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Abstract

This paper studies design of a recommender system for organizing social learning on

a product. The optimal design trades off fully transparent social learning to improve

incentives for early experimentation, by selectively over-recommending a product in

the early phase of the product release. Under the optimal scheme, experimentation

occurs faster than under full transparency but slower than under the first-best opti-

mum, and the rate of experimentation increases over an initial phase and lasts until

the posterior becomes sufficiently bad in which case the recommendation stops along

with experimentation on the product. Fully transparent recommendation may become

optimal if the (socially-benevolent) designer does not observe the agents’ costs or the

agents choose the timing of receiving a recommendation.
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1 Introduction

Most of our choices rely on recommendations by others. Whether it is for picking movies

or stocks, choosing hotels or buying online, the experiences of others can help us greatly.

Increasingly, internet platforms play the role of recommenders, enabling users to learn from

other users in a scale never seen before. Amazon and Netflix are two best known mediators

of social learning on books and movies, but for virtually any “experience” goods, there are

platforms that mediate social learning among users: Yelp (for restaurants), TripAdvisors

(for hotels), RateMD (for doctors), and RateMyProfessors (for professors) are just a few of
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many examples. Search engines, such as Google, Bing and Yahoo, organize social discovery

of relevant websites based on “search experiences” of users themselves. Social networking

sites such as Facebook and LinkedIn do the same for the other quintessential “experience”

good: friends; as they link us to new candidates for friends based on the experiences of other

friends.

While the economics of social learning is now well appreciated, the prior literature has

focused only on its positive aspect.1 A normative perspective—namely, how best to super-

vise users both to experiment with new products and to inform about their experiences to

others—has been lacking. In particular, providing incentives for experimentation by early

users is challenging, precisely because they do not internalize the benefit late users will reap.

The lack of sufficient initial experimentation — known as the “cold start” problem — leads

to a collapse of social learning, and to the death (even before takeoff) of products that should

have been worthy of mainstream discovery. The cold start problem is particularly relevant

for new unestablished products. With proliferation of self-production, such products are no

longer an exception but rather are a rule.2 In fact, the availability of social learning may

worsen the incentives for early experimentation, since individuals would rather wait and free

ride on information that others may provide.3 That is, a recommender system may in fact

crowd out the information production, undermining its foundation.

The current paper studies the design of a recommender system that optimally achieves the

dual purpose of social learning. In keeping with the realism, we focus on the non-monetary

tools for achieving them. Indeed, monetary transfers are seldom used for motivating exper-

imentation. The reason may be because it is difficult to tell whether a reviewer performs

experimentation conscientiously or submits an unbiased review; monetary transfers cannot

incentivize a genuine experimentation. Instead, our key insight is that incentives for infor-

mation acquisition can be best provided by the judicious use of the recommender system

itself.

To fix an idea, suppose the recommender system, say an online movie platform, recom-

mends a user movies that she will truly enjoy based on the reviews by the past users — call

this truthful recommendation — for the most part, but mixes it with recommendation of

new movies that need experimenting — call this fake recommendation or “spamming.” As

1For instance, the main question asked in the literature was on under what circumstances, observational
learning leads to full revelation of the underlying state.

2For instance, once considered vanity publishing, self-publication has exploded in recent years with the
availability of easy typesetting and e-books media. Bowker Market Research estimates that in 2011 more
than 300,000 self-published titles were issued (New York Times, “The Best Book Review Money Can Buy,”
August 25, 2012). While still at infancy, 3D printing and other similar technologies anticipate a future with
an increased self-manufacturing of products. Proliferation of self production points means a market place
populated by too many products/titles to be easily recognized, further increasing the importance of the
recommender system.

3See Chamley and Gale (1994), and Gul and Lundholm (1995) for models illustrating this.
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long as the platform keeps the users informed about whether recommendation is truthful or

fake and as long as it commits not to “spam” too much, users will happily follow the recom-

mendation and in the process perform the necessary experimentation. Indeed, we show that

the optimal design of the recommender system trades off fully transparent social learning to

improve incentives for early experimentation, by selectively over-recommending a product in

the early phase of its product life cycle.

Of course, the extent to which information acquisition can be motivated in this way

depends on the agent’s cost of acquiring information, and the frequency with which the

platform provides truthful recommendation (as opposed to fake recommendation). Also

important is the dynamics of how the platform mixes truthful recommendation with the

fake recommendation over time after the initial release of the product (e..g, movie release

date). For instance, for an ex ante unappealing product, it is unlikely for many users even

with low cost of experimentation to have experienced it immediately after its release, so

recommending such a product in the early stage is likely to be met with skepticism. To be

credible, therefore, the platform must commit to truthful recommendation with sufficiently

high probability in the early stage of the product life, meaning that the designer will spam

very little on such a product and the learning will be slow in the early stage; but over time,

recommendation becomes credible so learning will speed up. This suggests that there will

be a nontrivial dynamics in the optimal recommendation strategy as well as social learning.

The current paper seeks to explore how a recommender system optimally balances the

tradeoff between experimentation and learning, and what kind of learning dynamics such a

mechanism would entail and what implications they will have on the welfare, particularly

when compared with the (i) No Social Learning benchmark (where there is no platform

supervision of learning) and the (ii) Full Transparency (where the platform commits to

always recommend truthfully). In the baseline analysis, we consider a platform that commits

to maximize the welfare of its users. Social welfare maximization is an important normative

benchmark that should be of interest in any market design or public policy inquiry. From

a more positive perspective, social welfare maximization could result from a Bertrand type

competition.4 We later relax the main assumptions, allowing for both profit maximization

and lack of commitment on the part of the designer.

While the optimal recommender system we identify rests on normative justification, its

main feature is consistent with some aspects of the practice. For instance, search engines

4One can imagine that the each platform provides recommendation for a large collection of products of
varying vintages. The recommendation on a number of products with different vintages means that the
social welfare gain from optimal experimentation will be spread evenly across users arriving in different
times. For instance, a user who “sacrifices” for future users on some products will be over-compensated by
the benefits from past learning on other products. Hence, firms competing in a Bertrand fashion by offering
a maximal (contemporaneous) social welfare will be forced to offer a maximal intertemporal social welfare
on each product.
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such as Google is known to periodically shuffle its rankings of search items to give exposure

to relatively new unknown sites, very much consistent with the idea of distorting recommen-

dation for the less exposed and lesser known items. More generally, our finding is consistent

with the casual observations that ratings of many products appear to be inflated.5 Ratings

inflations are often committed by sellers (as opposed to the platforms) who have every inter-

est to push their products even against the interests of the consumers.6 But, platforms have

at their disposal several instruments to control the degree of ratings inflation; for instance,

they can install filters detecting fake reviews and post reviews about reviewers or reviews

(e.g., via purchase verification and the voting of “most helpful” reviews).7 Our theory sug-

gests that some tolerance for reviews inflation can be a result of optimal supervision of social

learning by a benevolent designer.

Our starting point is the standard “workhorse” model of experimentation, borrowed from

Keller, Rady and Cripps (2005). The designer provides a good to agents whose binary value

is unknown. By consuming this good, a possibly costly choice, short-run agents might find

out whether the value is high or not. Here, we are not interested in the incentives of agents to

report truthfully their experience to the designer: because they consume this good only once,

they are willing to do so. But while agents do not mind reporting their experience, their

decision to consume the good or not does not account for the benefits of experimentation.

Importantly, agents do not communicate to each other directly. The designer mediates the

information transmission. This gives rise to a difficult problem for the designer: How should

she control social learning as to yield the right amount of experimentation?

Our model can also be viewed as introducing design into the standard model of social

learning (hence the title). In standard models (for instance, Bikhchandani, Hirshleifer and

Welsch, 1992; Banerjee, 1993), the sequence of agents take decisions myopically, ignoring

the impact of their action on learning and future decisions and welfare. Here instead, the

interaction between consecutive agents is mediated by the designer, who controls the flow

of information. Such dynamic control is present in Gershkov and Szentes (2009), but that

paper considers a very different environment, as there are direct payoff externalities (voting).

Much closer is a recent working paper of Kremer, Mansour and Perry (2012). There, how-

ever, learning is trivial: the quality of the good is ascertained as soon as a single consumer

buys it. Finally, our paper joins a growing literature on Bayesian persuasion. This litera-

ture asks how a principal can credibly manipulate agents’ beliefs to influence their behavior.

Aumann, Maschler and Stearns (1995) analyze this question in repeated games with incom-

plete information. Kamenica and Gentzkow (2011), Rayo and Segal (2010), and Ostrovsky

5Jindal and Liu (2008) find that, on Amazon, 60% of the reviews have a rating of 5.0, and roughly 45%
products and 59% members have an average ranting of 5.

6Luca and Zervas (2013) suggest that as much as 16% of the Yelp reviews are suspect fraudulent.
7Mayzlin et al (2012) find that verification of stay required for a reviewer to leave a review on a hotel at

Expedia resulted in fewer fake reviews at Expedia than at TripAdvisor which has no such requirement.
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and Schwarz (2010) study the problem in a variety of organizational settings. The current

paper pursues the same question in a dynamic setting. In our model, the designer manipu-

lates the beliefs of agents so as to influence their experimentation behavior, and the agents’

experimentation in turn determines the designer’s belief and the optimal manipulation she

chooses.8

2 Model

A product, say a “movie,” is released at time t = 0, and, for each continuous time t ≥ 0, a

constant flow of unit mass of consumers arrive, having the chance to consume the product,

i.e., watch the movie. In the baseline model, the consumers are short-lived, so they make

one time decisions, and leave the market for good. (We later extend the model to allow the

agents to choose the time after arrival at which they make an experimentation decision. ) A

consumer incurs the cost c ∈ (0, 1) for watching the movie. The cost can be the opportunity

cost of the time spent, or the price charged, for the movie. The movie is either “good,”

in which case a consumer derives the (expected) surplus of 1, or “bad,” in which case the

consumer derives (expected) surplus of 0. The quality of the movie is a priori uncertain

but may be revealed over time.9 At time t = 0, the probability of the movie being good,

or simply “the prior,” is p0. We shall consider all values of the prior, although the most

interesting case will be p0 ∈ (0, c), so consumers would not consume given the prior.

Consumers do not observe the decisions and experiences by previous consumers. There

is a designer who can mediate social learning by collecting information from previous con-

sumers and disclosing that information to the current consumers. We can think of the

designer as an Internet platform, such as Netflix, Google or Microsoft, who have access to

users’ activities and reviews, and based on this information, provide search guide and prod-

uct recommendation to future users. As is natural with these examples, the designer may

obtain information from its own marketing research or other sources, but importantly from

the consumers’ experiences themselves. For instance, there may be some flow of “fans” who

try out the good at zero cost. We thus assume that some information arrives at a constant

base rate ρ > 0 plus the rate at which consumers experience the good. Specifically, if a

8Ely, Frankel and Kamenica (2013) study design of optimal signal structure in a dynamic setting, but the
information in their model does not have any consequence on behavior and thus entails no incentive issues.
By contrast in our model, the information is of instrumental value, affecting both consumption and future
information acquisition.

9The agents’ preferences may involve idiosyncratic components, with the quality capturing only their
common preference component. The presence of idiosyncratic preference component does not affect the
analysis since each must decide based on the expected surplus he will derive from his consumption of
the good. The idiosyncratic preferences would make the designer’s interpretation of the agents’ reviews
nontrivial, as reviews may be bad even for the “good” product. This motivates our assumption that the
learning on a product may be gradual.
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flow of size µ consumes the good over some time interval [t, t+dt), then the designer learns

during this time interval that the movie is “good” with probability λg(ρ + µ)dt, that it is

“bad” with probability λb(ρ+µ)dt, where λg, λb ≥ 0, and ρ is the rate at which the designer

obtains the information regardless of the consumers’ behavior. The designer starts with the

same prior p0, and the consumers do not have access to the “free” learning.

The designer provides feedback on the movie to the consumers at each time, based on

the information she has learnt so far. Since the decision for the consumers are binary,

without loss, the designer simply decides whether to recommend the movie or not. The

designer commits to the following policy: At time t, she recommends the movie to a fraction

γt ∈ [0, 1] of consumers if she learns the movie to be good, a fraction βt ∈ [0, 1] if she learns

it to be bad, and she recommends or spam to fraction αt ∈ [0, 1] if no news has arrived by

t. We assume that the designer maximizes the intertemporal net surplus of the consumers,

discounted at rate r > 0, over (measurable) functions (γt, βt, αt).

The information possessed by the designer at time t ≥ 0 is succinctly summarized by the

designer’s belief, which is either 1 in case the good news has arrived, 0 in case the bad

news has arrived by that time, or some pt ∈ [0, 1] in the event of no news having arrived

by that time. The “no news” posterior, or simply posterior pt must evolve according to

Bayes rule. Specifically, suppose for time interval [t, t + dt), there is a a flow of learning by

the designer at the rate µt, (including both the “free” learning ρ and the flow αt of agents

experimenting) during the period. Suppose no news has arrived by t+dt, then the designer’s

updated posterior at time t + dt must be

pt + dpt =
pt(1− λgµtdt)

pt(1− λgµtdt) + (1− pt)(1− λbµtdt)
.

Rearranging and simplifying, the posterior must follow the law of motion:10

ṗt = −(λg − λb)µtpt(1− pt), (1)

with the initial value at t = 0 given by the prior p0. It is worth noting that the evolution

of the posterior depends on the relative speed of the good news arrival versus the bad news

arrival. If λg > λb (so the good news arrive faster than the bad news), then “no news” leads

the designer to form a pessimistic inference on the quality of the movie, with the posterior

falling. By contrast, if λg < λb, then “no news” leads to on optimistic inference, with the

posterior rising. We label the former case good news case and the latter bad news case.

10Subtracting pt from both sides and rearranging, we get

dpt = − (λg − λb)µtpt(1− pt)dt

pt(1− λgµtdt) + (1− pt)(1− λbµtdt)
= −(λg − λb)µtpt(1− pt)dt+ o(dt),

where o(dt) is a term such that o(dt)/dt → 0 as dt → 0.
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(Note that the former case includes the special case of λb = 0, a pure good news case, and

the latter includes λg = 0, a pure bad news case.)

In our model, the consumers do not directly observe the designer’s information, or her

belief. They can form a rational belief, however, on the designer’s belief. Let gt and bt denote

the probability that the designer’s belief is 1 and 0, respectively. Just as the designer’s belief

evolves, the consumers’ belief on the designer’s belief evolves as well, depending on the rate

at which the agents (are induced to) experiment. Specifically, given the experimentation

rate µt,

ġt = (1− gt − bt)λgµtpt, (2)

with the initial value g0 = 0, and

ḃt = (1− gt − bt)λbµt(1− pt), (3)

with the initial value b0 = 0.11 Further, these beliefs must form a martingale:

p0 = gt · 1 + bt · 0 + (1− gt − bt)pt. (4)

The designer chooses the policy (α, β, γ), measurable, to maximize social welfare, namely

W(α, β, χ) :=

∫

t≥0

e−rtgtγt(1− c)dt+

∫

t≥0

e−rtbtβt(−c)dt+
∫

t≥0

e−rt(1− gt − bt)αt(pt − c)dt,

where (pt, gt, bt) must follow the required laws of motion: (1), (2), (3), and (4), where

µt = ρ+ αt is the total experimentation rate and r is the discount rate of the designer.12

In addition, for the policy (α, β, γ) to be implementable, there must be an incentive on

the part of the agents to follow the recommendation. Given policy (α, β, γ), conditional on

being recommended to watch the movie, the consumer will have the incentive to watch the

movie, if and only if the expected quality of the movie—the posterior that it is good—is no

11These formulae are derived as follows. Suppose the probability that the designer has seen the good news
by time t and the probability that she has seen the bad news by t are respectively gt and bt. Then, the
probability of the good news arriving by time t + dt and the probability of the bad news arriving by time
t+ dt are respectively

gt+dt = gt + λgµtptdt(1− gt − bt) and bt+dt = bt + λbµt(1 − pt)dt(1− gt − bt).

Dividing these equations by dt and taking the limit as dt → 0 yields (2) and (3).
12More precisely, the designer is allowed to randomize over the choice of policy (α, β) (using a relaxed

control, as such randomization is defined in optimal control). A corollary of our results is that there is no
gain for him from doing so.
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less than the cost:

gtγt + (1− gt − bt)αtpt
gtγt + btβt + (1− gt − bt)αt

≥ c. (5)

Since the agents do not directly access the news arriving to the designer, so the exact

circumstances of the recommendation—whether the agents are recommended because of

good news or despite no news—is kept hidden, which is why the incentives for following the

recommendation is based on the posterior formed by the agents on the information of the

designer. (There is also an incentive constraint for the agents not to consume the good when

not recommended by the designer. Since this constraint will not bind throughout, as the

designer typically desires more experimentation than the agents, we shall ignore it.)

Our goal is to characterize the optimal policy of the designer and the pattern of social

learning it induces. To facilitate this characterization, it is useful to consider three bench-

marks.

• No Social Learning: In this regime, the consumers receive no information from

the designer, so they decide based on the prior p0. Since p0 < c, no consumer ever

consumes.

• Full Transparency: In this regime, the designer discloses her information, or her

beliefs, truthfully to the consumers. In our framework, the full disclosure can be

equivalently implemented by the policy of γt ≡ 1, βt ≡ 0 and αt = 1{pt≥c}.

• First-Best: In this regime, the designer optimizes on her policy, without having to

satisfy the incentive compatibility constraint (5).

To distinguish the current problem relative to the first-best, we call the optimal policy

maximizing W subject to (1), (2), (4) and (5), the second-best policy.

Before proceeding, we observe that it never pays the designer to lie about the news if

they arrive.

Lemma 1. It is optimal for the designer to disclose the breakthrough (both good and bad)

news immediately. That is, an optimal policy has γt ≡ 1, βt ≡ 0.

Proof. If one raises γt and lowers βt, it can only raise the value of objective W and relax (5)

(and do not affect other constraints). �

Lemma 1 reduces the scope of optimal intervention by the designer to choosing α, the

recommendation policy following “no news.” In the sequel, we shall thus fix γt ≡ 1, βt ≡ 0

and focus on α as the sole policy instrument.
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3 Optimal Recommendation Policy

We begin by characterizing further the process by which the designer’s posterior, and the

agents’ beliefs over designer’s posterior, evolve under arbitrary policy α. To understand how

the designer’s posterior evolves, it is convenient to work with the likelihood ratio ℓt =
pt

1−pt

of the posterior pt. Given the one-to-one correspondence between the two variables, we shall

refer to ℓ simply as a “posterior” when there is little cause for confusion. It then follows that

(1) can be restated as:

ℓ̇t = −ℓt∆λgµt, ℓ0 :=
p0

1− p0
, (6)

where ∆ := λg−λb
λg

, assuming for now λg > 0.

The two other state variables, namely the posteriors gt and bt on the designer’s belief,

are pinned down by ℓt (and thus by pt) at least when λg 6= λb (i.e., when no news is not

informationally neutral.) (We shall remark on the case of the neutrality case ∆ = 0.)

Lemma 2. If ∆ 6= 0, then

gt = p0

(

1−
(
ℓt
ℓ0

) 1
∆

)

and bt = (1− p0)

(

1−
(
ℓt
ℓ0

) 1
∆
−1
)

.

This result is remarkable. A priori, there is no reason to expect that the designer’s belief

pt serves as a “sufficient statistic” for the posteriors that the agents attach to the arrival of

news, since different histories for instance involving even different experimentation over time

could in principle lead to the same p.

It is instructive to observe how the posterior on the designer’s belief evolves. At time

zero, there is no possibility of any news arriving, so the posterior on the good and bad news

are both zero. As time progresses without any news arriving, the likelihood ratio either

falls or rises depending on the sign of ∆. Either way, both posteriors rise. This enables the

designer to ask credibly the agents to engage in costly experimentation with an increased

probability. To see this specifically, substitute gt and bt into (5) to obtain:

αt ≤ ᾱ(ℓt) := min







1,

(
ℓt
ℓ0

)− 1
∆ − 1

k − ℓt
ℓt







, (7)

if the normalized cost k := c/(1− c) exceeds ℓt and ᾱ(ℓt) := 1 otherwise.

The next lemma will figure prominently in our characterization of the second-best policy

later.

9



Lemma 3. If ℓ0 < k and ∆ 6= 0, then ᾱ(ℓt) is zero at t = 0, and increasing in t, strictly so

whenever ᾱ(ℓt) ∈ [0, 1).13

At time zero, the agents have no incentive for watching the movie since the good news

could never have arrived instantaneously, and their prior is unfavorable. Interestingly, the

agents can be asked to experiment more over time, even when ∆ > 0, in which case the

posterior ℓt falls over time! If λg > 0, the agents attach increasingly higher posterior on

the arrival of good news as time progresses. The “slack incentives” from the increasingly

probable good news can then be shifted to motivate the agents’ experimentation when there

is no news.

Substituting the posteriors from Lemma 2 into the objective function and using µt =

ρ+αt, and with normalization of the objective function, the second-best program is restated

as follows:

[SB] sup
α

∫

t≥0

e−rtℓ
1
∆
t

(

αt

(

1− k

ℓt

)

− 1

)

dt

subject to

ℓ̇t = −∆λg(ρ+ αt)ℓt, (8)

0 ≤ αt ≤ ᾱ(ℓt). (9)

Obviously, the first-best program, labeled [FB], is the same as [SB], except that the

upper bound for ᾱ(ℓt) is replaced by 1. We next characterize the optimal recommendation

policy. The precise characterization depends on the sign of ∆, i.e., whether the environment

is that of predominantly good news or bad news.

3.1 “Good news” environment: ∆ > 0

In this case, as time progresses with no news, the designer becomes pessimistic about the

quality of the good. Nevertheless, as observed earlier, the agents’ posterior on the arrival

of good news improves. This enables the designer to incentivize the agents to experiment

increasingly over time. The designer can accomplish this through “spamming” — by rec-

ommending agents to watch even when no good news has arrived. Such a policy “pools”

recommendation across two very different circumstances; one where the good news has ar-

rived and one where no news has arrived. Although the agents in the latter circumstance will

13The case ∆ = 0 is similar: the same conclusion holds but ᾱ need to be defined separately.
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never follow the recommendation wittingly, pooling the two circumstances for recommenda-

tion enables the designer to siphon the slack incentives from the former circumstance to the

latter, and thus can incentivize the agents to “experiment” for the future generation, so long

as the recommendation in the latter circumstance is kept sufficiently infrequent/improbable.

Since the agents do not internalize the social benefit of experimentation, spamming becomes

a useful tool for the designer’s second-best policy.

Whether and to what extent the designer will induce such an experimentation depends

on the tradeoff between the cost of experimentation for the current generation and the

benefit of social learning the experimentation will yield for the future generation of the

agents. And this tradeoff depends on the posterior p. To fix the idea, consider the first-

best problem and assume ρ = 0, so there is no free learning. Suppose given posterior p,

the designer contemplates whether to experiment a little longer or to stop experimentation

altogether for good. This is indeed the decision facing the designer given the cutoff decision

rule: intuitively once experimentation becomes undesirable, it can only remain undesirable

with a worsened posterior. If she induces experimentation a little longer, say by dt, the

additional experimentation will cost (c − p)dt. But, the additional experimentation may

bring a good news in which case the future generation of agents will enjoy the benefit of

v :=
∫
e−rt(1 − c)dt = (1− c)/r. Since the good news will arrive at the rate λgdt, but only

if the movie is good, the probability of which is the posterior p, the expected benefit from

the additional experimentation is vλgpdt. Hence, the additional experimentation is desirable

if and only if vλgp ≥ c − p, or p ≥ c

(

1− v

v+ 1
λg

)

. The same tradeoff would apply to the

second-best scenario, except that absent free learning, the designer can never motivate the

agents to experiment; that is, ᾱ(p) = 0, so the threshold posterior is irrelevant.

For the general case with free learning ρ > 0, the optimal policy is described as follows.

Proposition 1. The second-best policy prescribes, absent any news, the maximal experi-

mentation at α(p) = ᾱ(p) until the posterior falls to p∗g, and no experimentation α(p) = 0

thereafter for p < p∗g, where

p∗g := c

(

1− rv

ρ+ r(v + 1
λg
)

)

,

where v := 1−c
r

is the continuation payoff upon the arrival of good news. The first-best

policy has the same structure with the same threshold posterior, except that ᾱ(p) is replaced

by 1. If p0 ≥ c, then the second-best policy implements the first-best, where neither No

Social Learning nor Full Transparency can. If p0 < c, then the second-best induces a slower

experimentation/learning than the first-best.

The detailed analysis generating the current characterization (as well as the subsequent
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ones) is provided in the Appendix. Here we provide some intuition behind the result. With a

free learning at rate ρ > 0, stopping experimentation does not mean abandoning all learning.

The good news that may be learned from additional experimentation may be also learned

in the future for free. One must thus discount the value of learning good news achieved

by additional experimentation by the rate at which the same news will be learned in the

future for free: λgρ

r
. The threshold posterior can be seen to equate this adjusted value of

experimentation with its flow cost:14

λgpv

(
1

(λgρ/r) + 1

)

︸ ︷︷ ︸

value of experimentation

= c− p
︸ ︷︷ ︸
cost of

experimentation

.

Note the opportunity cost of experimenting is the same for first-best and second-best

scenario, since the consequence of stopping the experimentation is the same in both cases.

Hence, the first-best policy has the same threshold p∗g, but the rate of experimentation is

α = 1 when the posterior is above the threshold level. If p0 ≥ c, then since ᾱ(p) = 1 for

all p, the second-best implements the first-best. Note that spamming is necessary to attain

the first-best. Since p∗g < c, the policy calls for experimentation even when it is myopically

suboptimal. This means that Full Transparency cannot implement the first-best even in this

case since under Full Transparency agents will stop experimenting before p reaches p∗g.

Suppose next p0 ∈ (p∗g, c). Then, the second-best cannot implement the first-best. The

rate of experimentation is larger under first-best than under second-best, so the threshold

posterior is reached sooner under First-Best than under Second-Best, and of course the

news arrives sooner, thus enabling the social learning benefit to materialize sooner (both

in the sense of stochastic dominance), under First-Best than under Second-Best. Another

difference is that the rate of experimentation at a given posterior p depends on the prior p0
in the Second-Best (but not in First-Best). The reason that, for the same posterior p > p∗g,

the designer would have built more credibility of having received the good news so she can

ask the agents to experiment more, the higher the prior is.

Figure 1 plots the time it takes to reach the threshold posterior under First-Best and

Second-Best. Clearly, the experimentation induced under First-Best is front-loaded and thus

monotonic. Interestingly, the experimentation induced by Second-Best is front-loaded but

hump-shaped. Closer to the release date, the arrival of good news is very unlikely, so the

unfavorable prior means that the agents can hardly be asked to experiment. Consequently,

experimentation takes off very slowly under Second-Best. As time progresses, the agents

attach increasingly higher probability on the arrival of good news, increasing the margin for

14The validity of this interpretation rests on the necessary condition of the optimal control problem an-
alyzed in the appendix. It also can be found from the dynamic programming heuristic, which is available
upon request.

12



α

3

1

0 1 2 t

first-best
policy

second-best policy

Figure 1: Path of α for ∆ > 0 and (c, ρ, p0, r, λg, λb) = (2/3, 1/4, 1/2, 1/10, 4/5, 0).

the designer to leverage the slack incentives from the good news event to encourage agents

to experiment even when no news has arrived. The experimentation rate accordingly picks

up and increases, until the posterior falls below p∗g, at which point all experimentation stops.

Interestingly, the arrival rate of bad news λb does not affect the threshold posterior

p∗g. This is because the tradeoff does not depend on the arrival rate of bad news. But

the arrival rate of the bad news does affect both the duration and the rate of incentive-

compatible experimentation. As can be seen from (1), as λb rises (toward λg), it slows down

the decline of the posterior. Hence, it takes a longer time for the posterior to reach the

threshold level, meaning that the agents are induced to experiment longer (until the news

arrive or the threshold p∗ is reached), holding constant the per-period experimentation rate.

Meanwhile, the incentive compatible rate of experimentation ᾱ(p) increases with λb, since

the commitment never to recommend in the event of bad news means that a recommendation

is more likely to have been a result of a good news. Hence, experimentation rises in two

different senses when λb rises.

Next, Proposition 1 also makes the comparison with the other benchmarks clear. First,

recall that both No Social Learning and Full Transparency involve no experimentation by the

agents (i.e., they only differ in that the Full Transparency enables social learning once news

arrives whereas the No Social Learning does not). By contrast, as long as p0 ∈ (p∗g, c), Second-

Best involves nontrivial experimentation, so Second-Best produces strictly more information

than either regime, and it enables full social learning when good news arrives. In fact, since

full transparency is a feasible policy option under Second-Best, this suggests that Second-

Best strictly dominates Full Transparency (which in turn dominates No Social Learning

).

13



3.2 “Bad news” environment: ∆ < 0

In this case, the designer grows optimistic over time about the quality of the good absent

no news. Likewise, the agents also grow optimistic over time from no breakthrough news

under full transparency. In this sense, unlike the good news case, the incentive conflict

between the designer and the agents is lessened in this case. The conflict does not disappear

altogether, however, since the agents still do not internalize the social benefit from their

experimentation. For this reason, “spamming” proves to be valuable to the designer even in

this case.

The logic of the optimal recommendation policy is similar to the good news case. Namely,

it is optimal for the agents to experiment if and only if the (true) posterior is higher than

some threshold (as is shown in the Appendix). This policy entails a different experimentation

pattern in terms of time, however; now the experimentation is back-loaded rather than front-

loaded (which was the case with good news). This also changes the nature of the learning

benefit at the margin, and this difference matters for design of the recommendation policy.

To appreciate this difference, consider the first-best problem in a simplified environment

in which there is no free learning (i.e., ρ = 0) and no arrival of good news (i.e., λg = 0).

Suppose as before the designer contemplates whether to engage the agents in experimentation

or not, at a given posterior p. If she does not trigger experimentation, there will be no more

experimentation in the future (given the structure of the optimal policy), so the payoff is zero.

If she does trigger experimentation, likewise, there will continue to be an experimentation

unless bad news arrives (in which case the experimentation will be stopped for good). The

payoff from such an experimentation consists of two terms:

p− c

r
+ (1− p)

(c

r

)( λb
r + λb

)

.

The first term represents the payoff from consuming the good irrespective of the bad news.

The second term captures the saving of the cost by stopping consumption whenever the bad

news arrives.15 In this simple case, therefore, the first-best policy prescribes full experimen-

tation if and only if this payoff is nonnegative, or p ≥ c
(

1− λb(1−rc)
r+λb(1−rc)

)

.

This reasoning reveals that the nature of learning benefit is crucially different here. In

the good news case, at the margin the default is to stop watching the movie, so the benefit

of learning was to trigger (permanent) “consumption of the good movie.” By contrast, the

benefit of learning here is to trigger (permanent) “avoidance of the bad movie,” since at

the margin the default is to watch the movie. With free learning ρ > 0 and good news

λg ∈ (0, λb), the same learning benefit underpins the tradeoff both in the first-best and

15The bad news arrives only if the good is bad (whose probability is 1 − p) with (the time discounted)
probability λb

r+λb

, and once it arrives, there is a permanent cost saving of c/r, hence the second term.
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second-best policy, but the tradeoff is moderated by two additional effects: (1) free learning

introduces opportunity cost of experimentation, which reduces its appeal and thus increases

the threshold posterior and time for triggering experimentation;16 and (2) good news may

trigger permanent conversion even during no experimentation phase. The result is presented

as follows.

Proposition 2. The first-best policy (absent any news) prescribes no experimentation until

the posterior p rises to p∗∗b , and then full experimentation at the rate of α(p) = 1 thereafter,

for p > p∗∗b , where

p∗∗b := c

(

1− rv

ρ+ r(v + 1
λb
)

)

.

The second-best policy implements the first-best if p0 ≥ c or if p0 ≤ p̂0 for some p̂0 < p∗∗b . If

p0 ∈ (p̂0, c), then the second-best policy prescribes no experimentation until the posterior p

rises to p∗b, and then maximal experimentation at the rate of ᾱ(p) thereafter for any p > p∗b,

where p∗b > p∗∗b . In other words, the second-best policy triggers experimentation at a later

date and at a lower rate than does the first-best.

The proof of the proposition as well as the precise formula for p̂0 is in the appendix. Here

we provide some explanation for the statement.

The first-best policy calls for the agents to start experimenting strictly before the true

posterior rises to c, namely when p∗∗b < c is reached. Obviously, if p0 ≥ c, then since the

posterior can only rise, absent any news, the posterior under full transparency is always

above the cost, so Full Transparency is enough to induce the first-best outcome. Recall that

Full Transparency can never implement first-best even for p0 ≥ c in the good news case.

If p0 < c, then the optimal policy cannot be implemented by full transparency. In order

to implement such a policy, the designer must again rely on spamming, recommending the

good even when the good news has not arrived. Unlike the case of ρ > 0, the first-best may

be implementable as long as the initial prior p0 is sufficiently low. In that case, it takes a

relatively long time for the posterior to reach p∗∗b , so by the time the critical posterior is

reached, the agents attach a sufficiently high posterior on the arrival of good news that the

designer’s recommendation becomes credible.

If p0 ∈ (p̂0, c), then the first-best is not attainable even with spamming. In this case,

the designer triggers experimentation at a higher posterior and thus at a later date than she

does under the first-best policy. This is because the scale of subsequent experimentation is

limited by incentive compatibility, which lowers the benefit from triggering experimentation.

Since there is less benefit to be had from triggering experimentation, the longer will the

16Due to free learning, the “no experimentation” phase is never “absorbing.” That is, the posterior will
continue to rise and eventually pass the critical value, thus triggering the experimentation phase. This
feature contrasts with the “breakdowns” case of Keller and Rady (2012).
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Figure 2: Path of α for ∆ < 0 and (c, ρ, p0, r, λg, λb) = (1/2, 1, 2/7, 1/10, 1, 2)).

designer hang on to free learning than in first best.17 Figure 2 depicts the second-best

recommendation policy for this case.

The comparative statics with respect to parameters such as λb, r and ρ is immediate

from the inspection of the threshold posterior. Its intuition follows also naturally from the

reasoning provided before the proposition. The higher λb and r and the lower ρ are, the

higher is the “net” benefit from experimentation, so the designer triggers experimentation

sooner.

3.3 “Neutral news” environment: ∆ = 0

In this case, the designer’s posterior on the quality of the good remains unchanged in the

absence of breakthrough news. Experimentation could be still desirable for the designer. If

p0 ≥ c, then the agents will voluntarily consume the good, so experimentation is clearly self-

enforcing. If p0 < c, then the agents will not voluntarily consume, so spamming is needed to

incentivize experimentation. As before the optimal policy has the familiar cutoff structure.

Proposition 3. The second-best policy prescribes, absent any news, the maximal experi-

mentation at α(p0) = ᾱ(p0) if p0 < p∗0, and no experimentation α(ℓ) = 0 if p < p∗0, where

p∗0 = p∗g = p∗b. The first-best policy has the same structure with the same threshold posterior,

except that ᾱ(p0) is replaced by 1. The first-best is implementable if and only if p0 ≥ c.

17This feature contrasts with the result of ρ > 0. The posterior at which to stop experimentation was
the same in the case between second-best and first-best regimes, since the consequence of stopping experi-
mentation was the same. This result changes when there are heterogeneous observable costs, as will be seen
later.
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3.4 Heterogenous observable costs

While the analysis of the bad and good news case brings out some common features of

supervised social learning, such as increasing experimentation early on, as well as delay,

one feature that apparently distinguishes the two cases is that the belief level at which

experimentation stops in the good news case is the socially optimal one, while –except when

first-best is achievable– experimentation starts too late in the bad news case (even in terms

of beliefs). Here, we argue that the logic prevailing in the bad news case is the robust one.

In particular, a similar phenomenon arises with good news once we abandon the extreme

assumption that all regular agents share the same cost level.

To make this point most clearly, consider the case of “pure” good news: λb = 0, λ :=

λg > 0. Suppose agents come in two varieties, or types j = L,H . Different types have

different costs, with 0 < ℓ0 < kL < kH , where, as before, kj =
cj

1−cj
. Hence, we assume that

at the start, neither type of agent is willing to buy. The flow mass of agents of type j is

denoted qj, with qL + qH = 1.

Furthermore, assume here that the cost is observable to the designer, so that she can

condition her recommendation on this cost. This implies that, conditional on her posterior

being ℓt < 1, she can ask an agent of type j to buy with a probability up to

ᾱj(ℓt) := min







1,

(
ℓt
ℓ0

)− 1
∆ − 1

kj − ℓt
ℓt







, (10)

as per (7). The following proposition elucidates the structure of the optimal policy. As

before, we index thresholds by either one or two asterisks, according to whether this threshold

pertains to the second- or first-best policy.

Proposition 4. Both the first-best and second-best policies are characterized by a pair of

thresholds 0 ≤ ℓL ≤ ℓH ≤ ℓ0, such that (i) all agents are asked to experiment with maximum

probability for ℓ ≥ ℓH ; (ii) only low cost agents experiment (with maximum probability) for

ℓ ∈ [ℓL, ℓH); (iii) no agent experiments for ℓ < ℓL. Furthermore, ℓ∗∗L = ℓ∗L, and ℓ
∗∗
H ≥ ℓ∗H ,

with a strict inequality whenever ℓ0 > ℓ∗∗H .

Not surprisingly, the lower common threshold is the threshold that applies whenever

there is only type of agent, namely the low-cost agent. There is no closed-form formula for

the upper threshold (although there is one for its limit as r → 0).

More surprising is the fact that, despite experimenting with a lower intensity in the

second-best, the designer chooses to call upon high-cost agents to experiment at beliefs

below the level at which she would do so in the first-best. She induces them to experiment

“more” than they should do, absent the incentive constraint. This is because of the incentive
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constraint of the low-cost agents: as she cannot call upon them to experiment as much as

she would like, she hangs on to the high-cost type longer (i.e., for lower beliefs) than she

would otherwise. This is precisely what happened in the bad news case: because agents

are only willing to buy with some probability in the second-best, the designer hangs on the

“free” experimentation provided by the flow ρ a little longer there as well.

Let us turn to the case of a continuum of costs, to see how the structure generalizes.

Agents’ costs are uniformly distributed on [0, c̄], c̄ ≤ 1. The principal chooses a threshold

kt ∈ [0, k̄] (where k̄ := c̄/(1 − c̄)) such that, when the principal’s belief is pt, an agent with

k ≤ kt is recommended to buy with probability αt(k) or 1, depending upon whether k ≤ ℓ0 or

not, while agents with higher cost types are recommended not to buy. (When the principal’s

belief is 1, all types of agents are recommended to buy.) Clearly, kt is decreasing in time.

Let t1 := inf{t : kt = ℓ0}. As some agents have arbitrarily low cost levels, we may set ρ = 0.

The optimal policy can be studied via optimal control. Appendix 6 provides the details for

the second-best (the first-best being a simpler case in which ā = 1). Figure 3 illustrates the

main conclusions for some choice of parameters. As time passes, ℓ and the upper threshold of

the designer γ decrease. At some time (t1), γ hits ℓ0 (here, for ℓ ≃ .4). For lower beliefs, the

principal’s threshold coincides with the first-best. Before that time, however, the threshold

that he picks lies above the first-best threshold for this belief; for these parameters, the

designer encourages all types to buy (possibly with some very small probability) when the

initial belief is high enough (for ℓ above .9). Although all types are solicited, the resulting

amount of experimentation is small early on, because types above l0 are not willing to buy

with high probability. As a result, the amount of experimentation is not monotonic: it first

increases, and then decreases. The dotdashed line in Figure 3 represents the total amount

of experimentation: it is below the first-best amount, as a function of the belief, until time

t1.

4 Endogenous entry

We now consider the case in which agents can decide when to get a recommendation. Agents

arrive at a unit flow rate over time, and an agent arriving at time t can choose to get

a recommendation at any date τ ≥ t (possibly, τ = +∞). Of course, if agents could

“continuously” get recommendations for free until they decide to purchase, if ever, it would

be weakly dominant to do so. Here instead, we assume that it is sufficiently costly to get

a recommendation that agents get only one, although we will ignore the cost from actually

getting a recommendation. Given this, there is no benefit in delaying the decision to buy

or not beyond that time. Hence, an agent born at time t chooses a stopping time τ ≥ t at

which to get a recommendation (“checking in”), as well as a decision to buy at that time,
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Figure 3: Optimal policy with a continuum of cost levels (here, k̄ = 2, ℓ0 = 1).

as a function of the recommendation he gets. Between the time the agent is born and the

time he checks is, he receives no information. Agents share the designer’s discount rate r.

We restrict attention to the case of “pure” good news: λ = λg > 0 = λb. All agents

share the same cost c > p0 of buying. Recommendations α are a function of time and the

designer’s belief, as before (they cannot be conditioned on a particular agent’s age, assumed

to be private information).

Hence, an agent maximizes the payoff

max
τ≥t

e−rτ (gτ (1− c) + (1− gτ )ατ (pτ − c)) .

Substituting k, ℓ0 and ℓ, this is equivalent to maximizing

Uτ := e−rτ (ℓ0 − ℓτ − ατ (k − ℓτ )) .

Suppose first full transparency, that is, α ≡ 0, and so Ut = e−rt(ℓ0 − ℓt). Note that the

timing at which agents check in is irrelevant for belief updating (because those who check in

never experiment), so that

ℓt = ℓ0e
−λρt.

The function Ut is quasi concave in t, with a maximum achieved at the time

t∗ = − 1

ρλ
ln
ℓ∗

ℓ0
, ℓ∗ :=

rℓ0
r + λρ

.
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The optimal strategy of the agents is then intuitive: an agent born before t∗ waits until

time t∗, trading off the benefits from a more informed decision with his impatience; an agent

arriving at a later time checks in immediately. Perhaps surprisingly, the cost c is irrelevant

for this decision: as the agent only buys if he finds out that the posterior is high, the surplus

(1− c) only scales his utility, without affecting his preferred timing.

Note that

ℓ0 − ℓ∗ =
ℓ0

r
ρλ

+ 1
, e−rt

∗

=

(
ℓ∗

ℓ0

) r
ρλ

,

so that in fact his utility is only a function of his prior and the ratio r
ρλ
. In fact, ρ plays two

roles: by increasing the rate at which learning occurs, it is equivalent to lower discounting

(hence the appearance of r/ρ); in addition, it provides an alternative and cheaper way of

learning to the agents consuming (holding fixed the total “capacity” of experimentation).

To disentangle these two effects, we hold fixed the ratio r
λρ

in what follows.

As a result of this waiting by agents that arrive early, a queue Qt of agents forms, which

grows over time, until t∗ at which it gets resorbed. That is,

Qt =

{
t if t < t∗;

0 if t ≥ t∗,

with the convention that Q is a right-continuous process.

To build our intuition about the designer’s problem, consider first the first-best problem.

Suppose that the designer can decide when agents check in, and whether they buy or not.

However, we assume that the timing decision cannot be made contingent on the actual

posterior belief, as this is information that the agents do not possess. Plainly, there is no

point in asking an agent to wait if he were to be instructed to buy independently of the

posterior once he checks in. Agents that experiment do not wait. Conversely, an agent that

is asked to wait –and so does not buy if the posterior is low once he checks in– exerts no

externality on other agents, and the benevolent designer might as well instruct him to check

in at the agent’s favorite time.

It follows that the optimal policy of the (unconstrained) designer must involve two times,

0 ≤ t1 ≤ t2, such that agents that arrive before time t1 are asked to experiment; agents

arriving later only buy if the posterior is one, with agents arriving in the interval (t1, t2]

waiting until time t2 to check in, while later agents check in immediately. Full transparency

is the special case t1 = 0, as then it is optimal to set t2 = t∗.

It is then natural to ask: is full transparency ever optimal?

Proposition 5. Holding fixed the ratio r
λρ
, there exists 0 ≤ ρ1 ≤ ρ2 (finite) such that it is

optimal to set
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Figure 4: The probability of a recommendation as a function of ℓ (here, (r, λ, ρ, k, ℓ0) =
(1/2, 2, 1/5, 15, 9)).

- for ρ ∈ [0, ρ1], 0 < t1 = t2;

- for ρ ∈ [ρ1, ρ2], 0 < t1 < t2;

- for ρ > ρ2, 0 = t1 < t2.

Hence, for ρ sufficiently large, it is optimal for the designer to use full transparency even

in the absence of incentive constraints. Naturally, this implies that the same holds once such

constraints are added.

Next, we ask, does it ever pay the incentive-constrained designer to use another policy?

Proposition 6. The second-best policy is different from full transparency if

ρ ≤ 1

λ

(
rℓ0 +

√
rℓ0

√
4kλ+ ℓ0

2k
− r

)

.

Note that the right-hand side is always positive if k is sufficiently close to ℓ0. On the

other hand, the right-hand side is negative for k large enough. While this condition is not

tight, this comparative static is intuitive. If ρ or k is large enough, full transparency is

very attractive: If ρ is large, “free” background learning occurs fast, so that there is no

point in having agents experiment; if k is large, taking the chance of having agent make the

wrong choice by recommending them to buy despite persistent uncertainty is very costly.

To summarize: For some parameters, the designer’s best choice consists in full transparency

(when the cost is high, for instance, or when learning for “free” via ρ is scarce). Indeed, this
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would also be the first-best in some cases. For other parameters, she can do better than full

transparency.

What is the structure of the optimal policy in such cases? This is illustrated in Figure 4.

There is an initial phase in which the designer deters experimentation by recommending the

good with a probability that is sufficiently high. In fact, given that agents would possibly be

willing to wait initially even under full transparency, the designer might be able to do just

that at the very beginning.

At some time t, all customers that have been waiting “check in” and are told to buy

with some probability –unless of course a breakthrough has obtained by then. It is optimal

for them to all check in at that very time, yet it is also optimal to experiment with them

sequentially, increasing continuously the probability with which they are recommended to

buy as the belief ℓ decreases, in a way that leaves them indifferent across this menu of (ℓ, α)

offered sequentially at that instant.18 The atom of customers is “split” at that instant, and

the locus of (ℓ, α) that is visited is represented by the locus (ℓ̃, α̃), which starts at a belief ℓ1
that is the result of the background experimentation only, and ends at ℓ2 at which point all

agents that have been waiting have checked in.

The locus ᾱ(ℓ) represents the locus of possible values (ℓ2, α2) that are candidate values for

the beginning of the continuation path once no agents are left in the queue;19 in particular,

full transparency is the special case in which α2 = 0 (in which case α1 = 0 as well). From

that point on, experimentation tapers off continuously, with agents buying with probability

α(ℓ) as time goes on (see locus (ℓ, α(ℓ)) in Figure 4). Eventually, at some time T and belief

ℓT , the probability α(ℓ) that keeps them indifferent hits zero –full transparency prevails from

this point on.

The condition of Proposition 5 is not tight, but an exact characterization of the param-

eters under which full transparency is optimal appears elusive.

5 Unobserved Costs

An important feature that has been missing so far from the analysis is private information

regarding preferences, that is, in the opportunity cost of consuming the good. Section 3.4

made the strong assumption that the designer can condition on the agents’ preferences.

Perhaps this is an accurate description for some markets, such as Netflix, where the designer

18Doing so sequentially is optimal because it increases the overall experimentation that can be performed
with them; we can think of this outcome as the supremum over policies in which, at each time t, the designer
can only provide one recommendation, although formally this is a well-defined maximum if the optimal
control problem is written with ℓ as the “time” index.

19This locus of “candidate” values solves a simple optimization program, see the authors for detail. It is
downward sloping and starts at the full transparency optimum, i.e., ᾱ(ℓ∗) = 0.
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has already inferred substantial information about the agents’ preferences from past choices.

But it is also easy to think of cases where this is not so. Suppose that, conditional on

the posterior being 1, the principal recommends to buy with probability γt (it is no longer

obvious here that it is equal to 1). Then, conditional on hearing “buy,” an agent buys if and

only if

c ≤
p0−pt
1−pt

γt · 1 + 1−p0
1−pt

pt
p0−pt
1−pt

γt +
1−p0
1−pt

,

or equivalently

γt ≥
1− p0
1− c

c− pt
p0 − pt

.

In particular, if c < pt, he always buys, while if c ≥ p0, he never does. There is another

type of possible randomization: when the posterior is 1, he recommends buying, while he

recommends buying with probability αt (as before) when the posterior is pt < p0. Then

types for whom

αt ≤
1− c

1− p0

p0 − pt
c− pt

buy, while others do not. Note that, defining γt := 1/αt for such a strategy, the condition is

the same as above, but of course now γt ≥ 1.

Or the principal might do both types of randomizations at once: conditional on the

posterior is 1, the principal recommends B (“buy”) with probability γ, while he recommends

B with probability α conditional on the posterior being pt. We let N denote the set of cost

types that buy even if recommended N (“not buy” which we take wlog to be the message

that induces the lower posterior), and B the set of types that buy if recommended B.

A consumer with cost type γj buys after a B recommendation if and only if

αt
γt

≤ ℓ0 − ℓt
γj − ℓt

,

or equivalently, if

γj ≤ ℓt +
γt
αt

(ℓ0 − ℓt).

On the other hand, a N recommendation leads to buy if

γt ≤ αt +
(1− αt)(ℓ0 − γj)

ℓ0 − ℓt
,

or equivalently

γj ≤ ℓ0 −
γt − αt
1− αt

(ℓ0 − ℓt)

To gain some intuition, let us start with finitely many costs. Let us define QB, CB the
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quantity and cost of experimentation for those who only buy if the recommendation is B,

and we write QN , CN for the corresponding variables for those who buy in any event.

We can no longer define V (ℓ) to be the payoff conditional on the posterior being ℓ: after

all, what happens when the posterior is 1 matters for payoffs. So hereafter V (ℓ) refers to the

expected payoff when the low posterior (if it is low) is ℓ. We have that

rV (ℓ) =
1− p0
1− p

(
α(pQB − CB) + (pQN − CN)

)

+
p0 − p

1− p

(
γ(QB − CB) + (QN − CN)

)
− ℓ(αQB +QN)V ′(ℓ),

where we have mixed p and ℓ. Rewriting, this gives

rV (ℓ) =
ℓ0

1 + ℓ0
(QN + αQB)− (CN + αCB) +

ℓ0 − ℓ

1 + ℓ0
(γ − α)(QB − CB)− ℓ(QN + αQB)V ′(ℓ).

Assuming –as always– that there is some free learning, we have that rV (ℓ) → ℓ(1−c)/(1+ℓ),
where c is the average cost.

It is more convenient to work with the thresholds. The principal chooses two thresholds:

the lower one, γL is such that all cost types below buy independently of the recommendation.

The higher one, γH , is such that types strictly above γL but no larger than γH buy only if

there is a good recommendation. Solving, we get

γL = ℓ+
1− γ

1− α
(ℓ0 − ℓ), γH = ℓ+

γ

α
(ℓ0 − ℓ),

and not surprisingly γH ≥ γL if and only if β ≥ α. In terms of γH , γL, the problem becomes

rV (ℓ) =
ℓ0

1 + ℓ0




∑

γj≤γL

qj +
ℓ0 − γL
γH − γL

∑

γL<γj≤γH

qj



−




∑

γj≤γL

qjcj +
ℓ0 − γL
γH − γL

∑

γL<γj≤γH

qjcj





+
γH − ℓ0
γH − γL

ℓ0 − γL
1 + ℓ0

∑

γL<γj≤γH

qj(1− cj)− ℓ




∑

γj≤γL

qj +
ℓ0 − γL
γH − γL

∑

γL<γj≤γH

qj



V ′(ℓ),

or rather, it is the maximum of the right-hand side subject to the constraints on γL, γH .

While the interpretation of these formulas is straightforward, they are not so convenient, so

we now turn to the case of uniformly distributed costs, with distribution [0, c̄]. Note that

our derivation so far applies just as well, replacing sums with integrals. We drop c̄ from the

equations that follows, reasoning per consumer. Computing these quantities and costs by
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integration, we obtain upon simplification

rV (ℓ) = max
γL,γH

{
ℓ0

2(1 + ℓ0)
− ℓ0 + γLγH

2(1 + γL)(1 + γH)(1 + ℓ0)
− ℓ

ℓ0 + γLγH
(1 + γH)(1 + γL)

V ′(ℓ)

}

,

or, defining

x :=
ℓ0 + γLγH

(1 + γH)(1 + γL)
,

we have that

rV (ℓ) = max
x

{
ℓ0 − x

2(1 + ℓ0)
− ℓxV ′(ℓ)

}

.

Note that x is increasing in α and decreasing in γ,20 and so it is maximum when α = γ,

in which case it is simply ℓ0
1+ℓ0

, and minimum when γ = 1, α = 0, in which case it is ℓ
1+ℓ

.

Note also that V must be decreasing in ℓ, as it is the expected value, not the conditional

value, so that a higher ℓ means more uncertainty (formally, this follows from the principle of

optimality, and the fact that a strategy available at a lower ℓ is also available at a higher ℓ).

Because the right-hand side is linear in x, the solution is extremal, unless rV (ℓ) = ℓ0
2(1+ℓ0)

,

but then V ′ = 0 and so x cannot be interior (over an interval of time) after all. We have two

cases to consider, x = ℓ0
1+ℓ0

, ℓ
1+ℓ

.

If x = ℓ0
1+ℓ0

(“Pooling”), we immediately obtain

V (ℓ) =
ℓ20

2r(1 + ℓ0)2
+ C1ℓ

−r
(

1+ 1
ℓ0

)

.

In that case, the derivative with respect to x of the right-hand side must be positive, which

gives us as condition

ℓ
r
1+ℓ0
ℓ0 ≤ 2r(1 + ℓ0)

2C1

ℓ0
.

The left-hand side being increasing, this condition is satisfied for a lower interval of values

of ℓ: Therefore, if the policy α = γ is optimal at some t, it is optimal for all later times

(lower values of ℓ). In that case, however, we must have C1 = 0, as V must be bounded.

The payoff would then be constant and equal to

V P =
ℓ20

2r(1 + ℓ0)2
.

Such complete pooling is never optimal, as we shall see. Indeed, if no information is ever

revealed, the payoff is 1
r

∫ p0
0
(p0 − x)dx, which is precisely equal to V P .

20Although it is intuitive, this is not meant to be immediate, but it follows upon differentiation of the
formula for x.
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If x = ℓ
1+ℓ

, the solution is a little more unusual, and involves the exponential integral

function En(z) :=
∫∞

1
e−zt

tn
dt. Namely, we have

V S(ℓ;C2) =
ℓ0

2r(1 + ℓ0)
+ e

r
ℓ

C2ℓ
−r −E1+r

(
r
ℓ

)

2(1 + ℓ0)
.

In that case, the derivative with respect to x of the right-hand side must be negative, which

gives us as condition

C2 ≤ ℓr−1

(
e−

r
ℓ

r
ℓ

− Er

(r

ℓ

))

.

Note that the right hand side is also positive. Considering the value function, it holds that

lim
ℓ→0

e
r
ℓ ℓ−r = ∞, lim

ℓ→∞
e

r
ℓE1+r

(r

ℓ

)

= 0.

The first term being the coefficient on C2, it follows that if this solution is valid for values

of ℓ that extend to 0, we must have C2 = 0, in which case the condition is satisfied for all

values of l. So one candidate is x = ℓ/(1 + ℓ) for all ℓ, with value

V S(ℓ) =
ℓ0 − re

r
ℓE1+r

(
r
ℓ

)

2r(1 + ℓ0)
,

a decreasing function of ℓ, as expected. The limit makes sense: as ℓ → 0, V (ℓ) → ℓ0
2r(1+ℓ0)

:

by that time, the state will be revealed, and with this policy (α, γ) = (0, 1), the payoff will

be either 0 (if the state is bad) or 1/2 (one minus the average cost) if the state is good, an

event whose prior probability is p0 = ℓ0/(1 + ℓ0).

We note that

V S(ℓ0)− V P =
ℓ0 − re

r
ℓ0E1+r

(
r
ℓ0

)

2r(1 + ℓ0)
− ℓ20

2r(1 + ℓ0)2
=

ℓ0
1+ℓ0

− re
r
ℓ0E1+r

(
r
ℓ0

)

2r(1 + ℓ0)
.

The function r 7→ re
r
ℓ0E1+r

(
r
ℓ0

)

is increasing in r, with range [0, ℓ0
1+ℓ0

]. Hence this difference

is always positive.

To summarize: if the policy x = ℓ0/(1 + ℓ0) is ever taken, it is taken at all later times,

but it cannot be taken throughout, because taking x = ℓ/(1 + ℓ) throughout yields a higher

payoff. The last possibility is an initial phase of x = ℓ/(1 + ℓ), followed by a switch at some

time x = ℓ0/(1 + ℓ0), with continuation value V P . To put it differently, we would need

V = V P on [0, ℓ̄] for some ℓ̄, and V (ℓ) = V S(ℓ;C2) on [ℓ̄, ℓ0], for some C2. But then it had

better be the case that V S(ℓ;C2) ≥ V P on that higher interval, and so there would exist

0 < ℓ < ℓ′ < ℓ0 with V P = V (ℓ) ≤ V (ℓ′) = V S(ℓ′;C2), so that V must be increasing over
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some interval of ℓ, which violates V being decreasing.

To conclude: if costs are not observed, and the principal uses a deterministic policy in

terms of the amount of experimentation, he can do no better than to disclose the posterior

honestly, at all times. This does not mean that he is useless, as he makes the information

public, but he does not induce any more experimentation than the myopic quantity.

Proposition 7. With uniformly distributed costs that are agents’ private information, full

transparency is optimal.

To be clear, we allow the designer to randomize over paths of recommendation, “flipping

a coin” at time 0, unbeknownst to the agents, and deciding on a particular function (αt)t as a

function of the outcome of this randomization. Such “chattering” controls can sometimes be

useful, and one might wonder whether introducing these would overturn this last proposition.

In appendix, we show that this is not the case.
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6 Appendix

Proof of Lemma 2. Let κt := p0/(p0 − gt). Note that κt = 1. Then, it follows from (2) and

(4) that

κ̇t = λgκtµt, κ0 = 1. (11)

Dividing both sides of (11) by the respective sides of (6), we get,

κ̇t

ℓ̇t
= − κt

ℓt∆
,
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or
κ̇t
κt

= − 1

∆

ℓ̇t
ℓt
.

It follows that, given the initial condition,

κt =

(
ℓt
ℓ0

)− 1
∆

.

We can then unpack κt to recover gt, and from this we can obtain bt via (4). �

Proof of Lemma 3. We shall focus on

α̂(ℓ) :=

(
ℓ
ℓ0

)− 1
∆ − 1

k − ℓ
ℓ.

Recall ᾱ(ℓ) = min{1, α̂(ℓ)}. Since ℓt falls over t when ∆ > 0 and rises over t when ∆ < 0. It

suffices to show that α̂(·) is decreasing when ∆ > 0 and increasing when ∆ < 0.

We make several preliminary observations. First, α̂(ℓ) ∈ 0, 1) if and only if

1− (ℓ/ℓ0)
1
∆ ≥ 0 and kℓ

1
∆
−1ℓ

− 1
∆

0 ≥ 1. (12)

Second,

α̂′(ℓ) =
(ℓ0/ℓ)

1
∆h(ℓ, k)

∆(k − ℓ)2
, (13)

where

h(ℓ, k) := ℓ− k(1−∆)− k(ℓ/ℓ0)
1
∆ .

Third, (12) implies that
dh(ℓ, k)

dℓ
= 1− kℓ

1
∆
−1ℓ

− 1
∆

0 ≤ 0, (14)

on any range of ℓ over which ᾱ ≤ 1.

Consider first ∆ < 0. Given k > ℓ0, α̂(ℓ0) = 0. Then, (14) implies that, if α̂′(ℓ) ≥ (>)0,

then α̂′(ℓ′) ≥ (>)0 for all ℓ′ ∈ (ℓ, k). Since h(ℓ0, k] < 0, it follows that α̂′(ℓ) > 0 for all

ℓ ∈ [ℓ0, k]. We thus conclude that ᾱ(ℓ) is strictly increasing on ℓ ∈ [ℓ0, ℓ2] and ᾱ(ℓ) = 1 for

all ℓ ∈ [ℓ2, k], for some ℓ2 ∈ (ℓ0, k).

Consider next ∆ > 0. In this case, the relevant interval is ℓ ∈ [0, ℓ0]. It follows from (14)

that if α̂′(ℓ) ≤ (<)0, then α̂′(ℓ′) ≤ (<)0 for all ℓ′ ∈ (ℓ, ℓ0]. Since h(0, k) < 0,21 α̂′(0) < 0, so

21Recall ∆ ≤ 1. If ∆ = 1, then h(0, k) = 0, but h(ǫ, k), for sufficient small ǫ > 0, so the argument follows.
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α̂(ℓ) is decreasing in ℓ for all ℓ ∈ [0, ℓ0]. It follows that ᾱ = 1 is on some interval [0, ℓ1] and

positive and decreasing (< 1) over (ℓ1, ℓ0], for some ℓ1 ∈ (0, ℓ0). �

Proof of Proposition 1. To analyze this tradeoff precisely, we reformulate the designer’s prob-

lem to conform to the standard optimal control problem framework. First, we switch the

roles of variables so that we treat ℓ as a “time” variable and t(ℓ) := inf{t|ℓt ≤ ℓ} as the

state variable, interpreted as the time it takes for a posterior ℓ to be reached. Up the con-

stant (additive and multiplicative) terms, the designer’s problem is written as: For problem

i = SB, FB,

sup
α(ℓ)

∫ ℓ0

0

e−rt(ℓ)ℓ
1
∆
−1

(

1− k

ℓ
− ρ

(
1− k

ℓ

)
+ 1

ρ+ α(ℓ)

)

dℓ.

s.t. t(ℓ0) = 0,

t′(ℓ) = − 1

∆λg(ρ+ α(ℓ))ℓ
,

α(ℓ) ∈ Ai(ℓ),

where ASB(ℓ) := [0, ᾱ(ℓ)], and AFB := [0, 1].

This transformation enables us to focus on the optimal recommendation policy directly

as a function of the posterior ℓ. Given the transformation, the admissible set no longer

depends on the state variable (since ℓ is no longer a state variable), thus conforming to the

standard specification of the optimal control problem.

Next, we focus on u(ℓ) := 1
ρ+α(ℓ)

as the control variable. With this change of variable,

the designer’s problem (both second-best and first-best) is restated, up to constant (additive

and multiplicative) terms: For i = SB, FB,

sup
u(ℓ)

∫ ℓ0

0

e−rt(ℓ)ℓ
1
∆
−1

(

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

)

dℓ, (15)

s.t. t(ℓ0) = 0,

t′(ℓ) = − u(ℓ)

∆λgℓ
,

u(ℓ) ∈ U i(ℓ),

where the admissible set for the control is USB(ℓ) := [ 1
ρ+α(ℓ)

, 1
ρ
] for the second-best problem

and UFB(ℓ) := [ 1
ρ+1

, 1
ρ
]. With this transformation, the problem becomes a standard linear

optimal control problem (with state t and control α). A solution exists by the Filippov-Cesari

theorem (Cesari, 1983).

We shall thus focus on the necessary condition for optimality to characterize the optimal
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recommendation policy. To this end, we write the Hamiltonian:

H(t, u, ℓ, ν) = e−rt(ℓ)ℓ
1
∆
−1

(

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

)

− ν
u(ℓ)

∆λgℓ
.

The necessary optimality conditions state that there exists an absolutely continuous function

ν : [0, ℓ0] such that, for all ℓ, either

φ(ℓ) := ∆λge
−rt(ℓ)ℓ

1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

+ ν(ℓ) = 0, (16)

or else u(ℓ) = 1
ρ+α(ℓ)

if φ(ℓ) > 0 and u(ℓ) = 1
ρ
if φ(ℓ) < 0.

Furthermore,

ν ′(ℓ) = −∂H(t, u, ℓ, ν)

∂t
= re−rt(ℓ)ℓ

1
∆
−1

((

1− k

ℓ

)

(1− ρu(ℓ))− u(ℓ)

)

(ℓ− a.e.). (17)

Finally, transversality at ℓ = 0 (t(ℓ) is free) implies that ν(0) = 0.

Note that

φ′(ℓ) = −rt′(ℓ)∆λge−rt(ℓ)ℓ
1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

+ λge
−rt(ℓ)ℓ

1
∆
−1

(

ρ

(

1− k

ℓ

)

+ 1

)

+ ρk∆λge
−rt(ℓ)ℓ

1
∆
−2 + ν ′(ℓ),

or using the formulas for t′ and ν ′,

φ′(ℓ) = e−rt(ℓ)ℓ
1
∆
−2 (r (ℓ− k) + ρ∆λgk + λg (ρ (ℓ− k) + ℓ)) , (18)

so φ cannot be identically zero over some interval, as there is at most one value of ℓ for which

φ′(ℓ) = 0. Every solution must be “bang-bang.” Specifically, φ′(ℓ) > 0 is equivalent to

φ′(ℓ)
>
=
<
0 ⇔ ℓ

>
=
<
ℓ̃ :=

(

1− λg(1 + ρ∆)

r + λg(1 + ρ)

)

k > 0.

Also, φ(0) ≤ 0 (specifically, φ(0) = 0 for ∆ < 1 and φ(0) = −∆λge
−rt(ℓ)ρk for ∆ = 1). So

φ(ℓ) < 0 for all 0 < ℓ < ℓ∗g, for some threshold ℓ∗g > 0, and φ(ℓ) > 0 for ℓ > ℓ∗g. The constraint

u(ℓ) ∈ U i(ℓ) must bind for all ℓ ∈ [0, ℓ∗) (a.e.), and every optimal policy must switch from

u(ℓ) = 1/ρ for ℓ < ℓ∗g to 1/(ρ + α(ℓ)) in the second-best problem and to 1/(ρ + 1) in the

first-best problem for ℓ > ℓ∗g. It remains to determine the switching point ℓ∗ (and establish

uniqueness in the process).
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For ℓ < ℓ∗,

ν ′(ℓ) = −r
ρ
e−rt(ℓ)ℓ

1
∆
−1, t′(ℓ) = − 1

ρ∆λgℓ

so that

t(ℓ) = C0 −
1

ρ∆λg
ln ℓ, or e−rt(ℓ) = C1ℓ

r
ρ∆λg

for some constants C1, C0 = −1
r
lnC1. Note that C1 > 0 as otherwise t(ℓ) = ∞ for ℓ ∈ (0, ℓ∗g),

which is inconsistent with t(ℓ∗g) <∞. Hence,

ν ′(ℓ) = −r
ρ
C1ℓ

r
ρ∆λg

+ 1
∆
−1
,

and so (using ν(0) = 0),

ν(ℓ) = − r∆λg
r + ρλg

C1ℓ
r

ρ∆λg
+ 1

∆ ,

for ℓ < ℓ∗g. We now substitute ν into φ, for ℓ < ℓ∗g, to obtain

φ(ℓ) = ∆λgC1ℓ
r

ρ∆λg ℓ
1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

− r∆λg
r + ρλg

C1ℓ
r

ρ∆λg
+ 1

∆ .

We now see that the switching point is uniquely determined by φ(ℓ) = 0, as φ is continuous

and C1 cancels. Simplifying,
k

ℓ∗g
= 1 +

λg
r + ρλg

,

which leads to the formula for p∗g in the Proposition (via ℓ = p/(1 − p) and k = c/(1 − c)).

We have identified the unique solution to the program for both first- and second-best, and

shown in the process that the optimal threshold p∗ applies to both problems.

The second-best implements the first-best if p0 ≥ c, since then ᾱ(ℓ) = 1 for all ℓ ≤ ℓ0. If

not, then ᾱ(ℓ) < 1 for a positive measure of ℓ ≤ ℓ0. Hence, the second-best implements a

lower and thus a slower experimentation than does the first-best.

As for sufficiency, we use Arrow sufficiency theorem (Seierstad and Sydsæter, 1987, The-

orem 5, p.107). Note that, for all u ∈ U i, i = FB, SB,

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ) ≤ 1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)
1

1 + ρ
= − k

(1 + ρ)ℓ
< 0.

Hence, given (15), the maximized Hamiltonian Ĥ(t, ℓ, ν(ℓ)) = maxu∈U i(ℓ)H(t, u, ℓ, ν(ℓ)) is

necessarily concave in t, for all ℓ, implying the result. �

Proof of Proposition 2. The same steps must be applied to the case ∆ < 0. The same change
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of variable produces the following program for the designer: For problem i = SB, FB,

sup
u

∫ ∞

ℓ0
e−rt(ℓ)ℓ

1
∆
−1

((

1− k

ℓ

)

(1− ρu(ℓ))− u(ℓ)

)

dℓ,

s.t. t(ℓ0) = 0,

t′(ℓ) = − u(ℓ)

∆λgℓ
,

u(ℓ) ∈ U i(ℓ),

where as before USB(ℓ) := [ 1
ρ+α(ℓ)

, 1
ρ
] and UFB(ℓ) := [ 1

ρ+1
, 1
ρ
]. We pause and note that, for all

u(ℓ) ∈ U i(ℓ), i = FB, SB,

(

1− k

ℓ

)

(1− ρu(ℓ))− u(ℓ) ≤
(

1− k

ℓ

)(

1− 1

ρ+ 1

)

− 1

ρ+ 1
= −k

ℓ

1

ρ+ 1
< 0,

so that, as in the case ∆ < 0, the maximized Hamiltonian will necessarily be concave in t,

which will imply optimality of our candidate solution, by Arrow’s sufficiency theorem.

We now turn to the necessary conditions. As before, the necessary conditions for the

second-best policy now state that there exists an absolutely continuous function ν : [0, ℓ0]

such that, for all ℓ, either

ψ(ℓ) := −φ(ℓ) = ∆λge
−rt(ℓ)ℓ

1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

− ν(ℓ) = 0, (19)

or else u(ℓ) = 1
ρ+α(ℓ)

if ψ(ℓ) > 0 and u(ℓ) = 1
ρ
if ψ(ℓ) < 0. The formula for ν ′(ℓ) is the

same as before, given by (17). Finally, transversality at ℓ = ∞ (t(ℓ) is free) implies that

limℓ→∞ ν(ℓ) = 0.

Since ψ(ℓ) = −φ(ℓ), we get from (19) that

ψ′(ℓ) = −e−rt(ℓ)ℓ 1
∆
−2 (r (ℓ− k) + ρ∆λgk + λg (ρ (ℓ− k) + ℓ)) .

Letting ℓ̃ :=
(

1− λg(1+ρ∆)
r+λg(1+ρ)

)

k, namely the solution to ψ(ℓ) = 0. Then, ψ is maximized at

ℓ̃, and is strictly quasi-concave. Since limℓ→∞ h(ℓ) = 0, this means that there must be a

cutoff ℓ∗b < ℓ̃ such that ψ(ℓ) < 0 for ℓ < ℓ∗b and ψ(ℓ) > 0 for ℓ > ℓ∗b . Hence, the solution is

bang-bang, with u(ℓ) = 1/ρ if ℓ < ℓ∗b , and u(ℓ) = 1/(ρ+ α(ℓ)) if ℓ > ℓ∗b .

The first-best policy has the same cutoff structure, except that the cutoff may be different

from ℓ∗b . Let ℓ
∗∗
b denote the first-best cutoff.
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First-best policy: We shall first consider the first best policy. In that case, for ℓ > ℓ∗∗b ,

t′(ℓ) = − 1

∆λg(1 + ρ)ℓ

gives

e−rt(ℓ) = C2ℓ
r

(1+ρ)∆λg ,

for some non-zero constant C2. Then

ν ′(ℓ) = − rk

1 + ρ
C2ℓ

r
(1+ρ)∆λg

+ 1
∆
−2

and limℓ→∞ ν(ℓ) = 0 give

ν(ℓ) = − rk∆λg
r + (1 + ρ)(1−∆)λg

C2ℓ
r

(1+ρ)∆λg
+ 1

∆
−1
.

So we get, for ℓ > ℓ∗∗b ,

ψ(ℓ) = −∆λgC2ℓ
r

(1+ρ)∆λg ℓ
1
∆
−1 (ℓ(1 + ρ)− kρ) +

rk∆λg
r + (1 + ρ)(1−∆)λg

C2ℓ
r

(1+ρ)∆λg
+ 1

∆
−1
.

Setting ψ(ℓ∗∗b ) = 0 gives

k

ℓ∗∗b
=
r + (1 + ρ)(1−∆)λg
r + ρ(1 −∆)λg

=
r + (1 + ρ)λb
r + ρλb

= 1 +
λb

r + ρλb
,

or

p∗∗b = c

(

1− rv

ρ+ r(v + 1
(1−∆)λg

)

)

= c

(

1− rv

ρ+ r(v + 1
λb
)

)

.

Second-best policy. We now characterize the second-best cutoff. There are two cases,

depending upon whether α(ℓ) = 1 is incentive-feasible at the threshold ℓ∗∗b that characterizes

the first-best policy. In other words, for the first-best to be implementable, we should have

ᾱ(ℓ∗∗) = 1, which requires

ℓ0 ≥ k

(
r + ρλb

r + (1 + ρ)λb

)1−∆

=: ℓ̂0.

Observe that since ∆ < 0, ℓ̂0 < ℓ∗∗. If ℓ0 ≤ ℓ̂0, then the designer begins with no experimen-

tation and waits until the posterior belief improves sufficiently to reach ℓ∗∗, at which point

the agents will be asked to experiment with full force, i.e., with ᾱ(ℓ) = 1, that is, given that

no news has arrived by that time. This first-best policy is implementable since, given the
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sufficiently favorable prior, the designer will have built sufficient “credibility” by that time.

Hence, unlike the case of ∆ > 0, the first best can be implementable even when ℓ0 < k.

Suppose ℓ0 < ℓ̂0. Then, the first-best is not implementable. That is, ᾱ(ℓ∗∗b ) < 1. Let ℓ∗b
denote the threshold at which the constrained designer switches to ᾱ(ℓ). We now prove that

ℓ∗b > ℓ∗∗b .

For the sake of contradiction, suppose that ℓ∗b ≤ ℓ∗∗b . Note that ψ(x) = limℓ→∞ φ(ℓ) = 0.

This means that
∫ ∞

ℓ∗
b

ψ′(ℓ)dℓ =

∫ ∞

ℓ∗
b

e−rt(ℓ)ℓ
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))ℓ) dℓ = 0,

where ψ′(ℓ) = −φ′(ℓ) is derived using the formula in (19).

Let t∗∗ denote the time at which ℓ∗∗b is reached along the first-best path. Let

f(ℓ) := ℓ
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))ℓ) .

We then have ∫ ∞

ℓ∗
b

e−rt
∗∗(ℓ)f(ℓ)dℓ ≥ 0, (20)

(because ℓ∗b ≤ ℓ∗∗b ; note that f(ℓ) ≤ 0 if and only if ℓ > ℓ̃, so h must tend to 0 as ℓ → ∞
from above), yet

∫ ∞

ℓ∗
b

e−rt(ℓ)f(ℓ)dℓ = 0. (21)

Multiplying ert
∗∗(ℓ̃) on both sides of (20) gives

∫

ℓ∗
b

e−r(t
∗∗(ℓ)−t∗∗(ℓ̃))f(ℓ)dℓ ≥ 0. (22)

Likewise, multiplying ert(ℓ̃) on both sides of (21) gives

∫ ∞

ℓ∗b

e−r(t(ℓ)−t(ℓ̃))f(ℓ)dℓ = 0. (23)

Subtracting (22) from (23) gives

∫

ℓ∗
b

(

e−r(t(ℓ)−t(ℓ̃)) − e−r(t
∗∗(ℓ)−t∗∗(ℓ̃))

)

f(ℓ)dℓ ≤ 0. (24)

Note t′(ℓ) ≥ (t∗∗)′(ℓ) > 0 for all ℓ, with strict inequality for a positive measure of ℓ. This

means that e−r(t(ℓ)−t(ℓ̃)) ≤ e−r(t
∗∗(ℓ)−t∗∗(ℓ̃)) if ℓ > ℓ̃, and e−r(t(ℓ)−t(ℓ̃)) ≥ e−r(t

∗∗(ℓ)−t∗∗(ℓ̃)) if ℓ < ℓ̃,
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again with strict inequality for a positive measure of ℓ for ℓ ≥ ℓ∗∗b (due to the fact that the

first best is not implementable; i.e., ᾱ(ℓ∗∗b ) < 1). Since f(ℓ) < 0 if ℓ > ℓ̃ and f(ℓ) > 0 if

ℓ < ℓ̃, we have a contradiction to (24). �

Proof of Proposition 3. In that case, ℓ = ℓ0. The objective rewrites

W =

∫

t≥0

e−rt
(

gt(1− c) +
p0 − c

p0
αt(p0 − gt)

)

dt

=

∫

t≥0

e−rt
(

gt(1− c) +
p0 − c

p0

(
ġt
λg

− (p0 − gt)ρ

))

dt

=

∫

t≥0

e−rt
(

gt(1− c) +
p0 − c

p0

(

r
gt
λg

− (p0 − gt)ρ

))

dt + Const. (Integr. by parts)

=

∫

t≥0

e−rtgt

(

1− c+
p0 − c

p0

(
r

λg
+ ρ

))

dt+ Const.

= Const.×
∫

t≥0

e−rtgt ((ℓ0 − k)(r + λgρ) + λgℓ0) dt+ Const.,

and so we see that it is best to set gt to its maximum or minimum value depending on the

sign of (ℓ0 − k)(r + λgρ) + λgℓ0, specifically, depending on

k

ℓ0
≶ 1 +

λg
r + λgρ

,

which is the relationship that defines ℓ∗g = ℓ∗∗b . Now, gt is maximized by setting ατ = ᾱτ and

minimized by setting ατ = 0 (for all τ < t).

We can solve for α from the incentive compatibility constraint, plug back into the differ-

ential equation for gt and get, by solving the ode,

gt =

(

e
λg(ℓ0−kρ)t

k−ℓ0 − 1

)

ℓ0(k − ℓ0)ρ

(1 + ℓ0)(ℓ0 − kρ)
,

and finally

α =
ℓ0

ρk−ℓ0

ρ

(

1−e
λg(ℓ0−ρk)t

k−ℓ0

) − (k − ℓ0)
,

which is increasing in t and convex in t (for γ > l0) and equal to 1 when

λgt
∗ =

k − ℓ0
ℓ0 − kρ

ln
ℓ0
kρ
.
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The optimal policy in that case is fairly obvious: experiment at maximum rate until t∗, at

rate 1 from that point on (conditional on no feedback).

�

Proof of Proposition 4. The objective function reads

∫

t≥0

e−rt (gt(1− c̄) + (1− gt − bt)(qHαH(pt − cL)qLαL(pt − cL)) dt,

where c̄ := qHcH + qLcL. Substituting for gt, bt and re-arranging, this gives

∫

t≥0

e−rtℓ(t)

(

αH(t)qH

(

1− cH

(

1 +
1

ℓ(t)

))

+ αL(t)qL

(

1− cL

(

1 +
1

ℓ(t)

))

− (1− c̄)

)

dt.

As before, it is more convenient to work with t(ℓ) as the state variable, and doing the change

of variables gives

∫ ℓ0

0

e−rt(ℓ)
(

xH(ℓ)uH(ℓ) + xL(ℓ)uL(ℓ)−
1− c̄

ρ

)

dℓ,

where for j = L,H , xj(ℓ) := 1 − cj
(
1 + 1

ℓ

)
+ 1−c̄

ρ
, and uj(ℓ) :=

qjαj(t(ℓ))

ρ+qLαL(t(ℓ))+qHαH (t(ℓ))
are the

control variables that take values in the sets U j(ℓ) = [uk, ūk] (whose definition depends on

first- vs. second-best). This is to be maximized subject to

t′(ℓ) =
uH(ℓ) + uL(ℓ)− 1

ρλℓ
.

As before, we invoke Pontryagin’s principle. There exists an absolutely continuous function

η : [0, ℓ0] → R, such that, a.e.,

η′(ℓ) = re−rt(ℓ)
(

xH(ℓ)uH(ℓ) + xL(ℓ)uL(ℓ)−
1− c̄

ρ

)

,

and uj is maximum or minimum, depending on the sign of

φj(ℓ) := ρλℓe−rt(ℓ)xj(ℓ) + η(ℓ).

This is because this expression cannot be zero except for a specific value of ℓ = ℓj . Namely,

note first that, because xH(ℓ) < xL(ℓ) for all ℓ, at least one of uL(ℓ), uH(ℓ) must be extremal,

for all ℓ. Second, upon differentiation,

φ′
H(ℓ) = e−rt(ℓ)

((

λ− r

ρ

)

(1− c̄) + ρλ(1− cH) + ruL(ℓ)(cH − cL)

(

1 +
1

ℓ

))
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implies that, if φH(ℓ) = 0 were identically zero over some interval, then uL(ℓ) would be

extremal over this range, yielding a contradiction, as the right-hand side cannot be zero

identically, for uL(ℓ) = ūL(ℓ). Similar reasoning applies to uL(ℓ), considering φ
′
L(ℓ). Hence,

the optimal policy is characterized by two thresholds, ℓH , ℓL, with ℓ0 ≥ ℓH ≥ ℓL ≥ 0, such

that both types of regular consumers are asked to experiment whenever ℓ ∈ [ℓH , ℓ0], low-cost

consumers are asked to do so whenever ℓ ∈ [ℓL, ℓ0], and neither is asked to otherwise. By

the principle of optimality, the threshold ℓL must coincide with ℓ∗g = ℓ∗∗g in the case of only

one type of regular consumers (with cost cL). To compare ℓ∗H and ℓ∗∗H , we proceed as as in

the bad news case, by noting that, in either case,

φH(ℓH) = 0,

and

φH(ℓL) = φL(ℓL) + ρλℓLe
−rt(ℓL)(xH(ℓL)− xL(ℓL)) = −ρλe−rt(ℓL)(cH − cL) (1 + ℓL) .

Hence,
∫ ℓH

ℓL

ert(ℓL)φ′
H(ℓ)dℓ = ρλ(cH − cL) (1 + ℓL)

holds both for the first- and second-best. Note now that, in the range [ℓL, ℓH ],

ert(ℓL)φ′
H(ℓ) = e

−r
∫ ℓ
ℓH

uL(l)+uH (l)−1

ρλl
dl

((

λ− r

ρ

)

(1− c̄) + ρλ(1− cH) + ruL(ℓ)(cH − cL)

(

1 +
1

ℓ

))

.

Because ᾱL(ℓ) > ᾱH(ℓ), ū
∗
L(ℓ) > ū∗∗L (ℓ), and also ū∗∗L (ℓ) + ū∗∗H (ℓ) ≥ ū∗L(ℓ) + ū∗H(ℓ), so that,

for all ℓ in the relevant range,

ert(ℓL)
dφ∗∗

H (ℓ)

dℓ
< ert(ℓL)

dφ∗
H(ℓ)

dℓ
,

and it then follows that ℓ∗H < ℓ∗∗H . �

Second-best analysis with a continuum of observable costs. We characterize the recommen-

dation policy as r → 0. To derive this policy, let us first describe the designer’s payoff. This

is his payoff in expectation. Her objective is

∫ t1

0

e−rt

[
∫ ℓ0

1+ℓ0

0

ℓ0 − ℓt
1 + ℓ0

(1− c) dc+

∫ c̄

kt
1+kt

ℓ0 − ℓt
1 + ℓ0

(1− c) dc +

∫ ℓ0
1+ℓ0

0

1 + ℓt
1 + ℓ0

(
ℓt

1 + ℓt
− c

)

dc

]

dt

+

∫ ∞

t1

e−rt

[
∫ c̄

0

ℓ0 − ℓt
1 + ℓ0

(1− c) dc+

∫ kt
1+kt

0

1 + ℓt
1 + ℓ0

(
ℓt

1 + ℓt
− c

)

dc

]

dt.
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To understand this expression, consider t < t1. Types in t ∈ (ℓ0, kt) derive no surplus,

because they are indifferent between buying or not (what they gain from being recommended

to buy when the good has turned out to be good is exactly offset by the cost of doing so when

this is myopically suboptimal). Hence, their contribution to the expected payoff cancels out

(but it does not mean that they are disregarded, because their behavior affects the amount

of experimentation.) Types above kt get recommended to buy only if the good has turned

out to be good, in which case they get a flow surplus of λ · 1 − c = 1 − c. Types below ℓ0
have to purchase for both possible posterior beliefs, and while the flow revenue is 1 in one

case, it is only pt = ℓt/(1 + ℓt) in the other case.

The payoff in case t ≥ t1 can be understood similarly. There are no longer indifferent

types. In case of an earlier success, all types enjoy their flow payoff 1 − c, while in case of

no success, types below γt still get their flow pt − c.

This expression can be simplified to

J(k) =

∫ ∞

0

e−rt

[
∫ ℓ0

1+ℓ0
∧

kt
1+γt

0

(
ℓ0

1 + ℓ0
− c

)

dc+

∫ k̄
1+k̄

γt
1+γt

ℓ0 − ℓt
1 + ℓ0

(1− c) dc

]

dt

=

∫ ∞

0

e−rt

[

ℓ0
1 + ℓ0

(
ℓ0

1 + ℓ0
∧ γt
1 + γt

)

− 1

2

(
ℓ0

1 + ℓ0
∧ k̄t
1 + γt

)2
]

dt

+

∫ ∞

0

e−rt

[

ℓ0 − ℓt
1 + ℓ0

(

k̄

1 + k̄
− kt

1 + kt
− 1

2

((
k̄

1 + k̄

)2

−
(

γt
1 + γt

)2
))]

dt,

with the obvious interpretation. For t ≥ t1,

ℓ̇t = −ℓt
∫ kt

1+kt

0

dc

c̄
= −ℓt

c̄

kt
1 + kt

,

while for t ≤ t1, it holds that

ℓ̇t = −ℓt
(

p0
c̄
+

∫ γt
1+γt

p0

αt(k)
dc

c̄

)

= −ℓt
c̄

(

p0 +

∫ γt
1+γt

p0

ℓ0 − ℓt
k(c)− ℓt

dc

)

= −ℓt
c̄

[
ktℓt + ℓ0

(1 + γt)(1 + ℓ0)
− ℓ0 − ℓt

(1 + ℓt)2
ln

(1 + kt)(ℓ0 − ℓt)

(1 + ℓ0)(kt − ℓt)

]

.

Finally, note that the value of k0 is free.

To solve this problem, we apply Pontryagin’s maximum principle. Consider first the case

t ≥ t1. The Hamiltonian is then

H(ℓ, γ, µ, t) =
e−rt

2(1 + kt)2

(

2kt(1 + kt)
ℓ0

1 + ℓ0
− k2t +

(k̄ − kt)(2 + γt + k̄)(ℓ0 − ℓt)

(1 + k̄)2(1 + ℓ0)

)

−µtℓt
γt(1 + k̄)

(1 + γt)k̄
,
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where µ is the co-state variable. The maximum principle gives, taking derivatives with

respect to the control γt,

µt = −e−rtk̄ kt − ℓt
(1 + k̄)(1 + kt)(1 + ℓ0)ℓt

.

The adjoint equation states that

µ̇ = −∂H
∂ℓ

=
e−rt

2(1 + k̄)2(1 + ℓ0)(1 + kt)2ℓt

(
k2t (2(1 + k̄)2 + ℓt)− k̄(2 + k̄)(2kt + 1)ℓt

)
,

after inserting the value for µt. Differentiate the formula for µ, combine to get a differential

equation for kt. Letting r → 0, and changing variables to k(ℓ), we finally obtain

2(1 + k̄)2
(1 + ℓ)γ(ℓ)

1 + γ(ℓ)
γ′(ℓ) = k̄(2 + k̄)(1 + 2γ(ℓ))− γ(ℓ)2.

Along with k(0) = 0, k > 0 we get

γ(ℓ) =
k̄(2 + k̄)ℓ+ (1 + k̄)

√

k̄(2 + k̄)ℓ(1 + ℓ)

(1 + k̄)2 + ℓ
.

This gives us, in particular, γ(l0). Note that, in terms of cost c, this gives

c(ℓ) =

√

k̄(2 + k̄)ℓ/(1 + ℓ)

1 + k̄
,

We now turn to the Hamiltonian for the case t ≤ t1, or γt ≥ ℓ0. It might be that the solution

is a “corner” solution, that is, all agents experiment (γt = k̄). Hence, we abuse notation,

and solve for the unconstrained solution γ: the actual solution should be set at min{k̄, γt}.
Proceeding in the same fashion, we get again

µt = −e−rtk̄ γt − ℓt
(1 + k̄)(1 + γt)(1 + ℓ0)ℓt

,

and continuity of µ (which follows from the maximum principle) is thus equivalent to the

values of γ(ℓ) obtained from both cases matching at ℓ = ℓ0. The resulting differential

equation for γ(ℓ) admits no closed-form solution. It is given by

(4k0 (k0 + 2) + ℓ(ℓ+ 2) + 5) k(ℓ)2 − k0 (k0 + 2)
(
(ℓ+ 1)2 + 4ℓ0

)
− 4ℓ0

− 2 (k0 (k0 + 2) (ℓ(ℓ+ 2) + 2ℓ0 − 1) + 2 (ℓ0 − 1)) k(ℓ)

= 2
(k0 + 1) 2

1 + ℓ
(k(ℓ) + 1) ((ℓ− 2ℓ0 − 1) k(ℓ)− ℓ0 + ℓ (ℓ0 + 2)) log

(
(ℓ− ℓ0) (k(ℓ) + 1)

(ℓ0 + 1) (ℓ− k(ℓ))

)
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+ 2 (k0 + 1) 2(ℓ+ 1)k′(ℓ)

(

(ℓ0 − ℓ) log

(
(ℓ− ℓ0) (k(ℓ) + 1)

(ℓ0 + 1) (l − k(ℓ))

)

− (ℓ+ 1) (ℓk(ℓ) + ℓ0)

k(ℓ) + 1

)

.

�

Proof of Proposition 5. Let us start with the designer’s payoff, as a function of (t1, t2):

∫ t1

0

p0 − pt
1− pt

e−rt(1− c)dt+

∫ t1

0

1− p0
1− pt

e−rt(pt − c)dt +

p0 − pt1
1− pt1

e−rt1
(

(t2 − t1)e
−r(t2−t1) +

e−r(t2−t1)

r

)

(1− c) +

1− p0
1− pt1

e−rt1
(

e−r(t2−t1)(t2 − t1)
pt1 − pt2
1− pt2

+

∫ ∞

t2

e−r(t−t1)
pt1 − pt
1− pt

dt

)

(1− c).

The first line corresponds to the utility garnered by agents arriving up to t1, who experiment

immediately. The second line is the payoff beyond time t1 in case the posterior is 1 by then;

there are two terms, corresponding to those agents that wait until time t2, and those that

arrive afterwards. Finally, the third line gathers the corresponding terms for the case in

which the posterior is pt1 < 1 at time t1. Recall that the belief follows

ℓ̇t =

{
−λ(1 + ρ)ℓt for t ∈ [0, t1];

−λρℓt if t ≥ t1.

We let

ψ :=
ℓ0
k
, δ :=

r
λρ

1 + r
λρ

,

both in the unit interval. We will hold δ fixed (that is, varying ρ will be done for fixed δ).

A first possibility is to set t2 = t1. (Clearly, setting t2 = +∞ is suboptimal.) This

cannot be optimal if t1 = 0, however, as the designer could replicate the outcome from full

transparency and do better. Inserting t2 = 0 and solving for the optimal t1, we get

t1 =
1

λ(1 + ρ)
ln

(

ψ

(

1 +
1

ρ+ r
λ

))

,

(a global maximum), but then evaluating the first derivative of the payoff w.r.t. t2 at t2 = t1
gives a first derivative of 0 and a second derivative whose sign is negative if and only if

ρ < ρL :=
δ(1− δ)ψ

1− δψ
.

If ρ > ρL, it means that t2 > t1 would increase the payoff, given t1, a contradiction. If

ρ < ρL, we also need that t1 > 0, that is, ρ < ψ(1−δ)
1−ψ

, but this is easily seen to be implied by
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ρ < ρL. The payoff from this policy involving Learning is (k times)

WL :=
1 + ρ

ρ
ψ

(
ρ

ψ(1− δ + ρ)

) 1−δ+ρ
(1−δ)(1+ρ)

− 1− ψ

1− δ
.

Note that WL is decreasing then increasing in ρ, with a minimum at ρ∗ = ψ

1−ψ
(1− δ).

The second alternative is transparency (or Delay), that is, t1 = 0. The maximum payoff

is then (k times)

WD := δ
δ

1−δ

(

1 + δ − δ

1− δ
ln δ

)

ψ.

Note that WD is independent of ρ. Clearly, WL >WD for ρ sufficiently close to 0, and it is

readily checked that the inequality is reversed at ρ = ρ∗.

Finally, the designer might want to choose 0 < t1 < t2. To solve this problem, we may

equivalently maximize the payoff with respect to x1, x2, where x1 = δ−
δ

1−δ e−
δλ(1+ρ)t1

1−δ , and

x2 = er(t2−t1). It holds that t1 > 0 if and only if x1 < δ−
δ

1−δ . Computing the payoff explicitly,

taking first-order conditions with respect to x2, we may solve for

x2 = x1.

Plugging into the derivative of the payoff with respect to x1 gives an expression proportional

to

ψ(1− δ) ln x1 − ρ(1− ψ)x1 + ψ(δ − ρ)(1− δ).

By elementary algebra, this equation admits a root x1 < δ−
δ

1−δ if and only if

ρ < ρLD := W

(
ψ

1− ψ
(1− δ)e−(1−δ)

)

, (25)

whereW = W0 is the main branch of the Lambert function. It is easy to check that ρLD ≤ ρ∗

for all ψ, δ. In this case, the root is given by

x†1 = − (1− δ)ψ

(1− ψ)ρ
W

(

−ρ(1 − ψ)

(1− δ)ψ
eρ−δ

)

,

In that case, the designer’s strategy involves both learning and delay, and the payoff is given

by (k times)

WLD =
1 + ρ

ρ
δ

δρ
(1−δ)(1+ρ)

(

ρ−W

(

−ρ(1 − ψ)

(1− δ)ψ
eρ−δ

))

(x†1)
− 1

1+ρ − 1− ψ

ψ(1− δ)
.
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Note that (recall that δ is fixed)

lim
ρ→0

WLD = eδ, lim
ρ→0

WL =
ψ

1− δ
.

Hence if ψ > (1− δ)eδ, the first policy is optimal for small enough ρ. Also, full transparency

is necessarily optimal for ρ > ρ∗. It is then a matter of tedious algebra to show that WLD

is decreasing in ρ, and can only cross WL from below. Furthermore, WLD ≥ WL when

WL = WD.

To summarize, we have 0 ≤ ρLD ≤ ρ∗. In addition, because WLD is decreasing and

can only cross WL from below, while WD is independent of ρ, the “ranking” can only be,

for W := max{WD,WL,WLD}: W = WL for small enough ρ, W = WLD for intermediate

values of ρ, and W = WD for ρ above some upper threshold. We also have that this upper

threshold is at most ρLD –so that full transparency is indeed optimal for high ρ–, while the

lower threshold is strictly positive if and only ψ > (1− δ)eδ. �

Proof of Proposition 6. This is a perturbation argument around full transparency. Starting

from this policy, consider the following modification. At some time t2 (belief ℓ2), the designer

is fully transparent (α2 = 0). An instant ∆ > 0 before, however, he recommends to buy

with probability α1 to some fraction κ of the queue Qt1 = t1, so that the agent is indifferent

between checking in and waiting until time t2 = t1 +∆:

ℓ0 − ℓ1 − α1(k − ℓ1) = e−r∆(ℓ0 − ℓ2), (26)

where

ℓ1 = ℓ0e
−λρt1 ,

and

ℓ2 = ℓ1e
−λ(ρ∆+κα1t1).

We solve (26) for κ (given ℓ2), and insert into the payoff from this policy:

Wκ = e−rt2
(

(ℓ0 − ℓ2)t2 +
ℓ0
r
− ℓ2
r + λρ

)

.

Transparency is the special case κ = ∆ = 0, t1 = t∗, and we compute a Taylor expansion of

the gain for small enough ∆ with ℓ1 = ℓ∗ + τ∆ and α1 = a1∆
2, with τ, a1 to be chosen. We

pick a1 so that κ = 1, which gives

a1 =
ρ(r + λρ)(λℓ0ρr − 2τ(r + λρ))

2ρ(k(λρ+ r)− ℓ0r)− 2ℓ0r ln
(

r
r+λρ

) ,
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and choose τ to maximize the first-order term from the expansion, namely, we set

τ =
λℓ0ρ

2r (k(λρ+ r)2 − ℓ0r(λρ+ r)− ℓ0rλ)

(λρ+ r)2
(

ρ(k(λρ+ r)− ℓ0r)− ℓ0r ln
(

r
λρ+r

)) .

Plugging back into the expansion, we obtain

Wκ −W0 =
λ2ℓ30ρ

3r3
(

(λρ+ r) ln
(

r
λρ+r

)

− λρ
)

(k(λρ+ r)2 − ℓ0r(λρ+ λ+ r))

(ρ+ 1)(λρ+ r)5
(

ρ(k(λρ+ r)− ℓ0r)− ℓ0r ln
(

r
λρ+r

)) ∆+O(∆2),

and the first term is of the same sign as

ℓ0r(λρ+ r) + ℓ0rλ− k(λρ+ r)2.

Note that this expression is quadratic and concave in (λρ+ r), and positive for (λρ+ r) = 0.

Hence it is positive if and only if it is below the higher of the two roots of the polynomial,

i.e. if and only if

ρ ≤ 1

λ

(
rℓ0 +

√
rℓ0

√
4kλ+ ℓ0

2k
− r

)

.

�

Randomized policies with unobserved cost. Here, we prove the following proposition, which

generalizes Proposition 7 to the case of randomized policies.

Proposition 8. With uniformly distributed unobserved cost, the optimal policy is determin-

istic. It requires full disclosure of the posterior belief.

We allow the principal to randomize over finitely many paths of experimentation, so there

are finitely many possible posterior beliefs, 1, pj, j = 1, . . . , J . We allow then for multiple

(finitely many) recommendations R. So a policy is now a collection (αRj , γ
R
j )j, depending

on the path j that is followed. Along the path j, conditional on the posterior being 1, a

recommendation R is given by probability γRj , and conditional on the posterior being pj, the

probabilities αRj are used. One last parameter is the probability with which each path j is

being used, µj.

Correspondingly, there are as many thresholds γR as recommendations; namely, given

recommendation R, a consumer buys if his cost is no larger than

cR =

∑

j µj

(
p0−pj
1−pj

βRj + 1−p0
1−pj

pjα
R
j

)

∑

j µj

(
p0−pj
1−pj

βRj + 1−p0
1−pj

αRj

) ,
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Hence we set

γR =

∑

j µj
(
αRj ℓj + βRj (ℓ0 − ℓj)

)

∑

j µjα
R
j

.

We remark for future reference that

∑

R

γR
∑

j

µjα
R
j =

∑

R

∑

j

µj
(
αRj ℓj + βRk (ℓ0 − ℓj)

)

=
∑

j

µj

((
∑

R

αRj

)

ℓj +

(
∑

R

βRj

)

(ℓ0 − ℓj)

)

=
∑

j

µjℓ0 = ℓ0.

We now turn to the value function. We have that

rV (ℓ1, . . . , ℓJ) =
∑

j

µj

(

1 + ℓj
1 + ℓ0

∑

R

αRj

∫ cR

0

(pj − x)dx+
ℓ0 − ℓj
1 + ℓ0

∑

R

βRj

∫ cR

0

(1− x)dx

)

−
∑

j

ℓjµj

(
∑

R

αRj

∫ cR

0

dx

)

∂V (ℓ1, . . . , ℓJ)

∂ℓj
.

We shall do a few manipulations. First, we work on the flow payoff. From the first to the

second equation, we gather terms involving the revenue (“pj” and 1) on one hand, and cost

(“x”) on the other. From the second to the third, we use the definition of γR (in particular,

note that the term in the numerator of γR appears in the expressions). The last line uses

the remark above.

∑

j

µj

(

1 + ℓj
1 + ℓ0

∑

R

αRj

∫ cR

0

(
ℓj

1 + ℓj
− x

)

dx+
ℓ0 − ℓj
1 + l0

∑

R

βRj

∫ cR

0

(1− x)dx

)

=
1

1 + ℓ0

∑

R

cR
∑

j

µk
(
ℓjα

R
j + (ℓ0 − ℓj)β

R
j

)
− 1

2(1 + ℓ0)

∑

R

(cR)2
∑

j

µj
(
(1 + ℓj)α

R
j + (ℓ0 − ℓj)β

R
j

)

=
1

1 + ℓ0

∑

R

γR

1 + γR

(

γR
∑

j

µjα
R
j

)

− 1

2(1 + ℓ0)

∑

R

(
γR

1 + γR

)2
(

(1 + γRj )
∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

(γR)2

1 + γR

(
∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

(

γR − γR

1 + γR

)(
∑

j

µjα
R
j

)
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=
1

2(1 + ℓ0)

∑

R

γR
∑

j

µjα
R
j − 1

2(1 + ℓ0)

∑

R

γR

1 + γR

(
∑

j

µjα
R
j

)

=
ℓ0 −

∑

j µjxj

2(1 + ℓ0)
,

where we define

xj :=
∑

R

γR

1 + γR
αRj .

Let us now simplify the coefficient of the partial derivative

µj

(
∑

R

αRj

∫ cR

0

dx

)

= µj
∑

R

αRj
γR

1 + γR
= µjxj .

To conclude, given (µj) (ultimately, a choice variable as well), the optimality equality sim-

plifies to

rV (ℓ1, . . . , ℓJ) =
ℓ0

2(1 + ℓ0)
−
∑

j

max
xj

µjxj

{
1

2(1 + ℓ0)
+ ℓj

∂V (ℓ1, . . . , ℓJ)

∂ℓj

}

,

or letting W = 2(1 + ℓ0)V − ℓ0
r
,

rW (ℓ1, . . . , ℓJ) +
∑

j

µjmax
xj

xj

{

1 + ℓj
∂W (ℓ1, . . . , ℓJ)

∂ℓj

}

= 0.

where (xj)j must be feasible, i.e. appropriate values for (α, γ) must exist. This is a tricky

restriction, and the resulting set of (xj) is convex, but not necessarily a polytope. In par-

ticular, it is not the product of the possible quantities of experimentation that would obtain

if the agents knew which path were followed, ×j

[
ℓj

1+ℓj
, ℓ0
1+ℓ0

]

. It is a strictly larger set: by

blurring recommendation policies, he can obtain pairs of amounts of experimentation outside

this set, although not more or less in all dimensions simultaneously.

Let us refer to this set as BJ . This set is of independent interest, as it is the relevant

set of possible experimentation schemes independently of the designer’s objective function.

This set is difficult to compute, as for a given J , we must determine what values of x can

be obtained for some number of recommendations. Even in the case J = 2, this requires

substantial effort, and it is not an obvious result that assuming without loss that ℓ1 ≥ ℓ2,

B2 is the convex hull of the three points

xP :=

( ∑

j µjℓj

1 +
∑

j µjℓj
,

∑

j µjℓj

1 +
∑

j µjℓj

)

, xS :=

(
ℓ1

1 + ℓ1
,

ℓ2
1 + ℓ2

)

, xA :=

(
ℓ0 − µ2ℓ2

1 + ℓ0 − µ2(1 + ℓ2)
,

ℓ2
1 + ℓ2

)

,
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and the two curves

SU :=

(

x1, 1 +
µ2(1− x1)

µ1 − (1 + ℓ0)(1− x1)

)

,

for x1 ∈
[

ℓ1
1+ℓ1

, ℓ0−µ2ℓ2
1+ℓ0−µ2(1+ℓ2)

]

, and

SL :=

(

x1, x1 +
(x1 − (1− x1)ℓ0)(x1 − (1− x1)(µ1ℓ1 + µ2ℓ2))

µ2(µ1ℓ1 + µ2ℓ2 + ℓ0ℓ2 − (1 + ℓ0)(1 + ℓ2)x1)

)

,

for x1 ∈
[ ∑

j µjℓj

1+
∑

j µjℓj
, ℓ1
1+ℓ1

]

, that intersect at the point

(
ℓ1

1 + ℓ1
,

ℓ0 − µ1ℓ1
1 + ℓ0 − µ1(1 + ℓ1)

)

.

It is worth noting that the point
(

ℓ0
1+ℓ0

, ℓ0
1+ℓ0

)

lies on the first (upper) curve, and that the slope

of the boundary at this point is −µ1/µ2: hence, this is the point within B2 that maximizes
∑

j µjxj . See Figure 5 below. To achieve all extreme points, more than two messages are

necessary (for instance, achieving xS requires three messages, corresponding to the three

possible posterior beliefs at time t), but it turns out that three suffice.

x2

0.70

0.75

0.80

0.90

0.85

0.70

0.65

0.75 0.85 0.900.750 x1

Figure 5: Region B2 of feasible (x1, x2) in the case J = 2 (here, for ℓ0 = 5, ℓ1 = 3, ℓ2 =
2, µ1 = 2/3.
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In terms of our notation, the optimum value of a non-randomized strategy is

W S(ℓ) = −e r
ℓE1+r

(r

ℓ

)

.

We claim that the solution to the optimal control problem is given by the “separating”

strategy, given µ and l = (ℓ1, . . . , ℓK), for the case J = 2 to begin with. That is,

W (l) = W S(l) := −
∑

j

µjW
S(ℓj).

To prove this claim, we invoke a verification theorem (see, for instance, Thm. 5.1 in Fleming

and Soner, 2005). Clearly, this function is continuously differentiable and satisfies the desired

transversality conditions on the boundaries (when ℓj = 0). We must prove that it achieves

the maximum. Given the structure of B2, we have to ensure that for every state ℓ and

feasible variation (∂x1, ∂x2), starting from the policy x = xS , the cost increases. That is, we

must show that
∑

j

µj

(

1 + ℓj
dW S(ℓj)

dℓj

)

∂xj ≥ 0,

for every ∂x such that (i) ∂x2 ≥ 0, (ii) ∂x2 ≥ −µ1
µ2

1+ℓ1
1+ℓ2

∂x1. (The first requirement comes

from the fact that xS minimizes x2 over B2; the second comes from the other boundary line

of B2 at xS .) Given that the result is already known for J = 1, we already know that this

is true for the special cases ∂xj = 0, ∂x−j ≥ 0. It remains to verify that this holds when

∂x2 = −µ1

µ2

1 + ℓ1
1 + ℓ2

∂x1,

i.e. we must verify that, for all ℓ1 ≥ ℓ2,

(1 + ℓ1)ℓ2
dW S(ℓj)

dℓ2
− (1 + ℓ2)ℓ1

dW S(ℓj)

dℓ1
≥ ℓ2 − ℓ1,

or rearranging,

ℓ2
1 + ℓ2

(
dW S(ℓj)

dℓ2
− 1

)

− ℓ1
1 + ℓ1

(
dW S(ℓj)

dℓ1
− 1

)

≥ 0,

which follows from the fact that the function ℓ 7→ ℓ
1+ℓ

(
d
[

re
r
ℓ E1+r( r

ℓ )
]

dℓ
− 1

)

is decreasing.

To conclude, starting from ℓ1 = ℓ2 = ℓ0, the value of µ is irrelevant: the optimal strategy

ensures that the posterior beliefs satisfy ℓ1 = ℓ2. Hence, the principal does not randomize.

The argument for a general J is similar. Fix ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓJ . We argue below below
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that, at xS, all possible variations must satisfy, for all j′ = 1, . . . , J ,

J∑

j=j′

µj(1 + ℓj)∂xj ≥ 0,

It follows that we have

∑

j

µj

(

1 + ℓj
dW S(ℓj)

dℓj

)

∂xj =
ℓ1

1 + ℓ1

(
dW S(ℓ1)

dℓ1
− 1

) J∑

j′=1

µj′(1 + ℓj′)∂xj′ +

J−1∑

j=1

(
ℓj+1

1 + ℓj+1

(
dW S(ℓj+1)

dℓj+1
− 1

)

− ℓj
1 + ℓj

(
dW S(ℓj)

dℓj
− 1

)) J∑

j′=j+1

µj′(1 + ℓj′)∂xj′ ≥ 0,

by monotonicity of the map ℓ
ℓ+1

(
∂WS(ℓ)
∂ℓ

− 1
)

, as in the case J = 2.

To conclude, we argue that, from xS, all variations in BJ must satisfy, for all j′,

J∑

j=j′

µj(1 + ℓj)∂xj ≥ 0.

In fact, we show that all elements of B satisfy

J∑

j=j′

µk ((1 + ℓj)xj − ℓj) ≥ 0,

and the result will follow from the fact that all these inequalities trivially bind at xS. Consider

the case j′ = 1, the modification for the general case is indicated below. To minimize

J∑

j=1

µj(1 + ℓj)xj,

over BJ , it is best, from the formula for xj (or rather, γ
R that are involved), to set γR

′

= 1

for some R′ for which αR
′

j = 0, all j. (To put it differently, to minimize the amount of

experimentation conditional on the low posterior, it is best to disclose when the posterior

belief is one.) It follows that

∑

j

µj [(1 + ℓj)xj − ℓj]

=
∑

j

µj

[

(1 + ℓj)
∑

R

αRj

∑

k′ µj′ℓj′α
R
j′

∑

j′ µk′(1 + ℓj′)α
R
j′

− ℓj

]
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=
∑

R

µj(1 + ℓj)α
R
j

∑

j′ µj′ℓj′α
R
j′

∑

j′ µj′(1 + ℓj′)αRj′
−
∑

j

µjℓj

=
∑

R

∑

j′

µj′ℓj′α
R
j′ −

∑

j

µjℓj =
∑

j′

µj′ℓj′
∑

R

αRj′ −
∑

j

µjℓj = 0.

The same argument generalizes to other values of j′. To minimize the corresponding sum,

it is best to disclose the posterior beliefs that are above (i.e., reveal if the movie is good, or

if the chosen j is below j′), and the same argument applies, with the sum running over the

relevant subset of states.

�
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