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We consider semiparametric location-scatter models for which the
p-variate observation is obtained as X = �Z + μ, where μ is a p-vector,
� is a full-rank p × p matrix and the (unobserved) random p-vector Z has
marginals that are centered and mutually independent but are otherwise un-
specified. As in blind source separation and independent component analysis
(ICA), the parameter of interest throughout the paper is �. On the basis
of n i.i.d. copies of X, we develop, under a symmetry assumption on Z,
signed-rank one-sample testing and estimation procedures for �. We exploit
the uniform local and asymptotic normality (ULAN) of the model to define
signed-rank procedures that are semiparametrically efficient under correctly
specified densities. Yet, as is usual in rank-based inference, the proposed pro-
cedures remain valid (correct asymptotic size under the null, for hypothesis
testing, and root-n consistency, for point estimation) under a very broad range
of densities. We derive the asymptotic properties of the proposed procedures
and investigate their finite-sample behavior through simulations.

1. Introduction. In multivariate statistics, concepts of location and scatter are
usually defined through affine transformations of a noise vector. To be more spe-
cific, assume that the observation X is obtained through

X = �Z + μ,(1.1)

where μ is a p-vector, � is a full-rank p × p matrix and Z is some standardized
random vector. The exact nature of the resulting location parameter μ, mixing
matrix parameter �, and scatter parameter � = ��′ crucially depends on the
standardization adopted.

The most classical assumption on Z specifies that Z is standard p-normal. Then
μ and � simply coincide with the mean vector E[X] and variance–covariance ma-
trix Var[X] of X, respectively. In robust statistics, it is often rather assumed that Z
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is spherically symmetric about the origin of R
p—in the sense that the distribution

of OZ does not depend on the orthogonal p × p matrix O . The resulting model
in (1.1) is then called the elliptical model. If Z has finite second-order moments,
then μ = E[X] and � = c Var[X] for some c > 0, but (1.1) allows to define μ and
� in the absence of any moment assumption.

This paper focuses on an alternative standardization of Z, for which Z has mu-
tually independent marginals with common median zero. The resulting model in
(1.1)—the independent component (IC) model, say—is more flexible than the el-
liptical model, even if one restricts, as we will do, to vectors Z with symmetrically
distributed marginals. The IC model indeed allows for heterogeneous marginal dis-
tributions for X, whereas, in contrast, marginals in the elliptical model all share—
up to location and scale—the same distribution, hence also the same tail weight.
This severely affects the relevance of elliptical models for practical applications,
particularly so for moderate to large dimensions, since it is then very unlikely that
all variables share, for example, the same tail weight.

The IC model provides the most standard setup for independent component
analysis (ICA), in which the mixing matrix � is to be estimated on the basis of
n independent copies X1, . . . ,Xn of X, the objective being to recover (up to a
translation) the original unobservable independent signals Z1, . . . ,Zn by premul-
tiplying the Xi’s with the resulting �̂−1. It is well known in ICA, however, that
� is severely unidentified: for any p × p permutation matrix P and any full-rank
diagonal matrix D, one can always write

X = [�PD][(PD)−1Z] + μ = �̃Z̃ + μ,(1.2)

where Z̃ still has independent marginals with median zero. Provided that Z has at
most one Gaussian marginal, two matrices �1 and �2 may lead to the same dis-
tribution for X in (1.1) if and only if they are equivalent (we will write �1 ∼ �2)
in the sense that �2 = �1PD for some matrices P and D as in (1.2); see, for
example, [25]. In other words, under the assumption that Z has at most one Gaus-
sian marginal, permutations (P ), sign changes and scale transformations (D) of
the independent components are the only sources of unidentifiability for �.

This paper considers inference on the mixing matrix �. More precisely, because
of the identifiability issues above, we rather consider a normalized version L of �,
where L is a well-defined representative of the class of mixing matrices that are
equivalent to �. This parameter L is actually the parameter of interest in ICA: an
estimate of L will indeed allow one to recover the independent signals Z1, . . . ,Zn

equally well as an estimate of any other � with � ∼ L. Interestingly, the situa-
tion is extremely similar when considering inference on � in the elliptical model.
There, � is only identified up to a positive scalar factor, and it is often enough
to focus on inference about the well-defined shape parameter V = �/(det�)1/p

(e.g., in PCA, principal directions, proportions of explained variance, etc. can be
computed from V ). Just as L is a normalized version of � in the IC model, V is
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a normalized version of � in the elliptical model, and in both classes of models,
the normalized parameters actually are the natural parameters of interest in many
inference problems. The similarities further extend to the semiparametric nature of
both models: just as the density g‖·‖ of ‖Z‖ in the elliptical model, the pdf gr of
the various independent components Zr , r = 1, . . . , p, in the IC model, can hardly
be assumed to be known in practice.

These strong similarities motivate the approach we adopt in this paper: we plan
to conduct inference on L (hypothesis testing and point estimation) in the IC model
by adopting the methodology that proved extremely successful in [7, 8] for infer-
ence on V in the elliptical model. This methodology combines semiparametrically
efficient inference and invariance arguments. In the IC model, the fixed-(μ,�)

nonparametric submodels (indexed by g1, . . . , gp) indeed enjoy a strong invari-
ance structure that is parallel to the one of the corresponding elliptical submodels
(indexed by g‖·‖). As in [7, 8], we exploit this invariance structure through a gen-
eral result from [11] that allows one to derive invariant versions of efficient central
sequences, on the basis of which one can define semiparametrically efficient (at
fixed target densities gr = fr , r = 1, . . . , p) invariant procedures. As the maximal
invariant associated with the invariance structure considered turns out to be the
vector of marginal signed ranks of the residuals, the proposed procedures are of
a signed-rank nature and do not require to estimate densities. While they achieve
semiparametric efficiency under correctly specified densities, they remain valid
(correct asymptotic size under the null, for hypothesis testing, and root-n consis-
tency, for point estimation) under misspecified densities.

We will consider the problem of estimating L and that of testing the null
H0 :L = L0 against the alternative H1 :L �= L0, for some fixed L0. While point
estimation is undoubtedly of primary importance for applications (e.g., in blind
source separation), one might question the practical relevance of the testing prob-
lem considered, especially when L0 is not the p-dimensional identity matrix. Solv-
ing this generic testing problem, however, is the main step in developing tests for
any linear hypothesis on L, and we will explicitly describe the resulting tests in
the sequel. An extensive study of these tests is beyond the scope of the present pa-
per, though; we refer to [19] for an extension of our tests to the particular case of
testing the (linear) hypothesis that L is block-diagonal, a problem that is obviously
important in practice (nonrejection of the null would indeed allow practitioners to
proceed with two separate, lower-dimensional, analyses). Testing linear hypothe-
ses on L includes many other testing problems of high practical relevance, such as
testing that a given column of L is equal to some fixed p-vector, and testing that a
given entry of L is zero—the practical importance of these two testing problems,
in relation, for example, with functional magnetic resonance imaging (fMRI), is
discussed in [22].

The paper is organized as follows. In Section 2, we fix the notation and describe
the model (Section 2.1), state the corresponding uniformly locally and asymptot-
ically normal (ULAN) property that allows us to determine semiparametric effi-
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ciency bounds (Section 2.2) and then introduce, in relation with invariance argu-
ments, rank-based efficient central sequences (Section 2.3). In Sections 3 and 4,
we develop the resulting rank tests and estimators for the mixing matrix L, re-
spectively. Our estimators actually require the delicate estimation of 2p(p − 1)

“cross-information coefficients,” an issue we solve in Section 4.2 by generaliz-
ing the method recently developed in [5]. In Section 5, simulations are conducted
both to compare the proposed estimators with some competitors and to investi-
gate the validity of asymptotic results—simulation results for hypothesis testing
are provided in the supplementary article [16]. Finally, the Appendix states some
technical results (Appendix A) and reports proofs (Appendix B).

2. The model, the ULAN property and invariance arguments.

2.1. The model. As we already explained, the IC model above suffers from
severe identifiability issues for �. To solve this, we map each � onto a unique
representative L = �(�) of the collection of mixing matrices �̃ that satisfy �̃ ∼
� (the equivalence class of � for ∼). We propose the mapping

� �→ �(�) = �D+
1 PD2,

where D+
1 is the positive definite diagonal matrix that makes each column of �D+

1
have Euclidean norm one, P is the permutation matrix for which the matrix B =
(bij ) = �D+

1 P satisfies |bii | > |bij | for all i < j and D2 is the diagonal matrix
such that all diagonal entries of �(�) = �D+

1 PD2 are equal to one.
If one restricts to the collection Mp of mixing matrices � for which no ties

occur in the permutation step above, it can easily be shown that, for any �1,�2 ∈
Mp , we have that �1 ∼ �2 iff �(�1) = �(�2), so that this mechanism succeeds
in identifying a unique representative in each class of equivalence (this is ensured
with the double scaling scheme above, which may seem a bit complicated at first).
Besides, � is then a continuously differentiable mapping from Mp onto M1p :=
�(Mp). While ties may always be taken care of in some way (e.g., by basing
the ordering on subsequent rows of the matrix B), they may prevent the mapping
� to be continuous, which would cause severe problems and would prevent us
from using the Delta method in the sequel. It is clear, however, that the restriction
to Mp only gets rid of a few particular mixing matrices, and will not have any
implications in practice.

The parametrization of the IC model we consider is then associated with

X = LZ + μ,(2.1)

where μ ∈ R
p , L ∈ M1p and Z has independent marginals with common median

zero. Throughout, we further assume that Z admits a density with respect to the
Lebesgue measure on R

p , and that it has p symmetrically distributed marginals,
among which at most one is Gaussian (as explained in the Introduction, this limita-
tion on the number of Gaussian components is needed for L to be identifiable). We
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will denote by F the resulting collection of densities for Z. Of course, any g ∈ F
naturally factorizes into g(z) = ∏p

r=1 gr(zr), where gr is the symmetric density
of Zr .

The hypothesis under which n mutually independent observations Xi , i =
1, . . . , n, are obtained from (2.1), where Z has density g ∈ F , will be denoted
as P(n)

ϑ,g , with ϑ = (μ′, (vecd◦ L)′)′ ∈ � = R
p × vecd◦(M1p), or alternatively, as

P(n)
μ,L,g ; for any p × p matrix A, we write vecd◦ A for the p(p − 1)-vector ob-

tained by removing the p diagonal entries of A from its usual vectorized form
vecA (diagonal entries of L are all equal to one, hence should not be included in
the parameter).

The resulting semiparametric model is then

P (n) := ⋃
g∈F

P (n)
g := ⋃

g∈F

⋃
ϑ∈�

{
P(n)

ϑ,g

}
.(2.2)

Performing semiparametrically efficient inference on ϑ , at a fixed f ∈ F , typically
requires that the corresponding parametric submodel P (n)

f satisfies the uniformly
locally and asymptotically normal (ULAN) property.

2.2. The ULAN property. As always, the ULAN property requires technical
regularity conditions on f . In the present context, we need that each corresponding
univariate pdf fr , r = 1, . . . , p, is absolutely continuous (with derivative f ′

r , say)
and satisfies

σ 2
fr

:=
∫ ∞
−∞

y2fr(y) dy < ∞, Ifr :=
∫ ∞
−∞

ϕ2
fr

(y)fr(y) dy < ∞
and

Jfr :=
∫ ∞
−∞

y2ϕ2
fr

(y)fr(y) dy < ∞,

where we let ϕfr := −f ′
r /fr . In the sequel, we denote by Fulan the collection of

pdfs f ∈ F meeting these conditions.
For any f ∈ Fulan, let γrs(f ) := Ifr σ

2
fs

, define the optimal p-variate lo-
cation score function ϕf : Rp → R

p through z = (z1, . . . , zp)′ �→ ϕf (z) =
(ϕf1(z1), . . . , ϕfp(zp))′, and denote by If the diagonal matrix with diagonal en-
tries Ifr , r = 1, . . . , p. Further write I
 for the 
-dimensional identity matrix and
define

C :=
p∑

r=1

p−1∑
s=1

(
ere

′
r ⊗ use

′
s+δ[s≥r]

)
,

where ⊗ is the usual Kronecker product, er and ur stand for the r th vectors of
the canonical basis of R

p and R
p−1, respectively, and δ[s≥r] is equal to one if

s ≥ r and to zero otherwise. The following ULAN result then easily follows from
Proposition 2.1 in [19] by using a simple chain rule argument.
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PROPOSITION 2.1. Fix f ∈ Fulan. Then the collection of probability distribu-
tions P (n)

f is ULAN, with central sequence

�ϑ,f =
(

�ϑ,f ;1
�ϑ,f ;2

)
=

⎛
⎜⎜⎜⎜⎝

n−1/2(L−1)′
n∑

i=1

ϕf (Zi)

n−1/2C(Ip ⊗ L−1)′
n∑

i=1

vec
(
ϕf (Zi)Z

′
i − Ip

)

⎞
⎟⎟⎟⎟⎠ ,(2.3)

where Zi = Zi(ϑ) = L−1(Xi − μ), and full-rank information matrix

L,f =
(

L,f ;1 0
0 L,f ;2

)
,

where L,f ;1 := (L−1)′If L−1 and

L,f ;2 := C(Ip ⊗ L−1)′
[ p∑

r=1

(Jfr − 1)(ere
′
r ⊗ ere

′
r )

+
p∑

r,s=1,r �=s

(
γsr(f )(ere

′
r ⊗ ese

′
s) + (ere

′
s ⊗ ese

′
r )

)]

× (Ip ⊗ L−1)C′.

More precisely, for any ϑn = ϑ + O(n−1/2) (with ϑ = (μ′, (vecd◦ L)′)′) and any
bounded sequence (τn) in R

p2
, we have that, under P(n)

ϑn,f as n → ∞,

log
(
dP(n)

ϑn+n−1/2τn,f
/dP(n)

ϑn,f

) = τ ′
n�ϑn,f − 1

2τ ′
nL,f τn + oP(1),

and �ϑn,f converges in distribution to a p2-variate normal distribution with mean
zero and covariance matrix L,f .

Semiparametrically efficient (at f ) inference procedures on L then may be
based on the so-called efficient central sequence �∗

ϑ,f ;2 resulting from �ϑ,f ;2 by

performing adequate tangent space projections; see [3]. Under P(n)
ϑ,f , �∗

ϑ,f ;2 is still
asymptotically normal with mean zero, but now with covariance matrix ∗

L,f ;2
(the efficient information matrix). This matrix ∗

L,f ;2 settles the semiparametric
efficiency bound at f when performing inference on L. For instance, an estimator
L̂ is semiparametrically efficient at f if

√
nvecd◦(L̂ − L)

L→ Np(p−1)(0, (∗
L,f ;2)−1).(2.4)

The performance of semiparametrically efficient tests on L can similarly be char-
acterized in terms of ∗

L,f ;2: a test of H0 :L = L0 is semiparametrically efficient
at f (at asymptotic level α) if its asymptotic powers under local alternatives of the
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form H(n)
1 :L = L0 + n−1/2H , where H is an arbitrary p × p matrix with zero

diagonal entries, are given by

1 − �p(p−1)

(
χ2

p(p−1),1−α; (vecd◦ H)′∗
L0,f ;2(vecd◦ H)

)
,(2.5)

where χ2
p(p−1),1−α stands for the α-upper quantile of the χ2

p(p−1) distribution,
and �p(p−1)(·; δ) denotes the cumulative distribution function of the noncentral
χ2

p(p−1) distribution with noncentrality parameter δ.

2.3. Invariance arguments. Instead of the classical tangent space projection
approach to compute �∗

ϑ,f ;2 (as in [6]), we adopt an approach—due to [11]—that
rather exploits the invariance structure of the model considered. This will provide
a version of the efficient central sequence (parallel to central sequences, efficient
central sequences are defined up to oP(1)’s only) that is based on signed ranks.
Here, signed ranks are defined as Si(ϑ) = (Si1(ϑ), . . . , Sip(ϑ))′ and R+

i (ϑ) =
(R+

i1(ϑ), . . . ,R+
ip(ϑ))′, where Sir(ϑ) is the sign of Zir(ϑ) = (L−1(Xi − μ))r and

R+
ir (ϑ) is the rank of |Zir(ϑ)| among |Z1r (ϑ)|, . . . , |Znr(ϑ)|. This signed-rank ef-

ficient central sequence—�∗
ϑ,f ;2, say—is given in Theorem 2.1 below (the asymp-

totic behavior of �∗
ϑ,f ;2 will be studied in Appendix A).

To be able to state Theorem 2.1, we need to introduce the following nota-
tion. Let z �→ F+(z) = (F+1(z1), . . . ,F+r (zp))′, with F+r (t) := P(n)

ϑ,f [|Zr(ϑ)| <

t] = 2(
∫ t
−∞ fr(s) ds) − 1, t ≥ 0. Based on this, define �∗

ϑ,f ;2 := C(Ip ⊗
L−1)′ vecT ϑ,f , with

T ϑ,f := odiag

[
1√
n

n∑
i=1

(
Si(ϑ) � ϕf

(
F−1+

(
R+

i (ϑ)

n + 1

)))

×
(
Si(ϑ) � F−1+

(
R+

i (ϑ)

n + 1

))′]
,

where � is the Hadamard (i.e., entrywise) product of two vectors, and where
odiag(A) denotes the matrix obtained from A by replacing all diagonal entries
with zeros. Finally, let F ulan be the collection of pdfs f ∈ Fulan for which each
ϕfr , r = 1, . . . , p, is continuous and can be written as the difference of two mono-
tone increasing functions. We then have the following result (see Appendix B for
a proof).

THEOREM 2.1. Fix ϑ = (μ′, (vecd◦ L)′)′ ∈ � and f ∈ F ulan. Then, (i) denot-
ing by E(n)

ϑ,f expectation under P(n)
ϑ,f ,

�∗
ϑ,f ;2 := C(Ip ⊗ L−1)′ vecT ϑ,f

= E(n)
ϑ,f [�ϑ,f ;2|S1(ϑ), . . . , Sn(ϑ),R+

1 (ϑ), . . . ,R+
n (ϑ)] + oL2(1)
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as n → ∞, under P(n)
ϑ,f ; (ii) the signed-rank quantity �∗

ϑ,f ;2 is a version of the
efficient central sequence at f [i.e., �∗

ϑ,f ;2 = �∗
ϑ,f ;2 + oL2(1) as n → ∞, under

P(n)
ϑ,f ].

Would the (nonparametric) fixed-ϑ submodels P (n)
ϑ := ⋃

g∈F {P(n)
ϑ,g} of the semi-

parametric model
⋃

θ∈�

⋃
g∈F {P(n)

θ,g} in (2.2) be invariant under a group of trans-

formations Gϑ that generates P (n)
ϑ , then the main result of [11] would show that

the expectation of the original central sequence �ϑ,f ;2 conditional upon the cor-

responding maximal invariant—I (n)
max(ϑ), say—is a version of the efficient central

sequence �∗
ϑ,f ;2 at f : as n → ∞, under P(n)

ϑ,f ,

�∗
ϑ,f ;2 = E(n)

ϑ,f

[
�ϑ,f ;2|I (n)

max(ϑ)
] + oL2(1).(2.6)

Such an invariance structure actually exists and the relevant group Gϑ collects
all transformations

gϑ
h : Rp × · · · × R

p → R
p × · · · × R

p,

(x1, . . . , xn) �→ (
Lh(z1(ϑ)) + μ, . . . ,Lh(zn(ϑ)) + μ

)
,

with zi(ϑ) := L−1(xi − μ) and h((z1, . . . , zp)′) = (h1(z1), . . . , hp(zp))′, where
each hr , r = 1, . . . , p, is continuous, odd, monotone increasing and fixes +∞. It
is easy to check that P (n)

ϑ is invariant under (and is generated by) Gϑ , and that the
corresponding maximal invariant is the vector of signed ranks

I (n)
max(ϑ) = (S1(ϑ), . . . , Sn(ϑ),R+

1 (ϑ), . . . ,R+
n (ϑ));(2.7)

Theorem 2.1(ii) then follows from (2.6) and Theorem 2.1(i).
Inference procedures based on �∗

ϑ,f ;2, unlike those (from [6]) based on the
efficient central sequence �∗

ϑ,f ;2 obtained through tangent space projections, are
measurable with respect to signed ranks, hence enjoy all nice properties usually
associated with rank methods: robustness, ease of computation, validity without
density estimation (and, for hypothesis testing, even distribution-freeness), etc.

3. Hypothesis testing. We now consider the problem of testing the null hy-
pothesis H0 :L = L0 against the alternative H1 :L �= L0, with unspecified under-
lying density g. Beyond their intrinsic interest, the resulting tests will play an im-
portant role in the construction of the R-estimators of Section 4 below, and they
pave the way to testing linear hypotheses on L.

The objective here is to define a test that is semiparametrically efficient at some
target density f , yet that remains valid—in the sense that it meets asymptotically
the level constraint—under a very broad class of densities g. As we will show,
this objective is achieved by the signed-rank test—φ

f
, say—that rejects H0 at
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asymptotic level α ∈ (0,1) whenever

Q
f

:= (�∗
ϑ̂0,f ;2)

′(∗
L0,f ;2)−1�∗

ϑ̂0,f ;2 > χ2
p(p−1),1−α,(3.1)

where ∗
L,f ;2 was introduced on Page 2453 (an explicit expression is given below)

and where ϑ̂0 = (μ̂′, (vecd◦ L0)
′)′ is based on a sequence of estimators μ̂ that is

locally asymptotically discrete (see Appendix A for a precise definition) and root-n
consistent under the null.

Possible choices for μ̂ include (discretized versions of) the sample mean
X̄ := 1

n

∑n
i=1 Xi or the transformation-retransformation componentwise median

μ̂Med := L0 Med[L−1
0 X1, . . . ,L

−1
0 Xn], where Med[·] returns the vector of uni-

variate medians. We favor the sign estimator μ̂Med, since it is very much in line
with the signed-rank tests φ

f
and enjoys good robustness properties. However, we

stress that Theorem 3.1 below, which states the asymptotic properties of the pro-
posed signed-rank tests, implies that the choice of μ̂ does not affect the asymptotic
properties of φ

f
, at any g ∈ Fulan.

In order to state this theorem, we need to define

∗
L,f,g;2 := C(Ip ⊗ L−1)′Gf,g(Ip ⊗ L−1)C′

:= C(Ip ⊗ L−1)′
(3.2)

×
[ p∑

r,s=1,r �=s

(
γsr(f, g)(ere

′
r ⊗ ese

′
s) + ρrs(f, g)(ere

′
s ⊗ ese

′
r )

)]

× (Ip ⊗ L−1)C′,
where we let

γrs(f, g) :=
∫ 1

0
ϕfr (F

−1
r (u))ϕgr (G

−1
r (u)) du ×

∫ 1

0
F−1

s (u)G−1
s (u) du(3.3)

and

ρrs(f, g) :=
∫ 1

0
F−1

r (u)ϕgr (G
−1
r (u)) du ×

∫ 1

0
ϕfs (F

−1
s (u))G−1

s (u) du.(3.4)

We also let ∗
L,f ;2 := ∗

L,f,f ;2 and Gf := Gf,f , that involve γrs(f, f ) = γrs(f )

(see Section 2.2) and ρrs(f, f ) = 1. We then have the following result (see Ap-
pendix B for a proof).

THEOREM 3.1. Fix f ∈ F ulan. Then, (i) under P(n)
ϑ0,g

and under P(n)

ϑ0+n−1/2τ,g
,

with ϑ0 = (μ′, (vecd◦ L0)
′)′, τ = (τ ′

1, τ
′
2)

′ ∈ R
p × R

p(p−1) and g ∈ Fulan,

Q
f

L→ χ2
p(p−1) and Q

f

L→ χ2
p(p−1)(τ

′
2(

∗
L0,f,g;2)′(∗

L0,f ;2)−1∗
L0,f,g;2τ2),

respectively, as n → ∞. (ii) The sequence of tests φ
(n)
f has asymptotic level α

under
⋃

μ∈Rp

⋃
g∈Fulan

{P(n)
μ,L0,g

}. (iii) The sequence of tests φ
(n)
f is semiparamet-
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rically efficient, still at asymptotic level α, when testing H0 :L = L0 against
H

f
1 :L �= L0 with noise density f (i.e., when testing

⋃
μ∈Rp

⋃
g∈Fulan

{P(n)
μ,L0,g

}
against

⋃
μ∈Rp

⋃
L∈M1p\{L0}{P(n)

μ,L,f }).
The test φ

f
achieves semiparametric efficiency at f [Theorem 3.1(iii)], and

also at any fσ , with fσ (z) := ∏p
r=1 σ−1

r fr(zr/σr), where σr > 0 for all r—it can
indeed be checked that φ

fσ
= φ

f
. Most importantly, Theorem 3.1 shows also that

φ
f

remains valid under any g ∈ Fulan. By proceeding as in Lemma 4.2 of [19], this
can even be extended to any g ∈ F , which allows us to avoid any finite moment
condition.

This is to be compared to the semiparametric approach of Chen and Bickel [6]—
these authors focus on point estimation, but their methodology also leads to tests
that enjoy the same properties as their estimators. Their procedures achieve uni-
form (in g) semiparametric efficiency, while our methods achieve semiparametric
efficiency at the target density f only—more precisely, at any corresponding fσ .
However, it turns out that the performances of our procedures do not depend much
on the target density f , so that our procedures are close to achieving uniform (in g)
semiparametric efficiency; see the simulations in the supplemental article [16]. As
any uniformly semiparametrically efficient procedures (see [1]), Chen and Bickel’s
procedures require estimating g, hence choosing various smoothing parameters. In
contrast, our procedures, by construction, are invariant (here, signed-rank) ones.
As such, they do not require us to estimate densities, and they are robust, easy to
compute, etc.

One might still object that the choice of f is quite arbitrary. This choice should
be based on the practitioner’s prior belief on the underlying densities. If he/she
has no such prior belief, a kernel estimate f̂ of f could be used. The resulting
test φ

f̂
would then enjoy the same properties as any φ

f
in terms of validity, since

kernel density estimators, in the symmetric case considered, typically are mea-
surable with respect to the order statistics of the |Zir(ϑ̂0)|’s, that, asymptotically,
are stochastically independent of the signed ranks Sir(ϑ̂0),R

+
ir (ϑ̂0) used in φ

f
;

see [11] for details. The test φ
f̂

would further achieve uniform semiparametric
efficiency.

Further results on the proposed tests are given in the supplemental article [16].
More precisely, a simple explicit expression of the test statistics, local asymptotic
powers of the corresponding tests, and simulation results can be found there.

We finish this section by describing the extension of our signed-rank tests to the
problem of testing a fixed (arbitrary) linear hypothesis on L, which includes many
instances of high practical relevance (we mentioned a few in the Introduction). De-
noting by V(�) the vector space that is spanned by the columns of the p(p−1)×


matrix � (which is assumed to have full rank 
), we consider the testing problem{ H0(L0,�) : (vecd◦ L) ∈ (vecd◦ L0) + V(�)

H1(L0,�) : (vecd◦ L) /∈ (vecd◦ L0) + V(�),
(3.5)
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for some fixed L0 ∈ M1p . If one forgets about the tacitly assumed constraint that
L ∈ M1p in (3.5), the null hypothesis above imposes a set of linear constraints
on L. This clearly includes all testing problems mentioned in the Introduction:
testing that a given column of L is equal to a fixed vector, testing that a given
(off-diagonal) entry of L is zero and testing block-diagonality of L.

Inspired by the tests from [18] (Section 10.9), the analog of our signed-rank test
φ

f
above then rejects H0(L0,�) for large values of

Q
f
(L0,�) := (�∗

ϑ̂,f ;2)
′P��∗

ϑ̂,f ;2

with P� := (∗
L̂,f ;2)

− − �(�′∗
L̂,f ;2�)−�′, where B− denotes the Moore–

Penrose pseudoinverse of B , and where ϑ̂ = (μ̂′, (vecd◦ L̂)′)′ is an estimator of
ϑ that is locally and asymptotically discrete, root-n consistent under the null, and
constrained—in the sense that L̂ satisfies the linear constraints in H0(L0,�).

It can be shown that this signed-rank test achieves semiparametric optimality at
f (the relevant optimality concept here is most stringency; see, e.g., [19] for a dis-
cussion) and remains valid under any g ∈ F ulan. Its null asymptotic distribution is
still chi-square, now with r := Trace[P�∗

L,f ;2] degrees of freedom (this directly
follows from Theorem 9.2.1 in [24] and Theorem A.1); at asymptotic level α,
the resulting asymptotic critical value (that actually does not depend on the true
value L) therefore is χ2

r;1−α . Just as for the tests φ
f

, it is still possible to compute
asymptotic powers under sequences of local alternatives. It is clear, however, that a
thorough study of the properties of the tests above, for a general linear hypothesis,
is beyond the scope of the present paper, hence is left for future research. In the im-
portant particular case of testing block-diagonality of L, a complete investigation
of the signed-rank tests can be found in [19].

4. Point estimation. We turn to the problem of estimating L, which is of pri-
mary importance for applications. Denoting by Q

f
= Q

f
(L0) the signed-rank test

statistic for H0 :L = L0 in (3.1), a natural signed-rank estimator of L is obtained
by “inverting the corresponding test,”

L̂f ;arg min = arg min
L∈M1p

Q
f
(L).

This estimator, however, is not satisfactory: as any signed-rank quantity, the objec-
tive function L �→ Q

f
(L) is piecewise constant, hence discontinuous and noncon-

vex, which makes it very difficult to derive the asymptotic properties of L̂f ;arg min.

It is also virtually impossible to compute L̂f ;arg min in practice, since this lack of
smoothness and convexity essentially forces computing the estimator by simply
running over a grid of possible values of the p(p − 1)-dimensional parameter L—
a strategy that cannot provide a reasonable approximation of L̂f ;arg min, even for
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moderate values of p. Finally, there is no way to estimate the asymptotic covari-
ance matrix of L̂f ;arg min, which rules out the possibility to derive confidence zones
for L, hence drastically restricts the practical relevance of this estimator.

In order to avoid the aforementioned drawbacks, we propose adopting a one-
step approach that was first used in [7] for the problem of estimating the shape of
an elliptical distribution or in [9] in a more general context. The resulting one-step
signed-rank estimators—in the sequel, we simply speak of one-step rank estima-
tors or one-step R-estimators—can easily be computed in practice, their asymp-
totic properties can be derived explicitly, and their asymptotic covariance matrix
can be estimated consistently.

4.1. One-step R-estimators of L. To initiate the one-step procedure, a pre-
liminary estimator is needed. In the present context, we will assume that a root-n
consistent and locally asymptotically discrete estimator ϑ̃ = (μ̃′, (vecd◦ L̃)′)′ is
available. As we will show, the asymptotic properties of the proposed one-step
R-estimators will not be affected by the choice of ϑ̃ . Practical choices will be
provided in Section 5.

Describing our one-step R-estimators requires:

ASSUMPTION (A). For all r �= s ∈ {1, . . . , p}, we dispose of sequences of
estimators γ̂rs(f ) and ρ̂rs(f ) that: (i) are locally asymptotically discrete and that
(ii), for any g ∈ Fulan, satisfy γ̂rs(f ) = γrs(f, g)+oP(1) and ρ̂rs(f ) = ρrs(f, g)+
oP(1) as n → ∞, under

⋃
ϑ∈�{P(n)

ϑ,g}.
Sequences of estimators fulfilling this assumption will be provided in Sec-

tion 4.2 below. At this point, just note that plugging in (3.2) the estimators from
Assumption (A) and the preliminary estimator L̃, defines a statistic—̂∗

L̃,f ;2, say—

that consistently estimates ∗
L,f,g;2 under

⋃
ϑ∈�{P(n)

ϑ,g}.
For any target density f , we propose the one-step R-estimator L̂f , with values

in M1p , defined by

vecd◦ L̂f := (vecd◦ L̃) + n−1/2(̂∗
L̃,f ;2)

−1�∗
ϑ̃,f ;2.(4.1)

The following result states the asymptotic properties of this estimator (see Ap-
pendix B for a proof).

THEOREM 4.1. Let Assumption (A) hold, and fix f ∈ F ulan. Then (i) under
P(n)

ϑ,g , with ϑ = (μ′, (vecd◦ L)′)′ ∈ � and g ∈ Fulan, we have that
√

nvec(L̂f − L) = C′(∗
L,f,g;2)−1�∗

ϑ,f ;2 + oP(1)(4.2)

= C′(∗
L,f,g;2)−1�∗

ϑ,f,g;2 + oP(1)(4.3)

L→ Np(p−1)(0,C′(∗
L,f,g;2)−1∗

L,f ;2(∗
L,f,g;2)−1′C)(4.4)
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as n → ∞, where �∗
ϑ,f,g;2 is defined in Theorem A.1 (see Appendix A). (ii) The

estimator L̂f is semiparametrically efficient at f .

The result in (4.2) justifies calling L̂f an R-estimator since it shows that

n1/2(L̂f − L) is asymptotically equivalent to a random matrix that is measurable
with respect to the signed ranks Si(ϑ),R+

i (ϑ) in (2.7). The asymptotic equiva-
lence in (4.3) gives a Bahadur-type representation result for L̂f with summands
that are independent and identically distributed, hence leads trivially to the asymp-
totic normality result in (4.4). Recalling that ̂∗

L̃,f ;2 consistently estimates ∗
L,f,g;2

under
⋃

ϑ∈�{P(n)
ϑ,g}, it is clear that asymptotic (signed-rank) confidence zones for

L may easily be obtained from this asymptotic normality result.
For r �= s ∈ {1, . . . , p}, define α̂rs(f ) and β̂rs(f ) as the statistics obtained by

plugging the estimators γ̂rs(f ) and ρ̂rs(f ) from Assumption (A) in⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αrs(f, g) := γrs(f, g)

γrs(f, g)γsr(f, g) − ρrs(f, g)ρsr(f, g)

βrs(f, g) := −ρrs(f, g)

γrs(f, g)γsr(f, g) − ρrs(f, g)ρsr(f, g)
,

(4.5)

and let α̂rr (f ) := 0 =: β̂rr (f ), r = 1, . . . , p. The estimator L̂f then admits the
following explicit expression (see Appendix B for a proof).

THEOREM 4.2. Let Assumption (A) hold, and fix f ∈ F ulan. Let N̂f := (Â′
f �

T ϑ̃,f )+ (B̂′
f �T ′

ϑ̃,f
), where we let Âf := (α̂rs(f )) and B̂f := (β̂rs(f )). Then the

estimator L̂f rewrites

L̂f = L̃ + 1√
n
L̃[N̂f − diag(L̃N̂f )],(4.6)

where diag(A) = A − odiag(A) stands for the diagonal matrix with the same di-
agonal entries as A.

It is straightforward to check that the role of the term − 1√
n
L̃diag(L̃N̂f ) in

the one-step correction 1√
n
L̃[N̂f − diag(L̃N̂f )] of L̃ is merely to ensure that the

diagonal entries of L̂f remain equal to one, hence that L̂f takes values in M1p

(for n large enough).
As shown above, the estimator L̂f enjoys very nice properties: its asymptotic

behavior is completely characterized, it is semiparametrically efficient under cor-
rectly specified densities, yet remains root-n consistent and asymptotically normal
under a broad range of densities g, its asymptotic covariance matrix can easily be
estimated consistently, etc.

However, L̂f requires estimates γ̂rs(f ) and ρ̂rs(f ) that fulfill Assumption (A).
We now provide such estimates.
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4.2. Estimation of cross-information coefficients. Of course, it is always pos-
sible to estimate consistently the cross-information coefficients γrs(f, g) and
ρrs(f, g) by replacing g in (3.3) and (3.4) with appropriate window or kernel
density estimates—this can be achieved since the residuals Zir(ϑ̃), i = 1, . . . , n

typically are asymptotically i.i.d. with density gr . Rank-based methods, however,
intend to eliminate—through invariance arguments—the nuisance g without esti-
mating it, so that density estimation methods simply are antinomic to the spirit of
rank-based methods.

Therefore, we rather propose a solution that is based on ranks and avoids es-
timating the underlying nuisance g. The method, that relies on the asymptotic
linearity—under g—of an appropriate rank-based statistic Sϑ,f , was first used
in [7], where there is only one cross-information coefficient J (f, g) to be esti-
mated. There, it is crucial that J (f, g) is involved as a scalar factor in the asymp-
totic covariance matrix, under g, between the rank-based efficient central sequence
�∗

ϑ,f and the parametric central sequence �ϑ,g . In [5], the method was extended to
allow for the estimation of a cross-information coefficient that appears as a scalar
factor in the linear term of the asymptotic linearity, under g, of a (possibly vector-
valued) rank-based statistic Sϑ,f .

In all cases, thus, this method was only used to estimate a single cross-infor-
mation coefficient that appears as a scalar factor in some structural—typically,
cross-information—matrix. In this respect, our problem, which requires us to es-
timate 2p(p − 1) cross-information quantities appearing in various entries of the
cross-information matrix ∗

L,f,g;2, is much more complex. Yet, as we now show,
it allows for a solution relying on the same basic idea of exploiting the asymptotic
linearity, under g, of an appropriate f -score rank-based statistic.

Based on the preliminary estimator ϑ̃ := (μ̃′, (vecd◦ L̃)′)′ at hand, define
ϑ̃

γrs

λ := (μ̃′, (vecd◦ L̃
γrs

λ )′)′, λ ≥ 0, with

L̃
γrs

λ := L̃ + n−1/2λ(T ϑ̃,f )rsL̃
(
ere

′
s − diag(L̃ere

′
s)

)
,

and ϑ̃
ρrs

λ := (μ̃′, (vecd◦ L̃
ρrs

λ )′)′, λ ≥ 0, with

L̃
ρrs

λ := L̃ + n−1/2λ(T ϑ̃,f )sr L̃
(
ere

′
s − diag(L̃ere

′
s)

);
note that, at λ = 0, ϑ̃

γrs

λ = ϑ̃
ρrs

λ = ϑ̃ . We then have the following result that is
crucial for the construction of the estimators γ̂rs(f ) and ρ̂rs(f ); see Appendix B
for a proof.

LEMMA 4.1. Fix ϑ ∈ �, f ∈ F ulan, g ∈ Fulan and r �= s ∈ {1, . . . , p}.
Then hγrs (λ) := (T ϑ̃,f )rs(T ϑ̃

γrs
λ ,f )rs = (1 − λγrs(f, g))((T ϑ̃,f )rs)

2 + oP(1) and

hρrs (λ) := (T ϑ̃,f )sr (T ϑ̃
ρrs
λ ,f )sr = (1−λρrs(f, g))((T ϑ̃,f )sr )

2 +oP(1) as n → ∞,

under P(n)
ϑ,g .
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The mappings λ �→ hγrs (λ) and λ �→ hρrs (λ) assume a positive value in λ = 0,
and, as shown by Lemma 4.1, are—up to oP(1)’s as n → ∞ under P(n)

ϑ,g—

monotone decreasing functions that become negative at λ = (γrs(f, g))−1 and
λ = (ρrs(f, g))−1, respectively. Restricting to a grid of values of the form λj = j/c

for some large discretization constant c (which is needed to achieve the re-
quired discreteness), this naturally leads—via linear interpolation—to the estima-
tors γ̂rs(f ) and ρ̂rs(f ) defined through

(γ̂rs(f ))−1 := λγrs := λ−
γrs

+ (λ+
γrs

− λ−
γrs

)hγrs (λ−
γrs

)

hγrs (λ−
γrs ) − hγrs (λ+

γrs )
(4.7)

= λ−
γrs

+ c−1hγrs (λ−
γrs

)

hγrs (λ−
γrs ) − hγrs (λ+

γrs )

with λ−
γrs

:= inf{j ∈ N :hγrs (λj+1) < 0} and λ+
γrs

:= λ−
γrs

+ 1
c
, and

(ρ̂rs(f ))−1 := λρrs := λ−
ρrs

+ c−1hρrs (λ−
ρrs

)

hρrs (λ−
ρrs ) − hρrs (λ+

ρrs )
(4.8)

with λ−
ρrs

:= inf{j ∈ N :hρrs (λj+1) < 0} and λ+
ρrs

:= λ−
ρrs

+ 1
c
. We have the follow-

ing result (see the supplemental article [16] for a proof).

THEOREM 4.3. Fix ϑ ∈ �, f ∈ F ulan, and g ∈ Fulan. Assume that ϑ̃ is such
that, for all ε > 0, there exist δε > 0 and an integer Nε such that

P(n)
ϑ,g[(T ϑ̃,f )rs ≥ δε] ≥ 1 − ε(4.9)

for all n ≥ Nε , r �= s ∈ {1, . . . , p}. Then, for any such r, s, γ̂rs(f ) = γrs(f, g) +
oP(1) and ρ̂rs(f ) = ρrs(f, g) + oP(1), as n → ∞ under P(n)

ϑ,g , hence γ̂rs(f ) and
ρ̂rs(f ) satisfy Assumption (A).

We point out that the assumption in (4.9) is extremely mild, as it only requires
that there is no couple (r, s), r �= s, for which (T ϑ̃,f )rs asymptotically has an atom

in zero. It therefore rules out preliminary estimators L̃ defined through the (rank-
based) f -likelihood equation (T ϑ,f )rs = 0.

5. Simulations. Here we report simulation results for point estimation only—
simulation results for hypothesis testing can be found in the supplemental arti-
cle [16]. Our aim is to both compare the proposed estimators with some competi-
tors and to investigate the validity of asymptotic results.

We used the following competitors: (i) FastICA from [12, 13], which is by far
the most commonly used estimate in practice; we used here its deflation based
version with the standard nonlinearity function pow3. (ii) FOBI from [4], which
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is one of the earliest solutions to the ICA problem and is often used as a bench-
mark estimate. (iii) The estimate based on two scatter matrices from [20]; here the
two scatter matrices used are the regular empirical covariance matrix (COV) and
the van der Waerden rank-based estimator (HOP) from [7] (actually, HOP is not a
scatter matrix but rather a shape matrix, which is allowed in [20]). Root-n consis-
tency of the resulting estimates L̂FICA, L̂FOBI and L̂COV_HOP of L requires finite
sixth-, eighth- and fourth-order moments, respectively, and follows from [14, 15]
and [21].

We focused on the bivariate case p = 2, and we generated, for three dif-
ferent setups indexed by d ∈ {1,2,3}, M = 2,000 independent random sam-
ples Z

(d,m)
i = (Z

(d,m)
i1 ,Z

(d,m)
i2 )′, i = 1, . . . , n, of size n = 4,000. Denoting by

g(d)(z) = g
(d)
1 (z1)g

(d)
2 (z2) the common pdf of Z

(d,m)
i , i = 1, . . . , n, m = 1, . . . ,M ,

the marginal densities g
(d)
1 and g

(d)
2 were chosen as follows:

(i) In Setup d = 1, g
(d)
1 is the pdf of the standard normal distribution (N ), and

g
(d)
2 is the pdf of the Student distribution with 5 degrees of freedom (t5);

(ii) In Setup d = 2, g
(d)
1 is the pdf of the logistic distribution with scale param-

eter one (log), and g
(d)
2 is t5;

(iii) In Setup d = 3, g
(d)
1 is t8 and g

(d)
2 is t5.

We chose to use L = I2 and μ = (0,0)′, so that the observations are given by
X

(d,m)
i = LZ

(d,m)
i + μ = Z

(d,m)
i (other values of L and μ led to extremely similar

results).
For each sample, we computed the competing estimates L̂FICA, L̂FOBI and

L̂COV_HOP defined above. Each of these were also used as a preliminary estimator
L̃ in the construction of three R-estimators: L̂f (j) , j = 1,2,3, with f (j) = g(j)

for all j . In the resulting nine R-estimators, we used the location estimate μ̂ =
L̃Med[L̃−1X1, . . . , L̃

−1Xn], based on the preliminary estimate L̃ used to initiate
the one-step procedure.

Figure 1 reports, for each setup d , a boxplot of the M squared errors

∥∥L̂(
X

(d,m)
1 , . . . ,X(d,m)

n

) − L
∥∥2 =

p∑
r,s=1
r �=s

(
L̂rs

(
X

(d,m)
1 , . . . ,X(d,m)

n

) − Lrs

)2(5.1)

for each of the twelve estimators L̂ considered (the nine R-estimators and their
three competitors).

The results show that, in each setup, all R-estimators dramatically improve over
their competitors. The behavior of the R-estimators does not much depend on the
preliminary estimator L̃ used. Optimality of L̂f (d) in Setup d is confirmed. Most
importantly, as stated for hypothesis testing at the end of Section 3, the perfor-
mances of the R-estimators do not depend much on the target density f (j) adopted,
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FIG. 1. Boxplots of the squared errors ‖L̂ − L‖2 [see (5.1)] obtained in M = 2,000 replications
from setups d = 1,2,3 (associated with underlying distributions g(d), d = 1,2,3) for the competitors
L̂FICA, L̂FOBI and L̂COV_HOP, and the nine R-estimators L̂f resulting from all combinations of a

target density f (j) = g(j), j = 1,2,3, and one of the three preliminary estimators L̂FICA, L̂FOBI
and L̂COV_HOP; see Section 5 for details. The sample size is n = 4,000.

so that one should not worry much about the choice of the target density in prac-
tice. Quite surprisingly, R-estimators behave remarkably well even when based on
preliminary estimators that, due to heavy tails, fail to be root-n consistent.

In order to investigate small-sample behavior of the estimates, we reran the ex-
act same simulation with sample size n = 800; in ICA, where most applications
involve sample sizes that are not in hundreds, but much larger, this sample size
can indeed be considered small. Results are reported in Figure 2. They indicate
that, in Setups 2 and 3, R-estimators still improve significantly over their com-
petitors, and particularly over L̂FOBI and L̂COV_HOP. In Setup 1, there seem to be
no improvement. Compared to results for n = 4,000, the behavior of one-step R-
estimators here depends more on the preliminary estimator used. Performances of
R-estimators again do not depend crucially on the target density, and optimality
under correctly specified densities is preserved in most cases.

As a conclusion, for practical sample sizes, the proposed R-estimators outper-
form the standard competitors considered, and their behavior is very well in line
with our asymptotic results.
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FIG. 2. The same boxplots as in Figure 1, but based on sample size n = 800.

Finally, we illustrate the proposed method for estimating cross-information
coefficients. We consider again the first 50 replications of our simulation with
n = 4,000, and focus on Setup 1 (g = g(1)) and the target density f = f (3) ( �=g(1)).
The cross-information coefficients to be estimated then are γ12(f, g) ≈ 1.478,
γ21(f, g) ≈ 0.862, ρ12(f, g) ≈ 1.149 and ρ21(f, g) ≈ 0.887. The upper left picture
in Figure 3 shows 150 graphs of the mapping λ �→ hγ12(λ) (based on f = f (3)),
among which the 50 pink curves are based on L̃ = L̂FICA, the 50 green curves are
based on L̃ = L̂FOBI, and the 50 blue ones are based on L̃ = L̂COV_HOP. The upper
right, bottom left and bottom right pictures of the same figure provide the corre-
sponding graphs for the mappings λ �→ hγ21(λ), λ �→ hρ12(λ), and λ �→ hρ21(λ),
respectively. The value at which each graph crosses the λ-axis is the resulting es-
timate of the inverse of the associated cross-information coefficient. To be able to
evaluate the results, we plotted, in each picture, a vertical black line at the cor-
responding theoretical value, namely at 1/γ12(f, g), 1/γ21(f, g), 1/ρ12(f, g) and
1/ρ21(f, g). Clearly, the results are excellent, and there does not seem to be much
dependence on the preliminary estimator L̃ used.

APPENDIX A: RANK-BASED EFFICIENT CENTRAL SEQUENCES

In this first Appendix, we study the asymptotic behavior of the rank-based effi-
cient central sequences �∗

ϑ,f ;2. The main result is the following (see Appendix B
for a proof).
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FIG. 3. Top left: 150 graphs of the mapping λ �→ hγ12 (λ) based on f = f (3), associated with the
first 50 replications from Setup 1 (g = g(1)) in Figure 1 (sample size is n = 4,000): the 50 curves
in pink, green, and blue are based on the preliminary estimators L̂FICA, L̂FOBI and L̂COV_HOP,
respectively. Top right, bottom left, and bottom right: the corresponding plots for the mappings
λ �→ hγ21 (λ), λ �→ hρ12 (λ) and λ �→ hρ21 (λ), respectively.

THEOREM A.1. Fix ϑ = (μ′, (vecd◦ L)′)′ ∈ � and f ∈ F ulan. Then, (i) for
any g ∈ F ,

�∗
ϑ,f ;2 = �∗

ϑ,f,g;2 + oL2(1)

as n → ∞, under P(n)
ϑ,g , where �∗

ϑ,f,g;2 := C(Ip ⊗L−1)′ vec[odiag( 1√
n

∑n
i=1(Si �

ϕf (F−1+ (G+(|Zi |))))(Si � F−1+ (G+(|Zi |)))′)]. (ii) Under P(n)

ϑ+n−1/2τ,g
, with τ =

(τ ′
1, τ

′
2)

′ ∈ R
p × R

p(p−1) and g ∈ Fulan,

�∗
ϑ,f ;2

L→ Np(p−1)(
∗
L,f,g;2τ2,

∗
L,f ;2)

as n → ∞ (for τ = 0, the result only requires that g ∈ F ). (iii) Still with τ =
(τ ′

1, τ
′
2)

′ ∈ R
p × R

p(p−1) and g ∈ Fulan, �∗
ϑ+n−1/2τ,f ;2 − �∗

ϑ,f ;2 = −∗
L,f,g;2τ2 +

oP(1) as n → ∞, under P(n)
ϑ,g .
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Both for hypothesis testing and point estimation, we had to replace in �∗
ϑ,f ;2 the

parameter ϑ with some estimator (ϑ̌ (n), say). The asymptotic behavior of the re-
sulting (so-called aligned) rank-based efficient central sequence �∗

ϑ̌ (n),f ;2 is given

in the following result.

COROLLARY A.1. Fix ϑ = (μ′, (vecd◦ L)′)′ ∈ �, f ∈ F ulan, and g ∈ Fulan.
Let ϑ̌ = ϑ̌ (n) = (μ̌′, (vecd◦ Ľ)′)′ be a locally asymptotically discrete sequence of
random vectors satisfying n1/2(ϑ̌ − ϑ) = OP(1) as n → ∞, under P(n)

ϑ,g . Then

�∗
ϑ̌,f ;2 − �∗

ϑ,f ;2 = −∗
L,f,g;2n1/2 vecd◦(Ľ − L) + oP(1), still as n → ∞, un-

der P(n)
ϑ,g .

Since the sequence of estimators ϑ̌ (n) is assumed to be locally asymptotically
discrete [which means that the number of possible values of ϑ̌ (n) in balls with
O(n−1/2) radius centered at ϑ is bounded as n → ∞], this result is a direct con-
sequence of Theorem A.1(iii) and Lemma 4.4 from [17]. Local asymptotic dis-
creteness is a concept that goes back to Le Cam and is quite standard in one-step
estimation; see, for example, [2] or [17].

Of course, a sequence of estimators ϑ̌ (n) can always be discretized by replacing
each component (ϑ̌(n))
 with(

ϑ̌
(n)
#

)

 := (cn1/2)−1 sign

((
ϑ̌ (n))




)⌈
cn1/2∣∣(ϑ̌ (n))




∣∣⌉, 
 = 1, . . . , p2,

for some arbitrary constant c > 0. In practice, however, one can safely forget about
such discretizations: irrespective of the accuracy of the computer used, the dis-
cretization constant c can always be chosen large enough to make discretization
be irrelevant at the fixed sample size n0 at hand—hence also at any n > n0.

APPENDIX B: PROOFS

B.1. Proofs of Theorems 2.1 and A.1. The proofs of this section make use
of the Hájek projection theorem for linear signed-rank statistics (see, e.g., [23],
Chapter 3), which states that, if Yi = Sign(Yi)|Yi |, i = 1, . . . , n, are i.i.d. with
(absolutely continuous) cdf G and if K : (0,1) → R is a continuous and square-
integrable score function that can be written as the difference of two monotone
increasing functions, then

1√
n

n∑
i=1

Sign(Yi)K(G+(|Yi |))

= 1√
n

n∑
i=1

Sign(Yi)K

(
R+

i

n + 1

)
+ oL2(1)(B.1)

= 1√
n

n∑
i=1

Sign(Yi)E[K(G+(|Yi |))|R+
i ] + oL2(1)(B.2)
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as n → ∞, where G+ stands for the common cdf of the |Yi |’s and R+
i denotes

the rank of |Yi | among |Y1|, . . . , |Yn|. The quantities in (B.1) and (B.2) are linear
signed-rank quantities that are said to be based on approximate and exact scores,
respectively.

In the rest of this section, we fix ϑ ∈ �, f ∈ F ulan, and g ∈ F . We write
throughout Zi , Si , and R+

i , for Zi(ϑ), Si(ϑ), and R+
i (ϑ), respectively. We also

write Eh instead of E(n)
ϑ,h, with h = f,g. We then start with the proof of Theo-

rem A.1(i).

PROOF OF THEOREM A.1(i). Fix r �= s ∈ {1, . . . , p} and two score func-
tions Ka,Kb : (0,1) → R with the same properties as K above. Then, by us-
ing (i) Eg[Sir ] = 0, (ii) the independence (under P(n)

ϑ,g) between the Sir ’s and the
(Rir , |Zir |)’s, and (iii) the independence between the Zir ’s and the Zis’s, we obtain

Eg

[(
1√
n

n∑
i=1

SirSis

(
Ka(G+r (|Zir |))Kb(G+s(|Zis |))

− Ka

(
R+

ir

n + 1

)
Kb

(
R+

is

n + 1

)))2]

= 1

n

n∑
i=1

Eg

[(
Ka(G+r (|Zir |))Kb(G+s(|Zis |))

− Ka

(
R+

ir

n + 1

)
Kb

(
R+

is

n + 1

))2]

≤ 2Eg

[(
Ka(G+r (|Zir |)) − Ka

(
R+

ir

n + 1

))2]
Eg[K2

b (G+s(|Zis |))]

+ 2Eg

[
K2

a

(
R+

ir

n + 1

)]
Eg

[(
Kb(G+s(|Zis |)) − Kb

(
R+

is

n + 1

))2]
.

Consequently, the square integrability of Ka , Kb, and the convergence to zero of

both Eg[(Ka(G+r (|Zir |)) − Ka(
R+

ir

n+1))2] and Eg[(Kb(G+r (|Zis |)) − Kb(
R+

is

n+1))2]
[which directly follows from (B.1)] entail

1√
n

n∑
i=1

SirSisKa(G+r (|Zir |))Kb(G+s(|Zis |))

= 1√
n

n∑
i=1

SirSisKa

(
R+

ir

n + 1

)
Kb

(
R+

is

n + 1

)
+ oL2(1)

as n → ∞, under P(n)
ϑ,g . Theorem A.1(i) follows by taking Ka = ϕfr ◦ F−1+r and

Kb = F−1+s . �



RANK-BASED INFERENCE IN SYMMETRIC IC MODELS 2469

We go on with the proof of Theorem 2.1, for which it is important to note that,
by proceeding as in the proof of Theorem A.1(i) but with (B.2) instead of (B.1),
we further obtain that

1√
n

n∑
i=1

SirSisKa(G+r (|Zir |))Kb(G+s(|Zis |))

= 1√
n

n∑
i=1

SirSisKa

(
R+

ir

n + 1

)
Kb

(
R+

is

n + 1

)
+ oL2(1)

(B.3)

= 1√
n

n∑
i=1

SirSisEg[Ka(G+r (|Zir |))|R+ir ]

× Eg[Kb(G+s(|Zis |))|R+is] + oL2(1),

still as n → ∞ under P(n)
ϑ,g .

PROOF OF THEOREM 2.1. It is sufficient to prove Theorem 2.1(i) only, since,
as already mentioned at the end of Section 2.3, Theorem 2.1(ii) follows from (2.6)
and Theorem 2.1(i). That is, we have to show that, for any r, s ∈ {1, . . . , p},

Ef

[
1√
n

n∑
i=1

(
ϕf (Zi)Z

′
i − Ip

)
rs |S1, . . . , Sn,R

+
1 , . . . ,R+

n

]

(B.4)
= (T ϑ,f )rs + oL2(1)

as n → ∞, under P(n)
ϑ,f . Now, the left-hand side of (B.4) rewrites

Ef

[
1√
n

n∑
i=1

(
ϕf (Zi)Z

′
i − Ip

)
rs |S1, . . . , Sn,R

+
1 , . . . ,R+

n

]

= 1√
n

n∑
i=1

Ef [SirSisϕf (|Zir |)|Zis | − δrs |S1, . . . , Sn,R
+
1 , . . . ,R+

n ](B.5)

= 1√
n

n∑
i=1

(
SirSisEf [ϕf (|Zir |)|Zis ||R+

1r , . . . ,R
+
nr ,R

+
1s, . . . ,R

+
ns] − δrs

)
.

For r �= s, this yields

Ef

[
1√
n

n∑
i=1

(
ϕf (Zi)Z

′
i − Ip

)
rs |S1, . . . , Sn,R

+
1 , . . . ,R+

n

]

= 1√
n

n∑
i=1

SirSisEf [ϕf (|Zir |)|R+
1r , . . . ,R

+
nr ]Ef [|Zis ||R+

1s, . . . ,R
+
ns]
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= 1√
n

n∑
i=1

SirSisϕfr

(
F−1+r

(
R+

ir

n + 1

))
F−1+r

(
R+

is

n + 1

)
+ oL2(1)

= (T ϑ,f )rs + oL2(1)

as n → ∞, under P(n)
ϑ,f , where we have used (B.3), still with Ka = ϕfr ◦ F−1+r and

Kb = F−1+s , but this time at g = f . This establishes (B.4) for r �= s. As for r = s,
(B.5) now entails [writing Kab(u) := ϕf (F−1+r (u)) × F−1+r (u) for all u]

Ef

[
1√
n

n∑
i=1

(
ϕf (Zi)Z

′
i − Ip

)
rs |S1, . . . , Sn,R

+
1 , . . . ,R+

n

]

=
(

1√
n

n∑
i=1

Ef [ϕf (|Zir |)|Zir ||R+
1r , . . . ,R

+
nr ]

)
− √

n

= Ef

[
1√
n

n∑
i=1

Kab(F+r (|Zir |))|R+
1r , . . . ,R

+
nr

]
− √

n

= 1√
n

n∑
i=1

Kab

(
R+

i

n + 1

)
− √

n + oL2(1)(B.6)

= 1√
n

n∑
i=1

Kab

(
i

n + 1

)
− √

n + oL2(1)

= √
n

∫ 1

0
Kab(u)du − √

n + oL2(1)(B.7)

= oL2(1),(B.8)

still as n → ∞, under P(n)
ϑ,f , where (B.6), (B.7) and (B.8) follow from the Há-

jek projection theorem for linear rank (not signed-rank) statistics (see, e.g., [23],
Chapter 2), the square-integrability of Kab(·) (see the proof of Proposition 3.2(i)
in [10]), and integration by parts, respectively. This further proves (B.4) for r = s,
hence also the result. �

PROOF OF THEOREM A.1(ii) AND (iii). (ii) In view of Theorem A.1(i), it is
sufficient to show that both asymptotic normality results hold for �∗

ϑ,f,g;2. The

result under P(n)
ϑ,g then straightforwardly follows from the multivariate CLT. As for

the result under local alternatives [which, just as the result in part (iii), requires that
g ∈ Fulan], it is obtained as usual, by establishing the joint normality under P(n)

ϑ,g

of log(dP(n)

ϑ+n−1/2τ,g
/dP(n)

ϑ,g) and �∗
ϑ,f,g;2, then applying Le Cam’s third lemma;

the required joint normality follows from a routine application of the classical
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Cramér–Wold device. (iii) The proof, that is long and tedious, is also a quite trivial
adaptation of the proof of Proposition A.1 in [7]. We therefore omit it. �

B.2. Proof of Theorem 3.1. (i) Applying Corollary A.1, with ϑ̌ :=
ϑ̂0 = (μ̂′, (vecd◦ L0)

′)′ and ϑ := ϑ0 = (μ′, (vecd◦ L0)
′)′, entails that �∗

ϑ̂0,f ;2 =
�∗

ϑ0,f ;2 + oP(1) as n → ∞ under P(n)
ϑ0,g

. Consequently, we have that

Q
f

= (vec�∗
ϑ0,f ;2)′(∗

L0,f ;2)−1(vec�∗
ϑ0,f ;2) + oP(1),(B.9)

still as n → ∞, under P(n)
ϑ0,g

—hence also under P(n)

ϑ0+n−1/2τ,g
(from contiguity). The

result then follows from Theorem A.1(ii). (ii) It directly follows from (i) that, under
the sequence of local alternatives P(n)

ϑ0+n−1/2τ,f
, φ

(n)
f has asymptotic power 1 −

�p(p−1)(χ
2
p(p−1),1−α; τ ′

2
∗
L0,f ;2τ2). This establishes the result, since these local

powers coincide with the semiparametrically optimal (at f ) powers in (2.5).

B.3. Proofs of Lemma 4.1, Theorems 4.1 and 4.2.

PROOF OF THEOREM 4.1. (i) Fix ϑ ∈ � and g ∈ Fulan. From (4.1), the fact
that ̂∗

L̃,f ;2 −∗
L,f,g;2 = oP(1) as n → ∞ under P(n)

ϑ,g , and Corollary A.1, we obtain

√
nvecd◦(L̂f − L) = √

nvecd◦(L̃ − L) + (̂∗
L̃,f ;2)

−1�∗
ϑ̃,f ;2

= √
nvecd◦(L̃ − L) + (∗

L,f,g;2)−1�∗
ϑ̃,f ;2 + oP(1)

= (∗
L,f,g;2)−1�∗

ϑ,f ;2 + oP(1)(B.10)

as n → ∞ under P(n)
ϑ,g . Consequently, Theorem A.1(i) and (ii) entails that, still as

n → ∞ under P(n)
ϑ,g ,

√
nvecd◦(L̂f − L)

(B.11)
= (∗

L,f,g;2)−1�∗
ϑ,f,g;2 + oP(1)

L→ Np(p−1)(0, (∗
L,f,g;2)−1∗

L,f ;2(∗
L,f,g;2)−1′).(B.12)

Now, by using the fact that C′(vecd◦ H) = (vecH) for any p×p matrix H with
only zero diagonal entries, we have that

√
nvec(L̂f −L) = √

nC′ vecd◦(L̂f −L),
so that (4.2), (4.3) and (4.4) follow from (B.10), (B.11) and (B.12), respectively.

(ii) The asymptotic covariance matrix of
√

nvecd◦(L̂f − L), under P(n)
ϑ,f , re-

duces to (∗
L,f ;2)−1 [let g = f in (B.12)], which establishes the result. �
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To prove Theorem 4.2, we will need the following result.

LEMMA B.1. Fix ϑ = (μ′, (vecd◦ L)′)′ ∈ � and f,g ∈ Fulan. Then

(Ip ⊗ L−1)C′(∗
L,f,g;2)−1C(Ip ⊗ L−1)′

=
p∑

r,s=1,r �=s

{
αrs(f, g)

(
ere

′
r ⊗ (L2

rsere
′
r + ese

′
s − Lrsere

′
s − Lrsese

′
r )

)

+ βrs(f, g)
(
ere

′
s ⊗ (LrsLsrere

′
s − Lrsere

′
r − Lsrese

′
s + ese

′
r )

)}
,

where Lrs denotes the entry (r, s) of L.

PROOF OF THEOREM 4.2. By using again the fact that C′(vecd◦ H) =
(vecH) for any p × p matrix H with only zero diagonal entries, and then Lem-
ma B.1, we obtain

vec(L̂f − L̃)

= C′ vecd◦(L̂f − L̃)

= 1√
n
C′(̂∗

L̃,f ;2)
−1C(Ip ⊗ L̃−1)′ vecT ϑ̃,f

= 1√
n
(Ip ⊗ L̃)

×
[ p∑

r,s=1,r �=s

{
α̂rs(f )

(
ere

′
r ⊗ (L̃2

rsere
′
r + ese

′
s − L̃rsere

′
s − L̃rsese

′
r )

)

+ β̂rs(f )
(
ere

′
s ⊗ (L̃rsL̃srere

′
s − L̃rsere

′
r

− L̃srese
′
s + ese

′
r )

)}]

× vecT ϑ̃,f .

Since all diagonal entries of T ϑ̃,f are zeros, we have that

vec(L̂f − L̃)

= 1√
n
(Ip ⊗ L̃)

(B.13)

×
[ p∑

r,s=1,r �=s

{
α̂rs(f )

(
ere

′
r ⊗ (ese

′
s − L̃rsere

′
s)

)

+ β̂rs(f )
(
ere

′
s ⊗ (ese

′
r − L̃rsere

′
r )

)}]
vecT ϑ̃,f .
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The identity (C′ ⊗ A)(vecB) = vec(ABC) then yields

vec(L̂f − L̃) = 1√
n
(Ip ⊗ L̃)vec

[ p∑
r,s=1,r �=s

(N̂f )sr (ese
′
r − L̃rsere

′
r )

]
.

Hence, we have

L̂f − L̃ = 1√
n
L̃

p∑
r,s=1,r �=s

(N̂f )sr (ese
′
r − L̃rsere

′
r )

= 1√
n
L̃

p∑
r,s=1

(N̂f )sr (ese
′
r − L̃rsere

′
r )

= 1√
n
L̃

(
Nf −

p∑
r,s=1

L̃rs(N̂f )srere
′
r

)

= 1√
n
L̃

(
N̂f −

p∑
r=1

(L̃Nf )rrere
′
r

)

= 1√
n
L̃

(
N̂f − diag(L̃Nf )

)
,

which proves the result. �

PROOF OF LEMMA 4.1. In this proof, all stochastic convergences are as
n → ∞ under P(n)

ϑ,g . First note that, if ϑ̌ := (μ̌′, (vecd◦ Ľ)′)′ is an arbitrary lo-
cally asymptotically discrete root-n consistent estimator for ϑ = (μ′, (vecd◦ L)′)′,
we then have that

vec(T
ϑ̌,f

− T ϑ,f ) = −Gf,g(Ip ⊗ Ľ−1)C′√nvecd◦(Ľ − L)
(B.14)

+ oP(1)

(compare with Corollary A.1). Incidentally, note that (B.14) implies that vecT
ϑ̌,f

is OP(1) [by proceeding exactly as in the proof of Theorem A.1(i) and (ii), we
can indeed show that, under P(n)

ϑ,g , vecT ϑ,f is asymptotically multinormal, hence
stochastically bounded].

Now, from (B.14), we obtain

vec(T ϑ̃
γrs
λ ,f − T ϑ̃,f )

= −Gf,g(Ip ⊗ L̃−1)C′√nvecd◦(L̃γrs

λ − L̃) + oP(1)

= −λ(T ϑ̃,f )rsGf,g(Ip ⊗ L̃−1)C′ vecd◦(L̃ere
′
s − L̃diag(L̃ere

′
s)

) + oP(1),
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which, by using the fact that C′(vecd◦ H) = (vecH) for any p × p matrix H with
only zero diagonal entries, leads to

vec(T ϑ̃
γrs
λ ,f − T ϑ̃,f )

= −λ(T ϑ̃,f )rsGf,g(Ip ⊗ L̃−1)vec
(
L̃ere

′
s − L̃diag(L̃ere

′
s)

) + oP(1)

= −λ(T ϑ̃,f )rsGf,g vec
(
ere

′
s − diag(L̃ere

′
s)

) + oP(1).

This yields

vec(T ϑ̃
γrs
λ ,f − T ϑ̃,f )

= −λ(T ϑ̃,f )rsGf,g vec(ere
′
s) + oP(1)

= −λ(T ϑ̃,f )rs
(
γrs(f, g)vec(ere

′
s) + ρrs(f, g)vec(ese

′
r )

)
+ oP(1).

Premultiplying by (T ϑ̃,f )rs(es ⊗ er)
′, we then obtain

(T ϑ̃,f )rs(T ϑ̃
γrs
λ ,f )rs − ((T ϑ̃,f )rs)

2 = −λ((T ϑ̃,f )rs)
2γrs(f, g) + oP(1)

[recall indeed that T ϑ̃,f = OP(1)], which establishes the γ -part of the lemma. The
proof of the ρ-part follows along the exact same lines, but for the fact that the
premultiplication is by (T ϑ̃,f )sr (er ⊗ es)

′. �
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SUPPLEMENTARY MATERIAL

Further results on tests and a proof of Theorem 4.3 (DOI: 10.1214/11-
AOS906SUPP; .pdf). This supplement provides a simple explicit expression for
the proposed test statistics, derives local asymptotic powers of the corresponding
tests, and presents simulation results for hypothesis testing. It also gives a proof of
Theorem 4.3.
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