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1 Introduction

Unemployment insurance programs insure workers against the risk that they may lose

their job through no fault of their own. Such insurance, however, is associated with many

potential incentive problems. One such incentive problem is moral hazard. For instance,

in the presence of insurance, unemployed agents might reduce the search effort, thereby

reducing the speed of transition to gainful employment. The literature on the optimal

provision of unemployment insurance (e.g., Baily (1978), Shavell and Weiss (1979), and

Hopenhayn and Nicolini (1997)) concentrates on providing incentives for optimal search

effort. In this paper, we study the incentive problem associated with fraudulent collection

of unemployment benefits.

There are several types of unemployment insurance fraud. Examples include collect-

ing unemployment benefits after quitting a job, while being employed, or after refusing a

suitable offer. Table 1 below illustrates the overpayments incurred by the unemployment

insurance program for different types of fraud.

Table 1: Unemployment Insurance Overpayments in the U.S., 2007

Cause Percent of Fraud Overpayments

Concealed Earnings 60.06

Insufficient Job Search 4.95

Refused Suitable Offer 0.80

Quits 7.06

Fired 13.29

Unavailable for Work 4.17

Other 9.67

Total 100.00

Source: Benefit Accuracy Measurement program, U.S. Department of Labor

Our focus here is on concealed earnings: the case where an agent currently collecting

benefits finds a job, but continues collecting unemployment benefits. As noted in the Table,

the benefits overpaid because of such fraud, in 2007, were ten times the overpayment due
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to unemployed agents not actively searching or refusing suitable work. (See Appendix A

for more details.) That is, even if the unemployment insurance program were designed

to elicit sufficient effort by each unemployed agent, the savings for the program would be

dwarfed by the corresponding savings generated by an unemployment insurance program

designed to prevent fraud.

The contribution of our paper is to provide an optimal unemployment insurance mech-

anism in an environment where an agent can commit fraud by concealing his true employ-

ment status. All of the agents in our model have constant absolute risk aversion (CARA)

preferences, are initially unemployed, and face stochastic opportunities to transition to em-

ployment. Those who are employed receive positive wage income, while those who remain

unemployed receive zero wage income. There is no search effort to find employment. Em-

ployment is assumed to be an absorbing state. The employed agent could conceal the fact

that he has found a job and continue to claim unemployment benefits. The Unemployment

Insurance agency has a costly monitoring technology to detect the agent’s employment

status. Our mechanism efficiently provides benefits and utilizes the monitoring technology

to deter potential fraud.

We set up the problem in continuous time and represent incentive constraints as differen-

tial equations, similar to Zhang (2009). We then formulate the contracting problem as one

of optimal control and apply the Pontryagin minimum principle to study the dynamics of

unemployment insurance policies. We deliver a pre-commitment mechanism that optimally

provides unemployment insurance in the presence of persistent private information.

In our model, the Unemployment Insurance agency uses two instruments to deter fraud:

tax/subsidy and monitoring. Both instruments are costly. The first instrument distorts

consumption relative to full insurance. The second instrument has a direct cost.

Since employment is an absorbing state in our model, the treatment of the worker

who transitioned to employment is straightforward – constant consumption forever and

no monitoring. Since employment status is private information, the Unemployment Insur-

ance agency distorts consumption and does not fully insure the unemployed worker. The

Unemployment Insurance agency also uses the monitoring instrument to provide incentives.

We consider two monitoring mechanisms: deterministic verification and stochastic veri-
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fication. Under deterministic verification, the worker is either verified with probability one

or not verified at all. We focus on this case for most of the paper since it is analytically

tractable. All of our results below are for this case. We show later that our results remain

the same under stochastic verification where the worker is verified with probability be-

tween zero and one. That is, even though our deterministic mechanism appears restrictive,

the general mechanism of stochastic verification does not offer more economic insights on

unemployment insurance and monitoring.

We show that the interval between consecutive monitoring periods is a constant, inde-

pendent of history. That is, the monitoring consists of cycles and occurs in pre-specified

periods. With CARA utility, the path of the worker’s utility flows in a new cycle is pro-

portional to that in the previous cycle. Hence, his incentive to commit fraud remains the

same and he is monitored in the same manner as in the previous cycle.

The optimal unemployment benefits in our model decrease monotonically with the du-

ration of unemployment. Benefits remain relatively flat between verifications with a sharp

decline immediately after a verification.

A novel feature of our optimal mechanism is that it imposes a nonmonotonic tax on

employment in order to provide incentives. Within a monitoring cycle, the consumption for

the worker who transitions to employment earlier exceeds that of the worker who transitions

later. However, the consumption for the worker who transitions to employment shortly

before a verification period is less than that of the worker who transitions shortly after.

Another type of fraud is that employed agents can quit their jobs, become unemployed,

and start collecting unemployment benefits. Even though an employed agent in our model

can commit such fraud, the incentives in our optimal contract ensure that the agent does

not engage in such fraudulent behavior.

We do not have search effort in our model, so we do not provide incentives for finding

employment. One could argue that providing incentives for the search effort could result in

more cost savings, relative to fraud detection, by moving agents from the unemployed pool

to the employed pool at a faster rate. However, this margin turns out to be quantitatively

insignificant in the previous models of optimal unemployment insurance. In Hopenhayn

and Nicolini (1997), for instance, the unemployed agent’s optimal search effort and the
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optimal duration of unemployment are almost the same as those in the current unemploy-

ment insurance program; in Wang and Williamson (2002), the optimal insurance does not

encourage more job search effort than what is achieved under the current unemployment

insurance program. The cost savings in these models come from reduced benefits on aver-

age and better distribution of benefits based on duration of unemployment. This channel

of cost savings is present in our model as well.

A strand of the unemployment insurance literature has focused on monitoring search

effort and/or monitoring acceptance of job offers. Hansen and Imrohoroglu (1992), for

instance, examine a model where agents can reject job offers. An exogenous fraction of

agents who reject job offers are denied benefits. In our optimal mechanism, the unemployed

agent who receives an opportunity to become employed has no incentive to refuse the

opportunity. Setty (2011) analyzes an optimal unemployment insurance scheme in a model

where the agent’s search effort is monitored. In our model, we use the monitoring technology

to detect concealed earnings. Empirically, as noted in Table 1, fraudulent behavior in search

effort or refusal of suitable work is not as costly to the Unemployment Insurance agency as

concealment of earnings.

The remainder of the paper proceeds as follows. In Section 2 we describe the model.

In Section 3 we establish two properties of the optimal mechanism: scaling and periodic

monitoring. In Section 4 we use these properties to analyze the optimal unemployment

insurance scheme with exogenously given monitoring dates. Then, we characterize the

optimal monitoring dates in Section 5. In Section 6 we show that our mechanism prevents

employed workers from quitting. In Section 7 we discuss an extension of our model to the

stochastic monitoring case, where the Unemployment Insurance agency optimally chooses

the probability of verification. We conclude in Section 8.

2 Model

The Unemployment Insurance authority is a risk-neutral principal with a discount rate

r > 0. She provides insurance to a risk-averse worker, whose preferences are given by

E

[∫ ∞
0

e−rtrv(c(t))dt

]
,
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where c(t) is consumption at time t, v(c) = −e−ρc is a CARA utility function with risk

aversion ρ, r is the discount rate, and E is the expectation operator. Note that the flow

utility is rv(c) and that the agent’s subjective discount rate is the same as the principal’s.

A worker can be either employed with wage w > 0 or unemployed with wage zero. The

worker is unemployed at t = 0 and transitions to employment with Poisson rate π > 0. We

assume that employment is permanent. (For similar assumptions, see the unemployment

insurance model of Hopenhayn and Nicolini (1997) and the disability insurance model of

Golosov and Tsyvinski (2006).)

The worker’s employment status is private information, so an employed worker can

claim to be unemployed and continue collecting the unemployment benefits. We refer to

this as fraud. The principal can verify the worker’s unemployment report at a cost of γ

units of the consumption good.1 Verification reveals the worker’s true employment status.

We study pre-commitment mechanisms that efficiently deliver unemployment benefits

and deter fraud. In addition to the tax/subsidy instrument used by the unemployment

insurance literature, our mechanism uses the monitoring instrument to provide incentives.

We assume that the principal always collects the wage, so an unemployed worker can

never claim to be employed. Hence, there is no need for verification when the worker

reports a transition to employment. Furthermore, since employment is an absorbing state,

verification is unnecessary forever if the worker reports to be employed just once in the

past. The incentive problem then reduces to ensuring that an employed worker does not

claim to be unemployed.

We focus on deterministic verification mechanisms. This mechanism is necessarily sub-

optimal; it is dominated by a stochastic verification mechanism in our environment. One

may then ask why study the deterministic case? Our goal is to characterize the optimal

combination of the two instruments: tax/subsidy and monitoring. In Section 7, we show

that the key economic insights on these two instruments are nearly identical in both the

deterministic and stochastic cases. In both cases, optimal monitoring and employment tax

have the same pattern. The stochastic monitoring case requires cumbersome notation and

provides less intuition so we start by analyzing the deterministic case.

1See Appendix A for technologies used to detect Concealed Earnings fraud.
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In our deterministic mechanism, the verification in any period is based on the history of

employment status reports and past verifications outcomes. Since verification is necessary

only for agents who have been reporting unemployment in every period in the past, a

sufficient statistic for past history is the duration of unemployment reports. In other

words, at t = 0 the principal commits to all future verification periods, mapping durations of

unemployment reports to {0, 1}. In a verification period, clearly no worker would misreport.

(Any penalty ε > 0 induces truth telling in the verification period.) Thus, the principal

does not have to keep track of the outcomes of past verifications. We represent the set of

verification periods as {mi; i = 1, 2, ...}, where mi is the date of the ith verification.2

The timing is as follows. In the initial period, the worker is unemployed. Then the

stochastic job opportunity arrives. The worker either remains unemployed or transitions

to employment. He then chooses to report either employment or unemployment to the

principal. Conditional on the unemployment report, the principal verifies the true employ-

ment status if the period is a verification period. Then, conditional on the report and

the outcome of the verification, the principal assigns current and future consumptions. In

subsequent periods, if the worker reported employment in the past, he is in an absorbing

state and no further reports are necessary. If the worker reported unemployment in every

period in the past, then the sequence of events is the same as in the initial period.

If an unemployed worker transitions to employment at t, efficiency requires that the

worker’s consumption remain constant afterward. This is because the principal and the

worker have the same discount rate and employment is an absorbing state. We denote this

constant level of consumption as cE(t). The flow utility from this level of consumption

then is rv
(
cE(t)

)
. We denote the discounted sum of utilities to a worker who accepts a job

offer for the first time at t as E(t), i.e., E(t) =
∫∞
t
e−r(s−t)rv(cE(t))ds = v(cE(t)). Since

employment status is private information, E(t) is also the continuation utility to a worker

who accepted an offer before t, but reports employment for the first time at t.

An unemployed worker’s consumption at t is denoted by cU(t) and his flow utility is

2There is no loss of generality in assuming a countable collection of verification periods. Since each

verification costs γ > 0, the principal would not want to verify infinitely many times in any finite time

interval.
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rv(cU(t)). His continuation utility,

U(t) ≡
∫ ∞
t

e−r(x−t)e−π(x−t)rv(cU(x))dx+

∫ ∞
t

e−r(x−t)e−π(x−t)πE(x)dx,

is the sum of expected utilities before and after the transition (e−π(x−t) in the first integral is

the conditional probability of remaining unemployed at date x and e−π(x−t)π in the second

integral is the density function of the transition time). Hence,

U(t) =

∫ ∞
t

e−(r+π)(x−t) (πE(x) + ru(x)) dx

=

∫ s

t

e−(r+π)(x−t) (πE(x) + ru(x)) dx+ e−(r+π)(s−t)U(s), for all t < s, (1)

where u(x) ≡ v(cU(x)). We will refer to (1) as promise-keeping constraints.

The principal commits at t = 0 to verification periods {mi; i = 1, 2, ...} and consump-

tions
{

(cE(t), cU(t)); t ≥ 0
}

. The verification periods and consumptions are history depen-

dent. We denote this pre-commitment contract as σ.

Incentive compatibility requires that a worker who transitioned to employment at t ∈
(mi,mi+1) does not have the incentive to delay the report of the transition to a later time

s ∈ (t,mi+1), i.e., report unemployment and commit fraud from t to s, and then report

employment from s onward:

E(t) ≥
∫ s

t

e−r(x−t)rv(cU(x) + w)dx+ e−r(s−t)E(s),∀s ∈ (t,mi+1). (2)

Note that the worker cannot delay the report beyond the next verification period mi+1.

We restrict contract allocations to

E(t) ≥ U(t), for all t. (3)

Remark 1 This restriction can be derived by adding a job-refusal option to our model.

That is, the worker can privately refuse a job offer (at the moment of receiving it). The

timing in each period is as follows. The stochastic job opportunity arrives and the worker

either receives an offer or does not. He then chooses to report the offer (if any) to the prin-

cipal. Conditional on the report of an offer, the principal recommends the worker to either
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accept or reject the offer. The worker then chooses whether to follow the principal’s recom-

mendation. (In contrast, job acceptance is implicitly imposed in our model.) Conditional

on the report, the principal assigns current and future consumptions.

In such a job-refusal model, it is optimal for the principal to always recommend to the

worker who reports an offer to accept. For a given level of worker’s promised utility, recom-

mending “accept” minimizes the cost of delivering the utility since the worker’s consumption

is constant upon job acceptance and the principal gets the perpetual wage. Recommending

“reject” means the agent continues to search and the continuation contract involves addi-

tional uncertainty, reports, and incentive constraints. So the consumption cost of delivering

the same utility is higher under “reject.”

If the recommendation is always “accept”, then the payoff to a worker who reports

employment in any period must be at least as large as the payoff from remaining unemployed

in that period; otherwise, the agent would refuse offers.

Restriction (3) rules out the fraud due to refusal of offers noted in Table 1 (0.8 percent

of total fraud overpayments).

The expected cost for the principal is

C(σ) =

∫ ∞
0

e−(r+π)t
(
πcE(t) + rcU(t)

)
dt+

∑
i

e−(r+π)miγ.

There should, in fact, be an additional term in C(σ): the discounted income obtained by the

principal, πw
r+π

. However, unlike the unemployment insurance literature that endogenizes

job-finding probabilities, the discounted income in our model is a constant, so it does not

affect the optimal σ.

The principal’s problem is to find an incentive compatible σ that minimizes C(σ) and

delivers the initial promised utility U(0), i.e.,

min
σ

C(σ) (4)

subject to U(0) =

∫ ∞
0

e−(r+π)t (πE(t) + ru(t)) dt,

and constraints (2), (3).

With a slight abuse of notation, denote the principal’s cost function as C(U(0)).3

3Ravikumar and Zhang (2012) analyze the problem of tax compliance in a costly state verification
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3 A Simplification of the Optimal Contract

We begin our analysis by presenting two features of the optimal contract. In Section 3.1

we establish a “scaling” property. Then, in Section 3.2 we show that the optimal monitoring

is periodic. These properties simplify our analysis of the optimal contract by narrowing

the search of a solution to problem (4) to a smaller space.

To help us simplify, we rewrite problem (4) in terms of continuation utilities E(·), U(·)
and flow variable u(·), instead of consumptions. The objective becomes

C(σ) =

∫ ∞
0

e−(r+π)t (πc(E(t)) + rc(u(t))) dt+
∑
i

e−(r+π)miγ,

where c : (−∞, 0)→ R denotes the inverse of the utility function:

c(v) = − log(−v)/ρ. (5)

The incentive constraint (2) becomes

E(t) ≥
∫ s

t

e−r(x−t)e−ρwru(x)dx+ e−r(s−t)E(s),∀s ∈ (t,mi+1), (6)

since CARA utility implies that v(cU(x) + w) = e−ρwv(cU(x)) = e−ρwu(x).

3.1 Scaling

Our mechanism exhibits a scaling property: if the initial promise U(0) is scaled by

α > 0, then the optimal contract is also scaled by α. More formally,

Lemma 1 If {(U(t), E(t), u(t)) ; t ≥ 0} are optimal utilities for initial promise U(0), then

the optimal utilities for initial promise αU(0) are

{(αU(t), αE(t), αu(t)) ; t ≥ 0} .
model where the verification technology is imperfect (a low-income agent might be mistakenly labeled as

high income). They solve for the principal’s cost function using the Hamilton-Jacobi-Bellman equation.

In contrast, we study optimal unemployment insurance in an environment with a perfect verification

technology. We characterize the path of unemployment benefits by formulating the optimal control problem

and using the Pontryagin minimum principle.
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Alternatively, Lemma 1 states that the consumption of the worker with initial promise

αU(0) differs from that of the worker with promise U(0) by a constant, − log(α)/ρ, at all

dates and states.

The scaling property in Lemma 1 is related to the fact that CARA utility has no wealth

effect. Although a worker with high promised utility consumes (permanently) more than

a worker with low promised utility, the level of promised utility does not have an effect on

the worker’s incentives to conceal earnings. In other words, the incentive constraint (6)

holds when all of the utilities are scaled by the same factor.

Since the incentives to conceal earnings are the same for workers with different promised

utilities, the optimal sequence of monitoring dates, {mi; i ≥ 1}, is independent of the initial

promised utility. Again, no wealth effect implies that the level of promised utility does not

change how the worker is monitored, even if it does change the worker’s consumption.

3.2 Periodicity

At time 0, the principal knows the true employment status of the agent. After the

verification at m1, the principal again knows the true employment status. Hence, the

continuation problem at m1 is the same as the problem at time 0, except for the “initial”

promised utility. The scaling property implies that, if U(m1) = αU(0), then the optimal

utilities from m1 forward are scaled by α. Thus, starting with a promise U(0), if the

principal finds it optimal to monitor the unemployed agent at m1, then it must be the case

that starting with the promise αU(0) the principal would again find it optimal to monitor

at m1. Put differently, having monitored the agent at m1, the next optimal monitoring

period is 2m1. We immediately conclude that

Proposition 1 The optimal monitoring is periodic, i.e., mi = im1 for all i ≥ 1.

To understand the intuition for the periodic monitoring, consider policies where the

interval between verifications is either increasing or decreasing over time. First, it is sub-

optimal for the planner to verify more frequently at the beginning. Since the worker starts

out unemployed, he stays unemployed for some duration initially. Frequent verifications

early on merely incur unnecessary verification cost. Second, one might think that it is opti-
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mal to verify more frequently later since the probability of a long duration of unemployment

is small. However, this policy is also suboptimal. The worker’s conditional probability of

transitioning to employment is independent of how long he has been unemployed. More-

over, because the principal knows the true employment status after each verification, the

scaling property implies that from the principal’s perspective the worker who was just ver-

ified to be unemployed is no different from the worker at time zero. Thus the interval

between consecutive monitoring periods is a constant.

While we have established that the optimal monitoring is periodic, finding the optimal

periodicity is difficult. To determine the optimal m1 we must first determine the optimal

utilities in the intervals [0,m1], [m1, 2m1], etc. Toward this end, we break the principal’s

problem into two steps. First, assume that m1 is exogenous and the principal learns the

agent’s employment status at dates m1, 2m1, etc. Given m1, the principal solves for

the endogenous utility paths in [0,m1], [m1, 2m1], etc. Second, the principal chooses m1

optimally. We analyze the first step in the next section and the second step in section 5.

4 Optimal Unemployment Insurance with Exogenous

Monitoring

Given the simplification in Section 3, we now present the features of the optimal unem-

ployment insurance scheme. For a given m1, we first formulate the optimal control problem

in Section 4.1. This allows us to analyze the time paths of the variables of interest. We

then describe some features of the continuation utilities E(·) and U(·) in Section 4.2 and

use these features to illustrate the employment tax in Section 4.3 and unemployment ben-

efits in Section 4.4. Finally, in Section 4.5 we use the Pontryagin Minimum Principle to

explicitly characterize E(·) and U(·).

4.1 Optimal Control

We formulate the principal’s problem for interval [0,m1] as one of optimal control. Our

analysis for [0,m1] applies to other intervals as well.
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First, we rewrite the constraints recursively. The promise-keeping constraint (1) is

equivalent to the differential equation:

U ′(t) = r (U(t)− u(t)) + π (U(t)− E(t)) .

On the right side of the differential equation, the first term is the rate of change of U when

there is no uncertainty (i.e., when there is no transition to employment), and the second

term captures the additional rate of change due to uncertainty.

The incentive constraint (6) is equivalent to the following differential inequality:

r(v(cU(t) + w)− v(cE(t))) + E ′(t) ≤ 0. (7)

That is, the short term benefit that the agent gets from fraud, r(v(cU(t) + w)− v(cE(t))),

is offset by lower continuation utility he receives after he delays the employment report.

Note that E(·) could have downward jumps: when E(t) > lims↓tE(s), we interpret the

discontinuity as E ′(t) = −∞, and the differential inequality (7) still holds under this

interpretation. Introducing a slack variable µ(t) ≥ 0, we may rewrite (7) as

E ′(t) = rE(t)− e−ρwru(t)− µ(t).

In Lemma B.1 in Appendix B, we show that the above differential equation and in-

equality are equivalent to (1) and (6).

Second, the scaling property implies that the cost function C(·) satisfies

C(αU) = C(U)− log(α)/ρ.

Recalling the definition of c(·) in (5), we rewrite C(U) as

C(U) = C (|U |(−1)) = C (−1)− log(−U)/ρ ≡ ψ + c(U), (8)

where ψ ≡ C (−1) is the cost of private information: it is the one-time cost that the

principal is willing to pay to permanently remove private information from the model.

With ψ + c(U(m1)) as the continuation cost at m1, we rewrite the principal’s problem
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as one of optimal control with a convex objective and linear constraints.

min
u(t),U(t),E(t),

0≤t≤m1

∫ m1

0

e−(r+π)t (πc(E(t)) + rc(u(t))) dt+ e−(r+π)m1(γ + ψ + c(U(m1))) (9)

subject to U ′(t) = (r + π)U(t)− πE(t)− ru(t), (10)

E ′(t) = rE(t)− e−ρwru(t)− µ(t), (11)

E(t) ≥ U(t), (12)

U(0) is given.

4.2 Continuation Utilities

The continuation utilities E(·) and U(·) help us uncover the consumption paths for the

employed and the unemployed. We focus on the properties of E(·) and U(·) in [0,m1];

those in other monitoring cycles can be obtained by scaling (see Lemma 1).

We demonstrate five properties:

(i) E(t) > E(s) for t < s ≤ m1.

(ii) E(t) > U(t) for all t < m1.

(iii) E(m1) = U(m1).

(iv) E(·) jumps up immediately after m1.

(v) U(·) declines over time.

Property (i) states that the payoff to a worker who reports the transition to employment

earlier is higher than the payoff to one who reports the transition later. The worker who

transitions to employment at t but commits fraud consumes cU(t) + w at t, whereas the

worker who tells the truth consumes cE(t). It is intuitive that cE(t) < cU(t) +w; otherwise

deterring fraud would not be an issue. In terms of utilities, E(t) < e−ρwu(t). Incentive

compatibility (11) requires that delaying the report yields a lower payoff (see Figure 1).

Thus, E(t) > E(s) within a monitoring cycle.

For property (ii), recall that restriction (12) imposes E(t) must be greater than or

equal to U(t). If the agent who transitions to employment before m1 is offered the same
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Figure 1: Lower payoff for late reporters

payoff as the agent who remains unemployed, then the employed agent will claim to be

unemployed and consume more than the unemployed agent. He can continue cheating

until the verification period m1 (see Figure 2). Thus, within a monitoring cycle, E(t) must

be greater than U(t).

To understand (iii), note that the true employment status is revealed at m1, so the

principal does not face an incentive problem at that instant. Hence, there is no reason to

reward the (lucky) agent who transitioned to employment at m1 relative to the (unlucky)

agent who remains unemployed (i.e., E(m1) > U(m1)). Efficiency under full information

requires equalizing marginal costs of continuation utilities for the unemployed and the

employed. With CARA preferences, equalizing the marginal costs implies equal utilities.4

Thus, E(m1) = U(m1).

Property (iv) states that U(m1) = E(m1) < E(m1+), where E(m1+) is the utility for a

worker who is unemployed at m1 but transitions to employment immediately after m1, i.e.,

4Cost function for the employed is c(E), given by equation (5), and the cost function for the unemployed

is C(U), given by equation (8). It is easy to see from (8) that C ′(U) equals c′(U). Thus, equalizing marginal

costs at m1, c′(E(m1)) = C ′(U(m1)) = c′(U(m1)), implies E(m1) = U(m1). With general preferences,

C ′(·) is not necessarily identical to c′(·), and equal marginal costs do not imply identical utility levels.
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Figure 2: Continuation utilities E(·) and U(·) in [0,m1].

E(m1+) = limt↓m1 E(t) (see Figure 3). Suppose, to the contrary, that U(m1) = E(m1+).

Then incentive compatibility in [m1, 2m1] would be violated because the worker employed

immediately after m1 can claim to be unemployed and consume more than the employed

until the next verification period, 2m1. Note that if there is no verification at date t, then

an upward jump in E(·) violates the incentive constraint: a worker who transitions to

employment prior to t would benefit from delaying the employment report. At the moment

of verification, however, the worker cannot delay the employment report since the true

employment status is revealed.

To understand why U(·) declines, suppose U(m1) > U(0). Then lowering U(m1) has two

benefits. First, the unemployed agent’s continuation utility path is flatter, which implies

better insurance for the unemployed. Second, lower U(m1) (and E(m1)) reduces E ′(·),
generating stronger incentives to deter fraud. In addition, U(·) can never jump. Because

U(·) is the promised utility to the unemployed agent, any jump in U(·) would violate the

promise-keeping constraint.
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Figure 3: Continuation utility E(·) is nonmonotonic.

4.3 Employment Tax

Here we examine the consumption allocated to the agent who reports employment earlier

relative to the consumption for the agent who reports it later. Recall that E(t) > E(s)

within a monitoring cycle and the continuation utility E(·) jumps up after verification.

Since employment is an absorbing state, any agent who reports a transition to employment

at t is allocated constant consumption cE(t) forever and is not monitored. Thus, E(t)

maps into cE(t) instant by instant and, hence, cE(t) > cE(s) within a monitoring cycle.

Furthermore, the consumption for the agent who reports the transition to employment

immediately after m1 is higher than that for the employed agent at m1 (see Figure 4).

The nonmonotonicity is closely related to the way incentives are provided in our model.

Within a cycle, the principal does not monitor, and relies exclusively on consumption

distortions to induce truth-telling: cE must fall sufficiently fast for the worker not to

postpone his report of employment. At m1, cE falls to a level such that the agent is

indifferent between transitioning to employment and remaining unemployed. The principal

can perfectly insure the agent against the unemployment shock at m1 because the true

employment status is revealed. Immediately after m1, the principal treats the worker
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Figure 4: Permanent consumption for workers who transition to employment in different

periods

employed right after m1 better than the worker employed at m1. This is because the worker

who transitions to employment after m1 can commit fraud until the next monitoring period,

while the worker who transitions to employment at m1 cannot commit fraud. Hence, the

principal must offer the former a higher permanent consumption to induce truth-telling.

The difference between wage w and consumption cE can be interpreted as an employ-

ment tax. Our contract implies that within a verification cycle, the employment tax for late

reporters is higher than that for the early reporters. However, unlike the existing unemploy-

ment insurance literature, the employment tax is nonmonotonic: it decreases immediately

following verification.

4.4 Unemployment Benefits

Unlike the case where cE(t) maps into E(t) at every instant, cU(t) is not pinned down at

every instant by U(t), since the unemployed agent is not fully insured. Instead, the path of

cU(·) in [0,m1] requires knowledge of the entire path of U(·) in the interval. We obtain the

entire trajectories of cU(·) and U(·) after solving (9) in Section 4.5. However, monotonicity
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of U(·) in Section 4.2 suggests that cU(·) declines with unemployment duration.5
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Figure 5: Consumption for the Unemployed

Figure 5 shows that the unemployment benefits jump down at the verification period.

To understand the jump, we argue that it is optimal for the principal to set u(t) above

u(m1) when m1 − t > 0 is small. Doing this relaxes the incentive constraint at time t, as

the following variational argument shows. The promise-keeping constraint at m1− δ, for a

small positive δ, is

U(m1 − δ) = rδu(m1 − δ) + e−rδ[(πδ)E(m1) + (1− πδ)U(m1)]

= rδu(m1 − δ) + e−rδU(m1),

where the second equality uses the aforementioned property E(m1) = U(m1). The incentive

constraint at m1 − δ is

E(m1 − δ) ≥ rδe−ρwu(m1 − δ) + e−rδE(m1).

5As in Hopenhayn and Nicolini (1997), our contract implies that the lifetime utility for the unemployed

agent eventually reaches an arbitrarily low level with positive probability. Pavoni (2007) imposes an

exogenous lower bound on promised utility and shows that the optimal benefits decrease with the duration

of unemployment, but remain constant after the promised utility reaches the lower bound. Alvarez-Parra

and Sanchez (2009) show a similar result in a model with an endogenous lower bound on promised utility.

19



Suppose u(m1 − δ) = u(m1). Then the principal can maintain the promise-keeping con-

straint but relax the incentive constraint by increasing u(m1 − δ) and decreasing u(m1).

Specifically, consider the variation

ũ(m1 − δ) = u(m1 − δ) + e−rδε, ũ(m1) = u(m1)− ε, Ẽ(m1) = E(m1)− rδε.

Because the unemployed worker’s consumption after m1 remains unchanged, his contin-

uation utility at m1 is Ũ(m1) = U(m1) − rδε, which is equal to Ẽ(m1). Therefore, the

promise-keeping constraint U(m1 − δ) = rδũ(m1 − δ) + e−rδŨ(m1) still holds, and the

incentive constraint is relaxed:

rδe−ρwũ(m1 − δ) + e−rδẼ(m1) = rδe−ρwu(m1 − δ) + e−rδE(m1)− (1− e−ρw)rδε

< rδe−ρwu(m1 − δ) + e−rδE(m1).

Starting from u(m1 − δ) = u(m1), the additional cost of consumption incurred by this

variation is second order, but the effect on incentive constraint is first order. Hence the

principal always chooses u(t) above u(m1) when t is close to (but below) m1.

We summarize these findings in the following proposition. The proof is in Appendix B.

Proposition 2 The unemployment benefit, cU(·) is monotonically decreasing with unem-

ployment duration, with downward jumps at verification, while cE(·) is nonmonotonic: it

decreases between verifications with upward jumps immediately after verification.

Unemployment insurance systems in many countries feature benefits schemes similar to

the one in Proposition 2. For example in Spain, workers receive a replacement rate of 70

percent for the first 6 months of unemployment, 60 percent for the next 18 months, and a

minimum payment thereafter.

4.5 Pontryagin Minimum Principle

We construct a solution to the optimal control problem (9) in which the incentive

constraint (11) binds for all t < m1. The problem faced by the principal is to choose

an initial state E(0) and a time path u(·) to minimize the cost in (9), given U(0). The

promise-keeping and incentive constraints (10) and (11) then imply a time path (U(·), E(·))
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for continuation utilities. One way to think about this problem is to think of choosing u(t)

at each date, given the values of U(t) and E(t) that have been attained by that date.

The principal faces a tradeoff between the current-period cost and the cost of delivering

continuation utilities. Hence, she needs to set “prices”, Φ and λ, on increments to the

continuation utilities U and E. Because it is costly for the principal to maintain a low E

as a threat, it must be the case that λ ≤ 0. Moreover, we have argued in Section 4.2 that

E(t) ≥ U(t) is slack except at m1, so we impose only the constraint E(m1) = U(m1).

A central construct in the optimal control problem is the current value Hamiltonian H

defined by

H = πc(E(t)) + rc(u(t)) + Φ(t)((r + π)U(t)− πE(t)− ru(t)) + λ(t)(rE(t)− e−ρwru(t)),

which is just the sum of current-period cost and the rate of increase in continuation utilities

valued at Φ(t) and λ(t). An optimal allocation must minimize H at each date t.

The first-order condition for minimizing H with respect to u is

c′(u) = Φ + e−ρwλ. (13)

The left-hand side is the marginal cost of today’s utility, while the right-hand side is the

marginal cost of starting with higher continuation utility U tomorrow, offset by the benefit

of a slacker incentive constraint (it is a benefit because λ ≤ 0). The utility u must be

chosen to equalize the costs at each date.

The prices Φ and λ must satisfy

Φ′(t) = (r + π)Φ− ∂H

∂U
= 0, (14)

λ′(t) = (r + π)λ− ∂H

∂E
= π(Φ− c′(E) + λ), (15)

at each date t if (u(·), U(·), E(·)) is an optimal path. Equation (14) implies that Φ(t) is a

constant. Moreover, since multiplier Φ(0) is the marginal cost of U(0), we have

Φ = C ′(U(0)) = −(ρU(0))−1 > 0.

Since the planner can choose E(0) freely,

λ(0) = 0. (16)
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At m1, the shadow prices Φ and λ(m1) must satisfy

Φ = −κ+ c′(U(m1)), (17)

λ(m1) = κ, (18)

where e−(r+π)m1κ is the multiplier on the constraint E(m1) = U(m1). Since the principal’s

problem is convex, these conditions (13–18) are both necessary and sufficient for a minimum.

When (11) holds as equality, the states (U,E) and the costate λ satisfy differential

equations:

U ′(t) = (r + π)U − πE − ru, (19)

E ′(t) = rE − re−ρwu, (20)

λ′(t) = π(Φ− c′(E) + λ). (21)

The ODE system contains three variables and would be difficult to analyze in a general

context. However, we can solve (20) and (21) regardless of (19), because neither (20) nor

(21) relies on U . Once (20) and (21) are solved, it is easy to solve (19). Formally,

Lemma 2 If (20) and (21) hold, then (19) holds if and only if

ΦU(t) + λ(t)E(t) + ρ−1 = 0, ∀t ∈ [0,m1]. (22)

To solve the reduced ODE system, (20) and (21), we need two boundary conditions. The

first is (16), λ(0) = 0. The second cannot be a value for E(0), as E(0) is endogenous and

unknown a priori. We obtain the second boundary condition, E(m1) = −ρ−1(Φ+λ(m1))−1,

from E(m1) = U(m1) and equation (22).

The following lemma shows that these two boundary conditions pin down a unique

solution curve for the system (20) and (21). (Figure 6 shows the phase diagram.)

Lemma 3 For any m1 > 0, there is a unique initial condition E(0) such that the solution

starting at (λ(0) = 0, E(0)) satisfies E(m1) = −ρ−1(Φ + λ(m1))−1.
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Figure 6: Phase Diagram for (λ,E).

5 Optimal Monitoring

Until this point, we have taken m1 as exogenous. In this section, we characterize

the optimal choice of m1. The tradeoff in choosing m1 is as follows. Monitoring more

frequently implies higher verification cost, but the principal can provide better insurance:

the consumption path for the unemployed is similar to that for the employed. Monitoring

less frequently implies lower verification cost but worse insurance.

For any m1 > 0, denote the minimized cost in (9) as C (m1), that is,

C (m1) =

∫ m1

0

e−(r+π)t (πc(E(t)) + rc(u(t))) dt+ e−(r+π)m1 (γ + ψ + c(U(m1))) .

Intuitively, delaying monitoring (i.e., a small increase in m1) saves the principal both the

cost of monitoring and the cost of (after-monitoring) consumptions, because the payment

of γ + ψ + c(U(m1)) is postponed. By doing so, however, the principal must maintain the

consumptions c(E(·)) and c(u(·)) for a longer duration. Subtracting the benefit from the

cost (algebraic details in Appendix B) yields

C ′(m1) = e−(r+π)m1

(
rρ−1 log

(
Φ + e−ρwλ(m1)

Φ + λ(m1)

)
− (r + π)(γ + ψ)

)
.
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Thus, the first-order condition for m1 is

rρ−1 log

(
Φ + e−ρwλ(m1)

Φ + λ(m1)

)
= (r + π)(γ + ψ). (23)

Proposition 3 The optimal m1 is the unique solution to (23). That is, (23) is both

necessary and sufficient for the minimum of C (m1).

Remark 2 Although our analysis relies on an undetermined parameter ψ, the parameter

can be uniquely pinned down by a fixed-point condition that the actual cost function at time

zero must equal the conjectured function ψ + c(U(0)). Further details are in Appendix B.

Remark 3 Our analytical results rely on the assumption of CARA preferences. However,

the main features of the optimal contract remain valid even if the worker has CRRA pref-

erences. We demonstrate this through a numerical example in Appendix C.

6 Quits

Another type of fraud that could arise in our model is quits. An agent in our model

could transition to employment in period t, claim to be unemployed until almost m1, and

then quit to become unemployed at m1. The verification at m1 would not reveal him to be

a cheater. Thus, quitting is possible in our model.

Our mechanism guarantees that the agent does not commit such a fraud. The contin-

uation utilities E(·) and U(·) are such that the agent is indifferent between reporting the

transition immediately and delaying it to the next period. By following the path above

and quitting at m1, he becomes truly unemployed, is subject to the stochastic arrival rate

of employment opportunity, and is worse off.

Hopenhayn and Nicolini (2009) examine a model where quits cannot be distinguished

from layoffs and the only fraudulent behavior is quits. In their model, the employment

status is observable and non-absorbing, and disutility from working is greater than that

from searching for employment. Employed agents might want to opportunistically quit

their job, enjoy more leisure, and collect unemployment benefits. To discourage quits, the

principal offers (i) higher consumption to the employed workers who stay on the job longer
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and (ii) more generous benefits to unemployed workers with longer employment spells, as

quitters have shorter employment spells on average. In our model, the utility functions

for the unemployed worker and the employed worker are the same, and employment status

is private information. Since employment is an absorbing state, quitting as considered in

Hopenhayn and Nicolini (2009) cannot arise in our model. The potential reason for quitting

in our model is to cover up the fraudulent collection of unemployment benefits before the

verification period. Our optimal mechanism provides incentives for the agent not to delay

reporting his transition to employment and not to conceal his earnings.

While overpayment due to quits is more than the overpayment due to insufficient search

and job refusals, it is small relative to the overpayment due to concealed earnings (see Table

1). Our mechanism deters fraud due to both concealed earnings and quits.

7 Stochastic Verification

Our monitoring mechanism in the previous sections was restricted to deterministic veri-

fication. Here we consider a more general mechanism where the principal verifies randomly

after receiving the unemployment report. Conditional on the unemployment report at t,

the principal chooses the monitoring Poisson rate p(t) ≥ 0. That is, over a period of length

dt, the principal monitors with probability p(t)dt and she does not monitor with probability

1 − p(t)dt. Note that, since our model is in continuous time, p(t) is not the monitoring

probability.

We assume that if a worker is monitored and caught cheating, he has to pay a finite

penalty forever. With infinite penalty, an arbitrarily small monitoring probability would

deliver the full-information constant consumption. In our model, if the principal can choose

any finite penalty between 0 and φ > 0, he would always choose φ. Henceforth, we assume

that the finite penalty is φ units of the consumption good, forever.

Since the penalty for a worker with high promised utility is the same as that for a worker

with low promised utility, we obtain a scaling property similar to the one in Section 3.1.

Thus, the incentives to conceal earnings are the same for workers with different promised

utilities. Similar to our model with deterministic verification, we show in Proposition 4
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that the optimal stochastic verification mechanism consists of cycles. See Appendix D for

the proof.

Proposition 4 There exists an N > 0 such that the principal monitors the unemployed

with a constant arrival rate p > 0 if and only if t ≥ N . Before N , the time path (U(·), E(·))
converges to the 45-degree line; after N , it moves along the 45-degree line toward (−∞,−∞)

until the agent is randomly drawn to be verified. After the verification, (U,E) jumps to a

new state (Ũ , Ẽ) and a new cycle starts.

The unemployed worker is in one of two states: (i) not monitored (i.e., p(t) = 0) or (ii)

randomly drawn to be monitored (i.e., p(t) ≡ p > 0). Within each cycle, an unemployed

worker is initially in the not-monitored state. He is moved to the random monitoring state if

the duration of his unemployment report exceeds the threshold N . If he is randomly drawn

to be monitored, then he is moved to the not-monitored state after being monitored, and a

new cycle begins. While the date of monitoring is stochastic, the threshold duration is not.

That is, within each cycle, the principal guarantees that the worker will not be monitored

until the threshold duration is reached, similar to the deterministic verification case.

The intuition for why the worker is not monitored before the threshold duration is as

follows. The Unemployment Insurance agency has access to two instruments: tax/subsidy

and monitoring. Recall that at verification the true employment status is revealed, and E

is reset to a level such that its shadow price is zero, which means that, immediately after

monitoring, the employment tax can be varied at no cost. The cost of the tax/subsidy

instrument is lower than the cost of monitoring, γ > 0, immediately after monitoring, and

remains so until some threshold unemployment duration is reached. Hence, it is optimal to

use only the tax/subsidy instrument for the provision of incentives before the threshold.

Remark 4 The absence of verification until a threshold duration is unlikely to be robust to

other types of penalties. For instance, in Popov (2009) there is an exogenous lower bound

on the worker’s continuation utility and a worker who is caught cheating is pushed to this

lower bound. So the penalty for a worker with high continuation utility is larger than that

for a worker with low continuation utility. With hidden i.i.d. income, he shows that the

verification probability is always positive.
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The stochastic monitoring mechanism clearly dominates the deterministic mechanism

characterized in Section 5. To see this, consider a stochastic monitoring scheme in which

the arrival rate of monitoring is higher than p for workers in the random monitoring state.

Denote this higher arrival rate as p̃. Proposition 4 implies that p̃ is suboptimal. By

continuity, the limiting scheme as p̃→∞ should also be suboptimal. This limiting scheme

is exactly the deterministic monitoring mechanism.

We argue below that the key insights on the use of tax/subsidy and monitoring in-

struments in the suboptimal deterministic mechanism are nearly identical to the insights

from the optimal stochastic mechanism. We describe in detail the similarities and on what

dimensions the stochastic case differs from the deterministic one.

7.1 Comparison of Monitoring with the Deterministic Case

First, consider the optimal use of monitoring in each case. Both the stochastic and

deterministic mechanisms have the feature that monitoring does not occur for before a

threshold date; m1 in the deterministic case, N in the stochastic case. These thresholds,

however, are necessarily distinct; i.e., in general m1 6= N .

Second, both cases feature cycles. In the deterministic case, after m1 a new cycle begins,

with exactly the same length as the first. Similarly, in the stochastic case, after monitoring

occurs, a new cycle begins, where verification does not occur before the threshold N is

reached. In the stochastic case, the exact date of when the monitoring occurs represents

the only difference. After N , monitoring arrives according to a Poisson process; therefore,

in general, the exact length of each cycle varies depending on when the worker is actually

verified. As in the deterministic case, however, the value of N does not change with each

cycle.

7.2 Comparison of Tax/Subsidy with the Deterministic Case

Consumptions in the stochastic monitoring case are similar to those in the deterministic

case. Within each cycle, before the threshold N , the patterns of consumption are identical

to (cE, cU) in Figures 4 and 5. After N , if a worker is monitored and verified to be truly
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unemployed, then the unemployment benefits jump down, as in the deterministic case.

The only difference is that in the deterministic case, continuation utilities and consump-

tions are reset when the threshold m1 is reached. In the stochastic case, after the threshold

N , and before the monitoring actually arrives, continuation utilities and consumptions

smoothly decline with the duration of unemployment. The decreasing continuation utili-

ties and the monitoring (and finite punishment) jointly provide incentives for truth telling;

the worker is indifferent between reporting a job offer and committing fraud.

8 Conclusion

The most prevalent incentive problem in the U.S. unemployment insurance system is

that individuals collect unemployment benefits while being gainfully employed. We exam-

ine a model of optimal unemployment insurance where a worker can conceal his employment

status and the Unemployment Insurance authority has a technology to verify his employ-

ment status. We find that the optimal interval between consecutive monitoring periods

is a constant, independent of history. The optimal employment tax is nonmonotonic, in-

creasing between verifications and decreasing immediately after a verification. The optimal

unemployment benefits decline with unemployment duration with sharp declines after each

verification. Our optimal contract also prevents fraud from quits.

Unemployment insurance in our model is a form of social insurance protecting workers

against the risk of job loss. Acemoglu and Shimer (1999, 2000), Shimer and Werning (2008),

and Alvarez-Parra and Sanchez (2009) explore another role of unemployment insurance.

They examine environments with heterogeneous jobs, and unemployment insurance helps

the worker wait for the appropriate job. Some jobs have higher productivity than others,

but such job opportunities arrive less frequently. Unemployment benefits help workers wait

for more productive matches and endure longer unemployment durations. The benefits

in these environments affect the aggregate composition of jobs. An interesting direction

for future research is to extend our environment to multiple jobs and examine optimal

monitoring in the presence of the alternative role of unemployment insurance.

Finally, our model does not include any search or job retention effort. Incorporating
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the job retention effort into our model requires employment to be stochastic. If workers

can conceal earnings, their hidden income would adversely affect their job retention effort.

Analyzing interaction between effort and fraud is another interesting direction for future

research.
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Appendix A Data

This section describes data on the accuracy of payments in the U.S. unemployment
insurance system. We discuss three issues. First, we present an overall picture of unem-
ployment insurance expenditures, and briefly describe the system in place for determining
the accuracy of the paid claims. Next, we provide details on the nature of “fraud” over-
payments by cause, from 2005 − 2009. Finally, we present data on how these fraudulent
payments were detected.

Total unemployment insurance expenditures in 2005, for example, were $30.2 billion.
These expenditures vary depending on aggregate economic activity; total expenditures
during the recession in 2009, for example, were $76.8 billion. These benefits are paid out
at the state level, with each state deciding its benefits and financing the benefits.

To determine the accuracy of these expenditures, the U.S. Department of Labor has
a program, referred to as BAM (Benefit Accuracy Measurement). The BAM program
chooses a random sample of weekly unemployment insurance claims, and determines their
accuracy. The investigators also interview some claimants if necessary.

The goal of the program is different from the goal of unemployment insurance fraud
investigators. While the fraud investigators look to recapture overpayments, BAM in-
vestigators calculate statistics of the unemployment insurance program (see BAM State
Operations Handbook ET No. 495, 4th Edition). Of the total overpayments determined
by BAM, some represent simple errors in calculating benefits, while some represent fraud
overpayments. Table A.1 details the various types of fraud overpayments from 2005−2009,
averaged over all U.S. states.

Table A.1: Fraud Overpayments
Percent of Total Fraud Overpayments

Cause 2005 2006 2007 2008 2009
Concealed Earnings 62.64 54.40 60.06 67.32 65.89
Insufficient Job Search 4.55 4.15 4.95 3.02 2.75
Refused Suitable Offer 0.63 0.36 0.80 0.36 0.77
Quits 12.78 16.41 7.06 5.04 5.14
Fired 4.27 4.60 13.29 12.69 9.61
Unavailable for Work 4.94 6.95 4.17 4.60 7.38
Other 10.20 13.14 9.67 6.97 8.46
Total 100.00 100.00 100.00 100.00 100.00

Source: Benefit Accuracy Measurement data, U.S. Department of Labor

First, “Concealed Earnings” refers to payments to individuals who were simultaneously
earning wages and collecting unemployment benefits. The second category, “Insufficient
Job Search,” refers to cases where the individual did not meet the mandatory work search
requirement (e.g., a minimum number of job applications must be filed each week). “Re-
fused Suitable Offer” refers to cases where the individual was offered a job deemed suitable,
but rejected it. “Quits” and “Fired” are separation issues, where Quits refers to payments
to individuals who voluntarily left their job and Fired refers to payments to those who were
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fired from their job for a valid reason (e.g., poor performance or missing work). “Unavail-
able for Work” refers to payments to persons who cannot work (e.g., disability).

The data in Table A.1 represent our calculations from the raw data files provided to
us by the U.S. Department of Labor. More general statistics from the BAM program are
available at http://www.ows.doleta.gov/unemploy/bqc.asp. Note, however, that our
definitions and calculations differ slightly from those used in the BAM reports available
online. In our calculations, we restrict attention to the cases of fraud that relate to the
incentive problem we study in this paper and to the incentive problems that the existing
literature has focused on.

Table A.2 displays different detection technologies used by BAM. For example, “Veri-
fication of search contact” is when the BAM investigator verifies whether a potential job
contact reported by the unemployed person is indeed true. “Claimant Interview” is an ac-
tual interview with the person collecting benefits, etc. The numbers in the table represent
the percentage of each type of fraud uncovered by that particular method.

Table A.2: Detection Technologies, 2007 (percent of each type of fraud detected by method)

Detection Method
Concealed Insufficient Work

Quits Fired
Earnings Job Search Refusal

Verification of search contact 1.31 31.59 0.00 0.00 0.00
Verification of wages and/or

separation
62.02 0.00 100.00 55.49 66.80

Claimant interview 10.41 39.98 0.00 6.77 0.00
Verification of eligibility

with 3rd parties
1.38 5.16 0.00 0.00 0.00

Unemployment insurance
records

14.61 9.31 0.00 32.64 30.02

Job/employment service
records

0.17 6.64 0.00 2.31 0.00

Verification with union 0.71 7.31 0.00 0.00 0.00
Crossmatch with state

directory of new hires
7.52 0.00 0.00 1.97 3.19

Crossmatch with state
wage record files

1.86 0.00 0.00 0.83 0.00

Source: Benefit Accuracy Measurement data, U.S. Department of Labor

In the case of Concealed Earnings, for instance, one may think that fraud could be
easily detected by matching unemployment insurance records with employment records
(the last two rows in Table A.2). Indeed, some fraction of the overpayments is detected
with the crossmatching technology. However, as Table A.2 displays, the fraction is less
than 10 percent. More than 90 percent of the overpayments due to concealed earnings
fraud were not detectable under the standard procedures available to State authorities.
This suggests that a more costly verification is necessary to uncover overpayments due to
Concealed Earnings.
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Appendix B Proofs

Proof of Lemma 1: Suppose that a contract σ ≡ {
(
U(t), E(t), u(t), cU(t), cE(t),mi

)
; t ≥

0, i ≥ 1} delivers the continuation utility U . Then, a contract

σα ≡
{(
αU(t), αE(t), αu(t), cU(t)− log(α)/ρ, cE(t)− log(α)/ρ,mi

)
; t ≥ 0, i ≥ 1

}
delivers αU . The reverse is also true. Further, σ is incentive compatible if and only if σα
is incentive compatible. Therefore,

{(
U∗(t), E∗(t), u∗(t), cU∗(t), cE∗(t),m∗i

)
; t ≥ 0, i ≥ 1

}
is

the optimal contract to deliver U if and only if{(
αU∗(t), αE∗(t), αu∗(t), cU∗(t)− log(α)/ρ, cE∗(t)− log(α)/ρ,m∗i

)
; t ≥ 0, i ≥ 1

}
is the optimal contract to deliver αU . �

Lemma B.1 The promise-keeping constraint (1) and the incentive constraint (6) hold for
all 0 ≤ t < s ≤ m1 if and only if

U(s)− U(t) =

∫ s

t

((r + π)U(x)− πE(x)− ru(x)) dx, (24)

E(s)− E(t) ≤
∫ s

t

(
rE(x)− re−ρwu(x)

)
dx, (25)

hold for all 0 ≤ t < s ≤ m1. Taking the limit as s goes to t yields the differential equations
(10) and (11).

Proof. We only show the equivalence between (6) and (25), since the equivalence between
(1) and (24) can be obtained similarly by replacing the inequalities below with equalities.

Necessity: If (6) holds for all t < s, then

E(t) +

∫ s

t

(
rE(x)− re−ρwu(x)

)
dx

≥
∫ s

t

e−r(x−t)re−ρwu(x)dx+ e−r(s−t)E(s)

+

∫ s

t

(
r

(∫ s

x

e−r(η−x)re−ρwu(η)dη + e−r(s−x)E(s)

)
− re−ρwu(x)

)
dx

=

(
e−r(s−t) +

∫ s

t

re−r(s−x)dx

)
E(s) +

∫ s

t

(
e−r(x−t) − 1

)
re−ρwu(x)dx

+

∫ s

t

r

(∫ s

x

e−r(η−x)re−ρwu(η)dη

)
dx

= E(s) +

∫ s

t

(
e−r(x−t) − 1

)
re−ρwu(x)dx+

∫ s

t

(∫ η

t

re−r(η−x)dx

)
re−ρwu(η)dη

= E(s) +

∫ s

t

(
e−r(x−t) − 1

)
re−ρwu(x)dx+

∫ s

t

(
1− e−r(η−t)

)
re−ρwu(η)dη

= E(s).
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Hence, inequality (25) is verified.
Sufficiency: Define an absolutely continuous function f(·) as

f(s) ≡
∫ s

t

e−r(x−t)re−ρwu(x)dx+ e−r(s−t)
(
E(t) +

∫ s

t

(
rE(x)− re−ρwu(x)

)
dx

)
.

Because f is absolutely continuous, it is differentiable almost everywhere (a.e.), and

f ′(s) = e−r(s−t)re−ρwu(s)− re−r(s−t)
(
E(t) +

∫ s

t

(
rE(x)− re−ρwu(x)

)
dx

)
+e−r(s−t)

(
rE(s)− re−ρwu(s)

)
= re−r(s−t)

(
E(s)− E(t)−

∫ s

t

(
rE(x)− re−ρwu(x)

)
dx

)
, a.e.

If (25) holds, then f ′(s) ≤ 0 a.e. Then, it follows from Theorem 29.15 in Aliprantis and
Burkinshaw (1990) that

f(s) = f(t) +

∫ s

t

f ′(x)dx ≤ f(t) = E(t).

Therefore, ∫ s

t

e−r(x−t)re−ρwu(x)dx+ e−r(s−t)E(s) ≤ f(s) ≤ E(t),

which verifies inequality (6). �

Proof of Lemma 2: If (19), (20) and (21) all hold, we can substitute them into
(ΦU + λE)′ and obtain

(ΦU + λE)′ = ΦU ′ + λ′E + λE ′

= Φ ((r + π)U − πE − ru) + π (Φ− c′(E) + λ)E + λ(rE − re−ρwu)

= (r + π) (ΦU + λE)− πc′(E)E − r(Φ + e−ρwλ)u.

Because −c′(E)E = ρ−1 and −(ρu)−1 = c′(u) = Φ + e−ρwλ, we have

(ΦU + λE)′ = (r + π)
(
ΦU + λE + ρ−1

)
. (26)

Because ΦU(0) +λ(0)E(0) + ρ−1 = 0, it follows from (26) that ΦU(t) +λ(t)E(t) + ρ−1 = 0
for all t ∈ [0,m1].

On the other hand, if (20) and (21) hold and

ΦU(t) + λ(t)E(t) + ρ−1 = 0, ∀t ∈ [0,m1],

then (ΦU + λE)′ = 0 for all t ∈ [0,m1]. Then (19) can be derived by reversing the above
steps. �
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(0, 0)

g(0)

g

λ

Φ

Φeρw

line g = Φ+ λ

line g = Φeρw + λ

Figure 7: Phase Diagram for (λ, g).

Proof of Lemma 3: First, it is convenient to transform the state variable E, which
may approach −∞, into a bounded one. To do so, we replace E with

g ≡ c′(E) = −(ρE)−1.

Now, the ODE system consists of (21) and

g′ =
E ′

ρE2
=

rg2

Φeρw + λ
− rg, (27)

with boundary condition g(m1) = Φ + λ(m1) (Figure 7 shows the phase diagram). Let
m(g(0)) be the time to hit the straight line g = Φ + λ starting with (λ(0) = 0, g(0)).

Second, we show that limg(0)↓Φm(g(0)) = 0. If λ = 0 and g = Φ, then

(g − λ)′(t) =

(
rg2

Φeρw + λ
− rg + π(g − λ− Φ)

)∣∣∣∣
(λ,g)=(0,Φ)

=
rΦ2

Φeρw
− rΦ < 0.

Continuity of the ODE system (21), (27) implies that (g−λ)′(t) < 0 in a small neighborhood
of (0,Φ). If λ(0) = 0 and g(0) approaches Φ from above, then g(0)− λ(0)− Φ approaches
zero. Since the solution curve starting with (0, g(0)) will remain in the small neighborhood
of (0,Φ) for a while, it will decrease and hit the line g = Φ + λ quickly if g(0)− λ(0)− Φ
is sufficiently small.

Third, we show that m(g(0)) is strictly increasing in g(0). Consider two paths that start
with initial conditions (0, g1(0)) and (0, g2(0)), where Φ < g1(0) < g2(0). We will show that
g1(t)− λ1(t) < g2(t)− λ2(t) for all t. By contradiction, suppose (g1 − λ1)(t) = (g2 − λ2)(t)
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for the first time at t = t∗. Because the two paths cannot cross, we cannot have that
g1(t∗) ≤ g2(t∗). Then g1(t∗) > g2(t∗) and λ1(t∗) > λ2(t∗). Hence

(g1 − λ1)′(t∗) = − rg1

Φeρw + λ1

(Φeρw + λ1 − g1)− π(Φ + λ1 − g1)

< − rg2

Φeρw + λ2

(Φeρw + λ2 − g2)− π(Φ + λ2 − g2)

= (g2 − λ2)′(t∗),

where the inequality follows from g1
Φeρw+λ1

> g2
Φeρw+λ2

. That (g1 − λ1)′(t∗) < (g2 − λ2)′(t∗)
contradicts the facts that (g1 − λ1)(t∗) = (g2 − λ2)(t∗) and (g1 − λ1)(t) < (g2 − λ2)(t) for
all t < t∗. Thus g1(t) − λ1(t) < g2(t) − λ2(t) for all t, and the path (λ1(t), g1(t)) reaches
g = Φ + λ sooner.

Finally, we show there exists a unique g(0) to satisfy m(g(0)) = m1 for any m1 > 0.
The second step in this proof shows that limg(0)↓Φ m(g(0)) = 0. Part (ii) in Lemma B.2
(page 39) shows that m(g(0)) can be arbitrarily large with high values of g(0). Hence, the
existence of a unique solution to m(g(0)) = m1 follows from the intermediate value theorem
and the monotonicity of m(g(0)) in g(0). �

Proof of Proposition 2: First, we show that E, cU , U , and U
E

all fall on [0,m1]. It
follows from g′(t) < 0 that E ′(t) = ρE2(t)g′(t) < 0. Equation (13) implies that u′(t) =
e−ρwλ′(t)
c′′(u)

< 0, or (cU)′(t) < 0. Equation (22) implies that U ′(t) = −Φ−1(λ(t)E(t))′ < 0.

Equation (22) also implies that U
E

= Φ−1(g−λ). Hence part (i) in Lemma B.2 implies that(
U
E

)′
(t) < 0.

Second, to see the downward jump in cU(·) at m1, we show that

lim
t↑m1

c′(u(t)) > lim
t↓m1

c′(u(t)).

The left side is Φ + e−ρwλ(m1) according to (13). To obtain the right side, we apply (13)
to the interval [m1, 2m1), and obtain

c′(u(t)) = C ′(U(m1)) + e−ρwλ̃(t), t ≥ m1,

where λ̃ denotes the multiplier λ for the problem on the interval [m1, 2m1). Because
λ̃(m1) = 0, we have limt↓m1 c

′(u(t)) = c′(u(m1)) = C ′(U(m1)) + 0 = Φ + λ(m1). Therefore,

lim
t↑m1

c′(u(t)) = Φ + e−ρwλ(m1) > Φ + λ(m1) = lim
t↓m1

c′(u(t)).

�

Proof of Proposition 3: First, because Φ+e−ρwλ
Φ+λ

decreases in λ, and λ(m1) decreases
in g(0) and m1, there is a unique value for g(0) (as well as m1) for a given ψ.

Second, to show that (23) is sufficient, we prove that

C ′(m1)

{
< 0, m1 < m∗1;
> 0, m1 > m∗1.

This is because Φ+e−ρwλ(m1)
Φ+λ(m1)

strictly increases in m1: Φ+e−ρwλ(m1)
Φ+λ(m1)

decreases in λ(m1) and

the proof of Lemma 3 shows that λ(m1) decreases in g(0) and m1. �
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Details in the computation of C ′(m1)

Rewrite C (m1) as∫ m1

0

e−(r+π)t
(
πc(Em1) + rc(um1) + Φ((r + π)Um1 − πEm1 − rum1 − (Um1)′)

+λm1(rEm1 − re−ρwum1 − (Em1)′)
)
dt+ e−(r+π)m1 (γ + ψ + c(Um1(m1)))

+e−(r+π)m1λm1(m1)(Em1(m1)− Um1(m1)),

where we put a superscript m1 on U(·), E(·), u(·), and λ(·) because these optimal paths
rely on m1. We use the Envelope theorem to simplify the computation of C ′(m1). Since
Um1(t), Em1(t), um1(t) are already optimally chosen at each t, we may view them as fixed
when we vary m1. Further, Um1(m1) and Em1(m1) can be viewed as varying only with the
terminal date in the parenthesis.6 Viewed in this light, a small increment of m1 is just an
extrapolation of all time paths over a longer duration of unemployment, while the paths
themselves are fixed. That is, we view all superscripts as being fixed and omit them when
we calculate derivatives. Because E(m1)− U(m1) = 0, we have

C ′(m1) = e−(r+π)m1

(
πc(E(m1)) + rc(u(m1))− (r + π)(γ + ψ + c(U(m1)))

+c′(U(m1))U ′(m1) + λ(m1) (E ′(m1)− U ′(m1))
)
.

It follows from c′(U(m1)) = Φ + λ(m1), λ′(m1) = 0 and Lemma 2 that

c′(U(m1))U ′(m1) + λ(m1) (E ′(m1)− U ′(m1))

= ΦU ′(m1) + λ(m1)E ′(m1) = (ΦU(m1) + λ(m1)E(m1))′ = 0.

Therefore,

C ′(m1) = e−(r+π)m1

(
πc(E(m1)) + rc(u(m1))− (r + π)(γ + ψ + c(U(m1)))

)
= e−(r+π)m1

(
rρ−1 log

(
Φ + e−ρwλ(m1)

Φ + λ(m1)

)
− (r + π)(γ + ψ)

)
.

Fixed-point condition for ψ

The condition for ψ is that ψ is the fixed point of operator T , i.e.,

ψ + c(U(0)) = T (ψ) + c(U(0)) ≡ min
σ
C(σ).

We obtain ψ from the first-order condition (23) for m1,

ψ =
rρ−1

r + π
log

(
Φ + e−ρwλ(m1)

Φ + λ(m1)

)
− γ.

6This is because U m̃1(m1) and Em̃1(m1) can be viewed as being fixed when we vary m̃1.
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We obtain T (ψ) from the HJB equation for the cost function at time zero

T (ψ) + c(U(0)) =
πc(E(0)) + rc(u(0)) + Φ ((r + π)U(0)− πE(0)− ru(0))

r + π

=
π

r + π

(
Φ

g(0)
− log

(
Φ

g(0)

)
− 1

)
+ c(U(0)).

The fixed-point condition ψ = T (ψ) is rewritten as

(r + π)γ = rρ−1 log

(
Φ + e−ρwλ(m1)

Φ + λ(m1)

)
− π

(
Φ

g(0)
− log

(
Φ

g(0)

)
− 1

)
. (28)

Proposition 5 The path that satisfies (28) exists and is unique.

Proof. The existence of a path that satisfies (28) follows from the intermediate value
theorem and the fact that right side of (28) is either extremely large or extremely small if
we vary g(0). To see this, note that the proof of Lemma 3 shows that limg(0)↓Φm1 = 0 =
limg(0)↓Φ λ(m1). Therefore,

lim
g(0)↓Φ

rρ−1 log

(
Φ + e−ρwλ(m1)

Φ + λ(m1)

)
− π

(
Φ

g(0)
− log

(
Φ

g(0)

)
− 1

)
= 0.

On the other hand, the proof of part (ii) of Lemma B.2 shows the existence of paths with

λ(m1) approaching −Φ and g(0) ∈ (Φ,Φeρw). For these paths, log
(

Φ+e−ρwλ(m1)
Φ+λ(m1)

)
can be

arbitrarily large, while Φ
g(0)

remains bounded.
The uniqueness can be shown by contradiction. Suppose there are two paths satisfying

(28). Associated with the two paths are two fixed points, ψ < ψ̃. Because the principal
facing ψ̃ may monitor at m1(ψ) > 0 and adopt the optimal consumption paths under ψ,

T (ψ̃) ≤ ψ + e−(r+π)m1(ψ)(ψ̃ − ψ) < ψ̃,

which contradicts the fact that ψ̃ is a fixed point. �

Lemma B.2 Consider the ODE system (21), (27) with time running backwards, that is,

λ′ = π(g − Φ− λ), (29)

g′ = rg − rg2

Φeρw + λ
. (30)

Suppose the initial condition is (λ(0), g(0) = Φ + λ(0)), −Φ < λ(0) < 0, and m−(λ(0))
denotes the first time to hit the g-axis, i.e., m−(λ(0)) = mint{t > 0 : λ(t) = 0}.

(i) (g − λ)′(t) > 0 for all t ∈ [0,m−(λ(0))].

(ii) m−(λ(0)) is finite, and limλ(0)↓−Φ m
−(λ(0)) =∞.
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Proof.

(i) The path starting with (λ(0), g(0) = Φ + λ(0)) has

λ′(0) = π(g(0)− Φ− λ(0)) = 0,

g′(0) = rg(0)− rg(0)2

Φeρw + λ(0)
> 0.

Hence it moves beyond g = Φ + λ at time zero and satisfies Φ + λ < g < Φeρw + λ
before reaching the g-axis. If Φ + λ < g < Φeρw + λ, then g′ > 0 and λ′ > 0.

To show that (g − λ)′(t) > 0 for all t ∈ [0,m−(λ(0))], suppose to the contrary that
(g − λ)′(s) ≤ 0 for some s. Let t∗ = mins{s > 0 : (g − λ)′(s) ≤ 0}. It is easily seen

that (g−λ)′(t∗) = 0 and (g−λ)′′(t∗) ≤ 0. Since (g−λ)′ = rg− rg2

Φeρw+λ
−π(g−Φ−λ),

(g − λ)′′(t∗) =

(
r − 2rg(Φeρw + λ)

(Φeρw + λ)2
− π

)
g′(t∗) +

(
rg2

(Φeρw + λ)2
+ π

)
λ′(t∗)

=

(
r +

rg2 − 2rg(Φeρw + λ)

(Φeρw + λ)2

)
g′(t∗)

= r
(Φeρw + λ− g)2

(Φeρw + λ)2
g′(t∗) > 0,

where the second equality follows from g′(t∗) = λ′(t∗). This contradicts that (g −
λ)′′(t∗) ≤ 0.

(ii) First, we show that m−(λ(0)) is finite. We know from part (i) that λ′ > 0. It follows
from (29) and (g − λ)′ > 0 in part (i) that

λ′′ = π(g − λ)′ > 0.

Hence starting from λ(0) < 0, λ(t) accelerates and will reach zero in finite time.

Second, we show that limλ(0)↓−Φ m
−(λ(0)) =∞. If λ(0) = −Φ and g(0) = 0, then

λ′(0) = π(g(0)− Φ− λ(0)) = 0,

g′(0) = rg(0)− rg(0)2

Φeρw + λ(0)
= 0.

Continuity of the ODE system (29), (30) implies that (λ, g) will stay in a small
neighborhood of (−Φ, 0) for a long duration if λ(0) is sufficiently close to −Φ and
g(0) = Φ + λ(0). Therefore, limλ(0)↓−Φ m

−(λ(0)) =∞.

�
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Appendix C CRRA Preferences

Assume that one period in the model represents a week, u(c) = c1−σ

1−σ , σ = 1.5, and
r = 0.001. As in Hopenhayn and Nicolini (1997), we set the wage to 100 and the transition
rate π = 0.1. We set the verification cost, γ, to 5. (We have tried a range of values for γ.
The qualitative results in this section are not sensitive to γ.) The worker’s initial promised
utility U(0) is chosen such that the total net cost for the principal is zero (i.e., the principal
has a balanced budget).

Figures 8 and 9 show the consumptions for the workers who transition to employment
and the workers who remain unemployed, as functions of their unemployment durations.
As in the case of CARA preferences, employment tax is nonmonotonic: the consumption
of a worker who transitions to employment right after m1 is larger than that of a worker
who transitions at m1 (see Figure 8). Similar to Figure 5, unemployment benefits jump
down after verification (see Figure 9).

Unlike the CARA case where the length of the monitoring cycle is independent of
history, the cycle length here does depend on the worker’s continuation utility. But this
difference is small. Under CRRA, the first cycle is 22.68 weeks, while the second cycle is
22.66 weeks. This small difference is due to the fact that the continuation utility at the
beginning of the second cycle is very close to U(0) at the beginning of the first cycle.

Appendix D Stochastic Verification

D.1 Principal’s Problem

Similar to (10) and (11), the promise-keeping constraint and incentive constraint are

U ′ = r(U − u)− π(E − U)− p(Ũ − U), (31)

E ′ ≤ rE − re−ρwu− p(eρφ − 1)E, (32)

where Ũ is the unemployed agent’s continuation utility after monitoring. Because the
probability that monitoring does not occur in [0, t) is e−

∫ t
0 p(s)ds, the principal’s objective is∫ ∞

0

e−(r+π)t−
∫ t
0 p(s)ds

(
πc(E(t)) + rc(u(t)) + p(t)(γ + ψ + c(Ũ(t)))

)
dt, (33)

where ψ again measures the cost of private information. The principal chooses the utilities
{U(t), E(t), u(t), Ũ(t); t ≥ 0} and the arrival rates of monitoring {p(t); t ≥ 0} to minimize
(33) subject to (31), (32), and the constraint E(t) ≥ U(t), ∀t ≥ 0.

D.2 Construction of a Contract

To prove Proposition 4, we first construct a contract σ∗ in which E(t) > U(t) implies
p(t) = 0, and E(t) = U(t) implies p(t) > 0. This contract has the features described in
Proposition 4, and in the next section we verify it is indeed optimal.
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Figure 8: Permanent consumption for workers who transition to employment under CRRA
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Figure 9: Consumption for the unemployed under CRRA preferences
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First, since the principal does not monitor in this contract when E > U , we still use
the ODE system (20), (21) to find a solution path in the interval [0, N ], where N satisfies

−
∫ N

0

λ(t)
(
rE − re−ρwu

)
dt− λ(N)(eφ − 1)E(N) + γ = 0. (34)

The two boundary conditions for the ODE system (20), (21) are still λ(0) = 0 and E(N) =
−ρ−1(Φ + λ(N))−1.

Lemma 4 The N that satisfies (34) exists and is unique.

Proof. For uniqueness, we show that f(N) ≡ −
∫ N

0
λ(t) (rE − re−ρwu) dt − λ(N)(eφ −

1)E(N) decreases with N . Since both λ(N) and E(N) are negative and decreasing with
N , −λ(N)(eφ − 1)E(N) decreases with N . Moreover,

−λ
(
rE − re−ρwu

)
=

r|λ|
g(Φeρw + λ)

(g − λ− Φeρw).

For fixed t, r|λ|
g(Φeρw+λ)

increases with N , while (g − λ− Φeρw) is more negative with higher

N . Therefore, −
∫ N

0
λ (rE − re−ρwu) dt decreases with N too. For existence, note that

limN→0 f(N) = 0. Because limN→∞ λ(N) = −Φ and limN→∞E(N) = −∞, we have
limN→∞ f(N) = −∞. �

Second, choose p > 0 after N so that the state vector stays on the 45-degree line before
the monitoring arrives, i.e., U(t) = E(t) for all t ≥ N . Choosing Ũ(N) = U(0) = − 1

ρΦ
and

solving the equation U ′(N) = E ′(N), we have

p =
r(1− e−ρw)(Φ + e−ρwλ(N))−1

eρφ(Φ + λ(N))−1 − Φ−1
> 0. (35)

Note that p is independent of Φ. This also implies that p > 0 is time invariant after N
because U(t) = E(t) for t ≥ N .

Third, the constructed solution path defines a contract σ∗ as follows. For each t ∈ [0, N ],
the policy u(t) is obtained by the first-order condition (13)

u(t) = − 1

ρ(Φ + e−ρwλ(t))
. (36)

If t ≥ N , then the state vector moves along the 45-degree line, and u(t) is always propor-
tional to (U(t), E(t)). That is, for all t ≥ N ,

u′(t)

u(t)
=
E ′(t)

E(t)
=
U ′(t)

U(t)
= r − r(Φ + λ(N))

Φ + e−ρwλ(N)
+ p

(
1− Φ + λ(N)

Φ

)
> 0. (37)

The contract σ∗ is defined by (34–37), and the property that the continuation contract
after a monitoring at t ≥ N starts a new cycle, in which the continuation utility is
Ũ(t) = Φ+λ(N)

Φ
U(t) instead of U(0). In this construction, σ∗ has the features mentioned in

Proposition 4.
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D.3 Optimality of the Contract

First, using the path obtained in Lemma 4, we construct a cost function C as

(r + π)C(U(t), E(t)) = πc(E(t)) + rc(u(t)) + Φ((r + π)U(t)− πE(t)− ru(t))

+λ(t)(rE(t)− re−ρwu(t)). (38)

Lemma 5 CU(U(t), E(t)) = Φ, and CE(U(t), E(t)) = λ(t).

Proof. Differentiate (38) with respect to t, we have

(r + π)(CUU
′(t) + CEE

′(t)) = πc′(E)E ′(t) + Φ((r + π)U ′(t)− πE ′(t)) + λ(t)rE ′(t) + λ′(t)E ′(t),

which, after substituting λ′(t) = π(Φ− c′(E) + λ), becomes

CUU
′(t) + CEE

′(t) = ΦU ′(t) + λ(t)E ′(t).

Homogeneity of C(·, ·) implies that CUU(t) +CEE(t) + ρ−1 = 0 = ΦU(t) + λ(t)E(t) + ρ−1.
Because the vectors (U ′(t), E ′(t)) and (U(t), E(t)) are linearly independent (we have shown

that
(
U
E

)′
(t) < 0 in the proof of Proposition 2, which is E′(t)

E(t)
> U ′(t)

U(t)
), we have CU = Φ and

CE = λ(t). �

Second, we verify that the cost function C satisfies the HJB equation:

(r + π)C(U,E) = min
u,p,Ũ ,Ẽ

{
rc(u) + πc(E) + p

(
C(Ũ , Ẽ) + γ − C(U,E)

)
(39)

+CU

(
r(U − u)− π(E − U)− p(Ũ − U)

)
+CE

(
rE − re−ρwu− p(eρφ − 1)E

)}
,

where (Ũ , Ẽ) is the new state vector the principal chooses after the next monitoring.

Lemma 6 The C(·, ·) defined in (38) satisfies (39).

Proof. The only differences between (38) and (39) are the terms associated with arrival
rate p, which will be shown to be zero in this proof. Fix a t ∈ [0, N ] and consider the HJB
equation at (U(t), E(t)). The first-order condition for Ũ implies that Ũ = U(0). Then we
have

C(Ũ , Ẽ) + γ − C(U,E)− Φ(Ũ − U)− CE(eρφ − 1)E

= −
∫ t

0

λ(s)
(
rE(s)− re−ρwu(s)

)
ds− λ(t)(eφ − 1)E(t) + γ.

The above is decreasing in t because λ(t) < 0, and E(t) < 0 both decrease in t. Moreover,
the integral −

∫ t
0
λ(s) (rE(s)− re−ρwu(s)) ds decreases in t because

rE(t)− re−ρwu(t) = E ′(t) = ρE2(t)g′(t) < 0.
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Therefore, the definition of N in (34) implies that

C(Ũ , Ẽ) + γ − C(U,E)− Φ(Ũ − U)− CE(eρφ − 1)E

{
> 0, if t < N,
= 0, if t = N.

This implies that

min
p≥0

p
(
C(Ũ , Ẽ) + γ − C(U,E)− Φ(Ũ − U)− CE(eρφ − 1)E

)
= 0,

which finishes the proof. �

Finally, to complete the proof of Proposition 4, we show that the contract σ∗ is optimal.

Proof of Proposition 4: Because the technique of using the HJB equation to verify
optimality is standard, we spare the reader of detailed steps. Given the initial promised
utilities (U,E), we need to verify that

(i) The cost of the contract σ∗ is C(U,E).

(ii) The costs of other I.C. contracts are weakly higher than C(U,E).

We only verify (ii) here, since the proof for (i) can be obtained simply by replacing the
following inequalities with equalities.

To see that the cost of an I.C. contract
{

(c̃E(t), c̃U(t), p̃(t)); t ≥ 0
}

is higher than
C(U,E), define

h(T ) =

∫ T

0

e−(r+π)t−
∫ t
0 p̃(x)dx

(
πc(Ẽ(t)) + rc̃U(t) + p̃(t)

(
C(Ũ(t), Ẽ(t)) + γ

))
dt

+e−(r+π)T−
∫ T
0 p̃(x)dxC(U(T ), E(T )).

The HJB equation implies that f ′(T ) ≥ 0. Therefore, h(T ) increases in T , and

C(U,E) = h(0) ≤ h(T ).

Taking limit T →∞, we have

C(U,E) ≤
∫ ∞

0

e−(r+π)t−
∫ t
0 p̃(x)dx

(
πc(Ẽ(t)) + rc̃U(t) + p̃(t)

(
C(Ũ(t), Ẽ(t)) + γ

))
dt,

which can be rewritten as

C(U,E) ≤ E

[∫ τ1

0

e−rt
(
πc(Ẽ(t)) + rc̃U(t)

)
dt

]
+ E

[
e−rτ1γ

]
+E

[
e−rτ1C(Ũ(τ1), Ẽ(τ1))

]
,

where τ1 is the first monitoring time and (Ũ(τ1), Ẽ(τ1)) is the state vector immediately
after monitoring. Inductively, we obtain

C (U,E) ≤ E

[∫ τn

0

e−rt
(
πc(Ẽ(t)) + rc̃U(t)

)
dt

]
+ E

[
n∑
i=1

e−rτiγ

]
+E

[
e−rτnC(Ũ(τn), Ẽ(τn))

]
,
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where τn is the nth monitoring time. Without loss of generality, we may assume that
limn→∞ τn = ∞ almost surely (otherwise the principal monitors infinitely many times in
finite time and the monitoring cost is infinity). Taking limit n→∞ yields

C (U,E) ≤ E

[∫ ∞
0

e−rt
(
πc(Ẽ(t)) + rc̃U(t)

)
dt

]
+ E

[
∞∑
i=1

e−rτiγ

]
.

�
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