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Abstract

This paper proposes e¢ cient tests for restrictions on �nite-dimensional parameters in regular

semiparametric models. Our theory overcomes the main limitation of the existing theory, which

requires explicit computation and estimation of certain projections onto in�nite-dimensional tan-

gent spaces and a case-by-case analysis. We consider generic semiparametric models de�ned by

an in�nite number of moment conditions, including a �nite-dimensional parameter of interest and

possibly containing moment-speci�c nonparametric nuisance parameters. We investigate tests based

on functionals of the sample analog of the moments, and show that the optimal functional takes the

form of a Radon-Nikodym derivative or nonparametric Likelihood Ratio (LR). We �rst show that

the resulting LR test is e¢ cient in our general semiparametric setting. The LR is generally infea-

sible, as it assumes knowledge of a certain spectrum. We then propose and justify feasible e¢ cient

tests based on a novel nonparametric estimator of the so-called e¢ cient score, without requiring

direct computation of projections onto tangent spaces or sample splitting techniques. Thus, the

proposed e¢ cient tests are widely applicable, while being straightforward to implement. Finally,

to illustrate the bene�ts of the approach, we apply the new methods to a semiparametric linear

quantile regression model with a continuum of quantiles. Optimal inferences in this model were

not available because classical e¢ ciency arguments are di¢ cult to apply. In contrast, our methods

deliver relatively simple e¢ cient tests in this example.
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1 Introduction

Semiparametric models are a compromise between tight parametric speci�cations and more �exible,

but rather imprecise, nonparametric models. Nowadays, these models are widely used in applications

in the social sciences, and a well developed theory of estimation and testing has been established

for many classes of semiparametric models; see e.g. Robinson (1988), Powell (1994) and Wellner,

Klaasen and Ritov (2006) for surveys on the topic, and Bickel, Klaasen, Ritov, and Wellner (1993)

for a comprehensive treatment. Unfortunately, although there has been signi�cant progress in the

formalization of an e¢ ciency theory in this setting, this theory is far from complete.1 Speci�cally,

feasible optimal procedures for inferences about a �nite-dimensional parameter of interest need to

account for the potential information loss derived from not knowing nuisance parameters, see Neyman

(1959) for the formulation of the problem in fully parametric models. In semiparametric models this

loss is quanti�ed by an orthogonal projection of the score of interest onto an in�nite-dimensional space,

the tangent space of nuisance parameters, leading to the so-called e¢ cient score, and its computation

and estimation often requires complicated arguments and a case-by-case analysis. Moreover, there

are many examples for which these projections, and hence optimal inferences, are unknown; see some

examples below. This paper provides a general and uni�ed theory of e¢ cient tests in semiparametric

models, which does not require direct computation of projections and is, therefore, simple to implement.

Semiparametric e¢ cient inference is extensively discussed in econometrics and statistics. Newey

(1990) provides an excellent introduction to the topic. The bulk of the literature focuses on the

estimation theory, using the concepts of parametric submodels and tangent spaces. E¢ cient tests for

restrictions on a �nite-dimensional parameter in regular semiparametric models are formally de�ned in

Choi, Hall and Schick (1996, henceforth CHS); see also Section 3 and Appendix A for a review. Optimal

tests are shown to be asymptotically equivalent to semiparametric versions of the C(�)�test of Neyman
(1959). CHS propose feasible e¢ cient procedures, provided a suitable estimator of the e¢ cient score

is available. However, it is not known how such estimators are obtained for general semiparametric

models. Broadly speaking, achieving feasible e¢ cient inferences in semiparametric models is, to a large

extent, equivalent to estimating the e¢ cient score. We provide a generic e¢ cient score�s estimate in

this paper.

Our approach to e¢ cient testing is di¤erent from the standard one used in the literature. Rather

than looking at least favorable parametric submodels, reducing the semiparametric problem to a para-

metric one, we deal directly with the semiparametric model and use functional versions of the Neyman-

Pearson lemma. We consider generic models de�ned by an in�nite number of moment conditions,

depending on a �nite-dimensional parameter of interest and possibly containing moment-speci�c non-

parametric nuisance parameters. This framework is quite general, as any semiparametric model can

be written in this form. Then, within this setting, suppose we are interested in testing restrictions on

1 In their introduction, Bickel et al. (1993) write: �What are general methods and techniques for constructing asymp-

totically e¢ cient estimates for such (semiparametric) models? Although we have made some progress on this question,

the overall picture is somewhat disappointing. There are a number of methods that heuristically should yield procedures

with the properties we want. But which approach works best or can most easily be proved to work depends on the example

or class of examples.�
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the �nite-dimensional parameter. A large class of tests can be based on continuous functionals of the

sample analog of the moments, say R̂n; evaluated at a restricted estimator. The subscript n in R̂n
denotes the sample size. Typical functionals, such as the Kolmogorov-Smirnov or Cramér-von-Mises

functionals, are not optimal for this problem. We show below that the optimal functional is the Radon-

Nikodym derivative of the limit distribution of
p
nR̂n under local alternatives with respect to the limit

distribution under the null. This functional is monotone in an asymptotically su¢ cient test statistic

L(R̂n); and we denote the test rejecting for �large� values of L(R̂n) the Functional Likelihood Ratio

Test (FLRT). This nonparametric Likelihood Ratio (LR) principle was �rst suggested by Grenander

(1950) in a di¤erent context, and it has been already applied to some semiparametric settings, see

Section 2 for a review of this literature. Yet, the semiparametric e¢ ciency of the resulting inferences

in these speci�c applications, or in more general settings like ours, remains completely unknown.

The �rst main contribution of this paper proves the e¢ ciency of the FLRT in general semiparametric

models. To that end, we �rst obtain a generic asymptotic representation of the test statistic L(R̂n) as

a score-type process (i.e. as a sample mean of a score function). We characterize the score function in

terms of the limiting covariance and mean of
p
nR̂n. Then, we show that the resulting score coincides

with the e¢ cient score in the semiparametric model de�ned by the moment restrictions, which, by

virtue of CHS�s results, establishes the semiparametric e¢ ciency of the FLRT. The functional L(�)
is in general not feasible, and feasible implementations require the estimation of the spectrum of

the limiting covariance operator of
p
nR̂n, which has hampered the practical applicability of this

functional LR method. The problem involved is essentially equivalent to constructing feasible versions

of the semiparametric C(�)�test (i.e. estimating projections onto tangent spaces). Our second main
contribution is the development of feasible implementations of the FLRT that do not require knowledge

of the spectrum. We combine our characterization of the e¢ cient score function, which is much like a

generalized information equality formula, with well-known results from ill-posed problems to construct

a novel nonparametric estimator of the e¢ cient score. The proposed feasible FLRT uses the estimated

score, and it is quite simple to compute. Thus, our test can be viewed as a semiparametric version

of the celebrated Neyman�s (1959) C(�)�test. To illustrate the bene�ts of our implementation, we
consider an example in quantile regression with a continuum of quantiles. In this example, standard

methods to e¢ ciency require rather complicated arguments and e¢ cient inferences were unknown.

Our results complement alternative e¢ ciency results recently obtained by Müller (2011). He has

shown that the FLRT is also optimal in a class of tests that control asymptotic size for all data gener-

ating processes under which
p
nR̂n satis�es a weak convergence requirement; see Section 3 for a more

formal discussion. This e¢ ciency concept can be potentially di¤erent from the �classical� semipara-

metric e¢ ciency concept in CHS, and it provides a sense of robustness of the FLRT. An appealing

property of Müller�s e¢ ciency concept is that it applies to regular and non-regular settings, whereas

extensions of the classical semiparametric e¢ ciency theory to non-regular problems are generally di¢ -

cult. Hence, our results complement rather than substitute Müller�s (2011) results, and together they

imply a broad sense of optimality of the FLRT.

Our e¢ ciency results are also related to the recent literature on e¢ cient estimation of semipara-

metric models by Generalized Method of Moments (GMM) employing potentially in�nite number of
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moments, see e.g. Ai and Chen (2003), Newey (1988, 2004) and Carrasco and Florens (2000, 2011).

Our paper di¤ers from these works in several aspects. Firstly, the GMM literature has been focused

on estimation, with rather few results on testing available. Carrasco and Florens (2000) proposed

tests based on the optimal GMM objective function in parametric moments, but their tests are not

e¢ cient in our setting. Secondly, we use a functional LR approach, as in e.g. Müller (2011). The

LR approach has some additional bene�ts, such as allowing the researcher to compute, otherwise com-

plicated, probabilities under the local alternatives via Lecam�s third Lemma. See, for instance, the

local power analysis carried out in Escanciano (2009). Nevertheless, we show below that our LR test

is closely related to a Lagrange Multiplier (LM) test based on a modi�ed optimal GMM objective

function. The modi�cation accounts for the presence and impact of nuisance parameters.2 To the best

of our knowledge, the connection between GMM and our LR approach is new and leads to mutual

bene�ts for these two approaches. For instance, it implies that some modi�cations of GMM-based tests

will share the optimality properties of our LR test, including Müller�s (2011) optimality in non-regular

problems. This connection also opens the door for new implementations of the GMM-based tests and

estimators, which are not available in the general semiparametric setting discussed here.

Summarizing, this paper proposes a general and uni�ed method to derive semiparametric feasible

e¢ cient tests using a functional LR principle. Although the bulk of our paper deals with the testing

problem, we obtain some by-products pertaining to other aspects of inference. Most notably, we

provide: (i) a new general formula for the e¢ ciency bound of semiparametric estimation; (ii) optimal

con�dence sets by inverting our test statistics; and (iii) a candidate for a semiparametric e¢ cient

one-step estimator. These by-products are of independent interest.

The rest of the paper is organized as follows: Section 2 introduces notation, the semiparametric

model, the testing problem and the FLRT. It then provides an asymptotic representation of the FLRT as

a score-type test. Section 3 establishes the semiparametric e¢ ciency of the procedure and connections

with the GMM literature. Section 4 investigates the implementation of the FLRT. The new estimator

for the e¢ cient score is introduced here. Section 5 contains applications to quantile and mean regression,

respectively, which illustrate the utility of our results. Other applications, such as to partially identi�ed

models, are brie�y mentioned at the end of this section. Section 6 concludes with some �nal remarks.

Appendix A provides some preliminary results and su¢ cient conditions for a uniform expansion that

can be used to establish some of our assumptions in the text. Mathematical proofs of our results are

gathered in Appendix B. Finally, Appendix C provides an algorithm for implementation of the feasible

test. It is intended to facilitate the application of our methods to readers less interested in the technical

background.

2Carrasco and Florens (2000, 2011) do not consider nuisance parameters and in Newey (2004) it is assumed that

they do not a¤ect the asymptotic variance of estimates; see Newey (2004, p. 1879). In this paper we allow for nuisance

parameters to have an impact on the asymptotic variance, and that possibility complicates to a large extent our theory.
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2 Setting and the FLRT

2.1 Notation

This section contains notation that will be used throughout the paper. Henceforth, A0, tr(A) and

jAj := (tr(A0A))1=2 denote the transpose, trace and the Euclidean norm of a matrix A; respectively.

The symbol := denotes de�nitional relation. Let � be a set and let �(�) be a positive measure on �;
with support identical to �: Let L2(�) � L2(�; �) be the Hilbert space of all real-valued functions f

such that
R
� jf(x)j

2 �(dx) <1: If � is a probability measure P with a cumulative distribution function
(cdf) F; we also denote L2(F ) := L2(�) and kfk22;P :=

R
f2dP: As usual, equality of functions is

understood almost surely with respect to �:With some abuse of notation, for a p-dimensional function

f; we write f 2 L2(�) if all its components belong to L2(�) (similarly for other functional spaces).

In L2(�) we de�ne the inner product hf; gi :=
R
� f(x)g(x)�(dx): As usual, L2(�) is endowed with

the natural Borel �-�eld induced by the norm k�k := h�; �i1=2. Let =) denote weak convergence in

the Hilbert space L2(�); see e.g. Chapter 1.8 in van der Vaart and Wellner (1996). Unless otherwise

stated, all limits are taken as n!1: For a linear operator K : L2(�1)! L2(�2); denote the subspaces

Im(K) := ff 2 L2(�2) : 9s 2 L2(�1);Ks = fg and ker(K) := ff 2 L2(�1) : Kf = 0g: Let D(K)
denote the domain of de�nition of K: For a subspace V � L2(�); V

? and V denote, respectively,

its orthogonal complement and closure in L2(�): Henceforth, for a closed subspace V; �V denotes its

orthogonal projection operator. We will extensively use basic results from operator theory and Hilbert

spaces. See Carrasco, Florens and Renault (2006) for an excellent review of these results.

2.2 Semiparametric Model and Testing Problem

We describe now the model and our general testing problem, introducing the null hypothesis of interest

and some further notation. Assume we observe a sample of size n � 1; fZigni=1; of independent and
identically distributed (iid) random vectors in Rd; distributed as Z, and satisfying the set of moment
conditions

E[ (Z; x; �; �0(Z; x))] = 0 for all x 2 �; (1)

where � 2 �� � Rp is a �nite-dimensional parameter of interest, and �0(�; x) 2 ��x (of arbitrary

dimension) is an unknown nuisance parameter for each x 2 �. Without loss of generality (w.l.g), we
take  to be real-valued. Although not explicit in the notation, we allow for �0(�; x) to depend on �; i.e.
�0(�; x) � �0(�; x; �). Set �0 := (�0; �0) 2 � := �� � ��, where �0 is �xed and known and �� denotes
the parameter space for �0. Let F denote the cdf of Z; with probability measure P: Unless otherwise

stated, all expectations are with respect to F: Note that any semiparametric model can be written as

(1).3 In particular, our setting includes standard models such as semiparametric conditional moment

restrictions, as well as less standard models with nuisance parameters that change with the moment,

as in semiparametric quantile regression models. The following example illustrates this point.

3To see the generality, if Z follows the semiparametric cdf F�;�; we can construct moments as E[1(Z � x)�F�;�(x)] = 0
for all x 2 Rd: If the model is de�ned through conditional moment restrictions of the form E [�(Z; �; �0)jX] = 0 a.s.,

where X is a subvector of Z of dimension dx, then take E[�(Z; �; �0)1(X � x)] = 0 for all x 2 Rdx :
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Example 1: Linear Quantile Regression (QR) with a continuum of quantiles. Consider the
in�nite number of moment restrictions

E[f1(Y � �0X1 + �0(�)
0X2)� �g1(X � w)] = 0 for all x = (�; w0)0 2 T � Rdx ; (2)

where T is a generic compact subset of [0; 1]; T � [0; 1]; X = (X 0
1; X

0
2)
0; Z = (Y;X 0)0; dx = d � 1;

and 1(A) denotes the indicator function of the event A: Under some mild smoothness condition, these

moments identify �0X1 + �0(�)
0X2 � X 0�0(�) as the conditional �th quantile of Y given X; for all

� 2 T : This model includes as special case the classical pure-location regression model, with X2 � 1
and �0(�) the unknown (unconditional) error quantile function with T � [0; 1]; or semiparametric

extensions where the independence between errors and covariates only occurs at certain parts of the

distribution de�ned by the set of quantiles T : In this model the nuisance parameter �0 varies with x
(speci�cally with �): Although our results are applicable to generalizations or variations of this model,

such as location-scale models with unknown conditional scale or partially linear quantile regressions,

we prefer to keep the exposition simple. The model in (2) is a special case of the classical linear

quantile regression model of Koenker and Bassett (1978), which is extensively studied and applied in

the literature. It is a model for which semiparametric e¢ cient inference is unknown, beyond the special

case of pure-location model or the case of a single quantile T = f�0g; see Komunjer and Vuong (2010)
for the latter. As it turns out, standard e¢ ciency theory is not easily applicable to this model when

T includes an in�nite number of quantiles, whereas our methods provide relatively simple procedures.
This model is investigated in detail in Section 5. We note there that similar structures appear in

semiparametric models that are partially identi�ed, see Escanciano and Zhu (2012) and references

therein. �

We introduce our testing problem. We aim to �nd an asymptotically optimal procedure for testing

H0 : � = �0; (3)

against the local alternatives

Hn : �n = �0 + n
�1=2c�;

for some c� 2 Rpnf0g. The nuisance parameter �0 is unknown under both, the null and the alternative
hypotheses, and we assume that a consistent, but not necessarily e¢ cient, estimator b�n under the null
is available. For a more formal de�nition of the local alternatives considered see Appendix A. In the

main text we keep a simpler description for ease of exposition. Henceforth, to simplify the notation,

we drop the dependence of b�n on (Zi; x) and write b�n � b�n(Zi; x); and similarly for �0. Reciprocally,
when we want to emphasize the dependence on x we write �0(x) := (�0; �0(Zi; x)) 2 �x := �� ���x:

2.3 Weak Convergence

Under our setting in (1), and given a random sample fZigni=1 and the hypothesis of interest H0, it is
natural to consider the sample analog of the moments with estimated parameters, i.e.

R̂n(x) :=
1

n

nX
i=1

 (Zi; x; �0; b�n); (4)
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as a �su¢ cient�statistic for the testing problem. Tests can be based on continuous functionals of R̂n;

such as the classical Kolmogorov-Smirnov test statistic supx2�
���R̂n(x)���. See Bickel, Ritov and Stoker

(2006) for a recent proposal in a general semiparametric setting. As we show below, typically used

functionals are not optimal in our problem. In this paper, we propose optimal functionals.

The general discussion here is organized around a few �high-level� assumptions. More primitive

conditions are shown in the Appendix and in the examples below. Our �rst �high-level�assumption

requires the weak convergence of
p
nR̂n in a suitable Hilbert space. Speci�cally, the process R̂n is

viewed here as a random element taking values in L2(�), for a suitable probability measure �(�) on �.
For some discussion on the impact of �(�) on our theory see Remark 3 below.

Assumption W: Under the local alternatives Hn,

p
nR̂n =) R1 � R01 + c

0
�D; (5)

where D(�) := �@E [m(Z; �; �0(�))] =@� 2 L2(�) and R01 is a Gaussian process with zero mean and

covariance function

C(x; y) := E[m(Z; x; �0(x))m(Z; y; �0(y))]; (x; y) 2 �� �:

In Appendix A we provide relatively �simple�su¢ cient conditions on the model and data generating

process for Assumption W to hold. It is shown there how the in�uence function m(Z; x; �0) depends on

the moment  (Z; x; �0) and generally on the impact of estimation of nuisance parameters, see (27). The

uniform expansion in Appendix A is of independent interest. Related primitive conditions can be found

in the literature, see e.g. Chen and Fan (1999) and Song (2010) for semiparametric conditional moment

restrictions and Escanciano and Zhu (2012) for partially identi�ed semiparametric models. Functional

Central Limit Theorems (FCLT) in Hilbert spaces for independent observations can be found in Politis

and Romano (1994) and van der Vaart and Wellner (1996).

2.4 Limiting Problem and the FLRT

We aim to �nd the asymptotically optimal functional of R̂n for testing H0 vs Hn: Let P0 and P1 be the
probability measures in L2(�) associated to R01 and R01 + c

0
�D; respectively. For a general treatment

of probability measures of random elements in Hilbert spaces see Parthasarathy (1967). In terms of

the limiting random element R1; the testing problem can be written as

H0 : R1 � P0 vs H1 : R1 � P1:

To construct an optimal test, we need to introduce some further notation. Let K be the covariance

operator associated to R1 (cf. Assumption W), i.e.

K(h)(x) :=

Z
�
C(x; y)h(y)�(dy); for all h 2 L2(�): (6)

The operator K extends the notion of asymptotic covariance matrix (viewed as a linear operator) in

the �nite-dimensional case. Since K is a compact, linear and positive operator, it has a countable
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spectrum f�j ; 'jg1j=1; where f�jg1j=1 are real-valued, positive, with �j # 0, and f'jg1j=1 forms a
complete orthonormal basis for Im(K) such that K'j = �j'j ; for all j 2 N:

By the functional version of the Neyman-Pearson lemma, the optimal test is given by the Radon-

Nikodym derivative of P1 with respect to P0: To introduce this LR, let "j := �
�1=2
j hR1; 'ji, j 2 N;

be the so-called principal components of R1; and let �j := �
�1=2
j hD;'ji, j 2 N; be the standard-

ized Fourier coe¢ cients of D: Noting that f"jgkj=1 are iid standard normal under P0, and have mean
(c0��1; :::; c

0
��k) under P1, it seems intuitive to use the approximation, for large k;

dP1
dP0

(h) � exp

0@c0� kX
j=1

�
�1=2
j hh; 'ji �j �

1

2

kX
j=1

�
c0��j

�21A :

Indeed, this intuition is formalized in e.g. Skorohod (1974, Chapter 16, Theorem 2), who shows that

P1 is absolute continuous with respect to P0; provided the following condition holds

1X
j=1

��1j hDl; 'ji2 <1; for all l = 1; :::; p; (7)

where Dl denotes the lth component of D (cf. (5)). In that case, the functional LR is given by

dP1
dP0

(h) = exp

0@c0�L(h)� 12
1X
j=1

�
c0��j

�21A ; (8)

where L is the linear operator

L(h) :=
1X
j=1

��1j hh; 'ji hD;'ji ; h 2 D(L): (9)

As evidenced from (8), L(R1) is a su¢ cient statistic for our limiting testing problem. In terms of this

su¢ cient statistic, the problem can be equivalently characterized as the familiar H0 : L(R1) � N(0;�)

against H1 : L(R1) � N(�c� ;�); where � := V ar(L(R1)): The Neyman-Pearson lemma and some

standard testing arguments, see e.g. CHS, suggest that an optimal �-level test for testing H0 against

H1 is given by ��(R1); with

��(h) := 1
�
L(h)��1L(h) � �21��;p

�
;

where �2�;p denotes the � -quantile of the chi-squared distribution with p degrees of freedom: We de�ne

now the FLRT, which uses the �nite sample analog of R1 in the limiting optimal functional.

Definition 1 The FLRT is de�ned by ��n := ��(
p
nR̂n).

Notice that ��n involves a quadratic form in a linear combination of the sample principal components,

L(
p
nR̂n) =

1X
j=1

�j "̂nj ;
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where "̂nj := �
�1=2
j

Dp
nR̂n; 'j

E
is the sample analog of "j ; j 2 N: The main purpose of this paper is

to study the e¢ ciency properties of ��n and related tests.

As mentioned above, this functional LR approach has already been applied to several semipara-

metric models in econometrics and statistics. Sowell (1996) proposed a FLRT for testing parameter

instability in a GMM setting; see also Elliot and Müller (2009). Stute (1997), Stute, Thies and Zhu

(1998), Boning and Sowell (1999), Bischo¤ and Miller (2000) and Escanciano (2009) used this principle

to test the correct speci�cation of, possibly dynamic, regression models. Applications to conditional

distributions were given in Delgado and Stute (2008), and to tests for correct speci�cation of the co-

variance structure of a linear process in Delgado, Hidalgo and Velasco (2005). Akritas and Johnson

(1982) and Luschgy (1991), among others, investigated optimal tests in stationary and non-stationary

di¤usion processes, respectively. Recently, Watson and Müller (2008) construct a �nite-dimensional

approximation of a FLRT for testing low-frequency variability in persistent time series. Müller (2011)

considers applications to unit root testing, weak instruments and parameter instability, among many

others, while Song (2010) suggests applications to a general class of semiparametric conditional moment

models. None of the aforementioned papers, however, have shown the semiparametric e¢ ciency, in the

sense of CHS, of the resulting tests.

It is worth mentioning that in some applications the FLRT has a closed form, as a functional of
p
nR̂n; i.e. L is fully known, see e.g. Luschgy (1991) and Müller (2011) for examples. However,

in most regular problems such a closed form expression is in general not available, and estimation

(regularization) of the operator L; the drift D and the matrix � is often needed. We deal with the

implementation of feasible versions of the FLRT in Section 4. There, we show that a feasible test based

on a quadratic form of bLn = 1

n

nX
i=1

bs�(Zi);
for a suitable estimated score bs�(Zi); is asymptotically equivalent to ��n. Thus, for asymptotic e¢ ciency
purposes it su¢ ces to consider the infeasible test ��n for the time being.

2.5 Asymptotic Representation of the FLRT as a Score-Type Test

The objective of this section is to provide an asymptotic representation of the FLRT as a score-type

test. This result is instrumental for other results in the paper. In Section 3, it will be shown that the

resulting score coincides with the e¢ cient score for the corresponding semiparametric problem, so the

optimality of the FLRT follows. Later in Section 4, we will use the characterization of the score to

propose an estimate of it and to implement a feasible FLRT.

With this objective in mind, we introduce the singular value decomposition of K; see Kress

(1999). Henceforth, to simplify notation, when we evaluate moments at the true values, we re-

move the dependence on these values, e.g. m(Zi; x) � m(Zi; x; �0(x)): The covariance operator

K(h)(x) = E[hm(Z; �); him(Z; x)] can be written as K = T 0T , where T 0 and T are compact linear

operators de�ned, respectively, by

Th(z) := hm(z; �); hi z 2 Rd; h 2 L2(�)
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and

T 0a(x) := E[a(Z)m(Z; x)] x 2 �; a 2 L2(F ):

Also note that T 0 is the adjoint (dual) operator of T; that is, for all h 2 L2(�) and a 2 L2(F );

E[a(Z)Th(Z)] =


T 0a; h

�
: (10)

The abuse of notation in T 0 is motivated from the equivalence of transposition and adjoint operators

for matrices.

In addition to the sequence f�j ; 'jg1j=1, there exists a complete orthonormal basis for Im(T ) =
ker?(T 0), say f jg1j=1; satisfying, for all j 2 N; (cf. Kress, 1999, Theorem 15.16)

T'j = �
1=2
j  j and T 0 j = �

1=2
j 'j : (11)

For r > 0; we introduce the subspace of L2(�),

	r :=

8<:h 2 L2(�) such that khk2r :=
1X
j=1

��rj hh; 'ji2 <1

9=; ;

with the corresponding inner product hh; gir :=
P1
j=1 �

�r
j hh; 'ji hg; 'ji : It is well-known that 	1 is

the so-called Reproducing Kernel Hilbert space associated to K and that 	1 = Im(T 0) � Im(K). We

now introduce two assumptions that are needed for our representation.

Assumption D: The function D is such that D 2 	1:

As previously mentioned, Assumption D is equivalent to the absolute continuity of P1 with respect
to P0. Intuitively, this assumption requires D not to be too �large�, relative to R01; for continuity

to hold. Below, we show that this �contiguity�assumption is intimately related to the assumption of

�nite e¢ cient Fisher information, see Section 3.

De�ne the process with �known�parameters

Mn(x) :=
1

n

nX
i=1

m(Zi; x; �0): (12)

We require the asymptotic equivalence of L(
p
nR̂n) and L(

p
nMn): In view of Assumption W, this can

be understood as a continuity assumption of L(�) with respect to k�k.

Assumption C: Under Hn, L(R̂n) = L(Mn) + oP (n
�1=2):

There are at least two ways to prove the high-level Assumption C. Since the operator L is continuous in

	1 with the Reproducing Kernel Hilbert space norm k�k1 ; one possibility is to strengthen AssumptionW
so that




R̂n �Mn





1
= oP (n

�1=2): A second approach is to keep Assumption W but require continuity

of L with respect to k�k ; as assumed in e.g. Müller (2011). This is the case, for instance, if D 2 	2: A
su¢ cient condition for the latter is that Im(T ) is closed (see Lemma 3.4 in var der Vaart, 1991). This
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assumption imposes further smoothness on the model, as shown below. See also Chen, Chernozhukov,

Lee and Newey (2011) for related discussion.

Note that Assumption D is equivalent to the following random vector being well de�ned in L2(F );

s�(Zi) :=
1X
j=1

�
�1=2
j hD;'ji j(Zi): (13)

The score function s� will play a crucial role in our theory. De�ne the standardized sample mean

S�n :=
1p
n

nX
i=1

s�(Zi): (14)

Our next result proves the asymptotic equivalence of L(
p
nR̂n) and the sample mean S�n:

Theorem 1: Let Assumptions W, D and C hold. Then,

(i) L(
p
nR̂n) = S�n + oP (1), under Hn:

(ii) Moreover, s� satis�es T 0s� = D; and for any other s 2 L2(F ) satisfying T 0s = D; it holds that

s� = �ker?(T 0)s:

Remark 1: Theorem 1(i) proves the asymptotic equivalence of the FLRT with a score-type test. Its

proof only uses elementary considerations, but that does not vitiate its utility. In a model with no

nuisance parameters, the equivalence is also in �nite samples. For instance, it can be shown that in fully

parametric models with no nuisance parameters, the FLRT based on the standard empirical process

boils down to the classical Rao-Score test in �nite samples. In the general case, Theorem 1(ii) can be

viewed as a form of generalized information equality. It o¤ers an alternative way to compute the score

s� in (13) without explicitly using the spectrum. This is practically important, since expressions for

f�j ; 'j ;  jg1j=1 are only available for very special situations. Thus, Theorem 1(ii) o¤ers the following

algorithm for computing s�: (i) First, �nd a solution to the integral equation T 0s = D; then (ii)

compute the projection of s onto ker?(T 0): An immediate consequence of Theorem 1(ii) is that, among

all possible solutions s of T 0s = D; the one with minimum variance corresponds to s�: Note that the

existence of one solution of T 0s = D in L2(F ) implies Assumption D. Later we shall show that s�

is the so-called e¢ cient score, and hence, the previous algorithm provides a new method to compute

e¢ ciency bounds for regular estimation of �0; a result of independent interest. In all the examples we

have considered, solving T 0s = D was a trivial task, as the following example illustrates.

Example 2: Signi�cance in mean regression. Consider the linear semiparametric regression model

Y = �01 + �02X + �a(X) + "; E ["jX] = 0 almost surely (a.s.),

where Y and X are random variables, �0 = (�01; �02)0; a(X) is a known function, e.g. a(X) = X2; and

the conditional distribution of " given X is unknown: This semiparametric model can be characterized

by the in�nite number of moments (cf. Stute, 1997)

E[fY � �01 � �02X � �a(X)g1(X � x)] = 0 for all x 2 R: (15)
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In this example �0 is parametric and estimated by the Ordinary Least Squares (OLS) estimator b�n of
Y on ~Xi = (1; Xi)

0; and the interest is in testing H0 : � = 0 against Hn : �n = n�1=2c� . Stute (1997)

has shown the asymptotic uniform (in x 2 R) representation under Hn;

R̂n(x) =
1

n

nX
i=1

(Yi � b�1 � b�2Xi)1(Xi � x); (16)

=
1

n

nX
i=1

"i0q(Xi; x) + oP (n
�1=2);

where "i0 := Yi � �01 � �02Xi and q(Xi; x) := 1(Xi � x) � E[ ~X 0
i1(Xi � x)]E[ ~Xi ~X

0
i]
�1 ~Xi: Thus,

Assumption W holds under some mild moment assumptions, with m(Z; x; �0) = "i0q(Xi; x), D(x) =

E[a(Xi)q(Xi; x)] and � the probability measure of X. De�ne �2(X) := E
�
"2
��X� and Z := (Y;X)0:

The integral equation T 0s(x) = D(x), which is given here by

E["i0q(X;x)s(Z)] = E[q(X;x)a(X)];

is trivially solved by the score s(Zi) := ��2(Xi)"i0a(Xi): It is also easy to show that ker(T 0) =

spanf��2(Xi)"i0 ~X 0
ig. It then follows from our Theorem 1 that

L(R̂n) =
1

n

nX
i=1

"i0�
�2(Xi)a

�(Xi) + oP (n
�1=2);

where

a�(Xi) := a(Xi)� E[a(Xi)��2(Xi) ~X 0
i]E[�

�2(Xi) ~Xi ~X
0
i]
�1 ~Xi:

The resulting score s�(Zi) � �ker?(T 0)s = "i0�
�2(Xi)a�(Xi) is indeed the e¢ cient score, see e.g.

Chamberlain (1987). For further discussion on this example, see Section 5. �

3 On the E¢ ciency of the FLRT

We show in this section that the conclusion from the mean regression example holds more generally

in our semiparametric setting. That is, we show that the FLRT is an e¢ cient test in the class of

semiparametric models de�ned by (1): Speci�cally, we use the e¢ ciency concept of asymptotically

uniformly most powerful and invariant test of level �; in short AUMPI(�), de�ned formally in CHS

(Section 5). When p = 1; alternative de�nitions of e¢ ciency, which do not require invariance, are

typically used. For completeness, these and related de�nitions of e¢ ciency are reviewed in Appendix

A. For a thorough discussion see CHS. Let P := fP(�;�) : � 2 ��; � 2 ��g be the semiparametric model
satisfying (1). Note that indexing the semiparametric model by (�; �) does not entail a loss of generality,

see e.g. Bickel, Ritov and Stoker (2006) for a similar approach. De�ne the marginal class with � �xed

at �0 by P2 := fP(�0;�) : � 2 ��g; and let _P2 be the tangent space of P2 at P(�0;�0); i.e. the closed
linear span of scores passing through the semiparametric model P � P(�0;�0). Given the score _̀� in the

marginal family P1 = fP(�;�0) : � 2 ��g; we de�ne the e¢ cient score _̀�� as the orthogonal projection of
the score _̀� onto the orthocomplement of _P2; i.e., _̀�� := _̀

� �� _P2
_̀
� : Let B� := V ar( _̀��) be the e¢ cient
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information, and assume B� is positive de�nite and �nite. Write �n(�0) := (nB�)
�1=2Pn

i=1
_̀�
�(Zi; �0):

An e¢ cient test statistic Tn satis�es Tn = �n(�0) + oP (1); for every �0: CHS (Corollary 3) show that

the test ��n := 1
�
T 0nTn � �21��;p

�
is AUMPI(�).

As an example, we consider the fully parametric case. Let _̀� denote the score of P2; which spans the
�nite-dimensional tangent space _P2: Then, � _P2

_̀
� = E[ _̀� _̀

0
�]E[

_̀
�
_̀0
�]
�1 _̀

�; which can be easily estimated

by the sample analog using b�n: Neyman (1959) proposed the e¢ cient test ��n with Tn = �̂n(b�n); where �̂n
is de�ned as �n but with the Fisher information and co-information estimated by their sample analog.

This is the so-called C(�)�test of Neyman (1959). He showed that Tn = �n(�0) + oP (1); for every �0;

thereby proving the optimality of the test.4

The situation in the semiparametric case is more complicated, as there is no general expression for

� _P2
_̀
� (here _P2 is in�nite-dimensional). In this paper we overcome this limitation by using a functional

LR approach. In the general case, the FLRT will be AUMPI(�) if we prove that, for every �0,

L(R̂n) =
1

n

nX
i=1

_̀�
�(Zi; �0) + oP (n

�1=2):

In view of Theorem 1, this is the case if and only if s� = _̀�
� a.s: This is proved in the next theorem. De�ne

ker0(T 0) := fh 2 ker(T 0) : E[h(Z)] = 0g: Standard regularity conditions that imply Local Asymptotic
Normality (LAN), among other things, and which are required for the de�nition of e¢ ciency are

gathered in Appendix A.

Theorem 2: Let Assumptions C in the text and A1 and A2 in Appendix A hold. Then,

(i) _P2 = ker0(T 0).

(ii) s� = _̀�
� a.s., and hence, the FLRT is AUMPI(�).

Theorem 2(i) is of independent interest. This result characterizes in simple mathematical terms

the tangent space of nuisance parameters in a general class of semiparametric models de�ned by mo-

ment restrictions. It extends related results by Bickel et al. (1993, Section 6.2) to a larger class of

semiparametric models. Theorem 2(ii) shows the semiparametric e¢ ciency of the FLRT:

For completeness, we discuss an alternative sense of e¢ ciency of the FLRT. Müller (2011) has

recently shown that the FLRT is optimal in a class of tests that control asymptotic size for all data

generating processes for which the underlying random element,
p
nR̂n; has the corresponding limiting

distribution in Assumption W. We particularize Müller�s results to our framework. He de�nes the class

of statistical models M as the class of models for which Assumption W holds. Then, he de�nes the

class of tests C as those tests that have asymptotic level � 2 (0; 1) for all models in M. That is, the

class of models is de�ned through a weak convergence requirement. Then, Müller�s main �nding is as

follows. Assuming that the mapping L in (9) is continuous with respect to k�k ; the FLRT is the most
4Neyman (1959) only considered the case p = 1. His results were extended to p > 1 by Bühler and Puri (1966). For

the relationship between the C(�)-test and our FLRT in fully parametric models see Akritas (1988).
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e¢ cient test in the class C; and for any other test in C with higher asymptotic power for any model
in M; there exits a model in M for which the test has asymptotic null rejection probability larger

than the nominal level �: Thus, this new concept of e¢ ciency provides a sense of robustness of the

FLRT. Our paper complements Müller�s e¢ ciency results by proving that, in regular semiparametric

problems, the FLRT is also semiparametrically e¢ cient in the �classical�sense of CHS.

We also relate our results to the recent literature in econometrics proving that e¢ cient estimation of

semiparametric models can be achieved by GMM estimators employing an in�nite number of moments,

see e.g. Ai and Chen (2003), Newey (2004) and Carrasco and Florens (2000, 2011). We establish here

an important connection between the GMM literature and our LR approach. This connection is

mutually bene�cial, both in theory and implementation of the procedures. We modify Carrasco and

Florens (2000, 2011) and Newey (2004) to properly account for the presence of estimated, possibly

in�nite-dimensional, nuisance parameters and suggest a candidate for an optimal GMM estimator as

the minimizer of the following objective function


K�1=2
n M̂n(�; �)




2 ;
where K�1=2

n is some consistent estimator of the operator K�1=2; M̂n is de�ned as Mn but with b�n
replacing �0; and where we emphasize the dependence of M̂n on �; see (12). Implementations vary

according to the estimator (regularization) K�1=2
n used. Note that the estimator should use M̂n rather

than the original R̂n for our arguments below to hold. Under some regularity conditions that allow us

to replace K�1=2
n by K�1=2; see Section 4.2, it can be shown that the feasible optimal GMM will be

asymptotically equivalent to the minimizer of

Qn(�) :=
1

2

1X
j=1

��1j

D
M̂n(�; �); 'j

E2
:

The GMM testing theory is well known in the standard setting �we can construct Wald, LM or LR

tests based on Qn(�); see Newey and West (1987). Similar ideas apply here. If we consider an LM

approach and assume smoothness in � for simplicity, the LM test for H0 involves a quadratic form in

p
n
@Qn(�0)

@�
=

1X
j=1

��1j

Dp
nM̂n(�); 'j

E*@M̂n(�)
@�

; 'j

+
;

which resembles the asymptotic expression for L(
p
nR̂n): Hence, the LM test based on the modi�ed

GMM objective function can be interpreted as a LR test in our semiparametric context. This con-

nection has important theoretical implications. It implies that extensions of GMM-based tests will be

semiparametric e¢ cient in our general semiparametric context, and more generally will share Müller�s

(2011) e¢ ciency concept even in non-regular settings.

4 Implementation of the Feasible FLRT

We have investigated so far the e¢ ciency properties of the infeasible FLRT. The test is not feasible

because �; D and the operator L are in general unknown. The implementation of a feasible FLRT
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critically depends on whether or not the spectrum of K is known. Here, we suggest di¤erent imple-

mentations for these two exhaustive alternatives.

4.1 Known Spectrum

If the spectrum f�j ; 'jg is known, then L and � can be estimated, respectively, by

Lk(h) =
kX
j=1

��1j hh; 'ji
D
D̂; 'j

E
(17)

and b�k = kX
j=1

��1j

D
D̂; 'j

ED
D̂; 'j

E0
;

for a suitable consistent estimate D̂ of D and k � kn � 1; with kn !1 as n!1: The feasible FLRT
considered here replaces L(R̂n) by Lk(R̂n) and � by b�k: When the moment function is smooth in � a
natural estimate for D is

D̂(x) =
1

n

nX
i=1

�@ bmi(x)

@�
:

If moments are not smooth in �; an estimator for D̂ may be constructed using our Theorem 1 as

D̂ = T̂ 0ŝ(x), for a suitable estimate T̂ 0 of T 0 and score estimate ŝ (not necessarily the e¢ cient one). A

related idea is used in the quantile regression example below.

The assumption of known spectrum is justi�ed, not because it holds generally, but because often

general transformations of R̂n exist with known spectrum representations; see the so-called Khmaladze

or martingale transformations (cf. Khmaladze, 1981). There is an extensive literature on this trans-

formation in econometrics and statistics. Khmaladze (1981) �rst considered such transformations for

classical parametric problems, but recently Song (2010) has substantially extended it to a general class

of semiparametric models, thereby widening the scope of applications of the feasible versions that we

discuss here. When Khmaladze�s transformation is used, it remains to justify that our e¢ ciency and

asymptotic results do not change, and we provide some insights showing that this is indeed the case.

As it turns out, under suitable conditions provided below, the feasible FLRT behaves asymptotically

as the infeasible test, i.e.

Lk(R̂n) = L(Mn) + oP (n
�1=2) and b�k = �+ oP (1): (18)

The following assumption restricts the rate of divergence of kn: De�ne the norm k�kr;k as khk
2
r;k :=Pk

j=1 �
�r
j hh; 'ji2.

Assumption R: (i) kn !1; (ii) Under Hn;



R̂n �Mn





1;k
= oP (n

�1=2) and



D̂ �D




1;k
= oP (k

�1=2
n ):

We will provide speci�c restrictions that R(ii) imposes for a regression example in Section 5. As-

sumption R(ii) can be replaced by



R̂n �Mn




 = oP (n
�1=2);




D̂ �D



2;k
= oP (1) and kDk2 < 1: As

mentioned earlier, the latter assumption implies the continuity of L with respect to k�k ; and it can be
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understood in terms of further smoothness in the sense of a fast decay of the Fourier coe¢ cients for

the score s�. To see this, note that

1X
j=1

��2j hDl; 'ji2 =
1X
j=1

��1j (E[s�l (Z) j(Z)])
2 :

In fact, kDk2 <1 is equivalent to s�l 2 Im(T ) for all l = 1; :::; p: If there are no nuisance parameters,
then Assumption R can be simpli�ed to kn !1 and




D̂ �D



1;k
= oP (1).

Proposition 1: Let Assumptions D, W and R hold. Then, under Hn (18) holds.

A corollary of Proposition 1 is that the feasible FLRT is an AUMPI(�) test. Proposition 1 is applicable

to cases where the asymptotic limit distribution R̂n has a known spectrum. We discuss now a generic

approach that leads to that case, and justify the e¢ ciency in this generic example. For simplicity of

the exposition, we restrict our analysis here to conditional moment restrictions of the form

E [�(Z; �; �0)jX] = 0 a.s.

where X is a subvector of Z of dimension dx. A standard way to characterize this conditional moment

model is through the moment restrictions

E[�(Z; �; �0)1(X � x)] = 0 for all x 2 Rdx :

However, as proved in Appendix A, sample feasible versions of the moments are generally not asymptotic

distribution-free, leading to the so-called Durbin problem (see Koenker and Xiao, 2002). An approach

that has been suggested in the literature to overcome this problem is to consider moments

E[�(Z; �; �0)M1(X � x)] = 0 for all x 2 Rdx ;

where M is a linear operator satisfying certain properties, speci�cally, it is an isometry projecting

onto the orthocomplement of the tangent space of nuisance parameters, see Song (2010) for details. It

can be shown that our results applied to the moment function  (Zi; x; �; �0) = �(Z; �; �0)M1(X � x)

deliver a semiparametric e¢ cient test. The set of solutions of T 0s = D does not change by the presence

of M: Note that the orthogonality of M with the tangent space of nuisance parameters implies that

m �  : See Song (2010) for a formal proof. By the same orthogonality, ker(T 0) does not change by

the presence of the transformationM: Thus, from Theorem 1 the resulting score is the same with or

without the transformation, and by Theorem 2 this is the e¢ cient score.

4.2 Unknown Spectrum

In most applications the spectrum f�j ; 'jg is, however, unknown, and for most models distribution-free
transformations, such as Khmaladze�s transformation, are not available. One possible solution to this

problem, as suggested by Carrasco and Florens (2000), is to estimate nonparametrically the spectrum.

Escanciano (2009) discussed this approach for regression model checks. Here, we propose an alternative
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method based on the characterization of the e¢ cient score in Theorem 1(ii) and on well-known results

from the theory of linear inverse problems, see Carrasco, Florens and Renault (2006) for a review of

this theory. Our estimator for the e¢ cient score seems to be new in the literature.

Theorem 1 shows that

L(R̂n) =
1

n

nX
i=1

s�(Zi) + oP (n
�1=2);

where s�(Zi) is characterized as the solution of T 0s = D with minimum norm, i.e. a Moore-Penrose

generalized inverse of T 0. The idea is simple, we write the equation as TT 0s = TD; and solve the

sample analog of this equation using estimates for T; T 0 and D to obtain a nonparametric estimate of

s�; say bs�: Then, we propose a feasible FLRT replacing L(R̂n) by
bLn = 1

n

nX
i=1

bs�(Zi): (19)

Since the inverse problem TT 0s = TD is in general ill-posed, we need to apply some regularization

technique. We choose Tikhonov regularization, as it is simple to apply. This method is based on solving

the perturbed equation

(�nI + TT
0)s��n = TD;

where s��n is implicitly de�ned, �n is a regularization (tuning) parameter, such that �n # 0 at a suitable
rate, and I is the identity operator. Note that such solution s��n always exists under Assumption D,

and it is given by

s��n(Z) :=
1X
j=1

p
�j

�j + �n
hD;'ji j(Z):

In practice, T and T 0 are unknown and estimated by

T̂ h(z) :=
1

n

nX
j=1

bm(z; xj)h(xj) z 2 Rd; h 2 L2(�)

and

T̂ 0s(x) :=
1

n

nX
i=1

bmi(x)s(Zi) x 2 �; s 2 L2(F );

where fxjgnj=1 is a random sample from �. For instance, in many applications, such as conditional

moment restrictions, � can be chosen as the probability measure of X; so we can take fxjgnj=1 �
fXjgnj=1: Note that there is some abuse of notation here because T̂ 0 is not the adjoint of T̂ ; but this
notation is justi�ed asymptotically. Then, simple algebraic arguments show that the �nite sample

version (�nI + T̂ T̂ 0)bs� = T̂ D̂ has a closed form solution given by

bs�(z) := 1

n�n

nX
j=1

~D(xj)bm(z; xj); (20)

where

~D(xj) := D̂(xj)�
1

n

nX
h=1

ph bmh(xj)
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and the vector p = (p1; :::; pn)0 satis�es the system of linear equations (�nI + A)p = b; where A is an

n� n matrix with principal element

aj;l =
1

n2

nX
h=1

bmj(xh)bml(xh)

and b = (b1; :::; bn)0; with

bj =
1

n

nX
h=1

D̂(xh)bmj(xh):

The estimated score bs�(z) is used in (19) and in estimating the Fisher information matrix by
b��n := 1

n

nX
h=1

bs�(Zi) (bs�(Zi))0 :
Finally, the asymptotic ��th level feasible FLRT is given by

�̂�n := 1(nbL0nb��1�n bLn � �21��;p):

The test only requires estimates fbm(Zi; xj); D̂(xj)gni;j=1; and it is extremely easy to implement; see
Appendix C for an algorithm to compute the test statistic. We show below that �̂�n is asymptotically

equivalent to the infeasible ��n; i.e.

bLn = L(Mn) + oP (n
�1=2); b��n = �+ oP (1):

The following assumption plays the role of Assumption R in the current context. For a bounded

linear operator de�ne (with some abuse of notation) kBkb := supkhka�1 kBhkb ; where the norms k�ka
and k�kb are the norms in the domain and range of de�nition of B; respectively. De�ne the operator
T̂ � : L2(F )! L2(�) by

T̂ �a :=

Z
a(z)bm(z; x)F (dz):

Assumption RE: (i) n�5=2n ! 1 and �n ! 0 as n ! 1; (ii)



D̂ � T̂ 0s�


 = OP (n

�1=2) and


T̂ � � T 0



2;P

= OP (n
�1=2); and (iii) D 2 	2:

The conditions in RE(ii) can be checked using our results in the Appendix. When the estimator b�n isp
n-consistent and the moments are smooth in �0; RE(ii) follows from standard Taylor arguments: A

su¢ cient condition for



T̂ � � T 0


 = OP (n

�1=2) isZ Z
jbm(z; x)�m(z; x)j2 F (dz)�(dx) = OP (n

�1);

which is easy to check in many applications. Needless to say that for a given example, our assumptions

can be relaxed by exploiting the speci�cs of the model.
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Theorem 3: Let the assumptions of Theorem 2 and Assumption RE hold. Then, the feasible ��level
FLRT based on (19) with bs� as in (20) is AUMPI(�).
Remark 2: If P

�p
n(D̂ � T̂ 0s�) 2 Im(T 0)

�
! 1 as n!1 then Assumption RE(i) can be relaxed to

n�2n !1. Note that Im(T 0) is dense in L2(�); which suggests that the previous condition is not strong.
Similar simpli�cations can be obtained if D̂ = T̂ 0ŝ for some, possibly estimated, score ŝ satisfying some

regularity conditions.

5 Applications

5.1 Linear Quantile Regression

We implement the e¢ cient feasible FLRT for the quantile regression example. We modify the original

notation to account for the presence of additional in�nite-dimensional nuisance parameters in the

limiting distribution, so the model is de�ned by the moment restrictions

E[�i(�)1(Xi � w)] = 0 for all x = (�; w0)0 2 � := T � Rdx ;

where �i(�) = 1(Yi � �0X1i+
00(�)X2i)��: De�ne �0(�) := (�00; 
00(�))0 and �0(�) := (�00(�); f�� )0; where
fi� is the conditional density of Yi given Xi; evaluated at X 0

i�0(�). A natural estimator for 
0(�) is

the QR estimator, initially proposed by Koenker and Basset (1978), and de�ned as any solution b
n(�)
minimizing


 7�!
nX
i=1

��
�
Yi � �00X1i � 
0X2i

�
;

where �� (u) = u (� � 1 fu � 0g) is the so-called �check�function.
Standard e¢ ciency theory is di¢ cult to apply to this model. In contrast, our results can be easily ap-

plied. Theorem 1 suggests that the e¢ cient score solves T 0s(x) = D; and among all solutions is the one

with minimum variance. Finding a solution of the integral equation T 0s(x) = D is relatively straightfor-

ward in this example �namely, sf (Z) := X1 _f (Y jX) =f (Y jX) ; where _f (yjx) := @f (yjX = x) =@y;

and f (yjX = x) is the conditional density of Yi given Xi: However, computing the projection onto

the orthocomplement of the tangent space, �ker?(T 0)sf ; seems to be a rather complicated task. This

di¢ culty does not stop us from implementing a feasible FLRT as suggested in the previous section.

Hence, we proceed to estimate the e¢ cient score in (20). To that end, we need consistent estimates

for m and D: These are given by bmi(x) = b�i(�)bq(Xi; x)
and

D̂(x) = � 1
n

nX
i=1

X1if̂i� bq(Xi; x);
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where b�i(�) = 1(Yi � X 0
i
b�0(�))� �; b�0(�) := (�0; b
n(�)); bq(Xi; x) := 1(Xi � w)�An(x)B�1n (�)X2if̂i� ;

An(x) :=
1

n

nX
i=1

X2if̂i�1(Xi � w); (21)

Bn(�) :=
1

n

nX
i=1

X2iX
0
2if̂

2
i� (22)

and f̂i� is a nonparametric estimator for fi� : We follow Escanciano and Goh (2012), and construct an

estimator for this nonparametric nuisance parameter as follows. Let An � f�jgnj=1 be a random sample
from a uniform distribution in T ; independent of the original sample Zn � fZigni=1: The proposed
estimator for fi� is f̂i� := f̂

�
X 0
i
b�0(�)���Xi� ; where

f̂ (yjXi) � f̂
�
yjXi; b�0� := 1

nh

nX
j=1

K

 
y �X 0

i
b�0(�j)
h

!
; (23)

where h > 0 is a scalar smoothing parameter and K(�) is a smoothing kernel satisfying some conditions
below. See Escanciano and Goh (2012) for motivation on the nonparametric estimate f̂i� . With this

estimate, we then calculate the matrix M with entries fbm(Zi; xj)gni;j=1; and the n� p matrix D with

entries fD̂(xj)gnj=1; and apply the algorithm of Appendix C to compute the test.

For a �xed � and �j in T ; let g(�;�j)(u; v) be the density of (X 0�0(�); X 0�0(�j)) evaluated at (u; v);

and let h(�;�j)(z; u; v) be the conditional density of Z given (X 0�0(�) = u;X 0�0(�j) = v): De�ne the

functions

sg(�;�j)(u) :=
@g(�;�j)(u; v)=@v

���
v=u

g(�;�j)(u; u)
and sh(�;�j)(z; u) :=

@h(�;�j)(z; u; v)=@v
���
v=u

g(�;�j)(u; u)
:

Then, primitive conditions that are su¢ cient for our high-level assumptions in the quantile regression

example are given as follows. Let X be the support of X; and de�ne XQ := fx0�0(�) : x 2 X ; � 2 �g:

Assumption E1: (i) fZigni=1 is a sequence of iid d-dimensional random vectors; (ii) the conditional

densities
�
f ( �jx) : x 2 Rdx

	
are uniformly bounded, from above and below (from zero) on XQ, with

uniformly bounded derivative with respect to y; and such that E[s2f (Z)] < 1; (iii) for each y 2 XQ;
the density f (yjx) is twice continuously di¤erentiable in x, with uniformly bounded derivatives; (iv)

E [XX 0] is nonsingular and �nite, and E
h
jX2j4

i
< 1; (v) for each �xed z; � and �j in T ; u 2 R

and w 2 Rdx ; the functions g(�;�j)(u; v) and h(�;�j)(z; u; v) are twice continuously di¤erentiable in v

at u, with uniformly (in �; �j ; u and z) bounded derivatives, E
����sg(�;�j)(X 0�0(�))X2

���2� < 1 and

E

����sh(�;�j)(Z;X 0�0(�))X2

���2� <1.
Assumption E2: For all � 2 T ; �0(�) belongs to the interior of �� � Rdx, with �� compact.

Assumption E3: (a) The kernel function K (t) : R ! R is symmetric, bounded, three times con-

tinuously di¤erentiable and satis�es the following conditions:
R
K (t) dt = 1,

R ��t2K (t)�� dt < 1,
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��@(j)K(t)=@tj�� � C and for some v > 1,
��@(j)K(t)=@tj�� � C jtj�v for jtj > Lj ; 0 < Lj < 1, for

j = 1; 2; (b) the possibly data dependent bandwidth h satis�es P (an � h � bn) ! 1 as n ! 1, for
deterministic sequences of positive numbers an and bn such that bn ! 0; b4nn! 0 and a2nn= log n!1.

Most of these assumptions are standard in the literature of quantile regression. Assumption E1 implies

that a solution of T 0s(x) = D is well-de�ned, so Assumption D holds: Our next result shows the

optimality of the feasible FLRT applied to this example.

Theorem 4: Suppose that Assumptions E1-E3, RE(i) and RE(iii) hold. Then, the ��level feasible
FLRT in (19) with bs� as in (20) is AUMPI(�) for the quantile regression example.
5.2 Signi�cance in Mean Regression

We provide here further details on the mean regression example. Primitive conditions for our re-

sults to hold in this example can be easily found. For instance, Assumption D holds if and only if

E[��2(X)a2(X)] < 1: Stute (1997) proposed a FLRT for testing the signi�cance of additional vari-
ables in homoscedastic linear-in-parameters regressions. In this special case, �2(X) � �2 and our

previous computations yield the e¢ cient score

s�(Zi; �0) := ��2"i0fa(Xi)� E[a(Xi) ~X 0
i]E[

~Xi ~X
0
i]
�1 ~Xig:

Stute (1997) proposed a FLRT approximation using certain estimates f�̂j ; '̂jg of f�j ; 'jg and trun-
cating the operator L in (9). However, notice that in this example s� is known, up the parameters

�0 and �2; which suggests that simpler than Stute�s (1997) FLRT e¢ cient feasible tests exist. Indeed,

the classical t-test is e¢ cient, in a semiparametric sense, and it does not require spectrum estimates:

Hence, in the homoscedastic case there is no need to regularize the problem by introducing tuning

parameters, such as the number of principal components k:

Returning to the general conditionally heteroskedastic case, our results imply that the tests proposed

in Stute, Thies and Zhu (1998) and Escanciano (2009) are approximately e¢ cient. They are not fully

e¢ cient because the number of components used (the number of summands in L) was �xed in these

applications. Moreover, it is not clear how estimation e¤ects of f�̂j ; '̂jg can be justi�ed when k !1:
Our results of Section 4 suggest two alternative ways to implement feasible e¢ cient inference in this

example. Firstly, we can use Khmaladze�s transformation, as proposed by Stute, Thies and Zhu (1998),

and the results of Section 4.1. The limiting Gaussian process after the transformation (including the

integral transformation) is a standard Brownian motion, whose spectrum is known and given by

�j =
1

(j � 0:5)2�2 'j(x) =
p
2 sin ((j � 0:5)�x) ;

where x 2 [0; 1]: Su¢ cient conditions for Assumption W are provided in Stute, Thies and Zhu (1998).

Some simple algebra shows that


R̂n �Mn





1;k
= Op(n

�1=2k1=2(b�n � �0)) and



D̂ �D




1;k
= OP (n

�1=2):
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Hence, a su¢ cient condition for Assumption R in Section 4.1 is nk�1n !1.
Secondly, we could use the results of Section 4.2 and construct a feasible test based on a nonpara-

metric estimator of the e¢ cient score. The inputs for the feasible test are

bmi(x) = b"i0bq(Xi; x)
and

D̂(x) =
1

n

nX
i=1

a(Xi)bq(Xi; x);
where b"i0 = Yi � b�0n ~Xi and bq(Xi; x) := 1(Xi � x) �

�Pn
i=1

~X 0
i1(Xi � x)

��Pn
i=1

~Xi ~X
0
i

��1
~Xi. This

second approach does not require Khmaladze�s transformation and it is simpler to implement. The

feasible test rejects for large absolute values of

1p
n

nX
i=1

b"i0bq�(Xi);
where bq�(Xi) := 1

n�n

nX
j=1

~D(Xj)bq(Xi; Xj)
and ~D is given after (20). Note that fbq(Xi; Xj)gni=1 are simply the residuals from an OLS projection

of f1(Xi � Xj)gni=1 on f ~Xigni=1; so they can be easily computed with standard statistical packages.
A more traditional approach to e¢ cient inference in this model is to estimate nonparametrically

�2(Xi) and to plug in this estimate in s�(Zi); as suggested by Robinson (1988). The �nite sample

comparison of these alternative e¢ cient tests will be investigate in future research.

This example also serves to illustrate an important point: our results on e¢ ciency are invariant to

equivalent parametrizations of the model as an in�nite number of moment restrictions, as the following

remark shows.

Remark 3: All our results go through in the previous example if we replace the indicator function

in q(Xi; x) by other comprehensively revealing class of functions. See Bierens and Ploberger (1997)

and Stinchcombe and White (1998) for examples of such classes. For instance, we could use the

class fexp(x�(X)) : x 2 � � Rg; where � is an interval containing zero, and � is a one-to-one bounded
mapping, see Bierens and Ploberger (1997). It can be shown that the solution s(Xi) := ��2(Xi)"i0a(Xi)

does not depend on the class used. It is also straightforward to prove that ��2(Xi)"i0 ~X 0
i 2 ker(T 0): In

fact, it can be shown that for any comprehensively revealing class ker(T 0) = f��2(Xi)"i0 ~X 0
ig: To see

this, by Lemma 3.4 in Newey (1990) it su¢ ces to consider scores of the form ��2(Xi)"i0b(Xi); for some

function b(�): First, consider the case where b(Xi) is orthogonal to ~Xi. In that case,

E[fexp(x�(Xi))� E[ ~X 0
i exp(x�(Xi))]E[

~Xi ~X
0
i]
�1 ~Xigb(Xi)] � 0

is equivalent to

E[exp(x�(Xi))b(X)] � 0;

22



which in turn, implies that b(X) = 0 a.s. Since any function can be decomposed as b(X) = c0+ c1X +

c2b
?(X); where b?(Xi) is orthogonal to ~Xi; we conclude that ker(T 0) = f��2(Xi)"i0 ~X 0

ig: Note that the
measure � plays no role in this argument.

5.3 Further Examples

There are many examples for which standard e¢ ciency theory can be hard to apply, but for which

our results are directly applicable. Newey (2004) discussed two such examples: censored regression

and transformation models. Further examples include parametric copulas, semiparametric models with

nonparametric generated regressors, or partially identi�ed models, among many others. Here we discuss

in more detail the general class of semiparametric partially identi�ed models investigated in Escanciano

and Zhu (2012); see also Arellano, Hansen and Sentana (2011) for parametric moments. E¢ ciency

within a class of GMM estimates has been discussed in Arellano et al. (2011) for the parametric setting,

but in the semiparametric setting this issue remains completely unexplored. Our results provide here

the �rst feasible optimal tests in both the semiparametric and parametric frameworks. The structure of

the problem is similar to the quantile regression example. The model satis�es the moment restrictions

E[�(Z; x; �0(Z; x))] = 0 for all x 2 �;

where �0(Z; x) contains parametric, say �0(x); and possibly nonparametric components �0(Z; x). The

model is not identi�ed because x or a subvector of it is not identi�ed. The model is still partially

identi�ed in the sense that for each x 2 � there is a unique solution �0(Z; x) of the moment restrictions.
Suppose the parameter of interest is �0 = �0(x0) for a given x0 2 �; as in Arellano et al. (2011). Then,
this model �ts our setting if we de�ne

 (Z; x; �; �0(Z; x)) =

(
�(Z; x0; �; �0(Z; x0)) if x = x0

�(Z; x; �0(Z; x)) if x 6= x0:
(24)

A complete analysis of this generic class of examples is beyond the scope of this paper, and it is deferred

to future research. An interesting application within this class of models is considered in Altonji, Elder

and Taber (2005), who study the e¤ect of attending a Catholic school on educational attainment.

6 Final Remarks

In this paper, we have investigated the e¢ ciency, in a classical semiparametric sense, and implementa-

tion of the FLRT in a general class of semiparametric models. We have shown that under quite general

conditions, the FLRT is asymptotically equivalent to a semiparametric C(�)�test. We have suggested
a general algorithm for computing the associated score function in terms of certain covariance operator

and shift function resulting under local alternatives. The semiparametric e¢ ciency of the FLRT has

been established by showing that the score function is the e¢ cient score associated to the model. We

have proposed and justi�ed feasible versions of the FLRT when the spectrum is known and when is

unknown. Finally, an application to a semiparametric quantile regression model has highlighted the
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bene�ts of our approach. Our investigation complements Müller�s (2011) optimality results, and shows

that the functional Neyman-Pearson approach advocated by Grenander (1950) can lead to semipara-

metric e¢ cient inference. In sum, this paper provides the �rst generally applicable approach to e¢ cient

testing parametric restrictions in regular semiparametric models.

Although the main focus of the paper has been on e¢ cient tests, our results have important impli-

cations for e¢ cient estimation. Our results show that the semiparametric e¢ ciency bound of regular

estimators of �0 is � = kDk1 ; and we have provided consistent estimators for this bound. Similarly, a
simple one-step e¢ cient estimator for �0 can be constructed as follows,

b�n = b�0 � b��1�n 1n
nX
i=1

bs�(Zi);
where b�0 is an initial pn�consistent estimator of �0 that is also used in the computation of b��n andbs�: After our results, the e¢ ciency and asymptotic distribution theory for b�n can be easily obtained
combining our methods here with those well established in the literature, see Lecam (1956). Formalizing

these are related estimation results is a priority in our research agenda. E¢ cient estimation can be

also achieved by GMM estimators, along the lines of Carrasco and Florens (2000, 2011) and Newey

(2004). The results of this paper can be useful to extend existing GMM theory to our semiparametric

setting. Similarly, allowing for simultaneous estimation of parametric and nonparametric components,

as in Ai and Chen (2003) or Chen and Pouzo (2012), should be important.

There are also other open questions that remain for future research. We have not addressed the

issue of �bandwidth� choice. Note that in our setting this is a very complicated matter, since our

problem is one of testing, and a general theory of bandwidth choice for testing is not available, even in

much simpler settings than ours. Developing this theory is beyond the scope of this paper. It seems

reasonable to �rst obtain such theory for the estimation problem, for which related results are available

for comparison. Monte Carlo experiments will be carried out to evaluate the �nite sample performance

of the proposed tests and estimators.

Many applications involve time series data, so it would be important to allow for dependence. The

main di¢ culty in extending our results to time series is the lack of an e¢ ciency theory in the general

semiparametric setting considered here. For speci�c models and dependence structures, for instance,

Markov processes, e¢ ciency results are available and our results can be straightforwardly extended; see

Carrasco and Florens (2011) for important results in this direction. See also Hallin and Werker (2003)

for a general theory of e¢ ciency allowing for dependent data. We have applied the FLRT to �nite-

dimensional parameters, but it could be also applied to in�nite-dimensional parameters. It is unknown

whether or not the FLRT delivers in this case optimal inference. This extension would have important

applications in partially identi�ed models and quantile regression models, among many others.
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7 Appendix

7.1 Appendix A

7.1.1 Su¢ cient conditions for Assumption W

In this section, we establish the weak convergence of R̂n in (4) as a random element in L2(�): The

function space �� is endowed with a pseudo-metric k�k� ; which is a sup-norm with respect to x; and a

pseudo-metric with respect to Z: An example is k�k� = supz2Z;x2� j�(z; x)j : De�ne a �-enlargement of
the parameter sets ��(�) := f� 2 �� : j� � �0j � �g and ��(�) :=

n
� 2 �� : k� � �0k� � �

o
for � > 0.

De�ne R(x; �; �) := E [ (Z; x; �; �)] and

Rn(x; �; �) :=
1

n

nX
i=1

 (Zi; x; �; �):

We �rst introduce the de�nition of pathwise functional derivative to deal with the estimation e¤ects

of b�n. For each (x; �; �) 2 � � �, we say that R(x; �; �) is pathwise di¤erentiable at � 2 �� in the
direction [� � �] if f� + � (� � �) : � 2 [0; 1]g � �� and

lim
�!0

R(x; �; � + � (� � �))�R(x; �; �)
�

exists;

the derivative is denoted as V� (x; �; �) [� � �] : For the weak convergence we need the following as-
sumptions. Henceforth, C is a generic constant.

Assumption A1: Suppose that:

(i) (Smoothness in �) for each x 2 �, the pathwise derivative V� (x; �0; �0) [� � �0] of R(x; �0; �)
at � = �0 exists in all directions [� � �0] 2 ��; and for all (x; �) 2 ����(�n) with a positive sequence
�n ! 0, it holds that

sup
x2�

jR(x; �0; �)�R(x; �0; �0)� V� (x; �0; �0) [� � �0]j � C k� � �0k2� : (25)

(ii) P (b� 2 ��)! 1, and kb� � �0k� = oP
�
n�1=4

�
:

(iii) (Stochastic Equicontinuity) for all sequences of positive numbers �n ! 0;

sup
(x;�)2����(�n)

jRn(x; �0; �)�R(x; �0; �)�Rn(x; �0; �0) +R(x; �0; �0)j = oP

�
n�1=2

�
: (26)

(iv)
p
nV� (x; �0; �0) [b� � �0] admits an asymptotic expansion (uniformly in x):

p
nV� (x; �0; �0) [b� � �0] = 1p

n

Pn
i=1� (Zi; x; �0; �0) + oP (1) :

Assumptions A1(i)-(iv) are uniform versions (in x) of related assumptions in Chen, Linton and Van

Keilegom (2003). These assumptions are discussed extensively in the literature. Related assumptions
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are given in Escanciano and Zhu (2012) for the analysis of semiparametric partially identi�ed models.

For a �xed x; the results in Newey (1994) can be applied to �nd the expression for �: De�ne

m (z; x; �; �) :=  (z; x; �; �) + � (z; x; �; �) ; (27)

where � is as in A1(iv).

Theorem A1: Under Assumption A1 and H0, the following expansion holds:

sup
x2�

�����pnR̂n(x)� 1p
n

nX
i=1

m(Zi; x; �0; �0)

����� = oP (1) :

Proof of Theorem A1: De�ne the linear approximation

Ln (x; �0) := Rn(x; �0) + V� (x; �0) [b� � �0]:
First, by Assumption A1(i-iii), uniformly in x 2 �;���R̂n(x)� Ln (x; �0)���

�
���R̂n(x)�R(x; b�)�Rn(x; �0) +R(x; �0)���

+ jR(x; b�) +Rn(x; �0)�R(x; �0)� Ln (x; �0)j
�
���R̂n(x)�R(x; b�)�Rn(x; �0) +R(x; �0)���

+ jR(x; b�)�R(x; �0)� V� (x; �0) [b� � �0]j
= oP

�
n�1=2

�
:

Hence, we conclude from Assumption A1(iv) that, uniformly in x 2 �;

R̂n(x) =Mn(x; �0) + oP

�
n�1=2

�
;

where

Mn(x; �) :=
1

n

nX
i=1

m(Zi; x; �; �0):

�

We obtain the following corollary, whose proof is omitted; see Politis and Romano (1994).

Corollary A1: Under Assumption A1, E[km(Zi; �)k2] <1 and H0:
p
nR̂n =) R01; in L2(�)

where R01 is as in Assumption W.

We now introduce a formal description of the local alternatives considered, and the limiting distribution

of
p
nR̂n under local alternatives. We follow CHS. De�ne the local parameters, t 2 [0;1);

�t := �0 + tc� + r�t and (28)

�t := �0 + tc� + r�t;
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where c� 2 H�; c� 2 H�; jr�tj = o(t); kr�tkl� = o(t); as t # 0: Here H� is a local parameter space
that is a subset of Rp containing zero and H� is the local nuisance parameter space that is assumed
to be a Hilbert space with norm k�kl� : With some abuse of notation, denote by h�; �i the inner product
in H := H� � H�: Note that c = (c�; c�) denotes the direction in which the local parameter �t(c) :=
(�t(c�); �t(c�)) deviates from the point (�0; �0): We think of the parameter �t(c) as the parameter

corresponding to a smooth regular parametric submodel passing through P � P�0 . We de�ne this

important concept as follows. Let P := fP� : � � (�; �); � 2 �� ; � 2 ��g be the semiparametric
model satisfying (1). Let � be a ���nite measure dominating P�; and let f (zj �) be the corresponding
density. P0 := fPt : t 2 [0;1)g is a smooth regular parametric submodel passing through P � P�0 if

P0 � P; P0 = P and the density of Pt; say ft; is mean-square di¤erentiable, i.e.,Z �����f1=2t � f1=20

t
� 1
2
gf

1=2
0

����� d� ! 0 as t! 0; (29)

where g is a measurable function, that necessarily satis�es E[g(Z)] = 0 and E[g2(Z)] < 1: We then
de�ne formally the local alternatives as

Hn : P � P�nc ;

where �nc := �n�1=2(c) and Pt � P�t(c) is a smooth parametric submodel with �xed c and c� 6= 0:

Henceforth, de�ne for a measurable function q

E�t(c) [q(Z)] � Et [q(Z)] :=

Z
q(z)ft(z)dz;

Then, it is well known that an important implication of (29) is the LAN property,

Ln(c) := log
nY
i=1

dP�nc
dP�0

(Zi) =
1p
n

nX
i=1

g(Zi)�
1

2
E[g2(Z)] + op(1); (30)

see e.g. van der Vaart (1998, Theorem 7.2). Obviously, the score g depends on the direction c (cf. van

der Vaart (1990)), and we write

g =: g0�c� + g�c� a.s.,

where g� and g� are the scores for � and �; respectively (here g� is a linear bounded operator from H�
to R). We need the following regularity condition:

Assumption A2: For all smooth parametric submodels and each x 2 �; the map t! E[m(Z; x; �t; �t)]

is continuously di¤erentiable at t = 0 and supt2N Et
�
m2(Z; x; �0; �0)

�
<1; where N is a neighborhood

of 0. The parameter �0 belongs to the interior of �� :

Theorem A2: Under Assumptions A1 and A2, Assumption W holds.

Proof of Theorem A2: To establish the limiting distribution of
p
nR̂n under Hn we apply Lecam�s

third lemma in van der Vaart and Wellner (1996, Theorem 3.10.7). To characterize the limit, we �rst
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use (30), Assumption A1, and apply Lecam�s third lemma to
Dp

nR̂n; h
E
with a �xed h 2 L2(�); which

yields that under Hn Dp
nR̂n; h

E
!d N(�; hh;Khi);

where

� := E[hm;hi (Z)g(Z)]:

By the adjoint property � = hh; T 0gi : Since this is true for all h 2 L2(�); we conclude that under Hn;
p
nR̂n =) R01 + T

0g; in L2(�):

It remains to prove that T 0g = c0�D: The part of the score corresponding to the nuisance parameter

satis�es T 0g� � 0 by Theorem 2 below, and hence it su¢ ces to prove that T 0g� = c0�D; where g� is

the score corresponding to � with �0 �xed. But this follows from the classical information equality, see

Lemma 7.2 in Ibragimov and Hasminskii (1981), under Assumption A2. �

7.1.2 Semiparametric e¢ cient tests

For completeness, we review some concepts on e¢ cient testing in semiparametric models. We follow

the notation of CHS, where further details can be found. Write (30) in terms of linear functionals as

Ln(c) = Snc�
1

2
�2(c) + rn(c);

where Sn = (Sn�; Sn�)0 is a random linear functional which is asymptotically centered Gaussian with

covariance operator B under the null hypothesis, and rn(c) = op(1) for every c under the null hypothesis.

Hence the variance �2(c) of Snc is equal to hc;Bci:
A test  n takes values in f0; 1g; where 1 represents rejection and 0 acceptance of the null hypothesis,

respectively. Consider �rst the one-sided testing problem with scalar �, i.e.

H0 : c� = 0 against H1 : c� > 0:

Fix c0 = (0; c�): A test  n is of asymptotic level � 2 (0; 1) if

lim sup
n
E�nc0 n � �;

for every c�: Henceforth, we restrict the analysis to the class of asymptotic level � tests.

Then, using the LAN property, we can write

E�nc n = E n exp (Ln(c)) + o(1)

= E n exp

�
Snc�

1

2
�2(c) + rn(c)

�
+ o(1):

Fix c1 = (c1�; c1�) with c1� > 0; and consider testing the simple hypothesis c0 = (0; c�) against c1:

Then, the Neyman-Pearson lemma gives an optimal test 'n of asymptotic level � in the following form:

'n = 1 if

Sn(c1 � c0)�
1

2
f�2(c1)� �2(c0)g+ rn(c1)� rn(c0) > cn;

28



and 'n = 0 otherwise. And for this test, it is a straightforward to obtain the following bound for the

(local) power of the test

lim supE�nc1'n � 1� �(z� � �(c1 � c0)); (31)

where z� is the upper �-quantile of the standard normal distribution function �:

Now, we aim to devise a test that is uniformly most powerful at each point of c� 2 H�. The bound for
the power of the test is attained by an optimal test against a simple alternative corresponding to the least

favorable direction. Let (Bij)i;j=1;2 denote the partition of B such that B11 is the information for �; B22
is the information for �, and B12 and B21 are co-informations. Obviously, from (31), the least favorable

direction is obtained by minimizing �(c1 � c0) in c� and is found to be c�� = c1� + B�122 B21c1� : Hence,

the point (0; c��) is the projection of c1 onto the local null space under the inner product induced by B;

namely, hh; giB = hh;Bgi; h; g 2 H: By plugging in this least favorable direction, we obtain

lim supE�nc1 n � 1� �(z� � �(B
�1=2c1�))

where B� = B11 � B12B
�1
22 B21 is the e¢ cient information. Let us de�ne the e¢ cient score S

�
n as

S�na = Sn�a � Sn�B
�1
22 B21a; a 2 R. Since c� is a scalar, so are Sn� and S�n: Note that S�n depends on

�0 and we write S�n(�0) explicitly. De�ne the standardized e¢ cient score �n(�0) := B��1=2S�n(�0): Now,

an optimal test is obtained by taking 'n = 1 f�n(�0) � z�g : The resulting test 'n does not depend on
c1 = (c1� ; c1�): Hence, the test is asymptotically uniformly most powerful (AUMP(�; �0)) at the level

� and at the nuisance parameter �0:

The procedure easily applies to a two-sided test. A test  n is asymptotically unbiased at �0 if

lim supnE�nc0 n � lim infnE�nc1 n for every c0 = (0; c�) and c1 = (c1�; c1�) with c1� 6= 0: Then,

Theorem 2 of CHS gives the following bound for the local power:

lim supE�nc n � �(jB�1=2c�j � z�=2) + �(�jB�1=2c� j � z�=2)

for all c = (c�; c�) 2 H. The two-sided test that is AUMP and unbiased, in short AUMPU(�; �0),
among the asymptotically unbiased tests is given by

1
�
j�n(�0)j � z�=2

	
:

For the multivariate case p � 1; the class of tests is restricted to satisfy an asymptotic rotation

invariance property, see CHS (p. 851) for details, and the AUMPI(�; �0) test is given by

1
�
�0n(�0)�n(�0) � �21��;p

	
:

In the above e¢ ciency concepts, when the test does not depend on �0, the reference to the nuisance

parameter is dropped.

7.1.3 Preliminary results

We collect in this section a number of known results that will be instrumental in proving Theorem 4. We

refer to references for the proofs. We begin with an important result of Chen, Linton and van Keilegom
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(2003) that allows for the bounding of entropy numbers and the veri�cation of stochastic equicontinuity

for processes indexed by both parametric and nonparametric parameters. In this connection, de�ne a

generic class

H = fz ! m(z; �; g) : � 2 �; g 2 Gg;

where � and G are Banach spaces with associated norms k�k� and k�kG , respectively. Recall that the
covering number N (�;�; k � k�) of � is the minimal number N for which there exist �-neighborhoods

ff� : k� � �jk� � �g ; k�jk� <1; j = 1; : : : ; Ng covering �. A bracket [lj ; uj ] is the set of elements

� 2 � such that lj � � � uj . The covering number with bracketing N[�] (�;�; k � k�) is the minimal N
for which there exist �-brackets f[lj ; uj ] : klj � ujk� � �; kljk�; kujk� <1; j = 1; : : : ; Ng covering �.
An envelope function G for the class G is a measurable function such that G(x) � supg2G jg(x)j. De�ne
the entropy number

J(�;G; k�k2;P ) :=
Z �

0

q
logN(";W; k�k2;P )d":

Henceforth, we abstract from measurability issues in some of the expectations involved. The interested

reader can check van der Vaart and Wellner (1996) for solutions to potential lack of measurability, and

for basic de�nitions in empirical processes theory.

Lemma Q1. Assume that

E

"
sup

�2: k�1��2k�<�
sup

g2: kg1�g2kG<�
jm(Z; �1; g1)�m(Z; �2; g2)j2

#
� C�s

for some constant s 2 (0; 2]. Then for any � > 0,

N[�](�;H; k�k2;P ) � N

�h �

2C

i2=s
;�; k�k�

�
�N

�h �

2C

i2=s
;G; k�kG

�
:

A typical application of Lemma Q1 implies that J(�;H; k�k2;P ) < 1; and hence, that the empiri-
cal process

p
n (Mn �M) ; where Mn(�; g) � n�1

Pn
i=1m (Zi; �; g) and M(�; g) � E [m(Zi; �; g)] ; is

asymptotically stochastically equicontinuous, i.e., for any sequence of positive constants �n = o(1),

sup
k�1��2k���n; kg1�g2kG��n

jMn(�1; g1)�Mn(�2; g2)�M(�1; g1) +M(�2; g2)j = oP (n
�1=2): (32)

The following lemma is implicit in Section 2.10.3 of van der Vaart and Wellner (1996).

Lemma Q2. Let F and G be classes of functions with envelopes F and G; respectively, then, for any

� > 0,

N(2�kFGk2;P ;F�G; k�k2;P ) � N(�kFk2;P ;F ; k�k2;P )�N(�kGk2;P ;G; k�k2;P ):

We now state a weak convergence theorem that is useful in dealing with estimation e¤ects in test

functionals involving the non-smooth summands �i(�; �) = 1(Yi � X 0
i�(�))� �: Let a(�) be a bounded
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measurable function of Zi; and let B be a class of Lipschitz and bounded functions from T to ��.

Given a sequence fZingni=1 of iid arrays for each n; de�ne the weighted empirical process

Vn(�; x) :=
1p
n

nX
i=1

(a(Zin)�in(�; �)� E [a(Zin)�in(�; �)jXin]) qn(Xin; �; x);

which is indexed by � := (�; x) 2 B � �; where � := T � Rdx : Let FX denote the cdf of X: De�ne the

pseudo-metric, for �1 := (�1; �1; w1) 2 B � �;

�(�; �1) := j� � �1j+ jFX(w)� FX(w1)j+ k� � �1kT ;

where k�kT := sup�2T j�(�)j ; and assume that qn is such that for �n # 0

sup
�(�;�1)<�n

kqn(�; �)� qn(�; �1)k2;P = o(1)

and Wn := sup� jqn(�; �)j satis�es the Lindeberg condition, for each " > 0;

E[W 2
n ] = O(1) and E[W 2

n1(Wn > "
p
n)] = o(1):

Furthermore, de�ne the class Wn := fqn(�; �; x) : (�; x) 2 B � �g and require the following assumption:

Assumption Q1. The class Wn satis�es the previous conditions and is such that J(�n;Wn; k�k2;P )! 0

for every �n # 0:

Theorem Q1. Under Assumptions E1, E2 in Section 5.1 and Q1, the process Vn is ��stochastically
equicontinuous.

Proof of Theorem Q1. It follows from an application of Theorem 19.28 in van der Vaart (1998)

and Lemma Q1. �

Lemma Q3. Under Assumption E1,

sup
�2T

�����pn (b
n(�)� 
0(�))� 1p
n
B�1(�)

nX
i=1

�i(�)X2ifi�

����� = oP (1):

Proof of Lemma Q3. See for instance Gutenbrunner and Jurecková (1992). �

Lemma Q4. Under Assumption E1, the estimator b
n(�) satis�es that b
n 2 B with probability tending
to one and 
0 2 B.
Proof of Lemma Q4. Follows from Lemma Q3 and Assumption E1 in a routine fashion. �

Our next result is related to the uniform convergence rates for the kernel estimator f̂i� . We view f̂i�

as a function of b�0 and write the Taylor approximation around the true value �0 as
f̂i� = ~fi� + _fi� (b�) + �fi� (b�) + ri� ; (33)
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where ~fi� := f̂ (X 0
i�0(�)jXi; �0) ; b�(�) := pn(b�0(�)� �0(�)),
_fi� (�) :=

1

n3=2h2

nX
j=1

_K

�
X 0
i�0(�)�X 0

i�0(�j)

h

��
X 0
i(�(�j) + �(�))

	
;

and

�fi� (�) :=
1

n2h3

nX
j=1

�K

�
X 0
i�0(�)�X 0

i�0(�j)

h

��
X 0
i(�(�j) + �(�))

	2
;

and where, henceforth, for a generic functionK we denote _K(t) := @(1)K(t)=@t and �K(t) := @(2)K(t)=@t2:

The remainder term ri� is implicitly de�ned.

The proofs of the results below directly follow from Escanciano and Goh (2012). For an and bn as

in Assumption E3(b), de�ne

dn :=

s
log a�1n _ log log n

nan
+ b2n:

Lemma Q5. Under Assumptions E1-E3,

sup
an�h�bn

sup
�2T

max
1�i�n

���f̂i� � fi� ��� = Op

�
n�1=2 + dn

�
;

and

sup
an�h�bn

sup
�2T

max
1�i�n

��� ~fi� � fi� ��� = Op (dn) :

Similarly, we have the following uniform consistency results, see (21) and (22) for de�nitions of An and

Bn.

Lemma Q6. Under Assumptions E1-E3,

sup
x2T �Rdx

jAn(x)�A(x)j = oP (1)

and

sup
�2T

jBn(�)�B(�)j = oP (1):

Proof of Lemma Q6. It follows from a combination of Lemmas Q2, Q3 and Q5. �

De�ne the class Q := fz ! 1(y � �00x1+ 

0x2)� � : 
 2 �
 ; � 2 T g; where �� =: �� ��
 � Rdx : The

proof of the following result is standard, and hence omitted.

Lemma Q7. Let Assumption E1 hold. Then, the class Q of functions satis�es J (�n;Q; k�k2;P ) ! 0

for every �n # 0:.
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7.2 Appendix B: Proofs of main results

Proof of Theorem 1: To prove (i), we use Assumption C and write

L(
p
nR̂n) =

1X
j=1

��1j

p

nMn; 'j
�
hD;'ji+ oP (1)

=
1p
n

nX
i=1

1X
j=1

��1j hm(Zi; �); 'ji hD;'ji+ oP (1)

=
1p
n

nX
i=1

1X
j=1

�
�1=2
j hD;'ji j(Zi) + oP (1)

= S�n + oP (1):

As for (ii), note that by Kress (1999, Theorem 15.16) and Assumption D,

T 0s� =
1X
j=1

hD;'ji'j = �Im(T 0)D = D;

and

s� =
1X
j=1

�
�1=2
j



T 0s; 'j

�
 j

=

1X
j=1

E[s(Z) j(Z)] j

= �Im(T )s � �ker?(T 0)s:

�
Proof of Theorem 2: Let P(�0;�t); t 2 [0; "); " > 0; be a regular parametric submodel passing

through P(�0;�0); with score s(Z). Hence, the model satis�es the restrictions

Et [ (Z; x; �0; �t)] = 0:

Di¤erentiating with respect to t and evaluating at t = 0; we obtain, by the chain rule,

@

@t
E [ (Z; x; �0; �t(Z; x))]

����
t=0

+
@

@t
Et [ (Z; x; �0; �0(Z; x))]

����
t=0

= 0:

The �rst term is just the derivative of 
(t) := E [ (Z; x; �0; �t(Z; x))] ; which by our Assumption A1

satis�es
@
(0)

@t
= E [� (Zi; x; �0; �0) s(Z)] ;

see e.g. (3.9) in Newey (1994). On the other hand, Lemma 7.2 in Ibragimov and Hasminskii (1981),

under Assumption A2 implies that

@

@t
Et [ (Z; x; �0; �0(Z; x))]

����
t=0

= E [ (Z; x; �0; �0(Z; x))s(Z)] :
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Hence, the score satis�es s(Z) 2 ker(T 0); so that _P2 � ker0(T 0).
We now prove that ker0(T 0) � _P2 holds. De�ne the map 
 : P ! L2(�) as


(P ) := EP [ (Z; x; �0; �(P ))]:

The same arguments above show that 
 is Frechet di¤erentiable at P0; viewed as a mapping on square

roots of measures, with derivative _
 = T 0; see e.g. van der Vaart (1998, p. 363). Then, for a given

function s 2 ker0(T 0) we can use exactly the same arguments as in Bickel et al. (1993, pg. 54)

to construct a parametric submodel with score s and passing through P0. Thus, we conclude that
_P2 = ker0(T 0).
As for (ii), consider a parametric submodel satisfying Et [m(Z; x; �t; �0)] = 0 with score c0� _̀�(Z):

Di¤erentiating this equation with respect to t at 0 we get

c0�
@E [m(Z; x; �0; �0)]

@�
+ @Et [m(Z; x; �0; �0)]jt=0 = 0:

Regularity of the model and Assumption A2 imply, by Lemma 7.2 in Ibragimov and Hasminskii (1981),

@Et [m(Z; x; �0; �0)]jt=0 = c0�E
h
m(Z; x; �0; �0) _̀�(Z)

i
;

where _̀� is the score with respect to � at �0. Since the previous equality holds for all c� , we conclude

using our notation that

D = T 0 _̀�: (34)

Hence, by part (i), the zero mean property of scores and Theorem 1(ii) _̀�� = _̀
��� _P2

_̀
� = �ker?(T 0)

_̀
� =

s�: �

The following result is fundamental for many of the proofs that follow. Its proof is trivial, and hence

omitted. De�ne f"njg1j=1 as

"nj := n�1=2
nX
i=1

 j(Zi)

= �
�1=2
j

p
n hMn; 'ji :

Lemma Q8. f"njg1j=1 are uncorrelated and with unit variance.

Proof of Proposition 1: We �rst prove that Lk(R̂n) = Lk(Mn) + oP (n
�1=2): Note that

Lk(R̂n)� Lk(Mn) =
kX
j=1

��1j

D
R̂n �Mn; 'j

ED
D̂; 'j

E

=

kX
j=1

��1j

D
R̂n �Mn; 'j

ED
D̂ �D;'j

E

+
kX
j=1

��1j

D
R̂n �Mn; 'j

E
hD;'ji :
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By Cauchy-Schwarz�s inequality and Assumptions D and R the absolute values of all terms are

oP (n
�1=2): Using Lemma Q8, we conclude that������

kX
j=1

��1j hMn; 'ji
D
D̂ �D;'j

E������ �
0@ kX
j=1

��1j hMn; 'ji2
1A1=20@ kX

j=1

��1j

D
D̂ �D;'j

E21A1=2

= OP (k
1=2n�1=2)oP (k

�1=2)

= oP (n
�1=2):

Hence, using Lemma Q8 one more time; it can be shown that Lk(Mn) = L(Mn)+oP (n
�1=2): The proof

that b�k = �+ oP (1) is trivial, and hence, it is omitted. �
Proof of Theorem 3: Write

p
nbLn = 1p

n

nX
i=1

s�(Zi) +
1p
n

nX
i=1

fbs�(Zi)� s��n(Zi)g
+

1p
n

nX
i=1

fs��n(Zi)� s
�(Zi)g

� S�n + C
�
n +B

�
n:

We �rst prove that the bias term satis�es B�n = oP (1): Using well-known expansions for s��n and s
� we

write

B�n =
1p
n

nX
i=1

1X
j=1

b(�; �j)E[s
�(Z) j(Z)] j(Zi)

=

1X
j=1

b(�; �j)E[s
�(Z) j(Z)]

1p
n

nX
i=1

 j(Zi)

�
1X
j=1

b(�; �j)E[s
�(Z) j(Z)]"nj ;

where b(�; �) = �=(�+ �). By Lemma Q8, E[B�n] = 0 and

E[(B�n)
2] =

1X
j=1

b2(�; �j) (E[s
�(Z) j(Z)])

2 ! 0;

as �! 0; by dominated convergence.

We now prove that C�n = oP (1): We write

1p
n

nX
i=1

(bs� � s��n)(Zi) = Z p
n(bs� � s��n)(z)Fn(dz);

where Fn is the empirical distribution of fZigni=1:
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Henceforth, we will make use of the following basic result. If Bn is a possibly random operator from

L2(�) to L2(F ) and hn is a random element taking values in L2(�); then����� 1n
nX
i=1

Bnhn(Zi)

����� = OP

�
kBnk2;P khnk

�
: (35)

De�ne the norms k�k2;n and k�kn as the norms k�k2;P and k�k but with F and � replaced by the empirical
distribution functions of fZigni=1 and fxigni=1, respectively. Introducing these norms is useful because
although T̂ is not the adjoint of T̂ 0 with respect to the norms k�k2;P and k�k ; they are duals with
respect to k�k2;n and k�kn : De�ne the inner product ha(�); b(�)i2;P := E[a(Z)b(Z)]:

Fix a 2 L2(F ) and h 2 L2(�): By de�nition of T̂ � it holds thatD
a(�); T̂ h(�)

E
2;P

=
D
T̂ �a(�); h(�)

E
n
:

De�ne the operator

T �nh :=

Z
h(x)m(z; x)�n(dz):

Then, simple algebra showsD
a(�); (T̂ � T )h(�)

E
2;P

=
D
(T̂ � � T 0)a(�); h(�)

E
n
+ ha(�); (T �n � T )h(�)i2;P :

From this equality and Markov�s inequality, we conclude that


T̂ � T


 � OP

�


T̂ � � T 0



2;P

�
+ kT �n � Tk :

By a standard FCLT and since T 0 is bounded, it holds that

kT �n � Tk = OP

�
n�1=2

�
:

Hence, by Assumption RE(ii) we obtain


T̂ � T


 = OP

�
n�1=2

�
:

Applying the same arguments to T̂ 0�T 0 and using the well-known equality kBk = kB0k for a bounded
linear operator B; we obtain




T̂ 0 � T 0


 = OP
�
n�1=2

�
:

Note that the previous rates imply


T̂ T̂ 0 � TT 0


 � 


T̂ � T




T 0

+ 


T̂





T̂ 0 � T 0



= OP

�
n�1=2

�
:

Using the de�nitions bs�(Zi) = bA�n T̂ D̂ and s��n(Zi) = A�nTD; where bA�n = (�nI + T̂ T̂ 0)�1 and

A�n = (�nI + TT
0)�1; respectively, we write

bs� � s��n = bA�n T̂ (D̂ � T̂ 0s�) + bA�n T̂ T̂ 0s� �A�nTD
� �1n +�2n:
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By the basic identity (B�1 � C�1) = B�1(C �B)C�1; we can write

1p
n

nX
i=1

�1n(Zi) =
1

n

nX
i=1

bA�n(T̂ � T )hn(Zi) (36)

+
1

n

nX
i=1

A�nThn(Zi)

+
1

n

nX
i=1

bA�n(T̂ T̂ 0 � TT 0)A�nThn(Zi);
where, henceforth, hn(�) :=

p
n(D̂ � T̂ 0s�)(�): Applying (35) and noting that




 bA�n



2;P

= OP (�
�1
n ),

the �rst term of the last display is shown to be oP (1): As for the second, using the de�nition of A�n ;

Lemma Q8 and Cauchy-Schwarz�s inequality,����� 1n
nX
i=1

A�nThn(Zi)

����� =
������
1X
j=1

�
1=2
j

�j + �n

D
n�1=2hn; 'j

E
"nj

������
�

0@ 1X
j=1

�j"
2
nj

1A1=20@ 1X
j=1

1

(�j + �n)
2

D
n�1=2hn; 'j

E21A1=2

= OP (1)OP

�
��1n




D̂ � T̂ 0s�


�
= oP (1):

To analyze the third term in (36), de�ne �11n(�) := bA�n(T̂ T̂ 0 � TT 0)A�nThn(Zi): Since bA�n is self-
adjoint with respect to k�k2;n ; we write by Cauchy-Schwarz�s inequality����Z �11n(z)Fn(dz)

���� = ���h�11n(�); 1i2;n���
=

����D��1n (T̂ T̂ 0 � TT 0)A�nThn(Zi); �n bA�n1E2;n
����

�



��1n (T̂ T̂ 0 � TT 0)




2;n
kA�nThnk2;n




�n bA�n1



2;n
:

We analyze each of these terms. From previous arguments, we know that


��1n (T̂ T̂ 0 � TT 0)



2;n
= OP (�

�1
n n�1=2):

The expression for A�n ; implies that

�n kA�nThnk22;P =
1X
j=1

�j�n

(�j + �n)
2 hhn; 'ji

2

� khnk2 :

Hence,

kA�nThnk2;n = OP

�
��1=2n

�
:
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Finally, 


�n bA�n1



2;n
= OP

�


�n bA�n1



2;P

�
= OP

�


�n bA�n � �nA�n



2;P

�
= OP

�
��1n n�1=2

�
:

Then, we conclude ����Z �11n(z)Fn(dz)

���� = OP (�
�5=2
n n�1) + oP (1)

= oP (1):

As for �2n; we write,

�2n = bA�n(T̂ T̂ 0 � TT 0)s� + ( bA�n �A�n)TT 0s�
= bA�n(T̂ T̂ 0 � TT 0)(s� � s��n):

Note that

(T̂ T̂ 0 � TT 0) j(z) = (T̂ T 0 � TT 0) j(z) + (T̂ T̂ 0 � T̂ T 0) j(z)

= �
1=2
j (T̂ � T )'j(z) + T̂ (T̂ 0 � T 0) j(z):

Hence, with �s implicitly de�ned by s�(z) = T �s(z);

(T̂ T̂ 0 � TT 0)(s� � s��n)(z) = �n

1X
j=1

�j
�j + �n

h�s; 'ji (T̂ � T )'j(z) (37)

+ T
1X
j=1

�n�
1=2
j

�j + �n
h�s; 'ji (T̂ 0 � T 0) j(z)

+ oP (n
�1):

Let �21n denote the part of �2n corresponding to the �rst summand in (37), and �22n the one

corresponding to the second summand. The latter part is asymptotically negligible, by the same

arguments as for �1n: Hence, we focus on �21n: To that end, we de�ne

�s�(x) :=
1X
j=1

�j
�j + �

h�s; 'ji'j(x);

and note that k�s�k < 1 and k�s� � �sk as � ! 0 (w.l.o.g take �s 2 Im(K)). By an application of

Lemma Q8, it su¢ ces to work with
p
n(T̂ � T )�s(�): Using similar arguments as for �1n; we write by

Cauchy-Schwarz�s inequality����Z p
n�21n(z)Fn(dz)

���� = ���
pn�21n(�); 1�2;n���
=

����Dpn(T̂ � T )�s(�); �n bA�n1E2;n
����+ oP (1)

�



pn(T̂ � T )�s(�)




2;n




�n bA�n1



2;n
+ oP (1):
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Note that



pn(T̂ � T )�s(�)




2;n
= OP (1) and




�n bA�n1



2;n
= oP (1) by the arguments above. Hence, we

conclude that C�n = oP (1): The proof of b��n = �+ oP (1) is simpler, and hence omitted. �
Proof of Theorem 4: We shall apply Theorem 3. To that end, we need to check that Assumptions

W and RE hold under Assumptions E1-E3. To verify Assumption W, we apply Theorem Q1 of Section

7.1.3. Recall

R̂n(x) =
1

n

nX
i=1

�̂i(�)1(Xi � w);

where �̂i(�) = 1(Yi � �00X1i+ b
0n(�)X2i)� � and x = (�; w0)0 2 T �Rdx . We shall prove that under our
assumptions and H0;

sup
x2T �Rdx

�����R̂n(x)� 1p
n

nX
i=1

�i(�)1(Xi � w)�A0(x)
p
n (b
n(�)� 
0(�))

����� = oP (1); (38)

where A(x) := E[X2ifi�1(Xi � w)]: To obtain this expansion we apply Theorem Q1 to the class

W = fx! 1(x � w) : w 2 [�1;1]dxg; which satis�es the conditions of the theorem by Theorem 2.7.1
in van der Vaart and Wellner (1996). This yields

sup
x2T �Rdx

�����R̂n(x)� 1p
n

nX
i=1

�i(�)1(Xi � w)

+
1p
n

nX
i=1

�
E [�i(�)jXi]� E

h
�̂i(�)

���Xii� 1(Xi � w)

����� = oP (1): (39)

Applying a mean value argument we obtain

sup
x2T �Rdx

����� 1pn
nX
i=1

�
E [�i(�)jXi]� E

h
�̂i(�)

���Xii� 1(Xi � w)

�
p
n (b
n(�)� 
0(�))0 1

n

nX
i=1

f
�
X 0
i
e�0(�)���Xi�X2i1(Xi � w)

����� = oP (1);

where e�0(�) is such that ���e�0(�)� �0(�)��� � ���b�0(�)� �0(�)��� a.s. for each � 2 T : By our assumptions,
uniformly in x 2 T � Rdx ;

1

n

nX
i=1

f
�
X 0
i
e�0(�)���Xi� 1(Xi � w) =

1

n

nX
i=1

fi�X2i1(Xi � w) + oP (1)

= A(x) + oP (1):

where the last equality follows from Glivenko-Cantelli�s theorem, i.e. the class

fZi ! f
�
X 0
i�0(�)

��Xi� 1(Xi � w) : x 2 �g

is a Glivenko-Cantelli class by an application of Lemma Q1. Hence, we obtain the expansion (38). The

null limiting distribution then follows from the expansion and Lemma Q3. Combine this with Theorem
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A2 to obtain Assumption W. Notice that Assumption A2 required in Theorem A2 holds under our

conditions on the conditional density in E1.

We now check Assumption RE(ii). Throughout the proofs, we use the fact that the nonparametric

estimate ~fi� only depends on the sample An � f�jgnj=1 and Xi; and that An is independent of the
original sample Zn � fZigni=1: That means that in many of the probabilistic arguments we use, we can
�rst condition on An and deal with conditional probabilities treating the nonparametric function as
given. This simpli�es substantially the arguments.

We prove that



T̂ � � T 0


 = OP (n

�1=2). For a �x a 2 L2(F ) with kak2;P = 1; set �x = (�; w0)0 2 �;
and write,

p
n(T̂ � � T 0)a(�x) =

p
n

Z
a(z)

�
�̂(�)� �i(�)

� bq(x; �x)F (dz)
�A(�x)B�1(�)

p
n

Z
a(z)�(�)x2(f̂�� � f�� )F (dz)

+
p
n
�
An(�x)B

�1
n (�)�A(x)B�1(�)

� Z
a(z)�(�)x2f̂��F (dz)

=: C11n(�x)�A(�x)B�1(�)C12n(�) + C13n(�x):

Using a standard Taylor expansion, it holds, for each �x 2 T � Rdx ;

C11n(�x) = E[X 0
2ia(X

0
i
e�0(�); Xi)f �X 0

i
e�0(�)���Xi� bq(Xi; x)]pn (b
n(�)� 
0(�)) ;

where e�0(�) is such that ���e�0(�)� �0(�)��� � ���b�0(�)� �0(�)��� a.s. for each � 2 T : Lemma Q3, Cauchy-
Schwarz�s inequality and our moment conditions imply that kC11nk = OP (1):

To deal with C12n(�); use the Taylor expansion in (33), and write

C12n(�) =
p
n

Z
a(z)�(�)x2( ~f�� � f�� )F (dz)

+
p
n

Z
a(z)�(�)x2 _f�� (b�)F (dz) +pn Z a(z)�(�)x2 �f�� (b�)F (dz)

+
p
n

Z
a(z)�(�)xri�F (dz)

=: C121n(�) + C122n(�) + C123n(�) + C124n(�):

In turn, C121n(�) can be decomposed in a stochastic and bias part

C121n(�) =
p
n

Z
a(z)�(�)x2( ~f�� � E�j [f�� ])F (dz)

+
p
n

Z
a(z)�(�)x2(E�j [f�� ]� f�� )F (dz):

The stochastic part is a standardized sample mean of iid elements in L2(�); say Wj;h(�); satisfying

E�j [kWj;h(�)k2] = E�j [


E[a(Z)�(�)X2]Kh

�
X 0
i�0(�)�X 0

i�0(�j)
�

2]

�
Z �Z

�a(u; �)g(�;�j)(u; u)du

�2
d�d�j +OP (h

2)

� C;
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where Kh (u) := h�1K(u=h), �a(u; �) := E [a(Z)�(�)X2jX 0�0(�) = u] ; and where we have used that����Z �a(u; �)g(�;�j)(u; u)du

���� � E[ja(Z)X2j]:

Hence, by the FCLT, we conclude the stochastic part is OP (1): The bias part is also OP (1) by our

assumptions on the conditional density and bandwidth. Hence, it holds kC121nk2 = OP (1):

We now turn into C122n: Standard arguments show that

C122n(�) =
1

n

nX
j=1

Z
t _K (t) dt

Z
_q1a(u; �; �j)du+O

�
h2
�
;

where _qa(u; �; �j) = @qa(u; v; �; �j)=@vjv=u ;

qa(u; v; �; �j) := �a(u; v; �; �j)g(�;�j)(u; v) and

�a(u; v; �; �j) := E
�
a(Z)�(�)X2jX 0�0(�) = u;X 0�0(�j) = v

�
:

Note that Assumption E1 implies that ����Z _qa(u; �; �j)du

���� � C:

The same arguments show that kC123nk = OP (1): It is also straightforward to prove that kC124nk =
OP
�
n�2h�2

�
= oP (1): Hence, kC12nk = OP (1):

To analyze C13n(�x); using some arguments below (see the analysis of D1n), it can be shown that

the vector process  p
n(An(�)�A(�))p
n(Bn(�)�B(�))

!
converges weakly in L2(�). Thus, by an application of the functional delta method, we obtain the weak

convergence of
p
n
�
A(�)B�1(�)�An(�)B�1n (�)

�
:

From this convergence and Lemma Q5, it easily follows that kC13nk = OP (1): Together, these results

imply



T̂ � � T 0


 = OP (n

�1=2):

Finally, to prove



D̂ � T̂ 0s�


 = OP (n

�1=2); it su¢ ces to show that



D̂ �D


 = OP (n

�1=2); by the

arguments in the proof of Theorem 3. For simplicity, we assume w.l.g that X1 is a scalar. We write

p
n(D̂(x)�D(x)) = � 1p

n

nX
i=1

n
X1if̂i� bq(Xi; x)�D(x)o (40)

= � 1p
n

nX
i=1

n
X1if̂i�1(Xi � w)� E[X1ifi�1(Xi � w)]

o
+A(x)B�1(�)

1p
n

nX
i=1

n
X1iX2if̂

2
i� � E[X1iX2if2i� ]

o
�
�
A(x)B�1(�)�An(x)B�1n (�)

� 1p
n

nX
i=1

X1iX2if̂
2
i�

=: �D1n(x) +A(x)B�1(�)D2n(x)�D3n(x):
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Long, but simple, algebra shows that D1n is asymptotically equivalent to D11n+D12n+D13n; uniformly

in x 2 �; where

D11n(x) :=
1p
n

nX
i=1

fX1ifi�1(Xi � w)� E[X1ifi�1(Xi � w)]g ;

D12n(x) :=
1p
n

nX
i=1

X1i( ~fi� � fi� )1(Xi � w)

and

D13n(x) :=
1p
n

nX
i=1

X1i _fi� (b�)1(Xi � w):

The process D12n; centered at its expectation, is stochastic equicontinuous, and by the independence

assumption between An and Zn, for each x;

V ar

 
1p
n

nX
i=1

X1i( ~fi� � fi� )1(Xi � w)

�����An
!
� E

h
X2
1i(
~fi� � fi� )21(Xi � w)

i
= oP (1):

Hence, uniformly in x 2 �;

D12n(x) =
p
nE
h
X1i( ~fi� � fi� )1(Xi � w)

i
+ oP (1)

=
1p
n

nX
j=1

a1h(x; �j) + oP (1);

where

a1h(x; �j) := E

�
�1(�;�j)(X

0�0(�); X
0�0(�j); w)

1

h2
_K

�
X 0�0(�)�X 0�0(�j)

h

�����An�
�1(�;�j)(u; v; w) := E

�
X11(Xi � w)jX 0�0(�) = u;X 0�0(�j) = v

�
:

De�ne

q1(�;�j)(u; v; w) := �1(�;�j)(u; v; w)g(�;�j)(u; v):

Then, Z
q1(�;�j)(u; v; w)

1

h2
_K

�
u� v
h

�
dudv = �

Z
q1(�;�j)(u; u� th; w)

1

h
_K (t) dudt

=

Z
t _K (t) dt

Z
_q1(�;�j)(u; u; w)du+O

�
h2
�

=: �3a1(x; �j) +O
�
h2
�
;

where _q1(�;�j)2(u; v; w) = @q1(�;�j)(u; v; w)=@v: Then,

max
1�j�n

sup
x
ja1h(x; �j)� �3a1(x; �j)j = O

�
h2
�
:
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Using this, we conclude

D12n(x) = �3
1p
n

nX
j=1

a1(x; �j) + oP (1):

Then, kD12nk = OP (1) follows easily from the last display and Assumption E1.

Using a stochastic equicontinuity argument, we obtain

D13n(x) =
p
nE[X1i _fi� (b�)1(Xi � w)] + oP (1)

=
1p
n

nX
j=1

a2h(x; �j) fb
n(�j)� 
0(�j) + b
n(�)� 
0(�)g+ oP (1);
where

a2h(x; �j) := E

�
�2(�;�j)(X

0�0(�); X
0�0(�j); w)

1

h2
_K

�
X 0�0(�)�X 0�0(�j)

h

�����An�
and

�2(�;�j)(u; v; w) := E
�
X1X

0
21(Xi � w)

��X 0�0(�) = u;X 0�0(�j) = v
�
:

De�ne

q2(�;�j)(u; v; w) := �2(�;�j)(u; v; w)g2(�;�j)(u; v):

Then, with

a2(x; �j) :=

Z
_q2(�;�j)(u; u; w)du;

and _q2(�;�j)2(u; v; w) = @q2(�;�j)(u; v; w)=@v; we obtain

max
1�j�n

sup
x
ja2h(x; �j)� �3a2(x; �j)j = O

�
h2
�
:

Using this, we conclude

D13n(x) = �3

0@ 1
n

nX
j=1

a2(x; �j)

1Apn(b
n(�)� 
0(�))
+

�3p
n

nX
j=1

a2(x; �j)(b
n(�j)� 
0(�j)) + oP (1):
By a standard law of large numbers and by Lemma 3.1 in Chang (1990), D13n converges weakly to

�3

�
E[a2(w; �)]�1(�) +

Z
T
a2(w; �)�1(�)d�

�
;

where �1(�) is the limiting distribution of
p
n(b
n(�)� 
0(�)): The analysis of D2n is similar to that of

D1n; and that of D3n(x) is the same as for C13n(x); after noticing that uniformly in �

1

n

nX
i=1

�̂i(�)X2if̂i�a(Zi) =
1

n

nX
i=1

�i(�)X2ifi�a(Zi) + oP (1);

see Lemma Q5: Accounting for all the terms in the expansion (40), we conclude



D̂ �D


 = OP (n

�1=2):

�
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7.3 Appendix C: Algorithm for implementation

This section summarizes the main steps in the implementation of the new e¢ cient procedures. Recall

the main ingredients of the problem:

� Model: E[ (Z; x; �; �0(Z; x))] = 0 for all x 2 �:

� Testing problem: H0 : � = �0 vs H1 : � 6= �0.

� The nuisance parameter �0 is estimated consistently by b�n under the null.
� Sample analog of the moments:

R̂n(x) :=
1

n

nX
i=1

 (Zi; x; �0; b�n);
Implementing the proposed test requires the following steps:

� Derive the asymptotic expansion under H0; in L2(�);

p
nR̂n(x) =

1p
n

nX
i=1

m(Zi; x; �0; �0) + oP (1):

� Generate a random sample fxjgnj=1 from �.

� Compute the n� n matrix M with entries fbm(Zi; xj) � m(Zi; xj ; �0; b�n)gni;j=1:
� Compute the n � p matrix D with entries (D̂(x1); :::; D̂(xn))0; where D̂(xj) estimates D(xj) :=

�@E [m(Z; xj ; �0(xj))] =@�:

� Given �n; �n # 0; compute the n� n matrix P� := I �M 0(�nn�2I +MM 0)�1M:

� Compute the n� p matrix S := (�nn)�1MP�D:

� Reject H0 at ��th nominal level if Tn = 10S(S0S)�1S01 � �21��;p, where 1 is a n � 1 vector of
ones and �2�;p is the � -quantile of the chi-squared distribution with p degrees of freedom:
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