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Abstract

In many moral hazard problems, the principal evaluates the agent's performance

based on signals which the agent may suppress and replace with counterfeits. This

form of fraud may a�ect the design of optimal contracts drastically, leading to complete

market failure in extreme cases. I show that in optimal contracts, the principal deters

all fraud, and does so by two complementary mechanisms. First, the principal punishes

signals that are suspicious, i.e. appear counterfeit. Second, the principal is lenient on

bad signals that the agent could suppress, but does not.

1 Introduction

In high pro�le cases of corporate earnings manipulation and public medical insurance

fraud, the social cost of fraud is quite visible.1 However, fraud is possible but conspicu-

ously absent in many other markets. For example, websites may defraud advertisers by
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inserting and billing for fake clicks on advertisements. Unemployed workers may cir-

cumvent government incentives by organizing fake job interviews.2 Security �rms may

cover up break-ins that occur on their watch. These types of fraud only occur rarely.

But this does not imply that fraud is innocuous in these cases, as the mere possibility

of fraud may impose severe hidden costs. For example, consider a moral hazard prob-

lem in which the agent may either exert e�ort, or may use a costless fraud technology

that allows him to mimic e�ort perfectly. Regardless of the contract that the principal

o�ers, the agent prefers to mimic exerting e�ort. Anticipating this, the principal does

not o�er any contract to the agent. Therefore there is a complete market failure even

though no fraud is committed. More generally, incentives may be distorted substan-

tially by the agent being able to commit fraud. The question of the paper is, how does

the possibility of fraud a�ect the design of incentives in moral hazard problems?

In my model, a risk-neutral principal and a risk-averse agent face a dynamic moral

hazard problem. The agent's e�ort choice in the �rst period is unobserved, but it

determines the distribution of signals realized in the subsequent periods. However, these

signals are also not observed by the principal. Rather, the agent is able to suppress some

types of signal, and replace them with a counterfeit signal drawn from an exogenous

counterfeit signal distribution. The principal pays the agent each period, based on the

signals she has observed to date. The agent has a dynamic programming problem to

determine which signals to suppress conditional on the history of signal realizations.

The principal has an optimal contract design problem, to choose the optimal payment

policy to implement a target e�ort and fraud policy.

In classic moral hazard models, the agent only has one choice to make, so gradual

draws of signals may be equivalently modeled as simultaneous draws. However, my

model is necessarily dynamic as the agent must decide whether to suppress a signal

before observing the next one.

The �rst result characterizes the fraud policies in optimal contracts. Fraud may be

costly for the agent to commit, and may be risky for the agent if there is a chance of

getting caught. The �rst result establishes that �no fraud� is an optimal fraud policy,

and that no optimal fraud policy involves any risky or costly fraud; in these cases,

the principal may simulate fraud more e�ciently than the agent can commit it. To

simulate fraud, the principal draws a simulated counterfeit signal from the counterfeit

signal distribution, and pays the agent as if she had observed the simulated signal. In

other words, the principal may simulate fraud by paying the agent a lottery. If fraud

is costly, the principal deducts the costs from the payments, and hence recovers these

2 In countries with time-unlimited unemployment insurance (such as Australia and the United Kingdom),
claimants are required to document their job search activities to continue receiving payments.
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costs. If fraud is costless, the principal may improve on the lottery: she may recover the

risk premium of the lottery by paying the agent the certainty equivalent. The resulting

payment policy deters fraud if it does not improve the agent's ability to distort signals.3

The second result characterizes optimal payment policies to deter fraud. As in

standard moral hazard models, each signal contains news about the agent's e�ort.

There are two additional attributes of signals. First, if a signal is outside the support of

the counterfeit signal distribution, then it is unsuspicious. On the other hand, a signal

assigned a higher probability under this distribution is more suspicious, ceteris paribus.

Second, a signal may be suppressible or unsuppressible. The second result answers

the question: how do these three attributes of signals a�ect payments? Measures of

how good the news is, and how suspicious the news is, are constructed from the signal

separately. This means that better news is rewarded more, and more suspicious news

is rewarded less, ceteris paribus. However, the payment policy is lenient on bad news

that is suppressible. This dampens the incentive to suppress bad news. The lenience of

the principal after su�ciently bad suppressible news involves disregarding the severity

of the news; therefore optimal contracts may be incomplete.

Finally, the paper explores two special cases. The counterfeit good news case cor-

responds to the click fraud and fake job interview examples. In this case, either good

news or no news arrives every period. If no news arrives, then the agent may fabricate

good news. Thus, the principal must measure how suspicious the good news appears,

and punish suspicious news adequately to deter fraud. This becomes more costly for

her as the real and counterfeit signal distributions become more alike. I argue that the

contracts employed in the internet advertising industry match the predictions of the

model.

The bad news suppression case corresponds to the example of covering up break-

ins, and also to covering up safety and environmental disasters. In this case, either bad

news or no news arrives. Bad news that is more costly to suppress is punished more

than bad news that is cheaper to suppress. I argue that ine�cient incentives in the

internet computer security industry led a company, DigiNotar to attempt to cover up

an intrusion, ultimately leading to its bankruptcy.

Fraud and incentives for truth-telling have long been a consideration in mechanism

design, and there are several strands of related literature. The revelation principle is

a central part in the analysis of mechanism design problems in which communication

is costless and misrepresentation is undetectable. In these problems, the revelation

principle holds very generally and plays a purely technical role to simplify mechanism

3 The condition used throughout most of the paper is that all signals in the support of the counterfeit
signal distribution are unsuppressible. More general conditions are discussed in Section 4.3.
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design problems by focusing on direct (non-fraud) mechanisms. However, when the

message the agent may send is partially constrained by the state of the world, the issue

of misrepresentation becomes more subtle, and the revelation principle only holds under

more restricted conditions. Green and La�ont (1986) introduced partially veri�able

information to mechanism design, in which the set of messages that the agent is able to

send is state-dependent and is a subset of the agent's type space. If evidence satis�es

the �nested range condition�, then a social choice function is implementable if and only

if it is truthfully implementable. Bull and Watson (2007) drop the requirement that

the message space is a subset of the type space. They show that if evidence satis�es a

weaker condition called �normality�, then a strong revelation principle holds in the sense

that every mechanism is equivalent to one with full evidence disclosure. Kartik and

Tercieux (2011) study full implementation (of Nash equilibrium) where evidence may

be fabricated by the agents at some state-dependent cost. They show that for three or

more players, a social choice function is implementable without costly fabrication if and

only if evidence is �cost-monotonic� and the social choice rule satis�es �no veto power.�

They do not study whether it is (second-best) optimal to deter costly fabrication and

do not accommodate the possibility of a fabrication attempt being unsuccessful.

Townsend (1979) studies a model in which agents may hide their endowments, but

the principal may audit them at some cost. In this costly state veri�cation model,

optimal contracts deter misrepresentation by the use of random audits. While auditing

is not explicitly present in my model, the risk of an audit is similar to the risk of a

counterfeit signal appearing suspicious. However, in contrast to costly state veri�cation

models, the principal never learns for sure if a counterfeit signal is indeed counterfeit.

Costly state falsi�cation was introduced by Lacker and Weinberg (1989), and further

studied by Maggi and Rodríguez-Clare (1995), Crocker and Morgan (1998), Crocker

and Slemrod (2007) and Crocker and Gresik (2010). My focus is quite di�erent from

this literature in two respects. First, this literature assumes that the agent has access

to a fraud technology that gives him perfect (but costly) control of signals. I focus on

stochastic fraud technologies in which the agent has imperfect control of realized signals.

This allows me to study how incentives should respond to noisy signals of fraudulent

activity. Second, in this literature, the principal is ignorant about the agent's marginal

cost of committing fraud.4 This ignorance typically implies that fraud occurs in opti-

mal contracts. However, fraud is not ubiquitous, and my focus is on the institutional

response to the possibility of fraud, even in markets were fraud is absent. In my model,

4 Speci�cally, they assume that at any history, the principal only observes the sum of the state of nature
and the fraud committed. The marginal cost of committing more fraud depends on the (unobserved) amount
of fraud already committed.
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the principal knows what resources are required to conduct fraud at every history, which

implies that fraud does not occur in optimal contracts. Nevertheless, the possibility of

fraud drastically alters incentives.

Finally, Allen and Gale (1992) considers fraud as a possible answer to the puzzle,

why are contracts simpler in practice than in theory? They argue that if an agent is able

to manipulate some signals, then optimal contracts are incomplete in the sense that

payments are insensitive to those signals. A similar form of incompleteness appears in

optimal contracts in my counterfeit signals model as well: all su�ciently bad suppress-

ible news is treated the same. On the other hand, contracts are more complicated in

the sense that payments depend on how suspicious the signals are.

The remainder of this paper is organized as follows. Section 2 introduces an example

that illustrates the ideas of suspicious information and lenience. Section 3 describes a

dynamic moral hazard model with e�ort and fraud. Section 4 establishes that optimal

contracts deter risky and costly fraud. Section 5 applies the �rst-order approach to

characterize the optimal payment policy. Section 6 and Section 7 study special cases of

the model, and relate them to click fraud and cover-ups of security intrusions, respec-

tively. Appendix A provides omitted proofs, and Appendix B establishes the validity

of the �rst-order approach for a special case of the model.

2 Example

A risk neutral principal and a risk averse agent would like to trade. The agent has a

utility function u : R→ R and an outside option w. He chooses e�ort e ∈ {0, 1}, where
e = 1 means high e�ort. He receives a private signal θ̂ ∈ {A,B,C} that is distributed

π(·|e) =

(1, 0, 0) if e = 0,

(1
3 ,

1
3 ,

1
3) if e = 1.

The A signal is bad news that indicates low e�ort, and the B and C signals are good

news that indicate high e�ort. The agent has access to a costless fraud technology

that allows him to suppress A and replace it with a counterfeit B. I write f = 1

if he decides to use this technology, and f = 0 otherwise. The resulting signal θ is

public. The θ = B signal may be interpreted as suspicious, because the principal

can not distinguish between real and counterfeit B signals. The principal's problem

is to choose payments p(θ) for each state θ in order to minimize the expected cost of

implementing e�ort e = 1 subject to a voluntary participation (VP) and an incentive
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compatibility (IC) constraint:

min
p(·),f

E[p(θ)|e = 1, f ]

s.t. (VP) E[u(p(θ))|e = 1, f ]− 1 ≥ u(w),

(IC) (1, f) ∈ argmax
(ê,f̂)

E[u(p(θ))|ê, f̂ ]− ê.

This problem has a solution that involves no fraud (i.e. f = 0). To see this, suppose

that p(·) implements (e, f) = (1, 1). Then the following payment policy implements

(e, f) = (1, 0) by simulating fraud:

p̂(θ) =

p(B) if θ = A or θ = B,

p(C) if θ = C.

Under the payment policy p̂(·), the agent is indi�erent between committing fraud or not,

since the principal pays him the same amount after A and B signals. The principal's

implementation cost is the same under both payment policies, so the new payment

policy is also a solution the principal's problem.

Since there is a solution that deters fraud, we may focus on contracts that deter

fraud. This simpli�es the principal's problem:

min
p(·)

1

3
[p(A) + p(B) + p(C)]

s.t. (VP)
1

3
[u(p(A)) + u(p(B)) + u(p(C))]− 1 ≥ u(w),

(IC-e)
1

3
[u(p(A)) + u(p(B)) + u(p(C))]− 1 ≥ u(p(A)),

(IC-f) u(p(A)) ≥ u(p(B)),

where (IC-e) requires that e�ort e = 1 is optimal and (IC-f) requires that abstaining

from fraud is optimal.

It is straightforward to show that if p∗(·) is a solution to the principal's problem,

then all three constraints hold with equality at p∗ (·). Since all of the constraints share
four common expressions, all four of these expressions are equal, so that w = p∗(A) =

p∗(B) < p∗(C). The agent is awarded the most after a C signal, as it is good news that

is not the result of counterfeiting. Even though B is equally as good news as C, it is

rewarded less than C because it is more suspicious. Finally, A is rewarded the same as

B, even though it is worse news than B; the principal must be lenient after A to deter

fraud.
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This optimal contract is not unique; there is also an optimal contract that involves

fraud. If the principal pays the agent

p′(θ) =

p∗(A)− ε if θ = A,

p∗(θ) if θ 6= A,

where ε > 0, then the agent will commit fraud and receive the same payment as under

p∗(·). Thus, p′(·) implements (e, f) = (1, 1) at the same cost to the principal.

This example illustrates several ideas that are important in the general model. The

principal may deter fraud by simulating fraud on the agent's behalf � in the example,

by replacing A with B. This means the implementation problem may be simpli�ed by

focusing on no-fraud contracts. The optimal contract involves rewarding good news

more than bad news (p(C) > p(A)), unsuspicious news more than suspicious news

(p(C) > p(B)), and being lenient on suppressible bad news (p(A) = p(B)).

3 Model

P commits
to a

payment
policy

A chooses
e�ort

A gets a
private
signal

A chooses
whether to

commit fraud

P pays A

repeated T times

Figure 1: The moral hazard problem with counterfeit signals.

This paper studies a dynamic moral hazard model, which is summarized in Figure 1.

There is a risk neutral principal and a risk averse agent with an increasing utility

function u : R → R. They both discount at rate β over T + 1 time periods. In the

�rst period, the agent exerts unobservable e�ort e ∈ [0, 1], which the principal values

at v(e). In each subsequent time period t, the agent receives a private signal θ̂t that is

distributed according to π(·|e), which has full support over a �nite set Θ. The agent has

access to a fraud technology, which consists of two parts. The agent �rst suppresses the

signal θ̂t, which costs c(θ̂t) ∈ {0,∞}.5 Then the agent counterfeits a replacement signal

which is drawn from the counterfeit signal distribution φ(·). The principal observes the
resulting public signal θt. I assume that the support of φ(·) only includes unsuppressible

5 I also study an extension with general suppression costs c(θ) ∈ [0,∞] in Section 4.2 and Section 7.
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signals, i.e. c(θ) = ∞. This implies that the agent may not conduct fraud more than

once in each time period.6

At the start of the game, the principal commits to a payment policy {pt(·)}. This
means that the principal promises to pay the agent pt(θ

t) at the end of period t based

on the history of public signals θt = θ1, . . . , θt. At any time period t ≤ T , there are

two relevant value functions for the agent: the agent's value before the private signal

is drawn, Wt(e; θ
t−1), and after the private signal is drawn, Vt(e; θ

t−1, θ̂t). The agent's

history of private signals θ̂t−1 is not payo� relevant, so it is dropped from his Bellman

equations:

Wt(e; θ
t−1) =

∑
θ̂

π(θ̂|e)Vt(e; θt−1, θ̂) (1)

Vt(e; θ
t−1, θ̂) = max

u(pt(θ
t−1, θ̂)) + βWt+1(e; θt−1, θ̂),∑

θ φ(θ)
[
u(pt(θ

t−1, θ)− c(θ̂)) + βWt+1(e; θt−1, θ)
]
,

(2)

where

WT+1(e; θt) = 0.

A candidate solution to the agent's dynamic fraud problem in (2) is a fraud policy

ft : Θt → {0, 1}, where ft(θt−1, θ̂t) = 1 means the agent suppresses the signal θ̂t after a

history of public signals θt−1. (In the contracting problem below, it will be possible to

think of the e�ort and fraud policy choices being made simultaneously, so e is omitted

from the agent's private history in the fraud policy.) The no-fraud policy {f∗t (·)}Tt=1

involves no fraud at every history. The agent chooses e�ort e to maximize βW1(e)− e.
This paper studies the principal's implementation problem.

Problem 1. The principal's implementation problem is to minimize the expected cost

of implementing e�ort e,

C(e) = min
{pt(·)},{ft(·)}

E

[
T∑
t=1

βtpt(θ
t)

∣∣∣∣∣e, {ft(·)}
]

s.t. (VP) βW1(e)− e ≥ u0

(IC-e) e ∈ argmax
ê∈[0,1]

βW1(ê)− ê

(IC-f) ft(·) solves the dynamic programming problem in (1) and (2),

where the e�ort e and the fraud policy determines the distribution of θt: θ̂t ∼ π(·|e) is

6 I discuss the role of this assumption and several possible generalizations in Section 4.3.
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drawn �rst, and if ft(θ
t−1, θ̂t) = 0 then θt = θ̂t; otherwise θt ∼ φ(·). I say that the

payment policy {pt(·)} implements e�ort e and fraud policy {ft(·)} if these items satisfy

the (VP), (IC-e) and (IC-f) constraints.

This model has two novel features. Firstly, the agent does not (necessarily) have

complete control over the outcome of the fraud. In both the costly state veri�cation

and costly state falsi�cation literatures, agents may counterfeit any signal they like,

and the fraud technology is entirely predictable. In contrast, this model accommodates

unpredictable fraud technologies. For example, if a publisher does a fake click, it does

not know what information the advertiser has previously stored about the fake visitor

to the website, and can not fully anticipate how suspicious the click will appear. If an

agent o�ers to bribe a witness to suppress information, the agent does not know for

sure whether the bribe will be accepted and honored.

Secondly, the agent's fraud decision is dynamic. The agent may base his decisions

to commit fraud based on the success or failure of previous attempts at fraud; this

allows him to avoid accruing many suspicious signals. Conversely, the agent may not

defer fraud decisions; he may not retroactively suppress information that is already

public. For example, advertisers observe clicks as they happen. A website publisher

may reduce the amount of click fraud it commits based on how suspicious the previous

clicks appeared. However, the publisher may not retroactively add fake clicks.

4 Optimal Fraud Policy

Fraud is socially undesirable, as it is unproductive, and potentially includes several

social costs. Firstly, fraud may be risky: if there is a chance of being caught, perpe-

trators take on risks beyond their control. Secondly, Section 4.2 studies an extension

in which fraud involves paying a suppression cost. Finally, fraud destroys information,

and therefore hampers the provision of incentives. Given that fraud is ine�cient, an

important question is what level of fraud is optimal, after taking into account the dif-

�culties of incentives. This section shows that under general conditions, the principal

may transform contracts with risky fraud into better contracts (with lower implemen-

tation costs) without fraud. The logic resembles the revelation principle. Suppose the

principal knows the distribution of counterfeit signals and which signals are suppress-

ible. Then the principal may simulate fraud by paying the agent a lottery based on a

random draw from the counterfeit signal distribution. Under quite general conditions,

the fraud simulation lottery deters fraud. In addition, the principal may replace the

lottery draws with their certainty equivalents without disrupting incentives. This allows
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the principal to recover the risk premium of fraud.

Section 4.2 studies an extension in which suppressible signals may have a non-

zero suppression cost. In this case, the suppression cost is deducted from the fraud

simulation lottery. This allows the principal to recover the suppression cost that would

be otherwise wasted if the agent actually committed fraud.

The conditions under which optimal contracts deter fraud are quite general. Fraud

may only be imperfectly detectable, with the principal never having the possibility of

receiving a conclusive signal that it occurred. Fraud may be dynamic. For instance, the

agent is free to choose to conduct small amounts of fraud over a long period of time,

including that the possibility that an agent could �lie low for a while� after incriminating

information comes out. There may or may not be a suppression cost involved. However,

none of these issues have any bearing on whether the no-fraud policy is optimal. The

key assumption is that the support of the counterfeit signal distribution only contains

unsuppressible signals. The role of this assumption and other assumptions are discussed

in Section 4.3.

4.1 Suboptimality of Risky Fraud

The following theorem establishes that contracts can always be transformed to eliminate

fraud without reducing payo�s. Moreover, if fraud is risky, then the principal may

recover the risk premium of fraud.

De�nition 1. A contract ({pt(·)} , e, {ft(·)}) involves risky fraud if at some history

(θt−1, θ̂t),

1. the agent conducts fraud, i.e. ft(θ
t−1, θ̂t) = 1, and

2. two possible counterfeit signals θt and θ
′
t in the support of φ(·) lead to di�ering

payments at some subsequent time τ ≥ t, i.e. pτ (θt−1, θt, ·) 6= pτ (θt−1, θ′t, ·).

Theorem 1. Suppose {pt(·)} implements e�ort e and fraud policy {ft(·)} in Problem 1.

Then there exists a payment policy {p̂t(·)} that implements e�ort e and the no-fraud

policy {f∗t (·)} such that the implementation cost is

1. lower if the original contract involves risky fraud, and

2. the same otherwise.

The proof involves the following sequence of transformations. In Lemma 1, a new

contract is constructed in which fraud conducted by the agent is delegated to the

principal. The principal simulates counterfeit signals with public lotteries drawn every

period. The transformation from the original contract to the new contract is reminiscent
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of the revelation principle in that the principal simulates the agent's strategy to arrive

at a simpler contract.

Lemma 2 shows that the public nature of the lottery draws in the new contract is

irrelevant to the agent's incentives. This is because the agent has a weakly dominant

strategy, namely no fraud, that is independent of any information he receives throughout

the contract. This allows a simpler contract in which the lotteries and payments are

hidden from the agent.

In Lemma 3, the principal increases her payo� by replacing the lotteries with their

certainty equivalents. This transformation allows the principal to extract the risk pre-

mia of fraud. The transformation is possible if fraud is costless; as in the Holmstrom

(1979) su�cient statistic theorem, the agent's incentives are preserved throughout this

transformation. Therefore, even if fraud is costless to conduct, it is still suboptimal

when it imposes gratuitous risk on the agent.

When the agent delegates fraud to the principal in Lemma 1, the principal pays

the agent a lottery. As Problem 1 does not include the possibility of paying lotteries,

I generalize the notation here. Henceforth, tildes above letters will indicate that a

variable is related to a lottery. The principal pays the agent p̃t(θ
t, εt) that depends on

the public random draws εt. Each εt is drawn from a distribution ψt(·|θt; εt−1) at the

end of period t. The agent's fraud policy {ft(·; ·)} in this setting is a function of both

the signals (θt−1, θ̂t) and the lottery draws εt−1. The Bellman equations (1) and (2) for

the agent generalize to the lottery setting in a natural way:

Wt(e; θ
t−1, εt−1) =

∑
θ̂

π(θ̂|e)Vt(e; θt−1, θ̂; εt−1) (3)

Vt(e; θ
t−1, θ̂; εt−1) (4)

= max

Eεt
(
u(p̃t(θ

t−1, θ̂; εt)) + βWt+1(e; θt−1, θ̂; εt)
)
,

Eεt

(∑
θ φ(θ)

[
u(p̃t(θ

t−1, θ; εt)− c(θ̂)) + βWt+1(e; θt−1, θ; εt)
])
.

Fraud involves replacing a signal with a counterfeit drawn from the distribution

φ(·). The principal may simulate fraud by ignoring an observed signal, and paying the

agent as if she observed an independent draw from the counterfeit signal distribution.

The principal may simulate fraud policy {ft(·)} by

1. drawing εt from φ(·) at histories where the agent would have committed fraud,

and

2. setting εt = θt at histories where the agent would not have committed fraud.
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This idea leads to the following de�nition of the fraud simulation lottery.

De�nition 2. Given a contract ({pt(·)} , e, {ft(·)}) the corresponding fraud simulation

lottery is

s̃t(θ
t; εt) = pt(ε

t),

where εt is drawn from the distribution

ψt(εt|θt, εt−1) =

I(εt = θt) if ft(ε
t−1, θt) = 0,

φ(εt) if ft(ε
t−1, θt) = 1,

and I(�) is the indicator function that is 1 if the proposition � is true, and 0 otherwise.

In the fraud simulation lottery, εt plays the role of the (simulated) public history,

and θt plays the role of the private history. Even though the principal observes both

the simulated public and private histories, she commits to ignoring the private history

in order to deter fraud.

Lemma 1. Suppose the payment policy {pt(·)} implements e�ort e with fraud policy

{ft(·)}. Then the fraud simulation lottery {s̃t(·; ·)} implements e with the non-fraud

policy {f∗t (·; ·)}. The implementation cost is the same under both contracts.

Proof. By construction, the signals in the old contract, θt, and the new contract, εt,

are identically distributed, provided the agent does not deviate from the prescribed

no-fraud policy. Hence, the payments are identically distributed in the two contracts.

It remains to show that the new contract respects the fraud incentive constraint

(IC-f). Recall that the support of the counterfeit signal distribution only includes

unsuppressible signals. This means that regardless of the agent's choices, the fraud

simulation lottery ensures that a real or simulated (but not both) counterfeit signal is

drawn at every history in which fraud is committed under the original contract, i.e. at

every history in which ft(ε
t−1, θ̂t) = 1. The only question is whether the agent might

pro�tably deviate by committing fraud at some additional history. But this would

contradict the original fraud policy {ft(·)} being optimal under the original payment

rule. Hence the no-fraud policy {f∗t (·; ·)} is optimal under the new contract.

Lemma 1 showed that fraud may be replaced with lotteries without disrupting the

agent's incentives. The rest of the proof of Theorem 1 involves showing that if these

lotteries are replaced with their certainty equivalents, the principal may recover the

risk premia of fraud without disrupting incentives. However, the notion of certainty

equivalent is subtle in this dynamic setting. The payment in time period t depends
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on the entire history of lottery draws εt, so that uncertainty about εt creates risk for

the agent in future periods. Therefore, the right notion of certainty equivalent must be

applied to capture the dynamic risk of the dynamic lotteries and to ensure the dynamic

no-fraud incentive constraints are respected.

The following lemma addresses relationship between the lottery draws εt and the

dynamic incentives. Lemma 2 establishes that the lottery draws and the resulting

payments may be hidden from the agent, since the no-fraud action is a weakly dominant

at every history for him. This hidden lottery setting is purely of technical interest, as

the agent does not observe his own utility. In this setting, the lottery draws are no

longer a state variable, and the agent's Bellman equation (4) becomes

Vt(e; θ
t−1, θ̂) (5)

= max

Eεt
(
u(p̃t(θ

t−1, θ̂; εt))
)

+ βWt+1(e; θt−1, θ̂),∑
θ φ(θ)

[
Eεt

(
u(p̃t(θ

t−1, θ; εt)− c(θ̂))
)

+ βWt+1(e; θt−1, θ)
]
.

Lemma 2. If a lottery payment policy {p̃t(·, ·)} implements e with the no-fraud policy

in Problem 1, then it implements e with the no-fraud policy in the hidden lottery setting

of (5).

Proof. Since {p̃t(·, ·)} implements the no-fraud policy, the agent has a weakly dominant

strategy. This means the realizations of εt are irrelevant to the agent's decisions.

Finally, Lemma 3 shows that the lotteries used to simulate counterfeit signals can

be replaced by their certainty equivalents. This does not a�ect the agent's payo�s, but

the principal's payo� is increased by the risk premium of the lottery. Therefore, the

principal is better o� deterring fraud whenever it is risky for the agent.

Lemma 3. Suppose p̃t(·; ·) is a lottery payment policy that implements e�ort e and the

no-fraud policy {f∗t (·)}) in the hidden lotteries setting. Then the certainty equivalent

payment policy de�ned by

u(p̂t(θ
t)) = Eεt [u(p̃t(θ

t, εt))|θt] (6)

also implements (e, {f∗t (·)}). It is less costly for the principal whenever any of the

payments p̃t(θ
t; ·) are non-degenerate lotteries.

Proof. Since c(θ̂) ∈ {0,∞} for all θ̂ ∈ Θ, it follows that fraud deviation payo�s are
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preserved by the new payment policy, i.e.

u(p̂t(θ
t)− c(θ̂)) = Eεt [u(p̃t(θ

t, εt)− c(θ̂))|θt]. (7)

Substituting (6) and (7) into the agent's Bellman equation (2) in the non-lottery setting

gives the Bellman equation:

Vt(e; θ
t−1, θ̂) (8)

= max

Eεt
[
Eεt [u(p̃t(θ

t, εt))|θt]
]

+ βWt+1(e; θt−1, θ̂),∑
θt
φ(θt)

(
Eεt

[
Eεt [u(p̃t(θ

t, εt)− c(θ̂))|θt]
]

+ βWt+1(e; θt)
)
.

After removing the redundant expectations (by the law of iterated expectations), this

becomes the value function (5) under the lottery payment policy {p̃t(·; ·)}. Since the

value functions are equivalent under the two payment policies, by the Principle of

Optimality, they implement the same actions.

If any of the lotteries p̃t(θ
t; ·) are non-degenerate, then the new payment policy

is less costly to the principal. The principal's expected payment is lowered by the

risk premium of this lottery, which is greater than zero. This follows from a standard

argument by Holmstrom (1979). By Jensen's inequality, the concavity of u implies

u(pt(θ
t)) = Eεt [u(p̃t(θ

t; εt))|θt] < u
(
Eεt [p̃t(θ

t; εt)|θt]
)
. (9)

Since u is increasing it follows that

pt(θ
t) < Eεt [p̃t(θ

t; εt)|θt].

This completes the proof of Theorem 1, that optimal contracts deter risky fraud.

In fact, Lemma 2 and Lemma 3 also establish that lotteries are suboptimal:

Corollary 1. If the no-fraud contract ({p̃t(·; ·)} , e, {f∗t (·, ·)}) is a solution to the lottery

extension of Problem 1 of implementing e�ort e, then {p̃t(·; ·)} is a degenerate lottery.

4.2 Extension: Suboptimality of Costly Fraud

The analysis above established that optimal contracts deter risky fraud, because the

principal may simulate fraud more e�ciently than the agent may commit it. Another

reason that fraud may be ine�cient is that the agent may have to pay a suppression

cost c(θ̂) ∈ (0,∞) to suppress the signal θ̂. This section shows optimal contracts deter

costly fraud, because the principal may recover the suppression cost with an appropriate
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fraud simulation payment policy. The fraud simulation lottery may be generalized to

this setting in a straightforward way: the principal deducts the suppression cost of

fraud from payments at the histories where it simulates fraud for the agent.

In the costly fraud setting, the suppression cost is any function c : Θ→ [0,∞]. An

important di�erence in this setting is that Lemma 3 no longer holds, so that lottery

payment policies may be a feature of optimal contracts, and the principal may not

be able to recover the risk premium of risky fraud. To see this, suppose the agent

has decreasing absolute risk aversion. Then if the agent pays a suppression cost, his

risk aversion would increase, so lotteries may be used by the principal to increase the

e�ective cost of fraud to the agent. Consequently, this section expands the set of

possible payment policies the principal may choose to include lotteries, as de�ned in

(4). On the other hand, if the agent has constant absolute risk aversion, then Lemma 3

holds in the costly fraud setting.

The fraud simulation lottery in De�nition 2 generalizes to the costly fraud setting as

follows. Given a contract ({p̃t(·; ·)} , e, {ft(·; ·)}) with lottery draws εt ∼ ψt(·|θt, εt−1),

the corresponding fraud simulation lottery is

s̃t(θ
t; εt, δt) = p̃t(δ

t; εt)− ft(δt−1, θt; ε
t−1)c(θt),

where (εt, δt) is drawn from

ρt(εt, δt|θt; εt−1, δt−1) = ψt(εt|θt; εt−1)

I(δt = θt) if ft(δ
t−1, θt; ε

t−1) = 0,

φ(δt) if ft(δ
t−1, θt; ε

t−1) = 1.

De�nition 3. The contract ({p̃t(·; ·)} , e, {ft(·; ·)}) involves costly fraud if at some his-

tory (θt−1, θ̂t; ε
t−1),

1. the agent conducts fraud, i.e. ft(θ
t−1, θ̂t; ε

t−1) = 1, and

2. the signal θ̂t has a strictly positive suppression cost, i.e. c(θ̂t) > 0.

Proposition 1. If the lottery {p̃t(·, ·)} implements e�ort e and fraud policy {ft(·, ·)},
then the fraud simulation lottery {s̃t(·, ·)} implements e�ort e and the no-fraud policy

f∗t (·, ·). The implementation cost under the fraud simulation lottery is

1. lower if the original contract involves costly fraud, and

2. the same otherwise.

Proof. The proof is analogous to Lemma 1.
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4.3 Robustness of Optimal Fraud Policy

The results above establish general conditions under which optimal contracts deter

fraud. This section explores the assumptions that lead to this result, and how they

may break down.

Counterfeit signals are unsuppressible

One key assumption is that all signals in the support of the counterfeit distribution are

unsuppressible. This assumption implies that the agent may only commit fraud once

each time period. I illustrate with an example that if the assumption is dropped, but

the restriction of one fraud attempt per period is retained, then the no-fraud results of

Theorem 1 and Proposition 1 do not hold. This is because the fraud simulation lottery

e�ectively allows the agent to circumvent the limit of fraud attempts. However, if both

the assumption and the one-attempt restriction are dropped, then these no-fraud results

hold.

Suppose T = 1 and that there are three possible private signals, θ̂ ∈ {A,B,C}.
After e�ort e = 0, the signal is drawn uniformly from {A,B}, and after e�ort e = 1,

the signal θ̂ is uniformly distributed over all possible signals. The fraud technology

allows A to be suppressed and replaced with a uniform draw from {A,B}. Unlike

Problem 1, the counterfeit signal distribution includes a suppressible signal A in its

support.

Suppose that the agent may not attempt to suppress A more than once. The fraud

simulation lottery in this setting is s̃(θ, ε) = p(ε), where ε is drawn uniformly from

{A,B} if θ = A, and ε = θ if θ 6= A. Lemma 1 fails in this example: the fraud

simulation lottery does not deter fraud. If the agent commits fraud under this payment

policy, then the probability of either the agent or the principal replacing A with B is 3
4 ;

the agent is e�ectively given two chances to suppress the bad news A. This means that

when the agent is limited to one suppression attempt, the fraud simulation e�ectively

expands the set of possible fraud strategies available to him. This problem is avoided

when the assumption that all signals in the support of the counterfeit distribution

are unsuppressible is made: the fraud simulation lottery does not introduce any new

possibilities for the agent in this case.

Another way to avoid this problem is to allow the agent to repeatedly suppress

signals until he draws an unsuppressible signal (B). In this case, the fraud simulation

lottery does not allow the agent to conduct any more fraud than he could under the

original contract. Thus, the main assumption needed for Lemma 1 to hold is that the

fraud simulation policy does not expand the feasible set of fraud policies that the agent
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may choose from. If this assumption is met, then the fraud simulation lottery deters

fraud, since the principal simulates an optimal fraud policy for the agent.

There are other ways an asymmetry may arise when the principal pays the agent

a fraud simulation lottery. For example, suppose the agent may repeatedly suppress

signals, but with an increasing marginal suppression cost each time. Then at any given

history, the principal does not know the cost the agent faces for committing fraud (since

she does not know how much fraud was committed in the past). Therefore, the principal

can not faithfully simulate fraud on behalf of the agent. This explains why fraud is

optimal in the model of Lacker and Weinberg (1989), which has an increasing marginal

cost of falsi�cation.

Multiple Fraud Technologies

In Problem 1, the agent only has access to a single fraud technology. However, this

is not important for the results. Suppose that the agent had access to a set of fraud

technologies Y , where each technology y ∈ Y consists of a suppression cost function cy(·)
and a counterfeit signal distribution φy(·). Theorem 1 generalizes to this setting. In

particular, the principal may simulate fraud by drawing from the appropriate counterfeit

signal distribution at each history (and subtracting the appropriate suppression cost,

as in the extension in Section 4.2).

Unknown Fraud Technology

If the principal is not fully informed about the fraud technology, then all optimal

contracts may involve fraud. The fraud simulation lottery idea does not apply directly,

as the principal does not know ex ante which counterfeit signal distribution(s) are

available to the agent, and at what cost(s). It may be feasible for the principal to induce

the agent to reveal its private information about the fraud technology to the principal.

However, this is not optimal in general. For example, if the agent has a su�ciently

low probability of having access to a fraud technology, the cost from distorting the

payment policy to screen the agent types would outweigh the bene�t of recovering the

risk premia and/or suppression costs of fraud.

5 Optimal Payment Policy

The previous section showed that under general conditions, optimal contracts deter

risky and costly fraud, and can be adapted to deter all fraud. However, the question

remains: what are the optimal incentives to deter fraud, and how do they interact with
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incentives for productive e�ort? Signals vary in the extent to which they are good

news about the agent's e�ort, whether or not they are suppressible, and if they are

suppressible, how suspicious they are. Thus, there are three aspects of signals that are

potentially relevant for payments. This section establishes that the principal separately

evaluates the good news and suspicious news aspects. Better news is paid more, and

suspicious news is paid less. However, this is not the end of the story. The principal is

lenient on suppressible bad news, which reduces the incentives for the agent to commit

fraud. Equally bad news that is unsuppressible is not forgiven in this way, because

harsh punishments after unsuppressible signals do not invite fraud (as it is infeasible

for the agent). Thus, all three dimensions of the signals are relevant for payments:

better news is rewarded more, suspicious news is rewarded less, and suppressible bad

news is treated leniently compared to equally bad unsuppressible news.

This section begins by reformulating the principal's problem in a manner suitable for

taking �rst-order conditions. This involves writing the constraints in a sequence form

(rather than a dynamic programming form), and applying the �rst-order approach

to simplify the agent's e�ort constraint. Then the section proceeds to use �rst-order

conditions to characterize the payment policy.

5.1 Problem Reformulation

The goal of this section is to transform Problem 1 into a form in which �rst-order

conditions may be applied to characterize the optimal payment policy. There are two

approaches in dynamic contract theory: Rogerson (1985b) applies a variational ap-

proach based on the sequence problem, and Spear and Srivastava (1987) and Thomas

and Worrall (1990) simplify the problem by applying a dynamic programming approach

with promised utility as the state variable.

While dynamic programming was helpful in studying the agent's problem, its ap-

plication to the principal's problem is problematic. Firstly, the model has persistence,

in the sense that the e�ort choice e a�ects information and behavior in every subse-

quent period. This means that an additional state variable (promised marginal bene�t

of e�ort) would be required, and the agent's incentive constraints would need to be

reformulated in terms of both state variables.7 Secondly, di�erent fraud incentive con-

straints bind at di�erent histories, and at states where the binding constraint changes,

the principal's value function would be non-di�erentiable.

In contrast to the di�culties of the dynamic programming approach, the varia-

7 This is similar to the analysis of Williams (2011), in which the �promised marginal utility of the private
state� is an additional state variable in the principal's dynamic programming problem.
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tional approach of Rogerson (1985b) is relatively simple. In the repeated moral hazard

problem of Rogerson (1985b), optimal contracts may involve the agent playing a non-

stationary strategy. However, in view of Theorem 1, optimal contracts in the counter-

feit signals model involve an e�ort choice followed by the stationary no-fraud strategy.

To summarize, the single persistent e�ort choice, followed by a sequence of identical

non-fraud choices adds minimal complexity to the principal's implementation problem.

Therefore, this section reformulates the principal's problem using a variational approach

rather than a dynamic programming approach.

The rest of the paper focuses on Problem 2, which involves implementing the no-

fraud policy. Theorem 1 established that the implementation cost is the same as in

Problem 1, even though the principal is more constrained.

Problem 2. The principal's no-fraud implementation problem is to minimize the ex-

pected cost of implementing e�ort e,

C(e) = min
{pt(·)}

E

[
T∑
t=1

βtpt(θ
t)

∣∣∣∣∣e
]

s.t. (VP) βW1(e)− e ≥ u0

(IC-e) e ∈ argmax
ê∈[0,1]

βW1(ê)− ê

(IC-f∗) f∗t (·) solves the dynamic programming problem in (1) and (2),

where θt ∼ π(·|e).

The rest of the section reformulates the (VP), (IC-e) and (IC-f) constraints into a

form suitable for taking �rst-order conditions. Since the agent �nds the no-fraud policy

is optimal at e�ort e, the (VP) constraint may be rewritten non-recursively as

(VP′) E

[
T∑
t=1

βtu(pt(θ
t))

∣∣∣∣∣e
]
− e ≥ u0.

The no-fraud constraint, (IC-f∗) may also be rewritten non-recursively. By the one-

shot deviation principle, the constraint may be formulated as a set of constraints, one

for each history θ̂t, that requires the agent to prefer the no-fraud continuation policy

over suppressing θ̂t only. Adopting the convention that all expectations are with respect
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to the real signal distribution π(·|e), the constraint may be rewritten as

(IC-f∗) for all θ̂τ , E

[
T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ = θ̂τ

]

≥ E

[
φ(θτ )

π(θτ |e)

(
βτu(pτ (θτ )− c(θ̂τ )) +

T∑
t=τ+1

βtu(pt(θ
t))

)∣∣∣∣∣e, θτ−1 = θ̂τ−1

]
.

Note that the expectation for counterfeiting includes the likelihood ratio, φ(θτ )
π(θτ |e) in order

to replace the (implicitly included) real signal distribution with the counterfeit signal

distribution.

Finally, the (IC-e) constraint is complicated because it involves a continuum of

inequalities (one for each e), each of which is complex because the agent may deviate

to a di�erent fraud policy for di�erent e�ort levels ê 6= e. A common simpli�cation is

to replace (IC-e) with its �rst-order condition,

W ′1(e) = 1.

This is problematic for two reasons. Firstly, �rst-order conditions are merely nec-

essary (not su�cient) for the agent to �nd e an optimal e�ort choice. Thus, this new

constraint involves a relaxation of the principal's problem. Appendix B establishes that

the relaxed and original problems share the same solution when there is one time period

(T = 1), under some mild conditions on the signal distribution π. It is an open question

whether the �rst-order approach is valid when there are more time periods.

Secondly, the �rst-order condition is not well-de�ned, as the value function W1 is

not di�erentiable at all e�ort levels. The agent's value function is the upper envelope

of a set of di�erentiable functions, one for each fraud policy. The upper envelope

need not be di�erentiable at e�ort choices where the agent is indi�erent between two

fraud policies. However, the constraint only requires W1 to be di�erentiable at the

implemented e�ort e. Theorem 1 of Clausen and Strub (2011) shows that the value

function is di�erentiable at e, since e is an optimal choice for the agent. Moreover, the

same theorem establishes that W ′1(e) may be evaluated at the agent's optimal fraud
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policy (i.e. no-fraud). Hence,

W ′1(e) =

[
d

dê
E

[
T∑
t=1

βtu(pt(θ
t))

∣∣∣∣∣ê
]] ∣∣∣∣∣

ê=e

(10)

= E

[
T∑
t=1

πe(θ
t|e)

π(θt|e)
βtu(pt(θ

t)

∣∣∣∣∣e
]

(11)

= E

[
T∑
t=1

t∑
τ=1

πe(θτ |e)
π(θτ |e)

βtu(pt(θ
t)

∣∣∣∣∣e
]
. (12)

This establishes that

(IC-e′) E

[
T∑
t=1

t∑
τ=1

πe(θτ |e)
π(θτ |e)

βtu(pt(θ
t))

∣∣∣∣∣e
]

= 1.

is a relaxation of (IC-e).

After replacing the (VP), (IC-e) and (IC-f∗) constraints with the constraints above,

the reformulated problem is suitable for taking �rst-order conditions:

Problem 3. The principal's reformulated implementation problem is

C(e) = min
pt(·)

E

[
T∑
t=1

βtpt(θ
t)

∣∣∣∣∣e
]

s.t. (VP′) E

[
T∑
t=1

βtu(pt(θ
t))

∣∣∣∣∣e
]
− e ≥ u0

(IC-e′) E

[
T∑
t=1

t∑
τ=1

πe(θτ |e)
π(θτ |e)

βtu(pt(θ
t))

∣∣∣∣∣e
]

= 1.

(IC-f∗) for all θ̂τ , E

[
T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ = θ̂τ

]

≥ E

[
φ(θτ )

π(θτ |e)

(
βτu(pτ (θτ )− c(θ̂τ )) +

T∑
t=τ+1

βtu(pt(θ
t))

)
∣∣∣∣∣e, θτ−1 = θ̂τ−1

]
,

where all expectations are taken with respect to θt ∼ π(·|e).
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5.2 Characterization

Let (λ, µ,
{
νt(θ

t)
}

) be the Lagrange multipliers on the voluntary participation con-

straint, e�ort incentive constraint, and no-fraud incentive constraint at history θt. The

following theorem characterizes the optimal payment policy in the two cases, that the

fraud constraint is slack (i.e. (IC-f∗) holds with strict inequality) or binds (i.e. (IC-f∗)

holds with equality).

Theorem 2. If {p∗t (·)} is an optimal solution to Problem 3 with Lagrange multipliers

(λ∗, µ∗, {ν∗t (·)}), then:

1. If the no-fraud incentive constraint (IC-f∗) is slack at history θt, then

1

u′(p∗t (θ
t))

=
1

u′(p∗t−1(θt−1))︸ ︷︷ ︸
yesterday

+µ∗
πe(θt|e)
π(θt|e)︸ ︷︷ ︸
good news
measure

−ν̄∗t (θt−1)
φ(θt)

π(θt|e)︸ ︷︷ ︸
suspicious news

measure

, (13)

where the �rst term on the right is replaced by λ∗ for t = 1, and

ν̄∗t (θt−1) =
∑
θ̂t

ν∗t (θt−1, θ̂t). (14)

2. If the no-fraud incentive constraint (IC-f∗) binds at histories (θt−1, θt) and (θt−1, θ′t),

then p∗τ (θt−1, θt, ·) = p∗τ (θt−1, θ′t, ·) for all τ ≥ t.

The �rst part identi�es three components of payments when the no-fraud constraint

does not bind, i.e. at histories where the agent strictly prefers not to destroy the

signal and replace it with a counterfeit. The terms in the �rst-order condition may be

interpreted as follows. In a pure insurance problem (absent any moral hazard or fraud

concerns), the principal's �rst-order condition would be

1

u′(p∗t (θ
t))

=
1

u′(p∗t−1(θt−1))︸ ︷︷ ︸
yesterday

,

which means that the agent's payment is the same at every history, i.e. complete

insurance and consumption smoothing. Adding in moral hazard incentive concerns

(but leaving aside fraud concerns), the principal's �rst-order condition would be

1

u′(p∗t (θ
t))

=
1

u′(p∗t−1(θt−1))︸ ︷︷ ︸
yesterday

+µ∗
πe(θt|e)
π(θt|e)︸ ︷︷ ︸
good news
measure

,
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which means that the agent is rewarded more after better news about its e�ort e. The

marginal likelihood ratio in the last term is a standard measure of good news in moral

hazard problems, and is discussed by Milgrom (1981). Brie�y, higher values represent

better news about the agent's e�ort, positive and negative values are possible, and its

expected value is zero. Finally, in the moral hazard with counterfeit signals model, the

�rst-order condition is

1

u′(p∗t (θ
t))

=
1

u′(p∗t−1(θt−1))︸ ︷︷ ︸
yesterday

+µ∗
πe(θt|e)
π(θt|e)︸ ︷︷ ︸
good news
measure

−ν̄∗t (θt−1)
φ(θt)

π(θt|e)︸ ︷︷ ︸
suspicious news

measure

,

which means the agent is rewarded less after more suspicious news. In the last term,

the measure of suspiciousness is the likelihood ratio that the signal was drawn from

the counterfeit distribution versus the real distribution (for the contracted e�ort level

e). Higher likelihood ratios indicate more suspicious signals. The likelihood ratio is

multiplied by ν̄∗t (θt−1), which is the sum of the Lagrange multipliers at that history.

The νt(θ
t−1, θ̂t) multiplier is non-zero only if the no-fraud incentive constraint binds

for θ̂t. These multipliers are summed because deterring fraud a�ects payments in the

same way, regardless of the signal being suppressed: signals that appear suspicious are

punished.

The �rst-order condition (13) only applies if the no-fraud constraint is slack at θt.

If it binds, then the �rst-order condition would pay the agent too little, which would

give the agent an incentive to suppress the signal. In other words, if the signal is

unsuppressible, the principal is at liberty to punish the agent according to the �rst-

order condition. If the signal is suppressible, then the principal must be lenient after

su�ciently bad news. When the principal is lenient in this way, the agent is paid enough

to be indi�erent between committing fraud or not. If the no-fraud constraint binds for

two histories (θt−1, θt) and (θt−1, θ′t), then the agent's expected discounted utility is

the same, since the payo� from fraud is the same in both cases. The second part of

the theorem establishes that these histories are treated identically at all subsequent

time periods. This means that if θt is worse news than θ′t, then θt is forgiven more.

The principal �nds it optimal to discard su�ciently bad news from consideration �

but only if the news is suppressible. This result is similar to a �nding of Allen and

Gale (1992). In their setting, fraud gives rise to incomplete contracts that disregard

informative signals.

The proof of the �rst part involves elementary manipulation of the �rst-order condi-

tions of Problem 3, so it is in the appendix. The proof of the second part appears below.

The proof strategy is to suppose (for the sake of contradiction) that the payments do
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di�er across the two signals θt and θ
′
t, and construct a new payment policy that stochas-

tically swaps the two signals. The new payment policy implements the same e�ort and

the no-fraud policy at the same implementation cost � but as in Corollary 1, the prin-

cipal could reduce its implementation cost be replacing the lottery with its certainty

equivalent. This is a contradiction.

Proof of Theorem 2 part 2. Suppose for the sake of contradiction that at some his-

tories (ητ−1, ητ ) and (ητ−1, η′τ ), the no-fraud constraint binds but for some τ ′ ≥ τ ,

p∗τ ′(η
τ−1, ητ , ·) 6= p∗τ ′(η

τ−1, η′τ , ·). This proof will construct a new payment policy that

implements the same e�ort e and the no-fraud policy at lower implementation cost.

Consider the payment policy {p̂t(·)} that swaps (ητ−1, ητ ) and (ητ−1, η′τ ), i.e.

p̂t(θ
t) =


p∗t (η

τ−1, η′τ , θτ+1, . . . , θt) if θτ = (ητ−1, ητ ),

p∗t (η
τ−1, ητ , θτ+1, . . . , θt) if θτ = (ητ−1, η′τ ),

p∗t (θ
t) otherwise.

Since the no-fraud constraint binds at both histories, the agent's value is the same, i.e.

Wτ+1(e; ητ−1, ητ ) = Wτ+1(e; ητ−1, η′τ ).

Under the new payment policy, the agent's value {Ŵ t(e; ·)} is obtained by swapping

(ητ−1, ητ ) and (ητ−1, η′τ ) in {Wt(e; ·)}. Before time τ , the value functions under both

payment policies are the same, so fraud is deterred by the principal of optimality.

After time τ , the value functions are swapped between the two histories, but fraud is

deterred by both continuation payment policies, so fraud is deterred under the new

payment policy {p̂t(·)}.
However, the new payment policy has a di�erent probability distribution of pay-

ments (at e�ort e). This change may be undone by randomizing between the two

payment policies based on a random draw ετ ∈ {ητ , η′t} at the histories (ηt−1, ηt) and

(ηt−1, η′t). (The random draws at all other histories are degenerate.) For example, one

such lottery payment policy is

p̃t(θ
t; εt) =


p∗t (θ

t) if θτ−1 = ητ−1, θτ ∈ {ητ , η′τ}, and ετ = θτ ,

p̂t(θ
t) if θτ−1 = ητ−1, θτ ∈ {ητ , η′τ}, and ετ 6= θτ ,

p∗t (θ
t) otherwise,
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where ετ is drawn from

ψτ (ετ |θτ , ετ−1) = π(ετ |e, ετ ∈
{
ητ , η

′
τ

}
).

Since both the original payment policy {p∗t (·)} and the swapped payment policy {p̂t(·)}
deter fraud, the lottery payment policy {p̃t(·; ·)} that randomizes between them deters

fraud as well. Since the probability distribution of payments is the same under {p̃t(·; ·)}
and {p∗t (·)} when the agent follows the no-fraud policy, the left side of the e�ort incentive
constraint (IC-e′) is the same in both cases. This is most simply seen by studying the

form of the e�ort constraint based on (11):

EθT , εT

[
T∑
t=1

πe(θ
t|e)

π(θt|e)
βtu(p̃t(θ

t; εt))

∣∣∣∣∣e
]

= EθT

[
T∑
t=1

πe(θ
t|e)

π(θt|e)
βtu(p∗t (θ

t))

∣∣∣∣∣e
]
.

Thus, {p̃t(·; ·)} implements e�ort e and the no-fraud policy in Problem 3 at the same

implementation cost as {p∗t (·)}. However, lottery payment policies are suboptimal, as

Corollary 1 generalizes to the setting of Problem 3. Thus, {p∗t (·)} is a suboptimal

payment policy � a contradiction.

To summarize, optimal payment policies in the moral hazard with counterfeit signals

model are closely related to those in standard moral hazard settings. As in standard

settings, the payment policies feature insurance and consumption smoothing as well as

higher payments after better news about the agent's e�ort. However, to deter fraud,

optimal payments reward suspicious signals less, and are lenient on suppressible bad

news.

6 Counterfeit Good News

In the click fraud and fake job interview examples, the agent is able to replace �no news�

with counterfeit good news. While all good news signals are equally indicative of high

e�ort, some good news signals appear more suspicious than others. For example, a click

originating from an IP address within the organized computer crime group, the Russian

Business Network (discussed below), is suspicious good news. Similarly, an unemployed

worker's claim to have attended a job interview with a close relative is suspicious good

news. The principal's problem is to reward good news without creating perverse incen-

tives for creating fake good news. This section the studies counterfeit good news case,

and �nds that the implementation cost increases as the real and counterfeit good news

signals become more alike. This is followed by an argument that the model matches
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Google's controversial history with click fraud.

6.1 Model

In the counterfeit good news case of Problem 3, the agent's e�ort increases the arrival

probability a(e) of good news, which is an unsuppressible signal θ̂t drawn from some

distribution πG(·). Otherwise no news arrives, which is represented by the null signal

θ̂t = 0. Thus, the private signals are drawn from

π(θ̂|e) =

1− a(e) if θ̂ = 0,

a(e)πG(θ̂) if θ̂ 6= 0.

The agent may suppress the null signal at no cost, in which case a counterfeit signal is

drawn from φ(·). In the counterfeit good news setting, Supp(φ) ⊆ Supp(πG) = Θ\ {0},
so it is possible to study what happens as these distributions become more alike.

6.2 Analysis

The �rst-order condition (13) from Theorem 2 implies that after good news θt 6= 0, the

agent is paid

1

u′(p∗t (θ
t))

=
1

u′(p∗t−1(θt−1))︸ ︷︷ ︸
yesterday

+µ∗
a′(e)

a(e)︸ ︷︷ ︸
good news
measure

−ν̄t(θt−1)
φ(θt)

π(θt|e)︸ ︷︷ ︸
suspicious news

measure

. (15)

As usual, more suspicious news is rewarded less. In general, it is not possible to rank

unsuspicious bad news versus suspicious good news. But in this case, it is clear that

to deter fraud, at least one signal has to be paid less than the null signal � otherwise

fraud would be a dominant strategy. Therefore, su�ciently suspicious news is paid less

than no news.

Proposition 2. If {pt(·)} is a solution to the counterfeit good news case of Problem 3,

then some (suspicious) good news signal is rewarded less than no news. That is, at

every history θt−1, there is some signal θ 6= 0 such that

u(pt(θ
t−1, θ)) + βWt+1(e; θt−1, θ) ≤ u(pt(θ

t−1, 0)) + βWt+1(e; θt−1, 0). (16)

Proof. If (16) were violated for every θ 6= 0, then multiplying both sides by φ(θ) and
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summing up would gives∑
θ 6=0

φ(θ)
[
u(pt(θ

t−1, θ)) + βWt+1(e; θt−1, θ)
]
> u(pt(θ

t−1, 0)) + βWt+1(e; θt−1, 0).

This means the agent would strictly prefer to commit fraud � a contradiction.

The following proposition shows that the principal's implementation problem be-

comes weakly more di�cult as the real and counterfeit signal distributions, πG(·) and
φ(·) become more alike. Let C(e;α) be the implementation cost of e�ort e when the

counterfeit signals are distributed according to φ′ = αφ + (1− α)πG, where α ∈ [0, 1].

As α decreases, φ′ and πG become more alike.

Proposition 3. In the counterfeit good news setting, C(e; ·) is weakly decreasing and

C(e; 0) =∞.

The proof strategy is as follows: if a payment policy implements (e, {f∗t (·)}) under
the counterfeit signal distribution φ′, then it also implements (e, {f∗t (·)}) under the

counterfeit signal distribution φ(·). The key step to establishing this is to imagine

allowing the agent to make draws of counterfeit signals from the real distribution rather

than the counterfeit distribution, keeping the payment policy �xed. The agent would

always prefer draws from the real distribution. If this were not the case, then the

(absurd) payment policy that throws out all good news signals, and replaces them with

a good news signal drawn from the real distribution, would also deter fraud.

Lemma 4. If {pt(·)} is a solution to the counterfeit good news case of Problem 3, then

the agent would prefer a (hypothetical) counterfeit signal draw from πG(·) rather than

φ(·) at every history ητ−1, i.e.

E

[
φ(θτ )

πG(θτ )

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(17)

≤ E

[
T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
.

Proof. Suppose for the sake of contradiction that (17) is violated at some history ητ−1:

The rest of the proof constructs a new lottery-based payment policy that implements e

at the same implementation cost, in violation of Corollary 1. Consider the new lottery

payment policy

p̃t(θ
t; εt) = p(εt)
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de�ned in terms of the following distribution. Let εt be the random variable that equals

θt, except at a history (ητ−1, ητ ) in which ητ 6= 0 is good news, in which case it is a

random draw from πG(·),

ψt(εt|θt; εt−1) =

I(ε = θt) if εt−1 6= ητ−1 or θt = 0,

πG(εt) if εt−1 = ητ−1 and θt 6= 0.
(18)

Under the no-fraud policy, {p̃t(·; ·)} has the same probability distribution of payments

as {pt(·)} and implements e. Moreover, since the agent strictly prefers draws from φ(·)
rather than πG(·), the agent prefers not to conduct fraud at history (ητ−1, 0):

Eεt,θt

[
φ(θτ )

πG(θτ )

T∑
t=τ

βtu(p̃t(θ
t; εt))

∣∣∣∣∣e, ετ−1 = ητ−1, θτ 6= 0

]

= Eθt

[
T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(by construction)

< Eθt

[
φ(θτ )

πG(θτ )

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(by (17))

≤ Eθt
[

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ = (ητ−1, 0)

]
(since {pt(·)} deters fraud)

= Eεt,θt

[
T∑
t=τ

βtu(p̃t(θ
t; εt))

∣∣∣∣∣e, (ετ−1, θτ ) = (ητ−1, 0)

]
(by construction).

Therefore, the lottery payment policy {p̃t(·; ·)} implements e optimally, in contradiction

to Corollary 1.

Proof of Proposition 3. Firstly, it is straightforward to verify that any e�ort e > 0 is

unimplementable when α = 0, i.e. when counterfeit and real signals are identically

distributed.

Secondly, �x some α ∈ (0, 1), and set φ′ = αφ + (1 − α)πG. Suppose {pt(·)} is an
optimal payment policy for implementing e∗ given the counterfeit signal distribution φ′

in Problem 3. Since the counterfeit signal distribution does not appear in the (VP′) and

(IC-e′) constraints, the contract ({pt(·)} , e, {f∗t (·)}) satis�es these constraints under φ.
By Lemma 4, the agent prefers counterfeit signal draws from πG than φ′ at every history
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ητ−1, i.e.

E

[(
α
φ(θτ )

πG(θτ )
+ (1− α)

) T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(19)

≤ E

[
T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
.

This implies that the agent prefers draws from πG over φ:

E

[
φ(θτ )

πG(θτ )

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(20)

≤ E

[
T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
.

Since a draw from φ′ is a randomization between a draw from πG and φ, it follows that

the agent prefers draws from φ′ over φ:

E

[
φ(θτ )

πG(θτ )

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(21)

≤ E

[
φ′(θτ )

πG(θτ )

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
.

This establishes that the contract also satis�es the (IC-f∗) constraint under φ at every

history (ητ−1, 0):

E

[
T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ = (ητ−1, 0)

]

≥ E

[
φ′(θτ )

πG(θτ )

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(by (IC-f∗) under φ′)

≥ E

[
φ(θτ )

πG(θτ )

T∑
t=τ

βtu(pt(θ
t))

∣∣∣∣∣e, θτ−1 = ητ−1, θτ 6= 0

]
(by (21)).

Therefore, the contract is also feasible under φ, so the implementation cost under

counterfeit distribution φ is not higher than under φ′.
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6.3 Click Fraud

In the internet advertising industry, advertisers pay website publishers to direct vis-

itors to the advertisers' pages. Advertisers prefer to place their ads on high quality

websites that attract the most visitors. However, advertisers do not observe website

quality. Rather, they only observe the clicks from each website. But this is problem-

atic: publishers may attempt to defraud advertisers with fake clicks.8 Thus, advertisers

face a problem like Problem 1: how should they pay website publishers to create good

websites and direct visitors to the ads when clicks may be fabricated?

Google is an intermediary in the internet advertising market that solves the adver-

tiser's problem on the advertiser's behalf. Google (and its competitors) collect informa-

tion about each click, and decide how much to charge advertisers and reward publishers.

When the industry was in its infancy, advertisers were concerned that they were paying

for fake clicks. In 2006, Google paid a $90M settlement in a class action lawsuit led by

Lane's Gifts that alleged that Google colluded with publishers to defraud advertisers

with click fraud. Google attempted to reassure advertisers that they had solved the

click fraud problem:

By far, most invalid clicks are caught by our automatic �lters and discarded

before they reach an advertiser's bill. (3/8/2006)

Undetected click fraud constitute less than 0.02% of all clicks. (2/28/2007)

However, leading computer security pundits were convinced this problem was di�cult

to solve:

Google's $6 billion-a-year advertising business is at risk. Google is testing

a new advertising model to deal with click fraud: cost-per-action ads. �

Bruce Schneier (7/13/2006)

Why Google Click Fraud is NOT 0.02% � zdnet.com (3/1/2007)

On the other hand, Google's CEO (but not Google's public relations spokespersons) at

the time believed that even if click fraud were rampant, this would not be a problem:9

8 Simple attempts at click fraud, such as repeatedly clicking on ads, are easy to detect by tracking IP
(internet protocol) addresses. More sophisticated fraud based on botnets of hacked computers are more
di�cult to detect. Markets for these botnets are provied by organized crime networks such as the Russian
Business Network of St Petersburg (see �Fatal System Error�, by Joseph Menn (2010)).

9 He added that Google polices clickfraud because � we don't like it, and because it does, at least for
the short-term, creates some problems before the advertiser sees it, we go ahead and try to detect it and
eliminate it.�
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Eventually, the price that the advertiser is willing to pay for the conversion

will decline, because the advertiser will realize that these are bad clicks, in

other words, the value of the ad declines, so over some amount of time, the

system is in-fact, self-correcting. In fact, there is a perfect economic solution

which is to let it happen. � Eric Schmidt (3/3/2006)

Today, Google's claim that it has click fraud under control is uncontested in the

technical press. Google still uses a pay-per-click mechanism (rather than another type

such as �cost-per-action�), which discards suspicious clicks and blacklists publishers with

too many suspicious clicks. Google still maintains a team of engineers to improve their

click fraud detection algorithms.

These observations are consistent with the counterfeit good news model. Theorem 1

asserts that optimal contracts deter risky fraud, which matches Google's claim of deter-

ring almost all fraud rather than Schmidt's view that �a perfect economic solution. . . is

to let it happen.� Theorem 2 asserts that payments are lower after more suspicious

signals, which matches Google's policy of discarding suspicious clicks. Proposition 2

asserts that a su�ciently suspicious signal is worse than no news, which loosely matches

Google's policy of blacklisting websites with too many suspicious clicks. Even though

it is optimal to deter fraud regardless of the signal distributions, Proposition 3 shows

that there is a value to improving the fraud detection technology, which is consistent

with Google's investment in these technologies.

7 Bad News Suppression

In the security �rm example, the �rm might suppress intrusions as a substitute for

preventing them. A similar issue arises in safety and environmental regulation, in

which regulators aim to enforce minimum standards on industrial plants. Namely, a

plant's management may prefer to suppress incidents rather than follow regulations.10

This section studies the setting in which the agent may exert e�ort to decrease the

probability of an incident, and may also attempt to suppress news about the incident.

Incidents are equally indicative of low e�ort, but some incidents may appear more

suspicious than others, i.e. they may appear like failed suppression attempts. This

section shows that incidents with higher suppression costs are treated less leniently in

10 A familiar example is depicted in the �lm, Erin Brockovich, which according to her is �true and probably
98% accurate.� (See http://www.brockovich.com/movie.html.) Paci�c Gas and Electric attempted to
suppress hexavalent chromium contamination in Hinkley, California by buying a�ected houses. Brockovich
was a paralegal assisting with the real estate transactions and became suspicious when she found medical
records in the case �les.
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optimal contracts. This result, as well as the main theorems are discussed in the context

of computer security intrusions.

7.1 Model

The bad news suppression model is based on the reformulated Problem 3, but with the

costly fraud extension described in Section 4.2. For simplicity, this section focuses on the

one fraud period case (i.e. T = 1). The agent's e�ort decreases the arrival probability

a(e) of bad news, which is a signal distributed according to πB(·). Otherwise no news

arrives, which is represented by the null signal θ̂ = 0. After bad news θ̂ arrives, the

agent may attempt to suppress it at cost c(θ̂) ∈ [0,∞]. A new signal θ would then be

drawn from φ(·), which includes no news (θ = 0) and perhaps some unsuppressible bad

news signals in its support. As discussed in Section 4.2, lotteries may be optimal in

this setting. This leads to the following implementation problem.

Problem 4. The principal's problem in the bad news suppression case is

C(e) = min
p̃(·;·)

E [p̃(θ, ε)|e]

s.t. (VP′) E [u(p̃(θ, ε))|e]− e ≥ u0

(IC-e′) E

[
πe(θ|e)
π(θ|e)

u(p̃(θ, ε))

∣∣∣∣e] = 1.

(IC-f∗) for all θ̂ ∈ Θ,

Eε

[
u(p̃(θ̂, ε))

∣∣∣θ̂] ≥ Eε,θ [ φ(θ)

π(θ|e)
u(p̃(θ, ε)− c(θ̂))

∣∣∣∣e] ,
where all expectations are taken with respect θ ∼ π(·|e) and ε ∼ ψ(·|θ).

7.2 Analysis

The following proposition establishes that if the suppression cost of bad news θ′ is

higher than that of θ′′, then the payment for the signal θ′ is weakly lower. This result

generalizes part 2 of Theorem 2, which establishes that punishments are limited when

suppression is either costless or in�nitely costly. This section studies the intermediate

case, and shows that punishments are more lenient for signals with lower suppression

costs.

Proposition 4. Suppose p̃(·; ·) is an optimal lottery payment policy in Problem 4.

1. If θ is a suppressible signal, then it is awarded a degenerate lottery. That is, there

exists p(θ) such that p(θ) = p̃(θ; ε) for all ε.
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2. If θ′ and θ′′ are suppressible signals with c(θ′) < c(θ′′), then p(θ′) ≥ p(θ′′).

The proof is in the appendix.

7.3 Computer Security Intrusions

On September 20, 2011, the Dutch computer security �rm DigiNotar declared bankruptcy.11

It was a �rm entrusted by all of the major web browsers to certify websites belonged to

who they claimed.12 DigiNotar discovered on July 19 that its servers had been hacked,

and faced an important choice: should it announce that it had been hacked and su�er

an immediate loss of reputation, or should it attempt to suppress the intrusion? If the

hackers only planned to exploit the intrusion for small-scale attacks such as breaking

into a small number of email accounts, then the intrusion into DigiNotar would probably

go unnoticed. If on the other hand the hackers exploited the intrusion for a widespread

attack on many targets, then the intrusion would be discovered very publicly, and a

major scandal might ensue. DigiNotar decided to suppress the intrusion, and issued

a press release the following day claiming that �DigiNotar's certi�cates are among the

most reliable in the �eld.�

Unfortunately for DigiNotar, the attackers were politically motivated and wanted to

attract attention. The attackers exploited DigiNotar to issue hundreds of fake certi�-

cates for websites including Google, Skype, and Iranian dissident forums. By August

28, three hundred thousand Iranian Google accounts had been hacked, and the general

public learned about the security failure. DigiNotar later admitted to covering up the

intrusion, but had already been blacklisted by the major web browsers, and bankruptcy

was inevitable.

DigiNotar's customers were not the only people a�ected by this intrusion. Since

every major web browser trusted DigiNotar to practice careful security policies, ev-

ery internet user was potentially a�ected by the intrusion. For example, even though

Google was not in any contractual relationship with DigiNotar, the intrusion allowed

Iranian hackers to intercept Google's communications. Therefore, we should think of

the principal in this moral hazard problem as being either the web browser develop-

ers or regulators (such as the Internet Corporation of Assigned Numbers and Names),

who might consider choosing optimal policies to implement adequate security proce-

11 These events are documented in http://en.wikipedia.org/wiki/DigiNotar, which cites a com-
prehensive list of news stories. The news report by Charles Arthur, �Rogue web certi�cate could have
been used to attack Iran dissidents� is helpful for describing the political context. It is available at
http://www.guardian.co.uk/technology/2011/aug/30/faked-web-certificate-iran-dissidents.

12 This type of �rm is called a certi�cate authority.
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dures for internet infrastructure. Since security �rms may attempt to suppress intrusion

incidents, the principal faces an implementation problem like Problem 4.

In the DigiNotar incident, the suppression was essentially costless (DigiNotar merely

chose not to revoke the fake certi�cates), albeit with a risk of an enormous loss. In

this case, optimal contracts deter suppression of intrusion incidents: Theorem 1 implies

that in optimal contracts, the agent is deterred from taking on the risks associated

with fraud. This suggests that the current arrangements for internet security �rms are

ine�cient, as DigiNotar had an incentive to take on a large risk to suppress the intrusion.

Theorem 2 suggests how web browser developers or regulators might improve welfare:

optimal contracts make punishments after intrusions occur, and suspicious intrusions

that appear like failed suppression attempts are punished more.

In other situations, suppression of bad news is costly. For example, if qui tam

whistleblower incentives were available to DigiNotar employees, then DigiNotar might

attempt to bribe its employees to keep the intrusion secret.13 In this case, Proposition 1

also implies that optimal contracts deter suppression of intrusion incidents. The general

characterization of optimal payment policies of Theorem 2 does not apply. However,

Proposition 4 does apply: intrusion incidents that are more costly to suppress are

treated less leniently. For example, if the intrusion was in a system visible to many

employees, then bribes would be more expensive, so the optimal punishment would be

relatively severe.

8 Conclusion

This paper studied a class of moral hazard problems in which, in addition to choosing

an unobservable productive e�ort, the agent has access to a fraud technology that

allows him to suppress signals and replace them with counterfeits. This form of fraud

is ine�cient as it exposes the agent to gratuitous risk, involves unproductive costly

activity, and hampers incentive provision. The �rst main result establishes that every

optimal contract may be transformed into another optimal contract without fraud, and

optimal contracts do not involve risky or costly fraud. The second main result shows

that the principal uses two mechanisms to deter fraud: punishing suspicious signals

and being lenient on bad signals that the agent declined the opportunity to suppress.

All su�ciently bad suppressible news is treated identically: the optimal payment policy

ignores how bad the news is.

13 In the United States, the False Claims Act, 31 U.S.C. � 3730 allows whistleblowers to �le civil suits
against contractors that defraud the federal government and receive a �qui tam� portion of the damages.
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These results o�er an explanation of why the internet advertising market evolved

into its current form in which click fraud is deterred, suspicious clicks are discarded,

and intermediaries invest in click fraud detection technology. The results also suggest

that the large risks taken by internet security �rms (speci�cally, certi�cate authorities)

in suppressing major intrusions are the result of suboptimal incentives.

While the paper focused on how the possibility of fraud a�ects incentives, it raises

two future directions for explaining why fraud occurs. Fraud may occur if the principal

is unable to commit to being lenient on the agent, or if the principal is poorly informed

about the agent's fraud technology. More generally, this paper provides a benchmark

for understanding fraud. If fraud is rampant in some industry such as public medical

insurance, one might ask: does the principal punish suspicious news, and is she lenient

on suppressible bad news? If either answer is �no�, then a potential explanation for the

fraud has been identi�ed.
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A Omitted Proofs

Proof of Theorem 2, claim 1. The �rst-order condition with respect to p∗t (θ
t) in Prob-

lem 3 is

0 =− π(θt|e)βt + λ∗π(θt|e)βtu′(p∗t (θt)) + µ∗π(θt|e)
t∑

τ=1

πe(θτ |e)
π(θτ |e)

βtu′(p∗t (θ
t))

+
t∑

τ=1

ν∗τ (θτ )βtu′(p∗t (θ
t))−

t∑
τ=1

∑
θ̂

ν∗τ (θτ−1, θ̂)π(θt|e)
φ(θt|e)
π(θt|e)

βtu′(p∗t (θ
t))

which can be rewritten as

1 =λu′(θt, p
∗
t (θ

t)) + µ
t∑

τ=1

πe(θτ |e)
π(θτ |e)

u′(p∗t (θ
t))

+
t∑

τ=1

ν∗τ (θτ )
u′(p∗t (θ

t))

π(θt|e)
−

t∑
τ=1

∑
θ̂

ν∗τ (θτ−1, θ̂)
φ(θt|e)
π(θt|e)

u′(p∗t (θ
t))

and

1

u′(p∗t (θ
t))

= λ∗+ µ∗
t∑

τ=1

πe(θτ |e)
π(θτ |e)

+
t∑

τ=1

ντ (θτ )
1

π(θτ |e)
−

t∑
τ=1

∑
θ̂

ν∗τ (θτ−1, θ̂)
φ(θτ )

π(θτ |e)
.

This can be rewritten recursively as

1

u′(p∗t (θ
t))

=
1

u′(p∗t−1(θt−1))
+ µ∗

πe(θt|e)
π(θt|e)

+ ν∗t (θt)
1

π(θt|e)
− φ(θt)

π(θt|e)
∑
θ̂

ν∗t (θt−1, θ̂),

(22)

If the no-fraud constraint is slack at history θt, then ν∗t (θt) = 0, which gives expression

(13).

Proof of Proposition 4. Let (λ, µ, ν(·)) be the Lagrange multipliers for the voluntary

participation, e�ort incentive, and fraud incentive constraints. The �rst-order condi-

tions with respect to p̃(θ; ε) may be written as

1

u′(p̃(θ, ε))
= λ+ µ

a′(e)

a(e)
+ ν(θ)

1

π(θ|e)
−
∑
θ̂

ν(θ̂)
u′(p̃(θ, ε)− c(θ̂))

u′(p̃(θ, ε))

φ(θ)

π(θ|e)
. (23)
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If θ is suppressible, then φ(θ) = 0, so (23) simpli�es to

1

u′(p̃(θ, ε))
= λ+ µ

a′(e)

a(e)
+ ν(θ)

1

π(θ|e)
, (24)

which does not depend on ε. This establishes the �rst part.

If the no-fraud constraints bind at both θ′ and θ′′, then

u(p(θ′)) = Eε,θ

[
φ(θ)

π(θ|e)
u(p̃(θ, ε)− c(θ′))

∣∣∣∣e] ,
u(p(θ′′)) = Eε,θ

[
φ(θ)

π(θ|e)
u(p̃(θ, ε)− c(θ′′))

∣∣∣∣e] ,
which implies that u(p(θ′)) > u(p(θ′′)). On the other hand, if the no-fraud constraint

does not bind at θ′′, then ν(θ′′) = 0 so that

1

u′(p̃(θ, ε))
= λ+ µ

a′(e)

a(e)
. (25)

Since ν(θ′) ≥ 0, this establishes p(θ′) ≥ p(θ′′).

B Validity of the First-Order Approach

The analysis in Section 5 studies a �rst-order approach relaxation of the principal's

problem. This section provides conditions under which the �rst-order approach is valid,

i.e. the solutions to the two problems coincide. The techniques of Rogerson (1985a),

Jewitt (1988), and Conlon (2009) are inapplicable here. To see this, consider the �rst-

order condition for the one-time period case of the principal's problem,

1

u′(p(θ))
= λ+ µ

πe(θ|e)
π(θ|e)

− ν φ(θ)

π(θ|e)
.

The approach of the aforementioned papers is to show that the right side is increasing

and concave in either θ or e. Their conditions are applicable to the �rst two terms, but

not the �nal term. In particular, there is no reason to assume that better signals about

the agent's e�ort are less suspicious. (On the contrary, agents prefer counterfeiting

technologies that mimic high e�ort.)

This section establishes that the relaxed problem is equivalent to the original prob-

lem under the following conditions:

1. there is only one time period (T = 1), and
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2. the signal distribution can be decomposed into a convex combination

π(θ|e) = a(e)πG(θ) + (1− a(e))πB(θ),

of two distributions that do not depend on e, and

3. the arrival probability a(·) in this decomposition is di�erentiable and concave in

e�ort e with a′(e) > 0 for all e.

Note that the distributions in the two special cases (counterfeiting good news and

suppressing bad news) are special cases of the second condition.

The �rst condition implies that if (p∗, e∗, f∗) is an optimal contract in the relaxed

problem, then the agent's value function may be written as

W (e) =
∑
θ∈Θ

π(θ|e)u(p∗(θ)).

This is because, the agent does not �nd it optimal to commit fraud even after deviating

from e�ort e∗, as the no-fraud incentive constraint (IC-f∗) does not depend on e in the

one period case (nor in the �nal period in the general case).

Under the second condition, choosing e to maximize W (e) − e is isomorphic to

choosing A = a(e) to maximize∑
θ∈Θ

[AπG(θ) + (1−A)πB(θ)]u(p∗(θ))− a−1(A). (26)

That is, e∗ maximizes W (e)− e if and only if A∗ = a(e∗) maximizes (26).

The third condition implies that (26) is concave. This means that �rst-order con-

ditions are su�cient for identifying maximizers of (26). By the chain rule and the

condition that a′ > 0, the set of stationary points of W (e)− e and (26) are isomorphic

(i.e. W ′(e∗) = 1 if and only if A∗ = a(e∗) is a stationary point of (26)). Therefore, if

W ′(e∗) = 1, then A∗ = a(e∗) is a stationary point of (26), and A∗ maximizes (26), so

e∗ maximizes W (e)− e.
To summarize, under the three conditions, the �rst-order condition W ′(e∗) = 1 is

su�cient for establishing that e∗ is an optimal choice for the agent. Hence, the optimal

solution to the relaxed problem is also feasible (and hence optimal) in the original

problem.
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