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Abstract

We offer an exclusionary scenario for quantity rebates and market-

share discounts offered by dominant firms, based on the upcoming intro-

duction of a rival good in the market. We explain how the shape of the

rebates depends on the incumbents’ beliefs about the characteristics of

the rival good. When buyers can dispose of unconsumed units at little

cost, they might opportunistically purchase unneeded units with the sole

purpose of pocketing rebates. We find that such opportunism is never seen

in equilibrium and explain how the magnitude of disposal costs affects the

shape of optimal price-quantity schedules.
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1 Introduction

In recent years, exclusionary conduct by firms with market power has become
a high-priority issue on the agenda of antitrust agencies. For instance, the
European Commission has made it clear that the emphasis of its enforcement
activities is on “ensuring that undertakings which hold a dominant position do
not exclude their competitors by other means than competing on the merits of
the products or services they provide.” The U.S. Department of Justice concurs
that “whether conduct has the potential to exclude, eliminate, or weaken the
competitiveness of equally efficient competitors can be a useful inquiry”, and
suggests that this inquiry “may be best suited to particular pricing practices.”1

It is indeed in the area of pricing behavior that the so-called “equally efficient
competitor test” most naturally applies. The test involves the “effective price”
offered by the dominant firm, i.e. the price that competitors have to match.
A lower effective price thus places more competitive pressure on rivals. The
test consists in checking that the effective price covers production costs over the
relevant output range. A violation of the test, therefore, is tantamount to a
form of below-cost pricing. Such an outcome, however, says nothing about the
precise channel by which the competitive process is harmed. The structure of the
test –a price-cost comparison– might suggest a predatory scenario, whereby the
dominant firm would incur a short-term sacrifice in the hope of later recoupment,
but antitrust authorities are reluctant to engage in such a legally difficult route.
As a general rule, they avoid being specific about possible “theories of harm”,
for fear of weakening their cases in court. On the other hand, jurisprudence, in
most countries, imposes a high standard of proof on defendants putting forward
efficiency reasons for their conduct.

The purpose of the present article is to offer an exclusionary scenario that
accounts for the various, often highly nonlinear, price schedules observed in

1See, respectively, European Commission (2009) and U.S. Department of Justice (2008).
High-profile exclusionary cases involving pricing practices include Virgin v British Air-
ways (S.D.N.Y. 1999 and 2nd Cir. 2001), Concord Boat (8th Cir. 2000), Lepage’s v 3M
(3d Cir. 2003) in the United States; Virgin/British Airways (2000/74/EC of 14 July 1999),
Michelin (COMP/E-2/36.041/PO of 20 June 2001), Tomra (COMP/E-1/38.113, 2006), and
Intel (COMP/C-3 /37.990, 2009) in Europe.
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practice. The scenario is consistent with the as efficient competitor test and
provides a transparent interpretation of the shape and structure of the tariffs
in terms of competitive pressure placed on rival firms. The scenario highlights
a number of environmental parameters that influence the exclusionary power of
price schedules implemented by dominant firms.

Our anticompetitive scenario relies on a simple incumbency model whereby
a dominant firm and a buyer agree on a price-quantity schedule knowing that
a rival good is about to be introduced on the market. The characteristics of
that good, however, are uncertain at the time of the contract, which makes
incomplete information a critical ingredient of the exclusionary analysis.2

As standard in the literature, we distinguish two classes of price-quantity
schedules, depending on whether the price charged to the buyer can be made
contingent upon the quantity she purchases from the rival. When this is the
case, the price schedule is said to be “conditional” on the quantity supplied by
the rival, which allows in particular for market-share discounts. It turns out
that the welfare effects of conditional price schedules can be analyzed under
general assumptions on the buyer’s demand. Optimal conditional tariffs derive
from a tradeoff between rent extraction and efficiency. Combining insights from
Baron and Myerson (1982) and Aghion and Bolton (1987), we find that the
rivals sell less than the efficient quantity and that the distortion increases with
the rival’s bargaining power vis-à-vis the buyer. For a given level of the rival’s
sales, however, the dominant firm does not need to distort its own quantity,
because it can directly penalize buyers for supplying from rivals.

The above general analysis does not easily carry over to the case where
the dominant firm’s prices cannot be contingent upon the quantity purchased
from the rival (“unconditional” price schedules). In this case, the analysis is
more involved as the buyer and the incumbent have one instrument to achieve
two objectives: (i) solving the rent extraction-efficiency tradeoff, which requires
setting marginal price below marginal costs; (ii) preventing the buyer from op-
portunistically purchasing unneeded units with the sole intention of pocketing
the quantity rebates.

2The same timing is studied in Marx and Shaffer (1999), Marx and Shaffer (2004), Feess
and Wohlschlegel (2010) under complete information.
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To address buyer opportunism, we adopt a demand specification that involves
two fundamental parameters: disposal costs and the “contestable share” of the
market. This framework is sufficiently rich to reflect the notions that the domi-
nant firm’s product is a “must-have” good and that purchasing unneeded units
entails disposal costs for the buyer. The magnitude of disposal costs depends
on the characteristics of the traded product, and may vary substantially across
industries, as disposing of computer chips, tyres for trucks, or heavy pieces of
machineries is likely to entail different costs. As regards the contestable share
of the market, it is defined by the European Commission as “how much of a
customer’s purchase requirements can realistically be switched to a competitor”
within a reasonable time horizon. In practice, the contestable share is a critical
ingredient of the as-efficient competitor test as it defines the relevant quantity
range over which the price and the cost should be computed. Its determina-
tion has proved a highly contentious issue in Intel, reinforcing our view that
contestable shares are fundamentally uncertain.

Accordingly, we derive optimal price schedules under two-dimensional uncer-
tainty, assuming that both the surplus created by the rival and the share of the
buyer’s demand it can address are unknown to the buyer and the dominant firm
at the time of the contract. Contrary to most of the literature, we do not put
any a priori restriction on the shape of the price-quantity schedule.

To describe the qualitative property of optimal tariffs, we introduce the no-
tion of elasticity of entry, which measures the rival’s sensitivity to competitive
pressure. The elasticity is a function of the two-dimensional distribution of un-
certainty. It reflects the extent to which more pressure placed on rivals (i.e. lower
effective prices) translates into more exclusion. We find that the shape of the
optimal tariffs depends on this elasticity. In particular, optimal tariffs are linear
only when the elasticity does not vary with the contestable share. Optimal tar-
iffs tend to be concave when the entry elasticity increases with the scale of entry,
and hence the dominant firm wants to place less pressure on larger competitors.
When disposal costs are sufficiently large and the elasticity is non-monotonic in
the contestable share, optimal schedules may exhibit highly nonlinear shapes and
admit decreasing parts, as is the case under so-called “retroactive rebates”. Such
rebates, also called “all-units discounts”, are granted for all purchased units once
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a quantity threshold is reached. They induce downward discontinuities in price-
quantity schedules –a pattern that has received much attention from antitrust
enforcers.3

Decreasing parts in price-quantity schedules might induce the buyer to pur-
chase inefficiently many units from the dominant company. We find, however,
that such buyer opportunism is never seen in equilibrium. The buyer’s tempta-
tion to purchase unneeded units depends on the magnitude of disposal costs. As
the buyer and the incumbent cannot condition prices on quantities purchased
from the competitor, lower disposal costs translate into less competitive pressure
on the rival and thus reduce the extent of inefficient foreclosure. In contrast,
conditional tariffs provide the buyer and the incumbent with enough flexibility to
address separately buyer opportunism and the efficiency-rent tradeoff, regardless
of the magnitude of disposal costs. When disposal costs are low, unconditional
tariffs, therefore, are potentially less harmful to competition. Both types of non-
linear tariffs, however, deserve attention from antitrust enforcers in industries
where disposal costs are large.

It is worthwhile connecting the current article with recent works on market-
share discounts. In a setting with a dominant firm, a competitive fringe and
two retailers, Inderst and Shaffer (2010) show that market-share discounts can
be used by the dominant firm to dampen intra- and inter-brand competition.
Their anticompetitive scenario, contrary to the one presented here, highlights
retail competition and assume complete information. Turning to models with
imperfect information, most of the literature has examined how specific forms
of pricing perform in discriminating among privately informed buyers. For in-
stance, in a discrete type model, Kolay, Shaffer, and Ordover (2004) show that
all-units discounts are more effective than menus of two-part tariffs in screening
out retailers with private information about the state of demand. Majumdar
and Shaffer (2009) and Calzolari and Denicolo (2013) introduce market-share
discounts. In the former article, a dominant firm resorts to nonlinear pricing
to screen a buyer who is informed about the size of demand and who also sells
a good provided by a competitive fringe. The latter article addresses the issue
in a symmetric duopoly setting, considering both market-share discounts and

3See, among others, Waelbroeck (2005) and Faella (2008).
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exclusive contracts. In contrast to these papers, we consider incomplete rather
than asymmetric information as the buyer and the incumbent do not know the
characteristics of the rival good at the time of the contract.

Overall, the contribution of this article is twofold. First, we explain how the
beliefs of incumbent market players about a new, rival good, together with the
magnitude of disposal costs, affect the shape of optimal price-quantity schedules.
Second, we compare the exclusionary properties of conditional and unconditional
properties, relating the welfare effects of market-shared discounts to the issue of
ex post buyer opportunism.

The article is organized as follows. Section 2 introduces the model. Section 3
studies conditional price-quantity schedules. Section 4 introduces the issue of
buyer opportunism. Section 5 derives optimal unconditional schedules under
two-dimensional uncertainty when disposal costs are large. Section 6 explains
how the magnitude of disposal costs affects the shape of optimal tariffs and the
welfare effects of market-share discounts.

2 The model

A dominant firm, I, competes with a rival, E, to serve a buyer, B. Production
costs are assumed to be constant and are denoted by cE and cI . If the buyer
purchases qI units of good I and qE units of good E, she earns a gross profit of

V (qE, qI ; θE) = vEqE + vIqI − h(qE, qI ; sE), (1)

where h is a convex function of (qE, qI) with first derivatives at (0, 0) equal to zero
and with nonnegative cross-derivative to reflect the imperfect substitutability of
the two goods. The parameters vE and vI reflect the buyer’s willingness to pay
for the first units of goods E and I. The parameter sE affects how marginal
utilities vary with the quantities purchased. Total surplus is given by

W (qE, qI ; cE, θE) = V (qE, qI ; θE)− cEqE − cIqI = ωEqE + ωIqI − h(qE, qI ; sE),

where ωE = vE − cE ≥ 0 and ωI = vI − cI > 0 are the unit surpluses generated
by good E and good I respectively. We denote by q∗E(cE, θE) and q∗I (cE, θE) the
efficient quantities, i.e. the quantities that maximize W .

5



We consider situations where the characteristics of the new, rival good are not
yet known, and hence both the cost cE and the buyer’s taste for the rival good,
θE = (sE, vE), are uncertain. In contrast, we assume away any informational
asymmetry as to the characteristics of the incumbent’s good: the parameter vI
is known ex ante.

2.1 Timing of the game

The order of events reflects the incumbency advantage of the dominant firm and
the uncertainty as to the characteristics of the rival good:

• First, the buyer and the incumbent design a price-quantity schedule to
maximize (and split) their joint expected surplus, denoted by ΠBI . At this
stage, the buyer and the dominant firm know the production cost and the
characteristics of good I, but do not know the production cost cE and the
characteristics θE of the new product.

• Next, the buyer and the competitor discover the cost and preference pa-
rameters, cE and θE, relative to the rival good.

• Then, the buyer and the competitor, both knowing the terms of the agree-
ment between the buyer and the incumbent, agree on a price and a quan-
tity. This negotiation takes place under complete information and is as-
sumed to be efficient. For example, B and E can use a two-part tariff
with slope cE. We denote by β the competitor’s bargaining power, which
determines the sharing of the surplus.

• Finally, the buyer purchases from the incumbent.

The buyer and the incumbent may want to let the price of good I depend
on the quantity purchased from the rival firm, i.e. to use “conditional price
schedules” of the form T (qE, qI). However, enforcing a conditional price may be
unfeasible (e.g. because the incumbent does not observe qE) or legally prohibited.
Accordingly, we also consider the situation where the firms are restricted to use
unconditional price schedules T (qI). A key issue in the paper is to compare the
exclusionary properties and the welfare effects of these two kinds of tariffs, given
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the characteristics of the traded goods. Apart from the above distinction, we do
not impose any regularity condition on the price schedules.

As regards the timing of negotiation, we assume that the buyer and the
dominant firm cannot renegotiate once uncertainty is resolved. (If they could,
they would simply agree on the optimal tariff under complete information.) The
contribution of the current paper is, on the contrary, to study the shape of the
price schedule under incomplete information. We also assume that the buyer
and the dominant firm cannot renegotiate after the buyer has purchased from
the competitor. In particular, they have a common incentive to renegotiate the
quantity of good I whenever qI does not maximize W (qE, qI ; cE, θE), where qE
is the quantity already purchased from the competitor. The ex post efficient,
renegotiation-proof quantity of incumbent’s good, which maximizesW given qE,
is denoted by q∗I (qE; θE). By substitutability, this quantity decreases with qE.

2.2 Purchase decisions under a given price schedule

The last two stages of the game take place under perfect information, given the
price schedule T and the known characteristics of the rival good. The buyer and
the rival choose the quantities to maximize their joint surplus

SBE(cE, θE) = max
qE ,qI

V (qE, qI ; θE)− T (qE, qI)− cEqE, (2)

with no consideration for the incumbent’s cost or profit. (If the tariff is not al-
lowed to depend on qE, T (qE, qI) is replaced with T (qI) in (2) and all subsequent
expressions.) Suppose the buyer has purchased qE units from the competitor.
Then she picks qI(qE; θE) to maximize

max
qI

V (qE, qI ; θE)− T (qE, qI). (3)

Whenever the marginal price of an extra unit of good I differs from cI , the
quantity qI(qE; θE) chosen by B does not maximize the joint surplus of B and I,
i.e. differs from q∗I (qE; θE). As explained in greater detail below, this may happen
because the schedule T is also designed to extract surplus from the rival, which
may involve setting the marginal price below the marginal cost cI . This would
give the buyer an ex post incentive to buy units of good I in excess of q∗I (qE; θE).
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The quantity purchased from the competitor maximizes

SBE(cE, θE) = max
qE

V (qE, qI(qE; θE); θE)− T (qE, qI(qE; θE))− cEqE, (4)

which is equivalent to (2). The buyer and the competitor share the surplus SBE
according to their respective bargaining power and outside options. The com-
petitor’s outside option is normalized to zero. As to the buyer, she may source
exclusively from the incumbent, so her outside option is V (0, qI(0; θE); θE) −
T (0, qI(0; θE)). It follows that the surplus created by the relationship between
B and E is given by

∆SBE(cE, θE) = SBE(cE, θE)− [V (0, qI(0; θE); θE)− T (0, qI(0; θE))] . (5)

Denoting by β ∈ (0, 1) the competitor’s bargaining power vis-à-vis the buyer,
we derive the competitor’s and buyer’s profits:

ΠE = β ∆SBE

ΠB = (1− β) ∆SBE + V (0, qI(0; θE); θE)− T (0, qI(0; θE)).
(6)

If β = 0, the competitor has no bargaining power and may be seen as a compet-
itive fringe from which the buyer can purchase any quantity at price cE. On the
contrary, the case β = 1 happens when the competitor has all the bargaining
power vis-à-vis the buyer.

2.3 Second-best equilibrium and inefficiencies

Ex ante, the buyer and the incumbent design the price schedule to maximize
their expected joint surplus, equal to the total surplus minus the profit left to
the competitor:

EcE ,θEΠBI = EcE ,θE {W (qE, qI ; cE, θE)− ΠE} , (7)

where qE, qI and ΠE are given by (3), (4), (5) and (6). The sharing of the
expected joint surplus between the buyer and the incumbent, and hence the
respective bargaining power of each party, play no role in the following analysis.

From the ex ante perspective, the tariff has two purposes: on the one hand,
maximizing the expected welfareW ; on the other, extracting rent from the rival,
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i.e. making ΠE = β∆SBE as small as possible. Rent extraction is obtained by
placing competitive pressure on the rival firm, i.e. leaving it with no other choice
than to match low prices or make no sales. In practice, competitive pressure
translates into quantity rebates granted to the buyer.

The rent extraction motive is stronger as the competitor’s bargaining power
vis-à-vis the buyer rises. For β = 0, the rival earns no profit and the first-best
obtains, which can be checked throughout the paper. For β > 0, we find two
kinds of inefficiencies. First, it may not be in the buyer’s best interest to pick the
efficient quantity q∗I (qE; θE); she may indeed prefer to pocket the rebates granted
by the incumbent and purchase inefficiently many units of good I. Section 4 will
consider a particularly severe form of ex post inefficiency, where the buyer might
possibly purchase and scrap unneeded units of good I. We call such a behavior
opportunistic. Buyer opportunism is anticipated ex ante when designing the
price-quantity schedule.

Second, as pointed out by competition authorities, the quantity purchased
from the competitor may not be efficient, qE < q∗E, a phenomenon called “ineffi-
cient market foreclosure”. Inefficient foreclosure is complete when qE = 0 < q∗E,
partial when 0 < qE < q∗E. In both cases, the rival is prevented from selling the
efficient number of units of good E.

Under complete information, it has been shown by Marx and Shaffer (1999)
and Marx and Shaffer (2004) that the second-best allocation is efficient.4 In this
article, we find partial and/or complete inefficient exclusion when the charac-
teristics of the rival good are uncertain and explain how uncertainty affects the
shape of optimal price schedules.

3 Rent-efficiency tradeoff

In this and the next section, the parameter sE is assumed to be known. The
analysis follows standard arguments (e.g. Laffont and Martimort (2002)). The
distribution of ωE given sE is denoted by F (.|sE) and is assumed to admit a
positive and continuous density function f(.|sE) on [ωE, ω̄E]. To focus on the
more interesting cases, we assume ωE < ωI < ω̄E. The surplus created by the

4We recall their results using our notations in Appendix F.
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trade between the buyer and the rival, (5), can be rewritten as

∆SBE(ωE) = max
qE≥0

{ ωEqE + vIqI(qE)− h(qE, qI(qE))− T (qE, qI(qE))

− [ vIqI(0)− h(0, qI(0))− T (0, qI(0)) ] } , (8)

where we have dropped the known value of sE in the arguments of qE, qI and SBE.
The derivative of ∆SBE is given by the envelope theorem

∂∆SBE
∂ωE

= qE(ωE). (9)

Using ΠE = β∆SBE and integrating by parts, we get∫ ω̄E

ωE

ΠE(ωE)f(ωE|sE) dωE = ΠE(ωE) + β

∫ ω̄E

ωE

qE(ωE)[1− F (ωE|sE)] dωE.

Substituting in (7), we rewrite the buyer-incumbent objective as

EωE
ΠBI = EωE

S v(qE, qI(qE);ωE)− ΠE(ωE), (10)

where, following Jullien (2000), we have defined the “virtual surplus” S v as

S v(qE, qI ;ωE) = W (qE, qI ;ωE)− βqE
1− F (ωE|sE)

f(ωE|sE)
. (11)

The virtual surplus is the total surplus W (qE, qI ;ωE) adjusted for the infor-
mational rents βqE (1− F (ωE|sE)) /f(ωE|sE) induced by the self-selection con-
straints. In Appendix A, we show that the second-best quantity maximizes the
virtual surplus under the constraint that it is nondecreasing in ωE. The choice
of qE reflects the tradeoff between efficiency and rent extraction while the choice
of qI relates to ex post efficiency.

We now consider the case where the tariff is allowed to depend on qE. A
two-part tariff with slope cI , T (qE, qI) = cIqI + P (qE), ensures that the buyer
picks the ex post efficient quantity, q∗I (qE), for any prior choice of qE. By (8),
we see that the rival’s profit, ΠE = β∆SBE, depends only on the difference
P (qE)− P (0), which thus governs the efficiency rent tradeoff.

Differentiating the virtual surplus with respect to qE, we find that the second-
best quantity is given by

d

dqE
W (qE(ωE), q∗I (qE);ωE) ≤ β

1− F (ωE|sE)

f(ωE|sE)
, (12)
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with equality if qE > 0. Given that WqI (qE, q
∗
I (qE);ωE) = 0, the above total

derivative in qE is equal to the partial derivative

WqE(qE, q
∗
I (qE);ωE) = ωE −

∂h

∂qE
(qE, q

∗
I (qE)) = P ′(qE) (13)

where we have used the first-order condition of the buyer’s and rival’s prob-
lem (8). Comparing (12) and (13) yields the optimal quantity qE(ωE):

P ′(qE(ωE)) = β
1− F (ωE|sE)

f(ωE|sE)
. (14)

To interpret the optimality conditions, it is convenient to introduce the notion
of elasticity of entry, which reflects the rival’s sensitivity to competitive pressure
for a given level of unit surplus ωE:

ε(ωE|sE) =
ωEf(ωE|sE)

1− F (ωE|sE)
. (15)

To illustrate, consider the linear tariff T (qE, qI) = cIqI +
[
ωE − ∂h

∂qE
(0, q∗I (0))

]
qE,

under which a rival makes positive sales if and only it brings unit surplus above
ωE.5 Increasing ωE by 1% decreases the number of active rivals by ε(ωE|sE)%.
In the remainder of the paper, we maintain the following assumption regarding
the distribution of ωE given sE.

Assumption 1. For any given sE, the elasticity of entry, ε(ωE|sE), is nonde-
creasing in ωE. Moreover, if ω̄E =∞, the upper bound of ε(ωE|sE) as ωE rises
is greater than one, for all sE.

The monotonicity of the elasticity of entry holds in particular when the
hazard rate f/(1−F ) is nondecreasing in ωE, a usual assumption in the nonlinear
pricing literature. The above analysis yields the following proposition, formally
proved in Appendix A.

Proposition 1. When sE is known ex ante, the conditional tariff T (qE, qI) that
maximizes the buyer and incumbent’s joint profit is given by cIqI + P (qE), with

ωE −
∂h

∂qE
(qE, q

∗
I (qE))

ωE
=

β

ε(ωE|sE)
(16)

5This follows from the first-order condition of the buyer-entrant problem (8) at qE = 0).
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for positive values of qE. The quantity purchased from the dominant firm is
ex post efficient while that purchased from the rival is distorted downwards for
ωE < ω̄E, undistorted at ω̄E when ω̄E <∞, and increasing in ωE. If the hazard
rate is nondecreasing, the price schedule is increasing and concave in qE.

The efficiency-rent tradeoff leads to more inefficient exclusion as the rival’s
bargaining power, β, rises and the elasticity of entry, ε, falls.

Proposition 1 builds a bridge between the literatures on market foreclo-
sure and nonlinear pricing. Equation (16) shows an analogy with the text-
book monopoly pricing formula. The buyer and the incumbent jointly act like a
monopoly towards the rival, setting P (qE) to extract rent at the cost of reducing
the extent of entry: qE < q∗E. When the elasticity ε is high, the buyer and the
incumbent cannot easily extract rents and the rival sells more units. When β is
high, the rival has a strong bargaining power vis-à-vis the buyer, which makes
rent extraction a more serious issue and pushes towards reducing qE.

Aghion and Bolton (1987) interpreted the difference P (qE)−P (0) as a penalty
for breach of contract. They assumed that the buyer’s demand was supplied
entirely by a single supplier, so the purchase decision was “extensive”. In contrast,
we allow the buyer to split her purchase requirements between the two suppliers
and find that inefficient foreclosure may be complete or partial: 0 ≤ qE < q∗E.
We interpret the difference P (qE)−P (0) as rebates lost when supplying from the
competitor. The presence of these rebates implies a form of below-cost pricing.
Specifically, the average incremental price of the “last” units of good I (units
between q∗I (qE) and q∗I (0)) is lower than the production cost:

T (0, q∗I (0))− T (qE, q
∗
I (qE))

q∗I (0)− q∗I (qE)
= cI −

P (qE)− P (0)

q∗I (0)− q∗I (qE)
< cI .

The above price-cost comparison is reminiscent of the “as-efficient competitor
test” mentioned in the introduction. In the next section, we present the pre-
cise form of the test advocated by the European Commission, which involves a
particular value for qE, called “size of the contestable demand”.

Quadratic example With h(qE, qI ; sE) = q2
E/2 + q2

I/2 + σ(sE)qEqI , 0 ≤
σ(sE) < 1, the second-best quantities purchased from both suppliers are

qE = q∗E −
βωE

(1− σ2)ε
and qI = q∗I +

βσωE
(1− σ2)ε

,
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with q∗E = (ωE − σωI)/(1 − σ2) and q∗I = (ωI − σωE)/(1 − σ2). The penalty
scheme is given by P (qE)− P (0) = (1− σ2)(q∗EqE − q2

E/2) for qE ≤ q∗E.

4 “Must-have” good and disposal costs

When the price schedule is not allowed to depend on qE, the tariff T (qI) governs
the choice of the quantities purchased from both suppliers. Ex ante, the buyer
and the dominant firm have only one instrument to manage buyer opportunism
and solve the rent-efficiency tradeoff. The analysis, therefore, is more complex for
unconditional tariffs T (qI) than for conditional tariffs T (qE, qI), and cannot be
carried out in the above general model. Hereafter, we specialize to a framework
with inelastic buyer demand, where buyer opportunism translates into a simple
constraint on the marginal price. Then the rent-efficiency tradeoff can be solved
within the limits allowed by this constraint.

The restriction that total demand is inelastic entails no limitation given the
purpose of our analysis because, as already mentioned, we are not interested
in quantity distortions caused by inefficient bilateral bargaining,6 but in how
nonlinear pricing by the dominant firm alters the split of the buyer’s purchase
requirements between the two suppliers. Hereafter, total demand is normalized
to one.

In Section 4.1, we specify a particular form for the buyer preferences, in-
troducing the size of the contestable demand and the level of disposal costs.
We apply the analysis of Section 3 to solve the rent-efficient tradeoff and derive
the optimal conditional tariff T (qE, qI). In Section 4.2, we address the buyer
opportunism problem and derive the optimal unconditional tariff T (qI).

6Recall that we assume away any bilateral inefficiency (e.g. asymmetric information) be-
tween the buyer and each of the two suppliers. In particular, the buyer and the incumbent
would, in the absence of a rival, have no reason to distort the traded quantity. Similarly, we
assume throughout the article that the negotiation between the buyer and the rival takes place
under perfect information and is efficient (see Section 2.1).
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4.1 Contestable market share and disposal costs

In the remainder of the paper, we assume a particular form for the buyer’s
utility V (qE, qI ; θE), where θE = (sE, vE) represents the characteristics of the
rival good. Under this specification, the parameter sE is interpreted as the size
of the constable market, sE. The utility function also depends on an industry-
specific parameter, called the magnitude of disposal costs and denoted by γ. In
Appendix B, we present a formal expression for V (qE, qI ; θE) and check that the
assumptions of Section 2 are satisfied, i.e. the utility function is concave and
the two goods are substitutes. We now describe the qualitative properties of the
utility function that will be used in the following analysis.

The size of the contestable market sE is the fraction of the buyer’s demand
that the rival can address within the relevant time period. If the buyer purchases
less units of good E than sE and less units of both goods together than her total
requirements, she enjoys utility V (qE, qI ; θE) = vEqE + vIqI . In other words, the
function h introduced in (1) is assumed to be identically zero on the set qE ≤ sE

and qI ≤ 1− qE.

We allow the buyer to purchase more units than she needs, but assume that
she incurs a cost γ per unconsumed units. In some industries, the buyer is able
to resell unused items on a secondary market, see the discussion in Section 6. To
account for that possibility, we allow γ to be negative, but assume that reselling
entails a productive inefficiency, i.e. the total costs γ+ cI and γ+ cE are always
nonnegative. In particular, units of good E beyond sE cannot be utilized by the
buyer and must be disposed of at the per-unit cost γ, hence ∂V/∂qE = −γ for
qE > sE. As a result, to save on disposal and production costs, the buyer and
the rival, who negotiate under perfect information, never trade more than sE

units. It follows that the inequality qE ≤ sE holds for all values of (cE, θE).
Let us now consider the possibility that the buyer purchases more units than

her total requirements, i.e. buys units of good I in excess of 1 − qE, for given
qE ≤ sE. If vE > vI , the buyer would dispose of these extra units of good I at
per-unit cost γ, hence ∂V/∂qI = −γ in this region. If vI > vE and qE > 0, the
buyer would consume some of the extra units of good I and dispose of units of
good E instead, hence ∂V/∂qI = vI − vE − γ.
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Efficiency Given qE ≤ sE, a unit of good I below 1 − qE generates positive
surplus ωI . From the above analysis, we see that units above this threshold
generate a surplus of −cI − γ if vE > vI and ωI − vE − γ if vI > vE, hence a
negative surplus when ωI < ωE. It follows that the ex post efficient quantity is
given by

q∗I (qE; θE) = 1− qE(cE, θE)

for all (cE, θE) with ωE > ωI . Regarding ex ante efficiency, we observe that a unit
of good E below sE generates positive surplus ωE, while a unit above sE gener-
ates only disposal and production costs. It follows that the efficient quantities
are given by

(q∗E(cE, θE), q∗I (cE, θE)) =

{
(sE, 1− sE) if ωE > ωI

(0, 1) if ωE < ωI .
(17)

Inefficient foreclosure occurs when 0 ≤ qE < sE while ωE > ωI . Inefficient
foreclosure is complete or partial according to whether the above inequality
0 ≤ qE holds as an equality or is strict.

Rent-efficiency tradeoff under one-dimensional uncertainty We main-
tain the assumption that the size of the contestable demand is known ex ante
and allow the price schedule to depend on qE, so buyer opportunism is not an
issue: Ex post efficiency, qI = q∗I , is guaranteed by T (qE, qI) = cIqI+P (qE). The
virtual surplus is thus given as in Section 3 by (11). When ωE < ωI , efficiency
and rent extraction both push towards qE = 0 and qI = 1. When ωE > ωI , we
evaluate the virtual surplus at the ex post efficient quantity q∗I = 1− qE:

S v(qE, q
∗
I ; cE, θE) = ωI + qE

(
ωE − ωI − β

1− F (ωE|sE)

f(ωE|sE)

)
. (18)

Lemma 1. When the price schedule can depend on qE, the second-best quantity
is given by

qE(sE, ωE) =

{
0 if ωE ≤ ω̂E(sE)

sE otherwise,

where ω̂E(sE) ∈ (ωI , ω̄E) is the unique solution to

ω̂E(sE)− ωI
ω̂E(sE)

=
β

ε(ω̂E(sE)|sE)
. (19)
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The fraction of efficient types that are inactive increases with the rival’s bargain-
ing power vis-à-vis the buyer and decreases with the elasticity of entry.

Proof. When demand is inelastic, the maximization of the virtual surplus yields
a corner solution: qE = sE if sv > 0 and at qE = 0 if sv < 0, with sv(sE, ωE) =

ωE[1− β/ε(ωE|sE)]− ωI . This quantity is positive if and only if

ωE − ωI
ωE

>
β

ε(ωE|sE)
.

The left-hand side increases in ωE, and the right-hand side is non-increasing
in ωE by the first part of Assumption 1, which yields the uniqueness of a solu-
tion (19). Moreover, the virtual surplus per unit is negative for ωE = ωI and
positive for ωE = ω̄E when ω̄E < ∞. If ω̄E = ∞, the second-part of Assump-
tion 1 guarantees that sv is positive for high values of ωE. Hence the existence
of a solution to equation (19) lying between ωI and ω̄E. Straightforward com-
parative statics shows that ω̂E increases with β and decreases with ε.

Equation (16) is the analog of (19) when demand is inelastic. As above,
we find that the rent-efficiency tradeoff leads to below-cost pricing. Indeed, if
the rival generates a unit surplus below ω̂E(sE), it does not make any sales and
thus gets no rent. The penalty scheme P (qE) is adjusted to leave no rent to the
marginal competitor: ΠE = β∆SBE(sE, ω̂E) = 0. The surplus created by the
buyer and the rival trading sE units is

∆SBE(cE, θE) = V (sE, 1−sE; θE)−cEsE−T (sE, 1−sE)− [V (0, 1; θE)−T (0, 1)],

where the difference in buyer gross utilities is given by

V (sE, 1− sE; θE)− V (0, 1; θE) = (vE − vI)sE.

Considering the marginal competitor, ωE = ω̂E, we find (ω̂E − vI)sE + T (0, 1)−
T (sE, 1−sE) = 0. In line with the general results of Section 3, the average price
for the contestable units, called “effective price” by the European Commission,
is lower than the production cost of those units:

T (0, 1)− T (sE, 1− sE)

sE
= vI − ω̂E < cI . (20)
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Below-cost pricing is due to the rebates lost by the buyer if she supplies the
contestable part of her demand from the rival firm.

Although the buyer can split her purchase between between the two suppliers,
inefficient foreclosure only consists of full foreclosure as in Aghion and Bolton
(1987). This, however, is no longer true in the more realistic case where sE
is ex ante uncertain, as we will see Section 5. Moreover, the rent-efficiency
tradeoff described in Proposition 1 and Lemma 1 is not affected by the buyer
opportunism problem or by the magnitude of disposal costs because we have
allowed the price schedule used by the incumbent to depend on the quantity
purchased from the rival.

4.2 Buyer opportunism

We now turn to unconditional price schedules. In particular, we explain how the
possibility of buyer ex post opportunism affects the design of a schedule T (qI).
Assume that the incumbent subsidizes the purchase of good I to the point that
the marginal price T ′(qI) is below−γ in some interval. The buyer would purchase
the corresponding units from the dominant firm even if she does not need them.
She would indeed find it optimal to dispose of the units at cost γ and to pocket
the subsidy. Over-purchasing would be ex post profitable because the negative
price would outweigh the disposal cost.

Yet the buyer and the dominant firm would soon realize that this outcome
is suboptimal from an ex ante point of view. Anticipating the opportunistic
behavior of the buyer, they would modify the above schedule, offering the buyer,
together with the quantity q̂I at price T (q̂I), the possibility to buy less units
than q̂I , say qI ≤ q̂I , in return for a payment slightly below T (q̂I) + γ(q̂I − qI).
This change would avoid useless production and disposal costs, without affecting
the profit left to the competitor.

A symmetric reasoning shows that it is never optimal ex ante to sell units
above the buyer’s reservation price, vI . The buyer and the dominant firm should
always grant the buyer the opportunity to purchase as many units as she wants
at a price slightly below vI . The next proposition, proved in Appendix C, shows
that the buyer and the dominant firm are better off committing to a price sched-

17



ule with marginal price between −γ and vI . The main point to be checked is
that this requirement does not raise the rent left to the rival.

Proposition 2. The buyer and the dominant firm are better off using a tar-
iff with marginal price between −γ and vI . The quantity purchased from the
dominant firm is ex post efficient: qI = q∗I (qE; θE) = 1− qE, for any (cE, θE).

Proposition 2 guarantees that the buyer purchases the number of units cor-
responding to her total requirements.7 We are thus able to focus attention on
the split of the buyer’s requirements between the two suppliers.

We now introduce the notion of super-efficiency. We say that the rival firm is
super-efficient if and only if ωE > vI + γ. When γ tends to −cI , super-efficiency
becomes equivalent to standard efficiency. When disposal costs are infinite, there
are no super-efficient rivals.

Corollary 1. When the tariff is not allowed to depend on qE, super-efficient
rivals serve all of the contestable demand.

Proof. Since the quantity purchased from the incumbent is ex post efficient and
the quantity purchased from the rival is lower than sE (see the beginning of
Section 4.1), we can write the surplus in the buyer-rival relationship can be
written as

SBE(sE, ωE) = max
qE≤sE

V (qE, q
∗
I (qE; θE); θE)− T (q∗I (qE; θE))− cEqE

= max
qE≤sE

ωEqE + vI(1− qE)− T (1− qE). (21)

The maximand in (21) increases in qE on the interval [0, sE]. Indeed its derivative
is given by

ωE − vI + T ′(1− qE) ≥ ωE − vI − γ,

which is positive if the rival firm is super-efficient.

As γ tends to −cI , the condition that all units of good I are sold at a price
above −γ represents a stronger constraint. At the limit γ = −cI , the condition

7As mentioned at the end of Section 2.1, it also implies that the buyer and the incumbent
have no joint incentive to renegotiate the quantity qI once the buyer has purchased qE from
the rival.
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T ′(qI) ≥ −γ leaves no scope for anticompetitive exclusion. The desire to avoid
buyer opportunism dominates the rent extraction motive. On the other hand,
as γ tends to +∞, buyer opportunism becomes a less severe problem. The buyer
and the dominant firm can more easily exploit their incumbency advantage to
extract rents from the rival, even when it is very efficient.

Proposition 3. If the price schedule cannot be made contingent upon qE, the
second-best quantity purchased from the competitor is sE when ωE ≥ min(ω̂E, vI+

γ) and zero otherwise, where ω̂E is given by (19). The buyer and the incumbent
may use a two-tariff with slope max(vI − ω̂E,−γ).

Proof. Considering an unconditional tariff T (qI) and ignoring first the issue of
buyer opportunism, we maximize the virtual surplus as explained in Lemma 1.
Rivals with ωE < ω̂E are not active, and hence earn zero profit.

When ω̂E < vI + γ, the buyer opportunism issue does not affect the rent-
efficient tradeoff. The buyer and the incumbent may set the price of contestable
units at vI − ω̂E, as in (20), without generating buyer opportunism because this
price is above −γ.

When vI + γ < ω̂E, the above marginal price would induce the buyer to
purchase too many units from the incumbent. We know from Corollary 1 that
it is optimal for the buyer and the incumbent to let super-efficient rivals serve
all of the contestable demand. This is done by setting the marginal price at −γ.
Only super-efficient rivals are active, earning β(ωE − vI − γ)sE.

When the price schedule cannot depend on qE, we again find below-cost
pricing at the margin. Indeed, denoting by pe(sE) the average price of the
contestable units (“effective price”)

pe(sE) =
T (1)− T (q∗I (sE))

1− q∗I (sE)
=
T (1)− T (1− sE)

sE
, (22)

we find
pe(sE) = max(vI − ω̂E,−γ) < cI . (23)

The effective price of the contestable units, pe(sE), can be negative but cannot
be lower than −γ because a price below −γ would trigger buyer opportunism,
which is suboptimal. Compared to the situation where the incumbent can use
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a conditional price schedule, the extent of inefficient exclusion is reduced if and
only if vI + γ < ω̂E. This inequality holds when disposal costs are low, the rival
has strong bargaining power vis-à-vis the buyer, and the elasticity of entry is
low. Under this circumstance, the possibility of buyer opportunism limits the
exclusionary power of unconditional tariffs. On the other hand, when vI + γ ≥
ω̂E, the ability to condition the price on qE does not change the second-best
equilibrium.

At the second-best, the rival either serves all of the contestable demand or
is inactive. It follows that the optimal allocation can be implemented with a
two-part tariff (whose slope is the effective price given (23)). This is no longer
true when the size of contestable demand is uncertain, the situation to which
we now turn.

5 The shape of optimal price schedules

Building on the one-dimensional analysis of Section 4, we now introduce uncer-
tainty about the size of the contestable demand, sE. This parameter, as the
utility vE, depends on the characteristics of the rival good, which are not yet
known when the buyer and the incumbent agree on the price schedule. The
cumulative distribution function of sE, denoted by G, is assumed to admit a
positive and continuous density function g on [sE, s̄E]. Under uncertainty about
both sE and vE, the expected virtual surplus is given by∫∫

sv(sE, ωE)qE(sE, ωE) dF (ωE|sE) dG(sE),

where sv(sE, ωE) = ωE[1−β/ε(ωE|sE)]−ωI is the unit virtual surplus introduced
in Section 4.1. Recall that the virtual surplus is positive for ωE > ω̂E(sE) and
negative for ωE < ω̂E(sE), where ω̂E(sE) is given by (19).

As sE is unknown ex ante, incentive compatibility must be checked along
this second dimension. According to (21), the quantity purchased from the rival
must be nondecreasing in sE. Solving the problem separately for each sE yields
an allocation that respects or violates this monotonicity constraint, depending
on how the elasticity of entry ε(ωE|sE) varies with sE. The next lemma, proved
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in Appendix D, relates the variations of ε(ωE|sE) in sE to the primitives of the
model.

Lemma 2. The random variables sE and ωE are independent if and only if the
elasticity of entry, ε(ωE|sE), does not depend on sE. When the elasticity of entry
increases (decreases) with sE, ωE first-order stochastically decreases (increases)
with sE.

When the elasticity of entry is nondecreasing in the size of the contestable
demand (Section 5.1), the buyer and the incumbent want to induce more entry
for larger rivals, which essentially results in concave tariffs. Larger rivals sell
more units and the monotonicity constraint regarding sE is satisfied. The other
cases require a more careful analysis because solving the problem for each sE

separately does not yield an incentive compatible allocation. In Appendix E, we
provide a constructive method to build the second-best allocation and the cor-
responding price schedule. In Sections 5.2 and 5.3, we explain qualitatively how
the shape of the optimal unconditional price schedule depends on the variations
of the elasticity of entry, considering successively the cases of a decreasing and
of a non-monotonic elasticity of entry.

To concentrate on the role of the heterogeneity about contestable demand,
we assume in this section that disposal costs are very large, thus ruling out the
issue of buyer opportunism. In Section 6, we will explain how optimal price
schedules are modified when disposal costs are low.

5.1 Concave price schedules

When sE and ωE are independent, the threshold ω̂E(sE) is flat, as represented
on Figure 1a. For each size of the contestable market, the problem is the same
form as in Section 4. It follows that the optimal price schedule is a two-part
tariff with slope vI − ω̂E, as shown on Figure 1b.

From now on, we consider cases where the elasticity of entry varies with sE
and show that two-part tariffs are no longer optimal: the optimal tariff must ex-
hibit some curvature. We start with the case where the elasticity increases with
sE: larger competitors, i.e. competitors with a larger contestable demand, are
more sensitive to competitive pressure. Under this circumstance, the efficiency-
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Figure 1a: Quantity purchased from the
rival in the (sE , ωE) plan

Figure 1b: Optimal price schedule (case
vI > ω̂E)

rent tradeoff leads the buyer and the incumbent to place less competitive pres-
sure on larger competitors.

Proposition 4. When the elasticity of entry ε(ωE|sE) increases with sE, the
effective price, pe(qE) = [T (1)− T (1− qE)] /qE, increases with qE. The price
schedule is concave in a neighborhood of qI = 1. It is globally concave if ω̂E is
concave or moderately convex in sE. The equilibrium features inefficient exclu-
sion. Partial foreclosure is not present.

Proof. When ε(ωE|sE) increases with sE, the threshold ω̂E given by (19) de-
creases with sE, see Figure 2a. Solving the problem separately for each sE, the
buyer and the incumbent set the effective price pe(sE) at vI − ω̂E(sE), which
increases in sE. The rival makes no sales if ωE < ω̂E(sE) and serves all the con-
testable demand if ωE > ω̂E(sE). The quantity qE increases with sE. Using (23),
we recover the price schedule as

T (qI) = T (1)− cI + cIqI + (ω̂E − ωI)(1− qI),

where ω̂E is evaluated at qE = 1 − qI . To prove concavity in a neighborhood
of qI = 1, we differentiate the above expression twice with respect to qI , which
yields T ′′(qI) = 2ω̂′E + (1 − qI)ω̂′′E. The term ω̂′E, which is negative for any qI ,
tends to make the tariff concave. Assuming that ω̂′′E(0) is not infinite, we get
T ′′(1) = 2ω̂′E(0) < 0, hence the concavity at the top.

22



Figure 2a: Second best with ε(ωE |sE)

increasing in sE

Figure 2b: Optimal price schedule with
sE = 0 and vI < ω̂E(0)

Proposition 4 assumes that the elasticity of entry is nondecreasing in the size
of the contestable demand. According to Lemma 2, this assumption implies that
rivals with larger sE tend to generate a lower surplus ωE and hence are more
sensitive to competitive pressure. The buyer and the dominant firm therefore
exert less pressure on larger rivals, and the optimal effective price pe(qE) =

[T (1) − T (1 − qE)]/qE increases with qE. In the case shown on Figure 2b,
ω̂E(0) > vI , the effective price pe(qE) is negative for small values of qE, which
gives the buyer strong incentives to supply exclusively from the dominant firm.

Competition agencies tend to take a more negative stance on highly nonlinear
price schedules than on simple quantity rebates, which are often presumed to
be economically justified. The analysis of this section, however, shows that
concavity does not necessarily reflect economies of scale. Apparently innocuous,
nondecreasing and concave, price schedules may yield anticompetitive market
foreclosure.

5.2 Convex price schedules

We now turn to the case where the elasticity of entry ε(ωE|sE) decreases with sE.
Under this circumstance, the efficiency-rent tradeoff leads the buyer and the in-
cumbent to placemore competitive pressure on larger competitors: the threshold
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ω̂E(sE) is monotonically increasing in sE.
If qE were equal to sE above this threshold and zero below, the quantity pur-

chased from the rival would locally decrease with sE, which is impossible. Hence
the presence of bunching along the sE-dimension. Following the constructive
method presented in Appendix E, we find bunching intervals such as the hor-
izontal interval [A,C] represented on Figure 3a. A rival whose type belongs
to [A,C] sells s1

E units, where s1
E denotes the left extremity of the bunching

interval. The unit virtual surplus sv(sE, ωE) is positive (resp. negative) on
[A,B] (resp. [B,C]), as ωE > ω̂E(sE) (resp. ωE < ω̂E(sE)) in this region. The
buyer and the incumbent must leave a positive rent to rivals in [B,C] because
they cannot prevent them from selling less than their contestable demand. The
virtual surplus must be zero in expectation on bunching segments∫ s̄E

s1E

sv(s, ωE)f(ωE|s)g(s) ds = 0.

Proposition E.1 provides three different conditions under which the above equa-
tion defines an increasing relationship between ωE and s1

E, denoted by ωE =

Ψ(s1
E) on Figure 3a. These sufficient conditions imply mild restrictions on the

distribution of ωE, the range of the elasticity of entry and the bargaining power β
(see Appendix E).8 The light-shaded area on the figure represents the set of types
for which the competitor is partially foreclosed: 0 < qE(sE, ωE) = s1

E < sE.

Proposition 5. Assume that ε(ωE|sE) decreases with sE. Then the optimal
tariff is convex. The equilibrium outcome exhibits inefficient exclusion, in the
form of both full and partial foreclosure.

Proof. For all sE ∈ [sE, s̄E], ωE = Ψ(sE) and s′E > sE, the solution of the
buyer-competitor problem (21) is interior for (s′E, ωE). Absent two-dimensional
bunching, and the solution, qE = sE, is given by the first-order condition T ′(1−
sE) = vI − Ψ(sE) or T ′(qI) = vI − Ψ(1 − qI), which increases with qI because
Ψ is an increasing function. We conclude that the price-quantity schedule T
is convex. The analysis holds under two-dimensional bunching, with the minor

8When none of these conditions holds, the quantity purchased from the rival may be con-
stant on two-dimensional regions in the (sE , ωE)-space. Two-dimensional bunching is studied
in supplementary section I.5.
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difference the price schedule is locally non-differentiable (it admits a convex
kink).

Figure 3a: Rent-efficiency threshold ω̂E

(dashed), second-best threshold Ψ(sE)

(bold) with decreasing elasticity

Figure 3b: Optimal price schedule with
sE = 0 and vI > ω̂E(1).

The price schedule plays the role of a barrier to expansion. When the price
schedule T (qI) is convex in qI , the objective of the buyer-rival pair, (ωE−vI)qE−
T (1−qE), is concave in qE. The buyer and the rival compare the surplus created
by an extra unit of good E, ωE, with the surplus foregone by consuming one
unit less of good I, vI − T ′(1 − qE). Rivals whose types lie in the light-shaded
triangle represented on Figure 3a are induced to sell qE units with qE < sE and
ωE = vI − T ′(1 − qE). This quantity qE depends on ωE but not on sE. Such
rivals are partially foreclosed from the market.

Defendants in antitrust litigation commonly put forward that the alleged
abuse did not prevent competitors from achieving a sizeable share of the mar-
ket. Our analysis points out that antitrust enforcers are right to discard this
line of defense as a positive market share is not incompatible with (partial)
anticompetitive foreclosure.

5.3 “Retroactive” price schedules

We now show that the buyer and the incumbent use “retroactive” or “all-units”
rebates if a simple condition on the elasticity of entry is satisfied. Such rebates
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are granted if the buyer reaches a quantity threshold and apply to all units pur-
chased, not only to units above the threshold. They induce downwards disconti-
nuities in price-quantity schedules. Figure 5a shows the most simple retroactive
price schedule. The slopes of the two segments correspond to the unit prices
that are applied to all units depending on whether or not the quantity threshold
q̄I is attained.

We assume that the elasticity of entry is first decreasing then increasing as
the size of the contestable demand rises: competitors with intermediate size are
less sensitive to competitive pressure than competitors with small or large size.
Under this circumstance, the efficiency-rent tradeoff leads the buyer and the
incumbent to place strong competitive pressure on competitors with interme-
diate size and less pressure on small or large competitors: ω̂E(sE) is inverted
U-shaped.

Figure 4a: Rent-efficiency trade-
off ω̂E(sE) (dashed), second-best
threshold (solid) with U-shaped elasticity

Figure 4b: Optimal price schedule with
sE = 0 and s̄E = 1

We rely on Figures 4a and 4b to explain the shape of the optimal price
schedule in this instance. Above the solid curve on Figure 4a, the competitor
serves all of the contestable demand. In the light-shaded area below the solid
curve, the quantity purchased from the competitor does not depend on the size
of the contestable market. For instance, a rival whose type lies on the horizontal
segment [A1, A3] sells s1

E units. On such an interval, the unit virtual surplus is
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negative at the right of the dashed line ωE = ω̂E(sE) and positive at its left.
Between A0 and A2 , the equation of the light-shaded area’s upper boundary,

ωE = Ψ(sE), follows from the condition that the expected virtual surplus is zero
on the bunching intervals such as the interval [A1, A3]. As seen in Section 5.2,
the quantity chosen by the buyer and the competitor is an interior solution of
their surplus maximization and is therefore given by the first-order condition:
T ′(1− sE) = vI −Ψ(sE); the price-quantity schedule T is convex in this region,
see Figure 4b.

Between A2 and A4, we recover the tariff by expressing that the quantity
purchased from the rival is constant on the bunching segments. For example, if
the rival is at A3, the buyer-rival pair is indifferent between buying s1

E or s3
E:

(ωE − vI)s1
E − T (1 − s1

E) = (ωE − vI)s3
E − T (1 − s3

E). As T (1 − s1
E) is known,

one can infer T (1 − s3
E). At points A1 and A3, we have ωE = vI , and hence

T (1− s1
E) = T (1− s3

E). It is readily confirmed that T ′′ = 0 at A2, i.e. T has an
inflexion point.

Thus, an U-shaped elasticity of entry leads to a price-quantity schedule that
is neither globally concave nor globally convex. The decreasing part of the price
schedule gives the buyer a strong incentive to supply from the incumbent beyond
the point A1.

When the distribution of types is continuous, the optimal price schedule is
continuous. If instead the size of the contestable demand takes a finite number of
values, a price schedule with a retroactive rebate, such as the one superimposed
on Figure 5a, is optimal. Specifically, suppose that the support of sE consists
of three points s1

E < s2
E < s3

E and that the distribution of ωE given sE is such
that ω̂E(s2

E) > max(ω̂E(s1
E), ω̂E(s3

E)). Then the rent-efficiency tradeoff leads the
buyer and the incumbent to place more (less) competitive pressure on the rivals
with contestable demand s2

E (s1
E and s3

E). This can be done with the schedule
shown on Figure 5b. Critical on this figure are the slopes of the three dashed
lines, which reflect the pressure put at each level.9 Rivals with contestable
market share s2

E or s3
E serve all of the contestable demand when they generate

a high surplus ωE, sell s1
E units when they generate a moderate surplus (partial

9The quantity threshold (the discontinuity point in the schedule) can take any value between
1− s2E and 1− s1E .
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foreclosure) or are inactive when they generate a low surplus.

Figure 5a: Retroactive rebate approxi-
mating an optimal price schedule

Figure 5b: Retroactive rebate when the
contestable demand takes three values

The analysis of this section has assumed that disposal costs are very large.
Indeed, suppose that the magnitude of disposal costs, γ, is smaller than the
absolute value of the slope between A1 and A2 on Figure 5b. This is the case,
for instance, under free disposal (γ = 0). Then the buyer who has purchased s2

E

units from the rival finds it ex post optimal to purchase more units of good I

than the efficient quantity, namely 1− s1
E > q∗I = 1− s2

2. As formally stated in
Proposition 2 , the possibility of buyer opportunism makes it suboptimal for the
buyer and the incumbent to offer marginal prices below −γ. The minimum level
of the disposal costs that sustains the price schedule represented on Figure 4b
is the opposite of the slope at the inflexion point A2.

6 The role of disposal costs

We now investigate how the magnitude of disposal costs affects the equilibrium
outcome. Purchased units for which the buyer has no use might entail zero or
even negative cost if they can be freely stored, disposed of, or resold on secondary
markets. In some industries, however, unused items are heavy, voluminous, or
dangerous, and thus are difficult to store or dispose of. Moreover, they may have
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buyer-specific characteristics that make them difficult to resell.10

As explained above, the possibility of buyer opportunism under an uncon-
ditional price schedule constrains the marginal price to be above −γ, where γ
denotes the magnitude of disposal costs (Proposition 2). As a result, super-
efficient rivals, i.e. rivals with ωE ≥ vI + γ, serve all of the contestable demand
at the second-best optimum (Corollary 1).

Consider for instance the case of free disposal, γ = 0. On Figure 4a, the por-
tion of the light-shaded area above the segment [A1, A3] is irrelevant: the curve
ωE = Ψ(sE) must be truncated and replaced with min(Ψ(sE), vI + γ). On Fig-
ure 4b, the portion of the price schedule between A1 and A3 is irrelevant as well,
and can be replaced with a flat part between these two points. More generally,
for an arbitrary level of γ, the truncation procedure and its consequences on the
optimal unconditional tariff are represented on Figures 6a and 6b. Between B1

and B2, the marginal price is −γ.
Similarly if ω̂E(0) > vI + γ, the threshold ω̂E(sE) on Figure 2a must be

replaced with vI + γ for low values of sE. The effective price pe(sE) is replaced
with −γ in this region. It follows that the price schedule T (qI) is linear for
high values of qI . When ω̂E(s̄E) > vI + γ on Figure 3a, the threshold ω̂E and
the marginal price T ′(qI) must be replaced with respectively vI + γ and −γ for
high sE. In this case, the price schedule T (qI) is linear for low values of qI .

Proposition 6. When the buyer and incumbent are not allowed to condition
the price schedule on the quantity purchased from the competitor, their expected
profit, EΠBI , is nondecreasing and total welfare is non-increasing in the magni-
tude of disposal costs.

For very large disposal costs, the second-best allocation is the same whether
or not the price schedule can be made contingent upon quantities purchased from
the rival.

Proof. The monotonicity of EΠBI in γ follows from Proposition 2. Indeed, the
constraint that the marginal price should not be below −γ is milder as γ rises.

As seen in Section 5, the optimal allocation when disposal costs are very large
is characterized by the boundary line wE = Ψ(sE) above which the competitor

10Disposal costs also depend on the seller’s ability to impose or to prevent particular uses
of the purchased units and on the buyer’s ability to avoid monitoring by the dominant firm.
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Figure 6a: Truncated second-best thresh-
old (solid) with U-shaped elasticity

Figure 6b: Optimal price schedule

serves all of the contestable demand, see the solid curves on Figures 2a, 3a
and 4a. Assuming away the complications of two-dimensional bunching,11 the
function Ψ derives from the condition that the expected virtual surplus is zero
on horizontal bunching intervals.

For an arbitrary value of the disposal costs, we know from Corollary 1 that
super-efficient competitors ωE > vI + γ serve all of the contestable demand
at the second-best optimum. In other words, the boundary line is necessarily
located below the horizontal line ωE = vI + γ. Accordingly we replace Ψ(sE)

with min(Ψ(sE), vI + γ). This truncation respects the bunching conditions on
horizontal intervals and hence maximizes the expected virtual surplus on the set
ωE ≤ vI+γ. Moreover, along the truncated boundary line ωE = min(Ψ(sE), vI+

γ), we have, using (21)

T (1)− T (1− sE) = (vI − ωE)sE + ∆SBE(sE, ωE).

Differentiating with respect to sE and observing the terms coming from ωE

cancel out by the envelope theorem, we get

T ′(1− sE) = vI − ωE +
∂∆SBE
∂sE

≥ vI − ωE ≥ −γ,

where we have used the monotonicity of ∆SBE in sE, which follows from (21).
The truncation procedure therefore yields an allocation that maximizes the ex-
pected virtual surplus and a price schedule that respects the constraint T ′ ≥ −γ.

11Proposition E.1 provides mild conditions that rule out two-dimensional bunching.
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The above truncation does not change the boundary line when there are no
super-efficient competitors, ω̄E ≤ vI + γ, or when the efficiency-rent tradeoff
requires that super-efficient competitors serve all of the contestable demand, i.e.
ω̂E(sE) ≤ vI + γ for all sE. On the other hand, suppose that ω̂E(sE) > vI + γ

for some value of sE. Then the construction of Ψ under γ = +∞ shows that
the maximum of Ψ is larger than vI + γ: the constraint T ′ ≥ −γ is binding
and the possibility of buyer opportunism under finite disposal costs lowers the
buyer-incumbent pair’s profit.

When the buyer and the incumbent cannot condition prices on quantities
purchased from the competitor, the possibility of ex post buyer opportunism
under finite disposal costs limits the competitive pressure placed on the rival,
thus protecting super-efficient competitors from exclusion. Lower disposal costs
reduce the extent of inefficient foreclosure. In the polar case where γ = −cI , the
constraint T ′(qI) ≥ −γ leaves no scope for anticompetitive exclusion.

In contrast, as explained in Section 4.1, conditional tariffs T (qE, qI) provide
enough flexibility to address separately buyer opportunism and the efficiency-
rent tradeoff, irrespective of the magnitude of disposal costs. In particular, such
tariffs make it possible and profitable for the buyer and the incumbent to exclude
super-efficient competitors. When disposal costs are very large, however, a ban
on conditional tariffs would make no difference as buyer opportunism is absent
by assumption.

Overall, the exclusionary effects of nonlinear pricing by dominant firms de-
pend on the shape of the tariffs and on the magnitude of disposal costs. When
disposal costs are low, unconditional tariffs are potentially less harmful to compe-
tition. Both types of nonlinear tariffs, however, deserve attention from antitrust
enforcers in industries where disposal costs are large.
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Appendix

A Proof of Proposition 1

The surplus gain ∆SBE, given by (8), is convex in ωE because it is the upper
bound of a family of functions that depend linearly on ωE. It follows that ∆SBE

is almost everywhere differentiable and that its derivative, βqE, is nondecreasing
in ωE. Conversely, Fenchel duality theory shows that any convex function ∆SBE

can be written as (8) for a certain tariff T . The problem is thus equivalent to
maximizing (10) subject to the monotonicity constraint on qE.

By concavity of the expected virtual surplus S v, the optimal quantity is
given by the first-order condition (12), which, combined with (14), yields the
characterization (16). We must also find the profit ΠE(ωE) left to the least
efficient rival. If the optimal quantity is zero for that type, qE(ωE) = 0, then
ΠE(ωE) = ∆SBE(ωE) = 0 by (8). Otherwise, if qE(ωE) > 0, the less efficient
rival’s profit, ΠE(ωE), is set to zero by an appropriate choice of the difference
P (qE(ωE))− P (0).

We now check that ωE − ∂h/∂qE(qE, q
∗
I (qE)) decreases in qE. Differentiating

WqI (qE, q
∗
I (qE);ωE) = 0 with respect to qE yields

WqEqI + (q∗I )
′(qE)WqIqI = 0.

Differentiating the left-hand side of (13) with respect to qE, we get

d

dqE
WqE(qE, q

∗
I (qE);ωE) = WqEqE +WqEqI (q

∗
I )
′ = WqEqE −

(WqEqI )
2

WqIqI

,

which is negative by concavity of W . The left-hand side of (16) is therefore de-
creasing in qE, which yields uniqueness of a solution to Equation (16). The solu-
tion exists and is positive if and only if ωE − ∂h/∂qE(0, q∗I (0)) > βωE/ε(ωE|sE),
which is true for ωE close enough to ω̄E by Assumption 1. Otherwise, the optimal
quantity is at the corner qE = 0.

As the left-hand (right-hand) side of (16) increases with (is non-increasing
in) ωE, we find that qE increases with ωE, hence the monotonicity constraint
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on qE is respected. Under the slightly stronger assumption that f/(1 − F ) is
nondecreasing, equation (14) then yields the concavity of the price schedule in
qE.

The quantity purchased from the rival is distorted downwards because W is
concave in qE and WqE is positive at the second-best optimum. The higher the
rival’s bargaining power vis-à-vis the buyer β, and the smaller the elasticity ε,
the more severe the downward distortion of qE.

B Buyer’s utility under disposal costs

We first present a formal expression for the utility function V (qE, qI ; θE) used
in Sections 4, 5 and 6. Recall that θE = (sE, vE) represents the characteristics
of good E, namely the size of the contestable demand sE and the buyer’s val-
uation vE. The magnitude of disposal costs in the concerned industry is given
by γ.

Having purchased quantities qE and qI from the rival and the dominant firm,
the buyer chooses consumption levels xE and xI so as to maximize

V (qE, qI ; θE) = max
(xE ,xI)∈X(qE ,qI)

vExE + vIxI − γ(qE − xE)− γ(qI − xI)

where the set X(qE, qI) is defined by the constraints xE ≤ qE, xE ≤ sE, xI ≤
qI , and xE + xI ≤ 1: the buyer cannot consume more of each good than the
purchased quantity, more of both goods together than her total requirement,
and more of good E than the contestable demand.

Next, we prove the concavity of V in the vector (qE, qI). Consider two vectors
q0 = (q0

E, q
0
I ), q1 = (q1

E, q
1
I ) and a weight α with 0 ≤ α ≤ 1. Let x0 = (x0

E, x
0
I)

and x1 = (x1
E, x

1
I) denote the consumption levels chosen by the buyer after

having purchased q0 and q1. By linearity, αx0 + (1 − α)x1 belongs to the set
X(αq0 + (1− α)q1). The result follows immediately.

Finally, we prove that the two goods are substitutable, formally V is super-
modular. Consider again q0 = (q0

E, q
0
I ), q1 = (q1

E, q
1
I ). Let q∧ and q∨ be the

componentwise minimum and maximum of q0 and q1. We want to prove that

V (q∧) + V (q∨) ≤ V (q0) + V (q1). (B.1)
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Let x∧ and x∨ denote optimal consumptions levels associated with q∧ and q∨.
We have x∧ ≤ x∨ component by component. Suppose, with no loss of generality,
that q∨E = q0

E, and hence x∨E ≤ q0
E.

• If q∨I = q0
I , we have x∨I ≤ q0

I . We set x0 = (x∨E, x
∨
I ) and x1 = (x∧E, x

∧
I ) and

observe that xi ∈ X(qi), which yields (B.1).

• If q∨I = q1
I , we set x0 = (x∨E, x

∧
I ) and x1 = (x∧E, x

∨
I ), check again that

xi ∈ X(qi), which yields (B.1).

C Proof of Proposition 2

The proof follows from two lemmas.

Lemma C.1. Starting from any tariff T , we can find a tariff T̂ such that the
marginal price T̂ ′ is greater than or equal to −γ and the surplus of the buyer-
incumbent pair is not lower under T̂ than under T . The buyer never purchases
more than her total requirements: qI(qE; θE) ≤ 1− qE for any qE.

Proof. Starting from any tariff T , we define T̂ as

T̂ (qI) = inf
q≥qI

T (q) + γ(q − qI). (C.1)

The tariff T̂ is affine with slope −γ in regions where the lower bound in (C.1) is
reached at q > qI . Formally, we have: T̂ (qI) = T (qI) + (γ − λ)(q − qI), where q
is a solution to the above problem and λ is the Lagrange multiplier associated
to the constraint q ≥ qI . The envelope theorem yields T̂ ′(qI) = λ− γ ≥ −γ.

First we check that the buyer and the rival choose the same quantity qE

under the tariffs T and T̂ . Let U(qE) and Û(qE) denote the buyer’s net utility
if she has purchased units qE units from the competitor under T and T̂ :

U(qE) = max
qI

V (qE, qI)− T (qI) and Û(qE) = max
qI

V (qE, qI)− T̂ (qI).

As T̂ ≤ T , we have: Û ≥ U . Suppose that, under T̂ , it is optimal for the buyer
to purchase q̂I from the incumbent if she has purchased qE from the competitor.
By construction of T̂ , there exists qI ≥ q̂I such that T̂ (q̂I) equals or is arbitrarily
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close to T (qI)+γ(qI− q̂I). Observing that buying an extra unit of good I cannot
deteriorate the buyer’s utility by more than −γ, i.e. ∂V/∂qI ≥ −γ, we get:

Û(qE) = V (q̂I , qE)− T̂ (q̂I) = V (q̂I , qE)− γ(qI − q̂I)− T (qI) ≤ V (qI , qE)− T (qI).

It follows that Û(qE) ≤ U(qE), and hence Û(qE) = U(qE) for any qE. To decide
on the quantity qE, the buyer and the rival maximize U(qE)−cEqE under tariff T
and Û(qE)− cEqE under tariff T̂ . As the two objectives coincide, they agree on
the same quantity under the two tariffs: qE(cE, θE) = q̂E(cE, θE) for any cE, θE.
For the same reason, the rival’s profit, β∆SBE = β[U(qE)−U(0)− cEqE], is the
same under T and T̂ .

Second, we check that under tariff T̂ the buyer may purchase less that 1−qE
from the incumbent and that the total welfare is not lower under T̂ than under T .
Let qE and qI denote the purchased quantities under tariff T . As T̂ (qI) ≤ T (qI),
the buyer may always choose to purchase the same quantity from the incumbent
(q̂I = qI) under the tariffs T and T̂ :

U(qE) = Ũ(qE) = V (qE, qI)− T (qI) ≤ V (qE, qI)− T̂ (qI).

Now consider the special case where qI > 1 − qE. As explained at the end of
Section 4.1, purchasing one extra unit of good I in the region where qI > 1− qE
decreases the buyer utility by γ if vE > vI or if qE = 0 and by vI − vE − γ if
vI > vE and qE > 0. In the latter case, the buyer would indeed consume the
extra unit of good I and dispose of a unit of the rival good instead. Yet this
latter case is impossible here because the buyer and the rival would reduce qE in
the first place, thus improving their joint surplus V (qE, qI)− T (qI)− cEqE. We
conclude that ∂V/∂qI = −γ in this region. Under tariff T̂ , the buyer is better
off purchasing q̂I = 1− qE rather than qI > 1− qE from the incumbent. This is
because she saves γ(qE+qI−1) in terms of disposal costs and loses no more than
the same amount in terms of price subsidy.12 The change from qI to q̂I does not
decrease the total surplus. On the contrary, it avoids inefficient production and

12If the tariff is affine with slope −γ in the corresponding region, the buyer is actually
indifferent between purchasing qI and 1− qE from the incumbent. To break the indifference,
we use T̂ (qI) = infq≥qI T (q) + γ′(q − qI), for γ′ slightly lower than γ. The buyer then strictly
prefers 1− qE to qI > 1− qE , for any (cE , θE).
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disposal costs:

W (qE, q̂I) = V (qE, q̂I)− cEqE − cI q̂I ≥ V (qE, qI)− cEqE − cIqI = W (qE, qI).

In sum, the change from T to T̂ does not alter the competitor’s profit and does
not decrease the total surplus. We conclude from (7) that the change does
not decrease the expected payoff of the buyer-incumbent coalition, and that
qI ≤ 1− qE for any (cE, θE).

Lemma C.2. Starting from any tariff T , we can find a tariff T̃ such that the
marginal price T̃ ′ is lower than or equal to vI and the surplus of the buyer-
incumbent pair is not lower under T̃ than under T . We conclude that the buyer
never purchases less than her total requirements: qI(qE; θE) ≥ 1−qE for any qE.

Proof. The proof is very similar to that of Lemma C.1. See Appendix G.

Taken together, Lemmas C.1 and C.2 yield ex post efficiency: qI = q∗I (qE; θE) =

1− qE for all cE, θE.

D Elasticity of entry and distribution of uncer-

tainty

In this section, we prove Lemma 2. The elasticity of entry varies with sE in the
same way as the hazard rate h given by

h(ωE|sE) =
f(ωE|sE)

1− F (ωE|sE)
.

We have ∫ ωE

ωE

h(x|sE) dx = − ln[1− F (ωE|sE)].

If the elasticity of entry does not depend on (increases with, decreases with) sE,
the same is true for the hazard rate, and hence also for the cdf F (ωE|sE), which
yields the results.13

13The variable ωE first-order stochastically decreases (increases) with sE if and only if
F (ωE |sE) increases (decreases) with sE .
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E Derivation of the optimal quantity function

In the above section, the optimal price schedule has been obtained by solving the
rent-efficiency tradeoff separately for each size of the contestable market. This
method, however, does not in general yield an incentive compatible allocation.
To illustrate, suppose that the ERT line is as shown on Figure 7. The solution to
the relaxed problem, which is zero below this line and sE above, is not incentive
compatible. Indeed, the rival of type B = (ωE, sE) is inactive and earns zero
profit, while the rival A = (ωE, s

′
E), s′E < sE, serves all of the contestable

demand. It follows that rival B has an incentive to sell s′E and mimic rival A.
Hence, in this example, solving the relaxed problem does not yield the second-
best allocation.

Figure 7: ERT line (dashed). Here, the relaxed solution is not implementable.

We now characterize implementable quantity functions and offer a heuristic
derivation of second-best allocations. The main idea is that configurations like
that of Figure 7 give rise to partial foreclosure, for which an appropriate first-
order condition must be derived. We do not insist on the mathematical resolution
of the problem, which is relegated in a technical appendix available from the
authors.14 The readers interested only by the qualitative results regarding the

14Deneckere and Severinov (2009) propose a method for solving a more general class of
problems, which relies on a characterization of “isoquants”. We exploit here the particular
shape of these curves, see in particular Figure 8 below.
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shape of optimal price schedules should proceed directly to Section 5.2.

Implementable quantity functions The buyer and the competitor maxi-
mize their joint surplus, knowing the unconditional price schedule T (qI) agreed
upon by the buyer and the incumbent. They choose a quantity qE that depends
on the competitor’s characteristics, (sE, ωE), which gives rise to a “quantity
function” qE(sE, ωE). Assume infinite disposal costs (γ = +∞) and relying on
Proposition 2, we can restrict attention to price schedules whose marginal does
not exceed vI . A quantity function qE(sE, ωE) is implementable with an un-
conditional price schedule if and only if there exists a function T (qI) satisfying
T ′(qI) ≤ vI such that qE(sE, ωE) is solution to (??) for all (sE, ωE).

As qE is nondecreasing in ωE, there exists, for any sE > 0, a threshold
Ψ(sE) such that the buyer supplies all contestable units from the competitor,
qE(sE, ωE) = sE, if and only if ωE > Ψ(sE). We define the boundary line
ωE = Ψ(sE) associated to the quantity function qE(sE, ωE) by

Ψ(sE) = inf{x ∈ [ωE, ω̄E] | qE(x, sE) = sE},

with the convention Ψ(sE) = ω̄E when the above set is empty. Above the
boundary line, qE(sE, ωE) equals sE; below that line, it is independent on sE.

Boundary line and quantity function As shown on Figure 8, an imple-
mentable quantity function qE(., .) is entirely described by the associated bound-
ary line. The bunching sets, i.e. the sets on which the quantity qE(sE, ωE) is
constant, are determined by the boundary line. They can be of three types:
(i) vertical lines above points on the boundary line where that line decreases
(e.g. qE = s3

E and qE = s4
E on the Figure); (ii) “L”-shaped unions of vertical

lines above and horizontal lines above and at the right of points where the bound-
ary line increases (e.g. qE = s1

E, qE = s2
E and qE = s5

E ); (iii) two-dimensional
areas whose left border is vertical, being included either in the ωE-axis (then
qE = 0, see the shaded area on Figure 8) or in a vertical part of the boundary
line (see the light shaded area on Figure 10b).

Partial foreclosure Increasing parts of the boundary function thus translate
into horizontal bunching segments or into two-dimensional bunching areas, and
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Figure 8: Implementable quantity function (isolines)

hence into partial foreclosure: 0 < qE(sE, ωE) < sE for some types located below
the boundary. (For instance, type B on Figure 8 sells qE = s2

E, which is lower
than the size of its contestable market.) In such regions, the constraint qE ≤ sE

is slack: increasing sE does not allow the competitor to enter at a larger scale
and qE does not depend on sE.

Shape of the boundary line and curvature of the tariff In Appendix H,
we explain how to recover the price schedule T from the boundary function Ψ

and we link the shape of the price schedule to that of the boundary line. Flat
parts of the boundary line correspond to linear parts of the tariff (see Figure 1a
and 1b) and increasing parts of the boundary line correspond to convex parts of
the tariff (see Figures 3a and 3b, or the interval A1A3 on Figures 4a and 4b). In
both cases, the constraint qE ≤ sE in the buyer-competitor pair’s problem (??)
is not binding.

In contrast, the curvature of the tariff may change along decreasing parts of
the boundary: the tariff is concave near local maxima of the boundary line and
convex near local minima. Local maxima of the boundary line thus correspond
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to inflection points of the tariff. An example is the point A3 on Figures 4a
and 4b.

Construction of the optimal allocation We now explain intuitively how to
derive the optimal boundary line ωE = Ψ(sE) from the ERT line ωE = ω̂E(sE).

Consider a point (sE, ωE) above the ERT line. If the virtual surplus is always
positive at the right of this point, there is no objection to setting qE = sE. In
contrast, if the virtual surplus is negative at the right of this point, setting
qE = sE implies that qE will have to be positive in an area where the virtual
surplus is negative. By a standard ironing procedure, we show that the expected
virtual surplus on horizontal bunching segments is zero. Denoting by [AB] such
a segment (see Figure 9b), we get

E( sv | [AB] ) = 0, (E.1)

with the boundary conditions that the virtual surplus is positive at A and zero
at B. This leads to the following construction of the optimal boundary line
ωE = Ψ(sE). We first draw the ERT line ωE = ω̂E(sE). For sE = s̄E, we
set Ψ(s̄E) = ω̂E(s̄E). Then we consider lower values of sE. If the ERT line
decreases at s̄E, the boundary coincides with the ERT line, as long as it remains
decreasing. When the ERT line starts increasing (possibly at s̄E), we know that
there is horizontal bunching. Equation (E.1) provides a unique value for Ψ(sE).
If the candidate boundary hits the ERT line at some value of sE, it must be on
a decreasing part of that line and, from that value on, the optimal boundary
coincides with the ERT line (as long as ω̂E remains decreasing). Proposition E.1
in Appendix E presents three different sets of sufficient conditions under which
the above construction indeed yields the optimal allocation.15

Proposition E.1. Assume that one of the following conditions holds:

1. The conditional density f(ωE|sE) is nondecreasing in ωE;

2. The hazard rate, f/(1−F ), is nondecreasing in ωE and β, ε and ε̄ satisfy

β ≤ 4εε̄/(∆ε)2; (E.2)
15When none of the three sufficient conditions holds, the increasing parts of the optimal

boundary line may have vertical portions, generating two-dimensional bunching areas. A
vertical ironing procedure is thus needed (see Appendix I.5).
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Figure 9a: The relaxed solution lo-
cally decreases with sE .

Figure 9b: ERT line ω̂E (dashed).
Optimal boundary Ψ (solid)

3. The elasticity of entry is nondecreasing in ωE (Assumption 1) and and β,
ε and ε̄ satisfy

β ≤ ε̄

1 + (1 + ∆ε)2/4ε
. (E.3)

Then the complete problem can be solved separately for each ωE. The optimal
boundary line Ψ lies above the ERT line, Ψ ≥ ω̂E, and can be constructed from
the following properties:

1. Ψ(1) = ω̂E(1);

2. Its non-increasing parts coincide with the ERT line;

3. Its increasing parts are defined by equation (E.1).

Proof. See Appendix I.

The sufficient conditions of Proposition E.1 are fairly mild. A first sufficient
condition is f being nondecreasing in ωE. A second set of sufficient conditions
is the hazard rate f/(1 − F ) being nondecreasing in ωE and the range of the
entry elasticity being not too wide (condition (E.2)). A third set of sufficient
conditions consists of the elasticity of entry being nondecreasing in ωE, as stated
in Assumption 1,16 and of another condition on the range of ε, (E.3), more

16Assumption 1 is weaker than f or f/(1− F ) being nondecreasing in ωE .
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restrictive than (E.2). Technically, the conditions (E.2) and (E.3) involve the
rival’s bargaining power, β, and the minimum and maximum values of ε in the
whole distribution of types, ε and ε̄. Even the stronger condition (E.3) is not
very restrictive, in the sense that it allows for a wide range [ε, ε̄].17

17For instance, if the rival’s bargaining power, β, equals one, the elasticity of entry may
vary freely between ε = 1.2 and ε̄ = 3.98, or between ε = 5 and ε̄ = 26.64. If β equals .75,
then the elasticity of entry may vary freely between ε = 1.2 and ε̄ = 5.99, or between ε = 5

and ε̄ = 33.59.
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Supplementary material, for online publication

F Complete information

When the price schedule is allowed to depend on both quantities, B and I commit
on a two-part tariff in qI , whose constant part depends on the quantity purchased
from the rival: T (qE, qI) = cIqI + P (qE). The linear part induces the efficient
choice q∗I (qE, θE) ex post, neutralizing buyer opportunism. The constant part,
P (qE), is used to extract all the surplus created by the rival. Specifically, the
incumbent imposes a “penalty” P (q∗E)−P (0) for supplying from the competitor.
Setting this penalty atW (q∗E, q

∗
I )−W (0, q∗I (0)) guarantees that ΠE = ∆SBE = 0.

When the price schedule depends on qI only, there is a tension between buyer
opportunism and rent extraction. Placing too much competitive pressure on the
rival, in practice granting generous quantity rebates, may indeed attract the
buyer, who is tempted to actually purchase the corresponding units from the
incumbent. It may therefore be optimal to let the rival earn a positive profit at
the second-best equilibrium under complete information (see Appendix F).

Lemma F.1 (Marx and Shaffer, 2004). Under complete information, the buyer
purchases the efficient quantities q∗E and q∗I from both suppliers. If the tariff is
allowed to depend on both quantities, then all the surplus is extracted from the
rival: ΠE = 0. If the tariff is function of qI only, then the rival earns

ΠE = β lim
q̂I→+∞

max
qE

[V (qE, q̂I)− cEqE − V (0, q̂I) ] ≥ 0. (F.1)

As a preliminary observation, notice that, for any q̂I , the value of the max-
imum term in (F.1) is nonnegative by construction. Moreover, this maximum
value is non-increasing in q̂I . Indeed its derivative, given by the envelope theo-
rem, satisfies:

d

dq̂I
max
qE

[V (qE, q̂I)− cEqE − V (0, q̂I) ] = VqI (qE, q̂I)− VqI (0, q̂I) ≤ 0. (F.2)

The limit in (F.1) is therefore the lower bound of the maximum term as q̂I varies.
The rival earns a positive profit under complete information if and only if this
lower bound is positive. This is the case with the utility function introduced in
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Section 4.1 and a super-efficient rival. Indeed, in this circumstance, the maxi-
mum term in (F.1) is constant and equal to (ωE−vI−γ)sE for any q̂I ≤ 1. It fol-
lows that super-efficient rivals earn a positive profit, ΠE = β(ωE−vI−γ)sE > 0,
at the second-best optimum under complete information.

The proof of Lemma F.1 proceeds in two steps. First, we derive a lower bound
for the rival’s profit. Second, we find a tariff such that the chosen quantities are
efficient and the lower bound for the rival’s profit is attained.

Step 1.- Let T be any price schedule. Let (qE, qI) be the chosen quantities under
tariff T , as defined in (2). We also set q̂I = qI(0), where the function qI(.) is
defined by (3), and T̂ = T (0). For any q̂E, we have

SBE(q̂E) = V (q̂E, qI(q̂E))− cE q̂E − T (qI(q̂E)) ≥ V (q̂E, q̂I)− cE q̂E − T̂ ,

hence, using the definition of SBE(qE):

SBE(qE) ≥ max
q̂E

V (q̂E, q̂I)− cE q̂E − T̂ .

and

ΠE = β(SBE(qE)− SBE(0)) ≥ βmax
q̂E

V (q̂E, q̂I)− cE q̂E − V (0, q̂I).

We have seen above that the value of the maximum term is non-increasing in
q̂I . We conclude that: ΠE ≥ βL. We have thus found an upper bound for the
buyer-incumbent pair’s profit:

ΠBI ≤ W (qE, qI)− ΠE ≤ W (q∗E, q
∗
I )− βL.

Step 2.- We now show that we can find a tariff such that the chosen quantities
are q∗E and q∗I and the rival’s profit equals or is arbitrarily close to βL.

Let q̂I be such that the maximum term in (F.1) equals or is arbitrarily to L.
Let q̂E be such that V (q̂E, q̂I)− cE q̂E is maximal and V (q̂E, q̂I)− cE q̂E−V (0, q̂I)

equals or is arbitrarily close to L. We have: VqE(q̂E, q̂I)− cE ≤ 0, with equality
when q̂E > 0.

First we observe that q̂I > q∗I and q̂E ≤ q∗E. Indeed, the derivative in (F.2)
evaluated at q∗I is given by VqI (q

∗
E, q

∗
I ) − VqI (0, q

∗
I ) which is negative because

q∗E > 0 by assumption. This shows that q̂I > q∗I . It follows that

0 ≤ VqE(q̂E, q̂I)− cE ≤ VqE(q̂E, q
∗
I )− cE,
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which yields q̂E ≤ q∗E.

We now define a tariff T up to an additive constant by the following prop-
erties: T is linear on the interval [0, q̂I) with slope cI and the difference T (q̂I)−
T (q∗I ) is given by

V (q∗E, q
∗
I )− T (q∗I )− cEq∗E = V (q̂E, q̂I)− T (q̂I)− cE q̂E. (F.3)

Using the definition of (q∗E, q
∗
I ) and q̂I > q∗I , we get

T (q̂I)− T (q∗I ) = cI(q̂I − q∗I )

+ {[V (q̂E, q̂I)− cI q̂I − cE q̂E]− [V (q∗E, q
∗
I )− cEq∗E − cIq∗I ]}

< cI(q̂I − q∗I ).

We conclude that the above-defined tariff T jumps downwards at q̂I .
Now we check that the buyer, having purchased q∗E from the rival, strictly

prefers purchasing q∗I than q̂I from the incumbent:

V (q∗E, q
∗
I )− T (q∗I ) > V (q∗E, q̂I)− T (q̂I). (F.4)

Indeed, the inequality (F.4) is equivalent, after replacing T (q̂I)− T (q∗I ) with its
value from (F.3), to

V (q∗E, q̂I)− V (q̂E, q̂I) < cE(q∗E − q̂E),

which follows from the concavity of V in qE and VqE(q̂E, q̂I) ≤ cE. Next, we check
that the buyer, having purchased q̂E from the rival, strictly prefers purchasing
q̂I than q∗I from the incumbent:

V (q̂E, q̂I)− T (q̂I) > V (q̂E, q
∗
I )− T (q∗I ). (F.5)

Indeed the inequality (F.5) is equivalent to

V (q∗E, q
∗
I )− V (q̂E, q

∗
I ) > cE(q∗E − q̂E),

which follows from the concavity of V in qE and VqE(q∗E, q
∗
I ) = cE. It follows

that there exists q̄E ∈ (q̂E, q
∗
E) such that the buyer, having purchased qE from

the rival, purchases qI from the incumbent with

qI = qI(qE) =

{
q̂I if qE ≤ q̄E

q∗I (qE) if qE ≥ q̄E,
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where q∗I (qE) is given by
VqI (qE, q

∗
I (qE)) = cI . (F.6)

The surplus function SBE(qE) = V (qE, q̂I)−cEqE−T (q̂I) is concave on [0, q̄E)

with a local maximum at q̂E. It has a local minimum and a convex kink at q̄E,
because

S ′BE((q̄E)−) = VqE(q̄E, q̂I)− cE < VqE(q̄E, q
∗
I )− cE = S ′BE((q̄E)+).

For qE > q̄E, the surplus function is given by SBE(qE) = V (qE, q
∗
I (qE))− cEqE −

T (q∗I (qE)). Its the first derivative is given by the envelope theorem:

S ′BE(qE) = VqE(qE, q
∗
I (qE))− cE.

Differentiating (F.6) yields the first derivative of q∗I (qE). We then derive the
second derivative of SBE for qE > q̂E

S ′′BE(qE) = VqE ,qE − (VqE ,qI )
2 /VqI ,qI ,

which is negative by concavity of V . It follows that SBE is concave for qE > q̄E.
The function has another local maximum at q∗E. Thanks to (F.3), the values of
the two local maxima of the function SBE(.) are equal. The difference between
this common maximal value and SBE(0) is equal to L by construction, which
achieves the proof of the lemma.

G Proof of Lemma C.2

We start from any price schedule T . Let T̃ be defined by

T̃ (qI) = inf
q≤qI

T (q) + vI(qI − q). (G.1)

The tariff T̃ is derived from the tariff T as follows. When the incumbent offer q
units at price T (q), he also offers to sell more units than q, say qI > q, at price
T (q) + vI(qI − q). The additional units are offered at the monopoly price vI . By
construction, the slope of T̃ is lower than or equal to vI .

Let ŨB(qE) denote the buyer’s net utility after she has purchased qE units
from the competitor under the price schedule T̃

ŨB(qE) = max
qI

V (qE, qI)− T̃ (qI). (G.2)
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As T̃ ≤ T , we have: ŨB ≥ UB. Suppose that, under T̃ , it is optimal for the buyer
to purchase q̃I from the incumbent if she has purchased qE from the competitor.
By construction of T̃ , there exists qI ≤ q̃I such that T̃ (q̃I) equals or is arbitrarily
close to T (qI) + vI(q̃I − qI). We have:

ŨB(qE) = V (qE, q̃I)− T̃ (q̃I) = V (qE, q̃I)− T (qI)− vI(q̃I − qI)

= V (qE, qI)− T (qI), (G.3)

which implies ŨB(qE) ≤ UB(qE), and hence ŨB(qE) = UB(qE) for all qE. As the
problem of the buyer-competitor pair depends only on the functions UB(.) and
ŨB(.), they agree on the same quantity qE and the competitor earns the same
profit, β∆SBE, under T and T̃ for all (cE, sE, vE).

We now examine the quantity purchased from the incumbent. Suppose that
the buyer, having purchased qE from the competitor, chooses to purchase qI
from the incumbent under the original price schedule T . As T̃ (qI) ≤ T (qI), the
buyer may choose to purchase the same quantity from the incumbent under the
new tariff T̃ :

UB(qE) = ŨB(qE) = V (qE, qI)− T (qI) ≤ V (qE, qI)− T̃ (qI).

Yet, under the tariff T̃ , if qI < 1− qE, the buyer may as well choose to purchase
1 − qE from the incumbent. Indeed, by definition of T̃ , we have T̃ (1 − qE) ≤
T (qI) + vI(1− qE − qI) and hence

UB(qE) = ŨB(qE) = V (qE, qI)− T (qI)

≤ V (qE, qI) + vI(1− qE − qI)− T̃ (1− qE)

= V (qE, 1− qE)− T̃ (1− qE). (G.4)

As vI > cI , the change from qI to 1− qE > qI increases the total surplus:

W (qE, 1− qE) = V (qE, 1− qE)− cEqE − cI(1− qE)

= V (qE, qI)− cEqE − cIqI + (vI − cI)(1− qE − qI) (G.5)

≥ W (qE, qI).

In sum, the change from T to T̃ does not alter the rival’s profit and does not
decrease the total surplus. We conclude from (7) that the change does not
decrease the expected payoff of the buyer-incumbent coalition.
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H Implementable quantity functions

H.1 From the boundary line to the quantity function

Because the quantity function qE(sE, ωE) is nondecreasing in sE and constant
below the boundary, we have:

qE(sE, ωE) =

{
min{ x ≤ sE | Ψ(y) ≥ ωE for all y ∈ [x, sE]} if Ψ(sE) > ωE,

sE if Ψ(sE) ≤ ωE.

(H.1)
For type A (resp. B) on Figure 8, we have Ψ(sE) < ωE (resp. Ψ(sE) > ωE) and
the solution of the problem (??) is unique and equal to s2

E. In contrast, type
C is indifferent between s2

E and s3
E and, by convention, is assumed to choose

s3
E. In other words, when (??) has multiple solutions, equation (H.1) selects the
highest.

Lemma H.1. A quantity function qE(., .) is implementable if and only if there
exists a boundary function Ψ(.) defined on [0, 1] such that (H.1) holds.

We prove here the sufficient part of Lemma H.1. Starting from any bound-
ary function Ψ defined on [0, 1], we define the quantity function qE(sE, ωE) by
equation (H.1), and the surplus gain ∆SBE(sE, ωE) by

∆SBE(sE, ωE) =

∫ ωE

ωE

qE(sE, x) dx.

We observe that the functions thus defined qE(sE, ωE) and ∆SBE(sE, ωE), are
nondecreasing in both arguments, and the latter function is convex in ωE. Next,
we notice that the expression (ωE − vI)qE(sE, ωE) − ∆SBE(sE, ωE) is constant
on qE-isolines. Indeed, both qE(., ωE) and ∆SBE(., ωE) are constant on hori-
zontal isolines (located below the boundary Ψ). On vertical isolines (above the
boundary), ∆SBE(sE, .) is linear with slope sE, guaranteing, again, that the
above expression is constant. We may therefore define T (q), up to an additive
constant, by

T (1)− T (1− q) = (vI − ωE)q + ∆SBE(sE, ωE), (H.2)

for any (sE, ωE) such that q = qE(sE, ωE). Equation (H.2) unambiguously de-
fines T (1)− T (1− q) on the range of the quantity function qE(., .). This range
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contains zero, but may have holes when ω̄E is finite and Ψ is above ω̄E on
some intervals. Specifically, if Ψ is above ω̄E on the interval I = [s1

E, s
2
E], then

qE does not take any value between s1
E and s2

E. In this case, we define T by
imposing that it is linear with slope vI − ω̄E on the corresponding interval:
T (1− s1

E)− T (1− q) = (vI − ω̄E)(q − s1
E) for q ∈ I.

We now prove that the buyer and the competitor, facing the above defined
tariff T , agree on the quantity qE(sE, ωE). We thus have to check that

∆SBE(sE, ωE) ≥ (ωE − vI)q′ + T (1)− T (1− q′) (H.3)

for any q′ ≤ sE. When q′ is the range of the quantity function, we can write
q′ = qE(s′E, ω

′
E) for some (s′E, ω

′
E), with q′ ≤ s′E. Observing that q′ = qE(q′, ω′E)

and using successively the monotonicity of ∆SBE in sE and its convexity in ωE,
we get:

∆SBE(sE, ωE) ≥ ∆SBE(q′, ωE)

≥ ∆SBE(q′, ω′E) + (ωE − ω′E)q′,

which, after replacing T (1) − T (1 − q′) with its value from (H.2), yields (H.3).
To check (H.3) when q′ is not in the range of the quantity function (q′ belongs
to a hole [s1

E, s
2
E] as explained above), use (H.3) at s1

E and the linearity of the
tariff between s1

E and q′.

H.2 From the boundary function to the price schedule

Lemma H.2. The shape of the boundary function Ψ and the curvature of the
price schedule T are linked in the following way:

1. If Ψ is increasing (resp. constant) around sE, then the tariff is strictly
convex (resp. linear) around 1− sE.

2. If Ψ decreases and is concave around sE, then the tariff is concave around
1− sE.

3. If Ψ decreases and is convex around sE and sE is close to a local minimum
of Ψ, then the tariff is convex around 1− sE.
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4. If Ψ has a local maximum at sE, then the tariff has an inflection point at
1− sE.

Proof. First, suppose that Ψ is nondecreasing on a neighborhood of sE. Let s′E
slightly above sE. Then qE = sE is an interior solution of the buyer-rival pair’s
problem (??) for s′E and ωE = Ψ(sE). It follows that the first order condition
Ψ(sE) − vI + T ′(1 − sE) = 0 holds, implying property 1 of the lemma. The
property holds when Ψ has an upward discontinuity at sE, in which case the
tariff has a convex kink at 1 − sE. To illustrate, Figures 10a and 10b consider
the case where the boundary line is a nondecreasing step function with two
pieces.

Figure 10a: Convex kink in the price
schedule

Figure 10b: Two-step increasing
boundary line

Next, suppose that the boundary line decreases around sE. Here we assume
that Ψ is twice differentiable. We denote by [σ(sE), sE] the set of value s′E
such that qE(s′E, ωE) = σ(sE), where ωE = Ψ(sE). The buyer-rival surplus
∆SBE(sE, ωE) is convex and hence continuous in ωE. It can be computed slightly
below or above Ψ(sE). At (sE,Ψ(sE)), the buyer and the rival are indifferent
between quantities sE and σ(sE):

∆SBE(sE,Ψ(sE)) = [Ψ(sE)−vI ]σ(sE)−T (1−σ(sE)) = [Ψ(sE)−vI ]sE−T (1−sE).
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Differentiating and using the first-order condition at σ(sE) yields

T ′(1− sE) = −Ψ′(sE)[sE − σ(sE)]−Ψ(sE) + vI .

Differentiating again yields

T ′′(1− sE) = Ψ′′(sE)[sE − σ(sE)] + Ψ′(sE)[2− σ′(sE)]. (H.4)

In the above equation, the two bracketed terms are nonnegative (use σ′ ≤ 0),
and the slope Ψ′ is negative by assumption, which yields item 2 of the lemma.
Around a local minimum of Ψ, Ψ′ is small, and the first term is positive, hence
property 3. Property 4 follows from items 1 and 2.

I Proof of Proposition E.1

In Section I.1, we offer a convenient parametrization of horizontal bunching
intervals. In Section I.2, we state and prove a one-dimensional optimization
result, which serves to maximize the expected virtual surplus for a given level
of ωE. In Section I.3, we rewrite the complete problem as the maximization
of the expected virtual surplus under monotonicity constraints. In Section I.4,
we show that these constraints are not binding under fairly mild conditions. In
Section I.5, we address the case where the monotonicity constraint are binding
and two-dimensional bunching occurs.

I.1 Parameterizing horizontal bunching intervals

Consider an implementable quantity function qE. For any ωE, the function of
one variable qE(., ωE) is nondecreasing on [0, 1], being either constant or equal to
the identity map: qE = sE. By convention, we call regions where it is constant
“odd intervals”, and regions where qE = sE “even intervals”.

We are thus led to consider any partition of the interval [0, 1] into “even inter-
vals” [s2i, s2i+1) and “odd intervals” [s2i+1, s2i+2), where (si) is a finite, increasing
sequence with first term zero and last term one.18 We associate to any such

18 For notational consistency, we denote the first term of the sequence by s0 = 0 if the first
interval is even and by s1 = 0 if the first interval is odd. Similarly, we denote the last term by
s2n = 1 if the last interval is odd and by s2n+1 = 1 if the last interval is even.
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partition the function of one variable that coincides with the identity map on
even intervals, is constant on odd intervals, and is continuous at odd extremities.
We denote by K the set of the functions thus obtained.

For any implementable quantity function qE, the functions of one variable,
qE(., ωE), belong to K for all ωE. Conversely, any quantity function such that
qE(., ωE) belong to K for all ωE is implementable if and only if even (odd) ex-
tremities do not increase (decrease) as ωE rises. Hereafter, we call the conditions
on the extremities the “monotonicity constraints”.

Even (odd) extremities constitute decreasing (increasing) parts of the bound-
ary line. Odd intervals, [s2i+1, s2i+2), constitute horizontal bunching segments,
or, more precisely, the horizontal portions of the L-shaped bunching regions.

I.2 A one-dimensional optimization result

In this section, we maximize a linear integral functional on the above-defined
set K.

Lemma I.1. Let a(.) be a continuous function on [0, 1]. Then the problem

max
r∈K

∫ 1

0

a(s)r(s) ds

admits a unique solution r∗ characterized as follows. For any interior even
extremity s2i

E , the function a equals zero at s2i
E and is negative (positive) at the

left (right) of s2i
E . For any interior odd extremity s2i+1

E , the function a is positive
at s2i+1

E and satisfies ∫ s2i+2
E

s2i+1
E

a(s) ds = 0. (I.1)

If a(1) > 0, then r∗(s) = s at the top of the interval [0, 1]. If a(1) < 0, then r∗

is constant at the top of the interval.

Proof. Letting I(r) =
∫ 1

0
a(x)r(x) dx, we have

I(r) =
∑
i

∫ x2i+1

x2i

xa(x) dx+
∑
i

x2i+1

∫ x2i+2

x2i+1

a(x) dx,

where the index i in the two sums goes from either i = 0 or i = 1 to either
i = n− 1 or i = n, in accordance with the conventions exposed in Footnote 18.

54



Differentiating with respect to an interior even extremity yields

∂I

∂x2i

= a(x2i).[x2i−1 − x2i].

The first-order condition therefore imposes a(x∗2i) = 0. The second-order condi-
tion for a maximum shows that a must be negative (positive) at the left (right)
of x∗2i.

Differentiating with respect to an interior odd extremity yields

∂I

∂x2i+1

=

∫ x2i+2

x2i+1

a(x) dx.

The first-order condition therefore imposes
∫ x∗2i+2

x∗2i+1
a(x) dx. The second-order

condition for a maximum imposes that a is nonnegative at x∗2i+1.

If a(1) > 0, then it is easy to check that r∗(x) = x at the top, namely on
the interval [x∗2n, x

∗
2n+1] with x∗2n being the highest zero of the function a and

x∗2n+1 = 1. If the function a admits no zero, it is everywhere positive and hence
r∗(x) = x on the whole interval [0, 1].

If a(1) < 0, then r∗ is constant at the top, namely on the interval [x∗2n−1, x
∗
2n],

with x∗2n = 1 and
∫ 1

x∗2n−1
a(x) dx = 0. If the integral

∫ 1

y
a(x) dx remains negative

for all y, then r∗ is constant and equal to zero on the whole interval [0, 1].

I.3 Solving the complete problem

The complete problem consists in maximizing the expected virtual surplus sub-
ject to the even (odd) extremities being nonincreasing (nondecreasing). The
latter conditions are called hereafter the “monotonicity constraints”.

Applying Lemma I.1 with a(sE) = sv(sE, ωE) for any given ωE, we find that
the virtual surplus is zero at candidate even extremities: sv(x2i(ωE), ωE) = 0

and is negative (positive) at the left (right) of these extremities. In other words,
candidate even extremities belong to decreasing parts of the ERT line. Thus, as
regards even extremities, the monotonicity constraints are never binding.

Lemma I.1 also implies that the virtual surplus is positive at odd extrem-
ities. These extremities therefore lie above the ERT line. By the first-order
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condition (I.1), the expected virtual surplus is zero on horizontal bunching in-
tervals:

E(sv|H) = 0, (I.2)

where H is a horizontal bunching interval with extremities s2i+1
E and s2i+2

E . The
virtual surplus on a bunching interval is first positive, then negative as sE rises,
and its mean on the interval is zero. The segment [AB] on Figure 9b is an
example of horizontal bunching interval (in fact the horizontal part of an “L”-
shaped bunching set). Unfortunately, the first-order condition (I.2) does not
imply that candidate odd extremities x2i+1(ωE) are nondecreasing in ωE: odd
extremities might decrease with ωE in some regions, generating two-dimensional
bunching.

I.4 Sufficient conditions

We now check that each of the three conditions mentioned in Proposition E.1 is
sufficient for the odd extremities s2i+1

E (ωE) to be nondecreasing in ωE.
We can restrict attention to efficient rivals, ωE ≥ ωI .19 We rewrite equa-

tion (I.2) as A(s2i+1
E , ωE) = 0 with

A(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

sv(s, ωE)f(ωE|s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f(ωE|s)− β(1− F (ωE|s))] g(s) ds.

The function A is nonincreasing in s2i+1
E , as the virtual surplus is nonnegative

at this point:

∂A

∂s2i+1
E

(s2i+1
E , ωE) = −sv(s2i+1

E , ωE)f(ωE|s2i+1
E )g(s2i+1

E ) ≤ 0.

Differentiating with respect to ωE, we get

∂A

∂ωE
(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f ′(ωE|s) + f(ωE|s) + βf(ωE|s)] g(s) ds,

19For ωE < ωI , the virtual surplus is negative for all sE and the solution is qE = 0 for all
sE .
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where we denote by f ′ the derivative of f in ωE.

When f is nondecreasing in ωE, or f ′ ≥ 0, we have ∂A/∂ωE ≥ 0, and hence
the odd extremities are nondecreasing in ωE. We now examine successively the
cases where the hazard rate is nondecreasing in ωE (a weaker condition than
f ′ ≥ 0) and the elasticity of entry is nondecreasing in ωE (an even weaker
condition).

I.4.1 Assuming that the hazard rate does not decrease in ωE

We now assume that the hazard rate, f/(1− F ), is nondecreasing in ωE, which
can be expressed as f ′ ≥ −εf/ωE. Using ωE ≥ ωI , we find that

∂A

∂ωE
≥

∫ s2i+2
E

s2i+1
E

[
−(ωE − ωI)

ε

ωE
+ 1 + β

]
f(ωE|s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

{
ε

[
ωI
ωE
− 1 +

β

ε

]
+ 1

}
f(ωE|s)g(s) ds.

On a horizontal interval H, the variable ωE is constant, and only the elasticity
ε may vary. Hence, the first order condition (I.2) yields: E(1 − β/ε |H) =

ωI/ωE. The right-hand side of the above inequality is equal, up to a positive
multiplicative constant, to

1− cov
(
ε, 1− β

ε

∣∣∣∣H) .
We now look for a sufficient condition for this expression to be nonnegative
for any distribution of ε. Noting m = E(ε|H) the expectation of ε on H, the
condition can be rewritten as

E
[
(ε−m)

(
1− β

ε

)∣∣∣∣H] ≤ 1.

The function (ε−m)(1−β/ε) is convex in ε. We denote by [ε, ε̄] the support of
the distribution of ε. For given values of ε, ε̄ andm = E(ε|H), the expectation of
this convex function is maximal when the distribution of ε has two mass points
at ε and ε̄, associated with the respective weights ε̄−m

ε̄−ε and m−ε
ε̄−ε . We thus need

to make sure that

(ε̄−m)(ε−m)

(
1− β

ε

)
+ (m− ε)(ε̄−m)

(
1− β

ε̄

)
≤ ε̄− ε,
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for any m ∈ [ε, ε̄]. The left-hand side of the above inequality is maximal for
m = (ε + ε̄)/2. It follows that the inequality holds for all m ∈ [ε, ε̄] if and only
if the condition (E.2) is satisfied.

I.4.2 Assuming that the elasticity of entry does not decrease in ωE

We now assume that the ε(ωE|sE) is nondecreasing in ωE, as stated in Assump-
tion 1. We have:

∂ε(ωE|sE)

∂ωE
(s2i+1
E , ωE) =

∂

∂ωE

[
ωEf(ωE|sE)

1− F (ωE|sE)

]
≥ 0

which can be rewritten as f ′ ≥ −(1 + ε)f/ωE. Using ωE ≥ ωI , we find that

∂A

∂ωE
≥
∫ s2i+2

E

s2i+1
E

[
ωI
ωE
− ε

(
1− β

ε
− ωI
ωE

)]
f(ωE|s)g(s) ds.

On a horizontal interval H, the variable ωE is constant, and only the elasticity
ε may vary. Hence, the first order condition (I.2) yields: E(1 − β/ε |H) =

ωI/ωE. The right-hand side of the above inequality is equal, up to a positive
multiplicative constant, to

E
(

1− β

ε

∣∣∣∣H)− cov
(
ε, 1− β

ε

∣∣∣∣H) .
We now look for a sufficient condition for this expression to be nonnegative
for any distribution of ε. Noting m = E(ε|H) the expectation of ε on H, the
condition can be rewritten as

E
[
(ε−m− 1)

(
1− β

ε

)∣∣∣∣H] ≤ 0.

The function (ε−m−1)(1−β/ε) is convex in ε. We denote by [ε, ε̄] the support
of the distribution of ε. For given values of ε, ε̄ andm = E(ε|H), the expectation
of this convex function is maximal when the distribution of ε has two mass points
at ε and ε̄, associated with the respective weights ε̄−m

ε̄−ε and m−ε
ε̄−ε . We thus need

to make sure that

(ε̄−m)(ε−m− 1)

(
1− β

ε

)
+ (m− ε)(ε̄−m− 1)

(
1− β

ε̄

)
≤ 0, (I.3)

for any m ∈ [ε, ε̄]. The above function is the sum of two quadratic functions of
m. The first is convex with roots ε− 1 and ε̄; the second is concave with roots
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ε and ε̄− 1. Both quadratic functions have zero derivative at m = (ε+ ε̄− 1)/2.
The sum of the two functions is concave as ε < ε̄.

When ε̄ ≤ ε + 1, the concave quadratic function is negative on the interval
[ε, ε̄], and hence the inequality (I.3) holds on that interval. When ε̄ > ε+ 1, we
need to make sure that the maximum value of the concave quadratic function is
lower than the minimum value of the convex quadratic function. This is is the
case if and only if (

1− β

ε̄

)
(∆ε− 1)2 ≤

(
1− β

ε

)
(∆ε+ 1)2.

which is equivalent to (E.3).

Figure 11a: ERT line (dashed). Non-
monotonic odd extremities (solid line)

Figure 11b: Two-dimensional bunch-
ing area: qE = ŝ on D.

I.5 Two-dimensional bunching

When none of the above sufficient conditions holds, it may happen that solv-
ing the problem separately for each ωE yields odd extremities (left extremities
of horizontal bunching segments) that are non-monotonic with ωE, as repre-
sented on Figure 11a. Such a line does not define a boundary function Ψ(sE).
This means that the monotonicity constraints are binding and that the optimal
boundary line has an increasing vertical portion, generating a two-dimensional
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pooling area. An example of such an area is the shaded region D pictured on
Figure 11b, on which the quantity is constant. The value of the constant (ŝ on
the picture) is determined by the first-order condition

E(sv|D) = 0.

This example has been constructed by assuming that (i) ωE follows a Pareto
distribution conditionally on sE, for all sE; (ii) the elasticity of entry takes two
values, ε and ε̄, with a large difference ε̄− ε; (iii) small rivals are very sensitive
to the competitive pressure placed by the incumbent (their elasticity is ε̄) and
large rivals are much less sensitive (their elasticity is ε). Hence the increasing
ERT line with two pieces.
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