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Abstract

We develop a hybrid Leontief/Cobb-Douglas production function model that characterizes
how input shortages affect firms. As a case study, we analyze how “power holidays” affect daily
production at large Indian textile plants, using data from Bloom et al. (2013). We then study
the short-run effects of electricity shortages on all Indian manufacturing plants between 1992 and
2010, using archival data on shortages, previously-unavailable panel data, and an instrument for
shortages based on variation in hydro reservoir inflows. We estimate that electricity shortages
are a substantial drag on Indian manufacturing, reducing output by about five percent. However,
productivity effects are smaller: because electricity is a small share of costs, higher-cost self-
generation increases energy costs by only about 0.15 to 0.5 percent of revenues, and because
most inputs can be stored during outages, the productivity loss is only a fraction of the output
loss. We also show that because of economies of scale in self-generation, shortages impose much
greater losses on small plants, suggesting an additional distortion to the firm size distribution
in developing economies.
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1 Introduction

One of the potential contributors to the large productivity gap between developed and developing
countries is low quality infrastructure, and one of the most stark examples of infrastructure failures
is electricity supply in India. In the summer of 2012, India suffered the largest power failure
in history, which plunged 600 million people into darkness for two days. Even under normal
circumstances, however, the Indian government estimates that shortages amount to about ten
percent of demand at current prices, and many consumers have power only a few hours a day.
In the 2005 World Bank Enterprise Survey, one-third of Indian business managers named poor
electricity supply as their biggest barrier to growth. According to these managers, blackouts are far
more important than other barriers that economists frequently study, including taxes, corruption,
credit, regulation, and low human capital.1

In this paper, we estimate the short-run effects of electricity shortages on manufacturing plants
in India. One prior is that because electricity is an essential input - most factories cannot produce
anything without electricity for lights, motors, and machines - shortages could significantly reduce
output. On the other hand, precisely because the potential losses would be so large, many firms
might insure themselves against outages by purchasing generators or otherwise substituting away
from grid electricity. The limited existing evidence could support either argument. Foster and
Steinbuks (2009), Zuberi (2012), and others argue that the cost of self-generation is relatively small,
and Alam (2013), Fisher-Vanden, Mansur, and Wang (2013), and others highlight ways in which
plants substitute away from electricity when shortages worsen. By contrast, Hulten, Bennathan,
and Srinivasan (2006) argue that growth of roads and electric generation capacity accounts for a
remarkable 50 percent of productivity growth in Indian manufacturing between 1972 and 1992.

There are three reasons why this question is difficult. First, the standard production function
model needs to be adapted for the case of input shortages, when firms cannot procure electricity
for a part of the year. Second, the necessary data are difficult to acquire: some industrial surveys
do not have useful questions on electricity use, and more detailed firm-level datasets are often
unrepresentative. Meanwhile, countries that have electricity shortages are often the same types of
countries that do not record or disclose high-quality data on the performance of public infrastruc-
ture. Third, shortages are not exogenous to productivity. For example, rapid economic growth
could cause an increase in electricity demand that leads to shortages, or poor institutions could
lead to insufficient power supply and also reduce productivity. Either of these two mechanisms
would bias causal estimates of shortages, albeit in opposite directions.

We begin by providing background on electricity shortages and industrial electricity use in India.
First, there is significant variation in shortages within states over time, driven by weather, coal
shortages, fluctuating hydroelectric production, and other factors. Second, Indian manufacturers
self-generate approximately 35 percent of their electricity, more than twice the share in the United
States. Third, self-generation is sharply increasing in plant size: while only 10-20 percent of plants

1(For a tally of responses, see Appendix Table A18.)
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with fewer than 10 employees self-generate, about 75 percent of plants with more than 500 employees
do so.

We then present a production function model in which output is Leontief in electricity and
a Cobb-Douglas aggregate of materials, capital, and labor. Shortages have very different effects
on firms with vs. without generators. Firms that use generators face an increase in electricity
costs (the input cost effect). This enters the profit function like an output tax and also reduces
demand for other inputs (the output tax effect). Even if these firms never stop production during
shortages, total factor productivity (TFP) is lower due to the input variation effect: using different
bundles of fully flexible inputs during outage vs. non-outage periods is less efficient than having a
constant flow of production. Firms without generators shut down during shortages, which reduces
output and causes waste of non-storable inputs (the shutdown effect). The waste reduces demand
for non-storable inputs when firms foresee periods of higher shortages (the shutdown tax effect).

The empirical analysis begins with a case study of large textile manufacturers in Gujarat and
Maharashtra, using data shared by Bloom et al. (2013). These plants face pre-scheduled “power
holidays” once each week, and they respond either by self-generation or by shutting down, depending
on the week. While these data include only 22 plants, all of which have generators, they give
very clean estimates of the effects of shortages. Despite the fact that grid power is unavailable
approximately 1/7th of the time, the effects are quite small: energy costs rise by 0.24 percent
of revenues, and while physical output drops by 1.1 percent, TFP only decreases by 0.05 percent
because 95 percent of inputs (including both labor and materials) can be flexibly adjusted on power
holidays.

We then broaden our scope to all Indian manufacturing plants using data from the Annual Sur-
vey of Industries (ASI). We use a difference estimator, exploiting changes in shortages within states
over time. To address the potential endogeneity of shortages - for example, economic growth both
increases manufacturing output and worsens shortages - we instrument with changes in electricity
production from dams, which are driven by changes in the amount of water flowing intro reservoirs.
While working in India, we acquired a version of the ASI with consistent plant identifiers dating to
1992, which allows an unusually long panel of Indian plants. To complement this longer panel, we
gathered archival data from India’s Central Electricity Authority on shortages, reservoir inflows,
generation by hydro and other plants, and other aspects of the Indian power sector.

Our instrumental variables estimates show that for plants that own generators, a one percentage
point increase in shortages increases the share of self-generated electricity by 0.57 percentage points,
which raises total input costs by 0.02 to 0.07 percent of revenues. Across all plants, a one percentage
point increase in shortages decreases revenues by 0.68 percent. The accompanying TFP loss,
however, is much smaller - the confidence interval bounds it at no more than 0.29 percent.

The effects of shortages vary in ways predicted by the model. Only plants that self-generate
experience an increase in total energy costs, while non-generators experience much larger revenue
losses. Firms in industries with higher electric intensity are more exposed to shortages, experiencing
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a larger increase in energy revenue share and also a larger decrease in output. The results are
essentially identical under a battery of alternative specifications, including using fixed effects instead
of differences, controlling for rainfall, using an alternative measure of shortages, constructing TFP
in different ways, omitting various controls, and trimming outliers with different tolerances.

We then use simulations calibrated to ASI plants and production functions to calculate the
nationwide effects of the average level of shortages over our sample (7.1 percent), holding capital
stock constant. Across all plants, revenue and TFP are 7.1 and 1.9 percent lower, respectively. The
simulated effects on output and TFP are economically similar and statistically indistinguishable
from the empirical estimates, which builds confidence that the estimates are reasonable and that
the model captures the first-order issues.

As with the empirical estimates, however, simulated effects differ starkly for plants with vs.
without generators: those with generators see revenue and TFP drop by 0.7 and 0.1 percent, while
those without generators experiences losses of 10.3 and 2.9 percent. For self-generators and non-
generators, the reasons why output losses are larger than the percent of time shut down are the
output tax and shutdown tax effects: shortages act like taxes that cause firms to reduce other
inputs. These input reductions are also one reason why TFP losses are much smaller than output
losses; the other important reason is that when non-generators shut down, they lose output but
only waste non-storable inputs. Thus, while electricity shortages are a large drag on manufacturing
output, they do not in isolation explain much of the difference in TFP between India and more
developed economies.2

We also use the simulations to explore how electricity shortages might affect the firm size
distribution. Tybout (2000) discusses several potential causes for why the firm size distribution
in developing countries tends to have a "missing middle," and Hsieh and Klenow (2012) suggest
that electricity shortages combined with differential access to grid electricity could be an important
factor favoring large plants. We build on this idea, focusing on a different channel: economies of
scale in generator ownership. Simulations show that effects of outages on revenues and TFP are 50
percent larger for plants with fewer than 100 employees compared to larger plants.

The remainder of this section discusses related literature. Section 2 provides background on
the Indian electricity sector, the causes of electricity shortages, and manufacturers’ responses to
shortages. Section 3 details the production function model. Section 4 is the case study of textile
manufacturing in western India, using data from Bloom et al. (2013). Sections 5 and 6 present
the ASI data and empirical results. Section 7 details the counterfactual simulations, and Section 8
concludes.

2See Banerjee and Duflo (2005), Hsieh and Klenow (2009), and others for discussions.
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1.1 Related Literature

Our paper builds on an extensive literature that estimates the economic effects of investment in
electricity, transportation, and other types of infrastructure. One early group of studies examines
the effects of infrastructure investment on growth in panel data from U.S. states, including Aschauer
(1989), Holtz-Eakin (1994), Fernald (1999), Garcia-Mila, McGuire, and Porter (1996); see Gramlich
(1994) for a review. Easterly and Rebelo (1993), Esfahani and Ramirez (2002), and Roller and
Waverman (2001) carry out analogous studies using cross-country panels.

This literature has faced two basic problems. First, infrastructure spending is econometrically
endogenous to economic growth. There could be reverse causality: fast growth increases tax rev-
enues, which allow more infrastructure spending. There is also economic endogeneity: infrastruc-
ture may be specifically allocated to places that are growing more quickly or slowly. Second, using
aggregate infrastructure spending or quantity as the independent variable often hides important
variation in effects between infrastructure of different types or quality levels. In the Indian con-
text, for example, spending on power plants does not necessarily translate into electricity provision,
because plants are frequently offline due to mechanical failure or fuel shortages.

Our paper is part of a recently-growing literature that evaluates the effects of infrastructure
by combining microdata with within-country variation generated by natural experiments. This
includes Banerjee, Duflo, and Qian (2012), Donaldson (2012), and Donaldson and Hornbeck (2013)
on the effects of railroads in China, India, and the United States, Duflo and Pande (2007) on irri-
gation dams in India, Jensen (2007) on information technology, Baisa, Davis, Salant, and Wilcox
(2008) on the benefits of reliable water provision in Mexico, and Baum-Snow (2007, 2013), Baum-
Snow, Brandt, Henderson, Turner, and Zhang (2013), and Baum-Snow and Tuner (2012) on urban
transport expansions in China and the United States. A subset of this literature focuses on electric-
ity supply: Chakravorty, Pelli, and Marchand (2013), Dinkelman (2011), Lipscomb, Mobarak, and
Barham (2013), Rud (2012a), and Shapiro (2013) study the effects of electricity grid expansions,
while Alby, Dethier, and Straub (2011), Foster and Steinbuks (2009), Steinbuks (2011), Stein-
buks and Foster (2010), Reinikka and Svensson (2002), and Rud (2012b) study firms’ generator
investment decisions. Several recent papers focus specifically on Indian electricity supply: Ryan
(2013) estimates the potential welfare gains from expanding transmission infrastructure, Cropper,
Limonov, Malik, and Singh (2011) and Chan, Cropper, and Malik (2014) study the efficiency of
Indian coal power plants, and Abeberese (2012) tests how changes in electricity prices affect man-
ufacturing productivity.

Three recent papers study the effects of blackouts on manufacturers. Fisher-Vanden, Mansur,
and Wang (2013) show that when shortages become more severe, Chinese firms purchase more
energy-intensive inputs, but they do not self-generate more electricity. Zuberi (2012) estimates
a dynamic model of manufacturing production using data from Pakistan, showing how firms re-
allocate production to non-shortage periods. Alam (2013) studies how India’s steel vs. rice milling
industries respond differently to blackouts. Relative to these important papers, our study benefits
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from particularly clean data and identification: we have a clear case study using the high-quality
textile plant data from Bloom et al. (2013), a 19-year national panel using previously-unavailable
ASI data, newly-gathered archival data on the severity of shortages across Indian states, and an
instrument that addresses the endogeneity of blackouts with respect to growth. Our paper also
benefits from the way that we integrate theory and empirics: our model formalizes the major chan-
nels through which shortages affect production, and the close correspondence between simulation
and empirical results builds confidence in the estimates.

2 Background

2.1 Power Sector Data

Our power sector data are from India’s Central Electricity Authority (CEA). Many of the same
types of data available online from the U.S. Energy Information Administration are also collected
by the CEA. Unfortunately, however, the online data are incomplete, and the hard copies of some
printed materials have been misplaced, so data have to be hand-collected from CEA staff. With
the cooperation of CEA management and the help of research assistants in New Delhi, we were
able to compile, digitize, and clean about 25 years of data for this and related projects. Table 1
details these power sector variables and other state-level data.3

The primary measure of electricity shortages is the percent energy deficit reported in the Load
Generation Balance Report. Analysts at CEA and Regional Power Committees estimate the quan-
tity that would be demanded for each state and month at current prices in the absence of shortages.
The state-by-year sum is our “Assessed Demand” variable. “Shortage” is the percent difference be-
tween this counterfactual quantity demanded and the actual quantity supplied. In the 2011-2012
fiscal year, nationwide shortage was 8.5 percent, and shortages average 7.2 percent over the sample
period. The CEA also estimates “Peak Shortage,” an analogous measure of power shortage in peak
demand periods. While (total kilowatt-hour) Shortage is more appropriate for our analysis, Peak
Shortage and Shortage are highly correlated, with an R2 of 0.5, and robustness checks show that
results are similar when we use Peak Shortage instead of Shortage.4

From an annual report called the Review of the Performance of Hydro Power Stations, we
observe inflows into reservoirs behind 22 major dams covering about 40 percent of national hydro-
electric capacity. From the CEA’s General Review, we observe each state’s total annual electricity

3Throughout the paper, we use the word “state” to refer to both states and Union Territories.
4Although it is likely that shortages are measured with error, correlations with independent data suggest that

the CEA’s estimates contain meaningful information. Alam (2013) shows that Peak Shortage is correlated with her
measure of blackouts based on variation in nighttime lights measured by satellites; she does not report a correla-
tion with Shortage. In the World Bank Enterprise Survey, plants in higher-Shortage states report a larger share of
self-generated electricity and are more likely to report that electricity is their primary obstacle to growth. Further-
more, our empirical results show that Shortages are positively correlated with hydroelectric supply and correlated in
theoretically-predicted ways with self-generation and other outcomes in the ASI.
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generation by fuel type, including hydroelectric plants. From the General Review, we also collected
total quantity of electricity sold by utilities to end users for each state and year.

Aside from these electricity market variables, our empirical analysis also uses weather and
temperature data from the Meteorological Department of the National Climate Centre of India.
These data provide daily average temperatures and rainfall at one-degree gridded intervals across
India. Using state border coordinates, we associate the grid points with particular states to arrive
at annual state-level measures. Cooling degrees is a commonly-used correlate of electricity demand;
it is the difference between the day’s average temperature and 65 degrees Fahrenheit, or zero if the
day’s average temperature is below 65.

2.2 Reasons for Systemic Shortages

As of February 2013, India had 214 gigawatts of utility-scale power generation capacity, or about
one-fifth the US total (CEA 2013). Of this, 58 percent was coal, nine percent was natural gas, and
18 percent was hydro-electric. While power generation has been open to private investment since
1991, 70 percent of electricity supply remains government owned: 40 percent is owned by state
governments, and 30 percent is owned by central government entities. Although some retail distri-
bution companies have been privatized, most of distribution is managed by state-run companies,
which are often called State Electricity Boards (SEBs).

The proximate reason for shortages is that distribution companies do not raise retail prices in
order to clear the market. In fact, conditional on state and year effects, there is no correlation
between shortages and the median electricity price paid by ASI plants. Aside from being stark
evidence on how prices do not adjust to supply and demand conditions, this also means that the
effects we estimate are caused by input shortages, not by input price changes.

There are several underlying systemic reasons for shortages. The first is the “infrastructure
quality and subsidy trap” (McRae 2013): distribution companies provide low-quality electricity to
consumers, who tolerate poor service because they pay very low prices, distribution companies’
losses from low prices are covered by government subsidies, and politicians support the subsidies
to avoid voter backlash. At least since the 1970s, State Electricity Boards have offered un-metered
electricity at a monthly fixed fee and zero marginal cost to agricultural consumers, largely to run
well pumps (Bhargava and Subramaniam 2009). In 2010, the national average retail electricity cost
paid by agricultural consumers was 1.23 Rupees per kilowatt-hour (Rs/kWh), against Rs 4.78 for
industrial consumers and 3.57 Rs/kWh for all consumers. (The exchange rate is about 50 Rupees
per dollar, and the average electricity price across all consumers in the United States is about 10
cents/kWh.) Although determining optimal electricity prices would be complex due to the variety
of distortions, agricultural electricity is almost certainly under-priced.

Distortions in pricing are relevant only for consumers who actually pay for electricity. Twenty-
six percent of electricity generated in India in 2010-2011 was lost due to “technical and commercial
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losses,” meaning theft or poor transmission infrastructure. This is down from 34 percent in 2004-
2005. Distribution companies thus have no ability to charge any price, let alone raise prices, on a
significant share of electricity.

Agricultural subsidies and technical and commercial losses have led to mounting losses. The
SEBs receive large annual payments from state governments to cover these losses, and in particular
to fund the subsidies for agricultural consumers, but these payments and the cross-subsidy from
industrial customers are not sufficient to cover the SEBs’ costs. Between 1992 and 2009, the SEBs
lost $54 billion dollars (again, in real 2004 dollars). These mounting losses caused the SEBs to
reduce infrastructure investment, and degraded infrastructure further increases the probability of
blackouts. The SEBs are bailed out at irregular intervals by the government.

A second systemic reason for shortages is underinvestment in new generation capacity. For
example, after the 1991 liberalization, 200 Memoranda of Understanding were signed between
the government and investors to build 50 gigawatts of generation capacity, but less than four
gigawatts of this was actually built (Bhargava and Subramaniam 2009). Of the 71 gigawatts of
capacity targeted to be built between 1997 and 2007, only half was actually achieved (CEA 2013a).
Potential power plant investors faced concerns over both output demand and input supply. Their
main customers, the State Electricity Boards, faced serious financial problems, and it was not clear
that they would be able to honor contracts. Meanwhile, the main supplier of coal is Coal India, a
government-owned monopoly that is struggling to keep pace with demand growth.

In addition, the existing capacity is systematically underutilized. Between 1994 and 2009,
Indian coal power plants were offline about 28 percent of the time due to forced outages, planned
maintenance, or other factors such as equipment malfunction, coal shortages, or poor coal quality.5

Furthermore, when capacity is utilized, it is substantially less efficient than comparable plants in
the United States (Chan, Cropper, and Malik 2014).

One potential solution to problems with retail distribution companies is “open access”: allowing
consumers to contract directly with generators. The 2003 Electricity Act mandated open access,
but in practice direct power sales to bulk consumers have not materialized (GOI 2009, 2012),
partially because states have imposed additional charges on open access consumers and have also
banned export of power to open access consumers in other states.

2.3 Variation in Shortages

These systemic factors differ across states, generating differences in shortages. A substantial part
of these differences persist across years. Figure 1 shows a map of average shortages by state from
1992-2011, with higher-shortages states colored darker. Jammu and Kashmir was the highest-
shortage state at 23 percent, followed by Bihar, Arunachal Pradesh, Uttar Pradesh, and Madhya
Pradesh, respectively. Lakshadweep had zero shortages, and the next four lowest-shortage states

5We thank Cropper et al. (2013) for sharing their coal plant outage data with us. Our original intent was to use
these outages as an instrument for shortages, but the first stage is not sufficiently powerful.
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were Chandigarh, Himachal Pradesh, Delhi, and West Bengal, respectively. About 7.5 percent of
electricity consumed in 2011-2012 was generated in another state. Because distribution companies
are able to procure power from other states, supply-demand imbalances do not vary as much as
they would under autarky.

Figure 2 shows that there is a negative association between 2010 per capita GDP and average
shortage over the sample. This suggests that low levels of development are associated with poor
institutions, bad management, and other factors that worsen provision of public infrastructure.
However, there is substantial residual variation. Rajasthan, Jharkhand, and Sikkim have low GDP
and low shortages, partially because their slow GDP growth makes it easier for supply to keep up
with demand. Because end-of-sample GDP is highly correlated with GDP growth, this implies that
shortages could be correlated with factors that also affect manufacturing growth and productivity.
This highlights the importance of instrumenting for shortages in our empirical analysis.

There is also substantial variation in shortages within states over time. Figure 3 shows the
time path of annual average shortage over our sample for five large states in different parts of the
country. West Bengal has had consistently low shortages for the past 20 years. Maharashtra, which
is now one of the highest-shortage states, had only small shortages in the early 1990s. Karnataka,
which faced almost zero shortage in the mid-2000s, had significant shortages in the early to mid
1990s. Gujarat has reliable power supply now, but in the mid-2000s was experiencing shortages.

Several factors drive year-to-year fluctuations in shortages. On the demand side, fast or slow
economic growth over a few years can increase or decrease shortages. In addition, low rainfall in
a given year can increase farmers’ utilization of groundwater pumps, which can markedly increase
electricity demand. An unusually hot summer can also increase electricity demand to cool buildings.
On the supply side, the electricity market is still small enough that individual plants can affect the
aggregate supply-demand balance. Power plant outages for maintenance or due to fuel shortages
can cause electricity shortages, and new plants coming online can temporarily reduce shortages.
Later in the paper, we will discuss one other factor that satisfies the first stage and exclusion
requirements to be used as an instrument for shortages: variation in hydroelectric production due
to low rainfall in the south and low snowpack in the north.

2.4 Industrial Electricity Use in India

A natural response to outages is to self-generate electricity. Manufacturers in India generate 35
percent of manufacturing electricity consumption, more than twice the 15.8 percent for U.S. man-
ufacturers reported in the Manufacturing Energy Consumption Survey (MECS) (U.S. DOE 2013).
Figure 4 compares manufacturing electricity generation in India to the United States. Each dot
reflects a three-digit industry code from India’s National Industrial Classification (NIC), comparing
Indian data from the Annual Survey of Industries to U.S. data from the MECS.6

6This ratio of generation to consumption differs slightly from Self-Generation Share because electricity generated
also includes electricity sales by manufacturing plants to others. Several industries don’t match well between the two
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The figure highlights two important facts. First, there is a strong correlation between the US
and Indian data, suggesting that the ASI self-generation data are meaningful. Many industries
in the United States - where power outages are relatively unimportant - produce a large share of
their power. For instance, in the sugar refining industry, leftovers from sugarcane processing can
be burned to generate electricity, so there is a natural complementarity between manufacturing
operations and electricity generation. Second, the mass of points along the y-axis implies that
many industries in India produce much more than their counterparts in the U.S. For instance,
plastics manufacturers in the United States produce none of their power (U.S. DOE 2013), while
in India, the plastics industry produces 70 percent of its electricity consumption.

2.5 Self-Generation and Plant Size

The reason why electricity is typically generated in large power plants instead of by individual
manufacturing plants is that there are strong economies of scale in generation. Even within the
range of manufacturing plant sizes, generator costs rise meaningfully per kilowatt of capacity. The
result is that larger plants are much more likely to self-generate power, as shown in Figure 5.
This economy of scale has important implications for how electricity shortages affect the plant size
distribution, an issue which we return to later in the paper.

Although smaller plants may be more affected, large plants also report significant losses from
shortages. The World Bank Enterprise Survey (WBES) for 2005 surveyed 2286 Indian manufac-
turing firms in 50 cities in 16 states about their inputs, outputs, and business environments. It was
in this survey that managers reported electricity supply as their single most important barrier to
growth. Table 2 compares the WBES data for “Small” plants (<100 workers) and “Large” plants.
Large plants experience fewer outages. Consistent with the ASI, large plants are more likely to
own generators, and conditional on owning a generator, they source a larger share of electricity
internally. While small plants report that they lose eight percent of revenues to electricity input
disruptions, large plants report losing five percent. Furthermore, 26 percent of large plants report
the electricity is the biggest obstacle to growth.

3 Model

In this section, we develop a model of how electricity shortages affect manufacturers. τ indexes
points in time, which we refer to as “days.” Every day, a producer uses capitalK, labor L, electricity
E, and materialsM to produce output Q. Qitτdenotes the output for plant i in year t on day τ , and

datasets: chemicals and refining are not broken out into many different sub-industries in the public US data, so Indian
sub-industries such as Explosives, Chemicals Not Elsewhere Classified (NEC), Matches, and Perfumes and Cosmetics
are matched to “Chemicals,” a broader industry where other establishments are more likely to have feedstock for
self-generation, and thus a higher self-generation share. Similarly, Natural Gas and LPG Bottling, Coal NEC, and
Coke Oven Products are matched to “Petroleum and Coal Products,” another very broad category.
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Qit ≡
´
τ Qitτdτ is the annual aggregate. We do not model the possibility for inter-day substitution

of production; this is covered nicely by Alam (2013) and Zuberi (2012). To the extent that firms
can adjust in this way, this reduces the losses from shortages relative to what we simulate in Section
7.

The daily production function is Leontief in electricity and a Cobb-Douglas aggregate of capital,
labor, and materials, with physical productivity A:

Q = min{A1− 1
εKαKLαLMαM ,

1
λ
E} (1)

The Leontief production function dictates that electricity is used in constant proportion 1
λ with

output. Electricity intensity λ varies across industries. As is common, we assume that the Cobb-
Douglas aggregate, A1− 1

εKαKLαLMαM , has constant returns to scale, so αK+αL+αM = 1. Having
A inside the Cobb-Douglas aggregator ensures that electricity is used in fixed proportion to output
instead of to the bundle of other inputs.7

Since we will observe total revenues rather than physical quantities produced, we need to re-
late revenues to our production function in equation (1). As in Foster, Haltiwanger, Syverson
(2008), Bloom (2009), and Asker, Collard-Wexler, and De Loecker (2013), we consider a firm fac-
ing a constant elasticity demand curve (CES) given by Qit = Bitp

−ε
it , where p is the output price.

Combining the production function and the demand curve, we obtain an expression for the revenue-
generating production function Rit = min{ΩitK

βK
it L

βL
it M

βM
it , B

1
ε
it

1
λEit} where Ωit ≡ A

1− 1
ε

it B
1
ε
it , and

βX ≡ αX(1− 1
ε ), for X ∈ {K,L,M}. We will use an elasticity of demand of ε = −10, but we will

also verify our results with other elasticities such as ε = −4, the value used by Bloom (2009), and
Asker, Collard-Wexler, and De Loecker (2013).

3.1 Decision Variables

We assume that inputs fall into three categories: fixed, semi-flexible at the yearly level, and fully
flexible at the daily level.

1. Fixed Inputs are chosen before the current year and are exogenous in this analysis. We assume
that capital stock K is fixed.

2. Semi-Flexible Inputs can be modified at the beginning of a year t, but they cannot be modified
from day to day. For the model and simulations, we treat labor as semi-flexible, since firms

7We have also considered a production function which is Cobb-Douglas in K, L, M , and also E. There are two
main differences in this model’s predictions. First, plants that own generators will always self-generate at least a
small amount of electricity no matter how high the cost, because an input’s marginal revenue product approaches
infinity as quantity input limits to zero. By contrast, plants such as the textile factories in Section 4 sometimes
choose to shut down completely during outages even if they have generators. Second, higher costs of self-generated
electricity act like an input tax on electricity, while they act like an output tax in the Leontief-in-electricity model.
Quantitatively, the effects of blackouts are the same in the two models for plants that do not have generators. For

plants that have and use generators, the Cobb-Douglas model would find a smaller effect of shortages on output and
productivity than our Leontief-in-electricity model, since there is scope for substituting electricity with other inputs.
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cannot hire and fire workers from one moment to the next as blackouts occur. This gives
Litτ = Lit. An alternative interpretation is that these are non-storable inputs, which cannot
be stockpiled and used another day.8

3. Fully Flexible Inputs can be modified for each day τ . We treat materials and electricity as
fully flexible.

3.2 Power Outages

Power outages occur on each day with probability δ, and firms observe whether there is a power
outage before setting their fully flexible inputs. If there is not an outage, firms can purchase
electricity from the grid at price pE,G. If there is an outage, firms with generators can self-produce
electricity at price pE,S > pE,G. Firms without generators will have zero electricity use during an
outage, and thus zero output.

3.3 Firm’s Problem

Firms have the following daily profit function Πitτ :

Πitτ =pmin{Ait1− 1
εKαK

it LαLit M
αM
itτ ,

1
λ
Eitτ}

− pLLit − pMMitτ − pEEitτ ,
(2)

where p, pL, pM are the prices of output, labor, and materials, respectively. Note that capital is
excluded, since it is fixed, and thus a sunk cost in the yearly decision problem.

Given the Leontief-in-electricity structure of production, cost minimization implies that for any
desired level of output Q, the firm produces at a “corner” of the isoquant where:

A
1− 1

ε
it KαK

it LαLit M
αM
itτ = 1

λ
Eitτ , (3)

Given this, one can rewrite the profit function, substituting in for the optimized value of elec-
tricity:

Πitτ = (1− λpE

p
)pA1− 1

ε
it KαK

it LαLit M
αM
itτ − p

LLit − pMMitτ

= (1− λpE

p
)ΩitK

βK
it L

βL
it M

βM
itτ − p

LLit − pMMitτ .

(4)

8Some of the high self-generation in Indian industries, such as in plastics, is presumably due to inputs being spoiled
during a power outage. In these industries, it might be more plausible to assume that materials are also semi-flexible
inputs.
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Let γ ≡ λpE

p = pEE
pQ , the electricity revenue share. Notice that if (1− γ) < 0, then the firm will

choose not to produce.
There are three outcomes that can occur, depending on electricity intensity and the relative

price of electricity:

1. If p > λpE,S , the firm always produces, regardless of power outages.

2. If λpE,S > p > λpE,G, the firm does not produce during power outages, but does produce
otherwise.

3. If p < λpE,G, the firm never produces.

We ignore case (3): if firms never produce, they never appear in the data. Firms without generators
effectively have pE,S =∞, so case (1) cannot arise. Of the firms with generators, those with higher
λ will be in case (2). In other words, higher-electricity intensity firms will be more likely to shut
down during grid power outages.9

The first-order condition with respect to materials yields:

βM (1− γ)Ritτ
Mitτ

− pM = 0. (5)

This is the usual Cobb-Douglas first-order condition for materials, except that the marginal
revenue product of materials is reduced by γ. Since λ is constant, γ is higher when a firm self-
generates and pays a price for power of pE,S , rather than purchasing from the grid and paying pE,G.
One can thus interpret T ≡ λp

E,S−pE,G
p as an “output tax” on output due to self-generation, and

this tax is higher for industries which are more electricity intensive.
The marginal revenue product of materials is:

MRPM =

βM (1− γ) RitτMitτ
if no power outage

T βM (1− γ) RitτMitτ
if power outage

(6)

The first-order condition for labor is more complicated, since a firm must integrate over outage
and non-outage days when setting semi-flexible inputs. If a plant is in case (1), meaning that it
self-generates during power outages, then the first-order condition is given by:

MRPL1 = βL(1− λp
E,G

p
)
[
(1− δ)RitG

Lit
+ δT RitS

Lit

]
= pL, (7)

where RitS indicates revenue during a shortage period. This expression also includes an “output
tax”T during shortage periods. We call the reduction in the marginal revenue products of materials
and labor for self-generating plants the output tax effect.

9While a firm would not invest in a generator if it expected to be in case (2), unexpected changes in p, pE,S , or
pE,G could cause firms with generators to not use them.
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For firms in case (2), i.e. firms without generators or firms that will not produce during outages
since λpE,S < p, the marginal revenue product of labor is:

MRPL2 = (1− δ)(1− γ)βL
RitG
Lit

= pL, (8)

where RitG indicates revenue during a non-shortage period.
This is the usual Cobb-Douglas first-order condition, except that the marginal revenue product

is reduced by (1 − γ) and (1 − δ), the fraction of the time the plant will be down due to power
shortages. We call this reduction in marginal product of labor for non-generators the shutdown tax
effect.

3.4 Profits

The above first-order conditions imply optimal input bundles L∗
it, M∗

itS , and M∗
itG, where the latter

two represent optimal materials input during outage and non-outage periods, respectively. The
firm’s annual profit can then be expressed as:

Πi,t =(1− δ)(1− λpE,G

p
)
(
ΩitK

βK
it (L∗

it)βL(M∗
itG)βM − pMM∗

itG

)
+ δ(1− λpE,S

p
)
(
ΩitK

βK
it (L∗

it)βL(M∗
itS)βM − pMM∗

itS

)
− pLL∗

it,

(9)

where the second line will be zero for firms which do not self-generate.

3.5 Productivity

3.5.1 Production Function Estimation

We use the first-order condition approach to production function estimation10 to recover production
function coefficients βL, βM , βK and γ using yearly data from the Annual Survey of Industries.
In our context, however, the first-order conditions depend on variables that vary between outage
and non-outage periods and are thus unobserved in the yearly data. Below, however, we see that
for plants that do not self-generate, the first-order conditions simplify to functions only of yearly
aggregates.

For non-self-generators, γ equals the revenue share of electricity over the year:

γ = pE,GEitτ
Ritτ

= pE,GEit
Rit

(10)

10For additional discussion, see De Loecker and Warzynski (2012) and Haltiwanger, Bartelsman and Scarpetta
(2013).
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The latter equality holds because (1 − δ)Eitτ = Eit and (1 − δ)Ritτ = Rit: non-self-generators
use zero electricity and earn zero revenues during outages.

Similarly, the first-order condition for labor gives:

βL = pLLit
(1− δ)Ritτ

1
1− γ = pLLit

Rit

1
1− pE,GEit

Rit

. (11)

We thus have the usual Cobb-Douglas equality of βL with the revenue share of labor, except
adjusted by the inverse of one minus the electricity revenue share.11

Likewise, the first-order condition for materials yields:

βM = pMMitτ

Ritτ

1
1− γ = pMMit

Rit

1
1− pE,GEit

Rit

. (12)

Again, the latter equality holds because Mitτ = (1− δ)Mit, (1− δ)Eitτ = Eit, and Ritτ = (1− δ)Rit
for non-self-generators.

Finally, using the constant returns to scale assumption that αK + αL + αM = 1, the capital
coefficient is given by βK = (1− 1

ε )−β̂L−β̂M . We use median regression to estimate these coefficients
by three-digit industry, using only plants in the ASI that never self-generate. See Appendix A for
additional details.

3.5.2 Productivity Effect of Shortages

With no power shortages, productivity is:

ωit = rit − βKkit − βMmit − βLlit (13)

where lower case variables denote the logarithms of variables in upper case; i.e., xit = log(Xit).
For plants that do not have a generator or have one but choose not to self-generate, revenue is:

Rit =
ˆ
τ

ΩitK
βK
it L

βL
it M

βM
itτ dτ

= (1− δ)1− 1
ε

−βMΩitK
βK
it L

βL
it M

βM
it

(14)

Taking logs, this yields:

rit = βKkit + βMmit + βLlit + ωit + (1− 1
ε
− βM ) log(1− δ)︸ ︷︷ ︸
ω̂it

(15)

and since 1− δ ≤ 1, log(1− δ) < 0, so shortages reduce measured productivity ω̂it relative to ωit.
11In a production function that is Cobb-Douglas in electricity, a similar equation would hold with the absence of

the 1
1−γ adjustment.
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If plants have generators and use them during outages, then revenue is given by:

Rit =
ˆ
τ

ΩitK
βK
it L

βL
it M

βM
itτ dτ

= ΩitK
βK
it L

βL
it

(
(1− δ)MβM

itG + δMβM
itS

)
,

(16)

where MitS is the bundle of materials chosen during shortages, and MitG is the bundle of materials
chosen otherwise.

Define C as the loss in output from using different bundles of materials in shortage and non-
shortage periods, relative to using the same bundle in both periods:

Cit = (1− δ)MβM
itG + δMβM

itS

((1− δ)MitG + δMitS)βM
. (17)

By Jensen’s inequality, C < 1, since
(
(1− δ)MβM

itG + δMβM
itS

)
< ((1− δ)MitG + δMitS)βM . Cit is

increasing in βM , as βM < 1 and C would be one for a βM = 1 and ε = −∞, the linear production
case. For small δ, Cit is decreasing in δ.

This gives:

Rit = ΩitK
βK
it L

βL
it

(
(1− δ)MβM

itG + δMβM
itS

)
= CitΩitK

βK
it L

βL
it M

βM
it

(18)

Taking logs, this yields:

rit = βKkit + βMmit + βLlit + ωit + cit︸ ︷︷ ︸
ω̂it

. (19)

Since Cit < 1, cit < 0, so outages again decrease measured productivity ω̂it.
Collecting our results, we have the effects of shortages on measured TFP:

ω̂i,t − ωi,t =

(1− 1
ε − βM ) log(1− δ) If no self-generation

cit If self-generation
(20)

We call the first line the shutdown effect. The (1 − 1
ε − βM ) = βL + βK term represents the

share of inputs that are not fully flexible - in this case, capital and labor. Thus, the shutdown effect
on TFP is just the share of the year shut down multiplied by the share of inputs that are wasted
during outages. We call the second line the input variation effect.

16



4 Case Study: Large Textile Manufacturers

Bloom et al. (2013) study how improved management practices increased productivity at textile
plants in Gujarat, Maharashtra, and Dadra and Nagar Haveli. In the industrial areas where these
plants operate, there are scheduled “power holidays” on a given day of the week, during which
there is typically no grid electricity. As a case study to illustrate and calibrate the model, this
section uses data shared by Bloom et al. (2013) to estimate how power holidays change inputs and
production.

4.1 Overview and Data

Bloom et al. selected an initial random sample of 66 firms from the set of textile firms that had
between 100 and 1,000 employees based in two towns near Mumbai. These 66 firms were contacted
and offered free consulting services, and 17 agreed to participate in the consulting program. On
average, the firms have 270 employees and revenues of $7.5 million per year. The data include 22
plants owned by the 17 firms.

The electric distribution companies spread power holidays throughout the week in order to
reduce load on all days. Fourteen of the plants are in areas with power holidays on Fridays, while
the remainder have holidays spread throughout the week. Appendix Table A1 presents information
on plant locations and scheduled power holidays, while Appendix Table A2 summarizes the data.

The plants typically operate continuously: 24 hours a day, every day. Before each power holiday,
however, plant managers can choose to reduce output or fully shut down for all or part of the day.
As they do this in advance, they can inform some or all workers that they need not come to work.
Production workers are on 12 hour shifts, and they are paid if and only if they are called in. In the
context of our model, labor is thus fully flexible. Similarly, materials such as yarn are fully flexible:
they can be stored if the plant does not operate.

Physical output Q is measured in “picks,” where one pick is a single rotation of the weaving
shuttle. Figure 6 presents the distributions of output at an example plant for each of the seven
days of the week. The dashed line is output on Fridays, when the plant has power holidays, while
the solid lines represent output on each of the other six days. The distributions are very similar for
the six non-holidays, with a mode of about 12,000 picks per day. On most power holidays, output
does not appear to differ. On some power holidays, however, output is roughly half, as the plant
cancels one 12-hour shift. Output drops to zero on a small share of power holidays.

4.2 Empirical Estimates

4.2.1 Differences in Output on Power Holidays

We now estimate the reduction in output on power holidays. We observe physical output Qiτ for
each plant i on each day τ . Q̃iτ is output normalized by plant i’s sample average production:
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Q̃iτ = Qiτ/Qi.12 φi is a vector of 22 plant indicators, while θτ represents 1339 day-of-sample
indicators. The estimating equation is:

Q̃iτ = ρ · 1(Power Holidayiτ ) + φi + θτ + εiτ (21)

Table 3 presents the results of this regression, with standard errors clustered by plant. Column
1 presents the above specification, except without the day-of-sample controls θτ . Column 2 is the
exact specification above. These columns show that average production is 7.4 to 9.7 percent lower
on power holidays.

According to the consulting team that worked with the factories, there is typically no grid
electricity available for the 24 hours of the scheduled power holiday. However, there are both “type
I” and “type II” classification errors. During the winter months when electricity demand is lower,
there may be unscheduled power availability during scheduled power holidays. During all months,
especially the summer months when electricity demand is higher, there can also be unscheduled
power cuts on any day.

Column 3 measures this by estimating how production on power holidays and non-holidays varies
with the monthly CEA shortage estimate for the state in which each plant is located. On non-power
holidays, output is not statistically significantly associated with shortages. This is consistent with
the fact that when power cuts occur on non-power holidays, plants typically self-generate instead
of shutting down, as labor input for the day has already been fixed.

The coefficient on 1(Power Holiday), which in Column 3 represents the intercept in months
when the CEA estimates zero shortages, is statistically zero. Output on power holidays decreases
by 0.6 percentage points as shortages increase by 1 percentage point. Column 4 includes power
holiday-by-month controls, to control for any time-varying factors such as demand or diesel prices.
This does not change the results relative to column 3. These results suggest that the managers
have some ability to predict when there will be more electricity on a scheduled power holiday, and
when they expect more electricity they call in more workers and produce more. This highlights that
the effects of scheduled power holidays on production depends on the severity of the underlying
shortage that the holidays are designed to address.13

4.2.2 Input Cost Effect

We now estimate the input cost effect: the increase in electricity costs when power holidays force a
switch from grid electricity to self-generated electricity. We observe total energy costs - electricity

12We normalize because production varies substantially within and between the different plants, and we do not
want the coefficient estimates to be driven by outliers. This normalization is preferable to using ln(Qiτ ) or ln(Qiτ +1)
as the dependent variable because Qiτ = 0 on some days, and this large variation makes it incorrect to interpret the
coefficients as approximately reflecting percent changes in Q.

13Our model does not capture potential effects of electricity shortages on output quality, and so we would understate
productivity losses if shortages affect output quality along with quantity. However, we have tested this using two
measures of output quality, finding no statistical difference on power holidays vs. non-holidays.
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plus generator fuel - at the monthly level, not for each day. After conditioning on total monthly
production, the relationship between energy costs and the share of production on power holidays
tells us the incremental marginal cost of self-generated electricity.

Let Gim represent the share of output produced on power holidays at plant i during month
m. We denote F̃im and Q̃im as plant i’s energy costs and output for month m, normalized by the
plant’s average monthly values. Analogous to above, φi is a plant fixed effect, and θm is a full set of
month-of-sample dummies. δim denotes the CEA’s estimated shortage in plant i’s state in month
m. The regression is:

F̃im = η1Gim + η2Q̃im + η3δim + φi + θm + εim (22)

Table 4 presents the results, again with standard errors clustered by plant. Column 1 shows the
unconditional correlation between energy costs and power holiday output share, while Columns 2-4
progressively add controls for month-of-sample, normalized output, and shortages. The estimates
imply that shifting 100 percent of production from non-power holidays to power holidays would
increase monthly energy costs by 61 to 81 percent. This is closely consistent with the World Bank
Enterprise Survey data in Table 2, which suggest that grid electricity costs an average of Rs 4.5
per kilowatt-hour, while generator electricity costs Rs 7 per kilowatt-hour, or 56 percent more.

4.3 Estimating Losses from Power Holidays

Table 5 uses the empirical estimates to calculate the input cost effect, output loss, and TFP
reduction from power holidays at this set of plants. The top panel calculates the input cost effect.
This is the proportion of electricity that is self-generated, which we assume to be equal to the share
of production on power holidays (G), multiplied by the percentage increase in energy costs when
self-generating (η̂1) and by the sample median14 energy revenue share. Power holidays increase
input costs by 0.32 percent of revenues. This is effect is small, both because the electricity input
cost share is small and because only one-ninth of production is on power holidays.

Estimating output losses requires the additional assumption from Section 3 that production
is not substitutable across “days.” If plants operating at less than full capacity can substitute
production across days, they should produce when lower-cost grid electricity is available. In this
case, the reductions in output associated with power holidays would not reflect a reduction in total
output caused by power holidays - instead, they would represent inter-day shifting of the same
amount of production. If plants do substitute production across days, estimated output losses
assuming static production thus overstate the true output losses. In additional regressions, we see
little evidence that intertemporal substitution causes the static model to overstate output losses.15

14We use median instead of mean to avoid bias due to potential recording error for revenues.
15More specifically, we test for inter-day substitution in two ways. First, we find that days of week just before

power holidays do not have higher output, and the day immediately after a power holiday actually tends to have
slightly but statistically significantly lower output, which suggests delays in restarting plants. Second, we exploit
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Under the static production assumption, the middle panel estimates that power holidays reduce
output by 1.1 percent. This is the product of 1/7 days that are power holidays and an estimated
7.4 percent output reduction on those days. While this is meaningful, it is small relative to average
output losses estimated later for all Indian plants, because this sample of textile plants all own
generators and thus often do not shut down during outages. To the extent that there is any
undetected inter-day substitution, this only strengthens the qualitative conclusion that the output
losses are small.

The bottom panel presents measured TFP losses under the assumption that at a given time on a
power holiday, a plant has either shut down completely or is operating at the typical production rate
for a non-power holiday. Under this assumption, there is no input variation effect, and measured
TFP losses accrue through the shutdown effect. Under constant returns to scale and using the
assumption that labor and materials are fully storable, Equation (20) for the measured TFP losses
from the shutdown effect can be modified to obtain the measured TFP loss from power holidays:

ω̂i,t − ωi,t = (βK) log(1− δ̃) (23)

In this equation, δ̃ is the percent of time shut down, which under our assumptions equals the
1.1 percent output loss. We take βK from the ASI for textile plants (NIC 1987 code 230), which
is slightly less than five percent. (Variable profits are relatively low in this industry.) The table
shows that power holidays reduce measured TFP by 0.05 percent. Intuitively, this effect is so small
because the plants rarely shut down, and when they do they have the flexibility to reduce the vast
majority of their inputs.

While these plants provide a clear case study of the model, the effects of blackouts might be
smaller here compared to the average plant in India, because labor and materials are both storable
during planned power holidays, these plants all can self-generate instead of needing to always shut
down, and textile plants are only moderately electricity intensive. To learn more about the broader
Indian manufacturing sector, we now to turn to data from the Annual Survey of Industries.

5 Data and Empirical Strategy

5.1 Data

We use India’s Annual Survey of Industries (ASI) for 1992 through 2010. The survey is split into
two schemes: the census scheme and the sample scheme. In each year, the census scheme surveys all
manufacturing establishments with over 100 workers, while the sample scheme surveys a rotating

the fact that it is more difficult to substitute production away from power holidays when already producing closer to
capacity. Interday substitution would thus generate more output reduction during periods when plants are producing
less. By contrast, we find that output reductions are larger when plants are producing more.
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sample of one-third of establishments below that size.16 Since 1998, the publicly-available version
of the ASI includes establishment identifiers that are consistent across years. We also have an
earlier version of ASI data that was acquired in India and is not publicly available, which contains
consistent establishment identifiers for years before 1998. Combining these two datasets gives us
an establishment-level panel for our entire sample.

The ASI is comparable to manufacturing surveys in the United States and other countries. It
contains several modules, covering value of fixed capital stock and inventories, loans and cash flow
information, cost and quantities of labor, materials, fuels, and other inputs, value of output, and
other occasional questions. The reporting period is the Indian fiscal year, which is April 1 through
March 31; when we refer to an individual survey year, we refer to the calendar year when the fiscal
year begins. All financial amounts are deflated to constant 2004 Rupees. Appendix A gives more
detail on the ASI data preparation and cleaning.

Table 6 gives descriptive statistics for the full ASI dataset. There are 616,129 plant-by-year
observations. The median plant employs 34 people and has gross revenues of 20 million Rupees, or
slightly less than $500,000. One of the benefits of the ASI over other manufacturing datasets from
India and other countries is that we observe the physical quantity of each plant’s total electricity
purchases and self-generation in each year. The sum of these two variables, minus reported sales of
electricity, yields Electricity Consumed. Self-Generation Share equals Electricity Self-Generated di-
vided by Electricity Consumed. Energy Revenue Share is the value of electricity and fuels purchased
divided by revenues.

The mean plant uses 0.013 kWh per Rupee of revenues, which equals 5.7 percent of revenues at
typical electricity prices of 4.5 Rupees/kWh. 1(Self-Generator) is an indicator variable for whether
a plant self-generates electricity in at least one year. Approximately 54 percent of plants ever
self-generate: 42 percent of “Small” plants with fewer than 100 workers and 77 percent of “Large”
plants with 100 or more workers. This is closely consistent with the World Bank Enterprise Survey
data in Table 2, in which 46 percent of Small plants and 83 percent of Large plants report owning
or sharing a generator. We combine the ASI with the state-by-year electricity market and weather
data summarized in Table 1.

5.2 Estimation Strategy

Define Yijst as an outcome at plant i in industry j in state s in year t. Our primary specifications
focus on four outcomes: self-generation share, energy revenue share, revenues, and productivity.

16The sampling rules have changed somewhat over time. The census sector, from which 100 percent of factories
are sampled, was factories with 50 or more workers (100 or more if without electric power) until 1986-1987, 100 or
more workers between that year and 1996-1997, 200 or more workers from then until 2003-2004, and then 100 or
more workers since then. One-fifth of smaller factories were sampled since 2004-2005. The selection was done as a
rotating panel such that plants are surveyed approximately once every third (or fifth) year, subject to constraints
that sufficient numbers of factories had to be sampled to assure representativeness at the state and industry level
(MOSPI 2009).
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We use a difference estimator for our primary specifications, although we present robustness checks
using the fixed effects estimator. The difference estimator is conceptually preferable because it
identifies coefficients using shorter-term variation, consistent with our focus on identifying the
short-run effects of shortages.

Because of non-response and the ASI’s irregular sampling procedure, the data form an unbal-
anced panel with plants observed at irregular intervals. Sixty percent of intervals are one-year,
while 91 percent are five years or less. Let ∆i denote the difference operator, and define δst as
electricity shortage in state s in year t, ranging from zero to one. The variable ∆iδst is the differ-
ence between the shortage in year t and the shortage in the year of plant i’s previous observation.
We include indicators θit for each “year difference,” by which we mean the initial and final year
combination for each differenced observation. For example, there is a θit indicator that takes value
1 for all plants observed in 2008 whose preceding observation was in 2005, and another θit indicator
for all plants observed in 2008 whose preceding observation was 2004, etc. The variables µjt and
ψs are vectors of indicators for two-digit industry-by-year and state, respectively.

The estimating equation is:

∆i lnYijst = ρ∆iδst + µjt + θit + ψs + εijst (24)

All observations are weighted equally in the empirical estimates. This increases power, and
because the difference estimator drops plants observed only once, the estimates are already unrep-
resentative. The simulations in Section 7 do use the ASI sampling weights to construct estimates
that are representative of registered plants nationwide. Standard errors are robust and clustered
at the level of variation in the year difference ∆iδst. 17

In the model, electricity shortages affect firms only through input availability: demand is un-
affected by shortages. This would reflect the case in which manufacturers sell into national or
international markets. In reality, many manufacturers sell to customers in the same state whose
demand might also be affected by shortages. Thus, our empirical estimates capture effects of
shortages through both input availability and demand.

These empirical estimates using annual data can capture additional effects not contemplated in
the model in Sections 3 and 7. For example, if plants substitute production across days in response
to outages, our empirical estimates capture the net effect of outages on output and other variables

17Sample sizes will differ from the observation counts in Table 6 for precisely four reasons. First, the difference
estimator drops the approximately 107,000 plants observed only once. Second, we exclude “within-plant outliers”:
observations of logged inputs or outputs that are flagged because they differ from both preceding and subsequent
observations by more than 3.5. A one-time annual jump of 3.5 natural logs is almost certainly a reporting error,
although robustness checks in Appendix B.3 show that the estimates are not sensitive to either tightening or elim-
inating this restriction. Third, the states of Jharkhand, Chhattisgarh and Uttaranchal (now Uttarakhand) were
established in 2001 from parts of Bihar, Madhya Pradesh and Uttar Pradesh, respectively. State-level measures of
shortages and hydroelectric generation thus do not represent consistent areas before vs. after the splits, so we drop
observations that are differences of years that span this split. Fourth, when examining self-generation share or energy
revenue share as the outcome in our basic specifications, we exclude the 46 percent of plants that never self-generate
electricity.
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over the year. The estimates reflect the causal impact of annual variation in blackouts except in the
unlikely event that plants substitute production across years. As another example, the empirical
estimates let the data tell us whether materials and labor are semi-flexible or fully flexible.

5.3 Instruments and First Stages

Shortages could be econometrically endogenous to some outcomes, in particular output and pro-
ductivity. For example, improvements in economic conditions within a state could increase pro-
ductivity and output in manufacturing and other sectors, and the resulting increase in electricity
demand could cause shortages. Furthermore, shortages could also be measured with error, causing
attenuation bias.

To address this, we need an instrument that causes shortages to vary but is otherwise unrelated
to manufacturing. We instrument using hydroelectricity generation, which varies from year to year
due to the availability of water in reservoirs. Hst is the predicted share of state consumption that
can be fulfilled by hydroelectric generation in state s in year t. As there are positive shocks to
reservoir inflows, and thus to hydroelectricity generation, a larger share of state consumption can
be fulfilled, and shortages should decrease. Intuitively, the denominator should be total electricity
consumption in state s in year t, but this is determined partially by the extent of shortages. Thus,
the denominator is national electricity consumption multiplied by the average ratio of state to
national consumption for all years of the sample:

Hst = Hydro Electricity Productionst (GWh)[
National Electricity
Consumptiont (GWh)

]
·
[

Average Ratio of State
to National Consumptions

] (25)

Figure 7 illustrates the cross-state variation in the importance of hydroelectricity. While some
hydro-heavy states are small mountainous regions such as Himachal Pradesh, Meghalaya, and
Uttaranchal, other states such as Andhra Pradesh, Karnataka, Kerala, Orissa, and Punjab are
both large and rely heavily on hydroelectricity. Figure 8 hydroelectricity generation over the study
period for these states. In essence, the instrument is the product of the cross-section variation in
Figure 7 with the time series variation in Figure 8.

Karnataka, a large state in southwest India, is the country’s largest producer of hydroelectricity.
Figure 9 plots the hydro instrument and shortages for Karnataka over the study period. The two
variables are highly negatively correlated: more hydro generation reduces shortages.

Column 1 of Table 7 presents an analogue to the first stage using only first-differenced state-
level data. Specifically, we regress the change in shortage on the change in the hydro instrument,
controlling for state and year fixed effects. A one percentage point increase in hydro production
relative to predicted demand decreases shortages by 0.048 percentage points. If a state’s own hydro
plants were its only source of electricity, this coefficient should be one. In practice, states offset the
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loss of hydro production by increasing generation from coal and other sources and by importing
from other states.

The exclusion restriction is that changes in hydroelectricity production are associated with
changes in manufacturing outcomes only through their effects on electricity shortages. In theory,
there are at least two reasons why this identifying assumption might be violated. First, there
could be reverse causality: hydroelectricity generation could respond in equilibrium to changes
in electricity demand associated with manufacturing outcomes. However, the marginal cost of
hydroelectricity production is relatively low, and annual production is constrained by the amount
of water available behind reservoirs. By contrast, the exclusion restriction would be violated for
production technologies such as coal power plants that have higher marginal costs, because their
output is determined in equilibrium with demand.

To substantiate this, we gathered data from the Central Electricity Authority on inflows into
22 large reservoirs. For each state with a reservoir, we regressed annual hydroelectricity generation
on inflows and construct the fitted values. Figure 10 plots predicted and actual hydro generation;
theR2 is 0.86. While the R2 should not be 1 because the data include reservoirs that supply only
40 percent of India’s hydroelectric generating capacity, the very high R2 indicates that inflows
are the primary determinants of hydroelectric production. Note that it is not possible to directly
use inflows as our instrument because only 2/5 of states that have positive hydro generation have
reservoirs in the inflows data.

The second reason why the identifying assumption might be violated would be if rainfall or some
other third variable influences both hydroelectricity generation and manufacturing productivity or
input or output prices. To address this, we can simply control for rainfall in our regressions, along
with cooling degrees, which are correlated with rainfall and may affect agriculture. Although rainfall
is associated with the hydro instrument, Column 2 of Table 7 shows that conditioning on rainfall
and cooling degrees has very little impact on the state-level estimates aside from increasing the
standard error. By contrast, Column 3 shows that rainfall is associated with agricultural output,
while there is a positive but not statistically significant association between the instrument and
agricultural output.

Columns 4 and 5 of Table 7 present a placebo test that provides even more direct support for
the exclusion restriction. For an instrument to be valid, it needs to affect electricity supply but
should not be associated with demand. To test this, we exploit the fact that the CEA reports the
two components of shortages: assessed quantity demanded at current prices as well as the actual
quantity supplied. Column 4 shows that the instrument is associated with quantity supplied, but
column 5 shows that it is not associated with assessed demand. It is difficult to conceive of a
story under which the exclusion restriction is violated but the instrument is not associated with
electricity demand.
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6 Empirical Results

6.1 First Stages

Table A3 in Appendix B.2 presents first stage estimates using microdata. In theory, the coeffi-
cient estimates might differ from the state-level results in Table 7 because the microdata weights
states with more plants more heavily and because the microdata includes one-year and multi-year
differences instead of only one-year differences. In practice, the microdata coefficients are slightly
larger in absolute value but roughly comparable, ranging from -0.100 to -0.139. The instruments
are powerful: the cluster and heteroskedasticity-robust Angrist-Pischke F-statistics range from 39
to 53.18 For comparison, the Stock and Yogo (2005) critical values for one instrument and one
endogenous regressor are 8.96 and 16.38 for maximum 15 and 10 percent bias, respectively.

Appendix Tables A4 and A5 present first stages for the alternative specifications in the up-
coming section that potentially have the least power. These two tables respectively consider the
sample when self-generation share is the outcome variable, which is the smallest sample, and when
log output is the outcome variable, which has the smallest F-stat in Appendix Table Table A3.
When conditioning on rainfall and cooling degrees, including only one-year differences, or testing
interactions with shortages, the smallest F-statistic is 15.52. When clustering by state instead of by
state-by-year difference, the F-statistics are 12.52 and 7.51 for self-generation share and log output,
respectively.

6.2 Regression Results

Table 8presents results of Equation (24) for four different outcomes: self-generation share, natural
log of energy revenue share, natural log of revenues, and natural log of productivity. Panels A
and B present OLS and instrumental variables results, respectively. The IV estimates are very
reasonable. Columns 1 and 2 test for impacts on energy input within the 54 percent of plants
that ever self-generate. Column 1 shows that a one percentage point increase in shortages, which
would increase the shortage variable from (for example) 0.1 to 0.11, causes a 0.57 percentage
point increase in the share of self-generated electricity. If shortages affected manufacturers and all
other consumers equally and manufacturing electricity demand were fully inelastic, this coefficient
should be 1. In reality, state electricity boards may impose more or less of the marginal shortage
on manufacturers instead of residential and agricultural consumers, and when manufacturers are
faced with shortages, they do not make up for them one-for-one with self-generation. Column 2
shows that a one percentage point increase in shortages causes a 0.64 percentage point increase in
energy revenue share.

18The Angrist-Pischke F-statistics are identical to the Kleibergen-Paap F-statistics when there is one endogenous
variable. The Angrist-Pischke F-statistics are more appropriate in the parts of Appendix Tables A4 and A5 that test
for weak identification of individual endogenous regressors in regressions with multiple endogenous regressors.
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Either of columns 1 and 2 can be used to derive an estimate of the input cost effect for plants
that self-generate. If pE,S − pE,G=2.5 Rs/kWh (from the World Bank Enterprise Survey) and the
mean electric intensity is 0.013 kWh/Rupee (from Table 6), a one percentage point increase in
shortages translates to a 1%×0.57×2.5×0.013≈0.018 percent unit cost increase. In other words,
a one percentage point increase in shortages increases self-generation by 0.57 percentage points,
which increases average electricity costs by 0.57%×2.5 Rs/kWh≈0.0142 Rs/kWh, which increases
total unit costs by 0.0142 Rs/kWh*0.013 kWh/Rs≈0.018 percent of revenues. Similarly, using the
fact that the mean energy revenue share is 0.11, the point estimate in Column 2 suggest that a one
percentage point increase in shortages increases energy input costs by 0.64%*0.11≈0.07 percent of
revenues. While these two estimates differ slightly, both imply that the input cost increase imposed
on plants with generators is relatively small.

The IV estimates in column 3 show that a one percentage point increase in shortages causes
a 0.68 percent decrease in revenues. Hypothetically, if no plants self-generate and there were no
shutdown tax effect (in which firms reduce semi-flexible inputs in response to shortages), this coef-
ficient would be one. In reality, self-generation reduces the revenue loss for plants with generators.
If firms can foresee and respond to changes in shortages driven by hydro generation, this would be
offset by the fact that both self-generators and non-generators reduce semi-flexible inputs through
the output tax effect and shutdown tax effect, respectively.

Column 4 shows that shortages have statistically zero effect on TFP. The 90 percent confidence
interval bounds the TFP losses from a one percentage point increase in shortages at no more than
a 0.29 percent decrease in TFP. In our model, TFP losses should be much smaller than output
losses because the primary cause of TFP loss is waste of inputs that are not fully flexible, and most
inputs are fully flexible - the average input cost share for materials across all plants is 70 percent.
Thus, the fact that TFP losses are too small to detect is fully consistent with our model.

The OLS estimates are statistically and economically different from the IV estimates, and the
direction suggest two forms of bias. With self-generation share in Column 1, we expect less omitted
variables bias in OLS. The fact that the IV estimates are substantially larger than OLS suggest
that the instrument corrects measurement error in the shortage variable. By contrast, with output
and TFP in Columns 3 and 4, we expect potential upward bias in OLS, because economic growth
can cause shortages. Indeed, the OLS coefficients are biased upwards from the IV coefficients, and
TFP actually appears to be positively associated with shortages. This shows the importance of
using instrumental variables: without the IV, the econometrician might erroneously conclude that
shortages cause TFP to increase.

6.2.1 Robustness Checks and Fixed Effects Estimates

Appendix B.3 shows that the estimates in Table 8 are remarkably robust. None of the estimates
differs statistically or loses statistical significance when omitting the industry-by-year controls µjy,
eliminating or tightening the flags for within-plant outliers, or controlling for rainfall and cooling

26



degrees. When using only one-year differences, this focuses estimates on larger census scheme plants
whose output is less affected by shortages and also reduces the sample size. This slightly reduces
the point estimate of effect on output and increases the standard error; the resulting coefficient
is statistically indistinguishable from both the base case estimate and from zero. Clustering at
the state level instead of state-by-year difference increases the standard errors slightly but does
not affect statistical significance. Appendix Table A13 shows that results are qualitatively similar
under five different approaches to calculating production functions and TFP.

Appendix B.4 estimates an analogue to Equation (24) using fixed effects instead of differences,
including state-specific linear trends and clustering by state to address potential serial correlation
in errors. The results are remarkably similar to Table 8, and none of the IV estimates differ
statistically. However, the standard errors are slightly wider, and the first-stage F-statistics are
smaller. Furthermore, although excluding state-specific linear trends does not affect the non-
IV estimates, the IV first stages have no power when excluding the state-specific linear trends.
The reason for this is suggested in Figure 9: the share of hydro in total electricity production
has decreased over time in Karnataka and other states, so while annual changes in the hydro
instrument are negatively associated with changes in shortages, levels of the instrument are not.
Because the level of the hydro generation share decrease is mechanically larger in states with more
hydro production, the year indicators do not properly control for this in the fixed effects estimator.
These results give a practical reason why the difference estimator is slightly preferred to fixed
effects.

6.3 Moderators of Shortage Effects

The model in Section 3 generates predictions for how shortages should differentially affect different
types of plants. Electricity-intensive industries should be more likely to shut down instead of
self-generate during shortages, meaning that revenues and TFP should drop more. Furthermore,
shortages should have much smaller effects on revenues and TFP for plants that self-generate.
Table 9 interacts the change in shortages with indicators for self-generation and whether the plant’s
industry is above-median electricity intensity; the regressions also include lower-order interactions
with θiy and ψs.

We fail to reject that more electric-intensive plants change self-generation the same amount in
response to shortages, although their energy revenue share increases more. Shortages reduce output
more for electric intensive plants and reduce output less for self-generators. However, the standard
errors are wider, and coefficient magnitudes should be interpreted with caution. Precision would
be further reduced if we cut the data more finely or studied individual industries in isolation.

Table 10 tests for effects on other outcomes. The point estimate in column 1 suggests that
plants reduce labor input in response to shortages, but the effect is not close to being statistically
significant. Column 2 shows that a ten percentage point increase in shortages is associated with
an 8.53 percent decrease in materials input. Column 3 shows that shortages decrease the labor
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to materials ratio, consistent with columns 1 and 2. These estimates provide support for our
modeling assumption in Section 7 that materials are fully flexible, while labor is not. Column
4 tests for effects on fuel revenue share, where fuels equal total energy net of electricity. The
effect should be and is statistically larger than the effect on energy revenue share, because the
latter includes an increase in fuel input costs but a decrease in electricity purchases. Column 5
shows that shortages do not statistically affect electricity intensity. In reality, there should be some
small effect, consistent with the results from Fisher-Vanden, Mansur, and Wang (2012) for Chinese
manufacturers. Our standard errors rule out that a ten percent increase in shortages causes more
than a 0.0005 kWh/Rupee decrease in electricity intensity. This is about 38 percent of the median,
which is 0.013 kWh per Rupee. Although this could be economically meaningful, it provides some
statistical support for our model’s simplifying assumption that λ is exogenous.

7 Simulations

In this section we quantify the welfare loss from missing power supply using the structure provided
by our model described in Section 3. We need additional information from the ASI to identify
parameters from the model. Thus, one can think of our simulation exercise as working out the
quantitative implications of our model, using the distribution of parameters estimated from the
ASI.

7.1 Calibrated Parameters

Table A20 presents the parameters that we use to calibrate the model. We use the ASI data,
presented in Section 5.1, as the universe of plants that we make a prediction for. We apply the
approach described in Section 3.5 to recover plant-level production function coefficient βl, βk, and
βm, from the input cost shares of non-self generators according to equations (11) and (12). We
estimate γ using the electricity cost share for plants that do not generate any power themselves
(non-generators). The data on the fraction of the year in which there are shortages δ, comes from
our own collection efforts described in Section 2.1.

Finally, we need to make an assumption on the relative cost of electric power bought from
the electric grid (pE,G), versus power that is self-generated (pE,S). We use the responses to the
World Bank Enterprise Survey to the question on the cost of grid power versus self-generated power
presented previously in Table 2. Only the ratio between these two price matters, and we assume
that self-generated power is 55% more expensive than grid power.
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7.2 Predictions

To get a handle on the effect of power shortages on welfare, we compute the loss in output and
measured TFP from these shortages. Specifically, we compute the predicted output under the
observed shortages, and compare these to the predicted output without any shortages; i.e., δ = 0.

Table 11 presents results from this exercise for 2005. However, these prediction are fairly similar
across any year from 1992 to 2010, as the average shortage across all of India has not moved very
much over times, and ranges between 6.4 and 11.1 percent from 1992 to 2010. In Column I, we
present results using the assumptions outlined in the paper, while Columns II, III, and IV, we show
results using alternative assumptions to investigate how robust our results are. Specially, in Column
II and III, we use an elasticity of demand of ε = −4 and ε = −20, respectively, which makes firms
both less and more responsive to changes in their costs.19 In Column IV, we investigate whether
a significantly higher price of self-generated power, twice as high as our estimate from the World
Bank, changes how responsive firms are to power shortages.

In 2005, there are, on average, shortages 7.1 percent of the time. We predict an output loss
of 7.1 percent due to these shortages. However, this loss in output is starkly different for plants
that have a generator, versus those that do not. Plants with a generator essentially have no loss
in output due to power outages, losing only 0.7%. To understand this small effect, which for
generating plants we previous called the input cost effect, remember that electricity purchases are
only 5 percent of revenues. Thus, for plants with a generator, a power outage is equivalent to a 55
percent increase in the price of power, or a 2.8 percent increase in costs, the 7.1 percent of the year
shortages occur. This an input cost effect of 0.2 percent, assuming that plants do not reduce their
output during blackouts. This tiny increase in costs during power outages rationalize the slight
effect of shortages on output, that we found in Section 4 for large textile producers, all of whom
have backup generators.

However, for plants that do not have a generators, output would fall by 10.3 percent due to the
shutdown effect. Notice that the shutdown effect is larger than the 7.1 percent of the time where
the plant cannot operate due to shortages. This is because the effect of shortages is amplified
because of the non-storability of labor. Anticipating a power outage, firms hire less labor than
they would otherwise, and this enhances the effect of shortages. Given the large losses for plants
without generators, this begs the question of why these plants do not purchase generators in the
first place, which we turn to in Section 7.3.

Next, we show the predicted losses in measured TFP due to shortages. Echoing the stark
contrast between generators and non-generators we found for output, the loss in TFP is almost
zero for plants that self-generate, versus a 2.9 percent TFP loss for Non-Generators. Thus, the
predicted average TFP loss is only 1.9 percent. For plants that have generators, the loss in TFP is
driven by the input variation effect: with a concave production function, it is less efficient to produce

19One can think of the elasticity of demand as a tuning parameter that alters the concavity of the profit function.
Thus, higher elasticity implies a smaller response to changes in prices and productivity, and a higher markup
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with a variable bundle of inputs. Since plants do not reduce their production very much during
shortages if they have generators, the input variation effect is necessarily quite small. However, the
shutdown effect on TFP, the loss in non-storable inputs during power outages such as capital and
labor, has larger effects on productivity. If materials were not storable, then a 7.1 shortage would
directly translate into a 7.1 loss in TFP. However, firms that shut down during power outages do
not lose their material inputs, only their labor and capital. Given that labor and capital have a 30
percent share of input costs, the shutdown effect on TFP is only about a third of 7.1 percent of the
time the plant is closed due to power outages.

7.3 Decision to Purchase a Generator

Most of the loss in output is at plants who do not have a generator. This begs the question of
why some plants choose not to buy them. To get at this issue, we look a the plant’s decision to
purchase generators, and compute the cost of a generator at which a plant would break even from
purchasing it.

First, we need to impute the type of generator that a plant would buy, since we do not observe
generator capacities in any our data. To do this, we need to transform a firm’s total power usage E
in kWh, into the generator it would need to purchase in order to be fully backed-up during outages.
Assuming that a plant uses power continuously 6 hours a day, 365 days a year, the median plant
would require a generator with about 500 KW of capacity.

Second, we compute how much a firm would increase its profits if the plant purchases a generator.
These profits are computed using equation (4) along with the optimized values for labor and
materials, and hence, are based on our model. We find that profits would increase by an average
9.1 percent upon the purchase of a generator – excluding the cost of the generator itself. Again,
notice that the firm’s increase in profits from purchasing a generator are greater than the 7.1 percent
outage frequency.

Third, we compute the cost of a generator at which a plant would break even from purchasing
it. For the median plant in the ASI, it would break even at a cost of 134 Rupees per KW of
capacity. However, there is considerable heterogeneity of this break even cost, given that plants
have different endowment of capital, different productivity levels, and different electricity intensities
in their production process. The standard deviation of the break even cost is almost 4,000 Rupees
per KW of capacity.

Fourth, we compute the share of plants that would choose to purchase a generator. To do
this, we need information on the cost of a generator, and for how many years a generator will last.
Through conversations with sellers of generators in the United States, we reckon that a generator
lasts roughly ten years. Our research efforts contacting sellers of generators in India give us a range
of prices for generators, with a 25th and 75th percentile of 4,700 and 7,500 Rupees per KW of
capacity, and a median of of 5,500 Rupees per KW. There are economies of scale in generation of
electricity. Indeed, without these economies of scale, it would make sense for all electricity to be
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produced at the household or plant-level. A small generator of 60 KW costs around 13,000 Rupees
per KW, while a larger generator of 1000 KW costs around 8,000 Rupees per KW. This makes
purchasing a generator cheaper for larger plants.

Table 11 shows that if a generator costs 5,500 Rupees per KW, then 37 percent of plants would
purchase generators. This is very close to the 37 percent of plants that report producing power in
the ASI. Thus, we can rationalize the uptake of generators in the ASI data: even if there are large
losses in output for plants that choose not purchase a generator, these generators are expensive
enough to explain this decision. Note that the fraction of plants that purchase generators is fairly
robust to the assumptions that we make on generator costs. For instance, at a cost of 4,700 R per
KW, 42 percent buy a generator, while at a cost of 7,500 R per KW, 34 percent do. This is because
of the large heterogeneity in the return on purchasing a generator, and the elasticity of generator
adoption with respect to the price of a generator is -0.14 .20

7.4 Firm Size Distribution

An important question is the extent to which the shortages affect firms differently. Hsieh and
Klenow (2012) propose that electricity shortages combined with differential access to grid elec-
tricity could be an important factor benefiting large establishments. Here we focus on a different
mechanism for differential impacts by firm size: economies of scale in self-generation.

Table 12 presents similar statistics to Table 11, but broken down by whether a plant is large or
small, as measured by having more or less than 50 employees, and whether a plant is in an electricity
intensive industry, as measured by having an electricity revenue share that is either above or below
the median for the ASI. For the size comparison, we also give a small plant a cost of a generator of
13,000 R per KW, while for a large plant, we assign these a generator cost of 8,000 R. per KW of
capacity, given the scale economies of generation.

First, we find that the output loss for a small plant would be 7.8 percent, while it is 5.4 percent
for a large plant. The reason for these differences is that in the ASI, in 2005, 23 percent of small
plants have generators, while 55 percent of large plant have them. Since the effects of power outages
are more pronounced for plants without generators, smaller plants will be more affected.

Second, using the assumed economies of scale of power generation that we previously discussed,
large plants will be more likely to purchase generators, at a rate of 37 percent, versus small plants
that will only purchase generators at rate of 26 percent.

Third, turning to the role of electric intensity, we would predict that plants that are not elec-
tricity intensive would be more likely to purchase a generator, at a rate of 46 percent for plants
in industries below the median electricity revenue share, versus 19 percent for industries above the
median electricity revenue share. To understand this effect, remember that our model assumed that

20For a point of reference on the cost of a generator, a quick search on Amazon.com yields, for instance, a 4KW
diesel generator for $ 336. DuroStar DS4000S 4,000 Watt 7.0 HP OHV 4-Cycle Gas Powered Portable Generator.
Price: $336.92, accessed December 23, 2013.
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electricity is an essential input: it is impossible to produce without it. Therefore is much cheaper
for an industry for which electricity is only 1 percent of revenues to buy backup generators, versus
an electricity intensive industry such as steel, for which electricity represents 10 percent of revenue.

7.5 Robustness

A natural question has to do with the robustness to alternate assumptions in our model, and the
plausibility of the model’s predictions. This is particularly important given the paucity of papers
estimating the effect of power outages.

We assumed that firms face a CES demand curve for their products, with an elasticity of
demand of ε = −10, which corresponds to firms setting a 10 percent markup for their products.
This elasticity is critical for our model, since the curvature of the firms profit function affects both
how much a firm will respond to cost shocks, and also how profitable it is. Suppose instead that we
had assumed an elasticity of ε = −4, such as is done in Bloom (2009) and Asker, Collard-Wexler,
and De Loecker (2013). We would obtain an output loss of 5.0 percent instead of 7.1 percent,
mainly because non-generators reduce their output by 8.2 percent rather than 10.3 percent. It
makes sense that if we endow firms with a flatter profit function, this will amplify their response
to shortages. However, the share of plants that would purchase a generator increases from 28 to 36
percent from Column I to II. A less elastic demand curve raises the markup that a firm earns: it
makes producing more profitable. Thus the output loss is more costly with a higher markup, and
firms are more likely to purchase a generator. Likewise, if we assumed a more elastic demand curve,
with an elasticity of ε = −20, thus a 5 percent markup, we would find a larger output response, at
9.4 percent versus 7.1 percent, and fewer plants purchasing generators. 21

Second, we used data from theWorld Bank to motivate the assumption that self-generated power
is 55 percent more expensive than grid generated power. Suppose instead that self-generated power
is four times more expensive as grid supplied power. We find an output loss of 7.9 percent instead
of 7.1 percent, in large part because plants who generate reduce their output by a little more than
3.2 percent, while plants that do not self-generate, will clearly not respond to changes in the price
of generated power.22

21There are few papers that look at the elasticity of output with respect to power shortages. Most prominently,
Davis, Grim and Haltiwanger (2008) investigate the elasticity of output with respect to the price of electricity in the
United States. Since a power outage is – for generators – equivalent to an increase in the price of electricity, we can
compare the elasticity of output with respect to price of power in our model to the one estimated in Davis, Grim
and Haltiwanger (2008). We compute an elasticity of output with respect to the price of electricity of -0.2 when we
assume ε = −10, and -0.4 when we assume ε = −20, while Davis, Grim and Haltiwanger (2008) find an elasticity of
-0.6. So our model, if anything, under predicts the response of output to shortages for generators, but not by a large
amount. On the other hand, Davis, Grim and Haltiwanger (2008)’s estimate is quite large, and somewhat difficult
to explain given how small the share of electricity is as a share to total costs.

22We should stress that the results are sensitive to the measurement of generators versus non-generators. We
find that almost half of plants in the ASI report producing no power whatsoever, and even for plants with over
500 employees, approximately 30 percent report no generation. If we overstate the fraction of plants that are non-
generators, our welfare effects will also be overstated. However, the World Bank Enterprise Survey explicitly asks
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7.6 Evaluating the Fit of the Model

A final test of our model and our instrumental variable strategy is to see whether our instrumental
variable estimates and our model’s predictions line up. Panel A of Table 13 presents in Column I
the results in Table 11, and in Column II the predicted effects of a 7.1 percent shortage given the
elasticities estimated in the second panel of Table 8. We find remarkably agreement between the
estimates and our model. For instance, the IV estimates predict that shortages would reduce output
by 4.8 percent, while our model has a prediction of 7.1 percent. These predictions are statistically
indistinguishable with a 33 percent probability. Likewise, our estimates predict that generators
and non-generators would reduce their output by -2.7 and 14.9 percent, while the model predicts
0.7 and 10.3 percent respectively. Again, these predictions are statistically indistinguishable with
over a 19 percent confidence. Finally, our estimates show a 0.2 percent TFP loss, while the model
predicts a 1.9 percent loss, but these estimates are also not statistically distinguishable at the 10
percent level.

Panel B of Table 13 goes a step further and adds our results in section 4 from our case study
of textile plants, and from the World Bank Survey of firms discussed in section 2. For large textile
plants, we estimated between a 0.9 and 0.7 percent reduction in output due to shortages. For a
plant with a generator, our model predicts a drop of 0.7 percent. As well, for the World Bank
Survey, plant owners reckoned that power cuts made them lose 7.8 percent output, which is fairly
close to our prediction of 7.1 percent.

Overall, the close fit between our model and the estimates using various datasets and identifica-
tion strategies gives us greater confidence that we have correctly identified the effects of shortages,
but we also understand the mechanisms involved.

8 Conclusion

India’s lack of reliable electricity supply provides a stark example of how poor infrastructure affects
economic growth. We study the effects of shortages on manufacturing using archival data on
shortages, previously-unavailable panel data from the Annual Survey of Industries, and a new
instrument for shortages based on variation in hydro reservoir inflows. We augment this with a
detailed case study of how textile plants in Bloom et al. (2013) respond to planned power holidays.
We use a hybrid Leontief/Cobb-Douglas production function model to clarify the different ways in
which input shortages affect firms and use simulations to confirm and extend the empirical results.

There are three main conclusions. First, electricity shortages are a large drag on Indian man-
ufacturing, on the order of five percent of output. Second, however, electricity shortages affect
productivity much less than output, and shortages alone do not explain a large share of the TFP
gap between firms in developing vs. developed countries. Third, shortages have heterogeneous

plants if they own a generator, and we find a similar fraction of firms are flagged as owning generators in the ASI
and in the World Bank data.
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effects across plants with vs. without generators and with high vs. low electric intensity. Relat-
edly, because of economies of scale in self-generation, small plants are less likely to own generators,
meaning that shortages have much stronger negative effects on small plants.

One way in which future work could extend this study is to include various kinds of dynamics,
such as intertemporal substitution of production, investment decisions in generators, and entry and
exit. Our study uses a static model, focusing on the effects of annual variation in shortages with
fixed capital stock. However, because most of the policies available to address shortages would be
unlikely to fully eliminate shortages for many years, this type of annual variation may identify the
most policy-relevant effects.
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Tables

Table 1: State-Level Data Summary Statistics
Variable Mean Std. Dev. Min. Max. N

Assessed Demand (TWh) 20.01 22.74 0 128.3 509
Quantity Supplied (TWh) 18.27 20.17 0 107.02 509
Shortage 0.07 0.07 0 0.36 507
Peak Shortage 0.11 0.1 0 0.5 507
Reservoir Inflows (Billion Cubic Meters) 5.19 13.73 0 115.98 570
Hydro Generation (TWh) 2.46 3.1 0 15.27 570
Total Electricity Sold (TWh) 12.86 15.14 0.05 87.53 543
Average Cooling Degrees (F), Base 65 12.32 3.3 2 18.94 543
Annual Rainfall (meters) 1.36 0.63 0.27 5.01 551

Notes: This table presents descriptive statistics for data that vary at the state-by-year level. The first
six variables are from the Central Electricity Authority, while the temperature and rainfall data are from
the National Climate Centre. Cooling degrees for day τ=max(0,Average Temperatureτ (F)-65).

Table 2: Power Cuts and Plant Size in the 2005 World Bank Enterprise Survey

Small Large
Plant Descriptions Plants Plants
Number of Plants Surveyed 1719 306
Number of Workers (Mean) 23 494
Gross sales, in million Rupees (Median) 5.7 172

Electricity Shortage Questions
How [many times in 2005] did your establishment
experience power outages or surges? (Mean) 132 99
Does your establishment own or share a generator? (Percent) 46 83
What percent of your electricity comes from the generator? (Mean) 10 17
What is the average cost [in Rs/kWh] for generator electricity? (Median) 7 7
What is the average cost [in Rs/kWh] for public grid electricity? (Median) 4.5 4.5
What were your percentage losses from power outages or surges? (Mean) 8.0 4.9
Electricity is the "biggest obstacle for operation/growth" (Percent) 34 26

Notes: “Small Plants” have less than 100 workers, while “Large Plants” have 100 or more workers.

Notes: Rupees are constant 2004 Rupees. 1(Census Scheme) takes value 1 for plants with more than
100 workers which are surveyed each year, and value 0 for Sample Scheme for smaller plants in the rotating
panel.
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Table 3: Textile Output on Power Holidays

Dependent Variable: Output (1) (2) (3) (4)

1(Power Holiday) -0.097 -0.074 -0.006 0.025
(0.025)*** (0.017)*** (0.022) (0.027)

1(Power Holiday) x Shortage -0.006 -0.006
(0.003)** (0.003)**

Shortage 0.001 0.001
(0.004) (0.004)

Number of Obs. 26,114 26,114 26,114 26,114
Number of Clusters 22 22 22 22
Day-of-Sample Controls No Yes Yes Yes
Power Holiday x Month Controls No No No Yes

Notes: This table presents estimates of Equation (21). The dependent variable for columns 1-4
is Q̃iτ , plant i’s production on day τ , normalized by plant i’s average daily production. Robust
standard errors, clustered by plant. *,**, ***: Statistically different from zero with 90, 95, and 99
percent confidence, respectively.

Table 4: Textile Monthly Energy Cost Regressions

Dependent Variable: Energy Cost (1) (2) (3) (4)

Power Holiday Output Share 0.610 0.791 0.821 0.811
(0.362) (0.314)** (0.335)** (0.343)**

Normalized Output 0.237 0.232
(0.167) (0.167)

Shortage -0.003
(0.005)

N 307 307 307 307
Month-by-Year Controls No Yes Yes Yes

Notes: This table presents estimates of Equation (22). The dependent variable for columns 1-5 is
F̃im, plant i’s total energy cost in month m, normalized by plant i’s average monthly energy cost.
Robust standard errors, clustered by plant. *,**, ***: Statistically different from zero with 90, 95,
and 99 percent confidence, respectively.
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Table 5: Losses on Planned Power Holidays

Input Cost Effect
Mean share of output on power holidays (G) 0.11
Increase in energy cost share (η̂1) 0.81
Median energy revenue share 0.026
Input cost increase (share of revenues) 0.0024

Output Loss
Share of days that are power holidays 1/7
Output loss on power holidays (ρ̂) 0.074
Share of output lost 0.011

Shutdown Effect on Measured TFP
Share of fixed inputs (capital) (βK) 0.05
ln(TFP) change: βK ln(1−Outputloss) -0.00053

Notes: This table presents estimates of textile plants’ losses on planned power holidays, using
empirical estimates from Tables 21 and 22.

Table 6: Annual Survey of Industries Summary Statistics
Variable Mean Std. Dev. Min. Max. N

Revenues (million Rupees) 323.43 3693.23 0 788867.5 616129
Capital Stock (million Rupees) 126.87 1751.17 0 297370.25 612832
Total Persons Engaged 164.56 740.19 0 121007 577669
Materials Purchased (million Rupees) 210.12 2706.43 0 636136.94 609957
Fuels Purchased (million Rupees) 13.04 175.24 0 39359.95 576762
Electricity Purchased (million Rupees) 8.69 82.87 0 9935.30 561464
Electricity Consumed (GWh) 3.4 51.81 0 7356.86 599116
Electricity Purchased (GWh) 2.17 32.99 0 6544.51 599717
Electricity Self-Generated (GWh) 1.23 35.01 0 7147 598619
1(Self-Generator) 0.54 0.5 0 1 616129
Electric Intensity (kWh/Rs) 0.01 0.02 0 0.39 599116
Self-Generation Share 0.08 0.19 0 1 592914
Energy Revenue Share 0.11 0.16 0 3.23 598932
1(Census Scheme) 0.41 0.49 0 1 616129
Plant Number of Observations 5.86 4.97 1 19 616129
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Table 7: Assessing the Hydro Instrument

(1) (2) (3) (4) (5)
ln(Quantity ln(Assessed

Outcome Variable: Shortage Shortage ln(Agri Output) Supplied) Demand)

∆ Hydro -0.048 -0.046 0.149 0.063 0.014
(0.017)*** (0.025)* (0.117) (0.032)** (0.026)

∆ ln(Rainfall) -0.009 0.156
(0.009) (0.059)**

∆ Cooling Degrees -0.002 -0.027
(0.003) (0.020)

R2 0.14 0.15 0.27 0.17 0.22
N 469 454 398 469 469

Robust standard errors. *,**, ***: Statistically different from zero with 90, 95, and 99 percent
confidence, respectively.

Table 8: Base Specifications
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.227 -0.035 0.020 0.095
(0.023)*** (0.055) (0.040) (0.030)***

Number of Obs. 172,319 220,622 374,168 366,319
Number of Clusters 2,781 2,936 3,263 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.568 0.639 -0.682 -0.034
(0.105)*** (0.232)*** (0.327)** (0.155)

Number of Obs. 172,319 220,622 374,168 366,319
Number of Clusters 2,781 2,936 3,263 3,261

Notes: This table presents estimates of Equation (24). Panel B instruments for Shortage using the
hydroelectric generation instrument. Robust standard errors, clustered by state-by-year difference.
*,**, ***: Statistically different from zero with 90, 95, and 99 percent confidence, respectively.
Samples for columns 1 and 2 are limited to plants that ever self-generate electricity.
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Table 9: Instrumental Variables Estimates with Moderators

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage -0.060 1.018 -1.979 0.075
(0.043) (0.822) (0.976)** (0.427)

∆ Shortage x Elec Intensive 0.124 1.108 -1.323 -0.107
(0.084) (0.450)** (0.484)*** (0.304)

∆ Shortage x Self-Generator 0.571 -0.883 2.343 -0.121
(0.107)*** (0.791) (0.974)** (0.417)

Number of Obs. 301,390 343,696 374,168 366,319
Number of Clusters 3,187 3,213 3,263 3,261

Notes: This table presents estimates of Equation (24), instrumenting for Shortage using the hydro-
electric generation instrument. Electric Intensive is an indicator variable for being in an industry
with above median electricity use per unit revenues. Regressions also include lower-order interac-
tions of Electric Intensive and Self-Generator with year difference indicators θiy and state indicators
ψs. Robust standard errors, clustered by state-by-year difference. *,**, ***: Statistically different
from zero with 90, 95, and 99 percent confidence, respectively.

Table 10: Instrumental Variables Estimates for Additional Outcomes

(1) (2) (3) (4) (5)
ln(Labor/ ln(Fuel Electric

Outcome Variable: ln(Labor) ln(Materials) Materials) Rev Share) Intensity λ

∆ Shortage -0.172 -0.853 -0.741 1.773 0.005
(0.218) (0.325)*** (0.259)*** (0.468)*** (0.006)

Number of Obs. 375,106 367,504 366,838 212,554 356,690
Number of Clusters 3,272 3,254 3,253 2,677 3,231

Notes: This table presents estimates of Equation (24) for additional outcomes, instrumenting for
Shortage using the hydroelectric generation instrument. Electric Intensity for plant i in year t is
the ratio of kWh of electricity consumed to revenues. Robust standard errors, clustered by state-by-
year difference. *,**, ***: Statistically different from zero with 90, 95, and 99 percent confidence,
respectively. Samples for columns 1 and 2 are limited to plants that ever self-generate electricity.
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Table 11: Predicted Losses from Electricity Shortages

Baseline Lower Elasticity High Elasticity Self-Generated Power
ε = −10 ε = −4 ε = −20 4 times more expensive

(1) (2) (3) (4)
Shortage 7.1% 7.1% 7.1% 7.1%

Output Loss
Loss in Output 7.1% 5.0% 9.4% 7.9%
Loss in Output for Non-Generators 10.3% 8.2% 13.5% 10.3%
Loss in Output for Generators 0.7% 0.3% 1.4% 3.2%

TFP Loss
TFP Loss 1.9% 2.2% 1.5% 2.0%
TFP Loss for Non-Generators 2.9% 4.6% 2.2% 2.9%
TFP Loss for Generators 0.1% 0.1% 0.1% 0.5%

Input Cost Effect 0.2% 0.2% 0.2% 1.1%

Generator Decision
Profit Loss from No Generator 9.1% 6.0% 14% 10.1%
Median Break Even Cost of a Generator 134 349 101 91
in Rupees per KW of Capacity
Share of Plants predicted 27% 36% 26% 24%
to purchase a generator

Elasticity of Output -0.20 -0.07 -0.39 -0.20
with respect to the price of electricity

Note: Prediction from the ASI for 2005 using the model described in text. Weighted average refers to the
average weighted by plant output. TFP defined as the residual of the sales generating production function
using the approach described in section 3. Elasticity refers to the elasticity of the CES Demand Curve. 4
times more expensive self-generated power, sets the price of self-generated power, pE,S to 18 rupees per kWh,
instead of 7 rupees per kWh. The share of plants purchasing a generator assumes a cost for a generator of
5,500 Rupees per KW of capacity, and this generator lasts for ten years.
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Table 12: Differential Effects of Shortages

Plant Size Electricity Intensity
Large Small High Low

Output Loss 5.4% 7.8% 6.8% 7.5%
TFP Loss 1.4% 2.1% 1.7% 2.2%
Profit Loss from No Generator 7.0% 9.9% 8.5% 9.8%
Generator Take-Up Rate 37% 26% 19% 46%

Note: Large Plants refer to plants with more than 100 employees, while small plants refers to plants with
less than 100 employees. Electric Intensive and Not Electric Intensive refers to plants belonging to industries
that are above are below the median electricity input share.

Table 13: Simulation versus Estimates

Model IV Estimates P-Value Textile World Bank Survey
Output Loss 7.1% 4.8% 33% 7.8%
Output Loss for Generators 0.7% -1.7% 24% 0.7%
Output Loss for Non-Generators 10.3% 20.0% 19%
TFP Loss 1.9% 0.2% 13%
TFP Loss for Generators 0.1% 0.6% 0.1%
Input Cost 0.2% 0.2% 0.2%

Note: Model corresponds to the predictions in Column I of Table 11. IV Estimates corresponds to the
estimates in Table 8 and Table 9, extrapolated under a 7.1 percent shortage. “P-Value” is the p-value for
the test of whether the model’s prediction is equal to the empirical estimate.
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Figures

Figure 1: Average Shortages and Per Capita GDP by State

Notes: This figure compares the average of shortages estimated by the Central Electricity Authority
to the 2010 per capita GDP, for all states and Union Territories.
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Figure 2: Average Shortages and Per Capita GDP by State

Andhra PradeshAssam

Bihar

Chandigarh

Chhattisgarh

Delhi

Goa Daman and Diu

Gujarat

Haryana

Himachal Pradesh

Jammu and Kashmir

Jharkhand

Karnataka

Kerala

Madhya Pradesh

Maharashtra

Manipur
Meghalaya

Nagaland

Orissa Pondicherry

Punjab

Rajasthan

Tamil Nadu

Tripura

Uttar Pradesh

Uttaranchal

West Bengal

0
.0

5
.1

.1
5

.2
A

ve
ra

ge
 S

ho
rt

ag
e 

O
ve

r 
S

am
pl

e 
P

er
io

d

0 50000 100000 150000
2010 GDP (Real 2004 Rupees/Capita)

Average Shortages and Per Capita GDP by State

Notes: This figure compares the average of shortages estimated by the Central Electricity Authority
to the 2010 per capita GDP, for all states and Union Territories.

Figure 3: Variation in Shortages Over Time
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Notes: This figure presents shortages over the study period for five large states, as estimated by
the Central Electricity Authority.
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Figure 4: Manufacturing Electricity Generation in India vs. the U.S.
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Notes: This figure presents the ratio of electricity generation to consumption by three-digit industry.
Indian and U.S. data are from the Annual Survey of Industries and the Manufacturing Energy
Consumption Survey, respectively.

Figure 5: Generator Ownership and Plant Size
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Notes: This figure presents local mean-smoothed estimates of the share of plants in all years of
the Annual Survey of Industries sample that ever report self-generation, as a function of number
of employees.
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Figure 6: Output on Power Holidays and Non-Holidays
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Notes: This figure presents the distribution of production by day of week for an example plant,
using an Epanechnikov kernel with bandwidth 250. For this plant, every Friday is a power holiday.

Figure 7: Hydro Share of Electricity by State
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Notes: This figure presents the each state’s mean ratio of hydroelectricity production to total
consumption over 1992-2010. The graph includes only larger states with GDP larger than one
billion Rupees in the year 2004 and with non-zero manufacturing production.
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Figure 8: Hydroelectricity Generation Over Time
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Notes: This figure presents hydroelectric generation over the study period for five large states that
are relatively reliant on hydro.

Figure 9: First Stage in Karnataka
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Notes: This figure presents shortages and the hydro instrument over the study period in the state
of Karnataka.
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Figure 10: Correlation Between Reservoir Inflows and Hydro Production
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Notes: This is a scatterplot of hydroelectricity generation against the generation predicted using
state-specific regressions of hydro generation on reservoir inflows.
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Online Appendix: Not for Publication

How Do Electricity Shortages Affect Productivity? Evidence from India
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A Appendix: Annual Survey of Industries Data Preparation
We extract a subset of variables from the raw data separately for each year and then stack all years of
data together.23 We correct accounts in 1993-94 to 1997-98 whose values have been supplied in “pre-
multiplied” format from the Central Statistical Organisation’s Ministry of Statistics and Planning Imple-
mentation (CSO/MOSPI). We then merge in state names based on the coding schemes provided with the
Annual Survey of Industries (ASI) documentation, and we create a separate consistently-defined state vari-
able which takes into account the creation of Jharkhand, Chhattisgarh and Uttaranchal (now Uttarakhand)
in 2001 from Bihar, Madhya Pradesh and Uttar Pradesh, respectively.

India classifies manufacturing establishments with its National Industrial Classification (NIC), which
resemble industrial classifications commonly used in other countries. The classifications were revised in 1987,
1998, 2004, and 2008. We convert all industry classifications to the NIC-1987 scheme using concordances
provided by MOSPI with our data purchases. All financial amounts are deflated to constant 2004-05 Rupees.
Revenue (gross sales) is deflated by a three-digit commodity price deflators as available in the commodity-
based table “Index Numbers Of Wholesale Prices In India – By Groups And Sub-Groups (Yearly Averages)”
produced by the GOI Office of the Economic Adviser-Ministry of Commerce & Industry (OEA 2013). Each
three-digit NIC-1987 code is assigned to a commodity listed in this table. The corresponding commodity
deflator is used to deflate revenues. To deflate material inputs, we construct the average output deflator of a
given industry’s supplier industries based on India’s 1993-94 input-output table (CSO 2012). Fuels and total
energy costs (fuels plus electricity) are deflated by the price index for “Fuel, Power, Light, and Lubricants.”
Capital is deflated by an implied national deflator calculated from “Table 13: Sector-wise Gross Capital
Formation” from the Reserve Bank of India’s Handbook of Statistics on the Indian Economy. Electricity
costs are deflated using a national GDP deflator.

The ASI data have at least two well-known shortcomings. First, while the data are representative of
small registered factories and a 100 percent sample of large registered factories, not all factories are actually
registered under the Factories Act. Nagaraj (2002) shows that only 48 percent and 43 percent of the number
of manufacturing establishments in the 1980 and 1990 economic censes appear in the ASI data for those years.
Although it is not clear how our results might differ for unregistered plants, the plants that are observed in
the ASI are still a significant share of plants in India. Second, value added may be under-reported, perhaps
associated with tax evasion, by using accounting loopholes to overstate input costs or under-state revenues
(Nagaraj 2002). As long as changes in this under-reporting are not correlated with electricity shortages, this
will not affect our results.

A.1 Determination of Base Sample
Appendix Table A21 details how the sample in Table 6 is determined from the original set of observations
in the ASI. The 1992-2010 ASI dataset begins with 949,992 plant-year observations. Plants may still appear
in the data even if they are closed or did not provide a survey response. We drop 172,697 of these plants
reported as closed or non-responsive. We drop a trivial number of observations missing state identifiers
and observations in Sikkim, which has only been included in the ASI sampling frame in the most recent
years. We drop 45,664 observations reporting non-manufacturing NIC codes. We remove a small number of
observations (primarily in the early years of our sample) which are exact duplicates in all fields, assuming
these are erroneous multiple entries made from the same questionnaire form. Since we are concerned largely
with revenue and productivity, we remove the 102,036 observations with missing revenues. We also drop the
9,095 observations with two or more input revenue share flags.

With this intermediate sample, we use median regression to estimate total factor productivity (TFP)
under a full Cobb-Douglas model in capital, labor, materials, and energy. This full Cobb-Douglas produc-
tivity term is used only for the final sample restriction, which is to drop 464 plant-years which have log-TFP
greater than 3.5 in absolute value from the sample median. Such outlying TFP values strongly suggest

23We thank Jagadeesh Sivadasan for helpful discussions and for providing Stata code that facilitated the
read-in of 1992-1997 ASI data. We thank Olivier Dupriez for similarly helpful discussions and pointing us
to read-in programs for ASI data from 1998 to 2007 available at the International Household Survey Network
(http://catalog.ihsn.org/index.php/catalog/central).
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misreported inputs or revenues. The final sample is comprised of 616,129 plant-years, of which 362,439 are
from the sample scheme and 253,690 are from the census scheme.

A.2 Variable-Specific Sample Restrictions
After the final sample is determined, there may still be observations which have correct data for most
variables but misreported data for some individual variable. When analyzing specific variables (such as self-
generation share, energy revenue share, or output in Table 8), we therefore additionally restrict the sample
using the following criteria:

• We generate “input revenue share flags” for labor and materials if input cost is more than two times
revenues, and we generate input revenue share flags for electricity and fuels if input cost is greater than
revenues.24 Because we also observe physical quantities for labor and electricity, we generate analogous
input revenue share flags by multiplying physical quantities by prices, resulting in an implied revenue
share based on these physical quantities. For electricity, we use the median real price (in Rs/kWh)
of purchased electricity in any given state and year. For labor, we assume a very conservative 1,000
Rs per person per annum wage rate. When using either of these inputs as an outcome, we omit
observations with an input revenue share flag for that input.

• There are a trivial number of observations which report unrealistic count of persons engaged (greater
than 200,000), which we make missing in those cases.

• We generate “within-plant outlier” flags for observations with unrealistically large year-to-year fluctu-
ations in revenue, TFP, or any input. We flag observations if the change in logged value is more than
3.5 (or 1.5 in a robustness check) from both adjacent observations. For a plants’ first or last year, it
is flagged if the change is more than 3.5 (or 1.5) from the plant’s one adjacent observation.

A.2.1 Cleaning Electricity Variables
We clean electricity variables in the following ways:

• We make electricity consumption missing for all observations that report zero electricity consumption
(other than brick kilns).

• We make all electricity variables missing if the plant reports consuming more than 110 percent or less
than 90 percent of the total amount of electricity they report purchasing and generating.

• We make missing the values of electricity purchased and sold if the implied price per kilowatt-hour is
less than 2 percent or more than 5000 percent of the median grid electricity price calculated across
plants in the same state and year. We also make missing the reported quantities of electricity purchased
and sold if the respective price flag is triggered.

A.2.2 Production Function and Productivity Estimation
We recover production function coefficients given by Equations (10), (11), and (12) for each of the 143
three-digit industries in the dataset. (To ensure sufficient sample size in each three-digit industry, we adjust
industry definitions slightly to ensure each three-digit industry has at least 100 plant-year observations.)
We use separate median regression for each two-digit industry, allowing for a linear time trend and separate
intercepts for each underlying three-digit industry. Consistent with the description in Section 3, the esti-
mation sample includes only census scheme plant-year observations that report zero electricity generation.
After calculating production function coefficients, we compute TFP from Equation (13).

We use several alternative methods for calculating production function coefficients and TFP for robust-
ness checks:

24The flags would be slightly different if applied to deflated inputs and revenues, but this will have minimal
implications for the results.
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• To check if our results are sensitive to assumptions about elasticity of demand, we calculate produc-
tivity terms for ε = −4 and ε = −∞.

• We calculate an alternative materials term that adds the estimated cost of fuels not used for electricity
generation. (To avoid relying on this estimated cost, our usual materials term does not include any
fuels, so these costs do not enter the production function.)

• Omitting the linear time trend when estimating production coefficients, which amounts to taking the
unconditional median by industry of the revenue shares for materials, labor, and electricity.

• Because in some industries plants with no self-generation may be unusual, we estimate production
functions and productivity using all plants, i.e. including those that self-generate.
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B Appendix: Additional Tables
B.1 Supporting Tables for Textile Case Study

Table A1: Power Holidays

Number
of Plants State Scheduled Power Holidays
1 Gujarat Saturday before Sept 26, 2008; Sunday between Sept 26, 2008

and July 10, 2009; Monday after July 10, 2009
1 Dadra and Nagar Haveli Sunday
1 Gujarat Saturday before July 10, 2009; Sunday after July 10, 2009
1 Maharashtra Tuesday
1 Maharashtra None
3 Gujarat Saturday before July 10, 2009; Monday after July 10, 2009
14 Maharashtra Friday

Notes: This table lists the scheduled power holidays for plants in the textile case study in Section
4

Table A2: Textile Summary Statistics
Variable Mean Std. Dev. Min. Max. N

Daily Data
Production (1000s of Picks) 442 1455 0 9098 26,114
Percent Grade A 55.3 28.5 0 100 12,489
Quality Defect Index 4.02 5.0 0.13 56.6 13,223
1(Power Holiday) 0.14 0.34 0 1 46,288

Monthly Data
Energy Costs (Rs 1000s) 300 282 8.88 1466 307
Labor (1000s of Hours) 32.3 20.7 4.39 148 575
Power Holiday Output Share 0.11 0.05 0 0.33 902
Diesel Price (Rs/liter) 35 1.67 31.4 38.3 902
Shortage 14.46 7.5 0 25.7 902

Notes: This table presents summary statistics for the textile case study in section 4. The top panel
includes the variables observed for each day. There are two measures of quality: the percent of fabric graded
quality level A, and the Quality Defect Index, a severity-weighted measure of the number of defects per
meter of fabric. The bottom panel includes variables observed for each month. “Shortage” is the Central
Electricity Authority’s monthly estimated electricity shortage percentage for the state where the plant is
located. Diesel prices are the Mumbai prices recorded by the website mypetrolprice.com. All rupees are
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deflated to constant 2004-2005 values using the textile wholesale price index (Office of the Economic Advisor
2013).
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B.2 First Stages

Table A3: Base Estimates First Stages

(1) (2) (3) (4)
Self-Gen ln(Fuel

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Hydro -0.134 -0.139 -0.100 -0.101
(0.020)*** (0.019)*** (0.016)*** (0.016)***

Number of Obs. 172,317 220,613 374,157 366,302
Number of Clusters 2,781 2,936 3,262 3,261
A-P F-Stat 43.98 52.51 39.36 39.6

Notes: This table presents the first stage estimates for the IV regressions in Panel B of Table 8.
Samples for columns 1 and 2 are limited to plants that ever self-generate electricity. F-statistic is for
the heteroskedasticity and cluster-robust Angrist-Pischke weak instruments test. Robust standard
errors, clustered by state-by-year difference. *,**, ***: Statistically different from zero with 90, 95,
and 99 percent confidence, respectively.
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Table A4: Additional First Stages for Self-Generation Share

(1) (2) (3) (4) (5) (6)
∆ Shortage ∆ Shortage

Outcome Variable: ∆ Shortage ∆ Shortage ∆ Shortage ∆ Shortage x Elec Int x Self-Gen

∆ Hydro -0.134 -0.110 -0.130 -0.062 0.018 -0.003
(0.038)*** (0.027)*** (0.021)*** (0.016)*** (0.004)*** (0.002)*

∆ Rainfall -0.007
(0.005)

∆ Cooling Degrees 0.000
(0.002)

∆ Hydro x Elec Intensive 0.009 -0.088 0.006
(0.005)* (0.015)*** (0.003)**

∆ Hydro x Self-Generator -0.076 -0.036 -0.133
(0.016)*** (0.008)*** (0.020)***

Number of Obs. 172,317 124,771 170,356 301,386 320,545 320,545
Number of Clusters 30 491 2,719 3,187 3,229 3,229
A-P F-Stat 12.51 16.1 40.28 43.95 32.44 43.95

Notes: This table presents the first stage estimates for alternative specifications with potentially
weakest first stage identification, using the sample with self-generation share as the outcome vari-
able. Column 1 clusters by state instead of state-by-year difference. All other columns cluster by
state-by-year difference. Column 2 includes one-year differences only. Column 3 controls for rainfall
and cooling degrees. Columns 4-6 are the three first stages for Table 9. Samples for columns 1, 2,
and 3 are limited to plants that ever self-generate electricity. F-statistic is for the heteroskedastic-
ity and cluster-robust Angrist-Pischke weak instruments test. Robust standard errors. *,**, ***:
Statistically different from zero with 90, 95, and 99 percent confidence, respectively.
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Table A5: Additional First Stages for ln(Revenue)

(1) (2) (3) (4) (5) (6)
∆ Shortage ∆ Shortage

Outcome Variable: ∆ Shortage ∆ Shortage ∆ Shortage ∆ Shortage x Elec Int x Self-Gen

∆ Hydro -0.100 -0.091 -0.098 -0.064 0.021 -0.003
(0.036)** (0.023)*** (0.016)*** (0.015)*** (0.005)*** (0.002)**

∆ Rainfall -0.002
(0.005)

∆ Cooling Degrees 0.001
(0.002)

∆ Hydro x Elec Intensive 0.010 -0.095 0.008
(0.005)** (0.016)*** (0.003)**

∆ Hydro x Self-Generator -0.077 -0.037 -0.136
(0.015)*** (0.008)*** (0.019)***

Number of Obs. 374,157 229,177 370,167 374,157 374,158 374,158
Number of Clusters 30 494 3,179 3,262 3,262 3,262
A-P F-Stat 7.52 15.52 36.5 51.21 37.63 51.21

Notes: This table presents the first stage estimates for alternative specifications with potentially
weakest first stage identification, using the sample with ln(Revenue) as the outcome variable. Col-
umn 1 clusters by state instead of state-by-year difference. All other columns cluster by state-by-
year difference. Column 2 includes one-year differences only. Column 3 controls for rainfall and
cooling degrees. Columns 4-6 are the three first stages for Table 9. Samples for columns 1, 2,
and 3 are limited to plants that ever self-generate electricity. F-statistic is for the heteroskedastic-
ity and cluster-robust Angrist-Pischke weak instruments test. Robust standard errors. *,**, ***:
Statistically different from zero with 90, 95, and 99 percent confidence, respectively.
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B.3 Robustness Checks for Table 8

Table A6: Robustness Check: Omitting Industry-by-Year Controls
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.229 -0.014 0.036 0.136
(0.024)*** (0.059) (0.041) (0.032)***

Number of Obs. 172,319 220,622 374,168 366,319
Number of Clusters 2,781 2,936 3,263 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.579 0.780 -0.815 -0.149
(0.109)*** (0.249)*** (0.346)** (0.166)

Number of Obs. 172,319 220,622 374,168 366,319
Number of Clusters 2,781 2,936 3,263 3,261

Notes: This table presents estimates of Equation (24), omitting the industry-by-year controls µjt.
Panel B instruments for Shortage using the hydroelectric generation instrument. Samples for
columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year difference. *,**, ***: Statistically different from zero with 90, 95, and
99 percent confidence, respectively.
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Table A7: Robustness Check: Stricter Tolerance for Eliminating Within-Plant Outliers
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.201 -0.037 0.006 0.098
(0.022)*** (0.054) (0.036) (0.027)***

Number of Obs. 153,764 197,125 362,273 358,923
Number of Clusters 2,727 2,860 3,237 3,251

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.530 0.608 -0.498 -0.003
(0.097)*** (0.217)*** (0.280)* (0.140)

Number of Obs. 153,764 197,125 362,273 358,923
Number of Clusters 2,727 2,860 3,237 3,251

Notes: This table presents estimates of Equation (24), using a within-plant outlier tolerance of 1.5
natural logs instead of 3.5. Panel B instruments for Shortage using the hydroelectric generation
instrument. Robust standard errors, clustered by state-by-year difference. Samples for columns 1
and 2 are limited to plants that ever self-generate electricity. *,**, ***: Statistically different from
zero with 90, 95, and 99 percent confidence, respectively.
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Table A8: Robustness Check: Including All Within-Plant Outliers
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.244 0.012 0.060 0.074
(0.023)*** (0.056) (0.043) (0.034)**

Number of Obs. 226,244 228,572 376,019 366,943
Number of Clusters 2,962 2,964 3,273 3,262

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.602 0.732 -0.626 0.173
(0.102)*** (0.244)*** (0.379)* (0.198)

Number of Obs. 226,244 228,572 376,019 366,943
Number of Clusters 2,962 2,964 3,273 3,262

Notes: This table presents estimates of Equation (24), without dropping any within-plant outliers.
Panel B instruments for Shortage using the hydroelectric generation instrument. Samples for
columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year difference. *,**, ***: Statistically different from zero with 90, 95, and
99 percent confidence, respectively.
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Table A9: Robustness Check: One-Year Lags Only
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.203 0.084 -0.102 0.038
(0.037)*** (0.084) (0.059)* (0.050)

Number of Obs. 124,762 152,687 229,172 225,012
Number of Clusters 491 491 494 494

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.543 0.271 -0.574 -0.025
(0.187)*** (0.325) (0.387) (0.253)

Number of Obs. 124,762 152,687 229,172 225,012
Number of Clusters 491 491 494 494

Notes: This table presents estimates of Equation (24), using the sample of one-year differences
only. Panel B instruments for Shortage using the hydroelectric generation instrument. Samples for
columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year difference. *,**, ***: Statistically different from zero with 90, 95, and
99 percent confidence, respectively.
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Table A10: Robustness Check: Clustering by State
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.227 -0.035 0.020 0.095
(0.029)*** (0.079) (0.079) (0.053)*

Number of Obs. 172,319 220,622 374,168 366,319
Number of Clusters 30 30 30 30

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.568 0.639 -0.682 -0.034
(0.111)*** (0.278)** (0.300)** (0.283)

Number of Obs. 172,319 220,622 374,168 366,319
Number of Clusters 30 30 30 30

Notes: This table presents estimates of Equation (24), clustering by state instead of state-by-
year difference. Panel B instruments for Shortage using the hydroelectric generation instrument.
Samples for columns 1 and 2 are limited to plants that ever self-generate electricity. Robust
standard errors. *,**, ***: Statistically different from zero with 90, 95, and 99 percent confidence,
respectively.
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Table A11: Robustness Check: Controlling for Rainfall and Cooling Degrees
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.229 -0.031 0.021 0.097
(0.023)*** (0.055) (0.040) (0.030)***

∆ Rainfall 0.003 -0.016 0.008 0.001
(0.003) (0.009)* (0.008) (0.006)

∆ Cooling Degrees 0.001 -0.006 -0.001 -0.001
(0.001) (0.004) (0.003) (0.002)

Number of Obs. 170,358 218,029 370,179 362,411
Number of Clusters 2,719 2,865 3,180 3,179

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Shortage 0.582 0.683 -0.652 -0.003
(0.110)*** (0.250)*** (0.342)* (0.163)

∆ Rainfall 0.008 -0.007 0.004 0.001
(0.004)* (0.010) (0.009) (0.006)

∆ Cooling Degrees 0.001 -0.007 0.000 -0.000
(0.001) (0.004)* (0.003) (0.002)

Number of Obs. 170,358 218,029 370,179 362,411
Number of Clusters 2,719 2,865 3,180 3,179

Notes: This table presents estimates of Equation (24), also including controls for rainfall and cooling
degrees. Panel B instruments for Shortage using the hydroelectric generation instrument. Samples
for columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year difference. *,**, ***: Statistically different from zero with 90, 95, and
99 percent confidence, respectively.
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Table A12: Robustness Check: Using Peak Shortage Instead of Average Shortage
Panel A: Difference Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Peak Shortage 0.063 -0.013 -0.017 -0.001
(0.013)*** (0.030) (0.025) (0.018)

Number of Obs. 172,319 220,622 374,168 366,319
Number of Clusters 2,781 2,936 3,263 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

∆ Peak Shortage 0.630 0.735 -0.733 -0.004
(0.179)*** (0.286)** (0.403)* (0.183)

Number of Obs. 170,358 218,029 370,179 362,411
Number of Clusters 2,719 2,865 3,180 3,179

Notes: This table presents estimates of Equation (24), using the CEA Peak Shortage estimate
instead of (average) Shortage. Panel B instruments for Peak Shortage using the hydroelectric
generation instrument. Samples for columns 1 and 2 are limited to plants that ever self-generate
electricity. Robust standard errors, clustered by state-by-year difference. *,**, ***: Statistically
different from zero with 90, 95, and 99 percent confidence, respectively.
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B.3.1 Estimates with Alternative TFP Measures

Table A13: Robustness Check: Estimates with Alternative TFP Measures
Panel A: Difference Estimator

(1) (2) (3) (4) (5)
Perfect Comp. Materials+ No Year Include Self-
(ε = −∞) ε=-4 Non-Elec Fuels Controls Generators

∆ Shortage 0.150 0.251 0.095 0.090 0.098
(0.031)*** (0.046)*** (0.029)*** (0.027)*** (0.025)***

Number of Obs. 365,945 364,852 338,742 366,097 366,176
Number of Clusters 3,259 3,260 2,950 3,261 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4) (5)
Perfect Comp. Materials+ No Year Include Self-
(ε = −∞) ε=-4 Non-Elec Fuels Controls Generators

∆ Shortage 0.095 0.334 -0.029 -0.320 -0.232
(0.176) (0.251) (0.146) (0.177)* (0.165)

Number of Obs. 365,945 364,852 338,742 366,097 366,176
Number of Clusters 3,259 3,260 2,950 3,261 3,261

Notes: This table presents estimates of Equation (24), using alternative measures of TFP described
in Appendix A.2.2. Panel B instruments for Peak Shortage using the hydroelectric generation
instrument. Robust standard errors, clustered by state-by-year difference. *,**, ***: Statistically
different from zero with 90, 95, and 99 percent confidence, respectively.
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B.4 Fixed Effects Estimates

Table A14: Fixed Effects Estimates with ASI Data
Panel A: Fixed Effects

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

Shortage 0.366 -0.174 -0.059 0.221
(0.046)*** (0.073)** (0.094) (0.054)***

Number of Obs. 182,252 229,164 385,913 381,524
Number of Clusters 30 30 30 30

Panel B: Fixed Effects with Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

Shortage 1.039 1.039 -0.986 -0.519
(0.375)*** (0.575)* (0.671) (0.430)

Number of Obs. 169,453 215,072 345,230 340,569
Number of Clusters 30 30 30 30

This table presents estimates of Equation (24) using fixed effects instead of differences, also in-
cluding state-specific linear trends. Panel B instruments for Peak Shortage using the hydroelectric
generation instrument. Samples for columns 1 and 2 are limited to plants that ever self-generate
electricity. Robust standard errors, clustered by state. *,**, ***: Statistically different from zero
with 90, 95, and 99 percent confidence, respectively.
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Table A15: Fixed Effects Robustness Check: Omitting Industry-by-Year Controls
Panel A: Fixed Effects

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

Shortage 0.287 -0.070 0.026 0.175
(0.039)*** (0.100) (0.074) (0.050)***

Number of Obs. 276,510 312,684 609,140 600,655
Number of Clusters 30 30 30 30

Panel B: Fixed Effects with Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

Shortage 0.807 0.883 -0.779 -0.466
(0.262)*** (0.428)** (0.439)* (0.345)

Number of Obs. 240,794 284,431 501,541 494,230
Number of Clusters 30 30 30 30

This table presents estimates of Equation (24) using fixed effects instead of differences, also includ-
ing state-specific linear trends. It is identical to Table A14, except omitting the industry-by-year
controls µjt. Panel B instruments for Peak Shortage using the hydroelectric generation instrument.
Samples for columns 1 and 2 are limited to plants that ever self-generate electricity. Robust stan-
dard errors, clustered by state. *,**, ***: Statistically different from zero with 90, 95, and 99
percent confidence, respectively.
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Table A16: Fixed Effects Robustness Check: Stricter Tolerance for Eliminating Within-
Plant Outliers
Panel A: Fixed Effects

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

Shortage 0.257 -0.109 0.063 0.108
(0.041)*** (0.094) (0.066) (0.030)***

Number of Obs. 261,055 291,987 597,687 594,387
Number of Clusters 30 30 30 30

Panel B: Fixed Effects with Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

Shortage 0.737 0.577 -0.552 -0.251
(0.239)*** (0.337)* (0.293)* (0.255)

Number of Obs. 223,176 259,927 485,209 486,097
Number of Clusters 30 30 30 30

This table presents estimates of Equation (24) using fixed effects instead of differences, also in-
cluding state-specific linear trends. It is identical to Table A14, except using a within-plant outlier
tolerance of 1.5 natural logs instead of 3.5. Panel B instruments for Peak Shortage using the
hydroelectric generation instrument. Samples for columns 1 and 2 are limited to plants that ever
self-generate electricity. Robust standard errors, clustered by state. *,**, ***: Statistically different
from zero with 90, 95, and 99 percent confidence, respectively.
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Table A17: First Stages for ASI Fixed Effects Regressions

(1) (2) (3) (4)
Self-Gen ln(Fuel

Outcome Variable: Share Rev Share) ln(Output) ln(TFP)

Hydro Generation -0.120 -0.125 -0.105 -0.105
(0.049)** (0.049)** (0.047)** (0.047)**

Number of Obs. 240,781 284,422 501,527 494,207
Number of Clusters 30 30 30 30
A-P F-Stat 6 6.43 4.95 4.93

Notes: This table presents the first stage estimates for the IV regressions in Panel B of Table
A14. Samples for columns 1 and 2 are limited to plants that ever self-generate electricity. Robust
standard errors, clustered by state. *,**, ***: Statistically different from zero with 90, 95, and 99
percent confidence, respectively.

72



B.5 Other Tables

Table A18: Biggest Obstacle for Growth

Problem Percent
Electricity 33
High Taxes 16
Corruption 10
Tax Administration 8
Cost of and Access to Financing 6
Labor Regulations and Business Licensing 5
Skills and Education of Available Workers 4
Access to Land 3
Customs and Trade Regulations 2
Other 12

Notes: These data are from the 2005 World Bank Enterprise Survey in India. The table presents
responses to the question, “Which of the elements of the business environment included in the list,
if any, currently represents the biggest obstacle faced by this establishment?”

Table A19: Separate Results for Self-Generators and Non-Self-Generators

(1) (2) (3) (4)
Outcome Variable: ln(Output) ln(Output) ln(TFP) ln(TFP)

∆ Shortage -0.246 -2.813 -0.087 -0.231
(0.293) (1.034)*** (0.142) (0.418)

Number of Obs. 234,300 139,868 230,346 135,973
Number of Clusters 2,977 3,088 2,971 3,086
Self-Generators Yes No Yes No

Notes: This table presents estimates of 24, splitting the sample by self-generators versus plants
that never self-generate. Panel B instruments for Shortage using the hydroelectric generation
instrument. Samples for columns 1 and 2 are limited to plants that ever self-generate electricity.
Robust standard errors, clustered by state-by-year difference. *,**, ***: Statistically different from
zero with 90, 95, and 99 percent confidence, respectively.
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Table A20: Calibration Parameters
Parameter Note
Production Function Coefficients βm, βl From Input Cost Share of Non-Self

Generators (see equations (11) and (12))
βk Constant Return to Scale
γ Electricity Input Cost Share

Elasticity of Demand ε

Price of Grid Power pE,G=4.5 World Bank Survey
Price of Self-Generated Power pE,S=7 World Bank Survey
Shortages δ Data collected from

Central Electric Authority
Prices of Output, Labor, Materials p = 1, pL = 1, pM = 1 Normalization

Table A21: Determination of Base Sample

Step Dropped obs. Sample Size
Original ASI dataset 949,992
Closed plants -172,697 777,295
Missing state codes or in Sikkim -99 777,196
Non-manufacturing NIC codes -45,664 731,532
Exact duplicates -312 731,220
Missing revenues -102,036 629,184
Multiple input revenue share outliers -9,095 620,089
Productivity outliers -3,960 616,129
Total observations 616,129

Notes: This table details how the sample in Table 6 is determined from the original set of observa-
tions in the Annual Survey of Industries.
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