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Abstract

We build a model to study optimal land use, encompassing land use activi-

ties, pollution and climate change. This benchmark set-up allows us to identify

the spatial drivers behind the interaction between land use and the environment.

Pollution generates local and global damages since it flows across locations follow-

ing a Gaussian Plume. In contrast to the previous literature on spatial dynamics,

we prove that the social optimum problem is well-posed, i.e., the solution exists

and is unique. We close the paper with a numerical analysis which illustrates the

richness of our model, and its global dynamics. We study the different drivers

of spatial heterogeneity. In particular, abatement technology stands out as a

fundamental tool to achieve steady state solutions.
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1 Introduction

Land use activities are usually defined as the transformation of natural landscapes for

human use or the change of management practices on human-dominated lands (Foley

et al., 2005). It is widely accepted that these activities have greatly transformed the

planet’s surface, encompassing the existence and evolution of spatial patterns (see, for

instance, Plantinga, 1996; Kalnay and Cai, 2003; and Chakir and Madignier, 2006). In

this regard, Spatial Economics analyses the allocation of resources over space as well

as the location of economic activity and, thus, the formation of spatial patterns. In

particular, great attention has been devoted to questions such as firms’ location, trans-

port costs, trade, and regional and urban development (Duranton, 2007). However,

the spatial drivers behind the interaction between land use and the environment are

still far for being understood.

In this paper we contribute to the theoretical foundations of land use change and

the environment by considering the interaction between land use activities, pollution

and climate change. To this end we will develop a theoretical model that focuses on

the spatial externalities of land use as drivers of spatial patterns.

There is an abundant literature on the interaction between land use, pollution and

climate change. In particular, agricultural research has devoted great attention to the

effects of pollution and climate change on agricultural land use. For instance, Heck et

al. (1984), USEPA (1984) and Adams et al. (1986) have considered the adverse effects

of air pollution on vegetation, including crops. Concerning climate change, it has been

predicted overall a slight benefit to agricultural activities overall (see, among others,

Adams, 1989; Deschênes and Greenstone, 2007; and Haim et al., 2011, for the US; and

Olesen and Bindi, 2002, for Europe). However, Olesen and Bindi (2002) and Deschênes

and Greenstone (2007) point out that there will be considerable spatial heterogeneity

across states and countries in this regard. Moreover, these studies also recognize the

necessity to consider other effects of climate change, such as on human health, sea level

rise, soil degradation, biodiversity, etc.

About the effect of land use on pollution and climate change, Kalnay and Cail

(2003) conclude that changes in land use due to urbanization and agriculture may

explain the general increase in the minimum and slight decrease in the maximum surface

temperature. Houghton et al. (1999), Houghton and Hackler (2001), Matson et al.
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(1997), and Tilman et al. (2001) have also identified significant environmental impacts

of land use. Moreover, Foley et al. (2005) point out that the effects of environmental

degradation due to land use are global but also regional/local.

Although this literature has been very fruitful, the dominant approach was em-

pirical. Therefore, there is a general agreement about the lack of explicit modelling

of the spatial drivers behind the interaction between land use, pollution, and climate

change. Closely related to the integrated assessment approach, bottom-up models of

agricultural economics (for instance, de Cara and Rozakis, 2004; de Cara et al., 2005;

and Havĺık et al., 2011) have contributed to the understanding of the spatial drivers of

land use. However, these models focus on partial equilibrium (mainly the supply side)

and do not completely consider the intertemporal decisions of the problem. In this

paper we use an alternative approach based on Dynamic Spatial Theory (see Desmet

and Rossi-Hansberg, 2010, for a survey). Although this approach was only recently

developed, it is based on an old and central question in economic theory: the optimal

and market allocation of the economic activity across space (see the seminal works of

Hotelling, 1929; and Salop, 1979).

The construction of an economic framework encompassing space and time is not

an easy task. We can underline three distinct sets of models with continuous time and

space. The natural spatial generalization of the Ramsey model is presented in Brito

(2004) and Boucekkine et al. (2009). Both include a policy maker who decides the

trajectory for consumption at each location. The main feature of these models is the

spatial dynamics of capital, which flows in space to meet optimal decisions according

to a partial differential equation. Although these sophisticated models are promising,

one cannot ensure in general either existence or uniqueness of solutions (i.e., ill-posed

problem in the sense of Hadamard, 1923). There are then two pragmatic alternatives.

First, one can consider myopic agents. This is the approach followed by Desmet and

Rossi-Hansberg (2009 and 2010). Although each location solves a static problem,

their model is dynamic in time. Indeed, each location decides the optimal amount to

consume, how much to invest in R&D, and how much to save, taking land revenues,

prices and salaries as given. Finally, all savings are coordinated by a cooperative that

invests along the space. Second, one can prevent physical capital mobility but allow for

spatial externalities. In Brock and Xepapadeas (2008b) there is technological diffusion

since aggregated neighbouring capital affects the location’s production.
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Brock and Xepapadeas (2008a and 2010) and Xepapadeas (2010) study the concept

of diffusion in an environmental context, focusing on state variables that diffuse over

the space. In particular, they find that diffusion-induced instability may create spatial

patterns in infinite horizon optimal control problems. The identification of this spatial

driver is an important contribution to spatial dynamics. Moreover, they also provide

a framework and useful tools to study local stability in a continuum of spatial sites.

In this paper we will make use of this new theory on spatial dynamics in order to

understand the spatial drivers behind land use and the environment. To our knowl-

edge, our paper provides a first analytically tractable general equilibrium framework

of land use that encompasses (i) spatial and time dimensions which are presented in a

continuous manner, (ii) spatial externalities due to pollution and abatement activities,

and (iii) environmental degradation and climate change.

Our starting point is the Spatial Ramsey model introduced by Brito (2004) and

Boucekkine et al. (2009). We propose a model in continuous time and space to study

optimal land use. Each location is endowed with a fixed amount of land, which is allo-

cated among production, pollution abatement, and housing. Although the unique pro-

duction input (land) is spatially immobile by nature, this is a model of spatial growth.1

Indeed, locations’ actions affect the whole space through pollution and climate change.

We assume that the production of the final good generates local pollution, which flows

across locations.2 Indeed, we illustrate this diffusion mechanism by means of the well-

known Gaussian Plume equation (see Sutton, 1947a and 1947b). We also consider that

local pollution participates in global pollution. In particular, in our model, the effect

of global pollution may be interpreted as climate change (e.g., anthropogenic GHGs).

Finally, both local and global pollution can damage production.

In contrast to Boucekkine et al. (2009), Brock and Xepapadeas (2008a,b and 2010),

and Xepapadeas (2010), we prove the existence and unicity of a social optimum, i.e., our

problem is well-posed. We provide the corresponding Pontryagin conditions, which turn

out to be necessary and sufficient. To illustrate the richness of our model, we continue

1In this simplified set-up, the land devoted to abatement may be interpreted as pollution removal

due to, for instance, prairies and forests (see de Cara and Rozakis, 2004; de Cara et al., 2005; Nowak

et al., 2006; and Ragot and Schubert, 2008). In general, one can also consider that abatement facilities

will require land (i.e., physical space), which is the single production factor.
2According to Akimoto (2003) two well-known examples of intercontinental transport pollution are

the tropospheric ozone and the CO.
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our analysis through numerical simulations. To this end, we adapt an algorithm first

developed in Camacho et al. (2008) to the current problem. With this numerical tool

we study the role of technological progress in production and abatement activities,

population density, land endowment, spatial heterogeneity of land productivity, and

spatially differentiated sensibility to pollution and climate change. In particular, we

focus on the creation of long-term spatial patterns and on the optimal decisions to

palliate the negative effects of pollution on productivity under different scenarios. Our

algorithm uses a finite difference approximation of the Pontryagin conditions of our

problem, simulating then the optimal trajectories for all variables. Alternatively to

the linear quadratic approximation of Brock and Xepapadeas (2008a,b and 2010) and

Xepapadeas (2010), we would like to underline that our analysis is global: we obtain

a simulation of the entire trajectory of the states, controls, and co-states from their

initial distributions until they eventually reach (or not) a steady state.

The paper is organized as follows. In section 2 we explain the Gaussian Plume that

describes the pollution dynamics in our set-up. We present the economic model in

section 3. Section 4 provides the Pontryagin conditions as well as the results of existence

and unicity of social optimum. In section 5 we consider the numerical exercises. Finally,

section 6 concludes.

2 The Gaussian plume

In this paper we introduce the dynamics of pollution in a model of spatial economics

for the first time. The dynamics of pollution are described by means of a well-known

model in physics called the Gaussian plume.

The Gaussian plume is a standard set-up of atmospheric dispersion that introduces

a mathematical description of the transport of airborne contaminants. Roberts (1924)

and Sutton (1932) were the first to study the atmospheric dispersion problem. Since

then great effort has been devoted to provide analytical solutions to the problem (see,

for instance, Arya, 1999, Caputo et al., 2003, and Stockie, 2011). The simplest of

these solutions is the Gaussian plume, which has been mainly applied to air pollutants.

However, it can be also used to study the dispersion of pollutants in aquifers and porous

soils and rocks (Freeze and Cherry, 1979, and French et al., 2000), as well as nuclear

contaminants (Jeong et al., 2005, and Settles, 2006).
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Let us introduce the main equations of a Gaussian plume by means of considering

the example of a pollutant emitted by a single source located at x ∈ R3. According to

this model, the dynamics of the pollution at location x in time t, p(x, t), is given by

the following second-order partial differential equation (PDE) of parabolic type:

pt(x, t) +∇ · J(x, t) = E(x, t), (1)

where pt(x, t) denotes ∂p(x, t)/∂t, E(x, t) are the emissions of the single source in time

t ≥ 0, ∇ is the gradient, and J(x, t) represents the flux of contaminant. This flux usu-

ally comprises the effect of diffusion and/or advection. Diffusion describes the spread

of a pollutant through regions of high concentration to regions of low concentration.

In this regard, one can assume that the diffusive flux is proportional to the pollution

gradient (Fick’s law), i.e., JD = −D∇p, where D is a parameter that represents the

diffusion coefficient of the physical environment (air, water, soils, rock, etc.). The sec-

ond component of the flux is the advection due to wind, which is usually represented

by JA = pv, where v is the wind velocity. Therefore, J = JA + JD = pv −D∇p.

As pointed in the Introduction, our model is based on the Spatial Ramsey model

introduced by Brito (2004) and Boucekkine et al. (2009). Our set-up requires a slightly

modified Gaussian plume. In particular, the former plume in (1) considers a single

pollution source, where emissions are usually assumed to be exogenous and constant

in time. Moreover, these plumes are often studied just at the steady state. In contrast

to that, our model assumes a continuum of immobile sources, where emissions may

change with time and are part of the policy maker’s decisions. Moreover, our analysis

studies both the dynamic transition and the steady state.

For the sake of analytical tractability we also assume several simplifications. First,

our paper focuses mainly on the case x ∈ R, i.e., space is unidimensional. Second,

we consider that advection is implicitly included in the diffusion effect.3 Finally, it is

assumed D = 1 in order to illustrate the problem. Therefore, the dynamics of pollution

at location x is described by the following Gaussian plume:

pt(x, t)− pxx(x, t) = E(x, t), (2)

3For Gaussian plumes that include advection see, for instance, Arya (1999) and Stockie (2011). Our

model does not explicitly consider advection because it would require further physical assumptions

that are beyond the scope of this paper (e.g., wind velocity and direction, and spatial and time

variability). Moreover, the effect of advection is negligible in cases of pollution transportation in soils,

rocks, etc.
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where pxx denotes ∂2p/∂x2.

3 The model

We assume that space is the real line R so that there exists a continuum of locations.

Each location has a unit of land, which can be devoted to three different activities:

production, housing and pollution abatement. For simplicity, we shall assume that the

space required for housing at each location is equal to its population density. There

exists a unique consumption good the production of which only requires land and which

we denote by F (l). Finally, the remainder of the land is used to abate air pollution

G(1− l − f(x)). Notice that all production technologies can be space dependent.

Pollution has two dimensions in the model we present. A local dimension, air-

pollution, damages individuals health and comes directly from the production of the

consumption good. The pollutant travels across space following the Gaussian plume

equation described in (2). On top of this, when the pollutant stays in the atmosphere

it induces global warming which has global effects. We make the distinction then

between these two aspects of pollution, local and global, since damages coming from air-

pollution and from global warming are clearly different. Global pollution is naturally

defined as

P (t) =

∫
R
p(x, t)dx.

We introduce pollution damages in production using a damage function Ω(p, P, x),

which represents the share of foregone production due to local and global pollution. If

we denote by A(x, t) total factor productivity at location x at time t, we have that this

location produces Ω(p, P, x)A(x, t)F (l) units of final good when it devotes an amount

l of land to production. For simplicity reasons we shall assume that the abatement

technology is not affected by pollution. In the remaining of the paper we make the

following assumptions regarding the production fucntions:

(A1) Functions F and G are positive, increasing, concave and their first and second

derivatives exist and are positive, that is:

F (·) ∈ C2, F (0) = 0, F ′(·) > 0, F ′′(·) ≤ 0, lim
s→0

F ′(s) =∞, lim
s→∞

F ′(s) = 0,

G(·) ∈ C2, G(0) = 0, G′(·) > 0, G′′(·) ≤ 0, lim
s→0

G′(s) =∞, lim
s→∞

G′(s) = 0.
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(A2) Ω(p, P, x) ∈ C2,2, i.e., it is twice differentiable with respect to p and P , decreasing

in each factor Ω1(p, P, x) < 0, Ω2(p, P, x) < 0. Function Ω(p, P, x) is defined on

R+ × R+ and takes values in [0, 1].

We assume that the policy maker collects all production and re-allocates it across

locations at no cost:∫
R
c(x, t)f(x)dx =

∫
R

Ω(p, P, x)A(x, t)F (l)dx, (3)

where c(x, t) denotes consumption per capita at location x and time t. This as-

sumption enlarges the set of feasible abatement and production decisions with respect

to the case in which each location has to produce its own consumption.

The policy maker chooses consumption per capita and the use of land at each

location, which maximize the discounted welfare of the entire population. We introduce

(as in Boucekkine et al., 2009) two discount functions, a spatial discount function

which we identify to the population density function, and a standard temporal discount

function as in the usual Ramsey model. The policy maker maximizes:

max
{c,l}

∫ ∞
0

∫
R
u(c(x, t))f(x)g(t)dxdt (4)

subject to

P



pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),∫
R c(x, t)f(x)dx =

∫
R Ω(p, P, x)A(x, t)F (l)dx,

P (t) =
∫
R p(x, t)dx,

p(x, 0) = p0(x) ≥ 0,

limx→{±∞} px(x, t) = 0,

(5)

where (x, t) ∈ R× [0,∞).
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4 Pontryagin conditions, existence and uniqueness

results

In this section we present the theoretical contributions of this paper. First, we prove

the existence of at least one solution to the dynamical system P . This result is not a

straightforward application of existing results (Camacho et al., 2009) because of some

special features of P . In the present model, there exists a global variable P , defined

as the spatial integral of p, together with the restriction posed on consumption. In

contrast to previous articles, in this model the policy maker gathers all production

to distribute it later, adding the afore mentioned additional integral constraint on

consumption. In the proof of proposition 1 we transform the integral constraints into

partial differential equations. Then we apply Theorem 12.1 in Chapter 8 in Pao (1992)

to close the proof.

Proposition 1 Under assumption (1), system P has at least a solution.

Proof : See the Appendix.

We use the method of variations in Raymond and Zidani (1998, 2000) to obtain the

Pontryagin conditions of problem (4) - (5). We write the associated value function V

as a function of c, l, p and P as follows:

V (c, l, p, P ) =
∫
R+

∫
R u (c(x, t)) f(x)g(t)dxdt−

−
∫
R+

∫
R q(x, t)g(t) [pt(x, t)− pxx(x, t)− Ω(p, P, x)A(x, t)F (l(x, t)) +G(1− l − f(x))] dxdt

−
∫
R+ m(t)g(t)

(
P (t)−

∫
R p(x, t)dx

)
dt,

−
∫
R+ n(t)g(t)

(∫
R c(x, t)f(x)dx−

∫
R Ω(p, P, x)A(x, t)F (l(x, t))dx

)
dt.

(6)

Functions q , m and n are auxiliary functions. If there exists an optimal solution

(c∗, l∗, p∗, P ∗), then any other solution to problem (4) - (5) can be written as a deviation

from the optimal solution as

c(x, t) = c∗(x, t) + εκ(x, t),

l(x, t) = l∗(x, t) + εL(x, t),

p(x, t) = p∗(x, t) + επ(x, t),

P (t) = P ∗(t) + εΠ(t).

(7)
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To obtain the Pontryagin conditions, we take the first order derivative of V with

respect to ε, in the spirit of minimizing the distance to the optimal solution. As a

result, we obtain a reverse time parabolic PDE, which describes the dynamics of the

shadow price of pollution, together with a static equation associated with optimal land

allocation at each (x, t). Finally, the set of first order conditions also contains spatial

boundary conditions on q and a terminal condition on pq:

Proposition 2 The Pontryagin conditions of problem (4) - (5) are:

pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),

qt(x, t) + qxx(x, t) =
(

Ω1(p, P, x) + 1
f(x)Ω2(p, P, x)

)
A(x, t)F (l)

[
u′
(

Ω(p,P,x)A(x,t)F (l)
f(x)

)
+ q(x, t)

]
,

[u′ (c(x, t)) + q(x, t)] Ω(p, P, x)A(x, t)F ′(l) + q(x, t)G′(1− l − f(x)) = 0,

c(t)
∫
R f(x)dx =

∫
R Ω(p, P, x)A(x, t)F (l)dx,

P (t) =
∫
R p(x, t)dx,

p(x, 0) = p0(x) ≥ 0,

limx→{±∞} px(x, t) = 0, limx→{±∞} qx(x, t) = 0,

limt→∞ p(x, t)q(x, t) = 0,

(8)

for (x, t) ∈ R× [0,∞).

Proof : See the Appendix.

The following corollary shows an expected result: consumption per capita is iden-

ticall across locations. Indeed, one could expect homogeneity since the policy maker

does not have any location preference.

Corollary 1 Consumption per capita is spatially homogeneous, i.e. c(x, t) = c(t).

Proof : See the Appendix.

The next step is to prove that our problem is well-posed, in stark contrast to other

papers in spatial economics in continuous time and space. In previous papers the

problem was that of a policy maker maximizing the welfare of a region in a period

of time, where the state variable is always physical capital, k, and there is no other
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production factor and no externality. In the end, the set of Pontryagin conditions is

made of the parabolic PDE for k, a reverse parabolic PDE for its shadow price, q,

plus transversality conditions in space for kx, qx and a terminal condition on pq for

all x ∈ R. As noted in Boucekkine et al. (2008), the resulting system is ill-posed in

the sense of Hadamard: one can prove neither existence nor uniqueness of a solution.

Indeed, in classical growth models without space there exists a unique relationship

between the initial condition and the terminal state of the co-state variable. Hence

the terminal condition helps recover the unique initial condition for the co-state which

makes q satisfy the terminal condition. When we deal with spatial models, the solution

for q at (x, t) depends on its initial distribution q0 through an integral plus an integral

form dependant on the values of k and q:

q(x, t) =

∫
R
q0(x)dx+

∫
R

∫
R+

Q(q, k, c)dxdt.

Consequently, there exist infinite possibilities for q0, that make pq satisfy the terminal

condition.

In the present problem, we have more information that helps us pick a unique

initial distribution for q. Desmet and Hansberg-Rossi (2010) overcome ill-posedness in

a spatial set-up. On the one hand, their agents are myopic solving a static problem at

each moment in time. On the other, they impose more structure to their problem by

means of a cooperative managing aggregated savings. In our setup, the introduction

of a spatially fixed production factor l allows us to show that the solution is unique.

Proposition 3 The problem (4) - (5) is well posed: its solution exists and is unique.

Proof: We prove that although the initial distribution for q, q0(x) = q(x, 0) is not

provided by the first order conditions, it is however unique. We begin by exploiting

the first order condition obtained in the proof of corollary 1:

m(t) =
1

f(x)
Ω2AF (l) (q + n) . (9)

Equation (9) implies that 1
f(x)

Ω2AF (l) (q + n) is independent of x, so that

∂

∂x

(
1

f(x)
Ω2AF (l) (q + u′(c))

)
= 0.
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If A(x) 6= 0,∀x ∈ R and q + u′(c) 6= 0 for all (x, t) then

Ω2AF (q + u′(c))

(
−f ′

f
+

Ω2,3

Ω2

+
Ω2,1

Ω2

px +
Ax
A

+
F ′

F
lx +

qx
q + u′(c)

)
= 0.

Then,
−f ′

f
+

Ω2,3

Ω2

+
Ω2,1

Ω2

px +
Ax
A

+
F ′

F
lx +

qx
q + u′(c)

= 0.

If q + u′(c) = 0, using that q (ΩAF ′ +G′) + u′(c) (ΩAF ′) = 0 (see proof of Propo-

sition 2 in the Appendix), we find that qG′ = 0. Given assumption (A1), this last

equality implies that q = 0, which leads to a corner solution. Let us focus then on the

interior solutions and assume that q + u′(c) 6= 0.

Our next step is to consider the following couple of equations evaluated at t = 0:
−f ′
f

+ Ω2,3

Ω2
+ Ω2,1

Ω2
px + Ax

A
+ F ′

F
lx + qx

q+u′(c)
= 0,

q (ΩAF ′ +G′) + u′(c) (ΩAF ′) = 0,
(10)

where u′(c) = u′
(∫

R Ω(p,P,x)A(x,t)F (l)dx∫
R f(x)dx

)
. We shall first prove that given an initial distri-

bution for p, p0(x) = {p(x, 0) : x ∈ R}, we can obtain from the second equation in (10)

a unique solution of l(x, 0) as a function of q(x, 0), l(q). We replace then l(q) into the

first equation in (10). The argument will end here since we face an ordinary differential

equation with the condition limx→{±∞} qx = 0.

Let us then prove that q (ΩAF ′ +G′) + u′(c) (ΩAF ′) = 0 has a unique solution for

l as a function of q. Let us rewrite the equation as

(q + u′(c))ΩAF ′ = −qG′. (11)

If q > 0, then there is no solution to our problem. This is by no means a problem since

q plays the role of the co-state variable of pollution. As co-state variable of pollution,

we actually expect q to be negative. We focus then on the case of q < 0, for which a

solution to our problem exists. When q+u′(c) < 0 there is no solution to our problem.

There remains the case q + u′(c) > 0. In this case the left hand side of (11) tends to

∞ when l tends to 0 and tends to a constant when l = 1− f(x): liml→0(q + u′(c))ΩAF ′ =∞,

liml→1−f(x)(q + u′(c))ΩAF ′ ∈ R.
(12)
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Similarly, the right hand side of (11) equals a positive constant for l = 0 and tends to

∞ when l tends to 1− f(x): liml→0(−qG′) ∈ R,

liml→1−f(x)(−qG′) =∞.
(13)

Then the two functions (q + u′(c))ΩAF ′ and −qG′ cross at a unique l ∈ (0, 1− f(x)).

�

The existence of a unique solution actually guarantees that the Pontryagin condi-

tions are not only necessary but also sufficient.

5 Numerical exercises

Due to the complexity of the Pontryagin conditions (8), we illustrate the richness of our

model by means of a numerical analysis. Appendix A.4 provides a description of the

computational setting and our algorithm to solve (8). We will focus on the emergence of

spatial patterns. In particular, we study the drivers of spatial heterogeneity, analysing

their persistence in time: are all disparities equally persistant? What are the spatial

differences that do not vanish with time? Can inequality arise in an initially equally

endowed world?

Our numerical exercise is divided in two parts: sections (5.1)-(5.3) consider that

population follows a uniform distribution, while section (5.4) assumes a Gaussian dis-

tribution. The parameter values are provided in Table 1. For illustration purposes we

consider that locations land endowment, L, is equal to 300, and that total population

is equal to 110.4We would like to underline that the values provided in this table aim

at illustrating our model, and they do not correspond to any specific situation since

we shall focus on the qualitative properties of our set-up.

We assume that space is a line of length 5 divided into 500 locations. The time

horizon varies from 10 to 40 depending on the convergence speed of the variables.

Agents preferences are given by a logarithmic utility function. We have a Cobb-Douglas

4Both time horizon and space are finite in numerical exercises. This implies that total population

does not need to be equal to 1 since the integral in the objective function converges in this finite

framework. Therefore, we take advantage of this, increasing both total population and land endowment

in order to enlighten our numerical results.
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B Minimum productivity 0.5

A Max. productivity increase 10

D Cleaning productivity 0.1

ρ Time discount rate 0.05

γ1 P damage 0.005

γ2 p damage 0.005

α Cobb-Douglas parameter 0.75

L Locations’ land endowment 300

p0 Initial pollution at x 100

Total Population 110

Table 1: Parameter values for the numerical exercises.

production function for the final good. The net productivity is B + AΩ(p, P, x) with

Ω(p, P, x) = e−γ2p−γ1Ps(x). Following Weitzman (2009), Ω is an exponential damage

function, taking values in the interval [0, 1]. We consider that local, p, and global

pollution, P , harm productivity, where γ1 and γ2 are constants: for given (p, P ), the

fraction 1−AΩ(p, P, x) represents the foregone productivity at location x. For the sake

of simplicity we assume that both A and B are constant in space and time. Moreover,

s(x) stands for the sensibility of location x to global pollution. Assuming a linear

abatement technology, we have G(l) = Dl.

We consider in all scenarios that initial pollution is uniformly distributed. We

believe of no particular interest the case when the only spatial feature is the initial

distribution of pollution. Obviously, any difference in the initial endowment of pollution

vanishes with time if all other variables are spatially homogeneous.

5.1 The benchmark scenario

We begin our analysis with the benchmark scenario in which population is evenly

distributed on space. It is the objective of this benchmark to underline the tradeoff be-

tween production and abatement. Accordingly, we have chosen a uniform distribution

of population which gives 0.22 people per location. They need 0.22 units of land for

housing which is not critical when total land endowment is 300. We consider the effect

of population agglomeration and the subsequent accrued need for housing in section

13



5.4. We further assume that spatial sensibility to pollution is constant in space, i.e.,

s(x) = 1 for all x. Figure 1 shows the results.

Figure 1: Benchmark scenario.

Given that there are no spatial disparities, it is not surprising that the optimal tra-

jectories are uniform in space. The allocation of land to production starts at its highest

possible level (a corner solution) and it remains at this level until the environmental

damage is large enough. Then land to production is optimally reduced, thus devot-

ing part of the land endowment to abatement. Consumption observes a decreasing

trajectory, reaching a steady state while pollution grows steadily.

The optimal land trajectory attains its steady state after 5 periods. Despite using

2/3 of land to production, the economy cannot keep the initial level of consumption

in the long-run due to the damage caused at the beginning. Both types of pollution

cause everlasting damage that current abatement cannot make disappear completely.

Abatement is used as a stability measure to reach the steady state. Let us study in

the next sections the different ingredients of our model.
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5.2 Role of abatement technology

We consider now a simple case of heterogeneous abatement technology, in which there

exist two regions of equal size. Abatement technology in the first region is equal to

0.2, that is to say, the double of abatement technology in the second region:

D(x) =

{
0.2, if x ∈ [0, 2.5],

0.1, if x ∈ [2.5, 5].

The results are displayed in Figure 2.

Figure 2: Role of abatement technology.

The heterogeneity in abatement induces heterogeneity in land allocation from the

beginning. Indeed, at time zero land to production is a step function, in which the less

advanced region in abatement fully specialises in production (reaching a corner solu-

tion). At the same time, the most advanced region devotes around half its endowment

to production and half to abatement activities. With time, the most advanced region

gets more specialised in abatement due to the increasing levels of pollution. Moreover,

one should also observe that within the advanced region, spatial differences arise. Lo-

cations close to the border with the less advanced region need to devote more land

to abatement in order to alleviate the pollution inflow coming through the frontier.
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Notice that these spatial differences would be magnified if the pollutant under study

moved slower.

As a consequence of the allocation of land, local pollution is heterogenous in space.

All locations in the less advanced region emit the same. However, the closer the location

is to the advanced region, the lower their level of local pollution. The level of local

pollution in the advanced region is also heterogenous due to the inflow from the less

advanced region. Even if the advanced locations at the border devote the largest share

of land to abatement, they end up with the highest pollution level of their region.

Finally, the economy reaches a steady state in all variables. Hence, permanent

differences in abatement technology induce lasting heterogeneity in land allocation

and local pollution.

• Local and global damage

In the previous scenarios, we have considered that both local and global pollution causes

the same damage per unit (i.e., γ1 = γ2). Let us study now the case of contaminants

with only local or global effects.5

When damage is only local, γ1 = 0 in Ω. Since damage does not depend on global

pollution, which is the largest pollutant, total damage is lower than in the previous

case. As a consequence, one can see in Figure 3 that locations do not abate at first.

However, when local pollution gets to a high enough level, the most advanced regions

in abatement start abating. At the end, the economy reaches a steady state, which is

qualitatively identical to the previous case.

Finally, let us consider the situation where the damage is only global (γ2 = 0 in Ω).

Due to the greater pollution damage, the abatement specialisation of the most advanced

region is faster than in the case of a pollutant with only local damage. Nevertheless,

the qualitative behaviour of the optimal trajectories is similar to Figure 3. The only

5The results of these scenarios are qualitatively equivalent to the case of pollutants with a mainly

local (γ2 > γ1) or global (γ2 < γ1) effect. Well-known pollutants with only global effects are CO2

and stratosphere ozone. Air contaminants in general (including tropospheric ozone, NOx, and CO2

plumes) are examples of local pollutants that flow among locations. Moreover, Akimoto (2008) points

out methane and CO as examples of transboundary contaminants with both local and global effects.

In particular, CO affects the oxidizing capacity of the atmosphere, raising the lifetime of greenhouses

and climate change.
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Figure 3: Damage function only depends on local pollution (γ1 = 0).

differences are a faster abatement specialisation and a lower level of both local and

global pollution.

5.3 Spatially heterogeneous damage

In this section we modify the benchmark model considering that the sensibility to

pollution s(x) is heterogenous in space. We study the situation in which s(x) is a step

function so that

s(x) =

{
1, if x ∈ [0, 2.5],

5, if x ∈ [2.5, 5].

This scenario is consistent with the issue of the impact of the sea level rise on coastal

zones (see, among others, Nicholls and Cazenave, 2010; and Nicholls et al., 2011). In

this regard, one can interpret the most sensible region, s(x) = 5, as the coastal area,

while s(x) = 1 would correspond to the inland.

Figure 4 shows that, at the beginning, production is larger in the less sensitive

region. However, soon afterwards, this region reduces the land devoted to production,

becoming spatially homogeneous at the steady-state. This result goes against the à

priori belief that most sensitive regions would produce less in order to preserve their

17



Figure 4: Spatially heterogeneous damage.

environmental quality. Since pollution flows over the space, even regions with non-

existent or little production will experience positive levels of local pollution. Therefore,

the less sensitive regions optimally reduce their production and devote some land to

abatement. Moreover, if the most sensitive regions had been endowed with better

abatement technology, then they would have devoted more land to abatement relatively

to the less sensitive region.

5.4 The effect of population agglomeration

We assume in this section that population is normally distributed over the interval

[0, 5], that is, population agglomerates around x = 2.5. In order to underline the effect

of population agglomeration, we increase total population to 10,500. Population in

x = 2.5 is almost 130. Notice that although locations’ land endowment is still equal

to 300, the part of L devoted to housing in the central area is much larger than in the

previous subsections due to accrued population.6 In the areas neighbouring the center,

6Although the increase in total population is sizeable, a homogenous distribution of 10,500 people

over 500 locations would imply 21 individuals per location. 21 individuals would need 21 units of land

for housing, which is still a small figure with respect to the location’s land endowment.
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the weight of population is similar to that in the benchmark scenario.

Figure 5: The role of population agglomeration (normal distribution).

We present two exercises. In the first one we compare the optimal trajectories

under this population agglomeration with the benchmark scenario. Figure 5 shows

that, due to concentrated population, locations in the central area cannot devote as

much land to production as locations at the far ends. This means that agglomerations

optimally “import” most of their consumption from the neighbouring areas, which are

more specialised in production.

One could think then that agglomerations would be less polluted locally since most

of their consumption comes from the periphery and housing does not pollute in this

model. However, by the same token, agglomerations devote less land to abatement than

the rest of locations. As a result, we observe an heterogeneous distribution not only

of land, but also of local pollution. Even if local pollution tends to be homogeneous

in space with time, slight spatial disparities persist since agglomerations cannot abate

pollution coming from neighbouring regions.7

7Considering pollution due to housing and/or transportation would amplify this effect. Besides,

these additional sources of pollution may have interesting implications, in particular if labour is a

spatially mobile production factor. However, this is beyond the scope of this paper and we leave it

for future research.
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Figure 6: Normally distributed population with abatement productivity doubling.

Our last point above is reinforced in Figure 6, where we increase abatement pro-

ductivity (D) from 0.1 to 0.2 in all locations. In effect, both local and global pollution

decrease in levels, but the spatial disparities are amplified. Moreover, due to the lower

level of pollution, consumption per capita rises in the long-term. Finally, in contrast

to the previous case, one should observe that all variables reach a steady state, which

is characterized by lasting heterogeneity in land allocation and local pollution. As in

Section 5.2, this result points out the role of abatement as pollution stabilizer, which

enhances consumption and enables the economy to reach a stable steady state.

6 Concluding Remarks

Building on the Spatial Ramsey model introduced by Brito (2004) and Boucekkine et

al. (2009), we propose in this paper a model to study optimal land use, encompassing

land use activities, pollution and climate change. This benchmark set-up allows us

to identify the spatial drivers behind the interaction between land use and the envi-

ronment. Although land is spatially immobile by nature, location’s actions affect the

whole space through pollution and climate change. Indeed, we assume that pollution

flows across locations resulting in both local and global damage. In particular, we

20



illustrate this diffusion mechanism by means of considering the well-known Gaussian

Plume equation.

In contrast to Boucekkine et al. (2009), Brock and Xepapadeas (2008a,b and

2010), and Xepapadeas (2010), we prove that the social optimum problem is well-

posed. Therefore, the corresponding Pontryagin conditions are necessary are sufficient.

Additionally, we illustrate the richness of our model adding a numerical analysis. In

this regard, we adapt the algorithm developed in Camacho et al. (2008). This is an

alternative method to the linear quadratic approximation of Brock and Xepapadeas

(2008a,b and 2010), and Xepapadeas (2010), which allows us to provide global dynam-

ics results.

In a near future, we would like to extend our benchmark set-up in several directions.

From an empirical perspective, we will study the pertinence of our damage function, the

role of local and global pollution and spatial sensitiveness. There are two theoretical

extensions that seem extremely interesting. First, as stressed in Footnote 2, we would

add to our Gaussian plume the effect of advection due to, for instance, wind or water

stream. Second, the introduction of human capital would allow us to study migration

flows induced by climate change (see, for instance, Marchiori and Schumacher, 2011).
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A Appendix

A.1 Proposition 1 proof

We shall proof that the system of partial differential equations constraining the policy

maker’s objective function has a unique solution for every choice of feasible functions

(c, l). This proves the existence of at least a solution to the policy maker’s problem.

First, we shall convert the set of constraints into a system of parabolic differential

equations.

First, notice that we can take the derivative of P with respect to t and we use the

law of motion for p in P to obtain:

Pt(t) =

∫
R
pt(x, t)dx =

∫
R

(pxx(x, t) + Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))) dx,

which implies that

Pt(t) = px(x, t)|x→∞ − px(x, t)|x→−∞ +

∫
R

[Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))] dx,

since limx→±∞ px(x, t) = 0, we have that

Pt(t) =

∫
R

[Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))] dx. (A.1)

Our initial set of constraints can be written as a system of parabolic equations. Indeed,

we can interpret (A.1) as a partial differential equation, with the second order oper-

ator equal to zero. We would need to artifitially transform P into a two dimensional

function, P (x, t) ≡ P (t), ∀x ∈ [0, R]. Then:

(P’)



pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),

Pt(x, t) =
∫
R+ [Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))] dx,

p(x, 0) = p0(x) ≥ 0,

limx→±∞ px(x, t) = 0,

P (x, 0) =
∫
R p0(x)dx,

limx→±∞ Px(x, t) = 0,

(A.2)

for all (x, t) ∈ R × R+. Pao (1992) proves the existence of a solution to finite inte-

groparabolic systems after transforming the integral term in each dynamic equation.
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We proceed to the following change of variable Π(x, t) = e−γtP (x, t) and we obtain:

Π(x, t)t + γΠ(x, t) = e−γt
∫
R

[
Ω(p, eγtΠ, x)A(x, t)F (l(x, t))−G(1− l − f(x))

]
dx.

Then, we define function π(t) as

π(t) = e−γt
∫
R

[
Ω(p, eγtΠ, x)A(x, t)F (l(x, t))−G(1− l − f(x))

]
dx.

Notice that since the integrand is globally Lipschitz continuous, so it is function π. We

have to study now the existence of solution of the following system of equations:

pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),

Πt(x, t) + γΠ(x, t) = π(t),

p(x, 0) = p0(x) ≥ 0, limx→±∞
∂p(x,t)
∂x

= 0,

Π(x, 0) =
∫
R p0(x)dx,

limx→±∞Πx(x, t) = 0,

(A.3)

We can then apply Theorem 12.1 in Chapter 8 in Pao (1992) to ensure the existence

of a unique solution to the system of parabolic equations for every choice of the couple

(l, c).

A.2 Proposition 2 proof

We can take the first order derivative of the value function V with respect to ε, the

size of the deviation. There is a main difference with the literature in spatial growth

in continuous space which emanates from the diffusion factor. Indeed, in the present

model we have that:

∫ T
0

∫
R q(x, t)pxx(x, t)dxdt =

∫
R+ q(x, t)px(x, t)|R0 dt−

∫
R+ qx(x, t)p(x, t)|∞−∞dt+

+
∫
R+

∫
R qxx(x, t)p(x, t)dxdt,

(A.4)

and as usual:

∫
R+

∫
R
q(x, t)pt(x, t)dxdt =

∫
R
p(x, t)q(x, t)|∞0 −

∫
R

∫
R
p(x, t)qt(x, t)dxdt.
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We then obtain:

∂V (c,l,p,P )
∂ε =

=
∫
R+

∫
R u
′(c(x, t))f(x)g(t)κ(x, t)dxdt−

∫
R+

∫
R g(t)π(x, t) [qt(x, t) + qxx(x, t)]−

−
∫
R+

∫
R g(t)q(x, t) [π(x, t)− Ω1(p, P, x)A(x, t)F (l(x, t))π(x, t)] dxdt−

+
∫
R+

∫
R g(t)q(x, t) [Ω2(p, P, x)A(x, t)F (l(x, t))Π(t) + Ω(p, P, x)A(x, t)F ′(l(x, t))L(x, t)] dxdt+

+
∫
R+

∫
R g(t)q(x, t)G′(1− l − f(x))L(x, t)dxdt

−
∫
R+ m(t)g(t)

(
Π(t)−

∫
R π(x, t)dx

)
dt

−
∫
R+ n(t)g(t)

(∫
R κ(t)f(x)dx

)
dt+

+
∫
R+ n(t)g(t)

(∫
R [Ω1(p, P, x)AF (l)π + Ω2(p, P, x)AF (l)Π + Ω(p, P, x)AF ′(l)L] dx

)
dt.

To obtain the necessary conditions, we can group the elements multiplying κ, π,

L and P and equate them to zero. If all factors multiplying deviations from optimal

values for c, p, P and l are equal to zero, we obtain that the deviation ε is optimal, i.e.
∂V
∂ε

= 0. We would need then:


κ : u′(c) = n(t)

π : qt + qx,x = (q + n) Ω1AF (l) +m,

Π : m(t) = RΩ2AF (l) (q + n) ,

L : q (ΩAF ′ +G′) + n(t) (ΩAF ′) = 0.

(A.5)

To these conditions, we need to add the following transversality conditions:{
limx→±∞ qx = 0,

limt→∞ pq = 0.

We obtain the final version of the first order conditions substitutingm(t) byRΩ2AF (l) (q + n)

into the dynamic equation for q.

A.3 Corollary 1 proof

We can read in the first equation of (A.5) in the previous proof that u′(c(x, t)) =

n(t),∀(x, t). Hence, neither u′(c(x, t)) nor c(x, t) depend on space.
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A.4 Computational Setting

Since the time horizon is finite, we can reverse time in the equation describing the

dynamic behaviour of q in time and space in (A.3). Calling h(x, t) := q(x, T − t), we

obtain the following system of parabolic differential equations where we have removed

the independent variables (x, t) for simplicity reasons. For these reasons, let us denote

by p′ but we have kept them when time was reversed:

pt − pxx = Ω(p, P, x)AF (l)−G(1− l − f),

ht − hxx =

= − [Ω1(p(x, T − t), P (x, T − t), x) +RΩ2(p(x, T − t), P (x, T − t), x)]×

×AF (l) [u′(c(T − t)) + h] ,

[u′(c) + h(x, T − t)] Ω(p, P, x)AF ′(l) + h(x, T − t)G′(1− l − f) = 0,

c(t) =
∫ T
0

∫
R Ω(p,P,x)AF (l)dsdt∫

R f(s)ds
,

P (t) =
∫
R pdx,

p(x, 0) = p0(x) ≥ 0,

limx→{0,R} px(x, t) = 0,

limx→{0,R} hx(x, t) = 0,

limt→T p(x, t)h(x, T − t) = 0,

(A.6)

for (x, t) ∈ [0, S] × [0, T ]. We simulate the system above using a finite difference

approximation. The idea of this method is to replace the second derivative with respect

to space with a central difference quotient in x, and replace the derivative with respect

to time with a forward difference in time. In order to implement this approximation

we need to set up a grid in our space [0, R]× [0, T ]. The points in this grid are couples

(j∆x, n∆t) for j = 0, 1, ..., J and n = 1, 2, ..., N , where J ∗∆x = R and N ∗∆t = T .

Then, if v is a function defined on the grid, we write v(j∆x, n∆t) = vnj .

As an example, we provide an example. If we want to use a finite difference ap-

proximation for the parabolic differential equation ∂v
∂t

= ∂2v
∂x2

, we write:8

8This method is called the implicit finite difference approximation. Other approximation schemes

exist but the implicit one is unconditionally stable, meaning that it is stable without restrictions on

the relative size of ∆t and ∆x. It also allows us to use a larger time step and to save this way

computational time.

29



vn+1
j − vnj

∆t
=

1

∆x2

(
vn+1
j+1 − 2vn+1

j + vn+1
j−1

)
. (A.7)

We can write (A.6) as

pn+1
j − pnj

∆t
− 1

∆x2

(
pn+1
j+1 − 2pn+1

j + pn+1
j−1

)
= Ω(pnj , P

n
j , j)AF (lnj )−G(1− lnj −fnj ), (A.8)

hn+1
j − hnj

∆t
− 1

∆x2

(
hn+1
j+1 − 2hn+1

j + hn+1
j−1

)
= (A.9)

= −
(
Ω1(pT−nj , P T−n

j , j) +RΩ2(pT−nj , P T−n
j , j)

)
AF (lT−nj )

[
u′(cT−n) + h(x, t)

]
,

(A.10)

[
u′(cn) + hT−nj

]
Ω(pnj , P

n
j , j)AF

′(lnj ) + hT−nj G′(1− l − fnj ) = 0, (A.11)

with P n =
∑J

j=0 p
n
j and cn =

∑J
j=0(Ω(pnj ,P

n
j ,j)AF (lnj ))∑J

j=0 f(j)
.

To these equations, we add the border conditions pnJ−1 = pnJ and hnJ−1 = hnJ , ∀n =

1, 2, ..., N and the definition of P .

A.4.1 The algorithm

We adapt the algorithm developed in Camacho et al. (2008) to problem (A.6). There

are some differences: we need an initial guess for matrix {hnj }n=1...N
j=1...J . Depending on

this guess, we obtain a land distribution {lnj }n=1...N
j=1...J and then a first approximation

to consumption. To improve the convergence speed we run an intermediate loop to

improve the initial guess for c and l.

In order to reduce the computational load, we compute P n =
∑J

j=0 p
n−1
j . Although

this is just an approximation, we underline that since P is a continuous function, the

distance between P (t) and P (t−∆t) is infinitesimal. In the same manner, we compute

cn =
∑J

j=0(Ω(pn−1
j ,Pn

j ,j)AF (lnj ))∑J
j=0 f(j)

.
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Step 1: Initialization

We choose an initial distribution for air pollution p0 = {p0,j}, land allocation

l0 = {l0,j} and three stopping parameters εi for i = 1, 2, 3. We compute P 0 =∑J
j=0 p

0
j . We assume an initial guess for {h′nj }n=1...N

j=1...J .

Step 2: Iteration

We repeat the following scheme until the euclidean distance between two consec-

utive matrices q is smaller than ε1 or until the number of iterations equals a fixed

number K.

For every n = 1, ..., N and given pn−1, ln−1, Pn−1, we compute

cn =

∑J
j=0

(
Ω(pn−1

j , P n
j , j)AF (ln−1

j )
)∑J

j=0 f(j)
.

Step 2.1: Improvement of the first guess

With cn and the guess {h′nj }{j=1,...,J}, using (A.11), we obtain a guess for

{lnj }. We recompute cn with {lnj } instead of {ln−1
j }. We iterate the process

until the euclidean distance between two consecutive outcomes for cn is

smaller than ε2.

Step 2.2: Upwind

At every n we compute pjn for j = 1, ..., J with the resulting cn and {lnj }, us-

ing the upwind algorithm applied to equation (A.10). Then, using (A.10) we

compute a new guess for {hnj }n=1...N
j=1...J and compute its distance to {h′nj }n=1...N

j=1...J .

If the distance is smaller than ε3, then STOP. If not, we repeat Step 2.
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