (cH − π)− v

δ
. (2.6)

It is easy to show that if v ∈ [0, v̄] then VL(v) < v < VH(v). These functions characterize the

dynamics of the continuation values of the L-seller, as the following result states.

Proposition 2.5. If ψ(ht) > ψ⋆ then V (ht, ξ) = min{v̄, Vξ(V (ht))} for all ξ ∈ {B,G} and

ht∈H.

Proof. Proof in the Appendix on page 22.

Intuitively, when the continuation value of the L-seller is not too high (not too low), then

she has to be indifferent about generating high (low) returns. The reason is that, otherwise,

high (low) returns would convince future buyers that the type of the seller is H, effectively

providing her with a continuation value of v̄. The indifference conditions of the L-seller impose

the restriction that the next period’s continuation payoff is obtained using the functions Vξ(·)

for ξ ∈ {B,G}. When the continuation value of the seller is high (i.e. V (ht) ≥ V −1
G (v̄)), the

L-seller can convince future buyers that her type is H by generating high returns, but she

does not do this because the increment on her continuation value does not compensate for

the cost of generating high returns.

Proposition 2.5 is very useful because it isolates the dynamics of the posterior from the

dynamics of the continuation payoff. Indeed, the continuation payoff in the next period is

only a function of the current continuation payoff and the dividend issuance on the current

period, independently of the previous history or equilibrium played.

The Set of Equilibrium Payoffs

Let’s now characterize the equilibrium continuation payoffs. As we will see, this will be useful

in order to characterize the equilibrium strategies. The equilibrium payoffs correspondence

V̂ : [0, 1] → [0, v̄] is given by

v ∈ V̂ (ψ) ⇔ when ψ0 = ψ there exists a NE with V (∅) = v . (2.7)

The following result establishes some basic properties of V̂ (·):

Proposition 2.6. V̂ (ψ) = {0} if ψ < ψ⋆, V̂ (ψ⋆) = [0, v] and V̂ (ψ) ⊂ [v, v̄] if ψ > ψ⋆.

Proof. Proof in the Appendix on page 23.
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Using Proposition 2.6 we can schematically depict the equilibrium payoffs correspondence

as in Figure 2. The first statement of Proposition 2.6 is a consequence of the fact that, by

Proposition 2.4, the L-seller never has strict incentives to mimic the H-seller. In particular,

the L-seller is indifferent about exerting 0 effort forever, which implies that returns are low

thereafter. In this outcome, if ψ(ht) < ψ⋆, the posterior remains below ψ⋆ forever. Therefore,

no future buyer makes a positive offer to the seller, so the L-seller gets its autarchy value

VL = 0.

The intuition behind the second statement is that if ψ(ht) = ψ⋆ and a buyer arrives, he

is indifferent about offering VH or an unacceptable offer, so he may potentially randomize.

Therefore, the flow expected revenue from selling the asset in this period can be any value in

[0, v]. Also, by Proposition 2.4 the L-seller does not fully mimic the H-seller; therefore, low

returns lower the posterior below ψ⋆, which provides a continuation value equal to 0, which

implies that the continuation value is no higher than v.8

The third statement is a direct consequence of Proposition 2.2. If ψ(ht) > ψ⋆ and a buyer

arrives, he is going to offer VH for sure. Since a buyer arrives with probability λ, the expected

payoff is at least v = λ VH .

Beliefs Dynamics

For a given v, ψ(v) (resp. ψ(v)) provides us with the lowest (resp. highest) initial prior where

an equilibrium with an initial continuation payoff equal to v exists. Formally:

ψ(v) ≡ inf
{
ψ ∈ [0, 1]

∣
∣ v ∈ V̂ (ψ)

}
and (2.8)

ψ(v) ≡ sup
{
ψ ∈ [0, 1]

∣
∣ v ∈ V̂ (ψ)

}
. (2.9)

In Figure 2 we have a graphical depiction of both concepts. For a given continuation value

v, ψ(v) corresponds to the horizontal infimum at height v of the graph of V̂ , while ψ(v)

corresponds to the horizontal supremum. The following result establishes that if (ψt, Vt) is

part of the boundary of the graph of V̂ , with Vt > v, then (ψt+1, Vt+1) also is.

Lemma 2.1. If ψ(ht) = ψ(V (ht)) for some ht and V (ht) > v, then ψ(ht, ξ) = ψ(V (ht, ξ)))

for both ξ ∈ {B,G}. The same holds for ψ(·).

Proof. Proof in the Appendix on page 24.

Let’s provide some intuition as to why Lemma 2.1 is true. Assume, by contradiction, that

there is some equilibrium and ht (normalize it to ht ≡ ∅) such that ψ(∅) = ψ(V (∅)) and

ψ(G) > ψ̃+ for some ψ̃+ ∈ V̂ −1(V (∅)) (the case with B is analogous). It is then easy to find

ψ̃ < ψ(∅) and α̃ ∈ (0, 1) such that ψB(ψ̃, α̃) = ψ(B) and ψH(ψ̃, α̃) = ψ̃+. This implies that

8While the first and the third parts of Proposition 2.6 still hold when cL − π < δ̃ λVH , the second part only

holds under this assumption. Section 2.4 discusses the cL − π < δ̃ λVH case.
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Figure 2: Schematic depiction of the equilibrium payoffs correspondence. By Proposition 2.6 we have

that V̂ (ψ) = {0} when ψ < ψ⋆, and V̂ (ψ⋆) = [0, v]. The arrows indicate the equilibrium change in

the posterior and continuation payoff at (ψ(v), v). By Lemma 2.1, in all equilibria, if ψ(ht) = ψ(v) and

V (ht) = v, then ψ(ht, ξt) = ψ(Vξt(v)) and V (ht, ξt) = Vξt(v).

when ψ0 = ψ̃, there exists an equilibrium providing a continuation value equal to V (∅) to the

L-seller, so ψ̃ ∈ V̂ −1(V (∅)). This contradicts our initial assumption that ψ(∅) = ψ(V (∅)).

Step Structure

Let V ⊂ [v, v̄] be the smallest set that contains v and

v ∈ V ∪ [0, v) ⇐ Vξ(v) ∈ V for some ξ ∈ {B,G} .

Note that V is countable, and therefore [0, v̄]\V is dense in [0, v̄]. Intuitively, V is composed

of the continuation values v such that there exists some ψ0 and history ht such that V (∅) = v

and V (ht) = v, satisfying V (hs) ≥ v for all s < t.

Proposition 2.7. For all v ∈ (v, v̄) we have ψ(v) = inf{ψ(v′)|v′>v & v′ ∈V} and ψ(v) =

sup{ψ(v′)|v′<v & v′∈V}. Furthermore, ψ(v) < ψ(v) if and only if v ∈ V ∪ {0}.

Proof. Proof in the Appendix on page 24.

A corollary of Proposition 2.7 is that ψ(·) and ψ(·) are increasing. Indeed, if there existed

v ≤ v < v′ ≤ v̄ such that ψ(v) > ψ(v′) then for any v′′ ∈ (v, v′) we would have ψ(v′′) ≤

ψ(v′) < ψ(v) ≤ ψ(v) ≤ ψ(v′′), which is a contradiction. Intuitively, the existence of an

equilibrium where the initial continuation payoff is high requires the prior about the type

11



ψ(V −1
B (v))

V −1
B (v)

ψ1

v

ψ(v)=ψ⋆

VG(v)

ψ(VG(v))

A

B

C

D

E

Figure 3: Intuition of the self-replication of the steps in the equilibrium payoffs correspondence. Since v ∈

V̂ (ψ⋆) (point A in the picture), we can find two continuation equilibria with posteriors and continuation

values at points B and C. Then, there exists an equilibrium with posterior and continuation value D that

uses E ≡ (ψ⋆, 0) and C as continuation equilibria. This generates the first step (all points between A and

D). The next step is constructed similarly using the first step.

being H to be also high. Also, since by Proposition 2.1 V̂ (ψ0) is non-empty for all ψ0 ∈ [0, 1],

we have that V̂ −1(v) = [ψ(v), ψ(v)], which implies that the graph of V̂ (·) has a step structure.

The fact that, by Proposition 2.7, if v ∈ V ∪ {0} then ψ(v) < ψ(v), highlights one of

the main difficulties of considering discrete (time/types/signals/effort choices) models: the

jumps in the posterior belief. Since at every period, after the realization of the signals, there

is a jump in the posterior, the continuation value jumps accordingly. In our model, due

to the discontinuity in the behavior of the buyers (established in Proposition 2.2), the set

of continuation payoffs suddenly increases at ψ⋆ (see Proposition 2.6.) The effect of this

discontinuity is replicated for higher posteriors and payoffs and makes V̂ have non-standard

properties, as described below.

The intuition behind Proposition 2.7 is depicted in Figure 3. Assume ψ0 = ψ⋆ and

V (∅) = v. By Proposition 2.4 we have that in such an equilibrium ψ(B) < ψ⋆, and therefore,

by Proposition 2.6, V (B) = 0. It is then easy to show that if we increase ψ0 above but close

to ψ⋆, there exists an equilibrium (denoted using tildes) where ψ̃(B) < ψ⋆ and ψ̃(G) = ψ(G)

(constructed using the same continuation plays as in our original equilibrium). The same

argument can be applied to V −1
B (v), and by induction to all elements in V.

Given that, by Proposition 2.7, the set V determines the heights of the “steps” in the graph

of V̂ , its density plays a crucial role in determining its properties. The following proposition

establishes the properties of V.

Proposition 2.8. 1. If V −1
G (v̄) ≤ v then v̄ is the only accumulation point of V.

2. If V −1
G (v̄) ∈ (v, V −1

B (v)] then V is not dense in (v, v̄] but has many accumulation points.

3. If V −1
G (v̄) > V −1

B (v) then V is dense in (v, v̄].

12



Proof. Proof in the Appendix on page 27.

Note that when V is not dense (i.e., in the first two cases of Proposition 2.8) there exist

continuation values in the interior of [v, v̄]\V. This implies that V̂ is not a function on (ψ⋆, 1],

i.e., V̂ (ψ) is multivalued for some ψ > ψ⋆. In order to see this, assume that (v, v′) ∩ V = ∅

for some v, v′ ∈ (v, v̄) with v < v′. Then, Proposition 2.7 establishes that ψ(·) and ψ(·) are

constant in (v, v′), i.e., (v, v′) ⊂ V̂ (ψ(v)).

In Figure 4 we depict the graph of V̂ (·) when V is not dense. The reason for the existence

of vertical segments in the graph (other than the one situated at ψ⋆) is, as it was for the

existence of horizontal steps, the discrete nature of our model. For the sake of clarity, focus

on the case of v ≥ V −1
G (v̄). By Proposition 2.6, continuation values in (0, v) can only be

achieved if the posterior is equal to ψ⋆. Since when v ≥ V −1
G (v̄) the only effort exerted in

equilibrium by the L-seller is 0,9 ψ(Bt) = ψ⋆ for some t only if ψ0 belongs to ψ(V), which is

a discrete, non-dense set.

In the third case of Proposition 2.8, instead, V̂ (ψ) is univaluated when ψ ∈ (ψ⋆, 1). In

this case, the region of the continuation payoffs space where the seller is indifferent about the

effort choice (given by (v, V −1
G (v̄))) is wide enough so that all its elements can be approached

by iteratively applying V −1
B (·) and V −1

B (·) to v. Since learning is endogenous and mixing

probabilities cannot be discretized, the size of the jumps in the posterior is endogenous and

non-discretizable. Therefore, mixing probabilities are adjusted in such a way that even though

ψ(v) = ψ⋆ for all v ∈ (0, v], ψ(V −1
B (v)) is increasing in v when v ∈ (0, v].

Effort Choice

Let’s now establish the (generic) uniqueness of the equilibrium:

Proposition 2.9. The equilibrium distribution over public outcomes is generically10 unique.

Proof. Proof in the Appendix on page 27.

When v ≥ V −1
G (v̄) (which happens if, for example, cL − π is large, δ is small or λ is

large) the equilibrium choice is always 0, that is, the L-seller does not put any effort into

masquerading. The reason is that either the seller has a high cost of signaling, current costs

of masquerading are highly valued compared with the future reward or the seller is very

confident that a buyer will arrive soon, so there is no need to keep the posterior high.

9Indeed, V (v) > v̄ for all v > v, so high effort is never exerted in equilibrium.
10By generically we mean that it is unique except for a set of measure zero in the parameter space. For example,

for any choice of parameters (ψ0, λ, δ, cH , π, UL, UH), there is a unique equilibrium for all choices of cL satisfying

our assumptions except maybe for a countable (i.e., measure-zero) set.
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ψ1ψ⋆

v

V̂
v̄

V −1
B (v)

V −2
B (v)

ψ1ψ⋆

v

V̂
v̄

V −1
B (v)

V −2
B (v)

(a) (b)

Figure 4: Graph of V̂ (·) when V is not dense. (a) corresponds to the first case in Proposition 2.8,

while (b) corresponds to the second case. While in (a) we have a “regular” staircase, in (b) we see

that each step has a substructure, provided by the existence of multiple accumulation points in V.

Devil’s Staircase and Ubiquitously Discontinuous Market Composition

Let’s assume V −1
B (v) < V −1

G (v̄). In this case, by Proposition 2.8, the set of heights of the

“steps” in V defined previously is dense. Therefore, the graph of V̂ looks like an upward going

“staircase” with an infinite number of steps continuously put one after the other. The next

lemma states this formally:

Lemma 2.2. If V is dense, the V̂ (ψ) is a singleton for all ψ ∈ (ψ⋆, 1]. In this case, V̂ :

(ψ⋆, 1] → R is a devil’s staircase, i.e., it is continuous, differentiable with derivative equal to

0 almost everywhere and globally increasing.

Proof. Proof in the Appendix on page 27.

Figure 5 (a) shows the graph of V̂ when V is dense (i.e., V −1
B (v) < V −1

G (v̄).) As we see, the

steps in the staircase make the continuation payoffs correspondence flat almost everywhere.

This implies, as the following Lemma 2.3 below states, that its inverse is not well behaved.

Figure 5 (b) depicts the mixing probability in the effort choice in the generically unique

equilibrium when V is dense. We see that it is low in the extremes (i.e. when learning is

slow). The effort choice peaks around ψ⋆, since if a B signal is observed, the posterior falls

below ψ⋆; so in the following period no high offer will be made. Intuitively, the L-seller gets

“scared,” so the equilibrium expected effort increases.

Lemma 2.3. If V −1
B (v) < V −1

G (v̄) then any function f : (ψ⋆, 1] → [v, v̄] that satisfies f(ψ0) ∈

V̂ −1(ψ0) for all ψ0 ∈ (ψ⋆, 1] is discontinuous in a dense set.

14



ψ10 ψ⋆ ψ(v)

v

V̂ α

νv̄

V −2
B (v̄)

V −1
B (v)

Figure 5: In black, graph of V̂ when V −1
B (v) < V −1

G (v̄). For ψ > ψ⋆ this is the graph of a

devil’s staircase, that is, a continuous, non-constant and increasing function that is flat almost

everywhere. In gray (right vertical axis), equilibrium effort choice in the (generically) unique

equilibrium. We plot them together in order to see the relationship between the steps and the

peaks of both curves.

Proof. Proof in the Appendix on page 28.

The following remark explains why the previous result may generate highly discontinuous

functions if we endogenize the initial prior about the quality of the asset.

Remark 2.2. Consider an extension of our model where we endogenize the initial composition

of the qualities of the asset (i.e., ψ0) in the following way. We assume that there is a big

pool of entrepreneurs with low-value ideas and a much smaller pool of entrepreneurs with

high-value ideas.11 Setting up a firm requires paying a fixed cost V0 ∈ (v, v̄). Since VH > v̄,

all entrepreneurs with highly valuable ideas set up the firm for sure. Heuristically, free entry

imposes the restriction that the mass of entrepreneurs with low-value ideas that set up the

firm is such that V (∅) = V0. In this case, from Lemma 2.2, it is easy to show that any

ψ0 : (v, v̄) → (ψ⋆, 1] is strictly increasing and discontinuous in a dense set. This makes the

composition of the market extremely sensitive to changes in the entry costs by the firms.

2.3 Reputations Interpretation

In order to interpret our model as a reputations model, let’s first establish the following result:

11We interpret the quality of the firm as the value of the patents it owns. So, entrepreneurs first get (good or

bad) ideas, then set up the firm, and finally sell (or not) the firm.
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Proposition 2.10. Fix any equilibrium ((αθ, βθ)θ∈{L,H}, P̃ ) of our model, and let µ(ht) ≡

Pr(P̃ (ht) = VH) for all ht ∈ H. Then the continuation value of the L-seller solves

V (ht) = max
α∈[0,ν]

(
µ(ht) v − α c+ δ̃

(
αV (ht, G) + (1− α)V (ht, B)

))
(2.10)

where δ̃ ≡ δ (1 − λ) and c ≡ (1 − λ) (cL − π). Conversely, if (α, µ, ψ) solve (2.10), with ψ

updated following Bayes’ rule (2.5) and µ(ht) = Iψ(ht)>ψ⋆ whenever ψ(ht) 6= ψ⋆, then they

are equilibrium strategies in our model.

Proof. Proof in the Appendix on page 28.

In the previous proposition, v is interpreted as the flow payoff provided by the fact that

when ψ(ht) > ψ⋆, there is a positive probability (equal to λ) that an offer VH will be received.

c is the net cost of choosing high effort per unit of probability, adjusted for the fact that

it is incurred only when no offer is accepted. Finally, δ̃ is the effective discount factor,

which incorporates the fact that the L-seller discounts the future, but also that buyers arrive

randomly, so it takes some time for offers to arrive.

This renormalization has an interpretation of the model as a reputations model (see Re-

mark 2.3). It is particularly useful because, even though the probability that the game ends

by accepting an offer changes depending on the posterior about the type of the seller, the

effective discount rate (δ̃) is independent of the probability of receiving a high offer.

Remark 2.3. Our model can be reinterpreted as a reputations model in which a seller (for

example, a restaurant) repeatedly sells a good to short-lived customers at price v. Customers

buy the good only if they are reasonably convinced that the quality of the good is high (i.e.,

ψt ≥ ψ⋆). In this case, the returns in our original model can be reinterpreted as a noisy signal

(online reviews, etc.) about the quality of the signal. While a high-quality product “looks

good” (i.e., good signals appear frequently), making a low-quality product “look good” (i.e.

send good signals as if it were high-quality) is costly. In this case, the continuation value of

the L-seller would follow equation (2.10).

2.4 Mimicking Case

Let’s now relax the condition made in Proposition 2.4 (assumed in the subsequent results in

Section 2.2). Assume, therefore, that cL − π ≤ δ λ VH .

In this case, we are not going to repeat the previous analysis, although most results still

apply.12 Instead, we will provide a result that exposes the main qualitative difference when

we assume cL − π ≤ δ λ VH instead of cL − π > δ λVH

12For example, it is not difficult to show that the equilibria that we found are still equilibria under the assumption

cL − π ≤ δ λVH .
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Proposition 2.11. Assume cL − π ≤ δ λ VH . Then there exist equilibria where ψ(ht) ≥ ψ⋆

for all ht ∈ H. In those equilibria, limt→∞ Pr(ψt = ψ⋆) = 1.

Proof. Proof in the Appendix on page 29.

Proposition 2.11 states that there are equilibria where the amount of information released

is limited. Even though it is not efficient for the L-seller to exert effort (we still assume

π − cL < 0), the prospect of obtaining a high offer makes her willing to incur payoff losses

for arbitrarily long periods of time. As the second part of the proposition hints, incentives to

exert high effort are provided when the posterior is ψ⋆ by buyers mixing over the offer. When

good signals are observed, (indifferent) buyers make a high offer with high probability, while

if bad signals are observed, the probability of offering a high price decreases.

This result is in sharp contrast to the result in Cripps, Mailath and Samuelson (2004),

especially given the reputations interpretation of our model. Indeed, they show that under

imperfect monitoring, reputation asymptotically disappears. Hence, a continuation strategy

of the game with perfect information is played with probability 1 in the long run. Note that

in our model with perfect information the L-asset is not sold in any equilibrium, since there

are no gains from trade for this asset.

The reason why our model features equilibria with permanent reputation effects is the

following. In classical reputation models the uninformed (sequence of short-lived) players’

payoff depends on the actions taken by the informed players and not directly on the types.

In our model, instead, their payoff is a function of the type, not the action. In the restaurant

story, in the classical reputations model, a customer who believes that the seller exerts high

effort would buy the good independently of the type of the seller. In our model, instead, if a

customer is convinced enough that the type of the seller is L, he does not buy, independently

of the effort exerted by the seller.

3 Conclusions

The analysis of the dynamic trade of heterogeneous assets involves studying the seller’s incen-

tives to disguise the quality of her asset in order to increase the transaction price. When we

endogenize the information that a signal conveys, the incentive to mimic forces learning not to

be too fast or too slow. Fast learning induces low types to masquerade, which slows learning

down. Slow learning, instead, reduces their incentives to mimic, which speeds learning up.

We characterize all Nash equilibria in our model, without any restriction on players’

strategies or beliefs. We find that even though our problem is not stationary (information

accumulates over time), public outcomes are generically Markov with respect to the posterior

about the quality of the asset. By showing that our dynamic signaling model can be mapped

into a reputation model, we find that this implies that no reputation cycles or building-milking
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phases appear in any equilibrium. Also, under some parametric assumptions, reputation may

be a permanent effect.

Our model highlights the technical challenges that dynamic learning models pose. Even

though it is arguably one of the simplest non-trivial fully dynamic models of repeated noisy

signaling, the characterization of the equilibrium set is technically demanding. We develop

new techniques to characterize the equilibrium continuation payoffs correspondence. We find

that when the behavior of some player(s) is discontinuous in the posterior, a self-replicating

step structure arises that may take the form of a devil’s staircase. This structure is likely to

be present in discrete time versions of other models in the literature and may imply that the

market composition is highly discontinuous with respect to the entry fee.

Overall, repeated signaling provides us with valuable insights into the dynamic incentives

of traders of heterogeneous assets. Diamond’s paradox generates stickiness in the accepted

price offers and disciplines buyers’ beliefs updating. As a consequence, high-quality sellers

behave optimally, while low-quality sellers partially masquerade themselves at every history,

making information revelation slow but persistent. At a more technical level, we show that

even though discrete dynamic models are attractive in terms of the understandability of the

assumptions and non-restriction of the strategies, they may generate economically relevant

equilibrium objects with undesirable mathematical properties. The generalization of our

insights and techniques to more general models is left to future research.
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A Omitted Proofs

Proof of Proposition 2.1 (page 6)

Note that using Lemma A.1 we can prove that an equilibrium exists for all ψ0. Indeed, it is

easy to show that the structure established in Lemma A.1 for ψ(·) and ψ(·) guarantees that

if ψ0 ∈ [ψ(v), ψ(v)] then there exists some α such that ψξ(ψ0, α) ∈ [ψ(Vξ(v)), ψ(Vξ(v))]. So,

given the properties of ψ(·) and ψ(·) established in Proposition 2.7, it follows that we can

construct a continuation play consistent with equilibrium for any ψ0 ∈ [0, 1].

Proof of Proposition 2.2 (page 7)

Proof. Let’s first show that no offer exceeds VH . Let’s define vmax
H ≡ supht∈H VH(h

t). Note

that vmax
H ≤ UH , since equilibrium offers never exceed UH . Assume that vmax

H > VH = ν (π−cH )

1−δ̃

and let’s define ε ≡ (1−δ) vmax
H −ν (π−cH) > 0. Let ht be such that VH(h

t) ∈ (vmax
H −ε, vmax

H ].

Then, there is some αH ∈ [0, ν] such that

WH(h
t) =

≤ν (π−cH )
︷ ︸︸ ︷

αH (π − cH)+δ
(

≤vmax

H

︷ ︸︸ ︷

αH VH(h
t, G) + (1− αH(h

t))VH(h
t, B)

)

< vmax
H − ε .

Therefore, it must be the case that, in equilibrium, if a buyer arrives at ht the distribution

of offers P̃ (ht) is such that

vmax
H − ε < VH(h

t) ≤ λE[max{P̃ (ht), vmax
H − ε}] + (1− λ) (vmax

H − ε) .

In particular, this requires that Pr[P̃t > vmax
H − ε] > 0. Nevertheless, an offer Pt > vmax

H − ε is

dominated by offering vmax
H − ε,13 which is accepted by the H-seller for sure. So, vmax

H ≤ Vt.

Assume first ψt > ψ⋆. Assume that a buyer arrives at t. If the H-seller accepts VH for

sure then it is optimal to offer VH . Otherwise, assume that the H-seller accepts an offer VH

with probability γ ∈ [0, 1). Then, if the buyer offers VH + ε, with ε > 0, the offer is accepted

by the H-seller for sure (since her continuation payoff is VH), so this guarantees a payoff to

the buyer equal to

ψt VH + (1− ψt)VL − (VH + ε) .

Note that since ψt > ψ⋆, the sum of the first two terms is strictly higher than VH . Therefore, if

ε > 0 is small enough, the whole expression is positive, and higher than ψt γ VH+(1−ψt)VL−

VH . Since the payoff is decreasing in ε, all such offers are strictly dominated. Therefore, in

equilibrium, VH is offered and accepted with probability one.

13It is strictly dominated because since VH(ht) ≥ VL(h
t), in both cases, the offer is going to be accepted by all

types of seller.
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Assume now ψt ≤ ψ⋆. Note that the first part of the proof WL(h
t) < WH(h

t) = VH

for all histories. Therefore, an offer strictly lower than VH would attract (at most) only the

L-seller. So it would never be profitable (given that UL < VL). Also, if a buyer offers VH

the L-seller accepts for sure. Therefore, the profit for the buyer from offering VH is no larger

than ψt UH + (1−ψt)UL− VH . If ψt < ψ⋆, this is negative, so no such offer is made. Only if

ψt = ψ⋆ and the H-seller accepts an offer equal to VH , the buyer is indifferent about offering

it or not, so he could potentially randomize.

Proof of Proposition 2.3 (page 7)

Proof. Note that Proposition 2.2 implies that VH(h
t) = VH for all histories. Assume that

there is a history where the H-seller exerts effort 1 with probability αH(h
t)/ν ∈ [0, 1). Then,

VH(h
t) =

<ν (π−cH )
︷ ︸︸ ︷

αH(h
t) (π − cH)+δ

(

=VH

︷ ︸︸ ︷

αH(h
t)VH(h

t, G) + (1− αH(h
t))VH(h

t, B)
)
.

Trivially, VH(h
t) < VH , which is a contradiction. Finally, in the proof of Proposition 2.2

we see that an offer equal to VH is made only if it is accepted with probability one by the

H-seller.

Proof of Proposition 2.4 (page 8)

We prove this result by first proving a simpler version of our model, referred as to the perfect-

monitoring model, where we allow the L-seller to choose G for sure (so high returns are

generated for sure) at cost cL (we assume this in all proofs of Propositions 2.5-2.10 [note that

none of the proofs of these propositions uses Proposition 2.4]). We then verify (in this proof)

that for all equilibria and histories of the simpler model α(ht) ≤ ν, so all equilibria found

under the model problem are also equilibria of the original model. We finally show (in this

proof) that the set of equilibrium payoffs in both models is the same, so our result holds.

We recommend the reader first go over the proofs of Propositions 2.5-2.10 before reading this

proof.

We first prove that α(ht) < ν for all ht. Note that if V (ht) = v ∈ V then ψ(VB(v)) ≤

ψ(v) < ψ(v) ≤ ψ(VG(v)) (using Proposition 2.7,) so α(ht) < ν. If, instead, v /∈ V then note

that there exists v′ ∈ V such that VB(v) < v′ < v. The reason is that V −n
L (v) ∈ V for all

n ∈ N and there exists some n∗ such that V n∗

B (v) ∈ (0, v), so V
−(n∗−1)
B (v) ∈ (VB(v), v). This

implies (by Proposition 2.7) that ψ(VB(v)) ≤ ψ(v′) < ψ(v′) ≤ ψ(v). Therefore, the expected

effort choice is strictly lower than ν.

In order to compare the equilibrium payoff correspondences of the two models, for each

v ∈ [0, v̄], let ψ
1
(v) and ψ

ν
(v) be defined as in (2.8) for the perfect-monitoring and original

models, respectively. Our goal is to prove that ψ
1
(v) = ψ

ν
(v) for all v ∈ [0, v̄] (we can

proceed similarly to prove the same for ψ(·) defined in (2.9).) Note that ψ
1
(v) ≥ ψ

ν
(v) for
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all v ∈ [0, v̄], since as is shown previously in this proof, α(ht) ≤ ν for all equilibria in our

reduced model. Let’s define for each v ∈ [0, v̄], dq(v) ≡ 1/ψ
ν
(v) − 1/ψ

1
(v) ≥ 0, and let

dmax
q ≡ supv(dq(v)). Assume, by contradiction, that dmax

q > 0.

The main difficulty in proving ψ
1
(v) = ψ

ν
(v) for all v is that there are histories in our

original model where it may be the case that the L-seller has strict incentives to exert high

effort. It is easy to show that also in the perfect-monitoring model the L-seller is indifferent

about exerting high or low effort at some history ht only if V (ht, ξ) = Vξ(V (ht)) for all

ξ ∈ {B,G}), as in the perfect-monitoring model. She is strictly willing to exert effort only

if V (ht, G) > VG(V (ht)) and V (ht, B) < VB(V (ht)), in which case ψ(ht, ξ) = ψ(ht) for

all ξ ∈ {B,G}. Also, the seller is willing to exert low effort if V (ht, B) = VB(V (ht)) and

V (ht) ≤ V −1
G (v̄).

Note that for any ht and V (ht) such that ψ(ht) = ψ
1
(V (ht)), either ψ(ht, ξ) = ψ

1
(Vξ(V (ht)))

for ξ ∈ {B,G} (if α(ht) < ν, using the same argument as in Lemma 2.1) or ψ
1
(V (ht, G)) ≤

ψ
1
(V (ht)) (if α(ht) = ν.) Note that since ψ

1
(VG(v)) > ψ

1
(v) + m for some m > 0, and

ψ(V (ht, G)) ≥ VG(V (ht)), we have that in the second case dq(V (ht, G)) > dq(V (ht, G)).

Therefore, if ψ(ht, ξ) 6= ψ(Vξ(V (ht))), then dq(V (ht,H)) > dq(V (ht)) +m′ for some m′ > 0.

Consider a strictly decreasing sequence (εn)n such that limn→∞ εn = 0. Also, let’s define

vinf ≡ lim
n→0

inf
{
v > 0

∣
∣ dq(v) > dmax

q − εn
}

︸ ︷︷ ︸

≡vn

.

Now, we can use an argument similar to the proof of Lemma A.1 to complete the proof. Note

that it can be used since equation (A.4) still holds, given that otherwise there would exist

v > vinf with dq(v) > dq(v) + m′, which is a contradiction. Therefore, as in the proof of

Lemma A.1, dmax
q = 0, so ψ

1
(ψ) = ψ

ν
(ψ) for all ψ ∈ [0, 1].

Proof of Proposition 2.5 (page 9)

Proof. To prove the result, it is important to notice that, in equilibrium, if at some public

history ht we have Pr(P̃ (ht) = VH |P̃ (h
t) 6= −∞) = 1 (i.e., conditional on a buyer arriving

at ht he offers VH for sure), then the L-seller is indifferent about exerting effort if and only

if V (ht, ξ) = Vξ(V (ht)) (it follows from the indifference conditions).14 This implies that the

seller is willing to generate returns equal to πξ if and only if V (ht, ξ) = Vξ(V (ht)).

We solve each part separately:

1. Assume first VB(V (ht)) ≥ 0 (so V (ht) ≥ v). This implies, by Proposition 2.6 that if

a buyer arrives at t he offers VH for sure (recall that we do not use Proposition 2.5 to

prove it.) By contradiction, assume V (ht, B) 6= VB(V (ht)). If V (ht, B) < VB(V (ht)),

then the seller has strict incentives to generate high returns. Therefore, low returns

14As mentioned in the proof of Proposition 2.4, the proofs of Propositions 2.5-2.10 are done allowing the L-seller

to choose G for sure (so she generates high returns for sure) at cost cL.
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would convince future buyers that the type of the seller is H, providing the seller with

a continuation payoff v̄. This clearly generates high returns. If V (ht, B) > VB(V (ht)),

then generating low returns reports a value of v+δ (1−λ)V (ht, B), which, since V (ht) <

v̄, is strictly higher than V (ht), so we also have a contradiction.

2. Assume now VG(V (ht)) ≤ v̄. If V (ht, G) > VG(V (ht)) then the L-seller has strict

incentives to generate high returns. Nevertheless, if low returns are generated, she

convinces future buyers that her type is H, and this clearly dominates generating high

returns. If, instead, V (ht, G) < VG(V (ht)), then the L-seller strictly prefers not to

generate high returns. If she instead generates high returns, she convinces the buyers

that her type is H. Using that expression of VG(·) and the fact that V (ht) < V −1
G (v̄),

we see that this is a profitable deviation. Therefore, V (ht, G) = VG(V (ht)).

Proof of Proposition 2.6 (page 9)

Let’s prove the propsition by parts.

1. Assume ψ(ht) < ψ⋆ for some ht ∈ H. By Proposition 2.2 if a buyer arrives at ht, he

makes an unacceptable offer. Assume α(ht) ≤ ν (the other case is analogous). Since

ψ(ht, B) ≤ ψ(ht) the L-seller is weakly willing to proceed to a history where, if a buyer

arrives, he offers an unacceptable offer. This argument can be iteratively used, so we

have that the L-seller is willing to choose a continuation play where an acceptable offer

is not made at any point in the future. This proves our result.

2. The fact that V̂ (ψ⋆) ⊃ [0, v] comes from the explicit construction of equilibria that

we provide in Section 2.2.15 In order to prove that V̂ (ψ⋆) ⊂ [0, v], note first that if

there is some ht such that V (ht) > v and ψ(ht) = ψ it needs to be the case that

α(ht) = ν. Otherwise, ψ(ht, ξ) < ψ for some ξ ∈ {B,G}, so V (ht, ξ) = 0. If the

L-seller is willing to choose ξ, then V (ht) = V −1
ξ (0) ≤ 0, which is a contradiction. So,

assume that α(ht) = ν and ψ(ht) = ψ⋆. Let vmax ≡ sup{V̂ (ψ⋆)}, and assume vmax > v.

Consider ε > 0 small and an equilibrium and history such that V (ht) ≥ vmax − ε. By

the observation made at the beginning of the proof of Proposition 2.5, we have that

V (ht, G) = VG(V (ht)) ≥ VG(v
max − ε). Therefore, since VG(v

max) > vmax, if ε is close

enough to 0, we have V (ht, G) > vmax, which is a contradiction.

3. Proving V̂ (ψ) ⊂ [v, v̄] if ψ > ψ⋆ is trivial, since v̄ is clearly the maximum payoff

achievable by a L-seller, while at least she gets the probability that a buyer arrives

multiplied by a high offer VH , that is, λVH , that is exactly v.

15In this section we assume that an equilibrium exists and we then construct it explicitly.
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Proof of Lemma 2.1 (page 10)

Proof. Note that the standard Bayes rule implies

1

ψ(ht)
=

1− ρ

ψ(ht, G)
+

ρ

ψ(ht, B)
. (A.1)

We will prove the result for ψ(·), and the proof for ψ(·) is analogous. Assume it is not

true. Then, there exists an equilibrium and history with V (ht) > v and ψ(ht) = ψ(V (ht))

such that ψ(ht, B) > ψ(VB(V (ht))) (the other case, that is, when ψ(ht, G) > ψ(VG(V (ht))),

is done analogously.) Then, let’s define

ψ̃ ≡
1

ν
ψ(ht,G) +

1−ν
ψ(VB(V (ht)))

<
1

ν
ψ(ht,G) +

1−ν
ψ(ht,B)

= ψ(ht) and

α̃ ≡
ν

ν + (1− ν)
ψ(ht,G) (1−ψ(VB(V (ht))))

(1−ψ(ht,G))ψ(VB(V (ht)))

∈ (0, 1) .

Note that α̃ is such that ψB(ψ̃, α̃) = ψ(VB(V (ht))) and ψG(ψ̃, α̃) = ψ(ht, G). Since, by

assumption, there are equilibrium continuation paths at ψ(VB(V (ht))) and ψ(ht, G) providing,

respectively, VB(V (ht)) an VG(V (ht)), when ψ0 = ψ̃ there exists an equilibrium providing

continuation value V (ht) to the L-seller. This implies that ψ̃ ≥ ψ(V (ht)), which is a clear

contradiction.

Proof of Proposition 2.7 (page 11)

Let’s define

αB(ψ,ψ
′) ≡ 1−

ψ (1− ψ′)

(1− ψ)ψ′
(1− ν) and αG(ψ,ψ

′) ≡
ψ (1− ψ′)

(1− ψ)ψ′
ν . (A.2)

Using the standard Bayes rule, it can be shown that for each history ht, αξ(ψ,ψ
′) provides

the (unique) equilibrium mixing α(ht) compatible with ψ = ψ(ht) and ψ(ht, ξ) = ψ′.

In order to prove the results, we first introduce a lemma that is very useful to characterize

the functions ψ(·) and ψ(·).

Lemma A.1. ψ(·) is the unique function q : (0, v̄] → [0, 1] that satisfies

1. q(v) = ψ⋆ for v ∈ (0, v],

2. αB
(
q(v), q(VB(v))

)
= αG

(
q(v), q(VG(v))

)
for v ∈ (v, V −1

G (v̄)), and

3. αB
(
q(v), q(VB(v))

)
= 0 for v ∈ [V −1

G (v̄), v̄).

Similarly, ψ(·) is the unique function q̄ : [0, v̄] → [0, 1] the previous conditions changing

q̄(v) = ψ⋆ for v ∈ [0, v) in the first part and v ∈ [v, V −1
G (v̄)) in the second.
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Proof. We do the proof for ψ(·) (for ψ(·) the proof is analogous.) Let’s first prove existence.

Using Bayes’ rule (given in equation (A.1)) it is easy to show that q(·) exists if and only if

Γ(·) ≡
1−q(·)

q(·) exists satisfying:

Γ(v) =







1−ψ⋆

ψ⋆ if v ∈ (0, v]

ν Γ(VB(v)) + (1− ν) Γ(VG(v)) if v ∈ (v, V −1
G (v̄))

ν Γ(VB(v)) if v ∈ [V −1
G (v̄), v̄]

For each v ∈ (0, v̄) let H(v) ≡ {ht|Vht(v) ≤ v & Vhs(v) ∈ (v, v̄) ∀s < t} be the set of

(continuation) histories where, provided that the initial continuation payoff is v, ψ(v) reaches

ψ⋆ for first time.16 Then, it is easy to show that a solution for Γ(·) is given by:

Γ(v) ≡
1− ψ⋆

ψ⋆

∑

ht∈H(v)

t∏

s=1

νI(h
t
s=B) (1− ν)I(h

t
s=G) . (A.3)

Note that Γ(·) is left-continuous.

Using Lemma 2.1 we know that ψ(·) satisfies parts 1-3 of Lemma A.1. Consider two

functions, q(·) and q̃(·), both satisfying the conditions of Lemma A.1. Define dq(v) ≡
1
q(v)−

1
q̃(v)

and assume that dmax
q ≡ supv∈(0,v̄] dq(v) > 0. Consider a sequence (εn)n, with εn > 0 for all

n and such that limn→∞ εn = 0. Define also

vinf ≡ lim inf
n→0

inf
{
v > 0

∣
∣ dq(v) > dmax

q − εn
}

︸ ︷︷ ︸

≡vn

.

Note that (vn)n is a non-decreasing sequence (indeed, when n increases, the set over which

the infimum is taken gets smaller). Also, note that dq(vn) → dmax
q . Let’s first show that

vinf ≤ V −1
G (v̄). Assume otherwise, so for some sequence vn > V −1

G (v̄) for all n we have that17

dq(VB(vn)) =

1
q(vn)

− ρ

1− ρ
−

1
q̃(vn)

− ρ

1− ρ
=
dq(vn)

1− ρ
→

dmax
q

1− ρ
> dmax

q .

This is a clear contradiction. Assume then that vn ≤ V −1
G (v̄) for all n. Note that since

q(v) = q̃(v) = ψ⋆ when v ∈ (0, v], we have that vn > v for all n. Using equation (A.1) we

have

dq(vn) = ν dq(VG(vn)) + (1− ν) dq(VB(vn)) . (A.4)

Note that the LHS is asymptotically (when n → ∞) equal to dmax
q . Each of the terms in

the RHS is bounded above by dmax
q . So, since the LHS is a linear combination of them,

their limit must be equal to dmax
q . In particular, limn→∞ dq(VB(vn)) = dmax

q . So, we have a

contradiction, since limn→∞ VB(vn) < vinf , but vinf is an infimum.

16Vht(v) is defined recursively as V∅(v) = v and Vht(v) = Vht

t
(Vht−1(v)).

17Note that when v > V −1
G (v̄) we have α = 0, so the update of beliefs follows 1

ψB(ψ,0) =
1/ψ−ν
1−ν .
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(Continuation of the proof of Proposition 2.7) We first prove that v ∈ V ∪ {0} if and only

if ψ(v) < ψ(v). Let’s first prove the “only if” implication. Note first that ψ(v) = ψ⋆ < ψ(v).

Indeed, note that the solution for x of

1

x
=

ν

ψ⋆
+

1− ν

ψ(V −1
G (v))

belongs to (ψ⋆, ψ(V −1
G (v))) and, if ψ0 = x, we have continuation payoffs that support an

equilibrium with initial continuation value equal to v. Given that ψ(v) < ψ(v), it is easy to

prove using induction (note that V can be constructed recursively applying V −1
B and V −1

G )

that ψ(v) < ψ(v) for all v ∈ V ∪ {0}.

To prove the “if” implication, we prove that if v /∈ V ∪ [0, v) then ψ(v) = ψ(v). To do this,

consider

vinf ≡ lim inf
n→0

inf
{

v /∈ V
∣
∣
∣

1
ψ(v) −

1
ψ(v)

> dmax
q − ε

}

,

where now dmax
q ≡ supv/∈V

(
1

ψ(v) − 1
ψ(v)

)
. Note that V /∈ V ⇒ Vξ(v) /∈ V ∀ξ ∈ {B,G}.

Therefore, applying an argument similar to that in the first part of the proof of Lemma A.1,

the result holds. The argument works because when we restrict the domain of q in Lemma

A.1 to (V ∪ [0, v))c, both ψ(·) and ψ(·) are both the unique functions satisfying the three

conditions of the lemma.18 Nevertheless, since v /∈ (V ∪ [0, v))c, they satisfy exactly the same

conditions, so they are equal. Note that this argument fails when v ∈ V, since in this case we

cannot rule out supv∈V≥v

(
1

ψ(v) −
1

ψ(v)

)
= 1

ψ(v) −
1

ψ(v)
> 0.

Finally, we prove part ψ(v) = sup{ψ(v′)|v′ < v & v′ ∈ V} (the other case is analogous).

First note if [v, v′]∩V = ∅ for some v < v′, then ψ(v) = ψ(v′) (and ψ(v) = ψ(v′).) Indeed, we

can see from equation (A.3) that ψ(v) 6= ψ(v′) only if H(v) 6= H(v′). It is easy to see that this

implies that there exists some v′′ ∈ (v, v′] and history ht such that Vht(v
′) = v. Nevertheless,

this implies that v′′ ∈ V, which is a contradiction.

Note that since ψ(·) is increasing and left-continuous (since Γ(·) defined in Lemma A.1 is

increasing and left-continuous), we have that

ψ(v) = sup{ψ(v′)|v′<v} ≤ sup{ψ(v′)|v′<v} = sup{ψ(v′)|v′<v & v′ ∈ V ′} ,

where the last inequality comes from the fact that, as we showed, ψ(v) is constant in the

intervals outside V. We apply the same technique as in the proof of Lemma A.1, using

vinf ≡ lim inf
n→0

inf
{
v
∣
∣ lim
wցv

(1/ψ(v)− 1/ψ(w)) > dmax
q − ε

}
,

where now dmax
q ≡ supv

(
limwրv

(
1

ψ(v) −
1

ψ(w)

))
. Note that the argument works because it is

trivially true for v = v and ψ(v) = ψ⋆ for v ∈ (v, V −1
L (v)), so vinf > v.

18Indeed, a corollary to Lemma A.1 is given by stating the same result but restricting q : Vc∪ → [0, 1]. In this

case, since 0, v /∈ Vc, ψ(·) and ψ(·) have exactly the same conditions, so they are equal.
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Proof of Proposition 2.8 (page 12)

Let’s first prove that if V −1
B (v) > V −1

G (v̄) then V is not dense. Indeed, note that v ∈ V

only if Vξ(v) ∈ V for some ξ ∈ {B,G}. Nevertheless, for any v ∈ (V −1
G (v̄), V −1

B (v)) we have

VG(v) > v̄ and VB(v) < v.

If v ≥ V −1
G (v̄) then note that α(ht) = 0 for all equilibria and histories. So, V =

{V
−(n−1)
B (v)|∀n ∈ N}, so the only accumulation point of V is v̄ (note that limn→∞ V −n

B (v) =

v̄).

If, instead, V −1
G (v̄) ∈ (v, V −1

B (v)) then note that V −1
G (v̄) is an accumulation point of V.

Indeed, v̄ is an accumulation point of V by the same argument as above. Since VG(v) < v̄, we

have that V −1
G

(
{V

−(n−1)
B (v)|∀n ∈ N} ∩ (VG(v), v̄)

)
⊂ V, so V −1

G (v̄) is an accumulation point

of V. Many other accumulation points can be found by using a similar procedure.

Finally, let’s prove that if V −1
B (v) ≤ V −1

G (v̄)) then V is dense. Consider otherwise, that

is, V is not dense in (v, v̄), and let A ⊂ (v, v̄) be an interval with maximal length satisfying

A ∩ V = ∅. Note that if v /∈ V then Vξ(v) /∈ V for all ξ ∈ {B,G}. If sup(A) < V −1
G (v̄) then

VG(A) ∩ V = ∅, but then VG(A) ⊂ (v, v̄), VG(A) ∩ V = ∅ and VG(A) has more length than

A,19 which is a contradiction. If inf(A) < V −1
G (v̄) ≤ sup(A) then (VG(inf(A)), v̄] is not in

V. Nevertheless, since V −n
B (v) ∈ V for all v ∈ V and n ∈ N and limn→∞ V −n

B (v) → v̄, this

implies that V is empty, which is a contradiction. If V −1
G (v̄) ≤ inf(A) then VB(A) ⊂ (v, v̄),

VB(A) ∩ V = ∅ and VB(A) has more length than A, which again is a contradiction.

Proof of Proposition 2.9 (page 13)

Note that the equilibrium is not unique only if there is some v ∈ V such that Vξ(v) ∈ V for all

ξ ∈ {B,G}. Indeed, otherwise, if ψ0 ∈ V̂ −1(v) and, for example, VG(v) /∈ V, α(∅) is uniquely

given by αG(ψ0, ψ(VG(v))), where αG(·, ·) is defined in (A.2).

So, there is multiplicity in equilibrium only if Vht(v) = v = Vh̃s(v) for two different

histories ht 6= h̃s (where Vht is defined as in footnote 16). It is easy to verify that this does

not hold generically. So, since the public outcome distribution is only a function of α(ht), the

result holds.

Proof of Lemma 2.2 (page 14)

The proof of this lemma is given by the fact that V is dense, given the properties of ψ(·) and

ψ(·) stated in Proposition 2.7 (which imply that that V̂ −1(v) = [ψ(v), ψ(v)] for all v and ψ(·)

and ψ(·) are increasing).

19Indeed, it is easy to verify that sup(VG(A))− inf(VG(A)) =
sup(A)−inf(A)

δ .
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Proof of Lemma 2.3 (page 14)

This is trivial given that V̂ (·) is a devil’s staircase in the domain (ψ⋆, 1]. Indeed, since

ψ(v) < ψ(v) for all v ∈ V and V is dense, the result holds.

Proof of Proposition 2.10 (page 16)

Proof. Note that, by Proposition 2.2, µ(ht) = 0 if ψ(ht) < ψ⋆ and µ(ht) = 1 if ψ(ht) > ψ⋆.

Given Propositions 2.2 and 2.3, it is easy to see that V (·) satisfies equations (2.3) and (2.4)

if and only if it satisfies the following equation:

V (ht) = max
α∈[0,ν]

(
λµ(ht)VH + α (1− λµ(ht)) (π − cL) (A.5)

+(1− λµ(ht)) δ
(
αV (ht, G) + (1− α)V (ht, B)

))
. (A.6)

Note that if µ(ht) = 1, the previous equation coincides with (2.10).

Let’s use tildes to denote a solution to (2.10). We first prove that Ṽ (ht) = 0 whenever

ψ(ht) < ψ⋆. Assume otherwise; so we have that v∗L ≡ sup
{
Ṽ (ht)

∣
∣ ht such that ψ(ht) <

ψ⋆
}
> 0. Let ht be such that ψ(ht) < ψ⋆ and Ṽ (ht) > v∗L − ε, for some ε > 0. First notice

that if α(ht) > 0, then

Ṽ (ht, G) ≥
Ṽ (hT ) + cL − π

δ
. (A.7)

If ε > 0 is small enough, we have Ṽ (ht, G) > v∗L. Therefore, it must be the case that

α(ht) < ν. This implies that Ṽ (ht, B) ≥ Ṽ (ht)

δ̃
> v∗L, but this is a contradiction, since

ψ(ht, B) < ψ(ht) < ψ⋆. So, v∗L = 0.

Now, let’s prove that Ṽ (ht) = λ µ̃(ht)VH when ψ(ht) = ψ⋆. If α(ht) < ν, then the result

trivially holds. In order to finally prove that it also holds for α(ht) = ν, let’s define, similar

to before, v∗L ≡ sup{Ṽ (ht)|ht such that ψ(ht) = ψ⋆}, and let’s first prove that v∗L ≤ λVH .

Assume otherwise; i.e., v∗L > λVH , and consider an equilibrium and history where ψ(ht) = ψ⋆

and Ṽ (ht) = λVH − ε for some ε > 0. Note that necessarily α(ht) = ν. Then, it is easy to

show that

Ṽ (ht, G)− Ṽ (ht) >
cL − π − λVH

δ
.

Therefore, if ε > 0 is small enough, Ṽ (ht, G) > v∗L, but since α(ht) = ν we have ψ(ht, G) = ψ⋆,

which is a contradiction. Therefore, v∗L = λ VH . Since Ṽ (ht, B) ≥ 0, equation (A.7) implies

that Ṽ (ht, B) > λVH , so α(ht) < ν.

As we mentioned, it is trivial to show that equations (2.10) and (A.5) are equivalent when

ψ(ht) > ψ⋆. Therefore, the statement holds.
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Proof of Proposition 2.11 (page 17)

Proof. We will make this proof only for the case ψ0 = ψ⋆, by showing that there exists an

equilibrium where Pr(ψt = ψ⋆) = 1 for all t. Extending it to the case ψ0 > ψ⋆ only requires

“pasting” this continuation play every time ψ⋆ is reached. Note that if cL − π ≤ δ λ VH and

ψ0 = ψ⋆, then there is an equilibrium where ψ(ht) = ψ⋆ for all ht. Indeed, consider an

equilibrium where

Pr(P̃ (ht) = VH) = µ Iht
t
=G ,

for some µ ∈ [0, 1] to be determined. In this equilibrium, we want the continuation payoff

after a history ht to depend only on the last signal. To verify that this equilibrium exists, let

V (ξ) denote the continuation payoff after signal ξ. Then

V (ξ) = µ Iξ=H λ VH + (1− µ Iξ=H λ)
(
ν (π − cL) + δ (ν V (H) + (1− ν)V (L))

)
.

The condition cL − π ≤ δ λ VH is necessary to ensure V (ξ) ≥ 0 for all ξ ∈ {B,G}. We can

then solve for µ by making the L-seller indifferent about exerting effort, in which case we find

µ =
cL − π

λ VH + λ ν (cL − π)
∈ (0, 1) .
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