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Abstract

We prove that there exist equilibrium payoffs arbitrarily close to the efficient payoff

in the two-player prisoner’s dilemma with low discounting under imperfect private mon-

itoring, provided that the monitoring structure satisfies two restrictions. We assume no

communication, and no public randomization device.

1 Introduction.

Cooperation takes information. Precisely how little it takes is, however, an open issue, and a

central theme in the literature on repeated games. Progress has largely consisted in weakening

these informational requirements, from perfect monitoring (Fudenberg and Maskin, 1986) to

imperfect public monitoring (Abreu, Pearce & Stacchetti, 1990, Fudenberg, Levine & Maskin,

1994). This paper provides a further step in this literature, by showing that cooperation can be

sustained in the two-player prisoner’s dilemma under imperfect private monitoring, under some

restrictions. More precisely, we show that payoffs arbitrarily close to the efficient payoff can be

achieved in equilibrium by sufficiently patient players, provided that the monitoring structure

satisfies two conditions. First, monitoring should not be too noisy, in the sense that there should

be some chance that a defecting player observes a signal that is sufficiently more likely when his
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opponent defects than when he cooperates. Second, for each player, there must exist a particular

type of statistic that is informative about his opponent’s action, such that the pair of statistics

is positively correlated.

Therefore, this paper is the first to show that cooperation is not a non-generic phenomenon

under private monitoring. Previous contributions have established important limiting results. As

the monitoring structure converges to perfect monitoring, the efficient payoff –indeed, the set of

feasible and individually rational payoffs– can be supported in the two-player prisoner’s dilemma

(Sekiguchi, 1997, Bhaskar and Obara, 2002, Piccione, 2002, Ely and Välimäki, 2002) a result

later extended to all finite games (Hörner and Olszewski, 2006). Further, the same result holds

under some assumptions when the monitoring structure approaches imperfect public monitoring

(Hörner and Olszewski, 2009), a result that builds on earlier findings (Mailath and Morris, 2002).

Finally, Matsushima (2004) shows that the folk theorem also holds in the two-player prisoner’s

dilemma provided the monitoring structure is private, but conditionally independent, yielding

an elegant counterpoint to Matsushima (1991). An excellent summary of some of these ideas can

be found in Mailath and Samuelson (2006), as well as in Kandori (2002)’s survey.

These results provide significant robustness checks for the well-known folk theorems under

perfect or imperfect public monitoring, and develop useful techniques paving our way. However,

because the monitoring structures they consider are extreme cases, they are of limited value for

applications in which monitoring is truly private. In industrial organization, the prevalence of

such environments has already been emphasized (see Stigler, 1964).

To understand both the structure of our proof and the role of our assumptions, it is instructive

to first describe the difficulties in generalizing earlier constructions. When monitoring is imper-

fect, it is necessary to aggregate information. Following Radner (1986), this can be achieved by

dividing the infinite horizon into review phases of length T (see also Compte, 1998; Kandori and

Matsushima, 1998). At the end of each phase, the continuation strategy is chosen as a function

of some initial state and some final summary statistic, or score. From one phase to the next, the

strategy profile is belief-free. That is, at the end of each review phase, each player’s continuation

strategy is optimal independently of the private history of his opponent (and so independently

of the player’s own history as well). However, the equilibrium itself is not belief-free: within a

round, incentives depend on a player’s recent history, that is, on his earlier observations during

that round. Indeed, it is known that belief-free equilibria cannot support a nearly efficient out-

come if the monitoring structure is bounded away from perfect monitoring (see Ely, Hörner and

Olszewski, 2005).
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Up to this point, our construction follows Matsushima (2004). In Matsushima (2004), players

use one of two strategies within each round. One of these strategies always cooperates, and the

other always defects. At the end of each round, each player chooses which strategy to use so

as to enforce some continuation payoff, or reward, assigned to his opponent. The key in his

construction is that signals are independent across players, conditional on an action profile. This

implies that, within a round, a player’s belief about the score observed by his opponent, and so

his continuation strategy itself, is independent of his recent signals.

Difficulties appear once correlation across signals is allowed. During each round, a player’s

history of signals affects his belief about the signals observed by his opponent; and so about his

score; and so about his continuation payoff at the end of the round. This affects his incentives.

In general, it is not possible to provide incentives to always cooperate within a round, while

preserving efficiency. Efficiency requires that the expected continuation payoff is close to the

maximal one when a player always cooperates within a round. This means that a player cannot

be rewarded for a score that is unusually high, an event that he might infer from his own

signals. After some histories, cooperation must break down. This further complicates learning,

because a player now also learns about his score indirectly, through the inferences he draws

about the actions taken by his opponent. Observations are no longer i.i.d. over time. This

provides opportunities for strategic manipulation, as a player’s actions now affects his opponent’s

continuation strategy within a round.

Our proof relies on two critical insights. First, when a player observes an exceptionally high

score, say n standard deviations above the mean, he expects that his opponent’s private score is

only ρn above the mean, where ρ ∈ (0, 1) is the positive correlation across scores (this is where one

restriction on the monitoring structure must be imposed). Therefore, even when a player stops

providing incentives for cooperation to his rival because his score attains some critical threshold,

he keeps having incentives to cooperate himself, because he assigns very low probability to the

score observed by his opponent being close to the critical threshold. This only works, however, if

observations can be treated as i.i.d. random variables, that is, if each player views his opponent’s

action as constant over time. The second insight is that, if a player punishes his opponent for

scores above the threshold (through his choice of a continuation payoff at the end of the round)

in such a way that, conditional on this event, his opponent is indifferent over all continuation

strategies within the round, each player can safely condition on his opponent’s score being below

the threshold, and therefore, on his opponent’s action being constant.

As mentioned, cooperation must break down after some histories, and the incentives after
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those histories depend on the fine details of the monitoring structure. Accordingly, the proof

is partly non-constructive, and we simply show that there exists some strategy profile which

cooperates “almost always.” Yet this unspecified cooperative strategy must also be a best-

reply to the opponent’s defective strategy, as follows from the requirement that the strategies

be belief-free from one round to the next. To ensure this, we specify the future continuation

payoff assigned to his opponent by a player using the defective strategy in such a way that,

conditional on this event, all strategies within the round are optimal, including, necessarily, the

cooperative one. This severely restricts this reward function, and to make sure that the resulting

range of continuation payoffs is feasible, the second restriction on the monitoring structure must

be imposed: some signal must be sufficiently informative. It is worth noting that, while not

innocuous, this restriction is automatically satisfied whenever nontrivial belief-free equilibria in

the two-player prisoner’s dilemma exist (see Ely, Hörner and Olszewski, 2005).

Some of the difficulties we encounter are specifically due to discounting. Lehrer (1990) pro-

vides a remarkable analysis of the undiscounted case. Also, Fudenberg and Levine (1991) prove

a folk theorem when the solution concept used is approximate optimality. Finally, there is a

growing literature on repeated games with imperfect private monitoring and communication. As

mentioned earlier, some of these papers use similar ideas and techniques. See Ben-Porath and

Kahneman (1996), Compte (1998), Kandori and Matsushima (1998), Aoyagi (2002) and Obara

(2009). Building on Obara (2009), Sugaya (2010) provides a remarkable result in the case in

which there are sufficiently many signals. While the class of games and monitoring structures

they consider are significantly larger than ours, it is worth pointing out that they do not include

ours. In particular, our result establishes efficiency in some cases for which this was heretofore

unknown even with communication.

The paper is organized as follows. Section 2 introduces the model and states the main result.

Section 3 presents a brief overview of the argument and develops the basic theoretical ideas

behind the construction. Section 4 presents the formal proofs.

2 Notation and Result

We consider the infinitely repeated prisoner’s dilemma with private monitoring. Each player

i = 1, 2 chooses an action ait ∈ {C i, Di} in every period t ≥ 1. Players do not observe each

other’s actions. Rather, at the end of each period, player i observes a private signal yit from a

finite set Y i with N ≥ 2 elements. There is no communication and no public randomization
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device.

For each action profile, every profile of private signals realizes according to a joint probability

distribution π(yiyj|aiaj).1 We assume that the matrix of joint probabilities (π(·|aiaj)) has full

rank and full support for each action profile (ai, aj). We use π(yi|aiaj) to denote the marginal

probability that player i receives signal yi given action profile (ai, aj), and π(yi|aiaj , yj) to denote

the conditional probability that player i receives signal yi given that player j receives signal yj,

and given (ai, aj).

Denote by gi(aiaj) the expected stage-game payoff of player i, and by g(aiaj) for the payoff

vector.2 As mentioned, the stage-game payoffs are those of the prisoner’s dilemma, i.e.

gi(DiCj) > gi(C iCj) > gi(DiDj) > gi(C iDj),

and that the cooperative action profile C iCj is efficient, i.e., it maximizes the sum of the players’

payoffs over all action profiles.

A t-period private history of player i is a sequence of player i’s past actions and signals,

denoted by hi
t = (ai1, y

i
1, a

i
2, y

i
2 . . . a

i
t, y

i
t). Let H i

t (i = 1, 2, t ≥ 2) be the set of t-period private

histories for player i. For notational convenience, we define H i
0 (i = 1, 2) as an arbitrary singleton

set. A behavior strategy for player i is a function si :
⋃∞

t=0H
i
t → [0, 1] that specifies the

probability with which player i plays C i after each private history hi
t ∈ H i

t for all t ≥ 1. We

denote the set of strategies for player i by Si.

Players discount future payoffs at a common rate δ. Given a strategy profile s = (s1, s2) ∈
S1 × S2, player i’s expected payoff (or payoff, for short) is

Es

[

∞
∑

t=1

δt−1gi(at)

]

, (1)

where Es[·] refers to the expected value with respect to the probability distribution of action

profiles induced by s, and at is the realized action profile in period t. We refer to the repeated

game with private monitoring and discount factor δ by Gδ. The average payoff for player i is

player i’s payoff, multiplied by the factor (1− δ).

Our objective is to prove that there exist asymptotically efficient sequential equilibria of the

game Gδ. That is, we wish to construct a sequence of equilibria sδ such that the average payoff

1Whenever we refer to players i and j, we assume i, j ∈ {1, 2} and i 6= j.
2As usual, this can be interpreted as the expectation of a function that only depends on player i’s action and

his private signal, so that player i’s realized payoff carries no further information about player j’s action. See

Kandori (2002) for details.
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vector converges to g(C1C2) as δ → 1. We shall establish that there exist asymptotically efficient

Nash equilibria of the game. Of course, a Nash equilibrium does not satisfy sequential rationality

in general. However, because of the full support assumption, for every Nash equilibrium, there

exists a sequential equilibrium with the same outcome. This is because any player’s informa-

tion set off the equilibrium path must follow the player’s own deviation. See Sekiguchi (1997,

Proposition 3) for a formal statement and proof of this claim.

Our main result holds under two assumptions on the monitoring structure. The first assump-

tion states that when player j is defecting, there exists a signal ŷj ∈ Y j that has a sufficiently

high likelihood ratio to test for player i’s cooperation:

Assumption 1 (Minimal informativeness). For j = 1, 2 there exists a signal ŷj ∈ Y j such that

π(ŷj|DjC i)

π(ŷj|DjDi)
>

gi(C iCj)− gi(C iDj)

gi(C iCj)− gi(DiDj)
.

Let M i denote the matrix of conditional probabilities (π(yj|C iCj, yi))yiyj , that expresses

player i’s private beliefs about player j’s signal when the action profile C iCj is played. In our

equilibrium construction, each player i assigns a score λi(yi) for each received signal yi. Our

second assumption guarantees that these scores can be chosen in a convenient way, namely that

when player j plays Cj , the expectation of the score λi that his opponent assigns is higher than

when player j plays Dj.

Assumption 2 (Positively correlated scores). There exists an eigenvector λ1 of M1M2 associated

to a positive eigenvalue such that, if we let λ2 = M2λ1, the expectation of λi for i = 1, 2 is higher

under C iCj than under C iDj.

In order to better understand Assumption 2, consider the case in which N = 2 so that each

player has two signals. Label one signal of player i as 1i where, for every action of player i, 1i is

always more likely when player j plays Cj than when player j plays Dj. The signal 1i can then

be interpreted as a “good” signal about j’s cooperation. In this case, it is straightforward to

see that Assumption 2 reduces to the statement that good signals are positively correlated when

both players cooperate, i.e., for i = 1, 2:

π(1i|C iCj , 1j) ≥ π(1i|C iCj).

It is worth pointing out that both of our assumptions involve existential qualifiers and are

therefore more “likely” to be satisfied as the number of signals grows.3

3This assertion can be formalized by showing that the measure of monitoring structures satisfying our assump-

tions increases in the number of signals; more precisely, this measure converges to one exponentially fast.
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We can now state our main result.

Theorem 1. Under Assumptions 1 and 2, there exist asymptotically efficient equilibria: for

every ε > 0, there exists δ < 1, for every δ ∈ (δ, 1), there exists a sequential equilibrium of Gδ

whose average payoff for player i = 1, 2 exceeds gi(C1C2)− ε.

3 An Overview of the Argument

This section provides some intuition for our construction, as well as for the role of our two

assumptions.

Following Radner (1986) and Matsushima (2004), our equilibrium relies on breaking up the

infinite horizon into finite review phases. For each δ, the equilibrium is based on review phases

of length T. To be specific, we let T = O((1− δ)−1/2) so that

T → ∞ and δT → 1 as δ → 1.

Longer review phases allow for better information aggregation, which helps reduce the use of

inefficient punishments that occur on the equilibrium path. At the same time, it is important

that δT converge to 1 as δ → 1, so that each review phase has a negligible contribution to the

overall payoff in the supergame.

As in Matsushima (2004), the equilibrium is periodically belief-free, which means that, at the

beginning of each review phase, there exist optimal continuation strategies for player i that are

independent of his private history. More precisely, any continuation strategy that adheres to one

of two strategies of the T -finitely repeated game in each review phase is optimal. These strategies

are denoted Ci and Di. Strategy Ci involves cooperation after almost all private histories in a

review phase, and strategy Di consists of defection after all histories of the review phase.

Player i creates incentives for his opponent to select from those strategies through a transition

rule that determines which strategy, Di or Ci, is chosen in the next review phase. The transition

rule depends on (1) player i’s strategy during the last review phase, and (2) his private history

during the last review phase. Effectively, the transition rule implements a reward function for

the review phase, provided by player i at the end of each review phase to reward or punish the

perceived behavior of his opponent. Thus this reward function, which we denote by W j
C when

Cj is played and by W j
D when Dj is played, creates incentives across review phases. Denote by

[Gj
D, G

j
C ] the range of rewards and punishments (i.e., continuation payoffs) that can be assigned

to player j by player i’s mixing between Di and Ci.
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We may thus focus on the T -finitely repeated game in which each player’s payoff is augmented

by a terminal reward that depends on his opponent’s private history. To ensure that both Ci and

Di are optimal, we construct pairs of strategies and reward functions (with range in [Gj
D, G

j
C ])

with the property that both the strategy Ci and Di are optimal in the T -finitely repeated game,

whether player j uses (Cj ,W j
C), or (Dj,W j

D). Efficiency in the repeated game will then be

achieved if, provided both players have used C1, C2 in a review phase, the reward for player i

must be arbitrarily close to its maximum Gi
C , so that both players use those strategies again in

the following phase, with probability arbitrarily close to one.

As explained below, our construction will not only be periodically belief-free, but also condi-

tionally belief-free: conditional on player j using the pair (Dj,W j
D), all strategies of player i in

the T -finitely repeated game will be optimal. This will only be feasible under some assumption,

namely, Assumption 1. But it will allow us to focus on the case in which player j uses the pair

(Cj ,W j
C), because player i might assume as well for the sake of computing his best responses.

Let us start by considering the cooperative strategy Cj and the reward functionW j
C . A natural

way for player j to reward player i is to compute a score of i’s performance that depends on

the signals that j receives. For instance, player j could count the number of times he received a

“good” signal about player i’s behavior. More generally, start with an assignment λj of signals yj

to real numbers, whose expected value is higher when player i cooperates than when he defects.

By adding up these values over all T periods, player j obtains a score that determines player

i’s reward: if higher scores lead to appropriately higher rewards, player i can be provided with

incentives to cooperate.

Suppose we try to guarantee that player i cooperates in every period of the review phase. In

order to motivate cooperation in every period after any private history hi
t, W

j
C must reward player

i even when he is extremely lucky and achieves the best possible scores. In expectation, such

a reward function will specify a reward O(T ) below the maximum (efficient) level Gi
C . Hence,

on average, player j will switch to Dj at the end of the review phase with probability bounded

away from zero, which destroys efficiency. So it is impossible for W j
C to induce cooperation in all

periods, yet guarantee efficiency. See the left panel of Figure 1.

As a solution, we “shift” the reward function up so that in expectation, for some 0 < k < 1

only a term of the order O(T k) in value is destroyed through transitions to Dj . That loss in

efficiency of O(T k) per T periods is negligible as T becomes large. See the center panel of Figure

1. We take k = 2/3 > 1/2 so that the probability that player i’s score, as computed by j, ever

exceeds the critical threshold is arbitrarily small. Below this threshold, incentives to cooperate
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Figure 1: Scores and rewards.

will be provided, but not above. For the purpose of this discussion, we refer to these two events

as Φj
t and ¬Φj

t . The event Φj
t corresponds to scores that have remained throughout below some

critical threshold so far, while ¬Φj
t gathers the histories of j according to which player i has

already “overperformed.” See the right panel of Figure 1. We hasten to add that the formal

definition of these events, provided in the next section, is somewhat more complicated, and the

reward function is actually not “flat” for scores above the threshold. Our informal discussion

here should be viewed as merely suggestive of the actual construction.

If signals were conditionally independent, players would never learn about their score. Because

we do not assume they are, players update their beliefs about their opponent’s private history, and

therefore about their own score, from their private history. This matters, because, as explained,

there are histories after which player j does not provide incentives for player i to cooperate.

There will be histories after which a player defects, given his inferences about his incentives.

There are at least two reasons for why player i cares about the possibility that player j

defects. First, it affects player i’s flow payoff, and so distorts player i’s incentives (perhaps he

will be motivated to take actions allowing him to prevent this from happening). Second, it affects

player i’s learning about his score, because player j’s action affects the distribution of signals.

This implies that, in general, player i cannot treat the signals that he receives as identically

distributed, and in fact, not even as independently distributed (because player j’s action in

period t depends on his previous signals).

If player j anticipates that his score is likely to be such that playing Cj is no longer optimal,

he will defect. If player i anticipates this, he might want to defect as well. Unravelling must be

prevented. This requires us to understand players’ inferences. To keep those manageable, we
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specify rewards in the event ¬Φj
T so that, for the sake of computing best-replies, player i may

condition on the event that hj
t is not yet in ¬Φj

t . And we make sure that player j never plays

Dj before this is the case.

To ensure that player i can condition on the event Φj
t , we specify W j

C so that, as soon as (if

ever) the history of player j belongs to ¬Φj
t , further variations to player i’s reward are computed

according to the bi-linear test, defined as follows.

Definition 1. Fix a collection of values K(aj, yj) ≥ 0 such that player i’s expected payoff

gi(aiaj)−
∑

yj

π(yj|aiaj)K(aj , yj)

is independent of aiaj. A bi-linear test assigned by player j rewards the constant −K(aj , yj)

whenever player j plays action aj and receives signal yj.

Under our assumption on π, such values can be found. If player j subtracts such a (appro-

priately discounted) constant from the terminal reward for each of the remaining periods, then,

conditional on this event, player i is indifferent over all action profiles; indeed, he is then indiffer-

ent over all sequences over action profiles for the remaining periods. More formally, define τ ≤ T

as the stopping time in the review phase such that hj
t ∈ Φj

t for all t ≤ τ and hj
τ+1 ∈ ¬Φj

τ+1.
4

Taking discounting into account, the “continuation” reward assigned by player j for periods τ+1

through T , as a function of his private history hj
T , will be

−δ−T
T
∑

t=τ+1

δtK(ajt , y
j
t ) (2)

where δ−T discounts the reward back to time T of the review phase. This specification of W j
C

allows us to condition on the event Φj
t .

Because player i can condition on the event Φj
t , and assuming for now that player j cooperates

on that event, player i can treat the signals that he receives as i.i.d. Given his inferences, will

he then find it optimal himself to cooperate as long as his history belongs to Φi
t? This is where

Assumption 2 plays a key role. It ensures both that player i’s score (about j) is a sufficient

statistic for his beliefs about j’s score about him, and that beliefs are contracting : player i

always believes that j’s score about him is closer to its mean than i’s score about j. See Figure

2. This guarantees that, as long as player i’s score about j is in Φi
t, he views it as extremely

unlikely that player j’s score about him will ever exit Φj
t , provided that he keeps cooperating.

Formally, we have:

4Let τ = T if hj
t ∈ Φj

t for all t ≤ T .
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Lemma 1. Under Assumption 2, for each j = 1, 2 there exists a collection of weights {λj(yj), yj ∈
Y j} with λj(yj) ∈ [0, 1], and a constant 0 < β < 1 such that

ECiCj [λj(yj)] > EDiCj [λj(yj)], (3)

and

ECiCj [λj(yj)|yi]− λ̄j = β(λi(yi)− λ̄i). (4)

where λ̄j :=
∑

yj∈Y j λj(yj)π(yj|C iCj) is the unconditional mean of λj.

We fix throughout the paper such a collection of weights λ1, λ2. The proof of this lemma is in

appendix. Condition (3) ensures that the weights are capable of motivating player i to cooperate

since the expected increase in the score j assigns is higher when i cooperates than when i defects.

Condition (4) ensures that, when both players are cooperating, given player i’s private signal,

his best predictor of the score assigned to him is a linear and increasing contraction of the score

i himself is assigning. It follows that λi(yi) is a positively correlated sufficient statistic for player

i’s beliefs about λj(yj).

There is another place where Assumption 2 plays a key role in our construction. If player

i conditions on player j using strategy Cj (as will be the case), but player j actually happens

to use Dj , player i’s score about j will be significantly lower than what i would have expected.

However, because the constant β is positive, and given the asymmetric structure of the reward

schemes W i
C ,W

j
C (which provides incentives for unusually low, but not high scores), player i still

expects player j’s score about him to be such that he will continue to cooperate almost always,

so that player i finds it optimal do so as well. In this way, the likely outcome of strategy Ci will

involve cooperation in almost all periods, whether player j uses strategy Cj or Dj.

We hope that this sketch will have provided the reader with some intuition regarding how

we can construct W i
C so as to ensure that playing C i as long as hi

t ∈ Φi
t is optimal. Of course,

this does not provide a full description of player i’s strategy Ci. This will require the application

of a fixed-point theorem. We have not explained either how we ensure that player i is actually

indifferent between such a strategy and the strategy Di that consists ni defecting always: the

flexibility that we have in defining the “slope” of the reward function will be the key, as explained

in Section 4.

So far, we have sketched how to ensure that both Ci and Di are best responses to (Cj ,W j
C).

How do we make sure that these are also best responses to (Dj,W j
D)? Because we do not know

Ci explicitly (its specification on the events ¬Φi
t, t ≥ 1, is unknown), it appears difficult to “fine-

tune” the reward function W j
D. This is why our construct is conditionally belief-free: we specify
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Figure 2: Player i’s beliefs about j’s score about him, given his score about j.

the reward function W j
D so that all strategies are best-replies to (Dj,W j

D). This means that

W j
D is very similar to the bi-linear test, but it is not quite the same: because player j plays the

constant action D, it is not necessary for the constants to ensure that player i is indifferent across

all action profiles, but only across those in which player j plays D. When player j follows Dj, he

rewards player i a constant amount Ki
D for each signal ŷj received (as identified in Assumption

1; fix one if several such signals exist). The value of Ki
D is chosen to make player i just indifferent

between cooperating and defecting when player j defects. This is the linear test, defined next.

Definition 2. A linear test rewards a constant Ki
D(ŷ

j) ≥ 0 for each signal received that is equal

to ŷj, where Ki
D(ŷ

j) satisfies

gi(C iDj) + π(ŷj|DjC i)Ki
D(y

j) = gi(DiDj) + π(ŷj|DjDi)Ki
D(y

j). (5)

Under Assumption 1, a linear test exists. We choose the reward function W j
D to be a linear

test. Let (1− δ)GD be equal to the expected per-period payoff of player i when facing this linear

test, i.e. (1− δ)GD = gi(DiDj)+π(ŷj|DjDi)Ki
D(ŷ

j). Formally, taking discounting into account,

we can write the reward function W j
D as

W j
D(h

j
T ) = Gi

D +Ki
D

T
∑

t=1

δt−T 1(yjt = ŷj), (6)
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where hj
T is player j’s private history during the review phase, and 1(yjt = ŷj) is the indicator

function that yjt , the time-t signal in history hj
T , is equal to ŷj.

Notice that the linear test rewards player i on average even if he defects in every period. As a

result, when player j is punishing player i by playing Dj , player i’s expected payoff Gi
D is bounded

strictly above gi(DiDj)/(1 − δ). Assumption 1 is needed to ensure that this construction still

leaves room to punish player i, i.e. that the resulting rents are such that Gi
D < gi(C iCj)/(1−δ) ∼

Gi
C . See Figure 3.

We now turn to the formal construction. All proofs are in appendix.

4 Formal Statements

4.1 Inferences

Efficiency requires that players have incentives to play C almost always, and that provided they

do, they expect to receive a reward (continuation payoff from the end of the phase onward)

arbitrarily close to the maximum reward. As explained above, this means that they cannot be

given incentives to always exert effort.

To achieve this, we specify that this reward be increasing in the appropriate score, but only

up to a point. The range of scores over which this reward provides incentives must include the

average score that a player receives if he keeps on cooperating. In fact, it should include all

scores that are likely to arise if he does. That is, incentives should be provided for all scores that

extend above the average score within a bound that is small relative to the length of a phase (so

as to ensure that the expected reward is close to the maximum reward) but large relative to all
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but the most unlikely statistical deviations from the mean score (so as to preserve incentives to

cooperate almost always). To be concrete, a “slack” of order T 2/3 will do.

What is the appropriate score? Obviously, this score should be higher, on average, if a player

cooperates than if he defects. Assumption 2 provides us with such a measure, λi, that satisfies a

further property to be discussed shortly. However, because players do not cooperate after every

history, there might be a value to learning about own’s performance, and just because defecting

leads to a lower expected score does not imply that the player’s belief about his own score when

he has defected will be first-order stochastically dominated by his belief about his performance

when he has cooperated. This stronger, but desirable property need not hold in general. But it is

easy to construct an alternative score which does. Instead of using λi(·) as the actual increment

to a player’s score, we might use this as the probability with which the increment to the score is

1, rather than 0. The (real-valued) sum of the former values is referred to as the virtual score,

while the latter (integer-valued) sum of values is what we call the real score. Because increments

in the real score are either 0 or 1, a higher expected increment necessarily corresponds to an

improvement in the sense of first-order stochastic dominance.

A shortcoming of real scores, as opposed to virtual scores, is that player i’s real score about

j is no longer a sufficient statistic for i’s belief about j’s score about i. But it is easy enough to

make sure that one measure tracks the other measure closely enough. We simply focus attention

on the likely event in which the real and virtual scores are close to one another (say, within a range

of order T 7/12, which makes it a very likely event) and specify rewards in the complementary,

unlikely event in a way that allows players to view such events as irrelevant for the purpose of

computing best-replies.5

This leads to the following definitions. Given hi
t, the virtual score is

Λi
t :=

t
∑

τ=3

λi
(

yiτ
)

,

and the real score is

Li
t :=

t
∑

τ=3

liτ ,

where {liτ : τ = 3, . . . , t} are independent Bernoulli random variables with mean λi (yjτ ). [Observe

that the summations start at τ = 3: as explained in Subsection 4.2, the first two periods of a

5The rate 7/12 is smaller than 2/3, ensuring that this slack is negligible relative to the slack defined above,

but this is unimportant.
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Strategy Period 1 Period 2 . . . Period t . . . Period T

C1 C 1
2
C + 1

2
D . . . mostly C . . . mostly C

C2 1
2
C + 1

2
D C . . . mostly C . . . mostly C

Figure 4: Strategies C1 and C2.

round play a special role in our construction.] Let λ̄i denote the expected value of λi, conditional

on both players cooperating.

We now introduce the three events of interest. The first, Φ′i
t , denotes the set of histories along

which player i’s observed signals about j lead to a real score that does not exceed the average

score up to this period by more than the margin T 2/3. The second, Φ′′i
t , refers to the histories

along which real and virtual scores remain within T 7/12 of one another. Finally, Φi
t is the set of

histories satisfying both requirements.

Definition 3. For all t = 1, . . . , T , let

Φ′i
t :=

{

hi
t ∈ H i

t : L
i
τ ≤ τ λ̄i + T 2/3 for all τ ≤ t

}

,

Φ′′i
t :=

{

hi
t ∈ H i

t :
∣

∣Li
τ − Λi

τ

∣

∣ ≤ T 7/12 for all τ ≤ t
}

,

Φi
t := Φ′i

t ∩ Φ′′i
t .

We now provide bounds on the relevant conditional probabilities of interest. These probabil-

ities are predicated upon the assumption that the players’ strategies belong to a particular class.

Formally, we introduce

Definition 4. Given the events {Φj
t ∀t ≤ T}, a T -period strategy of player j is from the class

Zj if it satisfies the following conditions:

1. In period j ≤ 3, player j plays C.

2. In period 3− j ≤ 3, player j plays C with probability 1/2 and D with probability 1/2.

3. In periods t = 3, . . . , T , player j plays C so long as hj
t ∈ Φj

t

4. The action specified after hj
t does not depend on the real score Lj

t .

The motivation for the first and second point will be provided in Subsection 4.2. This

definition is summarized in Figure 4.

The main statistical properties that will be needed are the following.
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Lemma 2. There exists α > 0 such that, for all t = 1, . . . , T :

(i) conditional on both players using a strategy from Z i,

Pr
[

¬Φi
T

]

< α−1e−Tα

,

(ii) for all hi
t ∈ Φi

t, conditional on both players using a strategy from Z i,

Pr
[

¬Φj
T |hi

t

]

< α−1e−Tα

,

(iii) for all hi
t ∈ H i

t , if j uses a strategy from Zj, and player i always defects, for all τ =

t, . . . , T ,

Pr
[

¬Φ′′j
τ |hi

t,Φ
j
t

]

< α−1T−α.

The first bound ensures that cooperation is played in almost all periods. The second result

ensures that, as long as player i’s score about j remains in the event Φi
t of interest, he keeps

assigning a probability arbitrarily close to one to his opponent’s history belonging to this event,

and remaining in it for all later periods –as long as both players keep cooperating on Φi
t. That

is, player i is almost sure that his opponent will cooperate in all remaining periods, and that

his own score observed by his opponent will not exceed the critical threshold. This is where

Assumption 2 is really needed. Because player i’s belief about j’s score about him is always

closer to its mean than i’s score about j, player i views it as extremely unlikely that j’s score

about him will ever be outside Φj
t if his own score about j is not.

The final property ensures that the event Φ′′
t can also be ignored as relevant when player i

defects, and this will be convenient when we shall show that defecting throughout is also a best

response.

4.2 Incentives

By now, it should be clear how incentives will be provided for player i to cooperate as long as

his score (about j) is in Φi
t, if he expects j to play the cooperative strategy Cj (that cooperates

for every history in Φj
t ). Indeed, it suffices for this that the reward be increasing in the score (as

long as this score remains in Φj
t ) at a rate that is strictly higher than the disutility of cooperating

given that j cooperates, normalized by the difference (across actions) in the expected score. We

can then pick the phase length to be large enough to make any other consideration (such as

the possibility that a player’s score leaves Φi
t) irrelevant. Similarly, if the slope is strictly lower,

it is optimal to defect. In fact, always defecting would then be optimal, because there would
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be no history of player j after which he would give i strict incentives to cooperate. Remember

that our objective is to construct strategies that are belief-free from one round to the next: in

particular, we must ensure that both the strategies Ci, to be defined, must be best responses to

both (Cj ,W j
C) and (Dj,W j

D). The strategy Ci will belong to the class Z i, but we shall not be

able to describe its exact specification. The strategy Di plays D always.

This raises two issues. First, to compute his best-responses, we shall find it convenient to

specify W j
D so that player i can condition on player j using strategy Cj (rather than Dj). Second,

we must ensure that player i is not only willing to play the cooperative strategy against (Cj ,W j
C),

but is actually indifferent between Ci and Di.

The first issue is easy to take care of. Because Dj specifies defection always, and applies the

linear test that makes player i indifferent across his own actions (given j’s fixed action), player

i might ignore this event, given that all strategies are equally good in that case. As explained

above, the linear test is inefficient, because it treats signals independently, and thus fails to

aggregate information, providing thereby a non-negligible reward to a player who in fact always

defects. Assumption 1 is precisely what guarantees that the average payoff of player i when j

plays Dj is still less than the efficient payoff gi(C iCj). Recall that in Section 2 we introduced

the linear reward function:

W j
D(h

j
T ) = Gi

D +Ki
D

T
∑

t=1

δt−T1(yjt
(

hj
T

)

= ŷj), where (1− δ)Gi
D = gi(DiDj) +Ki

Dπ(ŷ
j|DjDi).

We may now state the following.

Proposition 1. Suppose that T = O((1 − δ)−1/2). If player j is playing the strategy Dj of

defecting in every period and assigns to player i the reward function W j
D, then:

(i) player i is indifferent between all T -period strategies;

(ii) it holds that

lim
T→∞

(1− δ)Gi
D < gi(C iCj).

The second point motivates some finer points of our construction. Of course, we could also

choose the rate which higher rates get rewarded (under (Cj,W j)) to increase at exactly the

right rate that makes player i indifferent in the initial period between cooperating and defecting.

However, this would imply that, no matter how unlikely the event Φj
t might be, the possibility

that it might realize will still enter player i’s calculations regarding player i’s optimal choice in,

say, the second period of the phase (because he was exactly indifferent in the first). In particular,

17



the signal that he receives in the first period might outweigh the action that he played, and he

might find it optimal to switch from cooperation to defection, or vice-versa. This, of course, is

not consistent with our desired specification of Ci, or Di, and this is avoided as follows.

To make sure player i’s initial action reinforces his incentives to take the same action in later

periods, we make the rate at which j rewards i’s score contingent on the signal that he receives

(and the action he plays) in the initial periods. This is done such that player i’s belief about

this rate be (i) independent of i’s own signal in that initial period, and (ii) above the critical

threshold if he cooperated, and below it if he defected. If these rates are determined sequentially

(say, the rate at which player i will be rewarded is determined in period i while player j 6= i

randomizes in the period in which i’s rate gets determined), the possibility of finding such rates

is ensured by the full rank assumption. Indeed, let

M̃ :=































π(Cjyj1|C iyi1) . . . π(CjyjN |C iyi1) π(Djyj1|C iyi1) . . . π(DjyjN |C iyi1)
...

...
...

...

π(Cjyj1|C iyiN) . . . π(CjyjN |C iyiN) π(Djyj1|C iyiN) . . . π(DjyjN |C iyiN)

π(Cjyj1|Diyi1) . . . π(CjyjN |Diyi1) π(Djyj1|Diyi1) . . . π(DjyjN |Diyi1)
...

...
...

...

π(Cjyj1|DiyiN) . . . π(CjyjN |DiyiN) π(Djyj1|DiyiN) . . . π(DjyjN |DiyiN)































,

computed under the assumption that player j randomizes equally between Dj and Cj. Note that

the first N rows are player i’s beliefs, conditional on each of his possible signals, about player j’s

action-signal pair in that period, when i himself plays C i. The last N rows are his corresponding

beliefs when he plays Di. The following lemma states that weights can be found, which depend

on player j’s action-signal pair, so that player i’s posterior belief about the expected weight does

not depend on his private signal, but differs according to the action that he played (at least when

the difference in those expected weights is low enough).

Lemma 3. For any bC ∈ R, there exists ε̄ > 0 and κ > 0 such that, for all ε ∈ (0, ε̄), if
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biD ∈ (biC − ε, biC + ε), then the system

M̃

























b(Cjyj1)
...

b(CjyjN)

b(Djyj1)
...

b(DjyjN)

























=

























biC
...

biC

biD
...

biD

























, (7)

has a solution b(ajyj) ∈ (biC − κε, biC + κε) for aj ∈ {Dj, Cj} and yj ∈ Y j.

We may now state:

Proposition 2. Suppose that T = O((1− δ)−1/2), and fix ε > 0. For any strategy of player j in

Zj, we can define a reward function W j
C such that:

(i) the maximum over all T -period strategies of player i

Gi
C := maxE

[

T
∑

s=1

δs−1gi(aisa
j
s) + δTW j

C(h
j
T )

]

is achieved by both a strategy from class Z i, and by Di.

(ii) it holds that

lim
T
(1− δ)Gi

C > gi(C iCj)− ε.

Note: This reward function is defined explicitly in Definition 5 in the proof of this proposition

(in the Appendix).

It follows from these two propositions that, given some strategy Cj from class Zj, and given

Dj, we can find W j
C ,W

j
D such that both Di and some strategy from class Z i are best responses.

Furthermore, if player j uses (Cj ,W j
C), player i’s average payoff from playing either best response

is arbitrarily close to his efficient payoff gi(C iCj), when the horizon is long enough, while his

average payoff is bounded below this level if player j uses (Dj,W j
D).

4.3 Defining Strategies within a Phase

If player i knew that j’s score about i lay outside of Φj
t , player j’s action would be of no

importance, given that the bilinear test makes player i indifferent over all action profiles. In fact,
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player j’s behavior outside of Φj
t is irrelevant for i’s inferences, given i’s history, and player imight

as well condition on player j cooperating always. Nonetheless, this behavior still affects player

i’s overall payoff in the phase, because it affects the probability with which each of i’s private

histories realizes. Therefore, the exact definition of the reward function that j uses depends on

j’s entire strategy Cj (not just on its restriction to Φj
t ), and of course, this definition must also

depend on Ci if it is to make player i precisely indifferent between the strategies Ci and Di.

This implies that strategies (Ci, Cj) and reward functions (W i,W j) must be defined jointly,

and such a definition requires the application of a fixed-point theorem. However, in the ap-

plication of a fixed-point theorem, there is a key observation that allows us to focus simply on

correspondences between pairs of strategies, rather than both strategies and reward functions. As

discussed in the proof of Proposition 2, we can define a set of reward functions W j
C parametrized

by a constant c̄j such that for any given strategy Cj there is a unique reward function in that set

that makes player i indifferent between following a strategy from class Z i and strategy Di.

Applying Kakutani’s fixed-point theorem leads us to the following proposition.

Proposition 3. For all sufficiently large T , there are reward functions W i
C and T -period strate-

gies Ci from class Z i for i = 1, 2, such that both Di and Ci are best responses to both (Ci,W i
C)

and (Di,W i
D), for i = 1, 2. These strategies and reward functions satisfy the conclusions of

Propositions 1 and 2.

4.4 The Equilibrium of the Supergame

It remains to specify what strategies players use in the supergame. This part of the construction

is standard. The infinite horizon is divided in review phases of length T , and in each of those

phases players use either Ci or Di as a function of their private history, so as to achieve the

promised continuation payoff to their opponent. More precisely, to achieve efficiency, players use

Ci in the first round, and from that point on, given the reward W i
C or W i

D that is promised at

the end of a given phase, they randomize at the beginning of the next between both strategies

so as to achieve the exact payoff in [Gi
D, G

i
C ] that is needed. Of course, by varying the choice of

the strategy chosen in the initial period, every payoff in the square [G1
D, G

1
C ]× [G2

D, G
2
C ] can be

achieved. This is formally established in the following proposition.

Proposition 4. Suppose that for i = 1, 2 and some T > 0, there are T -period strategies Ci

and Di and reward functions W i
C : HT → [Gj

D, G
j
C] and W i

D : HT → [Gj
D, G

j
C ] that satisfy the

following conditions.

20



First, when player j = 1, 2 is following strategy Cj , then

Gi
C = maxE

[

T
∑

s=1

δs−1gi(aisa
j
s) + δTW j

C(h
j
T )

]

, (8)

where the maximum, taken over all T -period strategies of player i, is achieved by both Ci and Di.

Second, when player j is following strategy Dj, then

Gi
D = maxE

[

T
∑

s=1

δs−1gi(aisa
j
s) + δTW j

D(h
j
T )

]

, (9)

where the maximum, taken over all T -period strategies of player i, is again achieved by both Ci

and Di.

Then any pair of payoffs (w1, w2) ∈ [G1
D, G

1
C ] × [G2

D, G
2
C ] is achievable by a sequential equi-

librium of an infinitely repeated game with discount factor δ.

Our main result, Theorem 1, follows from Propositions 3 and 4.

5 Concluding Comments

This paper has established that efficiency can be achieved under imperfect private monitoring

under certain conditions. Our result, then, raises three questions: (i) can the two assumptions

be weakened? (ii) can the result be strengthened to a folk theorem? (iii) can the analysis be

extended to a broader set of games?

Our construction, as much of the constructions in the repeated games with imperfect moni-

toring literature is belief-free by blocks in the following sense: during each block of size T , each

player i is indifferent between two strategies Ci and Di, whether the opponent, player j, plays

Cj or Dj. This type of construction was first applied successfully by Matsushima (2004) under

a conditional independence assumption, with Ci and Di playing the constant action C and D

respectively. Without conditional independence, it is not possible to have Ci play C constantly

against Cj while maintaining efficiency. The reason for this is that in order to provide incentives

for Ci to play C after any history of signals, the highest reward provided must be significantly

larger than the average reward, which implies that the average reward must be significantly lower

than the efficient payoff. Since not much is known a priori about Ci and we need that it is a

best response to Dj, we ensure that every strategy is a best-response to Di. This entails a lower

bound on achievable payoffs in our construction, and Assumption 1 ensures that this restriction
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still does not rule out the efficient payoff. Relaxing Assumption 1 would require a construction in

which Di together with its reward scheme is tailored to Ci. The system of algebraic inequalities

stating that an arbitrary strategy Ci is a best-response both to Cj and to Dj does not appear

easier to satisfy than the corresponding system of equalities, which was our starting point. In

order to pursue this relaxation of Assumption 2, one needs to rely more deeply on some informa-

tion on Ci. Preliminary research suggests that one can construct reward schemes in order that

Ci is a trigger strategy, but much works remains to be done in that direction.

We can obtain asymmetric payoffs that give one of the two players a payoff above gi(C iCj) by

following the same methods as in Ely, Hörner and Olszewski (2005). Here is a sketch. Suppose

that, in some fixed review phases that are regularly intersparsed among phases that are otherwise

identical to those described above, players are not both supposed to be indifferent between Ci

and Di. Rather, in those phases, player 2, say, has a strict incentive to play D2, while player

1 is indifferent between C1 and D1.6 Because player 2 does not need to be willing to play a

cooperative strategy, the reward function W 1
D that is then used by player 1 need not be the

linear test, so that this regime (in the sense of Ely, Hörner and Olszewski, 2005) is associated

with a range of payoffs for player 2 that tends to [g2(D1D2)/(1− δ), g2(C1D2)/(1− δ)] as δ → 1.

We must, however, make an assumption that parallels Assumption 2, obtained by replacing all

references to the matrix M i by the matrix M̂ i = (π(yj|C1D2, yi)yiyj . For player 1, then, this

regime is associated with continuation payoffs that are not sustainable per se, as player 1 can

secure g1(D1D2), yet he must be willing to play in a way that gives him a flow payoff equal to

g1(C1D2). As in Ely, Hörner and Olszewski (2005), we must then make sure that the relative

frequency of both types of regimes is such that the average of what a player i can secure across

blocks (his lowest continuation payoff) is below what his opponent can make sure that player i

gets, for some optimal strategy of player j. This puts an upper bound on the relative frequency

of the asymmetric regime in which player 2’s optimal strategy is D2, namely, from the constraint

on player 1’s range of equilibrium payoffs, it cannot exceed

g1(C1C2)− limδ(1− δ)G1
D

g1(C1C2)− g1(C1D2) + g1(D1D2)− limδ(1− δ)G1
D

,

which is in (0, 1). Indeed, the resulting payoff vector lies on the Pareto-frontier, and gives player

1 a payoff strictly below G1
D. If the limit of (1 − δ)G1

D were precisely equal to g1(D1D2), this

would give us the folk theorem, but as it stands, only a subset is obtained.

Obviously, the third question is more ambitious. Given that we do not yet have a character-

6Of course, the strategy C1 need not be exactly the same than in our current construction.
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ization of the set of individually rational payoffs in general (see Gossner and Hörner, 2010, for

some results in this direction), the case of two players appears to be the best place to start.7

7Alternatively, one may want to start with signal structures that are sufficiently rich, as in Sugaya (2010).
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A Appendix

A.1 Proof of Lemma 1

Let λ
′1 be an eigenvector of M1M2 associated to the eigenvalue β0 > 0 as in Assumption 2.

First we show that β0 < 1. Since M1M2 is a stochastic matrix, β0 ≤ 1. Since M1 and M2

are stochastic, the only eigenvectors of M1M2 associated to the eigenvalue 1 are multiples of

the constant vector 1n, but this case is excluded by the requirement that the expectation of λ
′1

under C1C2 is higher than under C1D2.

Let β =
√
β0, and λ

′2 = βM2λ
′1. For i, j = {1, 2}, M jλ

′i = βλ
′j . With A = mini∈1,2minai λ

i
yi

and B = maxi∈1,2maxai(λ
i
yi −A) > 0, we let λi(yi) =

λi
yi
−A

B
.

Now we verify that the families of weights λ1, λ2 satisfy the requirements of Lemma 1. First,

their definition ensures λi(yi) ∈ [0, 1] for every i and ai. Second, from Assumption 2,

ECiCj [λj(yj)] =
1

B
(ECiCjλ

′j
yj
− A) >

1

B
(EDiCjλj

yj
− A) = EDiCj [λj(yj)].

Finally, let λi, i = 1, 2 denote the (1, n) matrix given by λi
yi = λi(yi), and let Ei

C be the (1, n)

matrix defined by Ei
C,yi = ECiCj [λj(yj)|yi] =

∑

yj M
i
yi,yjλ

j
yj . In matrix notation:

Ei
C = M iλj = M i 1

B
(λ

′j − A1n)

=
β

B
λ

′i − A

B
1n = β

1

B
(λ

′i − A1n) + (β − 1)
A

B
1n

= βλi + (β − 1)
A

B
1n.

Hence for every yi:

ECiCj [λj(yj)|yi] = βλi(yi) + (β − 1)
A

B

ECiCj [λj(yj)|yi]− λ̄j = β(λi(yi)− λ̄i) + (β − 1)
A

B
+ βλ̄i − λ̄j. (10)

Note that λ̄j = ECiCj [ECiCj [λj(yj)|yi]], and λ̄i = ECiCj [λi(yi)]. Taking expectations over yi in

(10) gives:

(β − 1)
A

B
+ βλ̄i − λ̄j = 0,

and (10) becomes

ECiCj [λj(yj)|yi]− λ̄j = β(λi(yi)− λ̄i),

which is the desired result.
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A.2 Proof of Lemma 2

The proof of Lemma 2 relies on the following large deviations result, see e.g.Alon and Spencer

(2008).

Lemma 4. Let y1, . . . yn be a mutually independent family of random variables with E[yi] = ȳi

and |yi − ȳi| ≤ 1. Then, for every a > 0

Pr[
n

∑

t=1

yt >
n

∑

t=1

ȳt + a] ≤ e−
a2

2n .

We first estimate Pr[¬Φ′′i
T |hi

T ] = Pr[¬Φ′′i
T |hi

Th
j
T ], for any hi

T , h
j
T . From Lemma 4 above, for

any τ ,

Pr[
∣

∣Li
τ − Λi

τ

∣

∣ > T 7/12] ≤ 2e−
1

2
T 2/12

.

Hence

Pr[¬Φ′′i
T |hi

T ] ≤ 2Te−
1

2
T 2/12

. (11)

Note that the probabilities in (i) and (ii) of the Lemma are unchanged if each player plays the

constant strategy that specifies C after all histories. We therefore estimate these probabilities

under this assumption.

Proof of (i) From Lemma 4,

Pr[∃τ, Li
τ > τλ̄i + T 2/3] ≤ Te−

1

2
T 1/3

.

Combining with (11) we obtain

Pr[¬Φi
T ] ≤ 3Te−

1

2
T 2/12

.

Proof of (ii) Conditional on hi
t ∈ Φi

t, the distribution of λj
1, . . . , λ

j
t is the one of mutually

independent random variables. From Lemma 1, for any τ ≤ T

E[Lj
τ |hi

t] =
∑

t′≤max(τ,t)

[λ̄j + β(λi
t − λ̄i)] + (τ − t)+λ̄j

≤ τ λ̄j + βτT 2/3.

From Lemma 4,

Pr[Lj
τ > τλ̄j + T 2/3] ≤ e−(1−β)2T 1/3

,
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and combining with (11)

Pr
[

¬Φj
T |hi

t

]

≤ Te−(1−β)2T 1/3

+ 2Te−
1

2
T 2/12

.

Proof of (iii) For any hi
t, h

j
t we decompose

Pr[Φ′′j
τ |hi

t, h
j
t ] = Pr[Φ′′j

t |hi
t, h

j
t ] Pr[Φ

′′j
τ |hi

t, h
j
t ,Φ

′′j
t ] + Pr[¬Φ′′j

t |hi
t, h

j
t ] Pr[Φ

′′j
τ |hi

t, h
j
t ,¬Φ′′j

t ].

For t ≤ τ , Pr[Φ′′j
τ |hi

t, h
j
t ,¬Φ′′j

t ] = 0, hence

Pr[¬Φ′′j
τ |hi

t, h
j
t ,Φ

′′j
t ] ≤ Pr[¬Φ′′j

τ |hi
t, h

j
t ] ≤ 2Te−

1

2
T 2/12

.

Now,

Pr[¬Φ′′j
τ |hi

t,Φ
j
t ] =

∑

hj
t∈Φ

j
t

Pr[hj
t |hi

t,Φ
′′j
t ,Φj

t ] Pr[¬Φ′′j
τ |hi

t, h
j
t ,Φ

′′j
t ] ≤ 2Te−

1

2
T 2/12

.

Hence the result.

A.3 Proof of Lemma 3

Note that M̃ is stochastic, i.e. if U denotes the unit vector, M̃U = U . Also, M̃ is generically (in

the monitoring structure) invertible. Let V be such that M̃V has its N first components equal

to 0, and its N last equal to 1. Then, biCU + (biD − biC)V satisfies equation 7. For biD sufficiently

close to biC , all coefficients of biCU + (biD − biC)V are strictly positive.

A.4 Proof of Proposition 1

For any T -period strategy of player i, his expected total payoff is

E

[

T
∑

s=1

δs−1gi(aisD
j) + δTW j

D(h
j
T )

]

= E

[

T
∑

s=1

δs−1(gi(aisD
j) +Ki

D 1(yjs = ŷj))

]

+ δTGi
D

=

T
∑

s=1

δs−1(gi(DiDj) +Ki
D π(ŷj|DiDj)) + δTGi

D = Gi
D,

because the expectation of gi(aisD
j) +Ki

D 1(yjs = ŷj) is the same regardless of whether player i

cooperates or defects in period s (by the definition of Ki
D). Therefore, any T -period strategy of

player i is an optimal response. Notice that

Gi
D =

gi(DiDj) +Ki
D π(ŷj|DjDi)

1− δ
.
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Now, from Assumption 1, we have the following:

π(ŷj|DjDi)(gi(C iCj)− gi(C iDj)) < π(ŷj|DjC i)(gi(C iCj)− gi(DiDj)) ⇒

gi(DiDj)π(ŷj|DjC i)− gi(C iDj)π(ŷj|DjDi) < gi(C iCj)(π(ŷj|DjC i)− π(ŷj|DjDi)) ⇒

Gi
D =

gi(DiDj) +Ki
Dπ(ŷ

j|DjDi)

1− δ
=

gi(DiDj)π(ŷj|DjC i)− gi(C iDj)π(ŷj|DjDi)

(1− δ)(π(ŷj|DjC i)− π(ŷj|DjDi))
<

gi(C iCj)

1− δ
.

A.5 Proof of Proposition 2

We begin by defining the reward functions. To do so, we first define a linear test Ki
C by

gi(C iCj) + π(ŷj|CjC i)Ki
C = gi(DiCj) + π(ŷj|CjDi)Ki

C ,

where i gets an additional Ki
C when yj = ŷj such that i is indifferent between both actions if j

plays Cj. Also, recall the function K(·) from Definition 1 of the bi-linear test.

Definition 5. Given ε ∈ (0, ε̄/2), let

biC := bi0 + ε, biD := bi0 − ε,

where bi0 :=
gi (DiCj)− gi (C iCj)

∑j
y (π (yj|CjC i)− π (yj|CjDi)) λ (yj)

,

and let b(ajyj) denote the corresponding solution of equation (7) whose existence is shown in

Lemma 3.

We define the reward function W j
C that player j uses to reward player i = 3−j while following

a strategy Cj from class Zj as

W j
C(h

j
T ) = c̄j1

(

yj3−j = ŷj
)

+δj−TKi
C1

(

yjj = ŷj
)

+
τ j
∑

t=3

b(aj3−jy
j
3−j)1

(

ljt = 1
)

−δt−T
T
∑

t=τ j+1

K
(

ajty
j
t

)

,

where

τ j =
{

inf t : hj
t+1 ∈ ¬Φj

t+1

}

is the random stopping time at which player j’s history first leaves Φj
t , and c̄j is a constant that

depends on Cj.

Let Wj
C denote the set of reward functions satisfying the above.
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We select c̄j as follows. Observe that given player i’s first action and signal (hi
1i = (aii, y

i
i)),

and given player j’s strategy, player i’s optimal continuation strategy in the T -stage repeated

game is independent of the specification of c̄j (since the latter depends only on yj3−j). We pick

the unique c̄j such that player i is just indifferent between playing C i and Di in period i, given

that player j randomizes equally between both actions in that period (i.e. follows a strategy

from Zj). Observe that, because all values of b(ajiy
j
i ) are within 4κε of each other, if the event

hj
t ∈ ¬Φj

t is arbitrarily unlikely under the optimal strategy, then the value of c̄j is of the order

εT .

We now check the three claims whose validity the proposition asserts. Throughout, fix a

strategy sj in Zj.

Claim: Some strategy in Z i is optimal. The indifference in periods 1 and 2 follows from

the definition of W j
C , so let us assume that player i has played C in period i, and let us show

that it is optimal to play C for hi
t ∈ Φi

t, for all periods t ≥ 3. Let us define W ′j
C as

W ′j
C

(

hj
T

)

= δj−TK3−j
C 1

(

yjj = ŷj
)

+ cj
(

yj3−j

)

+
T
∑

t=3

b(aj3−jy
j
3−j)1

(

ljt = 1
)

,

and s′j as the strategy in Zj that cooperates in every period t ≥ 3. That is, W ′j
C and W j

C only

differ in the specification of the rewards on the event ¬Φj
t . Because of the definition of K, it

follows that the payoff of any given strategy si against s′j and W ′j
C

(

hj
T

)

is weakly higher than

against sj and W j
C

(

hj
T

)

. Because player i has played C in period i, and the expected value of

b(Aj
iy

j
i ) conditional on C is biC (independently of i’s signal in period i) a continuation strategy

si|hi
t is optimal against s′j and W ′j

C

(

hj
T

)

if it is optimal against

W ′′j
C

(

hj
T

)

=
T
∑

t=3

biC1
(

ljt = 1
)

,

and since biC > bi0, it follows that the unique continuation strategy that is optimal against s′j

and W ′j
C

(

hj
T

)

consists of playing C after history hi
t. Furthermore, the gain from playing C rather

than D is bounded away from 0, because biC > bi0, independently of T . Observe now that, because

Pr
[

¬Φj
T |hi

t

]

< e−Tα
for hi

t ∈ Φi
t, the continuation payoff from playing s′i (i.e. playing C always)

against s′j and W ′j
C

(

hj
T

)

, after a history hi
t ∈ Φi

t, tends to the continuation payoff against sj and

W j
C

(

hj
T

)

. That is, for T large enough, playing C after history hi
t ∈ Φi

t is optimal against sj and

W j
C

(

hj
T

)

.

Claim: The strategy Di in Z i that plays D in every period is optimal. The indif-

ference in periods 1 and 2 follows from the definition of W j
C , so let us assume that player i has
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played D in period i, and let us show that it is optimal to play D for hi
t ∈ Φi

t, t ≥ 3. For this

case, we define W ′′′j
C as:

W ′′′j
C

(

hj
T

)

=

τ̃1
∑

t=3

bD1
(

ljt = 1
)

−
T
∑

t=τ̃1+1

δt−TK
(

ajty
j
t

)

,

where τ̃ j :=
{

inf t : hj
t+1 ∈ ¬Φ′j

t+1

}

. That is, the only differences between W ′′′j
C and W j

C are (i)

the coefficient biD which replaces b
(

aj3−jy
j
3−j

)

and (ii) the region which triggers the bi-linear test;

in the case of W j
C , it is once hj

T leaves the region Φj
t+1; in the case of W̃ j

C , it is when hj
T leaves

the region Φ′j
t+1 –a subset of Φj

t+1. Observe that replacing b
(

aj3−jy
j
3−j

)

by biD does not change the

incentives of player i, because biD is the expected value of b
(

aj3−jy
j
3−j

)

, conditional on i having

played D in period i, independently of his signal in period i.

Observe that i’s optimal continuation strategy against s′j and W ′′′j
C , conditional on the event

hi
t ∩Φj

t , for any hi
t ∈ H i

t , consists in playing D always: indeed, the distribution of τ̃ j conditional

on D always is (weakly) first-order stochastically dominated by the distribution of τ̃ j conditional

on any other continuation strategy. Second, in any period in which hj
t ∈ Φj

t , and thus hj
t ∈ Φ′j

t ,

the gain from playing D rather than C in the immediate period is bounded away from 0, because

bi0 > biD.

Observe now that, because Pr
[

Φ′j
τ ∩ ¬Φ′′j

τ |hi
t,Φ

j
t

]

< T−α as long as players have played DiCj

in all periods t′ = 3, . . . , t, the distribution of τ j conditional on the event hi
t ∩ Φj

t (given sj)

approaches the distribution of τ̃ j (given s′j). So the payoff from playing against sj and W j
C tends

to the payoff against s′j and W ′′′j
C as T → ∞. It follows that playing D is optimal for player i in

period t = 3, and recursively, for any t ≥ 3.

Claim: The payoff of player i is asymptotically efficient. We must show that, as

T → ∞,

(1− δ)Gi
C → gi(C iCj).

As we have observed, ci is of order Tε, and so is
∑T

t=3 (b (a
iyi)− bi0) , for all ai = C,D and

yi ∈ Y i. Finally, since playing some strategy from Z i is optimal, Pr [¬Φi
T ] < e−Tα

. Therefore,

since (1− δ) T → 0, and rescaling ε > 0 if necessary,

(1− δ)Gi
C > gi(C iCj)− ε.

A.6 Proof of Proposition 3

We will use Kakutani’s fixed point theorem to prove Proposition 3.
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Fix some strategy Ĉj ∈ Zj, and some ǫ ∈ (0, ǭ
2
). Consider the set of reward functions Wj

C

defined by Definition 5 in the proof of Proposition 2. We know we can parametrize those reward

functions by c̄j and find a c̄ such that if c̄j > c̄ then i’s best response is some Ĉi ∈ Z i, and if

c̄j < c̄, i’s best response is D̂i.8

Consider the lowest value of c̄j for which at least one strategy from Z i is at least as good as

D̂i in response to Ĉj . For that value of c̄j , denote by Φi(Ĉj) the set of all such strategies from

class Z i. By continuity of payoffs in strategies, Φi(Ĉj) is nonempty and player i is indifferent

between any strategy in Φi(Ĉj) and D̂i. By linearity of payoffs in mixed strategies (here we think

about mixtures over pure strategies from Z i), the set Φi(Ĉj) is convex.

Let us prove that the correspondence Φi is upper hemi-continuous. Consider sequences Ĉi
n →

Ĉi and Ĉj
n → Ĉj such that Ĉi

n ∈ Φi(Ĉj
n) for all n. Let us show that Ĉi ∈ Φi(Ĉj). Denote by c̄jn

the lowest value of c̄j for which Ĉi
n is at least as good as D̂i in response to Ĉj

n. Without loss of

generality, assume that c̄jn → ĉj for some ĉj (otherwise we can take a convergent subsequence).

Then, by continuity, among all strategies from Z i, Ĉi gives player i the highest payoff in response

to Ĉj when c̄j = ĉj . This payoff equals player i’s payoff from D̂i. It follows that Ĉi ∈ Φi(Ĉj) if

we show that for any c̄j < ĉj , D̂i is strictly better than any strategy from Z i in response to Ĉj .

Suppose not, i.e. Ĉ′ ∈ Z i is better than D̂i for some c′ < ĉj . Since player i’s payoff is linear in

c̄j and D̂i is his strict best response for all sufficiently small c̄j by the proof of Proposition 2, it

follows that Ĉ′ is strictly better than D̂i in response to Ĉj for c̄j = ĉj > c′, a contradiction.

We conclude that the correspondence (Ĉ1, Ĉ2) → (Φ1(Ĉ2),Φ2(Ĉ1)) from Z1 × Z2 to itself is

convex-valued, nonempty-valued, and upper hemi-continuous. By Kakutani’s fixed point theo-

rem, there are strategies Ĉ1 and Ĉ2 such that Ĉ1 = Φ1(Ĉ2) and Ĉ2 = Φ2(Ĉ1). Then for i = 1, 2

in response to Ĉj, a player i is indifferent between Ĉi and D̂i for W j
C defined by an appropriate

value of c̄j. This completes the proof of Proposition 3, since by Proposition 2, it is always optimal

to follow D̂i or a strategy from Z i in response to any strategy from Zj with a reward function

W j
C ∈ Wj

C .

A.7 Proof of Proposition 4

For players i = 1, 2, define recursive strategies C̄i and D̄i of the infinitely repeated game as

follows. Let us divide the timeline into T -period review phases. Strategy C̄i coincides with Ci

over the first review phase, and D̄i starts with Di. In all but the initial review phase, the player’s

T -period strategy depends on his private history and strategy in the previous review phase. If

8If c̄ < 0, the inequalities are reversed but the same argument for the proof holds.
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player i has played Ci in the previous review phase and has observed private history hi
T , then in

the new review phase he follows the strategy
{

Ci with probability (W i
C(h

i
T )−Gj

D)/(G
j
C −Gj

D)

Di with probability (Gj
C −W i

C(h
i
T ))/(G

j
C −Gj

D),

thereby assigning to the opponent an expected payoff ofW i
C(h

i
T ). Similarly, if player i has followed

Di in the previous review phase and has observed private history hi
T , then in the new review phase

player i mixes between Di and Ci to deliver to his opponent a continuation payoff of W i
D(h

i
T ).

Notice that the strategies C̄i and D̄i have different starting regimes but the same transition

rule between review phases (depending on the previous-phase strategy and private history).

Let us show that both C̄i and D̄i are best responses to C̄j and D̄j. From the properties of

these strategies outlined in the statement of the proposition, it follows immediately that Gi
C is

the payoff in response to C̄j from any strategy that involves Ci or Di in each review phase, and

in particular strategies C̄i and D̄i. Similarly, Gi
D is the payoff in response to D̄j from any of those

strategies.

Let us show that Gi
C and Gi

D are the maximal expected payoffs that player i can achieve in

response to C̄j and D̄j. If not, let ĀC and ĀD be strategies that achieve the maximal expected

payoffs of F i
C ≥ Gi

C and F i
D ≥ Gi

D (with at least one strict inequality) in response to C̄j and D̄j,

respectively. Without loss of generality, assume that F i
C −Gi

C ≥ F i
D −Gi

D.

Consider player i playing ĀC in response to C̄j . At the end of the first review phase, conditional

on hi
T and hj

T , player i’s expected payoff from the rest of the game cannot be greater than

δT
W j

C(h
j
T )−Gi

D

Gi
C −Gi

D

F i
C + δT

Gi
C −W j

C(h
j
T )

Gi
C −Gi

D

F i
D ≤

δT (F i
C −Gi

C) + δT
W j

C(h
j
T )−Gi

D

Gi
C −Gi

D

Gi
C + δT

Gi
C −W j

C(h
j
T )

Gi
C −Gi

D

Gi
D = δT (F i

C −Gi
C +W j

C(h
j
T )).

Then, player i’s expected payoff at time 1 cannot be greater than

E

[

T
∑

s=1

δs−1gi(aisa
j
s) + δT (F i

C −Gi
C +W j

C(h
j
T )) | ĀC , Ĉj

]

≤ δT (F i
C −Gi

C) +Gi
C

by (8). This is less than F i
C , a contradiction. We conclude that both C̄i and D̄i are best responses

to C̄j and D̄j.

Now, for any pair of payoffs (w1, w2) ∈ [G1
D, G

1
C ] × [G2

D, G
2
C ], one Nash equilibrium that

achieves it is
(

w1 −G2
D

G2
C −G2

D

C̄1 +
G2

C − w1

G2
C −G2

D

D̄1,
w2 −G1

D

G1
C −G1

D

C̄2 +
G1

C − w2

G1
C −G1

D

D̄2

)

.
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This Nash equilibrium can be made into a sequential equilibrium by defining the players’ actions

appropriately after off-equilibrium path private histories.

32



References

[1] Abreu, D., D. Pearce, and E. Stacchetti (1990). “Toward a Theory of Discounted Repeated

Games with Imperfect Monitoring,” Econometrica, 58, 1041–1063.

[2] Alon, N. and J. H. Spencer (2008). The probabilistic method, 3rd. ed. Wiley-Interscience,

Hoboken, New Jersey.

[3] Aoyagi M. (2002). “Collusion in Dynamic Bertrand Oligopoly with Correlated Private Sig-

nals and Communication,” Journal of Economic Theory, 102, 229–248.

[4] Ben-Porath, E. and M. Kahneman (1996). “Communication in Repeated Games with Private

Monitoring,” Journal of Economic Theory, 70, 281–297.

[5] Bhaskar, V., and I. Obara (2002). “Belief-Based Equilibria in the Repeated Prisoners’

Dilemma with Private Monitoring,” Journal of Economic Theory, 102, 40–69.

[6] Compte, O. (1998). “Communication in Repeated Games with Imperfect Private Monitor-

ing,” Econometrica, 66, 597–626.

[7] Ely, J. and J. Välimäki (2002). “A Robust Folk Theorem for the Prisoner’s Dilemma,”

Journal of Economic Theory, 102, 84–105.

[8] Ely, J., J. Hörner and W. Olszewski (2005). “Belief-free Equilibria in Repeated

Games,”Econometrica, 73, 377–415.

[9] Fudenberg D. and D. Levine (1991). “An Approximate Folk Theorem with Imperfect Private

Information,” Journal of Economic Theory, 54, 26–47.

[10] Fudenberg, D., D. Levine, and E. Maskin (1994). “The Folk Theorem with Imperfect Public

Information,” Econometrica, 62, 997–1040.

[11] Fudenberg D. and E. Maskin (1986). “The Folk Theorem in Repeated Games with Dis-

counting or with Incomplete Information,” Econometrica, 54, 533–554.

[12] Gossner, O. and J. Hörner (2010). “When is the lowest equilibrium payoff in a repeated

game equal to the minmax payoff?” Journal of Economic Theory, 145, 63–84.

[13] Hörner, J. and W. Olszewski (2006). “The Folk Theorem for Games with Private Almost-

Perfect Monitoring,” Econometrica, 74, 1499–1544.

33



[14] Hörner, J. and W. Olszewski (2009). “How Robust is the Folk Theorem with Imperfect

Public Monitoring?” Quarterly Journal of Economics, 124, 1773–1814.

[15] Kandori, M. (2002). “Introduction to Repeated Games with Private Monitoring, Journal of

Economic Theory, 102, 1–15.

[16] Lehrer, E. (1990). “Nash Equilibria of n-player Repeated Games with Semi-Standard Infor-

mation,” International Journal of Game Theory, 19, 191–217.

[17] Mailath, G. J., and S. Morris (2002). “Repeated Games with Almost-Public Monitoring,”

Journal of Economic Theory, 102, 189–228.

[18] Mailath, G. and L. Samuelson (2006). Repeated Games and Reputations: Long-Run Rela-

tionships. Oxford University Press, New York, NY.

[19] Matsushima, H. (1991). “On the theory of repeated games with private information : Part

I: anti-folk theorem without communication,” Economics Letters, 35, 253–256.

[20] Matsushima, H. (2004): “Repeated Games with Private Monitoring: Two Players,” Econo-

metrica, 72, 823–852.

[21] Obara, I. (2009). “Folk Theorem with Communication,” Journal of Economic Theory, 144,

120–134.

[22] Piccione, M. (2002). “The Repeated Prisoner’s Dilemma with Imperfect Private Monitor-

ing,” Journal of Economic Theory, 102, 70–83.

[23] Radner R. (1986). “Repeated Partnership Games with Imperfect Monitoring and No Dis-

counting,” Review of Economic Studies, 53, 43–58.

[24] Sekiguchi, T. (1997). “Efficiency in Repeated Prisoner’s Dilemma with Private Monitoring,”

Journal of Economic Theory, 76, 345–361.

[25] Stigler, G. (1964). “A Theory of Oligopoly,” Journal of Political Economy, 72, 44–61.

[26] Sugaya, T. (2010). “Belief-Free Review-Strategy Equilibrium without Conditional Indepen-

dence,” mimeo, Princeton University.

34


