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Abstract

We propose an industry lifecycle model in which each firm privately invests into its quality and

thereby its reputation. Over time, both the firm and the market learn about the firm’s evolving

quality via infrequent breakthroughs. The firm can also exit if its value becomes negative, giving

rise to selection within the industry. In a pure-strategy equilibrium, incentives are single-peaked:

the firm shirks immediately following a breakthrough, works for intermediate levels of reputation

and shirks again when it is about to exit. This investment behavior yields predictions for the

distribution of firm productivity and the turnover rate. Finally, we compare the model to two

variants: one in which the firm’s investment is publicly observed, and a second where the firm

has private information about its product quality.

1 Introduction

“New technologies come and go. This is simply the nature of our business. The Samsung brand

is the only asset that will live on beyond our products.”

Sue Shim, CMO at Samsung.

Models of firm dynamics seek to generate the large variability in productivity and profits seen

within industries, with some firms investing in their assets and growing, while others disinvest and

shrink (e.g. Syverson (2011)). One of a firm’s most important assets is its reputation. Philip Kotler

writes “In my field of marketing, brand reputation is everything”, with Interbrand valuing Apple’s

brand at $98B (from a market cap of $475B) and Coca-Cola’s brand at $79B (from a market cap

of $170B). 1 Furthermore, reputation risk, in particular pertaining to product quality and the firm’s

public perception is a primary concern for boards of directors.2.

∗We have received helpful comments from Andy Atkeson, Heski Bar-Isaac, V. Bhaskar, Alessandro Bonatti, Christian
Hellwig, Hugo Hopenhayn, Johannes Hörner, Yuliy Sannikov and seminar audiences at ES Winter Meetings, Gerzensee,
IO Theory Conference at Duke, Mannheim Reputation Conference, Princeton, Toronto, SAET, SED, SWET. We
gratefully acknowledge financial support from NSF grant 0922321. Keywords: Reputation, Self-esteem, Exit, Lifecycle,
Brands, Firm dynamics, Career concerns. JEL: C73, L14
†Department of Economics, UCLA. http://www.econ.ucla.edu/sboard/
‡Department of Economics, UCLA. http://www.econ.ucla.edu/mtv
1Source: Interbrand’s 2013 Global Brand Survey. The brand values come from measuring a product’s demand after

controlling for price and product features.
2Source: EisnerAmper’s 2012 Board of Directors’ Survey.
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This paper proposes a model of lifecycle dynamics in which a firm’s quality and it reputation

are its most important assets. We suppose a firm privately chooses its level of investment, while the

market and firm learn about the resulting quality. The firm’s reputation, which is the market’s belief

of the firm’s quality, therefore lags behind its actual quality, which lags behind its investments. Our

analysis yields predictions concerning the distribution of firm revenue product, and the resulting

selection within the industry. Consequently, this is a natural lens through which to study the

evolution of reputation data, e.g. JD Power scores, Yelp reviews, brand perceptions.

Our model draws inspiration from two canonical models of firm dynamics. In Jovanovic (1982)

firms learn about their capabilities over time; In Ericson and Pakes (1995) firms invest in the quality

of their products and are subject to idiosyncratic shocks. By combining these forces, we provide

a role for reputation to take center stage. Reputation reflects the market’s belief about quality,

and is therefore very different from traditional capital assets. First, reputation evolves according

to Bayes’ rule and therefore may be volatile even though the underlying product quality is fairly

stable. For example, movie reviews can dramatically change box office numbers while the movie’s

quality is unchanged. This also means the particulars of the information structure will affect the

nature of investment incentives. Second, reputation depends on the market’s beliefs about the firm’s

investment, rather than the actual investment. This is intrinsically an equilibrium object which the

firm controls only indirectly, implying that investment incentives are dampened by a moral hazard

problem.

In the model, a long-lived firm sells a product of high or low quality to a continuum of identi-

cal short-lived consumers. Product quality is a stochastic function of the firm’s past investments.

Consumers observe neither the firm’s investment nor the resulting quality. Rather, they learn about

quality via public breakthroughs that can only be produced by a high-quality product; the market’s

belief that the quality is high, xt, is called the reputation of the firm. The firm also learns about its

quality via breakthroughs but, unlike the market, also recalls its past investments; the firm’s belief

that the quality is high, zt, is called the self-esteem of the firm. In a pure strategy equilibrium,

reputation and self-esteem coincide on path. At each point in time, the consumers willingness to pay

and the firm’s revenue equals its reputation. This reputation changes over time as a function of (a)

the equilibrium beliefs of the firm’s investments, and (b) market learning via product breakthroughs.

The firm can exit the market at any time, and does so when its reputation falls below some threshold.

We aim to characterize the firm’s optimal investment and exit decisions over its lifecycle. Since the

market only sees breakthroughs, we consider recursive equilibria where the state variables are the

time since a breakthrough and the self-esteem of the firm.

We first study the firm’s optimal strategy given any beliefs of the market. A little investment

raises the firm’s self-esteem but, since investment is not observed by the market, does not affect

reputation. Hence investment incentives are determined by the marginal value of self-esteem. In turn,

this can be characterized as the net present values of a stream of reputational dividends. Intuitively,

a higher self-esteem raises the chance of a breakthrough that boosts in revenue; these dividends are
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then discounted by the interest rate, and the rate the increment in self-esteem depreciates.

Next, we turn to equilibrium, in which the market’s beliefs are correct, first showing an equilib-

rium exits. As the firm nears the exit threshold, the firm will always shirk. Intuitively, investment

only pays off if it affects quality and the firm realizes this via a breakthrough. When the firm is dt

from the end, this event is of order dt2, and therefore the firm prefers to shirk. The exit threshold

itself is determined by an indifference condition where the option value of obtaining a breakthrough

offsets the immediate losses in operating profit.

In a pure strategy equilibrium, investment incentives are single peaked in the time since a break-

through. This means any nontrivial equilibrium is work-shirk or shirk-work-shirk. In the latter, the

firm shirks immediately following a breakthrough, works for intermediate levels of reputation and

shirks again if its reputation is close to the exit threshold. Intuitively, as the firm’s reputation falls

the benefit of a breakthrough grows, leading to increasing incentives; however, the firm gets closer

to the end point, leading to decreasing incentives. We show that the sum of these two effects is

single-peaked. Figure 1 illustrates a simulated pure strategy work-shirk-work equilibrium, showing

how reputation quickly declines when the firm is believed to be shirking, and slowly declines when

the firm is believed to be working. In a mixed strategy equilibrium, the firm will still shirk near the

end point, but reputation may increase, and therefore incentives may not be single-peaked. We also

discuss how the single-firm model can be placed within a competitive market.

Finally, we consider two variants of the baseline model (see Figure 1). First, we suppose the

market observes the firm’s investment, although both the firm and the customers still learn about

the firm’s quality over time. Here, investment incentives decrease monotonically as time passes

without a breakthrough and the firm approaches the exit threshold. When compared to the baseline

model, the elimination of moral hazard means that investment increases both a firm’s self-esteem and

its reputation. In equilibrium, this increases the amount of effort, slows the decline in reputation,

delays the exit time and raises the firm’s value. Second, we suppose the firm is privately informed

about its own quality, on which it can condition its exit and investment choices. In this case, the high

quality firm can signal its type by remaining in the market, implying that the low type randomizes

over exiting in order to keep reputation constant, as in Bar-Isaac (2003). Investment incentives are

then increasing monotonically over time, as the value of a breakthrough increases. Unlike the baseline

case, investment incentives stay large close to the exit threshold because the firm can immediately

see if investment pays off, and will then choose to remain in the market.

1.1 Literature

The paper embeds the reputation framework of Board and Meyer-ter-Vehn (2013), into a firm lifecycle

model. The possibility of exit means that we must keep track of the firm’s self-esteem; it also

qualitatively changes the investment incentives of a firm. The “known quality” case also draws

heavily on Bar-Isaac (2003), although that paper abstracts from any investment decision.

We also contribute to the growing literature on learning models with moral hazard; such models

have the feature that private and public beliefs differ off-path. Kovrijnykh (2007) introduces exit
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Figure 1: Reputation Trajectories. This figure shows the equilibrium trajectory of reputation under the

baseline model and the two extensions: where the market observes the firm’s investment, and where the firm

knows its own quality. It also shows the trajectory of reputation if the firm never invests. The parameters are

described in Section 4.

into a three-period career concerns model. Bonatti and Hörner (2011, 2013) consider effort incentives

in a strategic experimentation game. Sannikov (2014) considers a contract design problem in which

the agent’s effort has long-run effects on her employer’s performance. Cisternas (2014) analyzes a

general model of two-sided learning with moral hazard; his incentive equation is analogous to our

“marginal value of self-esteem”.

In addition to Jovanovic (1982) and Ericson and Pakes (1995), there are a variety of other

models of firm dynamics. Hopenhayn (1992) assumes firm capabilities change over time according

to a Markov process, and looks at the resulting entry and exit patterns. Cabral (2014) and Abito,

Besanko, and Diermeier (2012) consider reduced form models of reputational firm dynamics, whereby

reputation is modeled as a state variable akin to capital stock, but is not derived from Bayes’

rule. Gale and Rosenthal (1994) and Rob and Fishman (2005) consider the dynamics of repeated

games equilibria where incentives arise from punishment strategies. On the empirical side, Foster,

Haltiwanger, and Syverson (2013) model the slow demand growth of new entrants by assuming the

level of current demand depends on the stock of past demand, which the authors interpret as the

“growth of customer base or building a reputation”. Bronnenberg, Dubé, and Gentzkow (2012) study

the dynamics of brand shares when customers move between cities via a model of brand capital, where

customers’ preferences depend on their past purchases.

2 The Baseline Model

Players and actions: Time t ∈ [0,∞) is continuous. At every time t the firm chooses an investment

level At ∈ [0, a] where a < 1; it may also choose to exit the market, thereby ending the game.
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Following Holmström (1999) and Mailath and Samuelson (2001), consumers are assumed to purchase

the firm’s single unit of output at a price equal to their willingness to pay.

At time t the firm’s product quality is θt ∈ {L,H}, where L = 0 and H = 1. Initial quality θ0

is exogenous; subsequent quality depends on investment and technology shocks. Specifically, shocks

are generated according to a Poisson process with arrival rate λ > 0. Quality θt is constant between

shocks, and determined by the firm’s investment at the most recent technology shock s ≤ t; i.e.,

θt = θs and Pr(θs = H) = As. This captures the idea that quality is a lagged function of past

investments.

Information: Consumers observe neither quality nor investment, but learn about quality through

public breakthroughs. Given quality θ, breakthroughs are generated according to a Poisson process

with arrival rate µθ. We write ht− for histories of breakthrough arrival times before time t, h for

infinite histories, and ∅ for histories with no breakthroughs.

The firm does not observe product quality either, but does recall its past actions. It chooses an

investment plan A = {At}t≥0 and an exit time T ∈ [0,∞) that is predictable with respect to the

associated filtration; intuitively, At = At(h
t−). From the firm’s perspective, investment A controls

the distribution of quality {θt}t≥0 and thereby the histories of breakthroughs h; we write EA for

expectations under this measure and call Zt = EA
[
θt|ht

]
the firm’s self-esteem at time t < T . This

reflects the firm’s belief of its own quality given its past actions and the history of breakthroughs.

We write pure market beliefs over investment and exit as Ã and T̃ and mixed beliefs as distri-

butions over beliefs F = F (Ã, T̃ ). If market beliefs are focused on a unique strategy Ã, T̃ its belief

about quality, the firm’s reputation, is given by Xt := EÃ[θt|ht] as long as t < T̃ . If the market holds

mixed beliefs F (Ã, T̃ ) it faces an additional layer of uncertainty. Such F induces a joint distribution

over {θt}t≥0, h, and exit times T̃ ; writing EF for expectations under this measure, the firm’s reputa-

tion is given by Xt = EF [θt|ht, T̃ > t] for all t < T (F ) where T (F ) := min{t : F (T̃ ≤ t) = 1} is the

first time at which the market expects the firm to exit with certainty. After the exit time, t ≥ T (F ),

the market revises its beliefs about the firm strategy to some arbitrary F ′(Ã, T̃ ) with t < T (F ′) and

reputation equals Xt = EF ′ [θt|ht, T̃ > t].

Payoffs: The firm and consumers are risk-neutral and discount future payoffs at rate r > 0. At time

t, the firm produces one unit with flow value θt. Given the public information ht−, consumers’ will-

ingness to pay then equals the firm’s reputation Xt. We assume that the price equals the willingness

to pay, so consumers’ expected utility is 0. Investment has a constant marginal flow cost of c > 0

and the firm’s operating costs equal k ∈ (0, 1). The firm’s flow profits are thus given by Xt−k−cAt.
Given the firm’s strategy A, T and the market’s belief about this strategy F (Ã, T̃ ), the firm’s

expected present value equals

EA
[∫ T

t=0
e−rt(Xt − k − cAt)dt

]
. (2.1)
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Market beliefs determine the firm’s revenue Xt = EF [θt|ht, T̃ > t] for a given history h, while actual

investment A determines the distribution over histories of breakthroughs h, and the exit time T

determines the integration domain.

To make the analysis interesting we assume throughout the paper that

z† := λ/µ < 1 and z† − k + µz†(1− k)/r < 0. (2.2)

This assumption ensures that, in the absence of a breakthrough, the firm’s reputation declines and

the firm eventually exits.

2.1 Recursive Strategies

Both reputation and self-esteem are reset to X = Z = 1 at a breakthrough; in between breakthroughs

the market observes no information about the firm’s performance. For this reason, we consider

recursive strategies which only depend on the time since the last breakthrough. Formally, we call

strategy {At}, T recursive if there exists {at} with at ∈ [0, a] and τ ∈ [0,∞] such that if the last

breakthrough before t was at s < t, then At = at−s and T ≤ t iff τ ≤ t − s. We write recursive

strategies as {at}, τ and the resulting self-esteem as {zt}, where z0 = 1. Similarly we call beliefs

F recursive if they assign probability one to recursive strategies {ãt}, τ̃ , and denote the induced

reputation by xt = EF [θt|ht = ∅, τ̃ > t], where x0 = 1.

Self-esteem evolves according to Bayes’ rule. At a breakthrough, self-esteem jumps to one. Absent

a breakthrough, self-esteem is governed by żt = g(at, zt) where the drift g is given by

g(a, z) = λ(a− z)− µz(1− z). (2.3)

The first term derives from the technology process: with probability λdt a technology shock hits in

[t, t + dt), previous quality becomes obsolete, and the current quality is determined by the firm’s

investment. This term is positive if investment at exceeds the firm’s self-esteem zt and negative

otherwise. The second term derives from the absence of breakthroughs.

Given recursive reputation {xt}, we can restrict the firm’s problem to recursive strategies. From

the firm’s perspective breakthroughs arrive at rate µzt, so truncating the integral in (2.1) at the first

breakthrough the firm’s continuation value at time t is given by

V (t, zt) = sup
{as}s≥t,τ

∫ τ

s=t
e−

∫ s
t (r+µzu)du(xs − k − cas + µzsV (0, 1))ds. (2.4)

We write optimal recursive strategies as {a∗t }, τ∗ and the associated self-esteem as {z∗t }.

Lemma 1 (Existence of Optimal Strategy) For any reputation {xt}, an optimal strategy {a∗t }, τ∗

maximizing (2.4) exists. Furthermore, there exists τ <∞ such that for all {xt} and optimal strategies

{a∗t }, τ∗, we have τ∗ ≤ τ .
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Proof. We prove this lemma by defining a topology on the space of strategies {at}, τ such that the

space is compact and the objective function in (2.4), is continuous in {at}, τ in this topology.

For the compactness argument, we first argue the second part of the Lemma, that there exists

τ < ∞ at which the firm exits for any reputational trajectory {xt} induced by beliefs F . Given

a < 1 and assumption (2.2), reputational drift g(a, z) is negative and bounded away from zero for

z ∈ [z†, 1] and any a ∈ [0, a]. Write zt({at}) for the solution of żt = g(at, zt) for fixed investment

strategy {at} and define τ such that zτ ({a}) = z†. Hence zt({at}) ≤ z† for all t ≥ τ̄ and any {at}.
By the law of iterated expectations, reputation xt = EF [zt({at})|t < τ̃ , ht = ∅] is a conditional

expectation over self-esteem and is thus bounded by xt ≤ zt(ā) both on-path and off-path. Thus,

xt ≤ z† for all t ≥ τ̄ . Equation (2.1) implies V (0, 1) < (1− k)/r, and so the integrand in firm value

(2.4) is bounded above by z† − k + µz†(1− k)/r, which is negative by assumption (2.2). Hence the

firm exits by time τ̄ , as required.

To prove the existence of an optimal strategy, let B be the space of measurable investment

functions {at}t∈[0,τ̄ ]. B is naturally embedded in the (rescaled) unit ball of L2([0, τ ],R). In the weak

topology this unit ball is compact by Alaoglu’s theorem, and as a closed subset of this unit ball,

B is also compact. In this topology a sequence {ant } converges to {at} if
∫ τ

0 (ant − at)ξtdt → 0 for

all test functions ξ ∈ L2([0, τ ],R). While this topology is coarse enough to make B compact, it is

fine enough for the trajectory {zt}t∈[0,τ ] to be continuous (in the sup-norm) in {at}t∈[0,τ ] (see Davis

(1993, Theorem 43.5)). Thus, firm value (2.4) is continuous in {at}, τ and is maximized by some

{a∗t }, τ∗. �

Remarks: We focus on learning based on breakthroughs that reveal high quality with certainty,

termed ‘perfect good news learning’ in Board and Meyer-ter-Vehn (2013), for two reasons. First, it

is tractable because it makes the model recursive in the time since the last breakthrough. Second,

it precludes downward jumps in self-esteem and reputation, allowing us to study investment when

exit is imminent (in comparison, under ‘perfect bad news’, exit would follow a breakdown). Our

general approach also applies to other learning processes based on Brownian motion or imperfect

Poisson signals. While such learning processes complicate our qualitative analysis significantly, our

numerical strategy based on the firm’s optimal investment condition (3.1) remains valid.3

3 Firm’s Problem

In this section we analyze the firm’s optimal strategy, {a∗t }, τ∗ for arbitrary (recursive) beliefs, in-

ducing reputation {xt}. First, we characterize the firm’s investment incentives as the integral of a

series of dividends that result from having higher self-esteem. Second, we explore the qualitative

properties of the firm’s strategy, showing that the firm shirks when it is close to bankruptcy and,

3As there is no “time since the last breakthrough t” for such learning processes, the natural Markovian state
variables are reputation xt and self-esteem zt. These states capture all payoff-relevant information if the market holds
point beliefs about investment, e.g. in a pure strategy equilibrium. Otherwise, if the market has mixed beliefs about
investment, xt is not a sufficient statistic for firm beliefs and one would have to keep track of the market’s belief about
zt, that is, the market’s second-order belief about quality.
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if reputation is decreasing over time, investment incentives are single-peaked. In Section 4 we close

the model in equilibrium by assuming that {xt} is derived from correct market beliefs F (ã, τ̃).

Investment does not directly affect reputation, but raises the firm’s self-esteem and thereby raises

the probability of breakthroughs that do boost reputation and revenue. Using (2.3), a small increase

in investment raises self-esteem by λ. Assuming that the value function V is differentiable with

respect to z, the marginal benefit of investing at time t is λVz(t, z
∗
t ); thus optimal investment must

satisfy

a∗t =

{
0 if λVz(t, z

∗
t ) < c,

a if λVz(t, z
∗
t ) > c.

(3.1)

Next, observe that the firm’s value V (t, z) is convex in z. This follows because z is the firm’s

private belief about its quality, and the value of information is convex since firms with extreme

values of z can attain the same average value as a firm with moderate z by mimicking its strategy.4

This result has two implications. First, even where it is not differentiable, the value function admits

directional derivatives Vz(t, z−), Vz(t, z+). Second, investment today and investment in the future

are dynamic complements. Intuitively, investment today raises the firm’s self-esteem zt+dt and life

expectancy; this raises the marginal benefit of self-esteem and investment tomorrow since the firm

has more chance of benefiting from the resulting breakthroughs. This strategic complementarity is

in contrast to the strategic substitutability in Bonatti and Hörner (2011). There, a player who exerts

more effort today is more pessimistic about the state of the project tomorrow when his effort fails

to result in the desired breakthrough. Here, to the contrary, investment today makes the firm more

optimistic about its prospects tomorrow.

We next express the marginal value of self-esteem in terms of future reputational dividends. This

expression is the work-horse of our paper, helping us study optimal investment.

Lemma 2 (Marginal Value of Self-Esteem) If Vz(t, z
∗
t ) exists, it equals

Γ(t) :=

∫ τ∗

t
e−

∫ s
t r+λ+µ(1−z∗u)duµ(V (0, 1)− V (s, z∗s ))ds. (3.2)

More generally Vz(t, z
∗
t−) ≤ Γ(t) ≤ Vz(t, z∗t +).

Proof. This follows by applying the envelope theorem to a variant of (2.4). See Appendix A.1. �

Equation (3.2) is an integral version of the adjoint equation for the firm’s control problem.

Economically, self-esteem raises the probability of a breakthrough and, since it is persistent, pays

off dividends over time. That is, incremental self-esteem dz raises the probability of a break-

through by µdzdt; the value of a breakthrough equals V (0, 1) − V (t, z∗t ). We thus call the inte-

grand µ(V (0, 1) − V (s, z∗s )) the reputational dividend of self-esteem. The dividend stream from the

increment dz depreciates for three reasons. First, time discounting at rate r. Second, at rate µz∗t a

4More formally, let {a∗t }, τ∗ be an optimal strategy for a firm with self-esteem z at time t. If two neighboring firms,
high and low, with initial states (x, z + ε) and (x, z − ε) both mimic strategy {a∗t }, τ∗, then their average expected
payoff equals V (t, z). Since these firms can raise their value by reoptimizing, V is weakly convex.
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breakthrough arrives, self-esteem jumps to one, and the increment disappears. Third, reputational

drift (2.3) is not constant in z, but its derivative equals gz(a
∗
t , z
∗
t ) = −(λ + µ(1 − 2z∗t )). Summing

these yields the discounting term in (3.2).

If V (t, z∗t ) is differentiable in z, then it coincides with Γ(t). If there are multiple optimal strategies

{a∗s}s≥t, τ∗ for which Γ(t) does not coincide, then V is not differentiable at (t, z∗t ). However, all the

different expressions in (3.2) are well-defined and are bounded by the directional derivatives of V .

Hence if λΓ(t) > c then λVz(t, z
∗
t +) > c and the firm finds it profitable to work, whereas if λΓ(t) < c

then λVz(t, z
∗
t−) < c and the firm finds it profitable to shirk. This implies:

Lemma 3 (Optimal Investment) Given {xt}, any optimal strategy {a∗t }, τ∗ satisfies

a∗t =

{
0 if λΓ(t) < c

a if λΓ(t) > c
(3.3)

for almost all t.

Fixing a candidate strategy {at}, τ , equation (3.3) gives a necessary condition for a best response.

However, this is not sufficient since this approach is the continuous-time analogue to checking only

“one-step deviations on path”. Since actions are dynamic complements, the possibility of multi-stage

deviations must be taken seriously.

With these preliminary results, we can characterize the qualitative properties of the equilibrium.

Theorem 1 (Shirk at End) Given {xt} and any optimal strategy {a∗t }, τ∗, there exists ε > 0 such

that a∗t = 0 for almost all t ∈ [τ∗ − ε, τ∗].

Proof. Lemma 2 implies that Γ(t) is of order O(τ∗ − t), and so λΓ(t) < c for t ∈ [τ∗ − ε, τ∗]. The

Theorem thus follows from Lemma 3. �

Intuitively, investment incentives vanish at the exit time τ∗ because there is no time left for the

investment to pay off. More formally, the benefit of investment is of second order because both a

technology shock and a breakthrough must arrive in the remaining time interval for the investment

to avert exit.

When the firm is close to exit it will therefore cease to invest, accelerating the its demise. For

example, in the beer industry, Goldfarb (2007) argues that Schlitz realized that the rise of Miller

would have a large impact on its future profitability. The firm therefore disinvested in the brand,

switching to lower quality accelerated batch fermentation, fired much of its marketing team, and

changed the preservatives which lead to green flakes in the beer. More generally, this implies that

the death of firms should be a quick process, with reputation quickly declining (this will contrast

with the case of known quality in Section 5.2).

Next, we assume that reputation {xt} strictly decreases in time. This assumption means the

longer the firm fails to prove itself by generating a breakthrough, the more pessimistic the market
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becomes about its product quality. This is satisfied if market beliefs F (ã, τ̃) are focused on a single

strategy ã, τ̃ and the market draws no positive inference about {ãt}t≤τ̃ in the off-path event that the

firm fails to exit at time τ̃ .5

When {xt} strictly decreases, the firm’s value V (t, z) strictly decreases in t and strictly increases

in z. Value is increasing in self-esteem because a firm with high self-esteem can mimic a firm with

low self-esteem, yielding the same revenue prior to a breakthrough, but a higher probability of a

breakthrough. Similarly, a low-t firm can mimic the strategy of a high-t firm, yielding the same

probability of a breakthrough, but higher revenue prior to a breakthrough.6

The next Lemma computes the partial derivative Vt(t, z
∗
t ). We then use this in Theorem 2 to

show that investment incentives are single-peaked.

Lemma 4 (Evolution of Firm Value) Assume that {xt} strictly decreases. Whenever the partial

derivative Vt(t, z
∗
t ) exists, it is equal to

Ψ(t) :=

∫ τ∗

t
e−

∫ s
t r+µz

∗
ududxs (3.4)

Moreover, Ψ(t) < 0 for t < τ∗.

Proof. Rewrite the firm’s continuation value (2.4) by letting σ = s − t be the time since t and

{a∗σ}, ζ∗ for the optimal strategy starting at t,

V (t, z∗t ) =

∫ ζ∗

σ=0
e−

∫ σ
0 (r+µz∗t+u)du(xt+σ − k − ca∗σ + µz∗t+σV (0, 1))dσ

As z∗t+σ is determined by initial self-esteem z∗t and {a∗σ}, it is independent of t. The envelope theorem

thus yields (3.4). As {xt} is assumed to strictly decrease, Ψ(t) must be negative. �

Theorem 2 (Single-Peaked Incentives) If {xt} strictly decreases, then investment incentives

Γ(t) are single-peaked with boundary values Γ(0) > 0, Γ̇(0) > 0 and Γ(τ∗) = 0.

Proof. Taking the derivative of investment incentives (3.2) and setting ρ(t) := r + λ + µ(1 − z∗t )

yields the adjoint equation

Γ̇(t) = ρ(t)Γ(t)− µ(V (0, 1)− V (t, z∗t )). (3.5)

Now assume that ρ(t) and V (t, z∗t ) are differentiable; then ρ̇(t) = −µż∗t and d
dtV (t, z∗t ) = ż∗t Γ(t)+

Ψ(t); in Appendix A.3 we show that these functions are indeed absolutely continuous and extend

5This assumption is not satisfied in a mixed strategy equilibrium, where reputation will rise when the low-investment
firm exits (see Section 4.2).

6See Appendix A.2 for a formal argument.
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our arguments to that case. The derivative of the adjoint equation equals

Γ̈(t) = ρ(t)Γ̇(t) + ρ̇(t)Γ(t)− (−µ d
dt
V (t, z∗t )) (3.6)

= ρ(t)Γ̇(t)− µż∗t Γ(t) + µż∗t Γ(t) + Ψ(t)

= ρ(t)Γ̇(t) + Ψ(t)

Since Ψ(t) < 0, Γ̇(t) = 0 implies Γ̈(t) < 0, and Γ(t) is single-peaked.

At t = τ∗, equation (3.2) immediately implies that Γ(τ∗) = 0. At t = 0, equation (3.2) implies

Γ(0) > 0 because the integrand µ(V (0, 1) − V (s, z∗s )) are strictly positive for s > 0 and τ∗ > 0.

Equation (3.6) then implies that Γ̇(0) = ρ(0)Γ(0) > 0. �

Theorem 2 implies that the optimal strategy takes one of three forms:

1. Full-shirk. The firm shirks for almost all t.7

2. Work-shirk-work. The firm shirks immediately following a breakthrough, then works for a

while, and shirks near the exit time.

3. Work-shirk. The firm works after a breakthrough, but shirks when they are close to exit.

Intuitively, the evolution of investment incentives is shaped by two countervailing forces. On the

downside, as t increases the firm forgoes the reputational dividends over [t, t + dt]. This effect is

captured by the second term in (3.5). This negative effect becomes more important over time as

the reputational dividend increases; this is captured by the positive term −µ d
dtV (t, z∗t ) in (3.6). On

the upside, an increase in t brings future and larger dividends closer, as captured by the first term

in (3.5). Ignoring the time dependence of ρ(t), this positive effect becomes less important over time

once incentives start decreasing. Thus, once incentives decrease, the negative effect keeps growing

while the positive effect decreases and so incentives decrease until the end.

Theorem 2 is a surprisingly robust result. First, much of the analysis would be identical for con-

vex cost function c(a); then single-peaked incentives would translate into single-peaked investment.

Second, the result only requires that payoffs {xt} decrease over time so holds if, say, high-reputation

firms make more sales, implying revenue is convex in reputation. Third, the result applies to the

firm’s optimal strategy, treating payoffs {xt} as an exogenous process, and therefore does not require

that market beliefs be correct.

Turning to the firm’s exit behavior, we next assume that reputation {xt} is continuous. In

equilibrium, reputation {xt} must be continuous on-path. Off-path reputation is continuous if the

market does not draw inferences about previous investment from a failure to exit.

7The firm can change its strategy at a measure zero set of times without affecting payoffs, so these statements
about investment only hold almost everywhere. This qualification can be eliminated by restricting the firm to forward-
continuous strategies (see Board and Meyer-ter-Vehn (2013)).
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Theorem 3 (Exit Time) If {xt} is continuous, the optimal exit time satisfies

xτ∗ − k + µzτ∗V (0, 1) = 0. (3.7)

Proof. Recall that the firm’s value is given by (2.4). When the firm shirks, its flow payoff equals

xt − k and its option value of staying in the market has a flow value of µz∗t V (0, 1). Thus, if xt − k+

µz∗t V (0, 1) > 0 then the firm can secure itself strictly positive payoffs by shirking and staying in the

market until (3.7) holds. Conversely, if xτ∗ − k+µz∗τ∗V (0, 1) < 0 then the continuity of {xt} implies

this inequality also holds for t just before τ∗, and the firm would have been better off exiting a little

earlier. �

At the end of its life the firm’s flow profits xt−k are negative but it remains in the market for the

option value of a last-minute breakthrough that boosts its reputation and self-esteem to one. Over

time, losses grow and the option value diminishes, and the firm exits when they exactly offset each

other.

The exit condition (3.7) implies that V (t, z) is strictly convex in z on {(t, z) : V (t, z) > 0}. This

follows because, in the argument in footnote 4, a high/low self-esteem firm mimicking a firm with

intermediate self-esteem can strictly increase its profits by exiting later/earlier. Strict convexity and

the investment condition (3.1) imply the existence of a threshold z(t) with the property that the

firm (almost always) invests when z∗t > z(t) and disinvests when z∗t < z(t). Strict convexity also

implies that best responses are strictly ordered in the following sense: Let {a+
t }, τ+ and {a−t }, τ−

be optimal strategies and {z+
t }, {z

−
t } the associated trajectories and assume that z+

t > z−t for some

t < min{τ+, τ−}. Then a+
t ≥ a

−
t for almost all s > t, z+

s > z−s for all s > t, and τ+ > τ−.

4 Equilibrium Analysis

So far we have studied the firm’s optimal strategy for arbitrary beliefs F = F (ã, τ̃) and associated

revenue trajectories {xt}. In this section, we close the model by using the rationality of market

beliefs. To do this, it will be useful to have a more explicit equation for reputation, xt. Breakthroughs

arrive with intensity µzs(ã), so the probability of no breakthrough before time t equals wt({at}) :=

exp(−µ
∫ t

0 zs(ã)ds). Bayes’ rule then implies

xt =
EF
[
zt(ã)wt(ã)I{t<τ̃}

]
EF
[
wt(ã)I{t<τ̃}

] (4.1)

for t < τ(F ).

Definition: An equilibrium consists of a distribution over (recursive) investment and exit strategies

F = F ({at}, τ) ∈ ∆(B × [0, τ̄ ]) and a (recursive) revenue trajectory {xt}t∈[0,τ ] ∈ B such that:

(a) Given {xt}, any strategy {at}, τ in the support of F solves the firm’s problem (2.4).

(b) Reputation {xt} is derived from F by Bayes’ rule via (4.1) for t < τ(F ).
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One should note that this definition does not impose sequential optimality of strategy {at}, τ and

thus corresponds to Nash equilibrium rather than sequential equilibrium. However, this is merely

for notational convenience: as the firm’s investment is unobservable, deviations do not affect beliefs

and revenue. Thus, any equilibrium is outcome-equivalent to a sequential equilibrium. In fact, all

of the analysis in the last section starting at on-path at states t, z∗t extends immediately to optimal

strategies starting at any state t, z.

Theorem 4 (Existence) An equilibrium exists.

Proof. See Appendix A.4. �

The proof of Theorem 4 applies the Kakutani-Fan-Glicksberg Theorem to the best-response

correspondence, mapping revenue {xt} to optimal strategies {a∗t }, τ∗, and the Bayesian updating

correspondence (4.1), mapping mixed strategies F (ã, τ̃) to revenue {xt}.8 The key step in the proof

is to define the appropriate weak topology that renders the strategy space compact and the two

correspondences continuous.9

4.1 Pure Strategy Equilibria

In a pure strategy equilibrium the market is certain of the firm’s strategy {a∗t }, τ∗ and so xt = z∗t for

all t < τ∗. Thus {xt} decreases and investment incentives Γ(t) are single-peaked with Γ(0) > 0 and

Γ(τ∗) = 0 (Theorem 2).

Equilibrium investment behavior depends on the level of the investment cost, c. If the cost c

is high, the firm always wishes to shirk. If the cost c is intermediate, initial incentives λΓ(0) is

insufficient to motivate effort, and any equilibrium is shirk-work-shirk. After a breakthrough, such a

firm rests on its laurels because it has little to gain from an additional breakthrough; as its reputation

and self-esteem drop, it starts investing and works hard for its survival, but eventually gives up and

shirks before exiting the market. Finally, if the cost c is small, then any equilibrium is work-shirk.

This has the flavor of a probationary equilibrium where the market assumes a firm invests for a fixed

period of time after each breakthrough, but then grows suspicious.10

The incentives at high reputations depend critically on the level of a. As a → 1, investment

at t ≈ 0 is impossible to sustain in equilibrium because with such market beliefs, reputation would

remain close to 1 and dividends would remain small forever, undermining investment incentives. This

same force is seen in Mailath and Samuelson (2001).

8The latter correspondence is multi-valued because xt can take any value in [zt(0), zt(a)] for t ≥ τ(F ).
9Unfortunately, we cannot prove the existence of a pure strategy equilibrium. Given Theorem 2, we know that if

costs are small any equilibrium is work-shirk. Hence the natural approach is to pick a belief cutoff t and map this into
a optimal cutoff for the firm t∗(t) and find a fixed point. Since actions are dynamic complements, we cannot rule out
the possibility that this relationship is discontinuous.

10Formally, if a is large and a pure strategy equilibrium exists for all parameter values of c > 0, then there exist
parameter values c < c′ < c′′ such that equilibrium investment {a∗t } must be work-shirk for low costs c, shirk-work-shirk
for intermediate costs c′, and shirk for high costs c′′.
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Figures 2-4 illustrate a pure strategy equilibrium. This simulation considers a restaurant that

has revenues of $x million a year, capital cost of k = $500, 000, investment cost of c = $125, 000 and

an interest rate of r = 20% (incorporating a risk premium). Good news arrives when the restaurant

is written up in the local paper; we set µ = 1, so a good restaurant is reviewed positively once a year

on average. Finally, we set λ = 0.2, so a technology shock arrives every 5 years on average. In these

figures we replace the firm’s state variable t with its time-t reputation xt to aid comparison with the

models in Section 5.11

The pure strategy equilibrium is shirk-work-shirk, exhibiting work on x ∈ [0.39, 0.94] with a exit

threshold of xe = 0.22. In Figure 2, the left panel shows the work region and the resulting equilibrium

value function. The value function exhibits kinks at the edges of the work region, but smooth pasting

at xe. The right panel shows the distribution of surviving firms’ reputation after 10 years, if all firms

start at x = z = 1. This shows how firms tend to bunch in the work region, where drift is relatively

slow. In Figure 3, the left panel shows the investment incentives Vz(x, z) on the entire state-space

(x, z). One can see that Vz is increasing in z, illustrating the convexity of the value function; it is

also single-peaked in x, illustrating how incentives are low when reputation is high and when near

the exit point. The right panel shows the incentives along the equilibrium path where x = z, which

coincides with the 45◦ line in the left panel. These are clearly single-peaked, as shown in Theorem

2. Finally, Figure 4 shows three typical 10-year lifecycles for firms starting at x = z = 1. The left

and center firms survive the 10-year period, experiencing 11 and 10 breakthroughs respectively; the

right firm exits after 6 years after only a single breakthrough.

For empirical implementation, one may be concerned about the realism of having a large number

of firms close to the upper end of the distribution, as in the right panel of Figure 2. With restaurants,

one can view this as representing the degree of occupancy, say, on a weekend evening. If one is

interested in explaining the size distribution of firms, there are a number of natural model extensions.

First, as the mass of firms at the top results from our stylized breakthrough learning process, one

could consider other learning processes as discussed at the end of Section 2. Second, one could relax

the linear relationship between revenue and reputation. In competitive industries this relationship is

convex, and so revenue has a thinner right tail than reputation. Third, one could append the model

with regular capital in addition to reputational capital, so a restaurant with great reviews would

need time to expand the franchise.

4.2 Mixed Strategy Equilibria

The model may potentially exhibit mixed strategy equilibria, as illustrated in Figure 5. In this

picture, the work region is the area above some function z(t). There are then two optimal trajectories

of self-esteem for the firm: the lower path is full-shirk, while the upper path is shirk-work-shirk. The

dynamic complementarity of the actions means that the firm that works when the paths divide then

11We numerically solve for equilibrium by fixing a candidate strategy of the firm at, calculating the resulting payoffs
for the firm and verifying that the action induced by the first-order condition (3.1) coincides with the candidate strategy.
This approach is valid using a standard verification argument (e.g. Davis (1993, Theorem 45.16)). We calculate one
equilibrium but, since we have not shown uniqueness, there may be others.
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Figure 2: Value Function and Distribution of Firms. The left panel shows the firm’s value as a function

of the firm’s reputation. The right panel shows the resulting distribution of firms after 10 years, assuming

all firms start at x = z = 1. This figure assumes capital cost k = 0.5, interest rate r = 0.2, maximum effort

a = 0.9, investment cost c = 0.125, technology shocks λ = 0.2 and breakthrough rate µ = 1.
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Figure 3: Investment Incentives. The left panel shows the firm’s investment incentives Vz(xt, zt) as a

function of reputation xt and self-esteem zt. The right panel shows the investment incentives along the

equilibrium path, where xt = zt. The parameters are the same as Figure 2.
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firms survive 10 years, the right firm exits after 6 years. The parameters are the same as Figure 2.
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Figure 5: Mixed Strategy Equilibrium. This picture illustrates the qualitative features of a mixed strategy

equilibrium. At time τ0 the firm mixes between working and shirking resulting in self-esteem paths z±t and

reputation xt. The z−t firms exit over [τ , τ ], while the z+t firms exit at τ(F ).

strictly prefers to continue working, whereas the firm that shirks at the dividing line then strictly

prefers to continue shirking.

The firm’s reputation, which equals the market’s belief about the firm’s self-esteem, is sandwiched

between these two self-esteem paths. When both firms remain in the market, reputation and self-

esteem decline as normal. After sufficient time without a breakthrough, the ‘low’ firm will wish to

exit. If the firm exits with probability one at a single time, reputation would jump up, so equilibrium

requires that the ‘low’ firm randomizes between exiting and remaining in the market over some region

τ ∈ [τ , τ ]. During this exit period, self-esteem declines, and so reputation has to rise so as to satisfy

the firm’s indifference condition (3.7). Once the ‘low’ firm has exited with probability one, reputation

coincides with the self-esteem of the ‘high’ firm. Such a firm will exit instantly after their self-esteem

has dropped sufficiently low. Since reputation increases at times, we can no longer conclude that

investment incentives are single-peaked. However, Theorem 1 holds, and the firm shirks near the

exit time.12

More generally, a mixed strategy equilibrium could have more than two optimal investment plans

{a∗t }. The qualitative features of the above example, such as gradual exit during which reputation

recovers, carry over from the above discussion.

4.3 Competitive Equilibrium

So far, we have analyzed a model with a single firm. Following Atkeson, Hellwig, and Ordonez (2012),

we can embed our model into a competitive equilibrium context analogous to Jovanovic (1982) or

Hopenhayn (1992). Suppose there is a continuum of firms i ∈ [0, 1] and firm i produces xt,i units of

the experience good at time t. Let the total output of the experience good be Xt =
∫
i xt,idi, and

12A mixed strategy equilibrium has the interesting technical property that smooth-pasting fails at the exit time. In
particular, for the ‘low’ firm, the investment incentives depend on the choice of the exit time. For example, Γ(τ) = 0
if τ∗ = τ but Γ(τ) > 0 if τ∗ > τ . As Vz(τ , zτ−) ≤ Γ(τ) ≤ Vz(τ , zτ+) for any exit time, firm value V (t, z) cannot be
differentiable at (t, z) = (τ , zτ ). This failure of smooth-pasting is analogous to that in Keller and Rady (2014).
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assume consumers have quasilinear utility U(Xt) − Y , where Y is money. Competitive equilibrium

then yields a price for the experience good that equals the marginal utility, Pt = U ′(xt), so the

revenue of firm i equals xt,iPt. Appealing to the law of large numbers, one can then consider a

stationary equilibrium in which the price Pt = P is constant over time, inducing a value for firm i

given by Vi(t, zt;P ).

To close the model, one needs to model entry. The usual approach is to assume a firm pays an

entry cost ξ at which point it has high quality with probability x̌. In a pure-strategy equilibrium

this corresponds to some time ť since a breakthrough, i.e. zť = x̌. Free entry then determines the

price level, Vi(ť, x̌;P ) = ξ.

5 Model Variations

In this section, we consider three natural variations of our baseline model. In Section 5.1 we study

the model in which the market observes the firm’s investment. Here, both the firm and the market

learn about the firm’s quality, but there is no moral hazard. In Section 5.2 we analyze the model in

which the firm knows its own quality. Here there is still moral hazard, but only the market learns

about the firm’s quality. Finally, Section 5.3 considers the model in between the baseline model and

the version with known quality, assuming the firm does not know its quality, but that it observes

additional private signals in addition to the public signals.

5.1 Observable Investment

In the baseline model, the firm’s investment was unobserved by the market; in this section we

eliminate the moral hazard, and assume that the market can directly observe the firm’s investment.

Theorem 5 shows that investment incentives are decreasing over time. Theorem 6 shows that moral

hazard decreases investment.

Suppose that the market observes the history of signals ht and the firm’s past investment {as}s≤t.
Since the market has the same information as the firm, reputation and self-esteem coincide xt = zt.

We can thus write firm value as a function of self-esteem alone. Analogous to (2.4), we truncate the

integral at a breakthrough, yielding

V̂ (zt) = sup
{as}s≥t,τ

∫ τ

t
e−

∫ s
t r+µzudu

[
zs − asc− k + µzsV̂ (1)

]
ds (5.1)

Denote {ât}, τ̂ as the optimal strategy and {ẑt} the associated self-esteem. Since the firm controls

both self-esteem and reputation, the analysis reduces to a decision problem (rather than finding an

equilibrium). Existence of an optimal solution is analogous to Lemma 1.

The value function V̂ (z) is strictly convex, as in footnote 4. Using equation (2.3), investment

raises self-esteem (and reputation) at rate λ. Analogous to equation (3.1), optimal investment is
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thus characterized by

ât =

{
0 if λV̂ ′(ẑt) < c

1 if λV̂ ′(ẑt) > c.

In addition, the optimal exit time τ̂ satisfies

ẑτ̂ − k + µẑτ̂ V̂ (1) = 0.

Adapting the proof of Lemma 2 to this model we show in Appendix A.5 that if V̂ ′(z) exists it is

given by

Γ̂(t) :=

∫ τ̂

t
e−

∫ s
t r+λ+µ(1−ẑu)du

[
1 + µ(V̂ (1)− V̂ (ẑs))

]
ds (5.2)

More generally, Γ̂(t) is sandwiched between the upper and lower derivatives of V̂ (z), which exist by

convexity. When compared to the investment incentives with moral hazard (3.2), investment now

affects reputation and revenue directly. This accounts for the “1” term in the integrand. In any

optimal strategy, investment therefore satisfies

ât =

{
0 if λΓ̂(t) < c

1 if λΓ̂(t) > c.

Theorem 5 (Observable Investment Characterization) Assume that the market observes the

firm’s investment. Then investment incentives Γ̂(t) decrease in t with Γ̂(τ̂) = 0.

Proof. Given assumption (2.2), the drift g(at, zt) is bounded below zero on [z†, 1] and the firm exits

before hitting z†. Since the drift is negative zt decreases and, by the convexity of the value function,

V̂ ′(zt) strictly decreases in t. Hence there exists t̂ such that at = 1 for almost all t < t̂ and at = 0

for almost all t > t̂. �

Theorem 5 means that investment incentives are either full-shirk or work-shirk, depending on

the cost of investment. As time progresses without a breakthrough, the firm gets closer to its exit

point and any investment has a shorter lifespan, reducing incentives. With moral hazard, the firm

benefits from its investment solely via the reputational dividends when the market learns about the

quality at a breakthrough. Right after at breakthrough, these dividends are zero and so investment

incentives increase. This initial increase is absent here.

When comparing the investment incentives with moral hazard (3.2) and without (5.2), the addi-

tional “1” term indicates that investment incentives are indeed higher when investment is observable;

however, many other terms in the integral are endogenous. To state our theorem, for any baseline

equilibrium we write t∗ := sup{t : Pr(λΓ(t) ≥ c) > 0} for the last time at which investment is

optimal.13

13Theorem 6 holds for both pure and mixed equilibria. In a mixed strategy equilibrium, firm investment {at} and
thus investment incentives Γ(t) are a random variable. In a pure equilibrium one can also state the result in terms of
reputation space. That is, if the firm with moral hazard works at any x, then the firm with observable investment also
works at this x.
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Figure 6: Market Observes Firm’s Investment. The left panel shows the firm’s value as a function of

the firm’s reputation. The right panel shows the resulting distribution of firms after 10 years, assuming all

firms start at x = z = 1. The parameters are the same as Figure 2.

Theorem 6 (Impact of Moral Hazard) With observable investment, the firm works strictly longer

than in any baseline equilibrium, t∗ < t̂.

Proof. See Appendix A.6. �

Intuitively, in the baseline case, when a firm invests, it raises its self-esteem. With observable

investment, the firm raises its self-esteem and its reputation. Since a higher reputation is good for

the firm, it has a higher marginal benefit of investment and, in equilibrium, invests more.

Figure 6 simulates the equilibrium for the same parameters as Figures 1-4. In this example, the

firm works for z ∈ [0.24, 1] with an exit cutoff ẑe = 0.19. The left panel shows that the extra work

at high reputations is very valuable for the firm, raising the value of a firm with perfect reputation

from 0.27 to 0.34. Intuitively, the investment at the top means that reputation initially falls slowly,

and a breakthrough is likely before the reputation has fallen significantly (see Figure 1). As a result,

the right panel shows that most firms remain close to z = 1 after 10 years, with 96.8% surviving.

5.2 Privately Known Quality

In the baseline model, we assume that the firm learns about its quality through the same public

breakthroughs as the market and acquires private information only if the market’s beliefs about

investment are incorrect. In this section we suppose the firm knows its own quality, although the

market still does not. This model is reasonable if the firm has much better information than the

market; for example, a restaurant owner may receive direct, non-public feedback from his patrons.

This opens up the possibility for the firm to signal its quality by remaining in business.

As before, we focus on strategies and beliefs that are recursive in the time since the last break-

through t. Additionally, we assume that the firm conditions its strategy on current quality but not
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quality in the past, which is payoff-irrelevant. Thus, a recursive strategy consists of an investment

plan {at} and an exit time τ for the firm with either quality level.

To analyze the value of a low quality firm at time t, we truncate its cash flow expansion at the

first technology shock

V (t, 0) = sup
{as},τ

∫ τ

t
e−(r+λ)(s−t) [xs − cas − k + λ(asV (s, 1) + (1− as)V (s, 0))] ds (5.3)

Compared to the low-quality firm, the high-quality firm additionally enjoys breakthroughs with

present value V (0, 1)− V (s, 1) and arrival rate µ, so that

V (t, 1) = sup
{as},τ

∫ τ

t
e−(r+λ)(s−t) [xs − cas − k + λ(asV (s, 1) + (1− as)V (s, 0)) + µ(V (0, 1)− V (s, 1))] ds

(5.4)

Investment raises the quality of the firm at rate λ. Writing ∆(s) = V (s, 1)−V (s, 0) for the value

of quality, optimal investment is thus characterized by the bang-bang condition

as =

{
0 if λ∆(s) < c

1 if λ∆(s) > c
(5.5)

for almost all s. Importantly, optimal investment is independent of the firm’s quality, allowing us to

write it as {a∗s}. Intuitively, investment only pays off if there is a technology shock, in which case the

firm’s current quality is irrelevant. For the firm’s exit decision, write τ θ for the optimal exit time(s)

of a firm with current quality θ.

An equilibrium in this model variation with privately known quality consists of a distribution over

strategies F θ({at}, τ) for θ ∈ {L,H} and a reputation trajectory {xt} such that: (1) all equilibrium

strategies are optimal, and (2) reputation xt is derived from the distributions via Bayes’ rule whenever

possible. We restrict attention to equilibria where reputation {xt} is continuous. This assumption

holds on the equilibrium path but, off the equilibrium path, implies the firm cannot be punished

for failing to exit by beliefs that jump down. We ignore such equilibria because it is implausible for

the market to interpret the failure to exit as a signal of low quality. We also restrict attention to

equilibria with weakly decreasing reputation; this is satisfied in any markovian equilibrium.

The following result is from Bar-Isaac (2003).

Lemma 5 (Exit) In an equilibrium with continuous, weakly decreasing reputation {xt}, there exists

a time τ <∞ such that the exit time of the low-quality firm τL has support [τ ,∞), revenue and firm

value are constant for t ∈ [τ ,∞) and satisfy

xt − k + amax{λV (t, 1)− c, 0} = 0. (5.6)

The high-quality firm never exits, i.e. τH =∞.

Proof. Since reputation {xt} continuously decreases, firm value V (t, z) for z ∈ {0, 1} continuously
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decreases in t. For an optimal investment strategy {a∗t } the flow-payoff of the low- and high-quality

firm, the integrands in (5.3) and (5.4), continuously decrease in t as well. Thus, exiting is optimal

exactly when flow-payoffs are zero; since firm value is zero at an exit-time, flow-payoffs of the low

quality firm are given by (5.6). As flow payoffs of the high-quality firm exceed those of the low-

quality firm by the last, positive term in (5.4), the latest exit time of the low-quality firm must

strictly precede the earliest exit time of the high-quality firm.

To see that the low-quality firm starts exiting at some finite τ , note first that (2.2) implies the

low-quality firm exits with certainty before its reputation falls to x† := λ/µ; for then the negative flow

profits x† − k from staying in the market exceed the option value of staying in the market λV (t, 1),

which is bounded above by (1 − k)/r. Moreover, reputational drift g(ã, x) is strictly negative on

[x†, 1] and takes reputation below x† in finite time, unless the market expects the low-quality firm

to start exiting and draws a positive inference from its failure to exit. Thus, in equilibrium the

low-quality firm must eventually exit and we define τ as the earliest time when it does so.

Reputation must be constant after τ . For otherwise, if it started to decrease at some time t,

the flow-payoffs of the low-quality firm turn strictly negative and the low-quality firm exits with

certainty; thus, reputation would jump to one, undermining incentives to exit. Thus, the firm’s

problem becomes stationary after τ , all exit times τL ∈ [τ ,∞) are optimal and the high-quality firm

never exits. Finally, in order to keep reputation at xτ , the low-quality firm must exit at constant

rate −g(a, xτ )/xτ (1− xτ ). �

Given the low-quality firm’s indifference at the exit threshold, we can assume that it always

remains in the market, and therefore shares the same strategy as the high-quality firm. Subtracting

(5.3) from (5.4), we obtain the following expression for the value of quality

∆(t) =

∫ ∞
t

e−(r+λ)(s−t)µ(V (0, 1)− V (s, 1))ds. (5.7)

The integrand in (5.7) represents the reputational dividend of quality : High quality does not affect

the firm’s reputation and revenue immediately but gives rise to future breakthroughs that arrive

at rate µ and boost the firm’s reputation to one by resetting its clock to zero. These dividends

depreciate at both the time-discount rate r and the quality obsolescence rate λ. This is analogous

to the investment incentives (3.2) in the baseline model.

Theorem 7 (Known Quality Characterization) In an equilibrium with continuous, weakly de-

creasing reputation {xt}, investment incentives ∆(t) increase over time.

Proof. As s rises, the firm’s value V (s, 1) falls and reputational dividends V (0, 1) − V (s, 1) grow.

Hence an increase in t leads to an increase in the value of quality (5.7) and in investment via the

optimality equation (5.5). �

Intuitively, breakthroughs are most valuable to a firm with low reputation since a breakthrough

takes the firm from its current reputation to x = 1. Thus, the optimal investment strategy is either

full shirk, shirk-work or full work, depending on the investment cost c.
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In contrast to the baseline model, all states (t, z) ∈ [0,∞) × {0, 1} are on-path in this model

variation, and so conditions (5.5) and (5.6) are sufficient as well as necessary for an equilibrium

strategy. Thus, disinvestment at times t ∈ [0, t), investment thereafter and exit of low-quality firms

after time τ constitutes an equilibrium if (5.5) and (5.6) are satisfied. Equilibrium existence can thus

be established by Brouwer’s fixed-point theorem applied to (t, τ) ∈ [0, τ ] × [0, τ ], as in Board and

Meyer-ter-Vehn (2013, Theorem 2).

The increasing investment incentives in Theorem 7 are in sharp contrast to the single-peaked and

eventually vanishing investment incentives in Theorem 2. In that case, the firm gives up near the exit

threshold and coasts into liquidation; with privately known quality, the firm fights until the bitter

end. Intuitively, in the baseline model, the firm’s investment at times t ∈ [τ∗ − ε, τ∗] pays off only if

a technology shock arrives and a breakthrough arrives that averts exit. The probability of this joint

event is of order ε2 which eventually falls short of the investment costs. With known quality, only a

technology shock is required for investment to pay off because a boost in quality averts exit. Thus,

investment incentives are of order ε at all times, and are actually maximized when the firm is about

to exit as discussed above.

With observed investments, incentives decrease as the firm gets closer to exit (Theorem 5). With

known quality, incentives increase as the breakthroughs become more valuable to the firm (Theorem

7). The single-peaked incentives in the baseline model (Theorem 2) can be viewed as a combination

of these two effect.

Figures 7-8 illustrate an equilibrium for the same parameters as Figures 1-4. In Figure 7, the left

panel shows the value function of high- and low-quality firms with different reputations. One can see

the kink at the start of the work region. In this example, the value of a firm with perfect reputation

is 0.22, compared with 0.27 under unknown quality. The right panel plots the distribution of firms

after 10 years, starting at x = 1. One can see a bulge of firms in the work region as firm’s reputation

declines more slowly. Relative to the baseline distribution, this distribution appears censored. The

exit threshold is much higher, with a large number of firms massing at this threshold, where low

quality firms randomize between exiting and remaining in the market. Overall 71.8% firms survive

10 years, compared to 76.8% in the baseline case. Figure 8 shows typical life-cyles for three firms.

The first never goes near the exit threshold; the second is temporarily indifferent between exiting

and not, and ultimately survives; the third exits after 9 years.

5.3 Imperfect Private Information

The model variation with privately known quality predicts the opposite investment behavior than

the baseline model when the firm is about to exit. To further illuminate this contrast, we now bridge

the two extremes by nesting them in a class of models with imperfect private information.

We model the firm’s new information via private breakthroughs that arrive at rate ν and reveal

high quality with certainty. Thus, at a public breakthrough reputation and self-esteem jump to one;

at a private breakthrough reputation is continuous while self-esteem jumps to one; absent either
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Figure 7: Privately Known Quality. The left panel shows the firm’s value as a function of the firm’s

reputation. The right panel shows the resulting distribution of firms after 10 years, assuming all firms start

at x = z = 1. The parameters are the same as Figure 2.
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Figure 8: Firm Lifecycles with Privately Known Quality This figure shows three sample paths starting

at x = z = 1. The left and center firms survive 10 years, although the center firm hits the exit point and

survives the randomization. The right firm exits after 9 years. The parameters are the same as Figure 2.

breakthrough, self-esteem is governed by ż = g(a, z) with

g(a, z) = λ(a− z)− (µ+ ν)z(1− z).

When ν = 0 we recover the unknown quality case. As ν →∞, this model approximates the known

quality case in the sense that self-esteem zt converges to 0 or 1 in distribution for any time t and

any investment strategy {at}.14

This model is recursive in the time since the last public breakthrough, t. A recursive strategy

for the firm then specifies investment at and exit time τ as a function of the history of private

breakthroughs. Writing optimal strategies as {a∗t }t≥0, τ
∗ and the resulting process of self-esteem as

14To see this, note that for any ε > 0 there exists δ > 0 and ν∗ > 0 such that for all ν > ν∗ we have either zt+δ < ε
if no breakthrough arrived in [t, t+ δ], or Pr(zt+δ > 1− ε) > 1− ε if a breakthrough arrived at t′ ∈ [t, t+ δ] and thus
Pr(θt+δ = H|θt′ = H) ≥ e−λδ.
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{z∗t }, we truncate the firm’s cash flow expansion at either kind of breakthrough to obtain

V (t, z∗t ) =

∫ τ∗

t
e−

∫ s
t (r+(µ+ν)z∗u)du [xs − ca∗s − k + µz∗sV (0, 1) + νz∗sV (s, 1)] ds.

The additional term νz∗sV (s, 1) captures the firm’s continuation value after a private breakthrough.

As in Lemmas 2-3, investment incentives are given by

Γ(t) =

∫ τ∗

t
e−

∫ s
t (r+λ+(µ+ν)(1−z∗u))du [µ(V (0, 1)− V (s, z∗s )) + ν(V (s, 1)− V (s, z∗s ))] ds. (5.8)

These disappear at the exit time τ∗, so the firm will shirk close to the exit threshold, as in Theorem

1. Thus, even as ν → ∞ and the model approaches the known-quality case, the firm shirks before

exiting, in contrast to Theorem 7. However, this does not imply a discontinuity: The integrand in

(5.8) increases in ν, so while the firm shirks for some time before exit in equilibrium, the length of

this shirking time may converge to zero as ν grows large.

6 Conclusion

This paper models the lifecycle of a firm whose primary assets are its quality and its reputation. In

the baseline model, the firm privately invests in its quality, while both the market and firm learn

about the success of past investments. We characterize investment incentives and show they are are

single-peaked in the time since a breakthrough. This yields predictions about the distribution of

firm revenue product and the level of industry turnover. Finally, we investigate two variants of our

model: one where there is no moral hazard, and a second where the firm privately knows its quality.

We believe this model has a wide variety of applications that lend themselves to empirical in-

vestigation For example, a film studio invests in its personnel and its products; the studio and

Hollywood then learn about the resulting quality via its hit movies. In labor markets, academics

and other professionals invest in their skills; the agent and the market then learn about the success

through publications. At the international level, countries makes policy choices concerning govern-

ment spending and privatizations; both the country and their sovereign debt holders then learn about

the country’s solvency via public statistics.

These applications suggest a number of interesting extensions to our analysis. One could change

the learning process or add more quality levels. One could introduce common learning, so news

about one firm impacts its competitors. One could also append the model with regular capital in

addition to reputational capital.

24



A Appendix

A.1 Proof of Lemma 2

Fix time t, self-esteem zt, firm strategy {as}s≥0, τ (not necessarily optimal), write {zs}s≥t for future

self-esteem, and let

Π(t, zt) =

∫ τ

s=t
e−

∫ s
t r+µzudu(xs − cas − k + µzsΠ(0, 1))ds (A.1)

be the firm’s continuation value, where we truncated the integral of the cash-flows at the first

breakthrough as in (2.4). We will show that Π(t, z) is differentiable in z with derivative

Πz(t, zt) =

∫ τ

s=t
e−

∫ s
t r+λ+µ(1−zu)duµ(Π(0, 1)−Π(s, zs))ds (A.2)

Equation (3.2) then follows by the envelope theorem, Milgrom and Segal (2002).

To show (A.2) we first state two claims, both of which follow immediately from Board and

Meyer-ter-Vehn (2013).

Claim 1: For any bounded, measurable functions φ, ρ : [0, τ ]→ R, the function

ψ(t) =

∫ τ

t
e−

∫ s
t ρ(u)duφ(s)ds (A.3)

is the unique solution to the integral equation

f(t) =

∫ τ

s=t
(φ(s)− ρ(s)f(s))ds. (A.4)

This is proved for τ =∞ and constant ρ in Board and Meyer-ter-Vehn (2013, Lemma 5). The proof

generalizes immediately to finite τ and measurable functions ρ(t).

Claim 2: For any times s > t and fixed investment {au}u∈[s,t], time-s self-esteem zs is differentiable

in time-t self-esteem zt with derivative

dzs
dzt

= exp

(
−
∫ s

u=t
(λ+ µ(1− 2zu))du

)
.

This follows by the same arguments as in Board and Meyer-ter-Vehn (2013, Lemma 8B).

Setting ψ(s) = e−r(s−t)Π(s, zs), ρ(s) = µzs and φ(s) = e−r(s−t)(xs − cas − k+ µzsΠ(0, 1)), yields

equation (A.3). Applying Claim 1, equation (A.4) becomes

Π(t, zt) =

∫ τ

s=t
e−r(s−t)(xs − cas − k + µzs(Π(0, 1)−Π(s, zs)))ds.
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Taking the derivative with respect to z at z = zt, and applying Claim 2 we get

Πz(t, zt) =

∫ τ

s=t
e−r(s−t)

dzs
dzt

(µ(Π(0, 1)−Π(s, zs))− µzsΠz(s, zs))ds

=

∫ τ

s=t
e−

∫ s
t r+λ+µ(1−2zu)du(µ(Π(0, 1)−Π(s, zs))− µzsΠz(s, zs))ds.

Setting ρ(s) = µzs, φ(s) = e−
∫ s
t r+λ+µ(1−2zu)duµ(Π(0, 1)−Π(t, zs)) and f(s) = e−

∫ s
t r+λ+µ(1−2zu)duΠz(s, zs)

yields equation (A.4). Applying Claim 1, equation (A.3) becomes

Πz(t, zt) =

∫ τ

t
e−

∫ s
t µzudue−

∫ s
t r+λ+µ(1−2zu)duµ(Π(0, 1)−Π(t, zs))ds

implying (A.2).

A.2 Monotonicity of Value Function in Section 3

Lemma 6 If {xt} strictly decreases, then V (t, z) strictly decreases in t and strictly increases in z

on {(t, z) : V (t, z) > 0}.

Proof. Fix t ≥ t′ and z ≤ z′ and consider a ‘low’ firm with initial state (t, z) and a ‘high’ firm with

initial state (t′, z′). We can represent the firms’ uncertainty as an increasing sequence of ‘potential

breakthrough’ times {ti}i∈N that follow a Poisson distribution with parameter λ, and a sequence of

uniform [0, 1] random variables {ζi}i∈N, with the interpretation that the firm experiences an actual

breakthrough after time σ (that is at time t + σ for the low firm and at time t′ + σ for the high

firm) if σ = ti for some i and ζi ≤ Zt−. Fix any realization of uncertainty {ti, ζi}i∈N, let {A∗σ}, T ∗

be the low firm’s optimal strategy given this realization, and assume that the high firm mimics this

strategy. Note that this strategy is in generally not recursive for the high firm. Given {ti, ζi} and

{A∗σ}, T ∗, we can compute revenue and self-esteem of low and high firm (Xσ, Zσ) and (X ′σ, Z
′
σ) for

any σ ≥ 0. We now argue inductively that

Xσ ≤ X ′σ and Zσ ≤ Z ′σ (A.5)

for any σ < ti and any i ∈ N. For i = 1, that is for σ ∈ [0, t1), we have Xσ = xt+σ < xt′+σ = X ′σ

because {xt} decreases, and the self-esteem trajectories Zσ, Z
′
σ are governed by the ODE ż = g(a, z),

implying (A.5) for σ ∈ [0, t1). At σ = t1, the low (resp. high) firm experiences a breakthrough if

ζ1 ≤ Zσ− (resp. ζ1 ≤ Z ′σ−). As Zσ− ≤ Z ′σ−, we get (A.5) for σ = t1. Inductive application of

these steps yields (A.5) for all σ. Thus, by mimicking the low firm’s optimal strategy {A∗σ}, T ∗ for

any realization {ti, ζi}, the high firm can guarantee itself weakly higher cash-flows X ′σ − cA∗σ − k
at all times σ, implying V (t′, z′) ≥ V (t, z). As long as firm value is strictly positive and the firms

don’t exit immediately, the inequality Xσ ≤ X ′σ is strict for a positive measure of times with positive

probability, implying V (t′, z′) > V (t, z). �
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A.3 Proof of Theorem 2

The discount rate ρ(t) = r + λ + µ(1 − z∗t ) is Lipschitz continuous with derivative µż∗t where ż∗t =

g(a∗t , z
∗
t ) = λ(a∗t − z∗t )− µz∗t (1− z∗t ) for almost all t. Firm value as a function of time t 7→ V (t, z∗t ) is

also Lipschitz continuous with derivative d
dtV (t, z∗t ) = Ψ(t) + ż∗t Γ(t) for almost all t.

Now assume that Γ̇(t) ≤ 0. Then

Γ̇(t+ ε)− Γ̇(t) =

∫ t+ε

t

d

ds
[ρ(s)Γ(s)− µ(V (0, 1)− V (s, z∗s ))] ds

=

∫ t+ε

t

[
ρ(s)Γ̇(s) + ρ̇(s)Γ(s) + µ

d

ds
V (s, z∗s )

]
ds

=

∫ t+ε

t

[
ρ(s)Γ̇(s)− µż∗sΓ(s) + µ(Ψ(s) + ż∗sΓ(s))

]
ds

=

∫ t+ε

t

[
ρ(s)Γ̇(s) + µΨ(s)

]
ds.

As Γ̇(t) ≤ 0 and Ψ(t) < 0 and both functions are continuous, the integrand is strictly negative for

small ε, so Γ̇ strictly decreases on some small interval [t, t + ε). If Γ̇ did not strictly decrease on

[t, τ∗] there would exist t′ > t with Γ̇(t′) < 0 and Γ̇(t′ + ε) ≥ Γ̇(t′) for arbitrarily small ε, which is

impossible by the above argument.

A.4 Proof of Theorem 4

Proof strategy: The firm’s payoff from strategy {at}, τ is given by

Π({at}, τ ; {xt}) =

∫ τ
0 e
−

∫ t
s=0 r+µzsds (xt − cat − k) dt

1−
∫ τ

0 e
−

∫ t
s=0 r+µzsdsµztdt

The proof idea is to show that the firm’s best response correspondence

BR({xt}) = arg max
{a∗t },τ∗

Π({a∗t }, τ∗; {xt})

and the Bayesian updating formula B defined by (4.1) admit a fixed point.

To establish existence of a fixed point we define topologies on the space of mixed strategies F

and reputation trajectories {xt} with the property that both spaces are compact, locally convex,

and Hausdorff, and both correspondences are upper-hemicontinuous. Then the existence of the fixed

point follows by the Kakutani-Fan-Glicksberg theorem.

Defining the topologies: In the proof of Lemma 1 we interpreted investment strategies {at}t∈[0,τ ]

as elements of a space B with a weak topology under which B is compact. We now also interpret

revenue trajectories {xt} as elements of B with this topology. As for the firm’s mixed strategies, we

equip ∆(B× [0, τ ]) with the topology of convergence in distribution. Standard arguments (Aliprantis

and Border (1999, Theorem 14.11)) show that this space is compact. By definition it is locally convex.
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Upper hemi-continuity of Bayes’ rule: We now prove that the correspondence B : ∆(B× [0, τ ])→
B mapping beliefs F to the set of measurable trajectories {xt} that satisfy (4.1) for t < τ(F ) is upper

hemi-continuous. Consider a sequence of beliefs Fn (with expectation En) that converges to F in

distribution. B(Fn) consists of all measurable trajectories {xnt } that satisfy (4.1) (when replacing EF

by En) for t < τ(Fn). As F assigns probability less than one to the event {τ̃ < t} for any t < τ(F )

so does Fn for sufficiently large n; thus, limn→∞ τ(Fn) ≥ τ(F ).

We now show that xnt → xt for all t < τ(F ) at which the marginal distribution F (τ̃) is con-

tinuous.15 Consider the numerator of (4.1) (the argument for the denominator is identical). The

integrand χ−t (ã, τ̃) := zt(ã)wt(ã)I{τ̃>t} is continuous in ã (see, e.g., Davis (1993, Theorem 43.5))

and lower semi-continuous in τ̃ ; similarly, χ+
t (ã, τ̃) := zt(ã)wt(ã)I{τ̃≥t} is continuous in ã and upper

semi-continuous in τ̃ . The portmanteau theorem thus implies lim inf En[χ−t (ã, τ̃)] ≥ EF [χ−t (ã, τ̃)]

and EF [χ+
t (ã, τ̃)] ≥ lim supEn[χ+

t (ã, τ̃)]. As χ−t and χ+
t are bounded and disagree only for τ̃ = t,

which happens with probability zero under F and thus with vanishing probability under Fn, we have

EF [χ−t (ã, τ̃)] = EF [χ+
t (ã, τ̃)] and lim supEn[χ+

t (ã, τ̃)] = lim supEn[χ−t (ã, τ̃)]. Thus,

lim inf En[χ−t (ã, τ̃)] ≥ EF [χ−t (ã, τ̃)] = EF [χ+
t (ã, τ̃)] ≥ lim supEn[χ+

t (ã, τ̃)] = lim supEn[χ−t (ã, τ̃)]

and so limEn[χ−t (ã, τ̃)] exists and equals EF [χ−t (ã, τ̃)] as desired. Thus, {xnt } converges to {xt}
pointwise for almost all t ∈ [0, τ(F )], and thus also in the L2([0, τ(F )], [0, 1])-norm and a fortiori in

the weak topology. As the set B(F ) allows for any measurable trajectories after τ(F ), all trajectories

{xnt }t∈[0,τ ] ∈ B(Fn) are uniformly close to B(F ); that is, B is upper hemi-continuous.

Upper hemi-continuity of the firm’s best responses: Self-esteem zt is continuous in {at} ∈ B,

so firm payoff Π({at}, τ ; {xt}) is continuous in {at}, τ and {xt}, and thus also continuous in F =

F ({at}, τ) (Aliprantis and Border (1999, Theorem 14.5)); thus Berge’s maximum theorem implies

that the best response mapping BR : B → ∆(B × [0, τ ]) is upper-hemicontinuous.

Summary: We have shown that ({xt}, F ) 7→ (B(F ), BR({xt})) is an upper hemi-continuous,

convex-valued mapping of the compact, locally convex, Hausdorff space B ×∆(B × [0, τ ]) to itself.

The Kakutani-Fan-Glicksberg theorem implies that this mapping has a fixed point. This fixed point

constitutes an equilibrium.

A.5 Proof of Equation (5.2)

This proof is analogous to the Proof of Lemma 2 in Appendix A.1. With observable investment, the

firm’s payoff from strategy {as}s≥t, τ is given by

Π̂(zt) =

∫ τ

s=t
e−

∫ s
t r+µzudu(zs − cas − k + µzsΠ̂(1))ds.

15It can have at most countably many discontinuities.
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Setting ψ(s) = e−r(s−t)Π̂(zs), ρ(s) = µzs and φ(s) = e−r(s−t)(zs− cas− k+µzsΠ̂(1)) yields equation

(A.3). Applying Claim 1, equation (A.4) becomes

Π̂(zt) =

∫ τ

s=t
e−r(s−t)(zs − cas − k + µzs(Π̂(1)− Π̂(zs))ds.

Taking the derivative and applying Claim 2 we get

Π̂′(zt) =

∫ τ

s=t
e−r(s−t)

dzs
dzt

(1 + µ(Π̂(1)− Π̂(zs))− µzsΠ̂′(zs))ds

=

∫ τ

s=t
e−

∫ s
t r+λ+µ(1−2zu)du(1 + µ(Π̂(1)− Π̂(zs))− µzsΠ̂′(zs))ds.

Setting ρ(s) = µzs and φ(s) = e−
∫ s
t r+λ+µ(1−2zu)duµ(Π̂(1)− Π̂(zs)), f(s) = e−

∫ s
t r+λ+µ(1−2zu)duΠ̂′(zs)

satisfies (A.4). Applying Claim 1, equation (A.3) becomes

Π̂′(zt) =

∫ τ

s=t
e−

∫ s
t r+λ+µ(1−zu)duµ(1 + Π̂(1)− Π̂(zs))ds.

The envelope theorem then implies equation (5.2).

A.6 Proof of Theorem 6

Suppose otherwise, that t∗ ≥ t̂. Then ẑt̂ = zt̂(a) ≥ z∗
t̂

because ât = a on [0, t̂]; as reputational drift

g(a, z) is negative for z ≥ ẑt̂ and any investment {at}, this implies ẑt̂ ≥ z∗t∗ and there exists t̃ ≥ t̂ such

that ẑt̃ = z∗t∗ =: z. By definition both firms shirk after reaching self-esteem z and so the trajectories

coincide, ẑt̃+t = z∗t∗+t. For convenience we write this joint trajectory as zt; that is, we restart the

clock at t = 0 when self-esteem reaches z. Writing x∗t = xt∗+t for the revenue of the unobservable

firm, we have x∗t ≤ zt because the equilibrium strategy that invests the longest, until t∗, leads to

the highest self-esteem zt while x∗t is a weighted average of zt and the self-esteem resulting from

equilibrium strategies with lower investment.

We will now show that the observable firm with self-esteem z has strictly higher investment

incentives than the unobservable firm Γ̂(t̃) > Γ(t∗) = c/λ. This contradicts our assumption that the

observable firm weakly prefers to at time t̃ ≥ t̂. The investment incentives of the two firms are given

by

Γ̂(t̃) =

∫ τ̂−t̃

0
e−

∫ t
0 r+λ+µ(1−zs)ds

[
1 + µ(V̂ (1)− V̂ (zt))

]
dt (A.6)

Γ(t∗) =

∫ τ∗−t∗

0
e−

∫ t
0 r+λ+µ(1−zs)dsµ(V (0, 1)− V (t∗ + t, zt))dt (A.7)

First, we argue that the observable firm exits later than the unobservable firm, i.e. τ̂− t̃ > τ∗−t∗.
To see this, note that the former enjoys higher flow payoffs than the latter

zt − k + µztV̂ (1) > x∗t − k + µztV (0, 1)
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because zt ≥ x∗t and the observable firm’s value at a breakthrough is higher than the unobservable

firm’s, V̂ (1) ≥ V (0, 1); the latter follows because the observable firm can ensure itself weakly higher

flow payoffs by mimicking the equilibrium strategy.

Next, consider the integrands in (A.6) and (A.7). We can write the value functions as,

V̂ (zt) =

∫ τ̂−t̃

s=t
e−

∫ s
t r+µzudu

[
zs − k + µzsV̂ (1)

]
ds

V (t∗ + t, zt) =

∫ τ∗−t∗

s=t
e−

∫ s
t r+µzudu [x∗s − k + µzsV (0, 1)] ds

Obviously the second value decreases if we force the firm to exit at the suboptimal time τ̂ − t̃ and

also omit the positive revenue x∗s, i.e.

V (t∗ + t, zt) >

∫ τ̂−t̃

s=t
e−

∫ s
t r+µzudu [−k + µzsV (0, 1)] ds.

Taking differences

V̂ (zt)− V̂ (t∗ + t, zt) <

∫ τ̂−t̃

s=t
e−

∫ s
t r+µzuduzs

[
1 + µ(V̂ (1)− V (0, 1))

]
ds <

1

µ
+ V̂ (1)− V (0, 1),

where the last inequality follows from∫ τ̂−t̃

s=t
e−

∫ s
t r+µzuduzsds <

∫ ∞
s=t
− 1

µ

d

ds

(
e−

∫ s
t µzudu

)
ds =

1

µ

[
1− exp

(∫ ∞
t

µzudu

)]
≤ 1

µ
.

Rearranging, we get

1 + µ(V̂ (1)− V̂ (zt)) > µ(V (0, 1)− V̂ (t∗ + t, zt)).

Thus both the integrand and the integration domain are larger in (A.6) than in (A.7), implying

Γ̂(t̃) > Γ(t∗) and completing the proof.
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