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Abstract We consider a multi-armed bandit problem in a setting
where each arm produces a noisy reward realization which depends
on an observable random covariate. As opposed to the traditional
static multi-armed bandit problem, this setting allows for dynami-
cally changing rewards that better describe applications where side
information is available. We adopt a nonparametric model where the
expected rewards are smooth functions of the covariate and where the
hardness of the problem is captured by a margin parameter. To max-
imize the expected cumulative reward, we introduce a policy called
Adaptively Binned Successive Elimination (abse) that adaptively de-
composes the global problem into suitably “localized” static bandit
problems. This policy constructs an adaptive partition using a vari-
ant of the Successive Elimination (se) policy. Our results include
sharper regret bounds for the se policy in a static bandit problem
and minimax optimal regret bounds for the abse policy in the dy-
namic problem.

1. Introduction. The seminal paper [19] introduced an important class
of sequential optimization problems, otherwise known as multi–armed ban-
dits. These models have since been used extensively in such fields as statis-
tics, operations research, engineering, computer science and economics. The
traditional multi–armed bandit problem can be described as follows. Con-
sider K ≥ 2 statistical populations (arms), where at each point in time it is
possible to sample from (pull) only one of them and receive a random reward
dictated by the properties of the sampled population. The objective is to
devise a sampling policy that maximizes expected cumulative rewards over
a finite time horizon. The difference between the performance of a given
sampling policy and that of an oracle, that repeatedly samples from the
population with the highest mean reward, is called the regret. Thus, one can
re-phrase the objective as minimizing the regret.
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2 PERCHET AND RIGOLLET

When the populations being sampled are homogenous, i.e., when the se-
quential rewards are independent and identically distributed (iid) in each
arm, the family of upper-confidence-bound (UCB) policies, introduced in
[14], incur a regret of order log n, where n is the length of the time horizon,
and no other “good” policy can (asymptotically) achieve a smaller regret;
see also [4]. The elegance of the theory and sharp results developed in [14]
hinge to a large extent on the assumption of homogenous populations and
hence identically distributed rewards. This, however, is clearly too restrictive
for many applications of interest. Often, the decision maker observes further
information and based on that, a more customized allocation can be made.
In such settings, rewards may still be assumed to be independent, but no
longer identically distributed in each arm. A particular way to encode this
is to allow for an exogenous variable (a covariate) that affects the rewards
generated by each arm at each point in time when this arm is pulled.

Such a formulation was first introduced in [24] under parametric assump-
tions and in a somewhat restricted setting; see [9, 10] and [23] for very
different recent approaches to the study of such bandit problems, as well as
references therein for further links to antecedent literature. The first work
to venture outside the realm of parametric modeling assumptions appeared
in [25]. In particular, the mean response in each arm, conditionally on the
covariate value, was assumed to follow a general functional form, hence one
can view their setting as a nonparametric bandit problem. They propose a
variant of the ε-greedy policy, see, e.g., [4] and show that the average regret
tends to zero as the time horizon n grows to infinity. However, it is unclear
whether this policy satisfy a more refined notion of optimality, insofar as
the magnitude of the regret is concerned, as is the case for UCB-type poli-
cies in traditional bandit problems. Such questions were partially addressed
in [18] where near-optimal bounds on the regret are proved in the case of a
two-armed bandit problem under only two assumptions on the underlying
functional form that governs the arms’ responses. The first is a mild smooth-
ness condition and the second is a so-called margin condition that involves
a margin parameter which encodes the “separation” between the functions
that describe the arms’ responses.

The purpose of the present paper is to extend the setup of [18] to the K-
armed bandit problem with covariates when K may be large. This involves
a customized definition of the margin assumption. Moreover, the bounds
proved in [18] suffered two deficiencies. First, they hold only for a limited
range of values of the margin parameter and second, the upper bounds and
the lower bounds mismatch by a logarithmic factor. Improving upon these
results requires radically new ideas. To that end, we introduce three policies:
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BANDITS WITH COVARIATES 3

1. Successive Elimination (se) is dedicated to the static bandit case. It is
the cornerstone of the others policies that deal with covariates. During
a first phase, this policy explores the different arms, builds estimates
and eliminates sequentially suboptimal arms; when only one arm re-
mains, it is pulled until the horizon is reached. A variant of se was
originally introduced in [8]. However, it was not tuned to minimize
the regret as other measures of performance were investigated in this
paper. We prove new regret bounds for this policy that improve upon
the canonical papers [14] and [4].

2. Binned Successive Elimination (bse) follows a simple principle to solve
the problem with covariates. It consists in grouping similar covariates
into bins and then look only at the average reward over each bin.
These bins are viewed as indexing “local” bandit problems, solved
by the aforementioned se policy. We prove optimal regret bounds,
polynomial in the horizon but only for a restricted class of difficult
problems. For the remaining class of easy problems, the bse policy is
suboptimal.

3. Adaptively Binned Successive Elimination (abse) overcomes a severe
limitation of the naive bse. Indeed, if the problem is globally easy (this
is characterized by the margin condition), the bse policy employes a
fixed and too fine discretization of the covariate space. Instead, the
abse policy partitions the space of covariates in a fashion that adapts
to the local difficulty of the problem: cells are smaller when different
arms are hard to distinguish and bigger when one arm dominates the
other. This adaptive partitioning allows us to prove optimal regrets
bounds for the whole class of problems.

The optimal polynomial regret bounds that we prove are much larger than
the logarithmic bounds proved in the static case. Nevertheless, it is impor-
tant to keep in mind that they are valid for a much more flexible model that
incorporates covariates. In the particular case where K = 2 and the prob-
lem is difficult, these bounds improve upon the results of [18] by removing
a logarithmic factor that is idiosyncratic to the exploration vs. exploitation
dilemma encountered in bandit problems. Moreover, it follows immediately
from the previous minimax lower bounds of [3] and [18], that these bounds
are optimal in a minimax sense and thus cannot be further improved. It
reveals an interesting and somewhat surprising phenomenon: the price to
pay for the partial information in the bandit problem is dominated by the
price to pay for nonparametric estimation. Indeed the bound on the regret
that we obtain in the bandit setup for K = 2 is of the same order as the
best attainable bound in the full information case, where at each round, the
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4 PERCHET AND RIGOLLET

operator receives the reward from only one arm but observes the rewards of
both arms. An important example of the full information case is sequential
binary classification.

Our policies for the problem with covariates fall into the family of “plug-
in” policies as opposed “minimum contrast” policies; a detailed account of
the differences and similarities between these two setups in the full informa-
tion case can be found in [3]. Minimum contrast type policies have already
received some attention in the bandit literature with side information, aka
contextual bandits, in the papers [15] and also [13]. A related problem online
convex optimization with side information was studied in [11], where the
authors use a discretization technique similar to the one employed in this
paper. It is worth noting that the cumulative regret in these papers is de-
fined in a weaker form compared to the traditional bandit literature, since
the cumulative reward of a proposed policy is compared to that of the best
policy in a certain restricted class of policies. Therefore, bounds on the re-
gret depend, among other things, on the complexity of said class of policies.
Plug-in type policies have received attention in the context of the continuum
armed bandit problem, where as the name suggests there are uncountably
many arms. Notable entries in that stream of work are [16] and [20], who
impose a smoothness condition both on the space of arms and the space of
covariates, obtaining optimal regret bounds up to logarithmic terms.

2. Improved regret bounds for the static problem. In this sec-
tion, it will be convenient for notational purposes, to consider a multi-armed
bandit problem with K + 1 arms.

We revisit the Successive Elimination (se) policy introduced in [8] in the
traditional setup of multi-armed bandit problems. As opposed to the more
popular UCB policy (see, e.g., [4, 14]), it allows us in the next section, to
construct an adaptive partition that is crucial to attain optimal rates on
the regret for the dynamic case with covariates. In this section, we prove
refined regret bounds for the se policy that exhibit a better dependence on
the expected rewards of the arms compared to the bounds for UCB that
were derived in [4]. Such an improvement was recently attempted in [5] and
also in [1] for modified UCB policies and we compare these results to ours
below.

Let us recall the traditional setup for the static multi-armed bandit prob-
lem (see, e.g., [4]). Let I = {1, . . . ,K + 1} be a given set of K + 1 ≥ 2

arms. Successive pulls of arm i ∈ I yield rewards Y
(i)
1 , Y

(i)
2 , . . . that are iid

random variables in [0, 1] with expectation given by IE[Y
(i)
t ] = f (i) ∈ [0, 1].

Assume without loss of generality that f (1) ≤ · · · ≤ f (K+1) so that K + 1
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BANDITS WITH COVARIATES 5

is one of the best arms. For simplicity, we further assume that the best
arm is unique since for the se policy, having multiple optimal arms only
improves the regret bound. In the analysis, it is convenient to denote this
optimal arm by ∗ := K + 1 and to define the gaps traditionally denoted by
∆1 ≥ . . . ≥ ∆∗ = 0, by ∆i = f (∗) − f (i) ≥ 0.

A policy π = {πt} is a sequence of random variables πt ∈ {1, . . . ,K + 1}
indicating which arm to pull at each time t = 1, . . . n, and such that πt
depends only on observations strictly anterior to t.

The performance of a policy π is measured by its (cumulative) regret at
time n defined by

Rn(π) :=

n∑

t=1

(
f (∗) − f (πt)

)
.

Note that for a data-driven policy π̂, this quantity is random and, in the rest
of the paper, we provide upper bounds on IER(π̂). Such bounds are referred
to as regret bounds.

We begin with a high-level description of the se policy denoted by π̂. It
operates in rounds that are different from the decision times t = 1, . . . , n. At
the beginning of each round τ , a subset of the arms has been eliminated and
only a subset Iτ remains. During round τ , each arm in Iτ is pulled exactly
once (Exploration). At the end of the round, for each remaining arm in
Iτ , we decide whether to eliminate it using a simple statistical hypothesis
test: if we conclude that its mean is significantly smaller than the mean of
any remaining arm, then we eliminate this arm and we keep it otherwise
(Elimination). We repeat this procedure until n pulls have been made.
The number of rounds is random but obviously smaller than n.

The se policy, which is parameterized by two quantities T ∈ IN and γ > 0
and described in Policy 1, outputs an infinite sequence of arms π̂1, π̂2, . . .
without a prescribed horizon. Of course, it can be truncated at any horizon
n. This description emphasizes the fact that the policy can be implemented
without perfect knowledge of the horizon n and in particular, when the
horizon is a random variable with expected value n; Nevertheless, in the
static case, it is manifest from our result that, when the horizon is known
to be n, choosing T = n is always the best choice when possible and that
other choices may lead to suboptimal results.

Note that after the exploration phase of each round τ = 1, 2, . . . , each
remaining arm i ∈ Iτ has been pulled exactly τ times, generating rewards

Y
(i)
1 , . . . , Y

(i)
τ . Denote by Ȳ (i)(τ) the average reward collected from arm i ∈

Iτ at round τ that is defined by Ȳ (i)(τ) = (1/τ)
∑τ

t=1 Y
(i)
τ , where here and

throughout this paper, we use the convention 1/0 = ∞. In the rest of the
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6 PERCHET AND RIGOLLET

paper, log denotes the natural logarithm and log(x) = log(x) ∨ 1. For any
positive integer T , define also

(2.1) U(τ, T ) = 2

√
2 log

(
T
τ

)

τ
,

which is essentially a high probability upper bound on the magnitude of
deviations of Ȳ (j)(τ)− Ȳ (i)(τ) from its mean f (j) − f (i).

The se policy for a K-armed bandit problem can be implemented accord-
ing to the pseudo-code of Policy 1. Note that, to ease the presentation of
Sections 4 and 5, the se policy also returns at each time t, the number of
rounds τ̂t completed at time t and a subset Ît ∈ P(I) of arms that are active
at time t, where P(I) denotes the power set of I.

Policy 1 Successive Elimination (se)

Input: Set of arms I = {1, . . . ,K}; Parameters T, γ; Horizon n.
Output: (π̂1, τ̂1, Î1), (π̂2, τ̂2, Î2), · · · ∈ I × IN× P(I).

τ ← 1, S ← I, t← 0, Ȳ ← (0, . . . , 0) ∈ [0, 1]K

loop

Ȳ max ← max{Ȳ (i) : i ∈ S}
for i ∈ S do

if Ȳ (i) ≥ Ȳ max − γU(τ, T ) then
t← t+ 1
π̂t ← i (observe Y (i)) Exploration

Ît ← S, τ̂t ← τ

Ȳ (i) ← 1
τ
[(τ − 1)Ȳ (i) + Y (i)]

else

S ← S \ {i}. Elimination

end if

end for

τ ← τ + 1.
end loop

The following theorem gives a first upper bound on the expected regret
of the se policy.

Theorem 2.1. Consider a (K+1)-armed bandit problem where horizon
is a random variable N of expectation n that is independent of the ran-
dom rewards. When implemented with parameters T, γ ≥ 1, the se policy π̂
exhibits an expected regret bounded, for any ∆ ≥ 0, as

IE[RN (π̂)] ≤ 392γ2
(
1 +

n

T

) K

∆
log

(
T∆2

18γ2

)
+ n∆− ,

where ∆− is the largest ∆j such that ∆j < ∆ if it exists, otherwise ∆− = 0.
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BANDITS WITH COVARIATES 7

Proof. Assume without loss of generality that ∆j > 0, for j ≥ 1 since
arms j such that j = 0 do not contribute to the regret. Define ετ = U(τ, T ).
Moreover, for any i in the set Iτ of arms that remain active at the beginning
of round τ , define ∆̂i(τ) := Ȳ (∗)(τ)−Ȳ (i)(τ). Recall that, at round τ , if arms
i, ∗ ∈ Iτ , then (i) the optimal arm ∗ eliminates arm i if ∆̂i(τ) ≥ γετ and (ii)
arm i eliminates arm ∗ if ∆̂i(τ) ≤ −γετ .

Since ∆̂i(τ) estimates ∆i, the event in (i) happens approximately, when
γετ ≃ ∆i, so we introduce the deterministic, but unknown, quantity τ∗i (and
its approximation τi = ⌈τ∗i ⌉) defined as the solution of:

∆i =
3

2
γετ∗i = 3γ

√
2

τ∗i
log

(
T

τ∗i

)
, so that τi ≤ τ∗i +1 ≤ 18γ2

∆2
i

log

(
T∆2

i

18γ2

)
+1

Note that 1 ≤ τ1 ≤ . . . ≤ τK as well as the bound:

(2.2) τi ≤
19γ2

∆2
i

log

(
T∆2

i

18γ2

)
.

We are going to decompose the regret accumulated by a suboptimal arm i
into three quantities:

– the regret accumulated by pulling this arm at most until round τi: this
regret is smaller than τi∆i ;

– the regret accumulated by eliminating the optimal arm ∗ between
round τi−1 + 1 and τi,

– the regret induced if arm i is still present at round τi (and in particular,
if it has not been eliminated by the optimal arm ∗).

We prove that the second and third events happen with small probability,
because of the choice of τi. Formally, define the following good events:

Ai = {The arm ∗ has not been eliminated before round τi} ,
Bi = {Every arm j ∈ {1, . . . , i} has been eliminated before round τj} .

Moreover, define Ci = Ai∩Bi and observe that C1 ⊇ C2 ⊇ · · · ⊇ CK . For any
i = 1, . . . ,K, the contribution to the regret incurred after time τi on Ci is
at most N∆i+1 since each pull of arm j ≥ i+1 contributes to the regret by
∆j ≤ ∆i+1. We decompose the underlying sample space denoted by C0 into
the disjoint union (C0 \C1)∪· · ·∪ (CK0−1 \CK0)∪CK0 where K0 ∈ {1, . . . ,K}
is chosen later. It implies the following decomposition of the expected regret:

(2.3) IERN (π̂) ≤
K0∑

i=1

n∆iIP(Ci−1 \ Ci) +
K0∑

i=1

τi∆i + n∆K0+1 .
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8 PERCHET AND RIGOLLET

Define by Ac the complement of an event A. Note that the first term on the
right-hand side of the above inequality can be decomposed as follows
(2.4)
K0∑

i=1

n∆iIP(Ci−1 \ Ci) = n

K0∑

i=1

∆iIP(Ac
i ∩ Ci−1) + n

K0∑

i=1

∆iIP(Bc
i ∩ Ai ∩ Bi−1) ,

where the right-hand side was obtained using the decomposition Cc
i = Ac

i ∪
(Bc

i ∩ Ai) and the fact that Ai ⊆ Ai−1.
From Hoeffding’s inequality, we have that for every τ ≥ 1:

(2.5)

IP
(
∆̂i(τ) < γετ

)
= IP

(
∆̂i(τ)−∆i < γετ −∆i

)
≤ exp

(
−τ(∆i − γετ )

2

2

)
.

On the event Bc
i ∩Ai∩Bi−1, arm ∗ has not eliminated arm i at τi. Therefore

IP(Bc
i ∩Ai∩Bi−1) ≤ IP(∆̂i(τi) < γετi). Together with the above display with

τ = τi, it yields

(2.6) IP(Bc
i ∩ Ai ∩ Bi−1) ≤ exp

(
−τiγ

2ε2τi
8

)
≤
(
1

e
∧ τi

T

)γ2

≤ τi
T

,

where we used the fact that ∆i ≥ (3/2)γετi .
It remains to bound the first term in the rhs of (2.4). On the event Ci−1,

the optimal arm ∗ has not been eliminated before round τi−1 but every
suboptimal arm j ≤ i − 1 has. So the probability that there exists an arm
j ≥ i that eliminates ∗ between τi−1 and τi can be bounded as

IP(Ac
i ∩ Ci−1) ≤ IP(∃(j, s) , i ≤ j ≤ K , τi−1 + 1 ≤ s ≤ τi; ∆̂j(s) ≤ −γεs)

≤
K∑

j=i

IP(∃ s , τi−1 + 1 ≤ s ≤ τi; ∆̂j(s) ≤ −γεs)

=
K∑

j=i

[Φj(τi)− Φj(τi−1)]

where Φj(τ) = IP
(
∃s ≤ τ ; ∆̂j(s) ≤ −γεs

)
. Using Lemma A.1, we get
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BANDITS WITH COVARIATES 9

Φj(τ) ≤ 4τ/T . This bound implies that

K0∑

i=1

∆iIP(Ac
i ∩ Ci−1) ≤

K0∑

i=1

∆i

K∑

j=i

[Φj(τi)− Φj(τi−1)]

≤
K∑

j=1

j∧K0−1∑

i=1

Φj(τi)
(
∆i −∆i+1

)
+

K∑

j=1

Φj∧K0(τj∧K0)∆j∧K0

≤ 4

T

K∑

j=1

j∧K0−1∑

i=1

τi

(
∆i −∆i+1

)
+

4

T

K∑

j=1

τj∧K0∆j∧K0 .

Using (2.2) and ∆i+1 ≤ ∆i, the first sum can be bounded as :

K∑

j=1

j∧K0−1∑

i=1

τi

(
∆i −∆i+1

)
≤ 19γ2

K∑

j=1

j∧K0−1∑

i=1

log

(
T∆2

i

18γ2

)
∆i −∆i+1

∆2
i

≤ 19γ2
K∑

j=1

∫ ∆1

∆j∧K0

log

(
Tx2

18γ2

)
dx

x2

≤ 19γ2
K∑

j=1

1

∆j∧K0

[
log

(
T∆2

j∧K0

18γ2

)
+ 2

]
.

The previous two displays together with (2.2) yield

K0∑

i=1

∆iIP
(
Ac

i ∩ Ci−1

)
≤ 304γ2

T

K∑

j=1

1

∆j∧K0

log

(
T∆2

j∧K0

18γ2

)
.

Putting together (2.3), (2.4), (2.6) and the above display yield that the
expected regret IERN (π̂)of the se policy is bounded above by
(2.7)

323γ2
(
1+

n

T

) K0∑

i=1

1

∆i
log

(
n∆2

i

18γ2

)
+304

γ2n

T

K −K0

∆K0

log

(
n∆2

K0

18γ2

)
+n∆K0+1 .

Fix ∆ ≥ 0 and let K0 be such that ∆K0+1 = ∆−. An easy study of the
variations of the function

x 7→ φ(x) =
1

x
log

(
nx2

18γ2

)
, x > 0

reveals that φ(x) ≤ (2e−1/2)φ(x′) for any x ≥ x′ ≥ 0. Using this bound
Equation (2.7) with x′ = ∆i, i ≤ K0 and x = ∆ completes the proof.
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10 PERCHET AND RIGOLLET

The following corollary is a obtain from a slight variations on the proof
of Theorem 2.1. It allows us to better compare our results to the extant
literature.

Corollary 2.1. Under the setup of Theorem 2.1, the se policy π̂ run
with parameter T = n and γ = 1 satisfies for any K0 ≤ K,

(2.8) IERN (π̂) ≤ 646

K0∑

i=1

log
(
n∆2

i

)

∆i
+ 304

K −K0

∆K0

log
(
n∆2

K0

)
+ n∆K0+1 .

In particular,

(2.9) IERN (π̂) ≤ min

{
646

K∑

i=1

log
(
n∆2

i

)

∆i
, 166

√
nK log(K)

}
.

Proof. Note that (2.8) follows from (2.7). To prove (2.9), take K0 = K
in (2.8) and ∆ = 28

√
K log(784K/18)/n in Theorem 2.1 respectively.

This corollary is actually closer to the result of [5]. The additional second
term in our bound comes from the fact that we had to take into account
the probability that an optimal arm ∗ can be eliminated by any arm, not
just by some suboptimal arm with index lower than K0 (see [5], page 8). It
is unclear why it is enough to look at the elimination by those arms, since
if ∗ is eliminated – no matter the arm that eliminated it –, the Hoeffding
bound (2.5) no longer holds.

The right-hand side of (2.9) is the minimum of two terms. The first term is
distribution-dependent and shows that the se policy adapts to the unknown
distribution of the rewards. It is very much in the spirit of the original bound
of [14] and of the more recent finite sample result of [4]. Our bound for the
se policy is smaller than the aforementioned bounds for the UCB policy by
a logarithmic factor. [14] did not provide the first bounds on the expected
regret. Indeed, [22] and [6] had previously derived what is often called gap-
free bound as they hold uniformly over the ∆i’s. The second term in our
bound is such a gap-free bound. It is of secondary interest in this paper and
arise as a byproduct of refined distribution dependent bound. Nevertheless,
it allows us to recover near optimal bounds of the same order as [12]. They
depart from optimal rates by a factor

√
logK as proved in [1]. Actually, the

result of [1] is much stronger than our gap-free bound since it holds for any
sequence of bounded rewards, not necessarily drawn independently.

None of the distribution-dependent bounds in Corollary 2.1 or the one
provided in [1] is stronger than the other. The superiority of one over the
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BANDITS WITH COVARIATES 11

other depends on the set {∆1, . . . ,∆K}: in some cases (for example if all
suboptimal arms have the same expectation) the latter is the best while in
other cases (if the ∆i are spread) our bounds are better.

3. Bandit with covariates. This section is dedicated to a detailed
description of the nonparametric bandit with covariates.

3.1. Machine and game. AK-armed bandit machine with covariates (with
K an integer greater than 2) is characterized by a sequence

(Xt, Y
(1)
t , . . . , Y

(K)
t ), t = 1, 2, . . .

of independent random vectors, where
(
Xt

)
t≥1

, is a sequence of iid covariates

in X = [0, 1]d with probability distribution PX , and Y
(i)
t denotes the random

reward yielded by arm i at time t. Throughout the paper, we assume that
PX has a density, with respect to the Lebesgue measure, bounded above and
below by some c > 0 and c > 0 respectively. We denote by EX the expec-
tation with respect to PX . We assume that, for each i ∈ I = {1, . . . ,K},
rewards Y

(i)
t , t = 1, . . . , n are random variables in [0, 1] with conditional

expectation given by

IE
[
Y

(i)
t |Xt] = f (i)(Xt) , i = 1, . . . ,K, t = 1, 2, . . .

where f (i), i = 1, . . . ,K, are unknown functions such that 0 ≤ f (i)(x) ≤ 1,

for any i = 1, . . . ,K, x ∈ X . A natural example is where Y
(i)
t takes values

in {0, 1} so that the conditional distribution of Y
(i)
t given Xt is Bernoulli

with parameter f (i)(Xt).
The game takes place sequentially on this machine, pulling one of the

arms at each time t = 1, . . . , n. A policy π = {πt} is a sequence of random
functions πt : X → {1, . . . ,K} indicating to the operator which arm to
pull at each time t, and such that πt depends only on observations strictly
anterior to t. The oracle policy π⋆, refers to the strategy that would be
run by an omniscient operator with complete knowledge of the functions
f (i), i = 1, . . . ,K. Given side information Xt, the oracle policy π⋆ prescribes
to pull any arm with the largest expected reward, i.e.,

π⋆(Xt) ∈ argmax
i=1,...,K

f (i)(Xt) ,

with ties broken arbitrarily. Note that the function f (π⋆(x))(x) is equal to
the pointwise maximum of the functions f (i), i = 1, . . . ,K defined by

f⋆(x) = max
{
f (i)(x); i = 1, . . . ,K

}
.
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12 PERCHET AND RIGOLLET

The oracle rule is used to benchmark any proposed policy π and to measure
the performance of the latter via its (cumulative) regret at time n defined
by

Rn(π) := IE

n∑

t=1

(
Y

(π⋆(Xt))
t − Y

(πt(Xt))
t

)
=

n∑

t=1

EX

(
f⋆(X)− f (πt(X))(X)

)
.

Without further assumptions on the machine, the game can be arbitrarily
difficult and, as a result, expected regret can be arbitrarily close to n. In the
following subsection, we describe natural regularity conditions under which
it is possible to achieve sublinear growth rate of the expected regret, and
characterize policies that perform in a near-optimal manner.

3.2. Smoothness and margin conditions. As usual in nonparametric es-
timation we first impose some regularity on the functions f (i), i = 1, . . . ,K.
Here and in what follows we use ‖ · ‖ to denote the Euclidean norm on IRd.

Smoothness condition. We say that the machine satisfies the smoothness
condition with parameters (β,L) if f (i) is (β,L)-Hölder, i.e., if

|f (i)(x)− f (i)(x′)| ≤ L‖x− x′‖β , ∀x, x′ ∈ X , i = 1, . . . ,K

for some β ∈ (0, 1] and L > 0.

Now denote the second pointwise maximum of the functions f (i), i =
1, . . . ,K by f ♯; formally for every x ∈ X such that mini f

(i)(x) 6= maxi f
(i)(x)

it is defined by:

f ♯(x) = max
i

{
f (i)(x); f (i)(x) < f⋆(x)

}

and by f ♯(x) = f⋆(x) = f (1)(x) otherwise. Notice that a direct consequence
of the smoothness condition is that the function f⋆ is (β,L)-Hölder; however,
f ♯ might not even be continuous.

The behavior of the function ∆ := f⋆ − f ♯ critically controls the com-
plexity of the problem and the Hölder regularity gives a local upper bound
on this quantity. The second condition gives a lower bound on this function
though in a weaker global sense. It is closely related to the margin condition
employed in classification [17, 21], which drives the terminology employed
here. It was originally imported to the bandit setup by [9].

Margin condition.We say that the machine satisfies the margin condition
with parameter α > 0 if there exists δ0 ∈ (0, 1), C0 > 0 such that

PX

[
0 < f⋆(X) − f ♯(X) ≤ δ

]
≤ C0δ

α , ∀ δ ∈ [0, δ0]
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BANDITS WITH COVARIATES 13

If the marginal PX has a density bounded above and below, the margin
condition contains only information about the behavior of the function ∆
and not the marginal PX itself. This is in contrast with [9] where the margin
assumption is used precisely to control the behavior of the marginal PX while
that of the reward functions is fixed. A large value of the parameter α means
that the function ∆ either takes value 0 or is bounded away from 0, except
over a set of small PX -probability. Conversely, for values of α close to 0, the
margin condition is essentially void and the two functions can be arbitrary
close, making it difficult to distinguish them. This reflects in the bounds on
the expected regret derived in the subsequent section.

Intuitively, the smoothness condition and the margin condition work in
opposite directions. Indeed, the former ensures that the function ∆ does not
“depart from zero” too fast whereas the latter warrants the opposite. The
following proposition quantifies the extent of this conflict.

Proposition 3.1. Under the smoothness condition with parameters (β,L),
and the margin condition with parameter α, the following holds

– If αβ > d then a given arm is either always or never optimal; in the
latter case, it is bounded away from f⋆ and one can take α = ∞;

– If αβ ≤ d then there exist machines with nontrivial oracle policies.

Proof. This proposition is a straightforward consequences of, respec-
tively, the first two points of Proposition 3.4 in [2].

For completeness, we provide an example with d = 1, X = [0, 1], f (2) =
· · · = f (K) ≡ 0 and f (1)(x) = Lsign(x − .5)|x − .5|1/α. Notice that f (1)

is (β,L)-Hölder if and only if αβ ≤ 1. Any oracle policy is non-trivial,
and, for example, one can define π⋆(x) = 2 if x ≤ .5 and π⋆(x) = 1 if
x > .5. Moreover, it can be easily shown that the machine satisfies the
margin condition with parameter α and with δ0 = C0 = 1.

We denote by MK
X (α, β, L) the class of K-armed bandit problems with

covariates in X = [0, 1]d with a machine satisfying the margin condition with
parameter α > 0, the smoothness condition with parameters (β,L) and such
that PX has a density, with respect to the Lebesgue measure, bounded above
and below by some c > 0 and c > 0 respectively.

3.3. Binning of the covariate space. To design a policy that solves the
bandit problem with covariates described above, one has to inevitably find
an estimate of the functions f (i), i = 1, . . . ,K at the current point Xt. There
exists a wide variety of nonparametric regression estimators ranging from
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14 PERCHET AND RIGOLLET

local polynomials to wavelet estimators. Both of the policies introduced
below are based on estimators of f (i), i = 1, . . . ,K that are PX almost
surely piecewise constant over a particular collection of subsets, called bins
of the covariate space X .

We define a partition of X in a measure theoretic sense as a collection
of measurable sets, hereafter called bins, B1, B2, . . . such that PX(Bj) > 0,⋃

j≥1Bj = X and Bj ∩ Bk = ∅, j, k ≥ 1, up to sets of null PX probability.
For any i ∈ {⋆, 1, . . . ,K} and any bin B, define

(3.10) f̄
(i)
B = IE[f (i)(Xt)|Xt ∈ B] =

1

PX(B)

∫

B
f (i)(x)dPX(x) .

To define and analyze our policies, it is convenient to reindex the random

vectors (Xt, Y
(1)
t , . . . , Y

(K)
t )t≥1 as follows. Given a bin B, let tB(s) denote

the sth time at which the sequence (Xt)t≥1 is in B and observe that it is
a stopping time. It is a standard exercise to show that, for any bin B and

any arm i, the random variables Y
(i)
tB(s), s ≥ 1 are iid with expectation given

by f̄
(i)
B ∈ [0, 1]. As a result, the random variables Y

(i)
B,1, Y

(i)
B,2, . . . obtained by

successive pulls of arm i when Xt ∈ B form an iid sequence in [0, 1] with

expectation given by f̄
(i)
B ∈ [0, 1]. Therefore, if we restrict our attention to

observations in a given bin B, we are in the same setup as the static bandit
problem studied in the previous section. This observation leads to the notion
of policy on B. More precisely, fix a subset B ⊂ X , an integer t0 ≥ 1 and
recall that {tB(s) : s ≥ 1 , tB(s) ≥ t0} is the set of chronological times t
posterior to t0 at which Xt ∈ B. Fix I ′ ⊂ I and consider the static bandit
problem with arms I ′ defined in Section 2 where successive pulls of arm

i ∈ I ′, at times posterior to t0, yield rewards Y
(i)
B,1, Y

(i)
B,2, . . . , that are iid in

[0, 1] with mean f̄
(i)
B ∈ [0, 1]. The se policy with parameters T, γ on this

static problem is called se policy on B initialized at time t0 with initial set
of arms I ′ and parameters T, γ.

4. Binned Successive Elimination. We first outline a naive policy
to operate the bandit machine described in section 3. It consists in fixing a
partition of X and for each set B in this partition, to run the se policy on
B initialized at time t0 = 1 with initial set of arms I and parameters T, γ
to be defined below.

The Binned Successive Elimination (bse) policy π̄ relies on a specific par-
tition of X . Let BM := {B1, . . . , BMd} be the regular partition of X = [0, 1]d:
the collection of hypercubes defined for k = (k1, . . . , kd) ∈ {1, . . . ,M}d by

Bk =
{
x ∈ X :

kℓ − 1

M
≤ xℓ ≤

kℓ
M

, ℓ = 1, . . . , d
}
.
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BANDITS WITH COVARIATES 15

In this paper, all sets are defined up to sets of null Lebesgue measure. As
mentioned in subsection 3.3, the problem can be decomposed into Md inde-
pendent static bandit problems, one for each B ∈ BM .

Denote by π̂B the se policy on bin B with initial set of arms I and
parameters T = nM−d, γ = 1. For any x ∈ X , let B(x) ∈ BM denote the
bin such that x ∈ B(x). Moreover, for any time t ≥ 1, define

(4.11) NB(t) =
t∑

l=1

1I(Xl ∈ B) ,

to be the number of times before t when the covariate fell in bin B. The bse
policy π̄ is a sequence of functions π̄t : X → I defined by π̄t(x) = π̂B,NB(t),
where B = B(x). It can be implemented according to the pseudo-code of
Policy 2.

Policy 2 Binned Successive Elimination (bse)

Input: Set of arms I = {1, . . . ,K}. Parameters n,M .
Output: π̄1, . . . π̄n ∈ I.
B ← BM
for B ∈ BM do

Initialize a se policy π̂B with parameters T = nM−d, γ = 1.
NB ← 0.

end for

for t = 1, . . . , n do

B ← B(Xt).
NB ← NB + 1.
π̄t ← π̂B,NB

(observe Y
(π̄t)
t ).

end for

The following theorem gives an upper bound on the expected regret of
the bse policy in the case where the problem is difficult, that is, when the
margin parameter α satisfies 0 < α < 1.

Theorem 4.1. Fix β ∈ (0, 1], L > 0 and α ∈ (0, 1) and consider a prob-

lem in MK
X (α, β, L). Then the bse policy π̄ with M = ⌊

(
n

K log(K)

)1/(2β+d)
⌋

has an expected regret at time n bounded as follows,

IERn(π̄) ≤ Cn

(
K logK

n

)β(α+1)
2β+d

,

where C > 0 is a positive constant that does not depend on K.
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16 PERCHET AND RIGOLLET

The case K = 2 was studied in [18] using a similar policy called UCBo-
gram. Unlike in [18] where suboptimal bounds for the UCB policy are used,
we use here the sharper regret bounds of Theorem 2.1 and the se policy
as a running horse for our policy, thus leading to a better bound than [18].
Optimality for the two-armed case is discussed after Theorem 5.1.

Proof. We assume that BM = {B1, . . . , BMd} where the indexing will be
made clearer later in the proof. Moreover, to keep track of positive constants,
we number them c1, c2, . . .. For any real valued function f on X and any
measurable A ⊆ X , we use the notation PX(f ∈ A) = PX(f(X) ∈ A).

Moreover, for any i ∈ {⋆, 1, . . . ,K}, we use the notation f̄
(i)
j = f̄

(i)
Bj

.

Define c1 = 2Ldβ/2 + 1, and let n0 ≥ 2 be the largest integer such that

n
β/(2β+d)
0 ≤ 2c1/δ0, where δ0 is the constant appearing in the margin condi-

tion. If n ≤ n0, we have Rn(π̄) ≤ n0 so that the result of the theorem holds
when C is chosen large enough, depending on the constant n0. In the rest
of the proof, we assume that n > n0 so that c1M

−β < δ0.
Recall that the bse policy π̄ is a collection of functions π̄t(x) = π̂B(x),NB(x)(t)

that are constant on each Bj. Therefore, the regret of π̄ can be decomposed

as Rn(π̄) =
∑Md

j=1 Rj(π̄), where

Rj(π̄) =
n∑

t=1

(
f⋆(Xt)− f (π̂B,NB(t))(Xt)

)
1I(Xt ∈ Bj) .

Conditioning on the event {Xt ∈ Bj}, it follows from (3.10) that

IERj(π̄) = IE
[ n∑

t=1

(
f̄⋆
j − f̄

(π̄t)
j

)
1I(Xt ∈ Bj)

]
= IE

[Nj(n)∑

s=1

(
f̄⋆
j − f̄

(π̂Bj,s
)

j

)]
,

where Nj(n) = NBj (t) is defined in (4.11); it satisfies, by assumption,

cnM−d ≤ IE[Nj(n)] ≤ cnM−d.

Let R̃j(π̄) =
∑Nj(n)

s=1 f∗
j −f̄

(π̂Bj,s
)

j , be the regret associated to a static bandit

problem with arm i yielding reward f̄
(i)
j and where f∗

j = maxi f̄
(i)
j ≤ f̄⋆

j is
the largest average reward. It follows from the smoothness condition that
f̄⋆
j ≤ f∗

j + c1M
−β so that

(4.12) IERj(π̄) ≤ IER̃j(π̄) + c̄nM−d(f̄⋆
j − f∗

j ) ≤ IER̃j(π̄) + c1c̄nM
−β−d .

Consider well behaved bins on which the expected reward functions are
well separated. These are bins Bj with indices in J defined by

J := {j ∈ {1, . . . ,Md} s.t. ∃ x ∈ Bj , f
⋆(x)− f ♯(x) > c1M

−β} .
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BANDITS WITH COVARIATES 17

A bin B that is not well behaved is called strongly ill behaved if there is
some x ∈ B such that f⋆(x) = f ♯(x) = f (i)(x), for all i ∈ I, and weakly ill

behaved otherwise. Strongly and weakly ill behaved bins have indices in

J c
s :=

{
j ∈ {1, . . . ,Md} s.t. ∃ x ∈ Bj , f

⋆(x) = f ♯(x)
}

and

J c
w := {j ∈ {1, . . . ,Md} s.t. ∀ x ∈ Bj , 0 < f⋆(x)− f ♯(x) ≤ c1M

−β} ,
respectively. Note that for any i ∈ I, the function f⋆−f (i) is (β, 2L)-Hölder.
Thus for any j ∈ J c

s and any i = 1, . . . ,K, we have f⋆(x)−f (i)(x) ≤ c1M
−β

for all x ∈ Bj so that the inclusion J c
s ⊂ {1, . . . ,Md} \ J indeed holds.

First part: Strongly ill behaved bins in J c
s .

Recall that for any j ∈ J c
s , any arm i ∈ I, and any x ∈ Bj, f

⋆(x) −
f (i)(x) ≤ c1M

−β. Therefore,

∑

j∈J c
s

IERj(π̄) ≤ c1nM
−βPX

{
0 < f⋆(X) − f ♯(X) ≤ c1M

−β
}

≤ c1+α
1 nM−β(1+α) ,(4.13)

where we used the fact that the set {x ∈ X : f⋆(x) = f ♯(x)} does not
contribute to the regret.

Second part: Weakly ill behaved bins in J c
w.

The numbers of weakly ill behaved bins can be bounded using f⋆(x) −
f ♯(x) > 0 on such a bin; indeed, the margin condition implies that

∑

j∈J c
w

c

Md
≤ PX

{
0 < f⋆(X) − f ♯(X) ≤ c1M

−β
}
≤ cα1M

−βα.

It yields |J c
w| ≤ cα1

c M
d−βα. Moreover, we bound the expected regret on

weakly ill behaved bins using Theorem 2.1 with specific values ∆− < ∆ :=√
K log(K)Md/n, γ = 1 and T = nM−d. Together with (4.12), it yields

(4.14)
∑

j∈J c
w

IERj(π̄) ≤ c2
[√

K log(K)M
d
2
−βα√n+ nM−β(1+α)

]
.

Third part: Well behaved bins in J .

This part is decomposed into two steps. In the first step, we bound the
expected regret in a given bin Bj , j ∈ J ; in the second step we use the
margin condition to control the sum of all these expected regrets.
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18 PERCHET AND RIGOLLET

Step 1. Fix j ∈ J and recall that there exists xj ∈ Bj such that f⋆(xj)−
f ♯(xj) > c1M

−β . Define I⋆
j = {i ∈ I : f (i)(xj) = f⋆(xj)} and I0

j = I \I⋆
j =

{i ∈ I : f⋆(xj)− f (i)(xj) > c1M
−β}. We call I⋆

j the set of (almost) optimal

arms over Bj and I0
j the set of suboptimal arms over Bj. Note that I0

j 6= ∅
for any j ∈ J .

The smoothness condition implies that for any i ∈ I0
j , x ∈ Bj,

(4.15) f⋆(x)− f (i)(x) > c1M
−β − 2L‖x− xj‖β ≥ M−β .

Therefore, f⋆ − f ♯ > 0 on Bj . Moreover, for any arm i ∈ I⋆
j that is not the

best arm at some x 6= xj, then necessarily 0 < f⋆(x) − f ♯(x) ≤ f⋆(x) −
f (i)(x) ≤ c1M

−β. So for any x ∈ Bj and any i ∈ I⋆
j , it holds that either

f⋆(x) = f (i)(x) or f⋆(x)− f (i)(x) ≤ c1M
−β. It yields

(4.16) f⋆(x)− f (i)(x) ≤ c1M
−β1I

{
0 < f⋆(x)− f ♯(x) ≤ c1M

−β
}

.

Thus, for any optimal arm i ∈ I⋆
j , the reward functions averaged over Bj

satisfy f̄⋆
j − f̄

(i)
j ≤ c1M

−βqj , where

qj := PX

{
0 < f⋆ − f ♯ ≤ c1M

−β |X ∈ Bj

}
.

Together with (4.12), it yields IER̃j(π̄) ≤ IERj(π̄) + c̄c1nM
−d−βqj. For any

suboptimal arms i ∈ I0
j , (4.15) implies that ∆

(i)
j := f̄⋆

j − f̄
(i)
j > M−β.

Assume now without loss of generality that the average gaps ∆
(i)
j are

ordered in such a way that ∆
(1)
j ≥ . . . ≥ ∆

(K)
j . Define

K0 := argmin
i∈I0

j

∆
(i)
j and ∆j := ∆

(K0)
j

and observe that if i ∈ J is such that ∆
(i)
j < ∆j, then i ∈ I⋆

j . Therefore, it

follows from (4.16) that ∆
(i)
j ≤ c1M

−βqj for such i. Applying Theorem 2.1
with ∆j as above and γ = 1, we find that there exists a constant c3 > 0
such that, for any j ∈ J ,

IER̃j(π̄) ≤ 392(1 + c̄)
K

∆j

log
(
nM−d∆2

j

)
+ c̄c1nM

−d−βqj

Hence,

(4.17) IERj(π̄) ≤ c3

(
K

∆j

log
(
nM−d∆2

j

)
+ nM−d−βqj

)
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BANDITS WITH COVARIATES 19

Step 2. We now use the margin condition to provide lower bounds on
∆j for each j ∈ J . Assume without loss of generality that the indexing
of the bins is such that J = {1, . . . , j1} and that the gaps are ordered
0 < ∆1 ≤ ∆2 ≤ . . . ≤ ∆j1 . For any j ∈ J , from the definition of ∆j ,

there exists a suboptimal arm i ∈ I0
j such that ∆j = f̄⋆

j − f̄
(i)
j . But since

the function f⋆ − f (i) satisfies the smoothness condition with parameters
(β, 2L), we find that if ∆j ≤ δ for some δ > 0, then

0 < f⋆(x)− f (i)(x) ≤ δ + 2Ldβ/2M−β , ∀x ∈ Bj .

Together with the fact that f⋆ − f ♯ > 0 over Bj for any j ∈ J (see Step 1
above), it yields

PX

[
0 < f⋆ − f ♯ ≤ ∆j + 2Ldβ/2M−β

]
≥

j1∑

k=1

pk1I(0 < ∆k ≤ ∆j) ≥
cj

Md
,

where we used the fact that pk = PX(Bk) ≥ c/Md. Define j2 ∈ J to be
the largest integer such that ∆j2 ≤ δ0/c1. Since for any j ∈ J , we have

∆j > M−β, the margin condition yields for any j ∈ {1, . . . , j2} that,

PX

[
0 < f⋆ − f ♯ ≤ ∆j + 2Ldβ/2M−β

]
≤ Cδ

(
c1∆j)

α ,

where we have used the fact that ∆j + 2Ldβ/2M−β ≤ c1∆j ≤ δ0, for any
j ∈ {1, . . . , j2}. The previous two inequalities, together with the fact that
∆j > M−β for any j ∈ J , yield

∆j ≥ c4

( j

Md

)1/α
∨M−β =: γj , ∀ j ∈ {1, . . . , j2} .

Therefore, using the fact that ∆j ≥ δ0/c1 for j ≥ j2, we get from (4.17) that
(4.18)

∑

j∈J

IERj(π̄) ≤ c5

[ j2∑

j=1

K
log
(

n
Mdγ

2
j

)

γj
+

j1∑

j=j2+1

K log(n) +
∑

j∈J

nM−d−βqj

]
.

Fourth part: Putting things together.

Combining (4.13), (4.14) and (4.18), we obtain the following bound,

IERn(π̄) ≤ c6

[
nM−β(1+α) +

√
K log(K)M

d
2
−αβ√n+K

j2∑

j=1

log
(

n
Mdγ

2
j

)

γj

(4.19)

+KMd log n+ nM−d−β
∑

j∈J

qj

]
.
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20 PERCHET AND RIGOLLET

We now bound from above the first sum in (4.19) by decomposing it into
two terms. From the definition of γj, there exists an integer j3 satisfying
c7M

d−αβ ≤ j3 ≤ 2c7M
d−αβ and such that γj = M−β for j ≤ j3 and

γj = c4(jM
−d)1/α for j > j3. It holds

(4.20)

j3∑

j=1

log
(

n
Mdγ

2
j

)

γj
≤ c8M

d+β(1−α) log
( n

M2β+d

)
,

and

j2∑

j=j3+1

log
(

n
Mdγ

2
j

)

γj
≤ c9

Md∑

j=j3+1

( j

Md

)− 1
α
log
( n

Md

[ j

Md

] 2
α

)]
,

≤ c10M
d

∫ 1

M−αβ

log
( n

Md
x

2
α

)
x−1/αdx .(4.21)

Since α < 1, this integral is bounded by c10M
β(1−α)

(
1 + log

(
n/M2β+d

))
.

The second sum in (4.19) can be bound as:

∑

j∈J

qj =
∑

j∈J

IP
{
0 < f⋆(X)− f ♯(X) ≤ c1M

−β
∣∣X ∈ Bj

}
,

≤ Md

c
IP
{
0 < f⋆(X)− f ♯(X) ≤ c1M

−β
}
≤ cα1

c
Md−βα .(4.22)

Putting together (4.19)–(4.22), we obtain:

IERn(π̄) ≤ c11

[
nM−β(1+α) +

√
K log(K)M

d
2
−αβ√n+KMd+β(1−α)

+KMd+β(1−α) log
( n

M2β+d

)
+KMd log n

]
,

and the result follows by choosing M as prescribed.

We should point out that the version of the bse described above specifies
the number of bins M as a function of the horizon n, while in practice
one may not have foreknowledge of this value. This limitation can be easily
circumvented by using the so-called doubling argument (see, e.g., page 17 in
[7]) which consists of “reseting” the game at times 2k, k = 1, 2, . . .

The reader will note that when α = 1 there is a potentially superfluous
log n factor appearing in the upper bound using the same proof. More gen-
erally, for any α ≥ 1, it is possible to minimize the expression in (4.19) with
respect to M , but the optimal value of M would then depend on the value
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of α. This sheds some light on a significant limitation of the bse which sur-
faces in this parameter regime: for n large enough, it requires the operator
to pull each arm at least once in each bin and therefore to incur an expected
regret of at least order Md. In other words, the bse splits the space X in
“too many” bins when α ≥ 1. Intuitively this can be understood as follows.
When α ≥ 1, the gap function f⋆(x)− f ♯(x) is bounded away from zero on
a large subset of X . Hence there is no need to carefully estimate it since
the optimal arm is the same across the region. As a result, one could use
larger bins in such regions reducing the overall number of bins and therefore
removing the extra logarithmic term alluded to above.

5. Adaptively Binned Successive Elimination. We need the fol-
lowing definitions. Assume that n ≥ K log(K) and let k0 be the smallest
integer such that

(5.23) 2−k0 ≤
(
K log(K)

n

) 1
d+2β

.

For any bin B ∈ ⋃k0
k=0 B2k , let ℓB be the smallest integer such that

(5.24) U(ℓB , n|B|d) ≤ 2c0|B|β ,

where U is defined in (2.1) and c0 = 2Ldβ/2. This definition implies that

(5.25) ℓB ≤ Cℓ|B|−2β log(n|B|(2β+d)) ,

for Cℓ > 0, because x 7→ U(x, n|B|d) is decreasing for x > 0.
The abse policy operates akin to the bse except that instead of fixing

a partition BM , it relies on an adaptive partition that is refined over time.
This partition is better understood using the notion of rooted tree.

Let T ∗ be a tree with root X and maximum depth k0. A node B of T ∗

with depth k = 0, . . . , k0 − 1 is a set from the regular partition B2k . The
children of node B ∈ B2k are given by burst(B), defined to be the collection
of 2d bins in B2k+1 that forms a partition of B.

Note that the set L of leaves of each subtree T of T ∗ forms a partition
of X . The abse policy constructs a sequence of partitions L1, . . . ,Ln that
are leaves of subtrees of T ∗. At a given time t = 1, . . . , n, we refer to the
elements of the current partition Lt as live bins. The sequence of partitions is
nested in the sense that if B ∈ Lt, then either B ∈ Lt+1 or burst(B) ⊂ Lt+1.
The sequence L1, . . . ,Ln is constructed as follows.

In the initialization step, set L0 = ∅, L1 = X , and the initial set of arms
IX = {1, . . . ,K}. Let t ≤ n be a time such that Lt 6= Lt−1 and let Bt be the
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collection of sets B such that B ∈ Lt \ Lt−1. We say that the bins B ∈ Bt

are born at time t. For each set B ∈ Bt, assume that we are given a set of
active arms IB. Note that t = 1 is such a time with B1 = {X} and active
arms IX . For each born bin B ∈ Bt, we run a se policy π̂B initialized at
time t with initial set of arms IB and parameters TB = n|B|−d, γ = 2. Such
a policy is defined in section 3.3. Let t(B) denote the time at which π̂B has
reached ℓB rounds and let

(5.26) ÑB(t) =
t∑

l=1

1I(Xt ∈ B, B ∈ Lt)

denote the number of times covariate Xt fell in bin B while B was a live
B. At time t(B) + 1, we replace the node B by its children burst(B) in the
current partition. Namely, Lt(B)+1 = (Lt(B) \ B) ∪ burst(B). Moreover, to

each bin B′ ∈ burst(B), we assign the set IB′ = ÎB,ÑB(t(B)) of arms that
were left active by policy π̂B on its parent B at the end of the ℓB rounds.
This procedure is repeated until the horizon n is reached.

The intuition behind this policy is the following. The parameters of the
se policy π̂B run at the birth of bin B are chosen exactly such that arms

i with average gap |f̄⋆
B − f̄

(i)
B | ≥ C|B|β are eliminated by the end of ℓB

rounds with high probability. The smoothness condition ensures that these
eliminated arms satisfy f⋆(x) > f (i)(x) for all x ∈ B so that such arms are
uniformly suboptimal on bin B. Among the kept arms, none is uniformly
better than another so bin B is burst and the process is repeated on the
children of B where other arms may be uniformly suboptimal. The formal
definition of the abse is given in Policy 3; it satisfies the following theorem.

Theorem 5.1. Fix β ∈ (0, 1], L > 0, α > 0, assume that n ≥ K log(K)
and consider a problem in MK

X (α, β, L). If α < ∞, then the abse policy π̃
has an expected regret at time n bounded by,

IERn(π̃) ≤ Cn

(
K log(K)

n

)β(α+1)
2β+d

,

where C > 0 does not depend on K. If α = ∞, then IERn(π̃) ≤ CK log(n).

Note that the bounds given in Theorem 5.1 are optimal in a minimax
sense when K = 2. Indeed, the lower bounds of [3] and [18] imply that the
bound on expected regret cannot be improved as a function of n except for a
constant multiplicative term. The lower bound proved in [3] implies that any
policy that received information from both arms at each round has a regret
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Policy 3 Adaptively Binned Successive Elimination (abse)

Input: Set of arms IX = {1, . . . ,K}. Parameters n, c0 = 2Ldβ/2, k0.
Output: π̃1, . . . , π̃n ∈ I.

t← 0, k ← 0, L ← {X}.
Initialize a se policy π̂X with parameters T = n, γ = 2 and arms I = IX .
NX ← 0.
for t = 1, . . . , n do

B ← L(Xt).
NB ← NB + 1. /count times Xt ∈ B/

π̃t ← π̂B,NB
(observe Y

(π̃t)
t ). /choose arm from se policy π̂B/

τB ← τ̂B,NB
/update number of rounds for π̂B/

IB ← ÎB,NB
/update active arms for π̂B/

if τB ≥ ℓB and |B| ≥ 2−k0+1 and |IB | ≥ 2 /conditions to burst(B)/
then

for B′ ∈ burst(B) do
IB′ ← IB /assign remaining arms as initial arms/

Initialize se policy π̂B′ with param. T = n|B′|d, γ = 2 and arms I = IB′ .
NB′ ← 0. /set time to 0 for new se policy/

end for

L ← L \ B /remove B from current partition/

L ← L ∪ burst(B) /add B’s children to current partition/

end if

end for

bound at least as large as the one from Theorem 5.1, up to a multiplicative
constant. As a result, there is no price to pay for being in a partial informa-
tion setup and one could say that the problem of nonparametric estimation
dominates the problem associated to making decisions sequentially.

Note also that when α = ∞, Proposition 3.1 implies that there exists a
unique optimal arm over X and that all other arms have reward bounded
away from that of the optimal arm. As a result, given this information,
one could operate as if the problem was static by simply discarding the
covariates. Theorem 5.1 implies that in this case, one recovers the traditional
regret bound of the static case without the knowledge that α = ∞.

Proof. We first consider the case where α < ∞, which implies that
αβ ≤ d; see Proposition 3.1.

We keep track of positive constants by numbering them c1, c2, . . ., yet they
might differ from previous sections. On each newly created bin B, a new se

policy is initialized and we denote by Y
(i)
B,1, Y

(i)
B,2, . . . , the rewards obtained

by successive pulls of a remaining arm i. Their average after τ rounds/pulls
is denoted by

Ȳ
(i)
B,τ :=

1

τ

τ∑

s=1

Y
(i)
B,s .
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For any integer s, define εB,s = 2U(s, n|B|d), where U is defined in (2.1).
For any B ∈ T ∗ \ {X}, define the unique parent of B by,

p(B) := {B′ ∈ T ∗ : B ∈ burst(B′)} .

and p(X ) = ∅. Moreover, let p1(B) = p(B) and for any k ≥ 2 define re-
cursively pk(B) = p(pk−1(B)). Then the set of ancestors of any B ∈ T ∗ is
denoted by P(B) and defined by

P(B) = {B′ ∈ T ∗ : B′ = pk(B) for some k ≥ 1} .

Denote by rliven (B) the regret incurred by the abse policy π̃ when covariate
Xt fell in a live bin B ∈ Lt, where we recall that Lt denotes the current
partition at time t. It is defined by

rliven (B) =

n∑

t=1

[f⋆(Xt)− f (π̃t(Xt))(Xt)]1I(Xt ∈ B)1I(B ∈ Lt) .

We also define Bt :=
⋃

s≤tLs to be the set of bins that were born at some

time s ≤ t. We denote by rbornn (B) the regret incurred when covariate Xt

fell in such a bin. It is defined by

rbornn (B) =

n∑

t=1

[f⋆(Xt)− f (π̃t(Xt))(Xt)]1I(Xt ∈ B)1I(B ∈ Bt) .

Observe that if we define r̃n := rbornn (X ), we have IERn(π̃) = IEr̃n since
X ∈ Bt and Xt ∈ X for all t. Note that for any B ∈ T ∗,

(5.27) rbornn (B) = rliven (B) +
∑

B′∈burst(B)

rbornn (B′) .

Denote by IB = ÎB,tB the set of arms left active by the se policy π̂B on B at
the end of ℓB rounds. Moreover, define the following reference sets of arms:

IB :=

{
i ∈ {1, . . . ,K} : sup

x∈B
f⋆(x)− f (i)(x) ≤ c0|B|β

}
,

IB :=

{
i ∈ {1, . . . ,K} : sup

x∈B
f⋆(x)− f (i)(x) ≤ 8c0|B|β

}
.

Define the event AB := {IB ⊆ IB ⊆ IB} on which the remaining arms have
a gap of the correct order and observe that (5.27) implies that

rbornn (B) = rbornn (B)1I(Ac
B) + rliven (B)1I(AB) +

∑

B′∈burst(B)

rbornn (B′)1I(AB) .
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Let L∗ denote the set of leaves of T ∗, that is the set of bins B such that |B| =
2−k0 . In what follows, we adapt the convention that

∏
B′∈P(X ) 1I(AB′) = 1.

We are going to treat regret incurred on live non-terminal nodes and live
leaves separately and differently. As a result, the quantity we are interested
in is decomposed as r̃n = r̃n(T ∗ \ L∗) + r̃n(L∗) where

r̃n(T ∗ \ L∗) :=
∑

B∈T ∗\L∗

(
rbornn (B)1I(Ac

B) + rliven (B)1I(AB)
) ∏

B′∈P(B)

1I(AB′) ,

is the regret accumulated on live non-terminal nodes and

r̃n(L∗) :=
∑

B∈L∗

rbornn (B)
∏

B′∈P(B)

1I(AB′) =
∑

B∈L∗

rliven (B)
∏

B′∈P(B)

1I(AB′)

is regret accumulated on live leaves. Our proof relies on the following events
GB :=

⋂
B′∈P(B) AB′ .

First part: control of the regret on the non-terminal nodes

Fix B ∈ T ∗ \ L∗. On GB, we have Ip(B) ⊆ Ip(B) so that any active arm

i ∈ Ip(B) satisfies supx∈p(B) |f⋆(x)− f (i)(x)| ≤ 8c0|p(B)|β. Moreover, regret

is only incurred at points where f∗ − f ♯ > 0, so defining c1 := 23+βc0 and
conditioning on events {Xt ∈ B} yield

IE
[
rliven (B)1I(GB ∩ AB)

]
≤ IE[ÑB(n)]c1|B|βqB ≤ c1KℓB|B|βqB ,

where qB = PX

(
0 < f⋆ − f ♯ ≤ c1|B|β

∣∣ X ∈ B
)
and ÑB(n) is defined in (5.26).

We can always assume that n is greater than n0 ∈ IN, defined by

n0 =

⌈
K log(K)

(
c1
δ0

) d+2β
β

⌉
so that c12

−k0β ≤ δ0

and let k1 ≤ k0 be the smallest integer such that c12
−k1β ≤ δ0. Indeed, if

n ≤ n0, the result is true with a constant large enough.
Applying the same argument as in (4.22) yields the existence of c2 > 0

such that, for any k ∈ {0, . . . , k0},
∑

|B|=2−k

qB ≤ c22
k(d−βα) .

Indeed, for k ≥ k1 one can define c2 = cα1 /c, and the same equation holds
with c2 = 2dk1 if k ≤ k1. Summing over all depths k ≤ k0 − 1, we obtain
(5.28)

IE



∑

B∈T ∗\L∗

rliven (B)1I(GB ∩AB)


 ≤ c1c2CℓK

k0−1∑

k=0

2k(d+β−αβ) log
(
n2−k(2β+d)

)
.
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On the other hand, for every bin B ∈ T ∗ \ L∗, one also has

(5.29) IE
[
rbornn (B)1I(GB ∩ Ac

B)
]
≤ c1n|B|βqBPX(B)IP(GB ∩ Ac

B) .

It remains to control the probability of GB ∩ Ac
B ; we define IPGB(·) :=

IP( · ∩ GB). On GB , the event Ac
B can occur in two ways:

(i) By eliminating an arm i ∈ IB at the end of the at most ℓB rounds
played on bin B. These arms satisfy supx∈B f⋆(x)− f (i)(x) < c0|B|β;
this event is denoted by D1

B .
(ii) By not eliminating an arm i /∈ IB within the at most ℓB rounds played

on bin B. These arms satisfy supx∈B f⋆(x) − f (i)(x) ≥ 8c0|B|β; this
event is denoted by D2

B.

We use the following decomposition

(5.30) IPGB(Ac
B) = IPGB(D1

B) + IPGB(D2
B ∩ (D1

B)
c) .

We first control the probability of making error (i). Note that for any
s ≤ ℓB and any arms i ∈ IB , i

′ ∈ Ip(B), it holds

f̄
(i′)
B − f̄

(i)
B ≤ f̄⋆

B − f̄
(i)
B < c0|B|β ≤ εB,ℓB

2
.

Therefore, if an arm i ∈ IB is eliminated, that is if there exists i′ ∈ Ip(B) such

that Ȳ
(i′)
B,s − Ȳ

(i)
B,s > εB,s for some s ≤ ℓB , then either f̄

(i)
B or f̄

(i′)
B does not be-

long to its respective confidence interval
[
Ȳ

(i)
B,s ± εB,s/4

]
or
[
Ȳ

(i′)
B,s ± εB,s/4

]

for some s ≤ ℓB . Therefore, since −f̄
(i)
B ≤ Ys − f̄

(i)
B ≤ 1− f̄

(i)
B ,

(5.31)

IPGB (D1
B) ≤ IP

{
∃s ≤ ℓB; ∃i ∈ Ip(B);

∣∣∣Ȳ (i)
s − f̄

(i)
B

∣∣∣ ≥ εB,s

4

}
≤ 2K

ℓB
n|B|d ,

where in the second inequality, we used Lemma A.1.
Next, we treat error (ii). For any i /∈ IB , there exists x(i) such that

f⋆(x(i)) − f (i)(x(i)) > 8c0|B|β. Let ı̌ = ı̌(i) ∈ I be any arm such that
f⋆(x(i)) = f (̌ı)(x(i)); the smoothness condition implies that
(5.32)

f̄
(̌ı)
B ≥ f (̌ı)(x(i))−c0|B|β > f (i)(x(i))+7c0|B|β ≥ f̄

(i)
B +6c0|B|β ≥ f̄

(i)
B +

3

2
εB,ℓB .

On the event (D1
B)

c, no arm in IB , and in particular any of the arms ı̌(i), i ∈
Ip(B) \ IB has been eliminated until round ℓB. Therefore, the event D2

B ∩
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(D1
B)

c occurs if there exists i /∈ IB such that Ȳ
(̌ı)
B,ℓB

− Ȳ
(i)
B,ℓB

≤ εB,ℓB . In view
of (5.32) and (5.24), it implies that there exists i ∈ Ip(B) such that

|Ȳ (i)
B,ℓB

− f̄
(i)
B | ≥ εB,ℓB

4
.

Hence, the probability of error (ii) can be bounded by
(5.33)

IPGB(D2
B ∩ (D1

B)
c) ≤ IP

{
∃ i ∈ Ip(B) : |Ȳ (i)

B,ℓB
− f̄

(i)
B | ≥ εB,ℓB

4

}
≤ 2K

ℓB
n|B|d ,

where the second inequality follows from (A.1).
Putting together (5.30), (5.31), (5.33) and (5.25), we get

IPGB(Ac
B) ≤ 4K

ℓB
n|B|d ≤ 4Cℓ

K

n
|B|−(2β+d) log(n|B|(2β+d)) .

Together with (5.29), it yields for B ∈ T ∗ \ L∗ that

IE
[
rbornn (B)1I(GB ∩ Ac

B)
]
≤ c3K|B|−(β+d) log(n|B|(2β+d))qBPX(B) .

If k is such that c12
−kβ > δ0, then any bin B such that |B| = 2−k satisfies

IE
[
rbornn (B)1I(GB ∩Ac

B)
]
≤ c4K log n. If k is such that c12

−kβ ≤ δ0, then
the above display together with the margin condition yield

IE


 ∑

|B|=2−k

rbornn (B)1I(GB ∩ Ac
B)


 ≤ c5K2k(β+d−αβ) log(n2−k(2β+d)) .

Summing over all depths k = 0, . . . , k0 − 1 and using (5.28), we obtain

(5.34) IE[r̃n(T ∗ \ L∗)] ≤ c6K

k0−1∑

k=0

2k(β+d−αβ) log(n2−k(2β+d)) .

We now compute an upper bound on the right-hand side of the above in-
equality. Fix k = 0, . . . , k0 and define

Sk =

k∑

j=0

2j(d+β−βα) =
2(k+1)(d+β−βα) − 1

2d+β−βα − 1
.

Observe that

2k(d+β−βα) log
(
n2−k(d+2β)

)
= (Sk − Sk−1) log

(
n[c7Sk + 1]−

d+2β
d+β−βα

)
,
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where c7 := 2d+β−βα − 1. Therefore, (5.34) can be rewritten as:

IE[r̃n(T ∗ \ L∗)] ≤ c6K

[
k0−1∑

k=1

(Sk − Sk−1) log
(
n[c7Sk + 1]

− d+2β
d+β−βα

)
+ log n

]

≤ c6K

[∫ Sk0−1

0
log
(
n[c7x+ 1]−

d+2β
d+β−βα

)
dx+ log n

]

≤ c8K
[
2k0(d+β−βα) log

(
n2−k0(d+2β)

)
+ log n

]

≤ c9n

(
n

K log(K)

)−β(1+α)
d+2β

,(5.35)

where we used (5.23) in the last inequality and the fact that log(n) is dom-
inated by n1−β(1+α)/(d+2β) since αβ ≤ d.

Second part: control of the regret on the leaves

Recall that the set of leaves L∗ is composed of binsB such that |B| = 2−k0 .
Proceeding in the same way as in (5.29), we find that for any B ∈ L∗, it
holds

IE
[
rliven (B)1I(GB)

]
≤ c1n|B|βPX(0 < f⋆ − f ♯ ≤ c1|B|β,X ∈ B) .

Since n ≥ n0, then c12
−k0β ≤ δ0 and using the margin assumption, we find

(5.36)

∑

B∈L∗

IE
[
rliven (B)1I(GB)

]
≤ c1n2

−k0β(1+α) ≤ c1n

(
n

K log(K)

)−
β(1+α)
d+2β

,

where we used (5.23) in the second inequality.

The theorem follows by summing (5.35) and (5.36). If α = +∞, then the
same proof holds except that log(n) dominates 2k0(β+d−αβ) log(n2−k0(2β+d))
in Equation (5.35).

APPENDIX A: TECHNICAL LEMMA

The following lemma is central to our proof of Theorem 2.1. We recall that
a process Zt is a martingale difference sequence if IE

[
Zt+1

∣∣Z1, . . . , Zt

]
= 0.

Moreover, if a ≤ Zt ≤ b and if we denote the sequence of averages by
Z̄t = 1

t

∑t
s=1 Zs, then Hoeffding-Azuma’s inequality yields that, for every

integer T ≥ 1,

(A.1) IP

{
Z̄T ≥

√
(b− a)2

2T
log

(
1

δ

)}
≤ δ .
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The following lemma is a generalization of this result:

Lemma A.1. Let Zt be a martingale difference sequence with a ≤ Zt ≤ b
then, for every δ > 0 and every integer T ≥ 1,

IP

{
∃ t ≤ T, Z̄t ≥

√
2(b− a)2

t
log

(
4

δ

T

t

)}
≤ δ.

Proof. Define εt =

√
2(b−a)2

t log
(
4
δ
T
t

)
. Recall first the Hoeffding-Azuma

maximal concentration inequality. For every η > 0 and every integer t ≥ 1,

IP
{
∃ s ≤ t, sZ̄s ≥ η

}
≤ exp

(
− 2η2

t(b− a)2

)
.

Using a peeling argument, one obtains

IP
{
∃ t ≤ T, Z̄t ≥ εt

}
≤

⌊log2(T )⌋∑

m=1

IP
{ 2m+1−1⋃

t=2m

{Z̄t ≥ εt}
}

≤
⌊log2(T )⌋∑

m=1

IP
{ 2m+1⋃

t=2m

{Z̄t ≥ ε2m+1}
}
≤

⌊log2(T )⌋∑

m=1

IP
{ 2m+1⋃

t=2m

{tZ̄t ≥ 2mε2m+1}
}

≤
⌊log2(T )⌋∑

m=1

exp

(
− 2 (2mε2m+1)2

2m+1(b− a)2

)
=

⌊log2(T )⌋∑

m=1

2m+1

T

δ

4
≤ 2log2(T )+2

T

δ

4
≤ δ.

Hence the result.

REFERENCES

[1] J.-Y. Audibert and S. Bubeck. Regret bounds and minimax policies under partial
monitoring. The Journal of Machine Learning Research, 9999:2785–2836, 2010.

[2] J.-.Y. Audibert and A. B. B. Tsybakov. Fast learning rates for plug-in classifiers under
the margin condition. Preprint, Laboratoire de Probabilités et Modèles Aléatoires,
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