
Discriminatory Information Disclosure∗

Li, Hao Xianwen Shi

University of British Columbia University of Toronto

First Version: June 20, 2009

This Version: September 10, 2013

Abstract

We consider a price discrimination problem in which a seller has a single object for

sale to a potential buyer. At the time of contracting, the buyer’s private type is his

incomplete private information about his value, and the seller can disclose additional

private information to the buyer. We study the question of whether discriminatory infor-

mation disclosure can be profitable to the seller under the assumption that, for the same

disclosure policy, the amount of additional private information that the buyer can learn

depends on his private type. In both discrete-type and continuous-type setting, we show

that discriminatory disclosure can be optimal because, compared to full disclosure, it re-

duces the information rent accrued to private types of the buyer without much impact on

the trade surplus. A complete characterization of the optimal discriminatory disclosure

policy is provided in the discrete-type setting. We also establish sufficient conditions for

the optimality of full information disclosure in the continuous-type setting.
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1 Introduction

Imagine a homeowner trying to sell her house to a prospective buyer. The seller cannot tell

whether the buyer is a rich guy who is potentially willing to pay a good price for the house

if he likes it, or someone with more limited means who is more likely to pay less money.

Regardless of whether he is the rich type or the budget type, the buyer initially has only

limited information about the house: he does not know how much he likes it and hence how

much he is willing to pay. To sell the house, the seller can grant the buyer full access to it

and allow the buyer to find out privately his willingness to pay—but only after the buyer

chooses between paying a fee in advance in exchange for the option of buying the house at the

seller’s reservation value, and paying a smaller fee for the purchase option at a higher price.

If the two contracts are properly designed, the rich type is indifferent between the two and

so is happy to accept the efficient contract, and the budget type strictly prefers the second

and inefficient one. Moreover, while the seller makes sure that budget type does no better

than rejecting the inefficient contract, she must leave some “rent” to the rich type, because

the latter gets more out of the inefficient contract than the budget type.

The above is a motivating example of sequential price discrimination of Courty and Li

(2000).1 In the present paper, we consider the possibility of using information disclosure pol-

icy as an additional instrument of price discrimination. To continue with the above example,

imagine that the seller can choose how much additional private information that the buyer

can learn prior to transaction – from opening the house for the buyer’s complete inspection,

to giving him a virtual house tour, to just showing some photos. Regardless of the buyer’s

type, more private information disclosed by the seller allows the buyer to refine the estimate

of his willingness to pay and increases the total trade surplus with the buyer. Since the

rich type is offered the efficient contract, the seller will want to allow him to learn as much

additional information as possible. However, the same is not generally true for the budget

type, because the information disclosure policy attached to the inefficient contract affects

the rent to the rich type as well as the trade surplus with the budget type. It can happen

that the information disclosure policy the seller chooses for the inefficient contract has little

impact on the realized willingness of pay for the budget type, perhaps because the budget

type already has relatively accurate information about his value, and at the same time, the

rich type initially has little information about the house and potentially a lot to learn about

it. In this case, the rent to the rich type from the inefficient contract can be reduced by

attaching to the contract a less than full information disclosure policy.

Sequential screening introduced by Courty and Li (2000), where the buyer has incomplete

private information about his value of the seller’s object for sale, is a natural and simple

1Baron and Besanko (1984) were the first to consider the problem of dynamic price discrimination. They

also introduced “informativeness measure” to quantify information rent for ex ante buyer types. However,

they did not provide sufficient conditions for their application of the first-order approach to dynamic incentive

compatibility.
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environment to consider the issue of discriminatory information disclosure. We depart from

sequential screening by making the following assumptions. First, the seller can disclose,

without observing, additional private information to the buyer after the two parties agree on

a mechanism. One of first papers to introduce to the literature the idea of private information

disclosure is Bergemann and Pesendorfer (2007), who study the optimal signal structures for

an auctioneer.2 In their model, bidders in the auction have no private information at the

timing of contracting, and there is a trade-off between disclosing more private information

and thus improving allocation efficiency among the seller and the bidders on one hand, and

having to elicit the private information from the bidders and thus giving up more information

rent on the other. Second, the seller can charge the buyer for accessing additional private

information. Eso and Szentes (2007) make the same assumption and show that the trade-off

identified in Bergemann and Pesendorfer (2007) disappears. In particular, they show that

under the same conditions as in the sequential screening model of Courty and Li (2000), the

seller gives up no information rent for the additional private information—all the information

rent arises from the ex ante private information that the buyer has at the time of contracting.

They argue that this result implies that the seller should release all the additional private

information under her control. Third, for the same disclosure policy chosen by the seller, the

amount of additional private information that the buyer can learn depends on his ex ante

private type. This assumption allows the seller to use discriminatory information disclosure

to further reduce the buyer’s information rent from his ex ante private information relative

to Courty and Li (2000) and Eso and Szentes (2007).3

Section 2 introduces the framework of sequential screening and makes the three departing

assumptions mentioned above. We specify an “information environment” by quantifying the

seller’s information disclosure policy and ordering the buyer’s ex ante types. The central

modeling issue is: given the perfect signal structure under full disclosure, what is “partial”

disclosure? We argue that a natural and general way of modeling partial disclosure is con-

sistent with our third departing assumption that under the same partial disclosure policy

the amount of additional private information disclosed depends on the ex ante type of the

buyer. In the above motivating example of selling a house, a video of virtual tour of the

house can be more informative to the rich type than to the budget type. More precisely, the

distribution of the posterior estimate after receiving the signal from a given partial disclosure

policy depends on the initial private type. This is the critical modeling choice that generally

makes discriminatory information disclosure optimal.

In Section 3, we first consider the model in which the buyer’s ex ante type is discrete. We

2See also Lewis and Sappington (1994), Che (1996), and Ganuza (2004). Johnson and Myatt’s (2006)

model of choosing demand functions and Kamenica and Gentzkow’s (2011) model of persuasion also have the

similar idea of disclosing information: in these models the sender of the information does not need to elicit it

from the receiver, so one might as well assume the sender does not observe it.
3A recent paper by Bergemann and Wambach (2013) show that one can implement Eso-Szentes result

through sequential disclosure with the posterior participation constraint rather than the interim participation

constraint.
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characterize the optimal selling mechanism that incorporates both information disclosure and

sequential screening. In the case of two ex ante private types that are ordered by first-order

stochastic dominance under full disclosure, our characterization shows that it is optimal for

the seller to fully disclose information for the dominant type by choosing the perfect signal

structure, but that the optimal signal disclosure for the dominated type must balance the

trade surplus with this type and the information rent to the dominant type, subject to the

constraint that the dominant type’s rent is non-negative. The constraint is always satisfied

if under any feasible partial disclosure the distributions of the posterior estimate of the

two types remain ordered by first-order stochastic dominance, but may otherwise bind. By

allowing signal structures generated through partitioning the true value distributions under

full disclosure, which we call “direct disclosure,” we show that the perfect signal structure

is never optimal for the dominated type, and give the necessary and sufficient conditions

for a direct disclosure policy to extract the entire surplus. The reason that discriminatory

disclosure can be profitable is that an appropriate two-way partitioning, together with a

selling mechanism, can achieve the same surplus with the dominated type as under the perfect

signal structure, while reducing the information rent of the dominant type. Indeed, a natural

generalization of direct disclosure policies is optimal among all signal structures consistent

with the given information environment. A key part of our proof is to generalize the optimal

direct disclosure to give no additional private information to a deviating dominant type.

Section 4 considers the model with a continuum of ex ante buyer types. We charac-

terize sufficient conditions for the first-order (local) approach to be valid in characterizing

the optimal selling mechanism that incorporates both information disclosure and sequential

screening. Using this characterization, we identify information environments under which

full information disclosure is optimal. In each of these cases, the information rent of each ex

ante buyer type is unaffected by the seller’s information disclosure policy, so any additional

private information disclosed by the seller increases the virtual surplus for this type. In gen-

eral, however, the optimal information disclosure policy is not full disclosure. We extend the

result in the discrete-type setting to show that direct disclosure can extract all the surplus.

More generally, if the ex ante types are ordered in hazard rate, then full disclosure is not

optimal because the seller can use direct disclosure to reduce the information rent of almost

every buyer type by limiting the amount of additional private information disclosed.

In Section 5, we relate our findings to Eso and Szentes (2007). They show that there is

no information rent from any private information disclosed by the seller by comparing the

sequential screening setting with a “hypothetical” setting where the seller can observe all

additional private information she discloses after contracting with the buyer. We argue that

their result does not imply that full information disclosure is optimal when discriminatory

information disclosure is allowed, for two reasons. First, the seller’s profit in the hypothetical

setting with full disclosure may be strictly lower than the profit that the seller can attain in

the original setting. The implicit claim in Eso and Szentes (2007) that the profit in the hypo-

thetical setting is an upper-bound on the original setting turns out to be true only if partial
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disclosure means that the amount of additional private information is independent of the ex

ante type of the buyer.4 However, as we show in both the binary-type and the continuous-

type settings, this claim does not hold generally. Second, in the discrete-type model, the

profit attained by the hypothetical seller cannot be replicated by the sequential screening

seller because of a failure of revenue equivalence, although the gap in profits disappears in

the continuous-type model.5

Our paper belongs to the rapidly growing literature on dynamic mechanism design. For

optimal dynamic mechanism design, see Battaglini (2005), Board and Skrzypacz (2010),

Pavan, Segal and Toikka (2012), Boleslavsky and Said (2013), and references therein. For

efficient dynamic mechanism design, see Athey and Segal (2013), Gershkov and Moldovanu

(2009), Bergemann and Valimaki (2010), and references therein. Bergemann and Said (2011)

and Gershkov and Moldovanu (2012) provide excellent survey of the recent development.

2 The Model

2.1 Basic Setup

Consider the following two-period sequential screening model. A monopolist sells a good to

a single buyer. The production entails no fixed cost but a constant marginal cost c > 0,

which we sometimes also refer to as the reservation value of the seller. The buyer’s true value

ω ∈ Ω ≡ [ω, ω] for the good is unknown. We assume that c < ω. In period one, the buyer

privately observes a signal θ ∈ Θ about his true value ω. Let the prior joint distribution over

ω and θ be F (ω, θ); this is taken as the primitive of the information environment specified

below. Let the marginal distribution of θ be F (θ), given in the usual way by

F (θ) =

∫
Ω
dF (·, θ).

We assume that the buyer and the seller are risk-neutral, and for simplicity, do not discount.

The basic idea of information disclosure in this setting is as follows. The seller controls

an additional private signal z about ω. In period two, she can release, without observing,

a signal that is correlated with z to the buyer. Moreover, the seller can choose how much

information to release: we model this by allowing the seller to choose some σ from a set S,

where each σ represents the signal structure of some random variable, which we denote as

sσ and whose realization we denote as s in some signal space S. We note that sσ can be

correlated with the buyer’s ex ante type θ, but for notational brevity we will not make it

explicit. We assume that there is no cost of disclosing any information. In principle, the

seller can discriminate different ex ante types θ of the buyer, by providing a different signal

structure σ to different buyer types. To model this, we allow the seller to choose a particular

σ from S depending on the buyer’s reported ex ante type.

4Eso and Szentes (2007) do not offer a proof of this claim. In private communication, Roland Strausz has

suggested one, which we include in Section 5 for completeness.
5The second point is also made in a recent paper by Krahmer and Strausz (2013).
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For simplicity, we assume that all information of the buyer about ω besides his ex ante

type θ is under the seller’s control. That is, the buyer may not acquire any additional private

information about ω on his own. This assumption allows us to include “no disclosure” as a

feasible choice for the seller. We also assume that z = ω; that is, if the seller fully discloses all

the additional private information, the buyer will learn the true value of the product. Given

the assumption of risk-neutrality, this assumption is without loss of generality: it amounts

to defining what is the maximum amount of information under the seller’s control, as we can

always redefine the buyer’s posterior estimate of his value condition on θ and z as ω.

Formally, following Bergemann and Pesendorfer (2007), we define a signal structure as a

joint distribution function F σ(ω, θ, s), such that∫
S
dF σ(ω, θ, ·) = F (ω, θ)

for all ω and θ. The above constraint can be thought of as a “consistency” requirement on

feasible signal structures, as it requires the marginal distribution over ω and θ to coincide

with the given prior distribution. Given F σ (ω, θ, s), we can define the conditional distribution

function F σ(ω|θ, s) and the marginal distribution function F σ(s) in the usual fashion. At

this point, we allow any signal structure that satisfies the above consistency condition.

Given F σ (ω, θ, s), a type-θ buyer who observes a signal s will update his belief about

ω according to Bayes’ rule. Let V σ(θ, s) denote this buyer’s revised estimate of ω after

observing s; that is,

V σ(θ, s) ≡ Eω [ω|θ, sσ] =

∫
Ω
ωdF σ(ω|θ, s).

Let G (·|θ, σ) denote the distribution function of V σ(θ, s), for the type-θ buyer who knows

the signal structure σ but has yet to observe the signal realization s. We have:

G(v|θ, σ) =

∫
{s∈S|V σ(θ,s)≤v}

dF σ(s).

Note that by the consistency condition,

Es [V σ(θ, s)] = E [ω|θ] ≡ µ(θ),

so that regardless of σ ∈ S, the mean of the posterior estimate is always equal to the

prior mean µ(θ) given the buyer’s ex ante type. This extends the idea of “private value” of

information disclosure discussed in Bergemann and Pesendorfer (2007) to the setting where

the buyer has imperfect private information. The interpretation is that the buyer’s true value

ω reflects the match between the buyer’s idiosyncratic tastes and the characteristics of the

seller’s product. So even though the seller observes the characteristics of her product, she

does not know how it is valued by the buyer.

Having defined a signal structure σ in S for each buyer ex ante type, we now introduce

“disclosure policy” {σ(θ)} as the seller’s choice of a signal structure from S for each reported

buyer type θ. Since both the buyer and the seller are risk-neutral, regardless of his report
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θ, following the signal structure σ(θ), the buyer’s realized posterior estimate v of his true

value ω, instead of the realized signal disclosed by the seller, is all that matters. Thus, by

the standard revelation principle, for a given disclosure policy {σ(θ)}, we can focus on direct

revelation mechanisms {{x (θ, v) , y (θ, v)}}, where x (θ, v) denotes the trading probability

conditional on the buyer’s sequential reporting first his ex ante type θ and then his posterior

estimate v realized under the signal structure σ(θ), and y (θ, v) denotes the corresponding

payment made by the buyer to the seller. The goal of the seller is to choose a disclosure

policy {σ (θ)} and a selling mechanism {{x (θ, v) , y (θ, v)}} to maximize her expected profit.

To provide more structure to the above optimal design problem and quantify disclosure

policies, we introduce two orderings on {{G(·|θ, σ)}}, one with respect to θ for each fixed

σ, and the other with respect to σ for each fixed θ. Together we refer to the two orderings

an “information environment.” First, we restrict our analysis to families of distributions

{G (·|θ, σ)} with respect to the ex ante type θ that satisfy first-order stochastic dominance

when the seller fully discloses all the additional private information: F (ω|θ) ≤ F (ω|θ′) for

all ω and θ > θ′. For some results in the paper, we additionally require that {G (·|θ, σ)}
satisfy first-order stochastic dominance for all σ ∈ S.6

Second, we need an information order to quantity the “amount” of information in the

random variable sσ for each given θ. Since the distribution of v, G (·|θ, σ), is uniquely deter-

mined by σ conditional on θ, we would like to have an information order that directly ranks

{G (·|θ, σ)} instead of sσ. Given the consistency requirement that each G (·|θ, σ) is generated

from the same prior distribution F (ω, θ), this can be achieved by requiring the corresponding

conditional distributions functions {G (·|θ, σ)} to satisfy “convex order,” defined as follows:

Definition 1 (Convex Order) For a given θ, signal structure σ dominates σ′ in convex

order if
∫
ϕ(v)dG (v|θ, σ) ≥

∫
ϕ(v)dG (v|θ, σ′) for any convex function ϕ, or equivalently,∫ v

ω

(
G (w|θ, σ)−G

(
w|θ, σ′

))
dw ≥ 0 for all v ∈ [ω, ω] .

Recall that by consistency, the mean of G (v|θ, σ) is equal to µ(θ) for all σ ∈ S. Thus, σ

dominates σ′ in convex order if and only if G (v|θ, σ) is a mean-preserving spread of G (v|θ, σ′).
For most of our results, we assume only that for all θ the signal structure corresponding to the

distribution F (·|θ) of the true value when the seller fully discloses all the additional private

information dominates any other σ in S. For some examples in the continuous-type setting,

{G (·|θ, σ)} is convex-ordered for all σ ∈ S for each fixed θ.

The literature has proposed several ways to quantity how informative signal structures

are: (i) Blackwell (1951) sufficiency, (ii) Lehmann (1988) and Perciso (2000) accuracy, and

(iii) Athey and Levin’s (2001) monotone information order with supermodular preferences.

All these criteria are based on comparing signal distributions. As shown in Jewitt (2007), (i)

6In an earlier version of the paper, we have also considered the case where the family of distributions

{G (·|θ, σ)} is ranked by mean-preserving-spread in θ for all σ ∈ S. These results are not included in the

present version, but are available from the authors upon request.
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implies (ii), and (ii) implies (iii). In a setting similar to ours but without the buyer having

initial private information, Ganuza and Penalva (2010) argue that the seller’s information

disclosure problem is different from the standard statistical decision problem, because it

is the buyer rather than the seller who uses the information for decision making, and the

seller’s objective’s in supplying information is not to improve the buyer’s decision making

per se but to maximize her profit. To study the seller’s disclosure problem, they propose the

new information criterion of integral precision, which is based on conditional expectations.

Ganuza and Penalva (2010) show that it is implied by the monotone information order in

Athey and Levin’s (2001), and is thus weaker than Blackwell order or Lehmann order. Our

convex order criterion adapts the integral precision order in Ganuza and Penalva (2010) to a

setting where the buyer has private information.

2.2 Full Disclosure and Partial Disclosure

The above framework incorporates the model of sequential screening of Courty and Li (2000)

as a special case where the set of feasible signal structures is a singleton. Without loss of

generality we may assume that the seller has to provide perfect information to the buyer. Let

σ represent the perfect signal structure under “full disclosure,” that is, the released signal

sσ = ω and

G(ω|θ, σ) = Pr (s ≤ ω|θ) = F (ω|θ).

Since S is a singleton, an information environment is simply an ordering of {F (·|θ)}, in

first-order stochastic dominance, which is Courty and Li (2000).

The model of information disclosure in Eso and Szentes (2007) is also incorporated as

a special case of our framework. Define the random variable s~σ ≡ F (ω|θ) with a typical

realization q, and let Qθ (q) be the inverse of the conditional quantile function F (ω|θ); this

gives type-θ buyer’s true value ω as a function of the realized q. The random variable s~σ is

uniformly distributed over [0, 1] conditional on θ, as

F ~σ(q|θ) = Pr (F (ω|θ) ≤ q|θ) = Pr (ω ≤ Qθ(q)|θ) = F (Qθ(q)|θ) = q.

Thus, s~σ is independent of θ. This way of modeling full disclosure gives rise to what Eso

and Szentes (2007) refer to as the “orthogonal” decomposition of all the private information

about ω into θ, which the buyer always knows, and s~σ, which is independent of θ.7

To study discriminatory information disclosure, we need a model of “partial disclosure.”

One way is to use s~σ to construct a class of signal structures S such that each σ ∈ S remains

orthogonal to θ. We will refer to it as “orthogonal disclosure.” Formally, for each σ ∈ S, let

7This decomposition is important for Eso and Szentes (2007) to construct the profit-maximizing problem

of a “hypothetical” seller who observes the realization of s~σ but not θ. This is a meaningful problem because

s~σ is independent of θ. Their main result is that the seller in the original setting who does not observe s~σ can

obtain the same expected profit as the hypothetical seller. Thus, the “new” information modeled by s~σ does

not result in any information rent to the buyer. See Section 5 for details.
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Γσ(·|q) be the distribution function of sσ conditional on the realized q of s~σ. Therefore, in

the sense of Blackwell (1951), each σ is a garbling of ~σ. Define

F σ(s|ω, θ) = Γσ (s|F (ω|θ)) ,

from which we then have the joint distribution F σ (ω, θ, s). By construction, F σ (ω, θ, s)

satisfies the consistency requirement. Furthermore, sσ is independent of θ, with

F σ(s|θ) = Pr (sσ ≤ s|θ) =

∫
Γσ(s|q)dF ~σ (q|θ) =

∫
Γσ(s|q)dq,

where we have used F ~σ (q|θ) = q. Finally, since

V σ(θ, s) =

∫
Qθ (q) dΓσ(q|s),

we have

G(v|θ, σ) =

∫
{s|V σ(θ,s)≤v}

dF σ(s),

where F σ(s) = F σ(s|θ) is given above.

In orthogonal disclosure, since the distribution of sσ is independent of θ, the ordering of

{F (·|θ)} by first-order stochastic dominance with respect to θ is passed on without change

to the family of distributions {G(·|θ, σ)} with respect to θ for any σ. More precisely, since

Qθ(q) ≥ Qθ′(q) for any q ∈ [0, 1], and thus V σ(θ, s) ≥ V σ(θ′, s) for all σ, implying that

G(v|θ, σ) ≤ G(v|θ′, σ) for all v. For the other part of information environment, again since

the distribution of sσ is independent of θ for any σ ∈ S, the order between two signal

structures σ and σ′ is also independent of θ. This implies that the ordering of a family of

distributions {G(·|θ, σ)} with respect to σ is independent of θ.

Another way to model partial disclosure is to work with the true value ω directly instead

of its orthogonal transformation s~σ. To illustrate, consider the following two-way partition

signal structure σ. Fix some k ∈ (ω, ω), and assume S = {s−, s+} so that there are two

possible realized signals s− and s+ of the random variable sσ, with V σ(θ, s) given by

V σ(θ, s) =

{ ∫ k
ω ωdF (ω|θ)/F (k|θ) if s = s−∫ ω

k ωdF (ω|θ)/(1− F (k|θ)) if s = s+.

Clearly, the distribution of sσ is not independent of θ:

F σ(s|θ) =


0 if s < s−

F (k|θ) if s− ≤ s < s+

1 if s ≥ s+.

For each θ ∈ Θ, the family of conditional distributions {G(·|θ, σ)} is given by

G(v|θ, σ) =


0 if v < V σ(θ, s−)

F (k|θ) if V σ(θ, s−) ≤ v < V σ(θ, s+)

1 if v ≥ V σ(θ, s+).
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By construction, {G(·|θ, σ)} satisfies the consistency requirement. Further, if {F (·|θ)} is

ordered by likelihood ratio order with respect to θ, then both V σ(θ, s−) and V σ(θ, s+) increase

in θ,8 and thus {G(·|θ, σ)} is ordered by first-order stochastic dominance. Finally, when S
contains only σ as thus constructed and σ, then σ is dominated in convex order by σ for each

θ as they are ordered by Blackwell sufficiency.

The above partition signal structure is an example of what we call “direct disclosure,”

which formally may be defined as a mapping σ : Θ × Ω → ∆S from reported ex ante type

θ̃ and true value ω to a distribution over the signal space S. This is special because the

signal realization depends on the true ex ante type θ only through the true value. The

two-way partition signal structure illustrates that even under direct disclosure with the same

threshold k, both the posterior estimate V σ for a given signal realization and its distribution

depend on the ex ante type θ. A more general partition signal structure would have the

threshold depending on the true ex ante type θ. In this paper we allow any disclosure

policy that satisfies the consistency requirement, which may be represented by a mapping

σ : Θ × Θ × Ω → ∆S from true ex ante type θ, reported type θ̃ and true value ω to signal

distribution. In contrast, what we have defined as orthogonal disclosure may be represented

by a mapping σ : Θ× [0, 1]→ ∆S from reported type θ̃ and the quantile q of true value ω to

a signal distribution.

Although all three kinds of disclosure policies above allow discrimination based on re-

ported ex ante type, we show that discriminatory disclosure is not profitable under orthogonal

disclosure if some regularity conditions are satisfied, consistent with Eso and Szentes (2007),

but the opposite is true for direct disclosure, and a fortiori, general disclosure.9 Orthogonal

disclosure is a special model in the framework we have set up here, and is no more natural

than general disclosure policies that we study in an environment where the seller does not

know the true type of the buyer when she releases additional private information. In addition,

as we see from the house-selling example in the introduction, it is easy to imagine that the

amount of information disclosed by the seller depends on the true type of the buyer. After

all, this is true if the seller chooses full disclosure, so in general, can also be true under par-

tial disclosure. Ultimately, what kind of information disclosure is reasonable depends on the

specific price discrimination problem. At the very least, our results serve as a useful reference

point in dynamic mechanism design problems where private information is endogenous.

8See Theorem 1.C.5 in Shaked and Shanthikumar (2007). For θ′ > θ, F (·|θ′) dominates F (·|θ) in likelihood

ratio order if f (ω|θ′) /f (ω|θ) is increasing in ω, where f (·|θ′) and f (·|θ) are densities corresponding to F (·|θ′)
and F (·|θ), respectively.

9Therefore, in the problem of mechanism design and information disclosure under consideration, the fea-

sibility set in Eso and Szentes (2007) is a strict subset of what we consider in the present paper. This is in

spite of the fact that a signal structure that is explicitly type-dependent can be orthogonalized, for example,

by replacing the signal with its quantile in the distribution. The reason is that the resulting orthogonal signal

structure does not have the same information content as the quantile s~σ of the true value. This is our interpre-

tation of the results in Eso and Szentes (2007), who do not explicitly consider the possibility of discriminatory

information disclosure; we discuss in Section 5 the connection to our paper in detail.
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3 Discrete Types

We start with a discrete setting where the ex ante types is binary, θ ∈ Θ ≡ {H,L} , with

probability fH and fL respectively. For convenience, we slightly adapt the notation to the

binary setting. Suppose that under any signal structure σ, conditional on the ex ante type

θ, the posterior estimate v of the true value ω is distributed according to Gθ(·|σ) over fixed,

common support [ω, ω]. Let the set of available signal structures be S 3 σ. Assume that

Gθ(·|σ) has positive, continuous density gθ(·|σ) under the perfect signal structure σ = σ, and

GH(·|σ) first-order stochastic dominates GL(·|σ). The unconditional mean values of the two

types satisfy µH > µL. The posterior estimate distribution Gθ(·|σ) generated by any other

σ ∈ S, however, can be either discrete or continuous. Finally, we assume that σ dominates

any other σ ∈ S in convex order.

3.1 A General Characterization

An option contract (a, p) consists of a non-refundable advance payment a in period one for

option of buying at price p in period two after the buyer forms posterior estimate v. The

buyer purchases if and only if v ≥ p. Let c be the seller’s reservation value. Her maximization

problem is

max
(aH ,pH ,σH),(aL,pL,σL)

{
fH (aH + (pH − c) (1−GH (pH |σH)))

+fL (aL + (pL − c) (1−GL (pL|σL)))

}
subject to

−aH +

∫ ω

pH

(v − pH)dGH (v|σH) ≥ 0 (IRH)

−aL +

∫ ω

pL

(v − pL)dGL (v|σL) ≥ 0 (IRL)

−aH +

∫ ω

pH

(v − pH)dGH (v|σH) ≥ −aL +

∫ ω

pL

(v − pL)dGH (v|σL) (ICH)

−aL +

∫ ω

pL

(v − pL)dGL (v|σL) ≥ −aH +

∫ ω

pH

(v − pH)dGL (v|σH) (ICL)

To state the characterization of the solution to the above maximization, we note again

that few restrictions have been imposed on the feasible set S. In particular, the families

of distributions {Gθ(v|σ)}, θ = H,L, have no specific structure or order, except that each

is dominated in convex order by Gθ(v|σ) and that GH(v|σ) first-order stochastic dominates

GL(v|σ). As a result, we need to make two assumptions in order to apply the standard

method of constraint reduction.

First, we assume that full surplus extraction is not attained. That is, the value of any

solution to the above maximization problem, at some selling mechanism together with a

disclosure policy, (aθ, pθ, σθ), θ = H,L, is strictly smaller than the total trade surplus

max
(aH ,pH ,σH),(aL,pL,σL)

fHTH(pH , σH) + fLTL(pL, σL)

10



where

Tθ(p, σ) =

∫ ω

p
(v − c) dGθ (v|σ)

is the trade surplus from type θ.10 By assumption, Tθ(p, σ) is maximized by p = c and

σ = σ. In general, the maximizer is not unique, because all that is required is for type θ to

buy with probability one whenever his true value ω is greater than or equal to c. However,

the uniqueness obtains if S contains only continuous signal structures, with Gθ(v|σ) having

a continuous and positive density function for each θ and σ ∈ S.11 In this case, full surplus

extraction is impossible and our first assumption is satisfied. This follows because, as we have

just seen, maximizing the trade surplus for each type requires pH = pL = c and σH = σL = σ,

which together with (ICH) and (ICL) implies that aH = aL. Then, from (IRH) and (IRL),

the profit is smaller than the total trade surplus by at least∫ ω

c
(GL (v|σ)−GH (v|σ)) dv,

which is positive because by assumption GH(v|σ) first-order stochastic dominates GL(v|σ).

Second, we assume that S satisfies a “regularity” condition: if there is σ ∈ S such that

for some p ∫ ω

p
(GH(v|σ)−GL(v|σ)) dv > 0,

then there exist σ′ ∈ S and p′ such that

0 ≤
∫ ω

p′

(
GH(v|σ′)−GL(v|σ′)

)
dv ≤

∫ ω

p
(GH(v|σ)−GL(v|σ)) dv

and

TH(p′, σ′) ≥ TH(p, σ),

with at least one of the last inequality and the right-side inequality before the last holding

strictly. The regularity condition is trivially satisfied if GH(v|σ) first-order stochastic domi-

nates GL(v|σ) for each σ ∈ S, as GH(v|σ) ≤ GL(v|σ) for all v. Without ranking GH(v|σ) and

GL(v|σ) for any σ 6= σ, the condition still holds if S is “rich” enough, because by assumption

GH(v|σ) ≤ GL(v|σ) for all v and σ = σ and p = c jointly maximize type H’s trade surplus.

Lemma 1 Suppose that the regularity condition holds. If full surplus extraction is not at-

tained, then at any solution (IRL) and (ICH) bind.

Proof. See the Appendix.

10Since we allow a signal structure σ to generate two distributions of posterior estimates v, for each true ex

ante type, we index the trade surplus T by the true ex ante type.
11To see this, simply note that maximizing the trade surplus for any fixed σ requires p = c when Gθ(v|σ)

has a continuous density for all σ, and the resulting expression
∫ ω
ω

max{v − c, 0}dGθ (v|σ) is maximized at

σ = σ because the function max{v − c, 0} is convex in v.

11



By Lemma 1, the two binding constraints (IRL) and (ICH) pin down the advance pay-

ments aL and aH . We can rewrite the seller’s problem as

max
(pH ,σH),(pL,σL)

fHTH(pH , σH) + fLTL(pL, σL)− fHR(pL, σL),

where

R(pL, σL) =

∫ ω

pL

(GL (v|σL)−GH (v|σL)) dv

is the information rent to type H, subject to

R(pL, σL) ≥ 0; (IRH)

R(pH , σH) ≥ R(pL, σL). (ICL)

Proposition 1 Suppose that the regularity condition holds. If full surplus extraction is not

attained, then at any solution, (pH , σH) jointly maximize TH(p, σ), and (pL, σL) jointly max-

imize fLTL (p, σ)− fHR (p, σ) subject to R(p, σ) ≥ 0.

Proof. Define a relaxed problem of the seller by dropping constraint (ICL). Since pH and

σH do not enter (IRH), a solution to this relaxed problem is (pH , σH) = (c, σ), and (pL, σL)

jointly maximize fLTL (p, σ) − fHR (p, σ) subject to R(p, σ) ≥ 0. The proposition follows

immediately, if we show that this solution satisfies the dropped constraint (ICL). Suppose

not. Then, the solution is such that R(pL, σL) ≥ 0 but R(c, σ) < R(pL, σL). We have

fLTL (c, σ)− fHR (c, σ) > fLTL (c, σ)− fHR(pL, σL) ≥ fLTL (pL, σL)− fHR(pL, σL).

However,

R(c, σ) =

∫ ω

c
(GL (v|σ)−GH (v|σ)) dv > 0,

contradicting the supposition that pL and σL together with pH = c and σH = σ solve the

relaxed problem.

As we have remarked, if S contains only continuous signal structures, with Gθ(v|σ) having

a continuous and positive density function for each θ and σ ∈ S, then Lemma 1 holds if in

addition S satisfies the regularity condition. In this case, Proposition 1 can be strengthened:

we have (pH , σH) = (c, σ), so that type H gets the perfect signal structure and the efficient

option contract. We already know that full surplus extraction is not attainable, so either

the option contract for type L has an inefficient strike price pL, or the signal structure σL is

imperfect, or both. In particular, σL = σ may not be part of the solution, so discriminatory

information disclosure may be optimal.

If we impose the restriction on S that GH(v|σ) first-order stochastic dominates GL(v|σ)

for any σ ∈ S, then we can strengthen Proposition 1 in two ways. First, we can show that

the binding constraints are (IRL) and (ICH) without imposing the full surplus extraction

and regularity conditions; second, we can show that the optimal strike price pL for type L is

strictly greater than c, which generalizes the same conclusion in Courty and Li (2000), where

σL is exogenously fixed at σ and pL maximizes fLTL (p, σ)− fHR (p, σ).

12



Proposition 2 Suppose that GH(v|σ) first-order stochastic dominates GL(v|σ) for any σ ∈
S. Then at any solution, (pH , σH) jointly maximize TH(p, σ), and (pL, σL) jointly maximize

fLTL (p, σ)− fHR (p, σ) and satisfy pL > c.

Proof. Since GH(v|σL) first-order stochastic dominates GL(v|σL) for any σL, we have

−aH +

∫ ω

pH

(v − pH)dGH (v|σH) ≥ −aL +

∫ ω

pL

(v − pL)dGH (v|σL)

≥ −aL +

∫ ω

pL

(v − pL)dGL (v|σL)

≥ 0,

where the first inequality is (ICH), and the third inequality is (IRL). Thus, (IRH) is implied

by (ICH) and (IRL). It follows that the binding constraints are (IRL) and (ICH), and (IRH)

never binds. Define a relaxed problem where the seller chooses (pH , σH) and (pL, σL) to

maximize

fHTH(pH , σH) + fLTL(pL, σL)− fHR(pL, σL).

Following the same argument as in Proposition 1, we can show that any solution to the

relaxed problem satisfies the two dropped constraints (IRH) and (ICL). Finally, regardless of

σL, type L’s trade surplus TL(pL, σL) is increasing in pL for pL ≤ c while type H’s information

rent R(pL, σL) is decreasing in pL. Therefore, pL > c at any solution to the seller’s relaxed

problem.

A special case of Proposition 2 is that the set of feasible disclosure policies S contains only

two extreme points: full disclosure and no disclosure. Under no disclosure, each type θ only

knows that his expected value is µθ, so we may assume that there is no advance payment.

With µH > µL, the highest price pL that the seller could charge type L is µL, and type H’s

information rent is µH −µL. Using Proposition 2, one can easily show that it is also optimal

to provide the perfect signal structure to type L as well to type H. Full disclosure is optimal

in this case.

In general, it may be possible to vary σ continuously in S, at least around the perfect signal

structure σ. Proposition 2 then suggests the optimal disclosure policy may be discriminatory,

because slightly changes to σL at σL = σ can be profitable. Begin with pL that maximizes

fLTL (p, σ)−fHR (p, σ). Suppose that in the neighborhood of σ, there exist signal structures

σ such that each GL(v|σ) differs little from GL(v|σ), but GH(v|σ) changes in such a way to

substantially increase
∫ ω
pL
GH(v|σ)dv, starting at σ = σ.12 This is feasible because we allow

a signal structure σ to depend on the true ex ante type, so the two distributions GL(v|σ)

and GH(v|σ) can be independently varied subject to a separate consistency requirement for

each type. By switching to such σ for type L, with the same strike price pL, the seller can

12For example, GH(v|σ) can be “rotation-ordered” in the neighborhood of σ = σ with a rotation point v◦

above pL. Rotation order is a strengthening of convex order (Johnson and Myatt, 2006). For fixed θ, G (·|θ, σ)

dominates G (·|θ, σ′) in rotation order if there exists a rotation point v◦ such that G (v|θ, σ) ≥ G (v|θ, σ′) if

v < v◦, and G (v|θ, σ) ≤ G (v|θ, σ′) if v > v◦.
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keep the trade surplus TL(pL, σ) from type L unchanged from TL(pL, σ) while reducing the

information rent for type H to below R(pL, σ). Below, we will again use the same idea of

reducing the information rent for type H while keeping the trade surplus for type L fixed.

3.2 Direct Disclosure

In Section 2, we have defined direct disclosure as a mapping σ : Θ×Ω→ ∆S from reported ex

ante type θ̃ and true value ω to a distribution over the signal space S. In this subsection we

study a special class of direct disclosure, referred to as “monotone partition” signal structures.

More precisely, a partition signal structure is a mapping σ : Θ × Ω → S from reported ex

ante type θ̃ and true value ω to the signal space S instead of ∆S. A monotone partition

signal structure imposes a further restriction on the mapping: if ω, ω′ ∈ Ω are both mapped

into some s ∈ S, then so is any convex combination of ω and ω′.

Monotone partition signal structures include the perfect signal structure as a special case.

The two-way partition introduced in Section 2 is another example. To be precise, suppose

that for any k ∈ [ω, ω], there is a signal structure σ[k] such that, for each θ = H,L, Gθ(v|σ[k])

is given by

Gθ(v|σ[k]) =


0 if v < µ−θ (k)

Gθ(k|σ) if µ−θ (k) ≤ v < µ+
θ (k)

1 if v ≥ µ+
θ (k)

where

µ−θ (k) =

∫ k

ω

vdGθ(v|σ)

Gθ(k|σ)
,

and

µ+
θ (k) =

∫ ω

k

vdGθ(v|σ)

1−Gθ(k|σ)

are the posterior estimates below and above the partition threshold k for the type θ buyer,

respectively.

We first show that there is a simple direct discriminatory disclosure policy for type L that

can replicate the trade surplus TL (pL, σ) and the information rent R (pL, σ) under perfect

signal structure σ, and thus gives the seller the same maximal profit characterized in Courty

and Li (2000). To see this, fix an optimal contract ((aL, pL) , (aH , pH)) under full disclosure

with pL ∈ (c, ω). Consider the two-way partition signal structure σ[pL], and a new selling

mechanism ((âL, p̂L) , (âH , p̂H)) with the new strike price p̂L satisfying

p̂L ≤ min
{
µ+
L (pL), µ+

H(pL)
}
. (1)

With this restriction on p̂L, type L buys in period two if and only if his value is above pL,

so does type H who pretends to be type L. The advance payments âL and âH are chosen so

that both (IRL) and (ICH) bind. Hence, the trade surplus from type L is

TL(p̂L, σ[pL]) = (1−GL(pL|σ))
(
µ+
L (pL)− c

)
= TL(pL, σ).
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Furthermore, the information rent to type H is

R(p̂L, σ[pL]) =

∫ ω

pL

vdGH (v|σ)− (1−GH(pL|σ))p̂L − âL

= R(pL, σ)− (p̂L − pL) (GL (pL|σ)−GH (pL|σ)) .

Therefore, by setting p̂L = pL, âL = aL, p̂H = pH , and âH = aH , we can replicate both trade

surplus and information rent, and thus also the seller’s profit under full disclosure.

Now, consider raising the new strike price p̂L slightly above pL, so that (1) continues

to hold. We claim that this direct discriminatory disclosure improves upon full disclosure.

Note that the trade surplus TL(p̂L, σ[pL]) does not depend on the strike price p̂L as long as

p̂L ≤ µ+
L (pL), while the information rent R(p̂L, σ[pL]) is decreasing in p̂L, since GL (pL|σ) >

GH (pL|σ) by first-order stochastic dominance. It remains to check that all constraints are

satisfied so that the new selling mechanism with p̂L slightly above pL is feasible. Note that,

as we raise p̂L slightly above pL, we can keep (IRL) binding by decreasing âL, and keep (ICH)

binding by increasing âH . Furthermore, R(p̂L, σ[pL]) ≥ 0 so that (IRH) remains satisfied for

sufficiently small increases in type L’s strike price, because under full disclosure (IRH) is

slack with R(pL, σ) > 0. Finally, (ICL) holds because

R(p̂L, σ[pL]) < R(pL, σ) < R(c, σ),

where the last inequality follows from the fact that (ICL) is slack under full disclosure.

What is the optimal monotone partition signal structure for type L? It is easy to see

that the above argument for improving on the perfect signal structure through a two-way

partition applies to any monotone partition signal structures. Thus, to characterize the

optimal monotone partition signal structure for type L, we need to choose both the strike

price and the partition threshold optimally. We consider two cases. First suppose, under full

disclosure, the conditional mean above c of type H is less than or equal to that of type L:

µ+
H(c) ≤ µ+

L (c). (2)

Then the seller can extract the entire surplus by choosing for type L a signal structure

σL = σ[c], together with a selling mechanism given by pL = µ+
L (c), aL = 0, pH = c, and

aH = TH(c, σ).13 This case is illustrated by the following simple example.

Example 1 Suppose c = 1
2 , and the prior joint distribution of (ω, θ) is given by:

f (ω, θ) =


1− ε if ω ∈

[
0, 1

2

]
and θ = L

ε if ω ∈ (1
2 , 1] and θ = L

ε if ω ∈
[
0, 1

2

]
and θ = H

1− ε if ω ∈ (1
2 , 1] and θ = H

13If condition (2) holds strictly, the total surplus is full extracted, with (ICH) slack. This is why we need

to exclude the possibility of full surplus extraction from the characterization in Proposition 1.
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with ε < 1
2 . Hence, the ex ante types of the buyer are equally likely, with fL = fH = 1

2 , and

are ordered in first-order stochastic dominance. Condition (2) holds with equality. Consider

the following disclosure policy: if the buyer reports type H, the seller chooses σ which reveals

the true value ω; if the buyer reports type L, the seller chooses σ[c] which only reveals to

the buyer whether the true value ω is above or below c = 1
2 . The selling mechanism is: if

the buyer reports type H, he pays an advance fee
∫ 1
c (ω − c) dGH (ω|σ) in exchange for a

posted price c in period two; if the buyer reports type L, he does not pay any advance fee,

but will be charged 3
4 in period two for purchasing. Under this disclosure policy and the

selling mechanism, neither type of buyer has incentive to deviate. The resulting allocation is

efficient, and the seller extracts the full surplus:

π = fH

∫ 1

c
(ω − c) dGH (ω|σ) + fLε

(
3

4
− c
)

=
1

8
(1− ε) +

1

8
ε =

1

8
.

In contrast, if the seller discloses all information to both types of buyers, the problem reduces

to sequential screening of Courty and Li (2000). The resulting allocation involves distortion

and the type-H buyer enjoys strictly positive information rent. Therefore, the seller’s profit

under full disclosure is strictly lower than the full surplus, and thus cannot be optimal.

When condition (2) fails,14 we can apply Proposition 1 to characterize the optimal mono-

tone partition signal structure σ[kL] for type L. The corresponding optimal selling mechanism

has aL = 0 and pL = µ+
L (kL).

Proposition 3 Suppose condition (2) fails. The optimal monotone partition signal structure

for type L is σ[kL] such that kL maximizes fLTL(k, σ) − fH(1 − GH(k|σ))(µ+
H(k) − µ+

L (k))

subject to µ+
H(k) ≥ µ+

L (k).

Proof. It is straightforward to show that full surplus extraction is not possible within the

class of monotone partition signal structures when condition (2) fails. With some algebra,

one can also verify that the regularity condition is satisfied within this class. As already

shown, it is without loss to focus on signal structures in the form of σ[kL] in search for

the optimal one. It then follows from Proposition 1 that at any solution, (pL, kL) jointly

maximize fLTL (p, σ[k]) − fHR (p, σ[k]) subject to R(p, σ[k]) ≥ 0. For a given kL, we have

TL (pL, σ[kL]) = 0 if pL > µ+
L (kL). Hence, we must have the optimal pL ≤ µ+

L (kL). We

consider two cases.

First, suppose pL ≥ µ+
H(kL). This is possible only if µ+

H(kL) ≤ µ+
L (kL). In this case, type

H will not buy after deviation so R(pL, σ[kL]) = 0. Note that the trade surplus TL (pL, σ[kL])

is independent of pL when pL ≤ µ+
L (kL). Since kL = c uniquely maximizes TL (pL, σ[kL]),

and since full surplus extraction is impossible, we must have µ+
H(kL) = µ+

L (kL), and thus

pL = µ+
L (kL).

14If type H dominates type L in hazard rate order under the perfect signal structure, that is, if we have

gH(v|σ)/(1−GH(v|σ)) ≤ gL(v|σ)/(1−GL(v|σ)) for all v, then (2) cannot be satisfied.
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Second, suppose the optimal pL < µ+
H(kL). In this case, restriction (1) is satisfied, and

we have already shown it is optimal to maximize pL by setting it equal to µ+
L (kL). The

information rent to type H is then given by R(pL, σ[kL]) = (1−GH(k|σ))(µ+
H(kL)−µ+

L (kL)).

The constraint R(pL, σ[kL]) ≥ 0 is equivalent to µ+
H(k) ≥ µ+

L (k).

Direct disclosure is natural given our information environment, because it is the simplest

way of generating a signal structure that depends on the true ex ante type. However, we will

not attempt to further characterize the optimal monotone partition signal structures beyond

Proposition 3. Under direct disclosure, both the posterior estimate V σ for a given signal

realization and its distribution depend on the ex ante type θ, so in the next subsection, we

consider more general discrete signal structures that have this property. It turns out that a

slight generalization of monotone partition structures is all we need to achieve the optimum

among all disclosure policies.

3.3 Optimal Disclosure

We have defined general disclosure policies in Section 2 as a mapping σ : Θ×Θ× Ω → ∆S

from the true ex ante type θ, the reported type θ̃ and the true value ω to a distribution over

the signal space S. A smaller class of such policies may be called “generalized” monotone

partition signal structures, which is obtained by keeping the monotone partition structure

for each ex ante type, but allowing different types to have different partitions. For example,

consider two-way partitions of the true value ω with the partitioning threshold depending

on the ex ante type θ. Formally, signal structure σ[kH , kL] is such that for each θ = H,L,

Gθ(v|σ[kH , kL]) is given by Gθ(v|σ[kθ]) defined in the previous subsection. By choosing signal

structure σ [kH , kL], type θ learns whether his true value ω is above or below kθ.

We first show that if the seller can use generalized monotone partition signal structures,

then she can further improve upon what she can obtain by using direct disclosure in Section

3.2. To see this, begin with the optimal monotone partition signal structure σ[kL] for type

L characterized by Proposition 3, together with advance payment aL = 0 and a strike price

pL = µ+
L (kL), and assume that the constraint is slack so that µ+

H(kH) > µ+
L (kL). Now suppose

the seller chooses signal structure σ[kH , kL] instead of σ[kL] for type L, together with the

same advance fees and strike prices. Then, so long as µ+
H(kH) ≥ µ+

L (kL), the information

rent to type H becomes

R
(
µ+
L (kL), σ[kH , kL]

)
=

∫ ω

kH

(
v − µ+

L (kL)
)
dGH (v|σ) .

As kH starts from kL and decreases, the information rent to type H decreases, but the trade

surplus TL(µ+
L (kL), σ[kH , kL]) does not change. The seller’s profit increases as a result.

The above rent-reduction argument can be generalized. In fact, if

µH ≤ µ+
L (c), (3)

full surplus extraction is attained by assigning the signal structure σ[ω, c] to type L, together

with aL = 0 and pL = µ+
L (c). Note that condition (3) ensures that type H would not buy
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at the price of µ+
L (c) when he learns nothing, which is weaker than condition (2) for full

surplus extraction with direct disclosure. Type H never buys under σ[ω, c] if he deviates

and thus gets zero information rent, while type L learns just enough to achieve the efficient

allocation.15

For the remainder of this section, we assume condition (3) fails. The next lemma claims

that full surplus extraction is not attainable, and thus Proposition 1 applies. More impor-

tantly, in order to characterize optimal disclosure policy, it is without loss to focus on binary

signal structures for type L that reveal nothing to a deviating type H buyer.

Lemma 2 Suppose condition (3) fails. Then, for any signal structure σL for type L and its

corresponding selling mechanism, there exists a binary signal structure for type L that reveals

no information to deviating type H and is at least as profitable to the seller.

Proof. We first prove by contradiction that full surplus extraction is not possible. Assume

that µH > µ+
L (c), but some signal structure σL for type L together with a menu of option

contracts (aθ, pθ) fully extracts the surplus. Efficiency requires that type L buys if and only

if his true value is above c, and full surplus extraction implies that (IRL) binds. Therefore,

we have aL = (1−GL (c|σ))
(
µ+
L (c)− pL

)
, and (ICH) can be rewritten as

(1−GL (c|σ))
(
µ+
L (c)− pL

)
≥
∫ ω

pL

(v − pL) dGH (v|σL) .

Since the function max {v − pL, 0} is convex in v and the null signal structure under no

disclosure is weakly dominated by any signal structure σL in convex order, we have∫ ω

pL

(v − pL) dGH (v|σL)) ≥ µH − pL.

The last two inequalities together imply that µ+
L (c) ≥ µH , a contradiction.

The regularity condition holds because S is unrestricted, so Proposition 1 applies. Now

suppose that the seller changes the signal structure for type L from σL to a binary signal

structure σL[ω, pL], which reveals nothing to type H and to type L just whether his posterior

estimate v under σL is above or below pL. Then the surplus TL (pL, σL) is replicated. If

µH − pL − aL ≤ 0, then the new information rent is zero, we are already done. Otherwise,

R (pL, σL)− (µH − pL − aL) =

∫ ω

pL

(GL (v|σL)−GH (v|σL)) dv − (µH − pL − aL)

=

∫ pL

ω
(pL − v)dGH (v|σL) ≥ 0.

Therefore, the binary signal structure σL[ω, pL] reduces the information rent without changing

the trade surplus, and is thus at least as profitable as σL.

15Due to condition (3), it is no longer true that GH(v|σ[ω, c]) first-order stochastic dominates GL(v|σ[ω, c]).

Nevertheless, it is easy to verify that the above disclosure policy and the mechanism together are incentive-

compatible, and since the full surplus is extracted, the seller cannot do better.
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In the proof of Lemma 2, the new binary structure for type L is generated through a

two-way partitioning of the posterior estimate v of type L under the original signal structure

σL (and a trivial partition for type H). Given this, the characterization of the optimal general

disclosure policy is equivalent to finding a signal structure σL and a partition threshold kL

for type L that are jointly optimal. To build up our main result, we take an intermediate

step and ask what is the optimal partition threshold kL if the seller is restricted to using

some σL from the class of generalized monotone partition structures. The following result is

a straightforward extension of Proposition 3.

Proposition 4 Suppose condition (3) fails. The optimal generalized monotone signal struc-

ture σ[kH , kL] for type L is given by kH = ω and kL maximizing fLTL(k, σ)−fH
(
µH − µ+

L (k)
)

subject to µ+
L (k) ≤ µH .

Proof. See the Appendix.

In Proposition 4, generalized monotone signal structures can all be generated from the

perfect signal structure σ for type L. Now, we drop this restriction and allow the seller to

start with any signal structure σ that has continuously differentiable distributions GH(v|σ)

and GL(v|σ) of posterior estimate v, and then generate a binary signal structure σ[kH , kL]

as in Lemma 2, by partitioning the posterior estimate v with type-dependent thresholds kH

and kL. We want to know what is the optimal binary signal structure generated in this way.

Fix a continuous signal structure σ, and define

v+
L (k) =

∫ ω

k

vdGL(v|σ)

1−GL(k|σ)
.

If σ is such that

v+
L (c) ≥ µH , (4)

then it is optimal to set signal structure σL = σ[ω, c] for type L, together with advance fee

aL = 0 and strike price pL = v+
L (c). Type H has no incentive to mimic type L, so there is

no information rent, and the seller’s profit is

fH

∫ ω

c
(v − c) dGH(v|σ) + fL

∫ ω

c
(v − c) dGL(v|σ),

which is increasing in the convex order of σ, because the function max{v − c, 0} is convex

in v. Thus, the binary structure σ[ω, c] cannot be optimal, unless σ = σ. If (4) fails, in

the following result which we present as a corollary to Proposition 4, we show that kL > c,

and the optimality of kL implies that any σ[kH , kL] can be improved upon unless σ = σ.

Thus, the optimal binary signal structure for type L generated from partitioning continu-

ous distributions of posterior estimates should be the one from partitioning the true value

distribution.

Corollary 1 Suppose that condition (3) fails. Among all binary signal structures for type

L that can be generated from partitioning continuous distributions of posterior estimates, the

optimal one is a generalized monotone two-way partition signal structure.
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Proof. See the Appendix.

Corollary 1 establishes the optimality of a generalized monotone two-way partition signal

structure characterized in Proposition 4 when the feasible set S is restricted to all binary

signal structures generated from continuous signal structures. Now we are ready to present

our main result in this section that Proposition 4 in fact gives the optimal signal structure

even if we drop all restrictions on S except for consistency and convex-order dominance of

the perfect signal structure.

Recall that Lemma 2 allows us to focus on a particular class of binary signal structures for

type L, which are uninformative to a type H buyer who pretends to be type L. These signal

structures, with two possible realizations s− and s+, can be represented by two posterior

estimates v−L and v+
L satisfying ω ≤ v−L ≤ v+

L ≤ ω, which correspond to type L’s updated

estimate of his value upon learning s− and s+ respectively. Let g− and g+ represent the

probability of s− and s+, respectively, for type L, with g− + g+ = 1. Consistency requires

g−v−L + g+v+
L = µL.

Furthermore, the true value distribution GL (·|σ) under the perfect signal structure σ domi-

nates the two-point distribution of type L’s posterior estimates in convex order. That is,

∫ v

ω
GL (w|σ) dw ≥


0 if v ∈ [ω, v+

L ]

g−
(
v − v−L

)
if v ∈ [v−L , v

+
L ]

g−
(
v+
L − v

−
L

)
+
(
v − v+

L

)
if v ∈ [v+

L , ω].

It is straightforward to show the above convex order condition is satisfied if and only if16

v+
L ≤ µ

+
L (G−1

L (g−|σ)). (5)

Any consistent binary signal structure given by (v−L , v
+
L ) and (g−, g+) that satisfies (5) with

equality, can be generated by a two-way partitioning of type L’s true value ω by a threshold

equal to G−1
L (g−|σ); conversely, any binary signal structure σ[ω, kL] generated by a two-way

partitioning of type L’s true value ω by some threshold kL satisfies (5) with equality, with

g− = GL(kL|σ), v−L = µ−L (kL), and v+
L = µ+

L (kL).

Proposition 5 Suppose that condition (3) fails. The optimal signal structure for type L is

σ[ω, kL] where kL maximizes fLTL(kL, σ)− fH
(
µH − µ+

L (kL)
)

subject to µ+
L (kL) ≤ µH .

Proof. See the Appendix.

16Since both functions are convex, and since the latter function has slope of 0 at v = ω and 1 at v = ω,

the convex-order constraint is satisfied if and only if
∫ v
ω
GL (s|σ) ds ≥ g−

(
v − v−L

)
for all v ∈ [v−L , v

+
L ]. Let

vL ∈ [ω, ω] be uniquely determined by GL (vL|σ) = g−. If vL ≤ v−L or vL ≥ v+L , the above condition holds

strictly; if instead vL ∈ (v−L , v
+
L ), it holds if and only if it does at v = vL, or

∫ vL
ω

GL (v|σ) dv ≥ g−
(
vL − v−L

)
.

Using integration by parts and the definition of vL, we can equivalently write the above as v−L ≥ µ−L (vL).

Finally, because of the consistency requirement, the above inequality is equivalent to condition (5).
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The intuition behind Proposition 5 is clear from Corollary 1, which already suggests that

the optimal signal structure for type L takes the form of a generalized monotone partition

signal structure, because the latter maximizes the seller’s profit when the partition threshold

is optimally chosen. The proposition is established by showing that the seller’s problem

can be rewritten as choosing a binary signal structure represented by (v−L , v
+
L ) and (g−, g+)

to maximize the profit fLg
+
(
v+
L − c

)
− fH

(
µH − v+

L

)
, and that an optimal binary signal

structure must bind the convex-order constraint (5). As a result, it can be generated by a

generalized monotone partition signal structure, and coincides with the one characterized by

Proposition 4.

We conclude this section on binary ex ante types by noting that under the optimal in-

formation disclosure policy given by Proposition 1 for type H and Proposition 5 for type L,

the optimal option contract for one ex ante type is independent of that for the other type.

Type H’s allocation is efficient, which can be implemented by an efficient option contract

coupled with the perfect signal structure. With a two-way partition signal structure, type L’s

allocation is inefficient when condition (3) fails and full surplus extraction is unattainable.

In fact, Proposition 5 shows that the optimal partition threshold kL is strictly greater than

the seller’s reservation value c: if the constraint µ+
L (kL) ≤ µH binds, then kL > c because (3)

fails; if it does not bind, then kL > c because otherwise the seller could increase kL to both

raise the surplus and reduce the rent. More to the point, the optimal threshold kL is inde-

pendent of H’s value distribution. This independence is in contrast to the characterization of

the optimal monotone partition signal structure in Proposition 3, and reflects the difference

between direct disclosure and general disclosure policies.

4 Continuous Types

In this section we assume that the ex ante types θ are drawn from F (·) with support Θ =
[
θ, θ
]

and density f (·) > 0 for all θ. Given a signal structure σ ∈ S, each type θ is represented by

a distribution G (v|θ, σ) of posterior estimate v. We assume that the family of distributions

{{G (·|θ, σ)}} shares the same support [ω, ω] for all θ and for all signal structures σ ∈ S. The

feasible set of general disclosure policies here contains any mapping σ : Θ×Θ×Ω→ ∆S such

thatG (v|θ, σ) ≤ G(v|θ̃, σ) for all v and all θ > θ̃ in Θ, and
∫ v
ω G (w|θ, σ) dw ≤

∫ v
ω G (w|θ, σ) dw

for all v, θ, and σ ∈ S. For the first two subsections, we restrict our attention to “continuous

disclosure” where each distribution G (·|θ, σ) has a finite and positive density g (·|θ, σ).

4.1 A General Characterization

By the revelation principle, we focus on direct revelation mechanisms {{x (θ, v) , y (θ, v)}}
together with disclosure policy {σ(θ)}. The seller’s problem is then

max
{{x(θ,v),t(θ,v)},σ(θ)}

∫ θ

θ

∫ ω

ω
(y (θ, v)− x (θ, v) c) g (v|θ, σ (θ)) f (θ) dvdθ
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subject to

v ∈ arg max
ṽ
x (θ, ṽ) v − y (θ, ṽ) , ∀θ,∀v; (IC2)

θ ∈ arg max
θ̃

∫ ω

ω
(x(θ̃, v)v − y(θ̃, v))g(v|θ, σ(θ̃))dv, ∀θ; (IC1)

∫ ω

ω
(x (θ, v) v − y (θ, v)) g (v|θ, σ (θ)) dv ≥ 0, ∀θ; (IR)

where (IC2) denotes the incentive compatibility constraints in period two, (IC1) denotes the

incentive compatibility constraints in period one, and (IR) denotes the individual rationality

constraints in period one.

As standard in the literature (Myerson 1981), we adopt the first-order approach. That is,

we solve the seller’s problem by replacing the IC constraints by their first-order conditions.

The primary goal of this subsection is to provide sufficient conditions under which the first-

order approach is valid.

Define the buyer’s ex post surplus after he truthfully reports θ and v as

u (θ, v) = x (θ, v) v − y (θ, v) .

Define the expected surplus of the buyer of type θ by reporting truthfully as

U (θ) =

∫ ω

ω
u (θ, v) g (v|θ, σ (θ)) dv.

The presence of disclosure policy in the mechanism design problem does not alter the

characterization of constraints (IC2). The proof is standard, and thus omitted.

Lemma 3 A mechanism satisfies (IC2) if and only if

x (θ, v) is non-decreasing in v; (MON2)

u (θ, v) = u (θ, ω) +

∫ v

ω
x (θ, w) dw. (FOC2)

Lemma 3 indicates that we can replace (IC2) by the first-order condition (FOC2) as long

as the allocation rule is monotone in v, i.e., (MON2) holds. Given the characterization of

Lemma 3, we rewrite U (θ) as

U (θ) = max
θ̃

∫ ω

ω
u(θ̃, v)g(v|θ, σ(θ̃))dv

= max
θ̃

∫ ω

ω

(
u(θ̃, ω) +

∫ v

ω
x(θ̃, w)dw

)
g(v|θ, σ(θ̃))dv

= max
θ̃
u(θ̃, ω) +

∫ ω

ω
(1−G(v|θ, σ(θ̃)))x(θ̃, v)dv,

where in the last step we have used integration by parts. The above expression allows us to

localize (IC1). The following lemma provides necessary conditions for (IC1).
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Lemma 4 Constraints (IC1) imply that∫ ω

ω

∫ θ

θ̃

(
∂G (v|t, σ (θ))

∂t
x (θ, v)− ∂G(v|t, σ(θ̃))

∂t
x(θ̃, v)

)
dtdv ≥ 0; (MON1)

U (θ) = U (θ)−
∫ θ

θ

∫ ω

ω

∂G (v|t, σ(t))

∂t
x (t, v) dvdt. (FOC1)

Proof. See the Appendix.

Following the standard procedure of mechanism design, we use the first-order approach

to translate the original problem into a “relaxed” problem by replacing (IC1) and (IC2) with

(FOC1) and (FOC2), respectively. The seller’s profit in the relaxed problem becomes

π =

∫ θ

θ

∫ ω

ω
J (θ, v, σ)x (θ, v) g (v|θ, σ (θ)) f (θ) dvdθ − U (θ) ,

where the familiar “virtual surplus” function J (θ, v, σ) is given by

J (θ, v, σ) = v − c+
1− F (θ)

f (θ)
I (θ, v, σ) ,

with the term

I (θ, v, σ) =
∂G (v|θ, σ) /∂θ

g (v|θ, σ)

known as the “informativeness measure” in the literature. The informativeness measure

captures the informativeness of period-one type on period-two values.17 Note that the virtual

surplus function depends on the disclosure policy only through the informativeness measure.

In the optimal selling mechanism, the seller will set U (θ) = 0.

In period two, (MON2) and (FOC2) are necessary and sufficient for (IC2). But in period

one, (MON1) and (FOC1) are necessary but generally insufficient for (IC1). This gap between

the necessary and sufficient conditions for incentive compatibility makes it much harder to

validate the first-order approach. It is a common problem in dynamic mechanism design

models where the information environment is exogenous (see, for example, Courty and Li,

2000; Pavan, Segal and Toikka, 2012), and is only exacerbated by the presence of information

disclosure policy in our model. To deal with this issue, we identify a stronger monotonicity

condition than (MON1):∫ ω

ω
I(θ, v, σ(θ̃))x(θ̃, v)g(v|θ, σ(θ̃))dv is non-increasing in θ̃ for all θ ∈

[
θ, θ
]
. (AM)

We refer to the above as condition (AM) as it is an “average monotonicity” condition over

allocations weighted by the informativeness measure. The main result of this subsection is

17To see this, suppose G (v|θ, σ) = q for some fixed σ and constant quantile q. Then by the implicit

function theorem, the marginal impact of ex ante type θ on the ex post type v is given by dv/dθ =

−(∂G (v|θ, σ) /∂θ)/g (v|θ, σ). Therefore, the informativeness measure captures how informative the ex ante

type is in predicting the ex post type, for given signal structure.
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that condition (AM), together with (FOC1), is sufficient for (IC1). This validates the first-

order approach and is used in the next subsection to generate sufficient conditions for the

optimality of full disclosure.

Proposition 6 Suppose that the allocation rule {{x (θ, v)}} solves the seller’s relaxed prob-

lem. If it is non-decreasing in v for all θ and satisfies conditions (AM), then there exist

transfer payments {{y (θ, v)}} such that the selling mechanism {{x (θ, v) , y (θ, v)}} is opti-

mal.

Proof. See the Appendix.

For some information environments, condition (AM) reduces to conditions familiar in

the literature. For example, if I(θ, v, σ(θ̃)) is a (negative) constant as in AR(1) models

or Gaussian learning models, then condition (AM) is equivalent to requiring the average

allocation to be non-decreasing in reported type θ̃. Alternatively, if the seller commits to

full disclosure σ, then a sufficient condition for (AM) is that
∫ ω
ω (∂G (v|θ, σ) /∂θ)x(θ̃, v)dv is

non-increasing in θ̃. This is the sufficient condition specified in Courty and Li (2000) and

Eso and Szentes (2007).

4.2 When Full Disclosure Is Optimal

In this subsection we identify information environments for which full disclosure is optimal

among continuous disclosure policies. Interestingly, the information environments we find

here incorporate as special cases almost all the tractable information environments we know

in the literature. These information environments share a common theme that the disclosure

policy does not affect the informativeness measure. In other words, the seller’s disclosure

policy does not affect the informativeness of the ex ante type about the ex post type. There-

fore, if the standard regularity conditions (i.e., the virtual surplus is increasing in both ex

ante and ex post types), then the seller’s profit generated from each ex ante type can be

written as the expectation of a convex function. As a result, full disclosure leads to maximal

variability and hence maximal profit.

Proposition 7 Consider an information environment where the informativeness measure

I (θ, v, σ) is linear in v and independent of σ, and J (θ, v, σ) is increasing in both θ and v.

Then full disclosure is optimal.

Proof. Since J (θ, v, σ) is increasing in both v and θ, we can rewrite the seller’s objective in

the relaxed program as

πσ =

∫ θ

θ

∫ ω

ω

(
v − c+

1− F (θ)

f (θ)
I (θ, v, σ (θ))

)
x (θ, v) g (v|θ, σ (θ)) f (θ) dvdθ

=

∫ θ

θ

(∫ ω

ω
max

{
0, v − c+

1− F (θ)

f (θ)
I (θ, v, σ (θ))

}
g (v|θ, σ (θ)) dv

)
f (θ) dθ. (6)
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Note that if I (θ, v, σ) is linear in v and independent of σ, then J (θ, v, σ) is linear in v and

independent of σ. This implies that the function

max

{
0, v − c+

1− F (θ)

f (θ)
I (θ, v, σ (θ))

}
is convex in v and independent of σ. Thus, for a fixed θ, we can write the inner integral in

(6) as ∫ ω

ω
max

{
0, v − c+

1− F (θ)

f (θ)
I (θ, v)

}
g (v|θ, σ (θ)) dv

which is maximized by setting σ (θ) = σ, by our assumption that σ dominates any other σ

in convex order. Since the resulting allocation rule x (θ, v) is increasing in θ for all v and in

v for all θ, by Proposition 6, it also solves the seller’s original problem.

We present two information environments studied in the literature, the first from Eso and

Szentes (2007) and the second from Courty and Li (2000), in which informativeness measure

I (θ, v, σ) is linear in v and independent of σ. Therefore, by Proposition 7, full disclosure is

optimal if the virtual surplus function J (θ, v, σ) is also monotone in both θ and v.

Example 2 Suppose type θ is drawn from support
[
θ, θ
]

with density f (·) and distribution

F (·). Furthermore, suppose that type θ’s true value ω is distributed normally with mean θ

and precision β:

ω ∼ N (θ, 1/β) .

So the precision β is the same across all types of buyer. Additionally, suppose that the seller

can release a signal to the buyer:

s(θ̃) = ω + ηθ̃

where ηθ̃ is i.i.d normal with precision σ(θ̃). Here σ(θ̃) represents that the seller’s disclosure

policy is contingent on buyer’s report θ̃. Let Φ and φ denote the distribution and density of

the standard normal. The posterior estimate given σ(θ̃) and θ is

v = E[ω|θ, σ(θ̃)] =
σ(θ̃)s(θ̃) + βθ

σ(θ̃) + β
.

Then the distribution of v conditional on θ and σ(θ̃) is normal with mean θ and variance(
σ(θ̃)

σ(θ) + β

)2(
1

β
+

1

σ(θ̃)

)
=

σ(θ̃)

(σ(θ̃) + β)β
.

Therefore,

G(v|θ, σ(θ̃)) = Φ

(√
(1 + β/σ(θ̃))β(v − θ)

)
,

g(v|θ, σ(θ̃)) = φ

(√
(1 + β/σ(θ̃))β(v − θ)

)√
(1 + β/σ(θ̃))β,
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and

I(θ, v) = −
φ

(√
(1 + β/σ(θ̃))β(v − θ)

)√
(1 + β/σ(θ̃))β

φ

(√
(1 + β/σ(θ̃))β(v − θ)

)√
(1 + β/σ(θ̃))β

= −1.

Example 3 The ex-ante type of the buyer is drawn from support
[
θ, θ
]

with density f(·) and

distribution F (·). Suppose a type θ buyer’s posterior estimate v is given by

v = ξθ + (1− ξ)σ (θ) εθ,

with ξ, σ ∈ (0, 1), and εθ is i.i.d. across θ on the real line with density h (θ) and H (θ). The

distribution of v conditional on θ and θ̃ is

G(v|θ, σ(θ̃)) = H

(
v − ξθ

(1− ξ)σ(θ̃)

)
,

and the corresponding density is

g(v|θ, σ(θ̃)) = h

(
v − ξθ

(1− ξ)σ(θ̃)

)
1

(1− ξ)σ(θ̃)
.

As a result, the informativeness measure is

I(θ, v) = −ξ.

The aforementioned example of Eso and Szentes (2007) is a special case.

For our next result, we assume that the family of distributions {G (·|θ, σ (θ))} is rotation-

ordered. That is, for any fixed θ, G (·|θ, σ) dominates G (·|θ, σ′) in rotation order if there exists

a rotation point v◦ such that G (v|θ, σ) ≥ G (v|θ, σ′) if v < v◦, and G (v|θ, σ) ≤ G (v|θ, σ′)
if v > v◦.

18 Suppose the seller’s cost c is sufficiently high so that c ≥ v◦. Note that if

we truncate {G (·|θ, σ (θ))} from below, then the truncated G (·|θ, σ) first-order stochastic

dominates the truncated G (v|θ, σ) for all other σ. It is then easy to see from the seller’s

profit expression (6) that full disclosure remains optimal even if we drop the restriction that

I (θ, v, σ (θ)) is linear in v. Therefore, we have the following proposition, and we omit its

proof.

Proposition 8 Suppose the informativeness measure I (θ, v, σ) is independent of σ, J (θ, v, σ)

is increasing in both θ and v, and for all θ, G (·|θ, σ) dominates G (·|θ, σ) for all other σ in

rotation order with rotation point v◦ ≤ c. Then full disclosure is optimal.

18The rotation point v◦ is often the ex ante mean µ (θ). Graphically, the rotation order requires that

two distribution functions cross each other only once. In particular, the distribution G (·|θ, σ′) crosses the

distribution G (·|θ, σ) from below. Since consistency requires G (·|θ, σ) and G (·|θ, σ′) to have the same mean,

rotation order is a special case of mean-preserving spread, and is thus a strengthening of convex order (Johnson

and Myatt, 2006).
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4.3 Full Disclosure Is Not Optimal under Hazard Rate Dominance

So far in this section, we have restricted our attention to continuous disclosure policies that

are associated with continuous and differentiable cumulative distributions {G (·|θ, σ (θ))} of

posterior estimate v. In particular, discrete disclosure policies such as direct disclosure we

discussed in Section 3.2 are not available for the seller to choose. In this subsection, we will

add direct disclosure back to the seller’s feasible set of disclosure policies, and show that full

disclosure is then not optimal in general.

Suppose, under full disclosure σ, the relaxed problem has a solution in the form of option

contracts {a (θ) , p (θ)}, where

p (θ) = min {v : J (θ, v, σ) ≥ 0} .

As is standard, we assume that the virtual surplus J (θ, v, σ) under full disclosure is increasing

in both θ and v, which implies p (θ) is decreasing in θ. The seller’s profit is then given by

π =

∫ θ

θ

∫ ω

p(θ)

(
v − c+

1− F (θ)

f (θ)

∂G (v|θ, σ) /∂θ

g (v|θ, σ)

)
g (v|θ, σ) f (θ) dvdθ.

We want to argue that a direct disclosure policy in the form of monotone two-way partition

σ [p (θ)] , together with a modified menu of option contracts {â (θ) , p̂ (θ)}, can further improve

the seller’s profit under full disclosure. The two-way partition signal structure reveals to each

reported type θ, truthful or otherwise, whether his true value ω is above or below p (θ), and

the new strike price p̂ (θ) is set to be

p̂ (θ) = p (θ) + δ,

where δ satisfies

0 < δ < min
θ

∫ ω

p(θ)

ωg (ω|θ, σ) dω

1−G (p (θ) |θ, σ)
− p (θ) .

Our argument requires a strengthening of first-order stochastic dominance, that the ex-ante

types are ordered in hazard rates under full disclosure, that is, for θ > θ′ and for all v ∈ [ω, ω],

g (v|θ, σ)

1−G (v|θ, σ)
≤ g (v|θ′, σ)

1−G (v|θ′, σ)
.

Proposition 9 Suppose that ex ante types are ordered in hazard rates. If under full disclosure

a menu of option contracts {a (θ) , p (θ)} solves the seller’s maximization problem and does

not exclude any buyer types, with p (θ) ≤ k < ω for all θ for some k, then full disclosure is

not optimal.

Proof. See the Appendix.

The proof consists of three steps. First, we construct new advance payment â (θ) corre-

sponding to p̂ (θ) given above. Second, we show that under hazard rate order, the new option

contracts {â (θ) , p̂ (θ)} are incentive compatible and thus feasible. Finally, we argue that the
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new option contracts {â (θ) , p̂ (θ)} and disclosure policy σ [p (θ)] lead to the same trade sur-

plus but lower information rent for all types. The intuition is similar to the one we discussed

earlier when the ex ante types are discrete. When we raise the strike price, it cuts into the

information rent of higher buyer types more because of first-order stochastic dominance (im-

plied by hazard rate order). This translates into a smaller ascending gradient for the buyer’s

information rent as the buyer’s type increases. Since we can adjust advance payment â (θ) to

maintain the same trade surplus, the seller’s profit is higher under {â (θ) , p̂ (θ)} and σ [p (θ)].

Therefore, full disclosure is not optimal.

To conclude this section, we present a continuous version of our earlier discrete Example 1.

In this example, the continuous ex ante types are ordered in first-order stochastic dominance,

but violates strict hazard rate dominance.

Example 4 Suppose that the seller’s cost c = 1
2 , and the buyer’s ex ante type θ is distributed

according to distribution F with support
[

1
2 , 1
]
. Consider the following class of distributions

of ω conditional on θ. Suppose the true value ω of a type-θ buyer is distributed uniformly

with support [1− 1/θ, 1]. Let G (·|θ, σ) and g (·|θ, σ) denote its cumulative distribution and

density respectively. Then for all ω ∈ [1− 1/θ, 1], we have

g (ω|θ, σ) = θ and G (ω|θ, σ) =
ω − (1− 1/θ)

1/θ
= 1− (1− ω) θ.

It is easy to see that distributions {G (ω|θ, σ)} are ordered in first-order stochastic dominance

with respect to θ. Further, the informativeness measure under the full disclosure policy σ

I(θ, ω, σ) =
∂G (ω|θ, σ) /∂θ

g (ω|θ, σ)
= −1− ω

θ

is increasing in both ω and θ. As a result, the sufficient conditions for the first-order approach

are satisfied (Courty and Li, 2000). It can be verified that if the seller adopts the full disclosure

policy, under the optimal mechanism the resulting allocation does not maximize the expected

surplus, and the seller has to leave positive information rent to some high type buyers.

Consider the following partial disclosure policy and selling mechanism. The seller dis-

closes to all types of buyer whether ω is above or below 1
2 , and charges price 3

4 in period two.

This disclosure policy, together with the posted price, extracts all the surplus. The seller’s

profit is ∫ 1

1
2

∫ 1

c
(ω − c) g (ω|θ, σ) dωdF (θ) =

∫ 1

1
2

∫ 1

1
2

(
ω − 1

2

)
2θdωdθ =

3

32
.

Therefore, full disclosure is not optimal.

5 Discussion

In this section we discuss how our analysis is related to Eso and Szentes (2007). In a sequen-

tial screening framework similar to ours, Eso and Szentes (2007) define the “new” information
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available to the buyer in addition to what the buyer already knows, which is his ex ante type,

through orthogonal decomposition mentioned in Section 2. They show that under certain

conditions, if the buyer’s ex-ante type is continuous and ordered in first-order stochastic dom-

inance, the seller’s profit in the optimal selling mechanism is the same as in a “hypothetical

setting” when she observes all the new information that the buyer learns after agreeing to the

mechanism. They interpret this result as indirectly establishing the optimality for the seller

to fully disclose all new information to the buyer, based on two implicit claims. First, the

seller’s profit in the hypothetical setting is an upper-bound on what the seller can achieve in

the original setting; and second, this upper-bound is attainable in the original setting.

In studying the optimal information disclosure policy for the seller, the indirect approach

of Eso and Szentes (2007) contrasts with the direct mechanism design approach that we

have taken in the present paper. In this section we argue that their approach has two

serious limitations, and thus our direct approach is more general. First, the seller’s profit

in the hypothetical setting is generally strictly lower than what the seller can achieve in

the original setting. It is true that modeled as orthogonal disclosure, partial disclosure can

never strictly raise the seller’s profit compared to full disclosure, which explains the claim

about the optimality of full disclosure in Eso and Szentes (2007). However, if under a given

partial disclosure policy the amount of additional private information released to the buyer

can depend on his ex ante type, as we have argued is generally the case, then the seller can

obtain a higher profit through partial disclosure in the original setting than in the hypothetical

setting under orthogonal disclosure. Second, under orthogonal disclosure, the seller’s profit

in the hypothetical setting is unattainable in the original setting if buyer types are discrete.

In the continuous limit, however, this hypothetical profit can be approximated, consistent

with the result of Eso and Szentes (2007).

5.1 Hypothetical Setting May Not Deliver Profit Upper-bound

Consider first the discrete setting of Section 3. Let s~σ = F (ω|θ) denote the seller’s signal

after orthogonal transformation, for θ = H,L. As mentioned in Section 2, s~σ is uniformly

distributed over [0, 1] and thus independent of the buyer’s ex ante type θ. Recall that Qθ (q)

is the inverse of the quantile function F (ω|θ), and gives type-θ buyer’s true value ω as a

function of the realized quantile q of s~σ. In the hypothetical setting, the seller releases all

the information and observes the quantile q. For the buyer, knowing the realized q is the

same as knowing ω as he knows his ex ante type θ. However, the seller is unable to make

any inference about θ from q, because the latter is independent of θ. The seller chooses

mechanism ((xH (q) , yH (q)) , (xL (q) , yL (q))) to maximize her profit subject to the buyer’s

IC and IR constraints. In this problem, IC constraints appear only in period one because

the seller observes the realization q of s~σ. This hypothetical mechanism design problem can

be solved following the standard steps, as Eso and Szentes (2007) have done for the case of

a continuum of ex ante types.
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Now, let us revisit Example 1 where ex ante types are discrete. In the hypothetical

problem under full disclosure, the seller’s optimal expected profit can be shown to be

π~σ =
1

8
(1− ε) +

1− ε
2− 3ε

1

8
ε.

It is strictly smaller than 1
8 which is what we have obtained in the original setting through

direct disclosure. Example 4 makes the same point in a setting with continuous ex ante types.

In the hypothetical setting with full disclosure, the seller’s optimal profit can be shown to be

π~σ = 7
96 . This is strictly lower than 3

32 which we have obtained through direct disclosure in

the original setting.

What is common in Examples 1 and 4 is that in the original setting we have a direct

disclosure policy coupled with a selling mechanism that extracts the entire surplus. It is thus

not surprising that the profit in the hypothetical setting under full disclosure is strictly lower

than what can be attained in the original setting. However, full surplus extraction is not the

key to our point that the hypothetical setting does not generally deliver the upper-bound on

the profit that can be obtained in the original setting. As we have shown in Section 3 and

Section 4, full disclosure is not optimal in general, regardless of whether full surplus extraction

is attainable. Instead, the key is that direct disclosure allows the signal structure to depend on

the buyer’s true type through his true value. This gives the seller extra freedom in structuring

the signals to discriminate different buyer types. In contrast, for a fixed orthogonal disclosure

policy, any garbling of the uniformly distributed orthogonalized signal has type-independent

distribution. Although orthogonal disclosure still allows the seller to discriminate by releasing

different amount of information depending on the buyer’s report, the seller’s choice is more

constrained compared to the case with direct disclosure.

In fact, if the seller is restricted to choose among orthogonal disclosure policies introduced

in Section 2, the seller’s profit in the hypothetical setting is indeed an upper-bound for

the seller’s profit in the original setting. In particular, we will argue below that, if partial

disclosure is modeled by orthogonal disclosure, then it can be replicated by full disclosure

in the hypothetical setting. Since the seller in the original setting under partial disclosure

cannot do better than the seller in the hypothetical setting for the same disclosure policy,

partial disclosure cannot strictly raise the seller’s profit compared to full disclosure. Without

loss of generality, we use the binary-type setting to make the point.

Proposition 10 Suppose that the ex ante type is binary, and the seller is restricted to or-

thogonal disclosure policies. Then full disclosure is optimal in the hypothetical setting.

Proof. Suppose, in orthogonal disclosure, the seller publicly discloses sσ rather than s~σ,

where sσ garbles s~σ according to joint distribution Γσθ (s, q), with associated density γσθ (s, q)

and support [s, s], for each realized quantile q ∈ [0, 1] and each θ ∈ {H,L}. Define condi-

tional densities γσθ (s|q) and γσθ (q|s) in the usual way. The selling mechanism has the form

(xσH (s) , yσH (s) , xσL (s) , yσL (s)) , which is conditional on ex ante type report θ and the publicly

30



observable signal s. By reporting θ̃, type θ gets

Uσ
(
θ, θ̃
)

=

∫ 1

0

(∫ s

s
Qθ (q)xσ

θ̃
(s) γσ

θ̃
(s|q) ds

)
dq −

∫ 1

0

(∫ s

s
yσ
θ̃

(s) γσ
θ̃

(s|q) ds
)
dq.

The seller’s expected profit is

πσ = fH

∫ 1

0

(∫ s

s
(yσH (s)− cxσH (s)) γσH (s|q) ds

)
dq

+fL

∫ 1

0

(∫ s

s
(yσL (s)− cxσL (s)) γσL (s|q) ds

)
dq.

Now suppose that the seller reveals q instead, so that the selling mechanism has the form

(xH (q) , yH (q) , xL (q) , yL (q)). Furthermore, let us define

xθ (q) =

∫ s

s
xσθ (s) γσθ (s|q) ds;

yθ (q) =

∫ s

s
yσθ (s) γσθ (s|q) ds.

Then the expected payoff of a type θ buyer by reporting θ is

U~σ(θ, θ̃) =

∫ 1

0
Qθ (q)xθ̃ (q) dq −

∫ 1

0
yθ̃ (q) dq = Uσ(θ, θ̃).

The seller’s expected profit π~σ is

π~σ = fH

∫ 1

0
(yH (q)− cxH (q)) ds~σ + fL

∫ 1

0
(yL (q)− cxL (q)) dq

= fH

∫ 1

0

(∫ s

s
yσH (s) γσH (s|q) ds− c

∫ s

s
xσH (s) γσH (s|q) ds

)
dq

+fL

∫ 1

0

(∫ s

s
yσL (s) γσL (s|q) ds− c

∫ s

s
xσL (s) γσL (s|q) ds

)
dq

= fH

∫ 1

0

(∫ s

s
(yσH (s)− cxσH (s)) γσH (s|q) ds

)
dq

+fL

∫ 1

0

(∫ s

s
(yσL (s)− cxσL (s)) γσL (s|q) ds

)
dq

= πσ.

The proposition follows immediately.

Eso and Szentes (2007) focus on the class of orthogonal disclosure policies which first

transform the seller’s true signal into an orthogonal one and then garble it. We consider a

larger class of disclosure policies which allows the released signal to depend directly on the true

type and which nests the class of orthogonal disclosure policies as a special case. It is true that

one can transform a general type-dependent signal resulting from our direct disclosure into a

type-independent one, say, through the quantile of the signal distribution. The information
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content of the resulting quantile, however, depends on the underlying distribution of the

original type-dependent signal. In particular, its information content, which differs across

buyers, may not be replicated by garbling the quantile of the original signal distribution.

To illustrate the point, consider the optimal signal structure σ [c] for the reported type

L in Example 1. The signal has two possible realizations, either s− (below c) or s+ (above

c), and its distribution depends on the ex ante type. It can be transformed into distribution

quantiles which have type-independent uniform distribution. The same quantile may have

different meanings for different types. Type L interprets all quantiles below 1−ε as equivalent

to realization s− and interprets all quantiles above 1− ε as equivalent to s+. In contrast, a

deviating type H interprets all quantiles below ε as equivalent to realization s− and interprets

all quantiles above ε as equivalent to s+. Such a signal cannot be generated by garbling the

quantile of the distribution of true values as mandated by orthogonal disclosure.

5.2 Hypothetical Profit Is Not Attainable with Discrete Types

We again take the setting with discrete ex ante types, but now assume orthogonal disclosure.

As in Eso and Szentes (2007), we first derive the hypothetical profit for the seller in the

hypothetical setting when she fully discloses and observes the quantile of the true value.

Then we consider the original setting where the seller can release, without observing, the

realized quantile. We show that, when the ex ante types are binary, the hypothetical profit

is not attainable for the seller in the original setting.

Under the hypothetical setting, standard arguments suggest that the optimal determinis-

tic selling mechanism ((xH (q) , yH (q)) , (xL (q) , yL (q)) is such that xH (q) = 1 if QH (q) ≥ c
and 0 otherwise, while xL (q) = 1 if QL (q)−fHQH (q) ≥ fLc and 0 otherwise. Define pH = c

and pL be the solution of

pL −
fH
fL

(QH (FL (pL))− pL) = c.

If we assume that the “virtual surplus” ω− c− fH
fL

(QH (FL (ω))− ω) is increasing in ω, then

we can write the seller’s hypothetical profit as

π~σ = fH

∫ ω

c
(ω − c) dFH (ω) +

∫ ω

pL

(ω − fLc− fHQH (FL (ω))) dFL (ω) .

Now suppose the seller discloses the realized quantile to the buyer without observing it.

For the buyer, this is the same as observing his true value ω. Consider a menu of option

contracts (aθ, pθ): the buyer who reported type θ = H,L first pays an advance fee aθ in

exchange of period two price pθ if he makes the purchase.

By manipulating binding (ICH) and (IRL) constraints, we can write the seller’s profit

under (aθ, pθ) as

π = fH

∫ ω

c
(ω − c) dFH (ω) +

∫ ω

pL

(ω − pL + fL (pL − c)) dFL (ω)− fH
∫ ω

pL

(ω − pL) dFH (ω) .
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As a result, we have

π~σ − π = fH

∫ ω

pL

(ω − pL) dFH (ω) + fH

∫ ω

pL

(pL −QH (FL (ω))) dFL (ω)

= fH

∫ 1

FH(pL)
(QH (q)− pL) dq + fH

∫ 1

FL(pL)
(pL −QH (q)) dq

= fH

∫ FL(pL)

FH(pL)
(QH (q)− pL) dq.

Note that FL(pL) > FH (pL) by first-order stochastic dominance. In addition, QH (q) = pL

for q = FH (pL) , and QH (q) is increasing in q so we have π~σ − π > 0.

Therefore, with discrete types, the seller who controls information but does not observe

information cannot fully extract the surplus generated by the released information. One

can also verify that, compared to the hypothetical setting, the original setting gives higher

information rent to the type-H buyer. This explains why the option contract can replicate

the allocation but the seller has a lower profit. Thus, the revenue equivalence fails when one

moves from the hypothetical setting to the original setting.

The failure of revenue equivalence, however, is sensitive to the discrete structure of the

type space. We conclude this paper by showing that the gap between the hypothetical profit

and the profit from the optimal menu of option contracts vanishes as the number of types

increases, consistent with the result in Eso and Szentes (2007).

Given our interests, we will focus on the seller’s relaxed program in both the hypothetical

setting and the original setting. We assume that the set of ex ante types Θ takes the following

form:

Θ =
{
θ, θ + δ, θ + 2δ, ..., θ + (n− 1) δ, θ

}
,

where δ =
(
θ − θ

)
/n. That is, we partition the interval

[
θ, θ
]

into n subintervals with interval

length δ, and the partition thresholds are buyer types. Denote by θi = θ + iδ the i-th type

with θ0 = θ and θn = θ. Let fi denote the probability of drawing type θi with
∑n

i=0 fi = 1.

As δ → 0, Θ →
[
θ, θ
]
. Let π~σ (δ) denote the seller’s profit in the hypothetical setting, and

π (δ) the maximal profit attained under the optimal menu of option contracts in the original

setting.

Proposition 11 limδ→0

(
π~σ (δ)− π (δ)

)
= 0.

Proof. See the Appendix.

6 Appendix: Proofs

Proof of Lemma 1. Due to quasi-linearity present in the preferences of the buyer and

the seller, at least one of (IRH) and (IRL) binds at the solution to the seller’s maximization

problem. Otherwise, the seller can raise both aH and aL to increase profit without violating

IC constraints. Furthermore, if IRθ binds and IRθ′ is slack for θ 6= θ′ ∈ {H,L}, then ICθ′ must
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bind. Otherwise, the seller can raise aθ′ to increase profit. Thus, there are altogether three

cases, each having the minimum number of binding constraints: (IRH) and (IRL); (IRH) and

(ICL); and (IRL) and (ICH). We now rule out the first two cases.

First, suppose that (IRH) and (IRL) bind at some solution. Using these two binding

constraints, we can rewrite the seller’s problem as choosing pθ and σθ, θ = H,L, to maximize

fHTH(pH , σH) + fLTL(pL, σL) subject to∫ ω

pL

(v − pL)dGL(v|σL) ≥
∫ ω

pL

(v − pL)dGH(v|σL); (ICH)

∫ ω

pH

(v − pH)dGH(v|σH) ≥
∫ ω

pH

(v − pH)dGL(v|σH). (ICL)

Note that (ICH) is unaffected by the choices of pH and σH . Then, at the solution TH(pH , σH)

must be maximized, because it can be achieved by choosing (pH , σH) = (c, σ), which satisfies

(ICL) with strict inequality. If (ICH) does not bind, then full surplus extraction is attained

by (pL, σL) = (c, σ), a contradiction.

Second, suppose that (IRH) and (ICL) bind at some solution. Using these two binding

constraints, we can rewrite the seller’s problem as choosing pθ and σθ, θ = H,L, to maximize

fHTH(pH , σH) + fLTL(pL, σL)− fL
∫ ω

pH

(GH(v|σH)−GL(v|σH)) dv

subject to ∫ ω

pH

(GH(v|σH)−GL(v|σH)) dv ≥ 0; (IRL)∫ ω

pL

(GH(v|σL)−GL(v|σL)) dv ≥
∫ ω

pH

(GH(v|σH)−GL(v|σH)) dv. (ICH)

We show by contradiction that (IRL) also binds at the solution, so that by the previous

argument (ICH) also binds. Suppose that the left-hand-side of (IRL) is strictly positive.

Then, the value of the seller’s objective function would be increased without violating either

(IRL) or (ICH), if we change pH and σH so as to weakly decrease the left-hand-side of (IRL)

while weakly increasing TH(pH , σH), with at least one of two strictly. The regularity condition

ensures that this is feasible.

Proof of Proposition 4. It follows from Lemma 2 that the seller chooses kL to maximize

fLTL (pL, σ[ω, kL])− fHR (pL, σ[ω, kL]) subject to R (pL, σ[ω, kL]) ≥ 0.

We first argue that the optimal pL ≤ µH . Suppose not. Given that an optimal advance

payment aL ≥ 0, a deviating type H will not buy and has zero information rent. Since

condition (3) fails, we have pL > µ+
L (c) > c. Since type L buys if and only if pL ≤ µ+

L (kL), we

must have kL > c. But then the seller can lower both pL and kL slightly to increase surplus

without affecting rent, a contradiction. As result, R(pL, σ[ω, kL]) = µH − pL.

It remains to show that pL = µ+
L (kL). Since the surplus is unaffected by pL, while the

information rent is decreasing in pL, the optimal pL is equal to min
{
µ+
L (kL), µH

}
. Suppose
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that the optimal kL is such that µ+
L (kL) > µH . Then, µ+

L (kL) > µH ≥ µ+
L (c) and pL = µH .

Hence, we must have kL > c. But then the seller can lower kL and raise aL simultaneously

while keeping pL = µH to increase trade surplus without changing rent. This contradicts the

optimality of kL, establishing that µ+
L (kL) ≤ µH . It follows that pL = µ+

L (kL).

Proof of Corollary 1. Fix some σ [ω, kL]. Suppose that (4) fails. Lemma 2 applies: it is

optimal to choose kH to equal ω, and kL to maximize fLTL(kL, σ)−fH
(
µH − v+

L (kL)
)

subject

to v+
L (kL) ≤ µH . Let λ denote the Lagrangian multiplier corresponding to the constraint.

The first-order condition for optimal kL can be written as

fL (kL − c)− (fH − λ)

∫ ω
kL

(1−GL (v|σ)) dv

(1−GL (kL|σ))2 = 0. (7)

By (4), the optimal kL satisfies kL > c: otherwise v+
L (kL) ≤ v+

L (c) < µH , and the seller could

raise kL to increase the surplus and reduce the rent, a contradiction. As a result, (7) implies

that fH > λ. Using (7) and the envelope theorem, we have

d

dσ

(
fLTL (kL, σ [ω, kL])− (fH − λ) (µH − v+

L (k))
)

=

(
fL + (fH − λ)

1

1−GL (kL|σ)

)∫ ω

kL

(
−∂GL (v|σ)

∂σ

)
dv.

Note that by integration by parts, we have∫ ω

kL

(1−GL (v|σ)) dv =

∫ ω

kL

(v − kL)dGL(v|σ).

This implies that the seller’s profit is increasing in the convex order of σ, as max{v − kL, 0}
is convex in v for fixed kL. Thus, σ[ω, kL] cannot be optimal, unless σ = σ.

Proof of Proposition 5. We represent a binary signal structure for type L that satisfies

Lemma 2 as σ
{
v−L , v

+
L

}
. Given v−L and v+

L , the probabilities g− and g+ are determined by

the consistency requirements. Let vL be uniquely defined by GL(vL|σ) = g−. For any option

contract (aL, pL) of type L, the surplus from trading with the type L buyer is

TL
(
pL, σ

{
v−L , v

+
L

})
= g+

(
v+
L − c

)
·max

{
v+
L − c, 0

}
·max

{
v+
L − pL, 0

}
.

The information rent for type H is

R
(
pL, σ

{
v−L , v

+
L

})
= max {µH − aL − pL, 0}

= max
{
µH − g+

(
v+
L − pL

)
·max

{
v+
L − pL, 0

}
− pL, 0

}
,

where the second equation follows from binding (IRL). By Lemma 2, the seller’s problem is

choosing pL, v
−
L , and v+

L to maximize fLTL
(
pL, σ

{
v−L , v

+
L

})
− fHR

(
pL, σ

{
v−L , v

+
L

})
subject

to (5). We reformulate the above problem by taking the following steps.
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First, we argue that in the optimal solution, we must have pL = v+
L . Suppose first

pL > v+
L . In this case, the type L buyer never trades, so the seller must set pL above µH

to ensure zero information rent: R
(
pL, σ

{
v−L , v

+
L

})
= 0. The seller, however, can further

increase profit by trading with the type L buyer only when his value realization is high,

without leaving any rent to the type H. In particular, the seller can further gain by setting

v̂+
L = µ+

L (µH) and p̂L = v̂+
L , while adjusting v̂−L accordingly so that (5) remains satisfied.

Next suppose pL < v+
L . Then

fLTL
(
pL, σ

{
v−L , v

+
L

})
− fHR

(
pL, σ

{
v−L , v

+
L

})
= fLg

+
(
v+
L − c

)
·max

{
v+
L − c, 0

}
− fH max

{
µH − g+v+

L − g
−pL, 0

}
.

If the constraint R
(
pL, σ

{
v−L , v

+
L

})
≥ 0 is not binding, the seller is always better off by

increasing pL to v+
L . If the constraint R

(
pL, σ

{
v−L , v

+
L

})
≥ 0 is binding, the seller’s profit is

unchanged by increasing pL to v+
L . Therefore, it is optimal to set pL = v+

L .

Second, we claim that v+
L > c at the solution. Since pL = v+

L , we can write the information

rent as

R
(
pL, σ

{
v−L , v

+
L

})
= max

{
µH − v+

L , 0
}
.

If v+
L < c, by slightly raising v+

L the seller can decrease the information rent without affecting

trade surplus. If v+
L = c, by slightly raising v+

L the seller can increase trade surplus strictly

and decrease the information rent. Therefore, we must have v+
L > c. Hence, we can use the

fact that pL = v+
L and v+

L > c to rewrite the seller’s objective as

fLg
+
(
v+
L − c

)
− fH max

{
µH − v+

L , 0
}
. (8)

Third, we argue that if binary signal structure σ
{
v−L , v

+
L

}
is optimal, then vL must satisfy

v−L < vL < v+
L . Note that if vL ≤ v−L or vL ≥ v+

L , then the convex order constraint (5) is not

binding. Then it can be seen from (8) that the seller can increase profit by increasing v+
L ,

while adjusting g− and g+ accordingly to satisfy the consistency requirement, a contradiction

to the optimality of σ
{
v−L , v

+
L

}
.

Fourth, we show that v+
L ≤ µH at the solution. Suppose the opposite. Then, we have

v+
L > µH > µ+

L (c), and so vL > c. Consider an alternative binary signal structure: v̂+
L =

µ+
L (vL) and v̂−L = µ−L (vL) with corresponding probabilities 1 − GL (vL|σ) and GL (vL|σ).

Then, since v+
L ≤ µ

+
L (vL) by (5), under the alternative signal structure σ

{
v̂−L , v̂

+
L

}
, with the

corresponding optimal strike price p̂L = µ+
L (vL) > µH , the information rent remains zero.

The trade surplus with type L, however, is weakly higher, because

TL
(
pL, σ

{
v−L , v

+
L

})
= g+

(
v+
L − c

)
≤ (1−GL (vL|σ))

(
µ+
L (vL)− c

)
,

which is equal to TL
(
p̂L, σ

{
v̂−L , v̂

+
L

})
. Moreover, σ

{
v̂−L , v̂

+
L

}
is strictly less profitable than

σ[ω, vL − ε] with ε small and positive such that vL − ε ≥ c and

µH ≤ µ+
L (vL − ε) < µ+

L (vL) ,
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because the trade surplus

TL
(
p̂L, σ

{
v̂−L , v̂

+
L

})
=

∫ ω

vL

(v − c) dGL(v|σ) <

∫ ω

vL−ε
(v − c) dGL(v|σ),

which is equal to TL
(
µ+
L (vL − ε) , σ[ω, vL − ε]

)
. A contradiction to the optimality of σ

{
v−L , v

+
L

}
.

As a result, we must have v+
L ≤ µH in the optimal solution.

Therefore, we can reformulate the seller’s problem as choosing v+
L and vL to maximize

fLg
+
(
v+
L − c

)
− fH

(
µH − v+

L

)
= fL (1−GL (vL|σ))

(
v+
L − c

)
− fH

(
µH − v+

L

)
subject to constraint (5) and

v+
L ≤ µH . (9)

Denoting as ψ and λ the Lagrangian multipliers attached to constraints (5) and (9), respec-

tively, we write the Lagrangian as

fL (1−GL (vL|σ))
(
v+
L − c

)
− (fH − λ)

(
µH − v+

L

)
+ ψ

(
µ+
L (vL)− v+

L

)
.

The first-order condition with respect to vL is

−fLgL (vL|σ)
(
v+
L − c

)
+ ψ

gL (vL|σ)
∫ ω
vL

(1−GL(v|σ)) dv

(1−GL(vL|σ))2 = 0, (10)

where we use the fact that

dµ+
L (vL)

dvL
=
gL (vL|σ)

∫ ω
vL

(1−GL(v|σ)) dv

(1−GL(vL|σ))2 .

It gives us

ψ =
fL
(
v+
L − c

)
(1−GL(vL|σ))2∫ ω

vL
(1−GL(v|σ)) dv

> 0.

This implies that constraint (5) must be binding. But any binary signal structure σ
{
v−L , v

+
L

}
with v+

L = µ+
L (vL) can be generated by a two-way partitioning of type L’s true value ω by

a threshold vL. Therefore, the seller’s optimization problem is then equivalent to choosing a

threshold kL to maximize fLTL(kL, σ)− fH
(
µH − µ+

L (kL)
)

subject to µ+
L (kL) ≤ µH .

Proof of Lemma 4. First consider any θ and θ̃. Incentive compatibility implies that

u(θ, ω) +

∫ ω

ω
(1−G(v|θ, σ(θ)))x(θ, v)dv ≥ u(θ̃, ω) +

∫ ω

ω
(1−G(v|θ, σ(θ̃)))x(θ̃, v)dv;

u(θ̃, ω) +

∫ ω

ω
(1−G(v|θ̃, σ(θ̃)))x(θ̃, v)dv ≥ u(θ, ω) +

∫ ω

ω
(1−G(v|θ̃, σ(θ)))x(θ, v)dv.

Adding these two ICs together yields∫ ω

ω
(G(v|θ̃, σ(θ))−G(v|θ, σ(θ)))x(θ, v)dv −

∫ ω

ω
(G(v|θ̃, σ(θ̃))−G(v|θ, σ(θ̃)))x(θ̃, v)dv ≥ 0.
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Condition (MON1) follows immediately from rewriting the above. Condition (FOC1) follows

from the definition of U (θ) and the envelope theorem.

Proof of Proposition 6. Consider a type-θ buyer who considers to report θ̃. The expected

payoff for this buyer is

U(θ, θ̃) = u(θ̃, ω) +

∫ ω

ω
(1−G(v|θ, σ(θ̃)))x(θ̃, v)dv

= u(θ̃, ω) +

∫ ω

ω
(1−G(v|θ̃, σ(θ̃)) +G(v|θ̃, σ(θ̃))−G(v|θ, σ(θ̃)))x(θ̃, v)dv

= U(θ̃, θ̃) +

∫ ω

ω
(G(v|θ̃, σ(θ̃))−G(v|θ, σ(θ̃)))x(θ̃, v)dv

= U(θ̃, θ̃)−
∫ ω

ω

∫ θ

θ̃
I(t, v, σ(θ̃))x(θ̃, v)g(v|t, σ(θ̃))dtdv

By the envelope theorem, we have

U(θ) = U(θ̃, θ̃)−
∫ θ

θ̃

∫ ω

ω

∂G(v|t, σ(t))

∂t
x(t, v)dvdt

= U(θ̃, θ̃)−
∫ θ

θ̃

∫ ω

ω
I(t, v, σ(t))x(t, v)g(v|t, σ(t))dvdt.

Therefore,

U(θ)− U(θ, θ̃) =

∫ θ

θ̃

∫ ω

ω
I(t, v, σ(θ̃))x(θ̃, v)g(v|t, σ(θ̃))dvdt

−
∫ θ

θ̃

∫ ω

ω
I(t, v, σ(t))x(t, v)g(v|t, σ(t))dvdt

=

∫ θ

θ̃

{ ∫ ω
ω I(t, v, σ(θ̃))x(θ̃, v)g(v|t, σ(θ̃))dv

−
∫ ω
ω I(t, v, σ(t))x(t, v)g(v|t, σ(t))dv

}
dt.

The above is non-negative by condition (AM), for both θ < θ̃ and θ > θ̃. Thus, constraints

(IC1) are satisfied. The proposition then follows from Lemma 3.

Proof of Proposition 9. Fix the new strike prices p̂ (θ) and the disclosure policy σ [p (θ)].

First, we claim that all buyer types will report truthfully in period two, regardless whether

they lie or not in period one. To see this, consider a type-θ buyer who reports type θ̃ in

period one. According to the disclosure policy, he observes in period two whether his value

is above or below p(θ̃). If his value is revealed to be below p(θ̃), he will certainly not buy

because the price p̂(θ̃) is strictly above p(θ̃). If his value is revealed to be above p(θ̃), the

buyer will buy at p̂(θ̃), because by assumption and by hazard rate dominance

δ < min
t

∫ ω

p(t)

ωg (ω|θ, σ) dω

1−G (p(t)|θ, σ)
− p(t) ≤

∫ ω

p(θ̃)

ωg (ω|θ, σ) dω

1−G(p(θ̃)|θ, σ
− p(θ̃).
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Next, we construct the new advance payments as follows:

â (θ) = − (1−G (p (θ) |θ, σ)) δ +

∫ ω

p(θ)
(1−G (v|θ, σ)) dv

−
∫ θ

θ

(
∂G (p (t) |t, σ)

∂t
δ +

∫ ω

p(t)

(
−∂G (v|t, σ)

∂t

)
dv

)
dt.

Given the new menu {â (θ) , p̂ (θ)}, the expected payoff to type-θ from reporting θ̃ is

Û(θ, θ̃) = −â(θ̃) +

∫ ω

p(θ̃)
vdG(v|θ, σ)− (1−G(p(θ̃)|θ, σ))p̂(θ̃)

= −â(θ̃)− (1−G(p(θ̃)|θ, σ)δ +

∫ ω

p(θ̃)
(1−G(v|θ, σ))dv.

Let Û(θ) = Û(θ, θ). It is easy to verify that under the above construction, Û (θ) = 0;

dÛ (θ)

dθ
=
∂G (p (θ) |θ, σ)

∂θ
δ +

∫ ω

p(θ)

(
−∂G (v|θ, σ)

∂θ

)
dv; (11)

−dâ (θ)

dθ
−
(

1− g(p(θ)|θ, σ)

1−G(p(θ)|θ, σ)
δ

)
(1−G(p(θ)|θ, σ))

dp(θ)

dθ
= 0. (12)

Now, we argue that {â (θ) , p̂ (θ)} thus constructed is incentive compatible in period one.

Consider a type-θ buyer reporting θ̃ < θ. Given no market exclusion, p(θ) ≤ k < ω for all θ,

we have g(p(θ̃)|θ, σ)/(1−G(p(θ̃)|θ, σ)) is bounded above, so for δ small enough

1− g(p(θ̃)|θ, σ)

1−G(p(θ̃)|θ, σ)
δ > 0.

Since p(θ̃) is decreasing in θ̃, we have

∂Û(θ, θ̃)

∂θ̃
= −dâ(θ̃)

dθ̃
−

(
1− g(p(θ̃)|θ, σ)

1−G(p(θ̃)|θ, σ)
δ

)
(1−G(p(θ̃)|θ, σ))

dp(θ̃)

dθ̃

≥ −dâ(θ̃)

dθ̃
−

(
1− g(p(θ̃)|θ, σ)

1−G(p(θ̃)|θ, σ)
δ

)
(1−G(p(θ̃)|θ̃, σ))

dp(θ̃)

dθ̃

≥ −dâ(θ̃)

dθ̃
−

(
1− g(p(θ̃)|θ̃, σ)

1−G(p(θ̃)|θ̃, σ)
δ

)
(1−G(p(θ̃)|θ̃, σ))

dp(θ̃)

dθ

= 0,

where the first inequality follows from first-order stochastic dominance, the second inequality

follows from hazard rate dominance, and the last equality follows from (12). By integration

we have Û(θ) ≥ Û(θ, θ̃). The case of θ < θ̃ can be proved analogously. Therefore, our new

menu of option contracts {â(θ), p̂(θ)} is incentive compatible.

Finally, we argue that the seller’s profit is higher under {â(θ), p̂(θ)} and the disclosure

policy σ [p(θ)]. Under the original menu {a(θ), p(θ)} and full disclosure σ, a type-θ buyer’s

expected payoff from reporting θ̃ is

U(θ, θ̃) = −a(θ̃) +

∫ ω

p(θ̃)
(v − p(θ̃))dG(v|θ, σ) = −a(θ̃) +

∫ ω

p(θ)
(1−G(v|θ, σ))dv.
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By envelope theorem, the gradient of U(θ) is

dU (θ)

dθ
=

∫ ω

p(θ)

(
−∂G (v|θ, σ)

∂θ

)
dv >

dÛ (θ)

dθ
,

where the inequality follows from a comparison with (11). Since Û (θ) = U (θ) = 0, we have

U (θ) = U (θ) +

∫ θ

θ

(
dU (t)

dt

)
dt > Û (θ) +

∫ θ

θ

(
dÛ (t)

dt

)
dt = Û (θ)

for all θ > θ. Since, together with the partition disclosure policy, the new menu {â (θ) , p̂ (θ)}
generates the same trade surplus for all types as in the original menu {a (θ) , p (θ)}, and

leads to a lower information rent for each type of the buyer, it increases the seller’s profit.

Therefore, full disclosure is not optimal.

Proof of Proposition 11. Consider first the hypothetical setting where the seller discloses,

and observes, the realization q of the random variable s~σ = Fi (ω), for all i = 0, ..., n. LetQi(q)

be the inverse of the quantile function Fi(ω). The seller chooses mechanism (xi (q) , yi (q)) to

maximize her profit

~π =
n∑
i=0

fi

∫ 1

0
(yi (q)− cxi (q)) dq,

subject to∫ 1

0
(Qi (q)xi (q)− yi (q)) dq ≥

∫ 1

0
(Qi (q)xj (q)− yj (q)) dq, for all i, j; (ICi,j)

∫ 1

0
(Qi (q)xi (q)− yi (q)) dq ≥ 0, for all i. (IRi)

With some algebra, we can rewrite the seller’s profit in the relaxed program as

π~σ =

∫ 1

0

((
n∑
l=0

fl

)
Q0 (q)−

(
n∑
l=1

fl

)
Q1 (q)− f0c

)
x0 (q) dq + ...

+

∫ 1

0

((
n∑
l=i

fl

)
Qi (q)−

(
n∑

l=i+1

fl

)
Qi+1 (q)− fic

)
xi (q) dq + ...

+

∫ 1

0
(fnQn (q)− fnc)xn (q) dq.

Here the virtual surplus function is

Ji (q) =
1

fi

(
n∑
l=i

fl

)
Qi (q)− 1

fi

(
n∑

l=i+1

fl

)
Qi+1 (q)− c

= Qi (q)− 1

fi

(
1−

i∑
l=0

fl

)
(Qi+1 (q)−Qi (q))− c.
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For implementability, we assume that Ji (q) to be increasing in i and s. Furthermore, we

assume that Qi+1 (q)−Qi (q) is decreasing in both i and s, which is similar to the requirement

that the informativeness measure is decreasing in both θ and v.

Following Eso and Szentes (2007), we can show that the optimal mechanism is given by

xn (q) = 1 if Qn (q) ≥ c and 0 otherwise, and xi (q) = 1 if Ji (q) ≥ c and 0 otherwise for all

i ≤ n − 1. Define p0, ..., pn such that pn = c and Ji (pi) = c for all i ≤ n − 1. Then we can

write

π~σ =

n∑
i=0

fi

∫ ω

pi

(ω − c) dFi (ω)−
n∑
i=1

∫ 1

Fi−1(pi−1)

(
n∑
l=i

fl

)
(Qi (q)−Qi−1 (q)) dq.

Now suppose the seller fully discloses information, but cannot observe the realized quan-

tile. Consider the following menu of option contracts (ai, pi) with advance payment ai and

strike price pi. Following Courty and Li (2000), we can write the seller’s profit in the relaxed

program as

π =
n∑
i=0

fi

∫ ω

pi

(ω − c) dFi (ω)

−
n∑
i=1

(
n∑
l=i

fl

)(∫ 1

Fi−1(pi−1)
(Qi (q)−Qi−1 (q)) dq +

∫ Fi−1(pi−1)

Fi(pi−1)
(Qi (q)− pi−1) dq

)
.

As a result, we have

π~σ − π =

n∑
i=1

(
n∑
l=i

fl

)∫ Fi−1(pi−1)

Fi(pi−1)
(Qi (q)− pi−1) dq

<

n∑
i=1

(
n∑
l=i

fl

)
(Qi (Fi−1 (pi−1))− pi−1) (Fi−1 (pi−1)− Fi (pi−1))

<

(
max
i

(Qi (Fi−1 (pi−1))− pi−1)

) n∑
i=1

(Fi−1 (pi−1)− Fi (pi−1))

→ 0,

because, as δ → 0, Qi (Fi−1 (pi−1))− pi−1 → 0 for all i. Thus, in the limit, the hypothetical

profit can be approximated arbitrarily closely.
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