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Abstract

We study how knowledge about the social network of an individual researcher – as
embodied in his coauthor relations – helps us in developing a more accurate prediction of
his future productivity. We find that incorporating information about coauthor networks
leads to a modest improvement in the accuracy of forecasts on individual output, over and
above what we can predict based on the knowledge of past individual output. Second,
we find that the informativeness of networks dissipates over the lifetime of a researcher’s
career. This suggests that the signalling content of the network is quantitatively more
important than the flow of ideas.
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1 Introduction

Good recruitment requires an accurate prediction of a candidate’s potential future perfor-
mance. Sports clubs, academic departments, and business firms routinely use past perfor-
mance as a guide to predict the potential of applicants and to forecast their future perfor-
mance. In this paper the focus is on researchers.

Social interaction is an important aspect of research activity: researchers discuss and
comment on each other’s work, they assess the work of others for publication and for prizes,
and they join forces to coauthor publications. Scientific collaboration involves the exchange
of opinions and ideas and facilitates the generation of new ideas. Access to new and original
ideas may in turn help researchers be more productive. It follows that, other things being
equal, individuals who are better connected and more ‘central’ in their professional network
may be more productive in the future.

Network connectedness and centrality arise out of links created by individuals and so they
reflect their individual characteristics – e.g., ability, sociability, and ambition. Since the ability
of a researcher is imperfectly known, the existence of such ties may be informative.

The above considerations suggest that someone’s collaboration network is related to their
research output in two ways: one, the network serves as a conduit of ideas and, two, the
network signals their individual quality. The first channel suggests a causal relationship from
network to research output, whereas the second does not. Determining causality would clarify
the importance of the two channels. Unfortunately, as is known in the literature on social
interactions (Manski, 1993; Moffit, 2001), identifying network effects in a causal sense is
difficult in the absence of randomized experiments.

In this paper we take an alternative route: we focus on the predictive power of social
networks in terms of future research output. That is, we investigate how much current and
past information on collaboration networks contribute to forecasting future research output.
“Causality” in the sense of prediction informativeness is known as Granger causality and is
commonly analyzed in the macroeconometrics literature – see for example, Stock and Watson
(1999) who investigate the predictive power of unemployment rate and other macroeconomics
variables on forecasting inflation.1

Finding that network variables Granger-cause future output does not constitute conclu-
sive evidence of causal network effects in the traditional sense. Nonetheless, it implies that
knowledge of a researcher’s network can potentially be used by an academic department in
making recruitment decisions.

We apply this methodology to evaluate the predictive power of collaboration networks
on future research output, measured in terms of future economics publications. We first ask
whether social network measures help predict future research output beyond the information
contained in individual past performance. We then investigate which specific network variables
are informative and how their informativeness varies over a researcher’s career.

1A few examples of applications that have determined the appropriateness of a model based on its ability
to predict are Swanson and White (1997), Sullivan et al. (1999), Lettau and Ludvigson (2001), Rapach and
Wohar (2002) and Hong and Lee (2003).
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Our first set of findings are about the information value of networks. We find that including
information about coauthor networks leads to an improvement in the accuracy of forecasts
about individual output over and above what we can predict based on past individual output.
The effect is significant but modest, e.g., the root mean squared error in predicting future
productivity falls from 0.773 to 0.758 and the R2 increases from 0.395 to 0.417. We also
observe that several network variables – such as productivity of coauthors, closeness centrality,
and the number of coauthors – have predictive power. Of those, the productivity of coauthors
is the most informative network statistic among those we examine.

Secondly, the predictive power of network information varies over a researcher’s career:
it is more powerful for young researchers but declines systematically with career time. By
contrast, information on recent past output remains a strong predictor of future output over
an author’s entire career. As a result, fourteen years after the onset of a researcher’s publishing
career, networks do not have any predictive value on future research output over and above
what can be predicted using recent and past output alone.

Our third set of findings is about the relation between author ability and the predictive
value of networks. We partition individual authors in terms of past productivity and examine
the extent to which network variables predict their future productivity. We find that the
predictive value of network variables is non-monotonic with respect to past productivity. Net-
work variables do not predict the future productivity of individuals with below average initial
productivity. They are somewhat informative for individuals in the highest past productivity
tier group. But they are most informative about individuals in between. In fact, for these
individuals, networks contain more information about their future productivity than recent
research output. Taken together, these results predict that academics recruiters would benefit
from gathering and analyzing information about the coauthor network of young researchers,
especially for those who are relatively productive.

This paper is a contribution to the empirical study of social interactions. Traditionally,
economists have studied the question of how social interactions affect behavior across well
defined groups, paying special attention to the difficulty of empirically identifying social inter-
action effects. For an overview of this work, see for instance Moffitt (2001) and Glaeser and
Scheinkman (2002). In recent years, interest has shifted to the ways by which the architecture
of social networks influences behavior and outcomes.2 Recent empirical papers on network
effects include Bramoullé, Djebbari and Fortin (2009), Calvó-Armengol, Patacchini and Zenou
(2008), Conley and Udry (2010), and Fafchamps, Goyal and van der Leij (2010).

This paper is also related to a more specialized literature on research productivity. Two
recent papers, Azoulay et al. (2010) and Waldinger (2010), both use the ‘unanticipated’
removal of individuals as a natural experiment to measure network effects on researchers’
productivity. Azoulay et al. (2010) study the effects of the unexpected death of ‘superstar’
life scientists. Their main finding is that coauthors of these superstars experience a 5% to 8%
decline in their publication rate. Waldinger (2010) studies the dismissal of Jewish professors

2For a survey of the theoretical work on social networks see Goyal (2007), Jackson (2009) and Vega-Redondo
(2007).
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from Nazi Germany in 1933/34. His main finding is that a fall in the quality of a faculty has
significant and long lasting effects on the outcomes of research students. Our paper quantifies
the predictive power of network information over and above the information contained in past
output.

The rest of the paper is organized as follows. Section 2 lays out the empirical framework.
Section 3 describes the data and define the variables. Section 4 presents our findings. Section 5
checks the robustness of our main findings. Section 6 concludes.

2 Empirical framework

It is standard practice in most organizations to look at the past performance of job candidates
as a guide to their future output. This is certainly true for the recruitment and promotion
of researchers, possibly because research output – i.e., journal articles and books – is publicly
observable.

The practice of looking at past performance appears to rest on two ideas. The first is that
a researcher’s output largely depends on ability and effort. The second is that individuals
are aware of the relationship between performance and reward and consequently exert effort
consistent with their career goals and ambition. This potentially creates a stable relationship
between ability and ambition on the one hand, and individual performance on the other hand.
Given this relationship, it is possible to (imperfectly) predict future output on the basis of past
output. In this paper we start by asking how well past performance predicts future output.

We then ask if future output can be better predicted if we include information about an
individual’s research network. Social interaction among researchers takes a variety of forms,
some of which are more tangible than others. Our focus is on social interaction reflected in
the coauthorship of a published paper. This is a concrete and quantifiable form of interaction.
Coauthorship of academic articles in economics rarely involves more than 4 authors. So, it is
likely that coauthorship entails personal interaction. Moreover, given the length of papers and
the duration of the review process in economics, it is reasonable to suppose that collaboration
entails communication over an extended period of time. These considerations – personal
interaction and sustained communication – in turn suggest several ways by which someone’s
coauthorship network can reveal valuable information on their future productivity. We focus
on two: research networks as a conduit of ideas; and coauthorship as a signal about unobserved
ability and career objectives.

Consider first the role of research networks as a conduit for ideas. Communication in the
course of research collaboration involves the exchange of ideas. So we expect that a researcher
who is collaborating with highly creative and productive people has access to more new ideas.
This, in turn, suggests that a researcher who is close to more productive researchers may have
early access to new ideas. As early publication is a key element in the research process, early
access to new ideas can lead to greater productivity. These considerations lead us to expect
that, other things being equal, an individual who is in close proximity to highly productive
authors will on average have greater future productivity.
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Proximity need not be immediate, however: if A coauthors with B and B coauthors with
C, then ideas may flow from A to C through their common collaborator B. The same argument
can be extended to larger network neighborhoods. It follows that authors who are more central
in the research network are expected to have earlier and better access to new research ideas.

As a first step we look at how the productivity of an individual, say i, varies with the
productivity of his or her coauthors. We then examine whether i’s future productivity depends
on the past productivity of the coauthors of his or her coauthors. Finally we generalize this
idea to i’s centrality in the network – in terms of how close a researcher is to all other
researchers (closeness) or how critical a researcher is to connections among other researchers
(betweenness) – the idea being that centrality gives privileged access to ideas that can help a
researcher’s productivity.

Access to new ideas may open valuable opportunities but it takes ability and effort to turn
a valuable idea into a publication in an academic journals. It is reasonable to suppose that
the usefulness of new ideas varies with ability and effort. In particular, a more able researcher
is probably better able to turn the ideas accessed through the network into publications than
a less able researcher. Since ability and industriousness are reflected in past performance,
we expect the value of a social network to vary with past performance. To investigate this
possibility, we partition researchers into different tier groups based on their past performance
and examine whether the predictive power of having productive coauthors and other related
network variables varies systematically across tier groups.

The second way by which network information may help predict future output is because
the quantity and quality of one’s coauthors is correlated with – and thus can serve as a
signal for – an individual’s hidden ability and ambition. Given the commitment of time and
effort involved in a research collaboration, it is reasonable to assume that researchers do not
casually engage in a collaborative research venture. Hence when a highly productive researcher
forms and maintains a collaboration with another – possibly more junior – researcher i, this
link reveals positive attributes of i that could not be inferred from other observable data.
Over time, however, evidence on i’s performance accumulates, and residual uncertainty about
i’s ability and industriousness decreases. We therefore expect the signal value of network
characteristics to be higher at the beginning of a researcher’s career and to fall afterwards.

Our empirical strategy is based on the above ideas. Since our focus is on predictive power,
we worry that overfitting may bias inference. To avoid this, we divide the sample into two
halves, one of which is used to obtain parameter estimates, and the other to assess the out-of-
sample predictive power of these estimates. We thus begin by randomly dividing the authors
into two equal size groups. The first halve of the authors is used to estimate a regression
model of researcher output. We then use the estimated coefficients obtained from the model
fitted on the first halve of the authors to predict researcher output for the authors in the
second halve of the data. We then compare these predictions with actual output.

The purpose of this procedure is to assess the out-of-sample prediction performance of the
model. The reason for using out-of sample predictions is that in-sample errors are likely to
understate forecasting errors. As stated by Fildes and Makridakis (1995) “the performance of
a model on data outside that used in its construction remains the touchstone for its utility in

5



all applications” regarding predictions. Other drawback of in-sample tests is that they tend
to reject the null hypothesis of predictability. In other words, in-sample tests of predictability
may spuriously indicate predictability when there is none.3

The rest of this section develops some terminology and presents the regressions more
formally. We begin by describing the first step of our procedure and then we explain how
we assess prediction performance. The dependent variable of interest is a measure yit of the
future output of author i at time t, defined more in detail in the data section. This measure
takes into account the number of articles published, the length of each of the articles, and the
ranking of the journal where the article appears.

We first study predictions of yit based on past output and a set of controls xit. Control
variables include: cumulative output since the start of i’s career until t − 5; career time
dummies; year dummies; and the number of years since i’s last publication. Career time
dummies are included to capture career cycle effects, i.e., that researchers publish less as they
approach retirement. We then examine by how much recent research output and network
characteristics improve the prediction. We also compare the accuracy of the prediction when
we use only past output and when we combine it with recent network characteristics.

The order of the regression models we estimate is as follows. We start with benchmark
model 0 which examines the predictive power of the control variables xit:

Model 0 yi,t+1 = xitβ + εit

We then include recent individual output yi,t as additional regressor. This yields Model 1:

Model 1 yi,t+1 = xitβ + yitγ1 + εit

In Model 2 we investigate the predictive power of network variables zi,t:

Model 2 yi,t+1 = xitβ + zitγ2 + εit

Network variables include the number of i’s coauthors up to time t, the productivity of these
coauthors, and different network centrality measures detailed in the empirical section. We
estimate Model 2 first with one network variable at a time, then including network variables
simultaneously.

Finally, in Model 3 we ask if network variables zit improve the prediction of future output
over and above the prediction obtained from Model 1, that is, from past productivity:

Model 3 yi,t+1 = xitβ + yitγ1 + zitγ2 + εit

3Arguments in favour of using out-of sample predictions can be found in Ashley et al. (1980) who state that
“a sound and natural approach” to testing predictability “must rely primarily on the out-of-sample forecasting
performance of models relating the original series of interest” (page 1149). Along with Fair and Shiller (1990),
they also conjecture that out-of-sample inference is more robust to model selection biases and to overfitting
or data mining.
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Here too we first consider one network variable at a time to ascertain which network charac-
teristic have more predictive power. We also estimate Model 3 with several networks variables
together to evaluate the overall information contained in the network.

Models 0, 1 and 2 are nested in Model 3. A comparison of models 1 and 2 allows us
to investigate the relative information content of recent individual output and recent social
network. A comparison of models 1 and 3 examines whether social network variables have
explanatory power over and above the information contained in recent individual output.

For Models 2 and 3 we consider both regressions with a single network variable, and
regressions with multiple network variables. In the latter case, since our ultimate purpose is
to predict research output, we need a criterion to select a parsimonious set of regressors so as to
avoid overfitting. To select among social network regressors we use the Bayesian Information
Criterion (BIC). We find that, in our case, the lowest values of the BIC are obtained when all
the network variables are included, which is why our final specification of the “multivariate”
model includes them all.

The previous models are called restricted models because we are imposing the constraint
that the lagged productivity variables since the start of i’s career until t−5 have the same effect
on future productivity. Moreover, in these models we only consider 5-year network variables,
i.e. each network variable is computed assuming that a link between author i and her co-
author has a predictive effect that lasts for five years. These restricted models are simple
to estimate and allow us to compare the predictive power of network variables and recent
output. But we may be able to improve the predictions of the restricted models by relaxing
the constraint that productivity lags have the same coefficient. Similarly, the predictive power
of the network variables might increase if we include several lags of the network variables.

To see whether this is the case, we also estimates versions of Models 1, 2 and 3 that include
several lags of the productivity and network variables. The number of lags of the productivity
and network variables are selected using the BIC. We call these the unrestricted models. The
benchmark unrestricted model, Model 1’, contains thirteen lags of the productivity variable
and a new set of control variables xit: career dummies, time dummies and years since the last
publication. This model examines the predictive power of past output:

Model 1’ yi,t+1 = xitβ +
12∑
s=0

yit−sγs + εit

We also consider an unrestricted model with only network information, Model 2’:

Model 2’ yi,t+1 = xitβ +
T∑

s=0

zit−sθs + εit

where T is the maximum lag length of the network variable selected using the BIC criteria. For
example, if T = 14 we include lags from zit−14 to zit – zit−14 is the network variable obtained
combining all joint publications from t − 14 to t and zit is the network variable computed
using the joint publications at period t. A comparison of Model 1’ and 2’ provides insights
about the importance of past networks, relative to past output.
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The unrestricted Model 3, Model 3’, combines all past output and past network informa-
tion:

Model 3’ yi,t+1 = xitβ +
12∑
s=0

yit−sγs +
T∑

s=0

zit−sθs + εit

We also estimate models 2’ and models 3’ with multiple network variables. A comparison of
Model 1’ and Model 3’ allow us to examine the explanatory power of network variables over
and above knowledge of past output.

This describes the first step of our analysis. In the second step we evaluate the predictive
accuracy of the different models. To this effect we compare, in the second half of the data, the
actual research output yi,t+1 to the predictions ŷi,t+1 obtained by applying to authors in the
second halve of the data the regression coefficients of restricted models 0 to 3 and unrestricted
models 1’ to 3’ obtained from the first halve of the data. To evaluate the prediction accuracy
of ŷi,t+1 we report the root mean squared errors (RMSE) defined as:

RMSE =

√
1

n

∑
i,t

(yi,t+1 − ŷi,t+1)2.

If the introduction of an explanatory variable in ŷi,t+1 decreases the out-of-sample RMSE, this
variable contains useful information that helps predict researchers future productivity.

In order to assess whether forecasts from two models are significantly different we use a
test described by Diebold and Mariano (1995). This test is based on the loss differential of
forecasting the future output of an individual i, di,t. As we measure the accuracy of each
forecast by a squared error loss function (RMSE), we apply the Diebold-Mariano test to a
squared loss differential, that is,

di,t = ε2Ai,t − ε2Bi,t.

where A is a competing model and B is the benchmark model.
To determine if one model predicts better we test the null hypothesis, H0 : E[di,t] = 0,

against the alternative, H1 : E[di,t] 6= 0. Under the null hypothesis, the Diebold-Mariano test
is

d√
V̂ (d)/n

v N(0, 1)

where d = n−1
∑
i,t

di,t, is the average loss differential, and V̂ (d) is a consistent estimate of the

asymptotic (long-rung) variance of
√
nd. We adjust for serial correlation by using a Newey-

West type estimator of V̂ (d̄).4

4Formally, V̂ (d̄) =
∑
i(γ̂0 + 2

T−t∑
τ=1

wm(T )γ̂τ ), and γ̂τ = ˆCov(di,t, di,t−τ ), where wm(T ) is the Bartlett Kernel
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3 Data

The data used for this paper are drawn from the EconLit database, a bibliography of journals in
economics compiled by the editors of the Journal of Economic Literature. From this database
we use information on all articles published between 1970 and 1999. These data are the same
as those analyzed by Goyal, van der Leij, and Moraga-González (2006), Fafchamps, Goyal and
van der Leij (2010), van der Leij and Goyal (2011) and Ductor (2012).

3.1 Definition of variables

The output qit of author i in year t is defined as:

qit =
∑
j∈Sit

journal qualityj (1)

where Sit is the set of articles j of individual i published in year t. When available, the
Journal quality variable is taken from the work of Kodrzycki and Yu (2006) – hereafter KY.5

Unfortunately, KY do not include in their analysis all the journals in the EconLit database.
To avoid losing information and minimize measurement error in research output, we construct
a prediction of the KY quality index of journals not included in their list.6 The actual KY
journal quality index is used whenever available.

We are interested in predicting future output. In economics, the annual number of papers
per author is small and affected by erratic publication lags. We therefore need a reasonable
time window over which to aggregate output. The results presented here are based on a
three year window, but our findings are insensitive to the use of alternative window length,
e.g., five years.7 Our dependent variable of interest is thus the output of author i in years
t+ 1, t+ 2, t+ 3:

function:

wm(T ) =

{ (
1− τ

m(T )

)
if 0 ≤ τ

m(T ) ≤ 1,

0, otherwise,

and m(T ) also known as the ”truncation” lag is a number growing with T , the number of periods in the panel.
The truncation lag has been chosen by the BIC.

5We do not consider citations because they are often materialize long after a paper has been published.
This means that authors at the beginning of their career often have a small citation record and hence, for
them at least, citations have little predictive power.

6To do this, we regress the KY index on commonly available information of each journal listed in EconLit,
such as the number of published articles per year, the impact factor, the immediacy index, the Tinbergen
Institute Index, an economics dummy, interaction terms between the economics dummy and the impact factor,
and various citation measures. Estimated coefficients from this regression are then used to obtain a predicted
KY journal quality index for journals not in their list. Since most of the journals that KY omitted are not
highly ranked, their predicted quality index is quite small.

7The predictive power of network variables is slightly higher under a five years window. Results are available
in the online appendix.
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qfit = qi,t+1 + qi,t+2 + qi,t+3 (2)

Unsurprisingly qfi has a long upper tail. To avoid our results from being entirely driven
by a handful of highly productive individuals, we log the dependent variable as follows:8

yi,t+1 = ln
(

1 + qfit

)
The analysis presented in the rest of the paper uses yi,t+1 as dependent variable.

We expect recent productivity to better predict output over the next three years than
ancient output. To capture this idea, we divide past output into two parts in the restricted
models: cumulative output until period t− 5, which captures i’s historical production and is
used as control variable; and output from t−4 until t, which represents i’s recent productivity
and is expected to be a strong predictor of future output. We define recent output qrit from t
to t− 4 as:

qrit = qit + qi,t−1 + qi,t−2 + qi,t−3 + qi,t−4

Control variables in the restricted models xit include cumulative output qcit from the start
ti0 of i’s career until t− 5:

qcit = qi,ti0 + ....qi,t−6 + qi,t−5

where ti0 is the year in which individual i obtained his or her first publication. We use
ln(1 + qci,t) and ln(1 + qri,t) as regressors, since the distribution of both variables presents fat
tails. We also include the number of years rit with no published article since i’s last article
was published:

rit =

{
0 if qit > 0
ri,t−1 + 1 otherwise.

and

ri,ti0 = 0

Variable rit is used as proxy for leave or retirement from academics: the longer someone has
not published, the more likely he or she has retired or left research. Other controls include
career time dummies cit, and year dummies t. To summarize, xit = {qcit, rit, cit, t}.

In the unrestricted models 1’ and 3’, we relax the constraint imposed in qrit and qcit. In
these models, we consider thirteen lags of the productivity variable:

yi,t−s = ln (1 + qi,t−s + qi,t−s−1 + qi,t−s−2) ∀s = 0, ..., 12.

Control variables in the unrestricted models are the same as in the restricted models but
excluding past output.

8We have considered alternative nonlinear models in which the dependent variable does not have to be
transformed, such as Poisson, Non-negative Binomial, and Zero inflated Non-Negative Binomial model. In
terms of out-of-sample RMSE, the specification that provides the best forecast is ln(x + 1), which is the one
we report here. See the online appendix for more details.
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Next we turn to the network variables. Given that we wish to investigate whether network
characteristics have predictive power over and above that of recent productivity, network
variables must be constructed in such a way that they do not contain information outside the
time window of qrit. We therefore define the 5-year co-authorship network Gt,5 at time t over
the same time window as qrit for the restricted models, that is, using all joint publications from
year t − 4 to t. At time t, two authors i and j are said have a link gij,t in Gt,5 if they have
published in an EconLit journal in years t− 4 to t. Otherwise gij,t = 0.

For the unrestricted models 2’ and 3’ we introduce different co-authorship networks, Gt,s,
where s determines the number of years that a link between author i and her co-author j
lasts. For example, in the network Gt,10, we assume that the effects from a collaboration last
during 10 years, from t− 9 to t.

The set of network statistics that we construct from Gt,s is motivated by the theoretical
discussion of Section 2. Some of the network statistics we include in our analysis are, on
a priori grounds, more correlated with access to new scientific ideas; others are included
because they are thought to have a high signalling potential. Measures of network topology
such as centrality and degree reflect network proximity and thus belong primarily to the first
category while other measures, such as the productivity of coauthors, are likely to have greater
signalling potential.

Based on these observations, the list of network variables that we use in the analysis
is as follows. We say that there is a path between i and j in Gt,s if gij,t = 1 at some
period from t − (s − 1) to t or there exists a set of distinct nodes j1, . . . , jm, such that
gij1,t = gj1j2,t = . . . = gjmj,t = 1. The length of such a path is m+ 1. The distance d(i, j;Gt,s)
is the length of the shortest path between i and j in Gt,s. We use the following standard
definitions:

• (First order) degree is the number of coauthors that i has in period t − (s − 1) to t,
n1i,t = |Ni(Gt,s)|, where Ni(Gt,s) = {j : gij,t = 1}.

• Second order degree is the number of nodes at distance 2 from i in period t− (s− 1) to
t, n2i,t = |N2

i (Gt,s)|, where N2
i (Gt,s) = {k : d(i, k;Gt,s) = 2}.

• Giant component : The giant component in Gt,s is the largest subset of nodes such that
there exist a path between each pair of nodes in the giant component, and no path to a
node outside. We create a dummy variable which takes value 1 if an author belongs to
the giant component and 0 otherwise.

Within the giant component we consider the following two global proximity measures.9

• Closeness centrality Cc
i,t is the inverse of the average distance of a node to other nodes

within the giant component and is defined as:

Cc
i,t =

nt − 1∑
j 6=i

d(i, j;Gt,s)

9For a careful discussion on the interpretation of centrality measures, see Wasserman and Faust (1994).
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where nt is the size of the giant component in year t in the co-authorship network Gt,s.
Because Cc

i,t has fat tails, we use ln(1 + Cc
i,t) as regressor instead.

• Betweenness centrality Cb
i,t is the frequency of shortest paths passing through node i

and is calculated as:

Cb
i,t =

∑
j 6=k:j,k 6=i

τ ij,k(Gt,s)

τj,k(Gt,s)

where τ ij,k(Gt,s) is the number of shortest paths between j and k in Gt,s that pass through
node i, and τj,k(Gt,s) is the total number of shortest paths between j and k in Gt,s. In
the regression analysis, we similarly use ln(1 + Cb

i,t) as regressor.

Next, we define regressors that capture the productivity of coauthors and that of coauthors
of coauthors. We apply the ln(x+ 1) transformation to them as well.

• Productivity of coauthors : is defined as the output of coauthors’ of author i from t−(s−1)
to t,

q1it =
∑

j∈Ni(Gt,s)

qrjt

where qrjt is the output of j from period t − (s − 1) to period t (excluding papers that
are coauthored with i).

• Productivity of coauthors of coauthors : the output of coauthor of coauthors’ of author i
from t− (s− 1) to t,

q2it =
∑

k∈N2
i (Gt,s)

qrkt

where qrkt is the output of k from t− (s− 1) to t excluding papers that are coauthored
with the neighbors of i, Ni(Gt,s).

We also include a dummy variable that takes value 1 for author i if one of i’s coauthors in
Gt,s has an output qrjt in the top 1% of the distribution of qrit.

In the restricted models, all the network variables are obtained using Gt,5, that is, com-
bining all joint publications from t−4 to t. In contrast, in the unrestricted models we include
network variables obtained using different periods of the co-authorship networks, from Gt,1 to
Gt,15. The number of network periods is selected according to the BIC.

3.2 Descriptive statistics

Table 1 provides summary statistics of the variables included in the analysis. Column 1
provides the mean value of each variable. Column 2 shows the standard deviation and column
3 provides correlations between the different variables and future productivity.

For the restricted model, we excluded observations relative to authors in the earliest stage
of their career, i.e., for which cit < 6. The reason is that these authors have not yet established
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a publication record and network so that there is little information on which to form predictions
of future output. This assumption is relaxed in the unrestricted models, where we consider
the full sample, 1,335,428 observations, after replacing the missing lagged productivity and
network variables by zeros. The rationale for doing so is that authors who have just started
their career have no past output and co-authorship, hence the value of their lagged productivity
and network variables are truly zero.

We draw attention to some distinctive features of the data. First, we observe that the
variance in future output qfit is large, with a standard deviation 2.41 times larger than the
mean. There is a high positive correlation of 0.69 between recent output qrjt and future output

qfit. Figure 1 shows a scatter plot and a linear regression line with confidence interval between
qfit and qrjt for 1000 random selected observations. This visually confirms that, as anticipated,
recent past output has a strong predictive power on future output.

Second, we observe a high correlation between qfit and several 5-year network variables
such as coauthors’ output q1it, author degree, and closeness and betweenness centrality. The
network variable most highly correlated with future productivity is the productivity of i’s
coauthors, q1it, with a correlation coefficient of 0.58. Other network variables such as degree,
closeness, and betweenness centrality are also highly correlated with future output qfit. Figure
2 shows the relationship between some 5-year network variables and future output.

4 Empirical findings

We have seen that there is a reasonably strong correlation between future output and recent
past output, but also between future output and the characteristics of i’s recent coauthorship
network. We now turn to a multivariate analysis and estimate the different models outlined in
Section 2. We start by presenting the results on the predictive power of recent past output. We
then examine the relation between the productivity of an individual author and the predictive
power of network variables.

4.1 Predicting future output

Table 2 presents the prediction results for Model 0, the baseline model with controls xit =
{qcit, rit, cit, t}, Model 1, that includes recent output qrit, and Model 2 that includes a network
variable, one per regression. Column 1 presents the R2 of the regression on the in-sample
data for each model. Column 2 shows the out-of-sample RMSE for each model. Column 3
compares the RMSE of Model 1/Model 2 with the benchmark model, Model 0. Column 4
shows the coefficient of each regressor.

Recent output qrit explains slightly less than half of the variation in future output qfit. Half
of the variation in qfit – around 51% of the total variation – remains unexplained after we take
qrit into account. The question is: can we improve upon this using network variables?

We begin by examining the predictive power of the different network variables when one
network variable is added to controls xit. This is achieved by comparing the results from
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the Model 2 regressions with Model 0. Results, presented in Table 2, show that coauthors’
productivity q1it, closeness centrality Cc

i,t, and the productivity q2it of coauthors of coauthors
– are statistically significant and help predict future output. However, the predictive power
is much less than recent output, for example, coauthors’ productivity reduces the RMSE by
9.38% whereas recent output reduces the RMSE by 15.72%.

We then combine recent output qrit and network variables in Model 3. Results presented in
Table 3 show that the same network variables remain significant once we include qrit as regres-
sor. Being significant does not imply that network variables are very informative, however.
For this we have to examine the improvement in prediction that they represent. We compare
Multivariate Model 3, that is, with multiple network variables in the regression, to Model
1. Table 4 shows that the R2 of Model 3 is greater than the R2 obtained under Model 1.
This means that network information taken in combination with recent output yields a more
accurate prediction than a prediction based on past output alone. The gain in explanatory
power is small, however: the R2 rises from 0.49 in Model 1 to 0.51 in Model 3. In line with
this, the RMSE declines from 0.67 down to 0.65 when we incorporate network information.
This small difference is statistically significant, as shown by the Diebold-Mariano test.

Table 5 presents the prediction results for the benchmark unrestricted Model 1’ and Model
2’. Model 1’ contains thirteen lags of the productivity variable and the same control variables
as in the restricted models except past output. Model 2’ includes the control variables without
past output and several lags of a network variable. Column 1 presents the lag length of each
variable, the rest of columns are analogous to Table 2. The predictions obtained from the
unrestricted models are consistent with their restricted versions. The network variable with
the highest predictive power is coauthors’ productivity with a RMSE 7.76% greater than the
past output model, Model 1’. As shown in table 7, the predictive power of network over and
above information of past output is slightly higher when we consider the unrestricted version,
that is, when we include several lags of the network variables. In the restricted multivariate
models, the RMSE is reduced by 1.65% when we add network variables to past and recent
output, while in the unrestricted version, the reduction is around 1.94%.

From this we conclude that network variables contain predictive information over and
above what can be predicted on the basis of past output, but this information gain is modest.

4.2 Networks and career cycle

Next we estimate the predictive power of network variables for different career time cit. The
RMSE of restricted Models 0, 1 and Multivariate Models 2 and 3 (that is, with multiple
network variables included in the regression) as well as the RMSE of unrestricted models 1’
and Multivariate Models 2’ and 3’ are plotted in Figure 3 and Figure 5, respectively. Career
age cit is on the horizontal axis while RMSE is measured on the vertical axis. Unsurprisingly,
the Figures shows that the predictive accuracy of all the models improves – reflected in the
decline in RMSE – with career time. This is primarily because the control variables xit –
particularly cumulative output qcit – reveal more information about individual ability and
preferences over time.
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To examine whether the relative predictive gain of network variables varies with career
time, we report in Figure 4 and Figure 6 the difference in RMSE between Multivariate Models
2 and 3 versus Model 1 and the difference in RMSE between their unrestricted versions,
respectively. We note a marked decline in the difference between Models 1’ and 3’ over the
course of a researcher’s career. After time t = 14, the prediction accuracy of models with
or without network variables becomes virtually indistinguishable. The Diebold-Mariano test
shows that the differences between Multivariate Model 3’ and Model 1’ are not statistically
significant from t = 14 to t = 20. In the restricted models, Figure 4, the decline in the
predictive power of network variables is not observed till t = 15.10 This indicates that, for
senior researchers, network variables contains little information over and above the information
contained in past and recent output.

What does this pattern in the data suggest about the relative importance of the two
potential ways in which networks may matter: flow of ideas and signalling? As time passes,
the publication record of a researcher builds up. Since ability, research ambition, and other
personality traits are relatively stable over time, this accumulating evidence ought to provide
a more accurate estimate of the ‘type’ of the person. Hence it should become easier to judge
his or her ability and research ambition on the basis of the publication record alone. Based
on this, we would expect that the signalling value of networks decreases over time, and hence
that network variables have less and less additional predictive power.

Research networks can, however, be important conduits of valuable research ideas as
well. Unlike the signalling value of networks, access to new research ideas remains impor-
tant throughout a researcher’s career. Thus if network variables help predict future output
because they capture access to new ideas, their predictive value should remain relatively un-
changed over a researcher’s career. This is not what we observe, leaving signalling as a stronger
contender as the possible channel by which network variables help predict future productivity.

4.3 Network information across productivity categories

In this section we examine whether the predictive power of network information varies sys-
tematically with recent output qrit. This analysis is predicated on the idea that it takes talent
and dedication to transform the new ideas conveyed by the research network into publishable
output. Consequently we expect the predictive power of network variables to increase with
ability – and hence with qrit – at least over a certain range.

To investigate this possibility, we divided the observations into five tier groups on the basis
of their recent output qrit. The top category includes authors in the top 1% in terms of qrit.

10The fact that the predictive power of networks is still significant for matured authors in the restricted
model analysis might be a consequence of including inactive authors in the sample, i.e. those who do not
publish regularly. As an inactive author matures, future output and network variables are both more likely
to be zero due to the reduction of output prior to retirement, so the predictive power of networks does not
dissipate. Indeed, we find that if we restrict the analysis to active authors, i.e. authors with positive recent
output, the predictive power of networks in the restricted model is negligible after the authors have more than
15 years of experience.
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The second top category includes authors in the 95-99 percentiles of qrit. The third category
covers authors in the 90-94 percentiles, the fourth includes authors in the 80-89 percentiles,
and the last category is for authors in the 50-79 percentiles.11

Figure 7 shows the RMSE % difference between Model 1 and Model 2 versus Model 0
across the different categories. The RMSE % differences are always positive because the
restricted benchmark model, Model 0, is nested in Model 2 and Model 1, thus, it is very
likely that Model 2 and Model 1 have a predictive power greater than Model 0. For the most
productive authors, those above the 99th percentile, network variables have predictive power
in explaining future research output but much less than recent output. For the next category
of researchers, those in the 95-98 percentile range, network information has greater predictive
power. Even more strikingly, for researchers in the third category, the 90-94 percentile range,
network variables are better at predicting future research output than qrit! All the Models
have statistically significant predictive power across the different tiers group.

By contrast, network information has little but significant predictive power for low pro-
ductive individuals (those in the 50-79 percentile range). This suggests that, for researchers
with low ability or research ambition, having published with high quality coauthors has little
informative content regarding their future output – perhaps because they are unable to take
advantage of the access to information and research ideas that good coauthors provide.

Similar patterns are observed when we compare RMSE of unrestricted Model 2’ versus
Model 1’.

5 Robustness

We have conducted an extensive investigation into the robustness of our results to various
assumptions made in constructing the variables used in the estimation. The results of this
analysis are summarized here; the details, not shown here to save space, are available in an
online appendix.

In the analysis so far we have used accumulated productivity from t + 1 to t + 3 as
the variable qit we seek to predict (see equation 2). The rationale for doing so is that the
distant future is presumably harder to predict than the immediate future, and we want to
give the model a fair chance. Yet, in economics there are long lags between the submission and
publication of a paper, and wide variation in these lags across papers and journals. Publication
lags thus introduce additional variation in the variable we are trying to predict, and may thus
lead us to underestimate the predictive power of network information. To check whether this
is affecting our results, we repeat the analysis using average future productivity over a five
year window instead of three:

qfit = qi,t+1 + qi,t+2 + qi,t+3 + qi,t+4 + qi,t+5.

and, as before, use ln
(

1 + qfit

)
as the variable we seek to predict. Results are similar to those

11We do not consider authors below the median because the median recent output is zero.
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reported here except that the predictive power of network variables is larger using a five year
window. In particular, network variables are even more useful than past output to forecast
the future performance of a researcher, i.e., Multivariate Model 2’ outperforms Model 1’.

Next we investigate whether results are sensitive to our definition of output qit. We examine
whether different results obtain if we correct for article length and number of co-authors.
Results show that the predictive power of network variables is unaffected.12

Finally, the main specification used so far is a linear model estimated by OLS in which the
dependent variable is a logarithmic transformation of future research output, ln(qfit + 1). We
are concerned that the model might be misspecified by restricting ourselves to OLS applied to
this particular functional form. We, therefore, repeat the analysis with nonlinear regression
models frequently used to study research output or citations, such as the Poisson model, the
Negative Binomial model, and the Zero-inflated Negative Binomial model. Results show that
the in-sample log-likelihood is higher for the (Zero-inflated) Negative Binomial model than for
the linear model applied to the ln(y + 1)-transformation. However the out of sample RMSE
is lowest for the linear model. As the linear model is also easy to interpret and to evaluate,
we use it as our main specification.

We also consider panel data models. Fixed effect models are not useful to predict the
productivity of junior researchers so we do not pursue them further.13 We also investigate the
predictive power of vector autoregressive (VARs) models where past network variables affect
future output and past output influence future network variables. We estimate such VAR
models using a seemingly unrelated regressions (SUR) approach, allowing for correlation in
the error terms across the two equations. The lag length of each equation is selected using
the BIC criteria. The SUR regressions should in principle lead to more efficient predictions as
long as the two equations do not include the same set of lagged variables, a conditions that
is fulfilled here. Results show that the predictions generated by the unrestricted SUR Model
3 using feasible generalized least squares (FGLS) hardly differ from the unrestricted Model 3
estimated using simple OLS. Therefore, the SUR model does not outperform, out-of-sample,
the simple OLS.

6 Concluding remarks

In this paper we have examined whether a researcher’s coauthor network helps predict their
future output. Underlying our study are two main ideas. The first idea is that a collaboration
resulting in a published article reveals valuable information about an author’s ability and
research ambitions. This is particularly true for junior researchers whose type cannot be fully
assessed from their cumulative output. The second idea is that professional research networks
provide access to new research ideas. These ideas can subsequently be turned into published
papers provided the researcher possesses the necessary ability and dedication.

12See online appendix for more details.
13Results from panel data regressions are available in the online appendix.
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To investigate these ideas, we examine coauthorship in economics. Our focus is not on
statistical significance or causality but rather on predictive power. For this reason, we adopt
a methodology that eliminates data mining and minimizes the risk of pre-testing bias. To this
effect we randomly divide the data into two halves. Parameter estimates are obtained with
one half and predictions are judged by how well they perform in the other half of the sample.

We find that information about someone’s coauthor networks leads to a modest improve-
ment in the forecast accuracy of their future output over and above what can be predicted
from their past output. The network variables that have the most information content are
the productivity of coauthors, closeness centrality, and the number of past coauthors. These
results are robust to alternative specifications and variable definitions.

We investigate whether the predictive power of network variables is stronger for more
talented researchers, as would be the case if taking advantage of new ideas requires talent
and dedication. We find that the predictive value of network variables is non-monotonic
with respect to past productivity. Network variables do not predict the future productivity
of individuals with below average initial productivity. They are somewhat informative for
individuals in the highest past productivity tier group. But they are most informative about
individuals in between. In fact, for these individuals, networks contain more information
about their future productivity than recent research output.

The work presented here leaves many questions unanswered. In particular, we do not
claim to have identified a causal effect of coauthorship or network quality on future output. If
anything, the signalling hypothesis is based on a reverse causality argument, and it receives the
most support from our analysis. We do, however, also find evidence that network connections
are most useful to talented researchers. This result is consistent with a causal relationship
between the flow of research ideas and future output, with the caveat that talent is needed to
turn ideas into publishable papers.
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Table 1: Summary statistics

Mean Std. deviation Correlations
Output
Future productivity .41 .99 1
Past stock output 1.62 1.44 .44
Recent past output .62 1.20 .69

Network variables
Degree .58 1.21 .55
Degree of order two .90 3.12 .46
Giant component .10 .30 .47
Closeness centrality .01 .02 .48
Betweenness centrality .50 2.29 .48
Coauthors’ productivity .59 1.40 .58
Coauthors of Coauthors’ prod. .58 1.58 .54
Working with top 1% .01 .11 .34

Number of observations 1697415 1697415 1697415
Number of authors 75109 75109 75109

Network variables are computed assuming that a link between two authors lasts during five
years (5-year network variables). The number of observations used to obtain the statics for

future output is 1335428, for recent past output is 1230335 and for past stock output is
1132248. All the correlations coefficients are obtained using the same number of

observations, 872344

22



Figure 1: A scatter plot of future output and recent past output.

Figure 2: Scatter plots of future productivity on closeness centrality and coauthors’ produc-
tivity.
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Table 2: Prediction Accuracy: restricted Models 1 and 2

R2 RMSE RMSE Diff. Coefficients
Model 0

Past output .28 .789 - .22∗∗

Model 1
Recent past output .49 .665 15.72%∗∗ .49∗∗

Model 2
Degree .38 .728 7.73%∗∗ .29∗∗

Degree of order 2 .36 .744 5.70%∗∗ .10∗∗

Giant component .35 .748 5.20%∗∗ 1.05∗∗

Closeness .36 .743 5.83%∗∗ 22.96∗∗

Betweenness .38 .734 6.97%∗∗ .11∗∗

Coauthors’ productivity .41 .715 9.38%∗∗ .30∗∗

Coauthors of Coauthors’ prod. .39 .727 7.86%∗∗ .24∗∗

Working with a top 1% .36 .746 5.45%∗∗ 1.75∗∗
∗∗ Significant at 1% level, ∗ Significant at 5%. Model 0 includes career time dummies, year
dummies, number of years since the last publication and cumulative productivity from the

first publication till t− 5. Model 1 adds to Model 0 recent output. Model 2 adds to Model 0
one of the network variable. Each network variable is computed assuming that a link from a

collaboration last during 5 years (5-year network variable). The number of in-sample
observations is 436440.
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Table 3: Prediction Accuracy: restricted Models 1 and 3

R2 RMSE RMSE Diff. Coefficients
Model 0

Past output .28 .789 - .22∗∗

Model 1
Recent past output .49 .665 15.72%∗∗ .49∗∗

Model 3
Degree .50 .660 16.35%∗∗ .09∗∗

Degree of order 2 .50 .660 16.35%∗∗ .03∗∗

Giant component .50 .662 16.10%∗∗ .27∗∗

Closeness .50 .660 16.35%∗∗ 13.89∗∗

Betweenness .50 .657 16.73%∗∗ .06∗∗

Coauthors’ productivity .50 .660 16.35%∗∗ .09∗∗

Coauthors of Coauthors’ prod. .50 .660 16.35%∗∗ .07∗∗

Working with a top 1% .50 .660 16.35%∗∗ .59∗∗
∗∗ Significant at 1% level, ∗ Significant at 5%. Model 0 includes career time dummies, year
dummies, number of years since the last publication and cumulative productivity from the

first publication till t− 5. Model 1 adds to Model 0 recent output. Model 3 adds to Model 1
one of the network variable. Each network variable is computed assuming that the effects

from a collaboration last during 5 years (5-year network variable). The number of in-sample
observations is 436440.
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Table 4: Prediction accuracy of the restricted multivariate models

R2 RMSE RMSE Diff.
Model 0 .278 .789 -
Model 1 .493 .665 15.72%∗∗

Multivariate Model 2 .433 .700 11.28%∗∗

Multivariate Model 3 .509 .654 17.11%∗∗
∗∗ Significant at 1% level. These restricted models only include 5 year network variables. The

number of in-sample observations is 436440.
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Table 5: Prediction Accuracy: unrestricted Models 1’ and 2’

Lag Length R2 RMSE RMSE Diff. Coefficients
Model 1’

Recent past output 13 .39 .773 - .44∗∗

Model 2’
Degree 15 .24 .861 -11.38%∗∗ .10∗∗

Degree of order 2 14 .23 .867 -12.16%∗∗ .05∗∗

Giant component 15 .23 .868 -12.29%∗∗ .96∗∗

Closeness 15 .24 .862 -11.51%∗∗ 1.42
Betweenness 15 .26 .849 -9.83%∗∗ .07∗

Coauthors’ productivity 12 .29 .833 -7.76%∗∗ .11∗∗

Coauthors of Coauthors’ prod. 15 .27 .847 -9.57%∗∗ .09∗∗

Working with a top 1% 14 .24 .862 -11.51%∗∗ .45∗∗
∗∗ Significant at 1% level, ∗ Significant at 5%. Model 1’ includes career time dummies, year
dummies, number of years since the last publication and thirteen lags of the productivity

variable. Model 2’ contains career time dummies, year dummies, number of years since the
last publication and several lags of a network variable. The maximum lag length for each

model is selected using the BIC. For the network variables, the maximum possible lag length
considered is 15. The coefficient presented in the table correspond to the first lag of the

variable. The number of in-sample observations is 667423.
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Table 6: Prediction Accuracy: unrestricted Models 1’ and 3’

Lag Length R2 RMSE RMSE Diff. Coefficients
Model 1’

Past output 13 .39 .773 - .44∗∗

Model 3’
Degree 6 .40 .768 .65%∗∗ .14∗∗

Degree of order 2 5 .40 .768 .65%∗∗ .06∗∗

Giant component 8 .40 .768 .65%∗∗ .58∗∗

Closeness 10 .40 .767 .78%∗∗ 2.35∗

Betweenness 9 .40 .767 .78%∗∗ .02
Coauthors’ productivity 12 .41 .761 1.55%∗∗ .09∗∗

Coauthors of Coauthors’ prod. 11 .41 .764 1.16%∗∗ .07∗∗

Working with a top 1% 13 .40 .767 .78%∗∗ .39∗∗
∗∗ Significant at 1% level, ∗ Significant at 5%. Model 1’ includes career time dummies, year

dummies, number of years since the last publication and 13 lags of the productivity variable.

Model 3’ adds to Model 1’ several lags of a network variable. The maximum lag length is selected

using the BIC criteria. For the network variables, the maximum possible lag length considered is

15. The coefficient presented in the table correspond to the first lag of the variable. The number of

in-sample observations is 667423.
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Table 7: Prediction accuracy of the unrestricted multivariate models

Lags R2 RMSE RMSE Diff.
Model 1’ 13 0.395 0.773 -
Multivariate Model 2’ 15 0.322 0.814 -5.30%∗∗

Multivariate Model 3’ 8 0.417 0.758 1.94%∗∗
∗∗ Significant at 1% level. For Multivariate model 3, we consider 8 lags for each network variable

and 13 lags of the output. The lag length is selected according to the BIC, for the multivariate

models we only considered as candidate models those where each network variable has the same

number of lags. The number of in-sample observations is 667423
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Figure 3: RMSE out-of-sample across Career time. Restricted Models
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Figure 4: RMSE % Difference across Career time. Restricted Models
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According to the Diebold-Mariano test, the difference between the RMSE of Multivariate Model 3

and Model 1 is statistically significant for every career time year.
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Figure 5: RMSE out-of-sample across Career time. Unrestricted Models
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Figure 6: RMSE % Difference across Career time. Unrestricted Models
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According to the Diebold-Mariano test, the difference between the RMSE of Multivariate Model 3’

and Model 1’ are insignificant for t = 12 and from t = 14 to t = 20.
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Figure 7: RMSE % Difference between Restricted Models across productivity tiers.
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7 Online Appendix: Detailed robustness analysis

In this appendix we report in detail on the analysis of the robustness of our results to various
assumptions made in constructing the variables used in the estimation. We also provide details
on how we derive the final specification of our model.

7.1 Model Specification

In this paper we estimate dynamic models that require stationary time series. A first concern
is that the dependent variable, future research output, or the regressors may not be stationary,
in which case differencing the series may lead to better predictions. To check stationarity, we
test for the presence of unit roots in the productivity and network variables. We use the
Harris-Tzavalis panel unit root test (Harris & Tzavalis, 1999) because it is suitable for panels
with a large cross-sectional dimension and a fixed number of time periods. This test requires
a strong balanced panel, a requirement that is not satisfied in our data. Each author enters
the panel at the time of his or her first publication, and this timing naturally varies across
authors. To implement the test, we divide the sample into sets of authors who are present
over the same time window. More precisely, we first restrict our sample to authors who are
in the panel for 15 years and we apply the Harris-Tzavalis test to this balanced sample. We
then repeat the exercise but for authors who have been in the panel for 16 years, and so on.

Table 8 presents the results of the Harris-Tzavalis unit root test for all variables of interest
for the set of authors who have been 15, 18, 21, 24 and 26 years in the panel. The results
provide strong evidence of stationarity for almost all variables, except for the variables ‘Degree’
and ‘Degree of order two’, which show mixed results, in particular for shorter panel lengths.
This may be due to a lack of power of the Harris-Tzavalis test. Based on this, we therefore
decide not to difference the data.

Second, in the paper we consider as main specification a linear model in which the de-
pendent variable is a logarithmic transformation of future research output, ln(qfit + 1), and
we estimate this model by OLS. We are concerned that the model might be misspecified.
To investigate this possibility, we estimate other commonly used models for research output
and citation data, such as the Poisson, Negative Binomial, and Zero-inflated Negative Bi-
nomial models. Table 9 compares the performance of different linear and nonlinear models
for the specification of ‘unrestricted Model 1’, that is, the specification without network vari-
ables. An optimal number of lagged dependent variables is included among the regressors.
The results show that, although the in-sample log-likelihood is higher for the (Zero-inflated)
Negative Binomial model, the out of sample RMSE is lowest for the linear model with an
ln(y + 1)-transformation.

Third, in the paper we report results from a pooled OLS regression. Can forecasts be
improved by using a dynamic fixed effects model, either in first difference or using a system
GMM estimator (Blundell & Bond, 1998)?14 Table 10 presents the out-of-sample RMSE of

14The System GMM model deals with the dynamic panel bias introduced by the correlation between the
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different panel estimators applied to our data and shows that the pooled OLS performs best.
This may be surprising to some, but it is rather understandable if one recognizes that our
purpose is out-of-sample prediction rather than coefficient estimation. Panel data models are
designed to reduce bias in coefficient estimates by filtering out distortions caused by individual
effects. However, in order to predict the future performance of an individual author, one needs
to predict the individual fixed effect as well. Out-of-sample predictions of individual effects are
unavailable since there is no in-sample information on which to base their estimation. Hence
we must rely on first-differencing the variables to filter out individual effects. It is well known
that the correct estimation of first-differenced variables is difficult (Arellano & Bond, 1991).
This is confirmed in our data: dynamic panel estimators do not lead to better out-of-sample
predictions of future productivity in our data set.

Fourth, we estimate vector autoregressions (VARs) models that simultaneously allow past
network variables to affect future output, and past output to influence future network vari-
ables. These VAR models are estimated using a seemingly unrelated regressions (SUR) ap-
proach, allowing for correlation in the error terms across the equations. The lag length of each
equation is selected using the BIC criteria. The SUR regressions should lead to more efficient
predictions, as long as the different equations do not always include the same set of lagged
variables, a condition that is fulfilled here. Table 11 shows that the results from estimating
the unrestricted SUR Model 3 using feasible generalized least squares (FGLS) hardly differ
from the unrestricted Model 3 estimated using simple OLS. From this conclude that, in our
data, the SUR VAR model does not outperform the OLS out of sample.

Finally, there remains a possible concern about functional form: if the predictive power
of past output is non-linear and this non-linearity is correlated with network characteristics,
this could generate a spurious predictive power for network variables. To investigate this
possibility, we also consider an alternative specification with a quadratic term in each lagged
productivity variable to capture a possible non-monotonic relationship between past and future
output. The results, presented in Table 12, show that the coefficient of the first lag of the
quadratic term is also positive and significant at the 1% level. But network variables remain
significant and their predictive power is only slightly smaller than in the non-quadratic case.
This confirms that network variables do not have predictive power simply because they are
capturing a non-linearity in the effect of past output on future output.

7.2 Different definition of variables

In the analysis presented in the paper we have used accumulated productivity from t + 1 to
t+ 3 as the variable qit we seek to predict (see equation 2). The rationale for doing so is that
the distant future is presumably harder to predict than the immediate future, and we want to
give the model a fair chance. Yet, in economics there are long lags between the submission and
publication of a paper, and wide variation in these lags across papers and journals. Variation

lagged dependent variable and the error term in the fixed effect specification. Our specification includes as
instruments the career time dummies, year dummies, years since the last publication, the network variables
and the fourteen and fifteen lags of productivity.
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in publication lags thus introduces additional variation in the variable we are trying to predict,
and may thus lead us to underestimate the predictive power of network information. To check
whether this is affecting our results, we repeat the analysis using future productivity over a
five year window instead of three:

qfit = qi,t+1 + qi,t+2 + qi,t+3 + qi,t+4 + qi,t+5.

and, as before, use ln
(

1 + qfit

)
as the variable we seek to predict.

Results, presented in Table 13, are similar to those reported in the paper except that
the predictive power of network variables is larger using a five year window. In particular,
network variables are even more useful than past output to forecast the future performance
of a researcher.

Next we investigate whether results are sensitive to the definition of output qit. It is
customary for studies of author and departmental productivity in economics to correct for
article length (e.g., Kodrzycki and Yu, 2005) and number of co-authors. To check whether
this affects our results, we redo the analysis using a productivity measure that corrects for
the number of published pages and number of co-authors, i.e., using:

qit =
∑
j∈Sit

pagesj ∗ journal qualityj

Number of coauthorsj
(3)

The variable “pagesj” is the number of pages of article j divided by the average number
of pages of articles published in the journal.15 For comparison purposes, qit assigns 28 points
to a single-authored 9 page article or a 18 page two-author paper in the American Economic
Review. As our definition of output. Results, shown in Table 14, show that the predictive
power of network variables is unaffected.

7.3 Active sample

In the results reported so far, we keep all the authors in the dataset and replace missing lagged
productivity and network variables by zeros. The rationale for doing so is that authors who
have just started their career have no past output and coauthorships, hence the value of their
lagged productivity and network variables are truly zero. Without such replacement we would
loose the first years of an author’s career and this could bias results.

We nevertheless worry that this may introduce another kind of bias in the prediction of
network variables. As an inactive author (i.e., an author without many publications) matures,
future output and network variables are both zeros but lagged productivity is not. As a result
network variables might have an increasing predictive power across time. To investigate

15The number of pages is truncated above fifty pages to correct for a small number of unusually long
published articles. Overly long papers are usually literature review articles. Hence not truncating above fifty
pages would probably overrepresent their contribution.
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whether such a bias affects our results, we redo the analysis dropping those observations
where an author did not publish anything for five consecutive years or more.

Results are presented in Table 15. We observe that, once we restrict the sample to active
authors, the RMSE is higher for all models compared to the full sample: not surprisingly per-
haps, all models find it more difficult to predict the future productivity of authors who publish
little. However, the relative RMSE improvement from the inclusion of network variables is
similar across the two samples. Hence, our main conclusions are unaffected.
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Table 9: Prediction performance of unrestricted Model 1’ using different functional forms

Log-likelihood AIC BIC RMSE
Log(y+1) -782,223 1,564,580 1,565,344 16.69

Level -2,861,612 5,723,358 5,724,122 17.16
Poisson -3,777,972 7,556,078 7,556,842 19.67

Negative Binomial -766,673 1,533,482 1,534,258 19.58
Zero inflated NB -760,749 1,521,637 1,522,436 19.54

RMSE is obtained from out-of-sample level predictions. The ln(y + 1) model is re-transformed

using exp(β′Xi,t) exp(ui,t)− 1. The E(ui,t) is estimated by the sample average N−1
∑

exp(ûj)

where N is the total number of observations.

Table 10: Prediction performance of unrestricted Models using Panel data models

RMSE Model 1’ RMSE MV. Model 2’ RMSE MV. Model 3’
Log(y+1) .680 .742 .673
First Difference .711 .764 .713
System GMM .780 - .760

In the System GMM model, we use as instruments the career time dummies, year dummies,

number of years since the last publication, the fourteen and fifteen lags of productivity and the

network variables for the equation in differences. System GMM is not computed for MV. Model 2’

since past output is not included.
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Table 11: Prediction Accuracy of unrestricted Model 1’ and 3’. Seemly Unrelated Regression

Lag Length R2 RMSE RMSE Diff. Coefficients
Model 1’

Past output 13 .44 .773 - .36∗∗

Model 3’
Degree 6 .40 .768 .65%∗∗ .14∗∗

Degree of order 2 5 .40 .768 .65%∗∗ .06∗∗

Giant component 8 .40 .768 .65%∗∗ .58∗∗

Closeness centrality 10 .40 .767 .78%∗∗ 2.36∗∗

Betweenness centrality 9 .40 .767 .78%∗∗ .02
Coauthors’ productivity 12 .41 .761 1.55%∗∗ .09∗∗

Coauthors of Coauthors’ prod. 11 .41 .764 1.16%∗∗ .07∗∗

Working with a top 1% 13 .40 .767 .78%∗∗ .39∗∗

Multivariate Model 3’ 8 .42 .759 1.81%∗∗

∗∗ Significant at 1% level, ∗ Significant at 5%. We estimate future productivity and future network

variables in the SUR model using the feasible generalized least squares method. The results from

estimating future network variables are available upon request. The lag length for each model is

selected using BIC. The coefficients presented in the table correspond to the first lag of each

variable. The number of in-sample observations is 667423.
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Table 12: Prediction accuracy of the unrestricted multivariate models. Including quadratic
past output

Lags R2 RMSE RMSE Diff. Coefficients
Model 1’

Past output 13 .40 .770 .23∗∗

Past output squared .05∗∗

Model 3’
Degree 6 .40 .765 .65%∗∗ .13∗∗

Degree of order 2 5 .39 .766 .52%∗∗ .05∗∗

Giant component 8 .40 .765 .65%∗∗ .38∗∗

Closeness centrality 10 .40 .764 .78%∗∗ 3.19∗∗

Betweenness centrality 9 .40 .764 .78%∗∗ -.02
Coauthors’ productivity 12 .41 .759 1.43%∗∗ .08∗∗

Coauthors of Coauthors’ prod. 11 .40 .762 1.04%∗∗ .05∗∗

Working with a top 1% 13 .39 .766 .52%∗∗ .26∗∗

Multivariate Model 3’ 8 .42 .757 1.69%∗∗
∗∗ Significant at 1% level. Model 1’ and Multivariate Model 3’ include 13 lags of the productivity

variable and their quadratic terms. Column 4 shows the coefficient of the first lag of each variable.

We include 8 lags of the network variables and 11 lags of the output in Multivariate Model 3’. The

lag length is selected according to the BIC criteria. The number of in-sample observations is

667423.
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Table 13: Prediction Accuracy: unrestricted Models 1’ and 2’. Using 5-period productivity
variable.

Lag Length R2 RMSE RMSE Diff. Coefficients
Model 1’

Past output 11 .34 .946 - .51∗∗∗

Model 2’
Degree 13 .26 .998 -5.50%∗∗∗ .04∗∗∗

Degree of order 2 13 .22 1.006 -6.34%∗∗∗ .06∗∗∗

Giant component 15 .25 1.005 -6.24%∗∗∗ 1.05∗∗∗

Closeness centrality 15 .26 .998 -5.50%∗∗∗ 1.75
Betweenness centrality 12 .28 .985 -4.12%∗∗∗ .08∗∗

Coauthors’ productivity 13 .31 .963 -1.80%∗∗∗ .12∗∗∗

Coauthors of Coauthors’ prod. 12 .29 .980 -3.59%∗∗∗ .09∗∗∗

Working with a top 1% 14 .26 .999 -5.60%∗∗∗ .50∗∗∗

Multivariate Model 2’ 13 .34 .942 .42%∗∗∗

Model 3’
Degree 15 .37 .928 1.90%∗∗∗ .16∗∗∗

Degree of order 2 15 .36 .932 1.48%∗∗∗ .07∗∗∗

Giant component 15 .36 .931 1.59%∗∗∗ .84∗∗∗

Closeness centrality 15 .36 .929 1.80%∗∗∗ 2.04∗

Betweenness centrality 15 .37 .927 2.01%∗∗∗ .03
Coauthors’ productivity 7 .39 .912 3.59%∗∗∗ .11∗∗∗

Coauthors of Coauthors’ prod. 15 .38 .921 2.64%∗∗∗ .08∗∗∗

Working with a top 1% 9 .37 .928 1.90%∗∗∗ .48∗∗∗

Multivariate Model 3’ 9 .40 .904 4.44%∗∗∗
∗∗∗ Significant at 1% level, ∗∗ Significant at 5%, ∗ Significant at 10%. The dependent variable
is the future productivity from t+ 1 to t+ 5. For Multivariate Model 3’, we include 9 lags of
the network variables and 11 lags of the output. The lag length is selected according to the

BIC criteria. The number of in-sample observations is 566040.
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Table 14: Prediction Accuracy: unrestricted Models 1’, 2’ and 3’. Using discounted produc-
tivity.

Lag Length R2 RMSE RMSE Diff. Coefficients
Model 1’

Recent past output 14 .40 .670 - .43∗∗∗

Model 2’
Degree 15 .21 .760 -13.43%∗∗∗ .08∗∗∗

Degree of order 2 14 .21 .762 -13.73%∗∗∗ .04∗∗∗

Giant component 15 .21 .762 -13.73%∗∗∗ .86∗∗∗

Closeness centrality 15 .22 .756 -12.84%∗∗∗ .34
Betweenness centrality 15 .24 .747 -11.49%∗∗∗ .07∗∗

Coauthors’ productivity 12 .28 .729 -8.81%∗∗∗ .10∗∗∗

Coauthors of Coauthors’ prod. 15 .25 .742 -10.75%∗∗∗ .08∗∗∗

Working with a top 1% 14 .23 .754 -12.54%∗∗∗ .38∗∗∗

Multivariate Model 2’ 15 .31 .714 -6.57%∗∗∗

Model 3’
Degree 4 .40 .666 .60%∗∗∗ .10∗∗∗

Degree of order 2 5 .40 .666 .60%∗∗∗ .05∗∗∗

Giant component 8 .40 .666 .60%∗∗∗ .50∗∗∗

Closeness centrality 8 .40 .665 .75%∗∗∗ 1.68∗

Betweenness centrality 9 .40 .665 .75%∗∗∗ 0.02
Coauthors’ productivity 12 .41 .660 1.49%∗∗∗ .08∗∗∗

Coauthors of Coauthors’ prod. 12 .41 .662 1.19%∗∗∗ .06∗∗∗

Working with a top 1% 12 .41 .665 .75%∗∗∗ .32∗∗∗

Multivariate Model 3’ 8 .42 .658 1.79%∗∗∗
∗∗∗ Significant at 1% level, ∗∗ Significant at 5%, ∗ Significant at 10%. The coauthors’

productivity, coauthors of coauthors’ productivity and the dummy variable working with a
top 1% have been obtained using the discounted productivity. The number of in-sample

observations is 667423
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Table 15: Prediction Accuracy: unrestricted Models 1’ and 2’. Active Sample

Lag Length R2 RMSE RMSE Diff. Coefficients
Model 1’

Recent past output 13 .35 .999 - .36∗∗

Model 2’
Degree 12 .22 1.095 -9.61%∗∗ .04∗∗

Degree of order 2 11 .22 1.09 -9.11%∗∗ .03∗∗

Giant component 15 .22 1.091 -9.21%∗∗ .86∗∗

Closeness centrality 15 .24 1.080 -8.11%∗∗ 1.52∗∗

Betweenness centrality 15 .25 1.075 -7.61%∗∗ .07∗∗

Coauthors’ productivity 12 .27 1.058 -5.91%∗∗ .10∗∗

Coauthors of Coauthors’ prod. 12 .25 1.070 -7.11%∗∗ .08∗∗

Working with a top 1% 14 .22 1.096 -9.71%∗∗ .36∗∗

Multivariate Model 2’ .30 1.039 -4.00%∗∗

Model 3’
Degree 5 .36 .994 .50%∗∗ .11∗∗

Degree of order 2 5 .36 .993 .60%∗∗ .05∗∗

Giant component 8 .36 .993 .60%∗∗ .58∗∗

Closeness centrality 7 .36 .991 .80%∗∗ 2.21∗

Betweenness centrality 9 .36 .991 .80%∗∗ .02∗∗

Coauthors’ productivity 6 .37 .984 1.50%∗∗ .09∗∗

Coauthors of Coauthors’ prod. 10 .37 .988 1.10%∗∗ .06∗∗

Working with a top 1% 6 .36 .993 .60%∗∗ .44∗∗

Multivariate Model 3’ 8 .38 .980 1.90%∗∗
∗∗ Significant at 1% level, ∗ Significant at 5%. Active sample: we dropped all observations

where recent output is zero. The number of in-sample observations is 357832.
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