Debt Constraints and Employment

Patrick Kehoe, Virgiliu Midrigan and Elena Pastorino

Motivation: U.S. Great Recession

• Large, persistent drop in employment

U.S. Employment-Population, aged 25-54

Motivation: U.S. Great Recession

- Large, persistent drop in employment
- $\bullet\,$ Regions with higher HH debt/income in 2007 experienced
 - larger decline in debt
 - larger decline in consumption
 - larger decline in employment

Δ Household Debt/Income, 2007-2009

source: Midrigan and Philippon (2011)

Δ Consumption, 2007-2009

source: Midrigan and Philippon (2011)

Δ Employment/Population, 2007-2009

source: Midrigan and Philippon (2011)

Motivation: U.S. Great Recession

• Large, persistent drop in employment

- Regions with higher HH debt/income in 2007 experienced
 - larger decline in debt
 - larger decline in consumption
 - larger decline in employment

• Regional employment drop largely due to nontradables

Employment by sector, 2007-2009

source: Mian and Sufi (2013)

U.S. Great Recession

- Popular interpretation:
 - Tightening of HH credit leads to drop in consumption
 - Drop in consumption leads to drop in employment
- At odds with predictions of standard models
 - Consumption and leisure normal goods
 - Absent relative price changes move together
- Unless prices or wages are sticky
 - Need to assume lots of stickiness
 - Guerrieri-Lorenzoni, Midrigan-Philippon

We study alternative mechanism

• Tighter debt constraints \rightarrow less consumption & less employment

- Idea: large returns to tenure/experience
 - Work is an investment
 - HH debt constraints reduce returns to such investments
 - Make employment less valuable

Alternative mechanism

- Otherwise standard DMP setup
- When debt constraints are tighter
 - Consumers discount returns to experience *more*
 - Firms discount future profits more
 - So surplus from match is reduced
 - \Rightarrow Firms create fewer vacancies

- Do not explicitly impose wage rigidities
 - But arise endogenously due to debt constraints

Model overview

- Continuum of islands in small open economy. Labor immobile
- Diamond-Mortensen-Pissarides with
 - on-the-job human capital accumulation
 - idiosyncratic shocks to worker human capital
 - full insurance inside household
 - household debt limit
- No aggregate uncertainty
- Study effect of one-time, unanticipated tightening of debt limit
 - 1. economy-wide collateral constraint (U.S. recession)
 - 2. island collateral constraint (predictions for U.S. regions)

Outline

1. Response to economy-wide shock to credit constraint

- No changes in relative prices
- No reallocation between tradeable/non-tradeable
- Identical to those of one good model

- 2. Island-specific shock to credit constraint
 - Changes in relative prices & terms of trade
 - Labor reallocation from non-tradeable to tradeable
 - More notation, leave for later

One-Good Economy

Household's problem

- Consists of measure 1 of workers and continuum firms.
- Income of worker $i: y_{it} =$ wages or home production
- T_t : profits net of vacancy posting costs

$$\max\sum_{t}\beta^{t}u\left(c_{t}\right)$$

s.t.

$$c_t + a_{t+1} = (1+r)a_t + \int y_{it} di + T_t$$

Borrowing constraint:

$$a_{t+1} \ge -d_t$$

• d_t and r_t exogenous. Study effect of unanticipated changes

Household's problem

- Debt constraint binds as long as $u'(c_t)/u'(c_{t+1}) > \beta(1+r)$
 - Binds in steady state and our experiments
- Problem reduces to choosing employment & vacancies
- $Q_t = u'(c_t)$: multiplier on date t budget constraint
- Stochastic OLG structure:
 - ϕ : worker survival probability

Technology and Human Capital

• Newborns enter with human capital

$$\log(z) \sim N(0, \sigma_z^2/(1-\rho_z^2))$$

Technology and Human Capital

• Newborns enter with human capital

$$\log(z) \sim N(0, \sigma_z^2 / (1 - \rho_z^2))$$

• On-the-job human capital accumulation/off-the-job depreciation $\circ\,$ employed draw z from $F_e(z'|z)$ (drifts up)

$$\log z' = (1 - \rho_z)\mu_z + \rho_z \log z + \sigma_z \varepsilon'$$

 $\circ~$ non-employed draw z from $F_u(z'|z)~({\rm drifts~down})$

$$\log z' = \rho_z \log z + \sigma_z \varepsilon'$$

Technology and Human Capital

• Newborns enter with human capital

$$\log(z) \sim N(0, \sigma_z^2 / (1 - \rho_z^2))$$

• On-the-job human capital accumulation/off-the-job depreciation \circ employed draw z from $F_e(z'|z)$ (drifts up)

$$\log z' = (1 - \rho_z)\mu_z + \rho_z \log z + \sigma_z \varepsilon'$$

• non-employed draw z from $F_u(z'|z)$ (drifts down)

$$\log z' = \rho_z \log z + \sigma_z \varepsilon'$$

- Employed: produce z and receive wage $w_t(z)$
- Non-employed: produce b

Matching technology

$$M\left(u_t, v_t\right) = B u_t^{\eta} v_t^{1-\eta}$$

- Market tightness: $\theta_t = v_t/u_t$
- Probability firm finds worker

$$\lambda_{f,t} = \frac{M\left(u_t, v_t\right)}{v_t} = \left(\frac{u_t}{v_t}\right)^{\eta} = B\theta_t^{-\eta}$$

• Probability worker finds firm

$$\lambda_{w,t} = \frac{M_t \left(u_t, v_t \right)}{u_t} = \left(\frac{v_t}{u_t} \right)^{1-\eta} = B\theta_t^{1-\eta}$$

Worker values

- Match exogenously destroyed with probability σ
- Discounted lifetime income if currently *employed*:

$$W_{t}(z) = \omega_{t}(z) + \beta \phi \frac{Q_{t+1}}{Q_{t}} (1 - \sigma) \int \max \left[W_{t+1}(z'), U_{t+1}(z') \right] dF_{e}(z'|z) + \beta \phi \frac{Q_{t+1}}{Q_{t}} \sigma \int U_{t+1}(z') dF_{e}(z'|z)$$

• Discounted lifetime income if currently not employed:

$$U_{t}(z) = b + \beta \phi \frac{Q_{t+1}}{Q_{t}} \lambda_{w,t} \int \max \left[W_{t+1}(z'), U_{t+1}(z') \right] dF_{u}(z'|z) + \beta \phi \frac{Q_{t+1}}{Q_{t}} (1 - \lambda_{w,t}) \int U_{t+1}(z') dF_{u}(z'|z)$$

Value of filled vacancy

$$J_t(z) = z - \omega_t(z) + \beta \phi \frac{Q_{t+1}}{Q_t} \int \max\left[J_{t+1}(z'), 0\right] dF_e(z'|z)$$

Wages

- Assume wages renegotiated period by period
- Nash bargaining:

$$\max_{\omega_t(z)} \left[W_t(z) - U_t(z) \right]^{\gamma} J_t(z)^{1-\gamma}$$

$$\frac{\gamma}{W_{t}\left(z\right) - U_{t}\left(z\right)} = \frac{1 - \gamma}{J_{t}\left(z\right)}$$

Free entry condition

• Firms pay κ units of output to post vacancy

• Let $n_t^u(z)$ measure of unemployed, $\tilde{n}_t^u(z) = \frac{n_t^u(z)}{\int dn_t^u(z)}$

$$0 = -\kappa + \beta \phi \frac{Q_{t+1}}{Q_t} \lambda_{f,t} \int \max \left[J_{t+1} \left(z' \right), 0 \right] dF_u \left(z'|z \right) d\tilde{n}_t^u \left(z \right)$$

• pins down θ_t

Parameterization

- Assigned parameters
 - period = 1 quarter
 - $\beta = 0.94^{1/4}, 1 + r = 0.96^{-1/4}, \phi = 1 1/160$
 - Probability of separation: $\sigma = 0.10$ (Shimer 2005)
 - Bargaining share and elasticity matching fn: $\eta=\gamma=1/2$

•
$$u(c_t) = \frac{c_t^{1-\alpha}}{1-\alpha}, \quad \alpha = 5 \text{ so IES} = 0.2$$

- Micro-evidence: IES $\approx 0.1 0.2$
- Hall '88, Attanasio et. al. '02, Vissing-Jorgensen '02

- Calibrated parameters
 - Vacancy posting cost, κ
 - Efficiency matching function: B
 - Persistence shocks to z: ρ_z
 - Std. dev. of shocks to z: σ_z

- Home production, b
- Returns to work: μ_z

- Calibrated parameters
 - Vacancy posting cost, κ
 - Normalize steady-state market tightness $\theta = 1$
 - Efficiency matching function: B
 - Persistence shocks to z: ρ_z
 - Std. dev. of shocks to z: σ_z

- Home production, b
- Returns to work: μ_z

- Calibrated parameters
 - Vacancy posting cost, κ
 - Efficiency matching function: B
 - Employment-populatio ratio = 0.8 (U.S. all adults 25-54)
 - Persistence shocks to z: ρ_z
 - Std. dev. of shocks to z: σ_z

- Home production, b
- Returns to work: μ_z

- Calibrated parameters
 - Vacancy posting cost, κ
 - Efficiency matching function: B
 - Persistence shocks to z: ρ_z
 - std. dev. of log initial wages = 0.94 (PSID)
 - Std. dev. of shocks to z: σ_z

- Home production, b
- Returns to work: μ_z

- Calibrated parameters
 - Vacancy posting cost, κ
 - Efficiency matching function: B
 - Persistence shocks to z: ρ_z
 - Std. dev. of shocks to z: σ_z
 - std. dev. changes $\log wages = 0.21$ (Floden-Linde 2001)
 - Home production, b
 - Returns to work: μ_z

- Calibrated parameters
 - Vacancy posting cost, κ
 - Efficiency matching function: B
 - Persistence shocks to z: ρ_z
 - Std. dev. of shocks to z: σ_z

- Home production, b
 - b/ median $\omega = 0.4$ (Shimer 2005)
- Returns to work: μ_z

- Calibrated parameters
 - Vacancy posting cost, κ
 - Efficiency matching function: B
 - Persistence shocks to z: ρ_z
 - Std. dev. of shocks to z: σ_z

- Home production, b
- Returns to work: μ_z
 - returns to tenure & experience data

Returns to work in the data

• Buchinsky et. al. (2010) estimate

 $\log(w_{it}) = c_i + x'_{it}\beta + f(\text{experience}_{it}) + g(\text{tenure}_{it}) + J_{it} + \varepsilon_{it}$

• J_{it} summarizes history previous jobs $l = 1 : M_{it}$

$$J_{i,t} = \sum_{l=1}^{M_{it}} \sum_{k=1}^{4} \left(\phi_k^0 + \phi_k^s \text{tenure}_i^l + \phi_k^e \text{experience}_i^l \right) d_{k,i}^l$$

Returns to work in the data

 $\log(w_{it}) = c_i + x'_{it}\beta + f(\text{experience}_{it}) + g(\text{tenure}_{it}) + J_{it} + \varepsilon_{it}$

Cumul. returns to experience:	$5 \mathrm{yrs}$	10 yrs	15 yrs
College graduates	0.43	0.66	0.76
High School graduates	0.28	0.40	0.44
High School dropouts	0.24	0.36	0.41

Cumul. returns to tenure:	$5 \mathrm{ yrs}$	10 yrs	15 yrs
College graduates	0.29	0.48	0.62
High School graduates	0.28	0.48	0.62
High School dropouts	0.30	0.51	0.68

Returns to work in the data

 $\log(w_{it}) = c_i + x'_{it}\beta + f(\text{experience}_{it}) + g(\text{tenure}_{it}) + J_{it} + \varepsilon_{it}$

- Our approach:
 - Simulate paths for experience and tenure for our model
 - Use BFKT estimates (high school grads) to evaluate

 $\log(\hat{w}_{it}) = f(\text{experience}_{it}) + g(\text{tenure}_{it}) + J_{it}$

- Minimize distance mean $\Delta \log(\hat{w}_{it}) \& \Delta \log(w_{it})$ model
 - 5.2% per year
Moments used in calibration

	Data	Model
fraction employed	0.80	0.80
mean growth rate wages	0.052	0.052
home production/ median wage	0.40	0.40
std. dev. wage changes	0.21	0.21
std. dev. initial wages	0.94	0.94

Returns to work: model vs. data

Initialize w/ 0 experience, mean $z_{it} \mid \exp = 0$, no shocks

Parameter values

В	0.595	steady state match probability
ρ_z	$0.952^{1/4}$	persistence human capital
σ_z	0.112	std. dev. efficiency shocks
μ_z	2.82	returns to work
b	1.75	home production / mean z new entrant

Parameter values

В	0.595	steady state match probability
ρ_z	$0.952^{1/4}$	persistence human capital
σ_z	0.112	std. dev. efficiency shocks
μ_z	2.82	returns to work
b	1.75	home production / mean z new entrant

Note: b low relative to mean z of new hire: 0.24

Steady state measures

Policy and value functions

Model implications

fraction workers with $w < b$	0.181
prob. job destroyed endogenously	0.002
prob. worker matches, λ_w	0.595
fraction matches with positive surplus	0.724
drop in w after non-employment spell	1.9%
drop in w if not employed 1 year	6.1%
drop in w if not employed 2 years	8.8%

Experiment: economy-wide credit crunch

• Binding debt limit:

$$c_t = d_t - (1+r)d_{t-1} + y_t$$

• Assume unanticipated tightening debt limit d_t

• Choose path for d_t so c_t falls 5% then mean-reverts

$$c_t = 0.90c_{t-1} + 0.10\bar{c}$$

• Implies future discounted more: $Q_{t+1}/Q_t = \left(\frac{c_{t+1}}{c_t}\right)^{-\alpha} \downarrow$

Credit crunch

Employment

Employment response

- Maximal drop employment 2.0% vs. 5.0% drop in C
- Employment drop much more persistent
 - Cumulative impulse responses:
 - 2 years: $CIR^{E} = 0.44 \times CIR^{C}$
 - 10 years: $CIR^{E} = 0.69 \times CIR^{C}$
 - overall: $CIR^{E} = 0.92 \times CIR^{C}$

Why does employment drop?

- Drop in Q_{t+1}/Q_t reduces surplus $W_t(z) U_t(z) + J_t(z)$
 - Reduces returns to learning by doing for workers
 - Reduces returns to posting vacancies for firms
- Employment drops because
 - Some existing matches endogenously destroyed
 - Fewer vacancies posted
 - Fewer matches have positive surplus

Job separations

Market tightness

Probability match accepted

Employment decomposition

• Shimer 2012 approach

$$E_{t+1} = (1 - s_t)E_t + \lambda_{w,t}a_t(1 - E_t)$$

- s_t : separation rate
- $\lambda_{w,t}$: worker matching probability
- a_t : acceptance rate
- Construct three counterfactual employment series:
 - Vary s_t , $\lambda_{w,t}$, a_t in isolation
 - Leave others at steady state values

Employment decomposition

Wages and Productivity

Consumer vs. firm debt constraints

- Our benchmark model:
 - firms owned by households
 - debt constraints change discount rate of workers & firms

- Separate role of each
 - only let discount rate of workers change
 - only let discount rate of firms change

Consumer vs. firm debt constraints

- Employment drops mostly because of worker discounting
- Worker retains most human capital after separation
 - Longer horizon, surplus more sensitive to discount rate

Role of returns to work

- Employment falls much less absent returns to work
- Illustrate by setting $\mu_z = 0 \& \sigma_z = 0$
 - Similar results with heterogeneity: $\sigma_z > 0$

No returns to work

Comparison with Hall 2014

• Results consistent with Hall 2014

• Studies effect of increase discount rate in DMP model

- Steady state effects of change in discount rate small:
 - r from 10% to 20%: U up from 5.8% to 5.88%

• Wage rigidities amplify effects

• First, suppose no learning by doing

$$\rho W(z) = \omega(z) - \sigma (W(z) - U(z))$$

$$\rho U(z) = b + \lambda_w (W(z) - U(z))$$

$$\rho J(z) = z - w(z) - \sigma J(z)$$

• First, suppose no learning by doing

$$\rho W(z) = \omega(z) - \sigma (W(z) - U(z))$$

$$\rho U(z) = b + \lambda_w (W(z) - U(z))$$

$$\rho J(z) = z - w(z) - \sigma J(z)$$

• Surplus:
$$S(z) = W(z) - U(z) + J(z)$$

$$S(z) = \frac{z-b}{\tilde{\rho}}$$

•
$$\tilde{\rho} = \rho + \sigma + \frac{1}{2}\lambda_w$$

• not sensitive to $\Delta \rho$ since λ_w and σ much larger

• Next, suppose dz = gzdt if employed, 0 otherwise

$$\rho W(z) = \omega(z) - \sigma (W(z) - U(z)) + zgW'(z)$$

$$\rho U(z) = b + \lambda_w (W(z) - U(z))$$

$$\rho J(z) = z - w(z) - \sigma J(z) + zgJ'(z)$$

• Next, suppose dz = gzdt if employed, 0 otherwise

$$\rho W(z) = \omega(z) - \sigma (W(z) - U(z)) + zgW'(z)
\rho U(z) = b + \lambda_w (W(z) - U(z))
\rho J(z) = z - w(z) - \sigma J(z) + zgJ'(z)$$

• Surplus: S(z) = W(z) - U(z) + J(z)

$$S(z) = rac{z-b}{ ilde{
ho}} + rac{ ilde{g}z}{(ilde{
ho} - ilde{g}) ilde{
ho}}$$

•
$$\tilde{\rho} = \rho + \sigma + \frac{1}{2}\lambda_w$$

• $\tilde{g} = g\left(1 + \frac{\lambda_w}{2\rho}\right)$: sensitive to $\Delta\rho$

Many-Good Economy

Many-Good Economy

- Multi-sector economy
- Each island produces tradable and nontradable goods
- Labor cannot move across islands but can switch sectors
- Study response to island-specific shocks
 - evaluate model against Mian and Sufi (2013) evidence

• Firms owned by consumers on all islands

Preferences

Household on island s:

$$\sum_{t=0}^{\infty} \left(\beta\phi\right)^{t} u\left(c_{t}\left(s\right)\right)$$

Consumption is an aggregate of tradeables (m) and non-tradables (n):

$$c_{t}(s) = \left[\tau^{\frac{1}{\sigma}}\left(c_{t}^{n}(s)\right)^{\frac{\mu-1}{\mu}} + (1-\tau)^{\frac{1}{\sigma}}\left(c_{t}^{m}(s)\right)^{\frac{\mu-1}{\mu}}\right]$$

Tradables imported from all other islands, s'

$$c_t^m\left(s\right) = \left(\int c_t^m\left(s,s'\right)^{\frac{\nu-1}{\nu}} \, ds'\right)^{\frac{\nu}{\nu-1}}$$

Prices

• Price of goods produced in s: $p_t^n(s)$ and $p_t^m(s)$

• Price of composite imported good in s

$$P_t^m(s) = \left(\int p_t^m \left(s'\right)^{1-\nu} ds'\right)^{\frac{1}{1-\gamma}} = \bar{P}^m$$

• Aggregate price index in *s*

$$P_t(s) = \left[\tau \left(p_t^n(s)\right)^{1-\mu} + (1-\tau) \left(\bar{P}^m\right)^{1-\mu}\right]^{\frac{1}{1-\mu}}$$

Demand for goods

• Assume non-employed produce b units of composite good

- Let $\bar{b}_t(s) = b(1 e_t(s))$: total home production
- Only $c_t(s) \bar{b}_t(s)$ purchased on the market
- Demand for non-tradeables

$$c_{t}^{n}\left(s\right) = \tau \left(\frac{p_{t}^{n}\left(s\right)}{P_{t}\left(s\right)}\right)^{-\mu} \left(c_{t}\left(s\right) - \bar{b}_{t}\left(s\right)\right)$$

• Demand for variety s' tradeables:

$$c_t^m\left(s,s'\right) = \left(1-\tau\right) \left(\frac{p_t^m(s')}{\bar{P}^m}\right)^{-\nu} \left(\frac{\bar{P}^m}{P_t\left(s\right)}\right)^{-\mu} \left(c_t\left(s\right) - \bar{b}_t\left(s\right)\right)$$

Technology

- Two sectors: tradeables (x) and non-tradeables (n)
- y = z in both sectors
- Matching technology:

$$M_t^x = B^x (u_t)^{\eta} (v_t^x)^{1-\eta}$$
 and $M_t^n = B^n (u_t)^{\eta} (v_t^n)^{1-\eta}$

$$\lambda_{w,t}^{x} = \frac{M_t^x}{u_t} = B^x \left(\frac{v_t^x}{u_t}\right)^{1-\eta} = B^x \left(\theta_t^x\right)^{1-\eta}$$

$$\lambda_{w,t}^{n} = \frac{M_t^n}{u_t} = B^n \left(\frac{v_t^n}{u_t}\right)^{1-\eta} = B^n \left(\theta_t^n\right)^{1-\eta}$$

Worker values

• Discount factor:
$$S_t = \left(\frac{c_{t+1}}{c_t}\right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

$$W_{t}^{x}(z) = \omega_{t}^{x}(z) + \beta \phi S_{t}(1-\sigma) \int \max \left[W_{t+1}^{x}(h',z'), U_{t+1}(z') \right] dF_{e}(z'|z) + \beta \phi S_{t}\sigma \int U_{t+1}(z') dF_{e}(z'|z)$$

$$U_{t}(z) = P_{t}b + \beta \phi S_{t} \lambda_{w,t}^{x} \int \max \left[W_{t+1}^{x}(1,z'), U_{t+1}(z') \right] dF_{u}(z'|z) + \beta \phi S_{t} \lambda_{w,t}^{n} \int \max \left[W_{t+1}^{n}(1,z'), U_{t+1}(z') \right] dF_{u}(z'|z) + + \beta \phi S_{t} \left(1 - \lambda_{w,t}^{x} - \lambda_{w,t}^{n} \right) \int U_{t+1}(z') dF_{u}(z'|z)$$
Firm values

• No change in discount factor since owned by all islands

$$J_{t}^{x}\left(z\right) = p_{t}^{x}z - \omega_{t}^{x}\left(z\right) + \beta\phi\left(1 - \sigma\right)\int \max\left[J_{t+1}^{x}\left(z'\right), 0\right]dF_{e}\left(z'|z\right)$$

$$J_{t}^{n}(z) = p_{t}^{n}z - \omega_{t}^{n}(z) + \beta\phi(1-\sigma)\int \max\left[J_{t+1}^{n}(z'), 0\right] dF_{e}(z'|z)$$

• Free entry:

$$\bar{P}^{m}\kappa^{n} = \beta\phi\lambda_{f,t}^{n}\int \max\left[J_{t+1}^{n}\left(z'\right),0\right]dF_{u}\left(z'|z\right)d\tilde{n}_{t}^{u}\left(z\right)$$
$$\bar{P}^{m}\kappa^{x} = \beta\phi\lambda_{f,t}^{x}\int \max\left[J_{t+1}^{x}\left(z'\right),0\right]dF_{u}\left(z'|z\right)d\tilde{n}_{t}^{u}\left(z\right)$$

Equilibrium prices

• Non-tradeables

$$\tau \left(\frac{p_t^n}{P_t}\right)^{-\mu} (c_t - b_t) = \int z dn_t^{e,n} (z)$$

• Tradeables ($\bar{\xi}$: vacancy posting costs + interest on debt)

$$\left(\frac{p_t^x}{\bar{P}^m}\right)^{-\nu} \left[\left(1-\tau\right) \left(\frac{\bar{P}^m}{\bar{P}}\right)^{-\mu} \left(\bar{c}-\bar{b}\right) + \bar{\xi} \right] = \int z dn_t^{e,x}\left(z\right)$$

• Idea:

- drop in c_t reduces p_t^n (more so when μ is low)
- labor flows to x, reduces p_t^x (more so when ν is low)

Additional parameters

• Preferences:

• $\tau = 0.831 \ (2/3 \text{ employment non-traded} - \text{Mian-Sufi})$

•
$$\mu = \nu = 1.5$$
 (Backus-Kehoe-Kydland)

- Choose B^x and B^n so that:
 - 80% employment-population
 - steady state $p^x = p^n$
- Choose κ_x s.t. $\theta^x = 1$, $\kappa_x/B_x = \kappa_n/B_n$

• Implies
$$\theta^n = 1$$
 and $\omega^x(z) = \omega^n(z)$

• Steady state predictions = one-sector model

Employment responses absent returns to work

Wage responses absent returns to work

Our model: employment

Our model: nontradable employment

Our model: tradable employment

Our model: wages

Experiment motivated by Mian-Sufi 2013

- Differentially tighten debt constraint on 20 islands
 - Island 1: consumption falls 1% after 2 years

. . .

• Island 20: consumption falls 20% after 2 years

Employment vs. consumption: data

source: Midrigan and Philippon (2011)

Employment vs. consumption: model

Summary

- DMP model with returns to work predicts:
 - employment sensitive to Δ HH debt constraints
 - as debt constraints reduce these returns
 - so reduce match surplus and employment

• Predictions consistent with Mian-Sufi evidence

Employment by sector, 2007-2009

source: Mian and Sufi (2013)

Our model: non-traded wages

Our model: traded wages

