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Crystallization model

Description

Assumptions

@ Germs: g = (xg,tz) € RY x RT

9 Xz € RY crystallization center location in the growth space
o ty € RT crystallisation center birth time

@ Birth process: Poisson point process N on RY x RT with intensity
measure:
A(dx x dt) = \(dx) x m(dt)

o )9 Lebesgue measure on RY
@ m locally finite measure on R™
@ Crystals growth: ©; = Portion of Rcrystallized at time t

o If xg € ©4,: no crystal starts growing at xg

o If x; ¢ ©y,: instantaneous growth of a crystal at x;
(shape/speed to be defined)

o Growth stops at the meeting points

Model intoduced by [5, Kolmogorov (37)] and [4, Johnson & Mehl (39)]
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Crystallization model

Description
Assumptions

@ Exact germination process:

©, = Portion of R¥crystallized at time t

The set N, of germs g, giving birth to a crystal is a point process
with intensity measure:

(1— 1o )A(dx x dt)

This corresponds to the approach in [6, Micheletti & Capasso (97)]
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Crystallization model

Description
Assumptions

@ Exact germination process:

©, = Portion of R¥crystallized at time t

The set N, of germs g, giving birth to a crystal is a point process
with intensity measure:

(1— 1o )A(dx x dt)

This corresponds to the approach in [6, Micheletti & Capasso (97)]

@ Mgller approach:
We proceed in the same way as in [7, 8, 9, Mgller (89,92,95)].

@ First, assume that all germs give birth to a crystal: the
germination process is the Poisson point process denoted by N
with intensity measure:

A(dx x dt)

@ Then, all germs appeared in occupied zone are deleted.
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Crystallization model pesenton

Assumptions

Free crystal

A free crystal is a crystal which grows freely and originates from a germ
born in a location not yet occupied by other crystals at the time of its
birth (x; ¢ ©¢,).

For all germ g € RY x R,

o for all x € RY, Ag(x) is the crystallization time of x by the crystal
associated to the germ g and assumed to be free

o forall t € RY, Ci(t) = {x € R?| A (x) < t} is the free crystal
associated to the germ g.
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Crystallization model pesenton

Assumptions

Free crystal

A free crystal is a crystal which grows freely and originates from a germ
born in a location not yet occupied by other crystals at the time of its
birth (x; ¢ ©¢,).

For all germ g € RY x R,

o for all x € RY, Ag(x) is the crystallization time of x by the crystal
associated to the germ g and assumed to be free

o forall t € RY, Ci(t) = {x € R?| A (x) < t} is the free crystal
associated to the germ g.

Crystallization random field

For all x € R,
€00 = inf As()

is the crystallization time of the location x. The crystallization process is
then caracterized by the random field (£(x))«cre-

Aude ILLIG Crystallization processes



Crystallization model pesenton

Assumptions

Dimension 1

Aude ILLIG Crystalli

ation processes



Crystallization model pesenton

Assumptions

Dimension 1

c0)

Xy

Aude ILLIG Crystallization processes



Crystallization model pesenton

Assumptions

Dimension 1

Aude ILLIG Crystalli

ation processes



Crystallization model pesenton

Assumptions

Dimension 1

A €

Aude ILLIG Crystallization processes



Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg,t;) € RY x R, we assume that
Viztg,  Ggt) = xg & [V(t) = V(t)IK.

@ K convex and compact set, 0 € K°. We denote by Dk the
diameter inf{D > 0| K C B(0,D/2)}.

@ V absolutely continuous function, V/(t) = fot v(s)ds with
speed 0 < v < M.
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Crystallization model

Description
Assumptions

@ Assumptions: For all germ g = (xg,t;) € RY x R, we assume that
Viztg,  Ggt) = xg & [V(t) = V(t)IK.

@ K convex and compact set, 0 € K°. We denote by Dk the
diameter inf{D > 0| K C B(0,D/2)}.

@ V absolutely continuous function, V/(t) = fot v(s)ds with
speed 0 < v < M.

@ Consequences: If t = Ag(x), then:

[V(t) - V(tg)]Pxfxg,K = |X - Xg|
Px—xg,

Aglx) = VH[EEL 4 v(ey)]

@ Example: Linear expansion in all directions for K = B(0,1), v = M:

X — x|
M

Aude ILLIG Crystallization processes
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(B-mixing coefficients

Vd > 1, £ is mixing.
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Definitions
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B-mixing coefficients Mixing properties of the crystallization r.f.

(B-mixing coefficients

Theorem 1
Vd > 1, £ is mixing.

For two disjoint subsets T; and T, of R, the absolute regularity
coefficient is:

B(Th Tz) = HPT1UT2 - 7DT1 X 7DT2Hvar

where Pt is the distribution of the restriction &7 = (§(x))xeT-
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Definitions

B-mixi ici S . e
B-mixing coefficients Mixing properties of the crystallization r.f.

(B-mixing coefficients

Theorem 1
Vd > 1, £ is mixing.

For two disjoint subsets T; and T, of R, the absolute regularity
coefficient is:

B(Th Tz) = HPT1UT2 - 7DT1 X 7DT2Hvar

where Pt is the distribution of the restriction &7 = (§(x))xeT-

@ As ¢ is homogeneous, it is sufficient to know 8( Ty, T2) up to
translations on T; and T».
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Definitions

B-mixi ici S . e
B-mixing coefficients Mixing properties of the crystallization r.f.

(B-mixing coefficients

Theorem 1
Vd > 1, £ is mixing.

For two disjoint subsets T; and T, of R, the absolute regularity
coefficient is:

B(Th Tz) = HPT1UT2 - 7DT1 X 7DT2Hvar

where Pt is the distribution of the restriction &7 = (§(x))xeT-

@ As ¢ is homogeneous, it is sufficient to know 8( Ty, T2) up to
translations on T; and T».

@ When d > 2, we consider sets separated in the sense of Bulinskii
(1987).
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Definitions

B-mixi ici S . e
B-mixing coefficients Mixing properties of the crystallization r.f.

a-mixing coefficients

For two disjoint subsets T7 and T, of R, the strong mixing
coefficient is:

a(T1, T) = sup IP(AN B) — P(A)P(B)|
/46.7:7'1,56.7:7'2

where Fr, = 0{{(x), x € T;} for i =1,2.
Hence,

Mixing coefficients inequality

a(Ty, Tr) < B(Ty, To)
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Definitions

B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension 1

Causal cone

For all t > 0, the so-called causal cone K; = {g € R x R| Ag(0) < t}
consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).
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B-mixing coefficients De_fi_nitions . )
! b Mixing properties of the crystallization r.f.

Dimension 1

Causal cone

For all t > 0, the so-called causal cone K; = {g € R x R| Ag(0) < t}
consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).

Remark 1: lim;—400G(t) = 400.
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Definitions

B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension 1

Causal cone

For all t > 0, the so-called causal cone K; = {g € R x R| Ag(0) < t}
consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).

Remark 1: lim;—400G(t) = 400.

Theorem 2
If d =1, for two intervals Ty = (—00,0] and T, = [r, +00), the
coefficient 5( Ty, T7) is denoted by 5(r) and satisfies:

B(r) < G e 9"

where C; =8, G, = 515 and M’ = MD.
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Definitions
Mixing properties of the crystallization r.f.

3-mixing coefficients

Dimension 1

Sketch of the proof:

Lemme 1

Let (1(x))xer be a random process and T; and T3 two disjoint subsets of
R. If there exists two independent processes (n1(x))xer, (12(x))xer and
two positive constants d;, d» such that

P{n(x) =ni(x), Vxe T;} >1—¢; for i=1,2

then
B(Tl, Tg) < 4((51 + (52)
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Definitions
Mixing properties of the crystallization r.f.

3-mixing coefficients

Dimension 1

Sketch of the proof:

Lemme 1

Let (1(x))xer be a random process and T; and T3 two disjoint subsets of
R. If there exists two independent processes (n1(x))xer, (12(x))xer and
two positive constants d;, d» such that

P{n(x) =ni(x), Vxe T;} >1—¢; for i=1,2

then
B(Tl, Tg) < 4((51 + (52)
Let us introduce, for all T C R,

13 = inf  Ag(x).
7(x) N g(x)
xg €T
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B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension 1

VR >0, P{&(x) = &_oomry(X),Vx <0} >1— e 9R)
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Definitions
Mixing properties of the crystallization r.f.

3-mixing coefficients

Dimension 1

VR >0, P{&(x) = &_oomry(X),Vx <0} >1— e 9R)

VR >0, P{{(x) = {mrr to0)(x), Vx> 2M'R} > 1 — e 9
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Definitions
Mixing properties of the crystallization r.f.

3-mixing coefficients

Dimension 1

VR >0, P{&(x) = &_oomry(X),Vx <0} >1— e 9R)

VR >0, P{{(x) = {mrr to0)(x), Vx> 2M'R} > 1 — e 9

Proof of Lemma 2: We first note that

P{£(0) <R} =P{NNKr# 0} =1— e 9R.
Then, we prove that

{£(0) < R} € {&(x) = §(—co,mrrI(X), Vx < O}
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Definitions

B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension 1

Suppose that £(0) < R and prove that

inf A (x) < inf Az (x Vx <0.
N g(x) < v g(X) <

If g € NV is such that x;, > M’'R, we derive that

x|
A;(0) > ———+t; > R.
g( ) Mpx—xg,K g

But £(0) < R, so there exists gg € N such that x, < M'R and
£(0) = Ag(0) < R.
For all g € AV such that Xg > M'R, we finally derive that

Ag(x) < Ag(x)  V¥x<O.
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Definitions

B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension d > 2

Causal cone

For all t > 0, the so-called causal cone K; = {g € RT x RY| A;(0) < t}
consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).
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Definitions
Mixing properties of the crystallization r.f.

3-mixing coefficients

Dimension d > 2

Causal cone

For all t > 0, the so-called causal cone K; = {g € RT x RY| A;(0) < t}
consists of all possible germs that can capture the origin before time t.
The measure A(K;) is denoted by G(t).

Crystals shape

The crystals shape are defined by the convex compact K:

@ Dy is the diameter of the smallest ball centered at zero and
containing K

@ dk is the diameter of the greatest ball centered at zero and
contained in K

— Dk
oA_dK
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Definitions
Mixing properties of the crystallization r.f.

3-mixing coefficients

Dimension d > 2

Let T; = H 1(=00,0] and T> = H;i: [ai, +00) be two quadrants (Q)

separated by a r-width band with r = Z\’dfla’ > 0.
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Definitions

B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension d > 2

Theorem 3

If d > 2, for two quadrants (Q) T; = H 1(—00,0] and

T, = Hizl[a,, +00), the coefficient 5( Ty, T2) is denoted by Bo(a, r)
where a stands for (ag,...,aq). If

Ba(r) = sup Ba(a, r),
a€R?| 37 ai=Vdr

then

oo

5Q(r) < Cl Z kd—le—g(CQ(d)rk)
k=1

where C; = 8 and G(d) = g3z with H=2(A+ M’) and M' = MD.
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Definitions

B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension d > 2

Let T; = [~a,a]? and T, = ([~b, b]9) be two enclosed domains (ED)
(b—2a) Vd
2

separated by a r-width polygonal band with r = >0
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Definitions

B-mixi ici o 9 Al
B-mixing coefficients Mixing properties of the crystallization r.f.

Dimension d > 2

Theorem 4

If d > 2, for two enclosed domains (ED) T; = [—a, a]? and
To = ([~ b, b]9)° separated by a r-width polygonal band, the coefficient
B(Ty, Ty) is denoted by Bep(a, r). If

Bep(r) = sup Bep(a, r),
a>0

then -
BQ(r) S Cl(d)z kd*le*g(Cz(d)rk)
k=1
where Cy(d) = 4(1 4 d29) and Gy(d) = g3 with H =2(A+ M’) and
M' = DM.
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Estimators
Asymptotic properties
Continuous case

Estimation 5
Discrete case

Intensity measure parameters estimation

The intensity measure of the Poisson point process is:
A=Xxm.
Two cases:

© The measure m is absolutely continuous and m(dt) = at?~ldt with
a,b>0.

Parameters a, b are to be estimated.

@ The measure m is discrete and m = Y7 | p; 0, with >°7_, p; = 1,
pi>0foralli=1...gand 0 <a; <--- < aq.

Parameters p;, i =1...q are to be estimated.
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Estimators
Asymptotic properties
Continuous case

Estimation 5
Discrete case

Framework

@ We assume that v =1 and K = B(0,1).

@ We suppose that we observe only one realisation £,ps of the random
field &€ = (£(x))xere on a large domain

D, = [0,n]¢ C RY.
Thus, at each time t, we observe the crystallized zone

(©t)obs N Dy = {x € D, | Eobs(x) € [0, t]}.
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Estimators
Asymptotic properties
Continuous case

Estimation 5
Discrete case

Estimators

We consider

F(t) = P{{0) <t}

= 1- e_A(Kt)
= 1-¢90)
We estimate F(t) by
A 1
Fu0)i= g | Loal€() N0
n [o)n]d
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Estimators
Asymptotic properties
Continuous case

Estimation 5
Discrete case

Estimators

We also consider the measure of the causal cone:
G(t) = —log(1 — F(t))
We estimate G(t) by

Cn(t) == —log(1 — F,(t))
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Estimators
Asymptotic properties
Esti . Continuous case
stimation .
Discrete case

Consistency

Since £ is mixing, we derive the following Proposition 1.

Ft) = g [ Tea€0) (o)
[0,n]d
Gnl(t) —log(1 — F(t))

are strongly consistant estimtors for F(t) and G(t):

Aude ILLIG Crystallization processes



Estimators
Asymptotic properties
Continuous case

Estimation B
Discrete case

Asymptotic normality

Let (n(x))xecre be a homogeneous random field:
° E(n(x)) = n
® R(u) = Cov(n(0),n(u))
° 5= f[o’,,]d(n(X) — ) dx

We are interested in the asymptotic behaviour of —=

7 under a-mixing

.. on
conditions:

@ when d = 1:

a(p) = sup IP(AU B) — P(A)P(B)|
AEF(— 00,01 BEF|p,+00)

@ when d > 2:

aep(p) = sup aep(a, p)
a>0
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Estimators
Asymptotic properties
Continuous case

Estimation B
Discrete case

Asymptotic normality

If for some § > 0,
[7(x)||2+s < 00 (1)

and -
/ P77 alp) 77 dp < 00 ()
0

then o, |R(u)| du < co. Moreover, if 02 = [o, R(u) du > 0, then

S"d LN(O,l).

onz N—o0

Analogue of Bolthausen's theorem (1982) for continuous-parameter
random fields
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Estimators
Asymptotic properties
Continuous case

Estimation B
Discrete case

Asymptotic normality

If
sup [n(x)| < oo (1)
xERd
and -
/0 pta(p)dp < oo (2)

then o, |R(u)| du < co. Moreover, if 62 = [, R(u) du > 0, then

S"d Lﬁ\/(o,l).

onz n— o0

Analogue of Bolthausen's theorem (1982) for continuous-parameter
random fields
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Estimators
Asymptotic properties
Continuous case

Estimation B
Discrete case

Asymptotic normality

Corollary 1

Let (&(x))xere be a stationary random field satisfying the a-mixing
condition. For all t € R, write

nt(X) = 1{E(X)St} Vx € RY.

Let h be fixed in N*. If, for (t1,...,ts) € (R*)9, the matrix
I'= (7ij)ij=1...n which (i, j)-th entry equals

= /R Cov (16(0), 1o (x) o
is positive-definite, then,
d 2, & / / D
nf ((Falta), o, Falt)) = (F(t2), -, F(8)') —2—> N(O,T).
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Estimators
Asymptotic properties
Continuous case

Estimation B
Discrete case

Asymptotic normality

Corollary 2

If (£(x))xeRre is a stationary random field satisfying the a-mixing
condition and the matrix [ of Corollary 1 is positive definite, then

nf ((Gn(t),- - Galtn)) = (G(8),- ., G()) ) ———> N(O,V)
where the (i, j)-th entry of the covariance matrix V = (v; ;)i j=1...n equals

e9(t) 9(8) Yij-
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Estimators
Asymptotic properties
Continuous case

Estimation 5
Discrete case

m(dt) = atb-ldt

g(t) = A(Kt)

t
= / M (B(0,t —s))asPlds
0

= Cqa td+b /d(b)
where

ca = N4(B(0,1))

and
d!

b(b+1)...(b+d)’

la(b) =
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Estimators
Asymptotic properties

Continuous case

Estimation 3
Discrete case

For t = t; and t = t,, we obtain the following system:

G(t1)
, log (g(tz)) B
N logt; — log t,
. = g(tr)

Cd /d(b) t{H_b

We introduce the continuous functions

log(3%)

— 2 —_—

g0, %) = logt; — log to

and 1
f(Xl,Xg) =

ca la(g(x1, x0)) £ T80
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Estimators
Asymptotic properties

Continuous case

Estimation 5
Discrete case

The system can be summerized under the following form:
a=f(G(t),4(t2))
b=g(G(t1),6(t2))

Proposition 2

The following statistics are strongly consistent estimators for parameters

a and b: R . R .
by = g(Gn(tr).Gu(t2)) = b
a, = f(gAn(tl)a én(t2)) %} a.
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Estimators
Asymptotic properties

Continuous case

Estimation 5
Discrete case

® When d =1, we get that
a(r) < Ge? e

with v = cga G321y (b).

:>/ a(r)dr < oo
0
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Estimators
Asymptotic properties

Continuous case

Estimation 5
Discrete case

® When d =1, we get that
a(r) < Ge? e
with v = cga G321y (b).

:>/ r)dr < oo

@ When d > 2, we obtain that

aED( < Cl (Z kd 1 —’Y(d d+b(kd+b 1)> (d)rd“’

with ’}/(d) = C4 a/d(b)Cz(d)d+b

and for A > 0, sup Z kd—1e=(d) r P (k=1

rzA

< 00.

:>/ “agp(r)dr < oo
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Estimators
Asymptotic properties

Continuous case

Estimation 3
Discrete case

Theorem 6
Assume, for h = 2, that the matrix [ of Corollary 1 is positive definite.

Then,
n? ((énv Bn) —(a, b)) % N(0, MVM')
n oo
where V is the matrix defined in Corollary 2 and M = (m; ); j=12 with

for j=1,2,
myj = §—ij(g(t1),g(t2))

my; = g—i(g(ﬁ%g(b))
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Estimators
Asymptotic properties
Continuous case
Discrete case

Estimation

g(t) = MK

where
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Estimators
Asymptotic properties

Continuous case

Estimation 5
Discrete case

For t = a; with i = 2... g, we obtain the following equations:

a,):chpj(a,-—aj)d Vi=2...q.

Equivalently, we have that

1 g(82)

(a2 —a1)! cq

pr =

1 a; .
P (aiq1 — i) +1) ZPJ ais1—)? | Vi=2..q-1
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Estimators
Asymptotic properties

Continuous case

Estimation 5
Discrete case

Introducing the following continuous functions,
1 X2

fl(XQ,...,Xq) = mCd

~1
1 Xi+1 \ d
filxe, ..., %) = Ga—a) | o —;6(X27~-~,Xq)(af+1—aj)

Vi=2...q—1
The previous equations can be rewritten as follows

pi = fi(G(a2),...,G(aq)) Vi=1...q—1L
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Estimators
Asymptotic properties

Continuous case
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Proposition 3
The following statistics are strongly consistent estimators for parameters

pi:
Pin = fi(Gn(a2), - - -,Gn(aq)) % pi Vi=1...q—1.
Moreover,
qg—1
N & p.s.
Pgn=1-— Zl Pi,n m Pq-
=
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We have that .
(t) = C4 Zp,’ (1.' — a,-)d Yt > ag.

i=1
As a consequence,

g(t) ~oo Cd td
For d > 1 and r sufficiently large, we get that

Bry< Ce",

where C and y are some positive constants.

:>/ (r)dr < oo
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Theorem 7

Assume, when h=q — 1, t; = a;31 forall i=1...q— 1, that the matrix
I" of Corollary 1 is positive definite. Then,

d
2

n ((ﬁlmv oo aﬁq—l,n), - (plv 00 7pq—1)l) %) N(Oa MVM/)

where V is the matrix defined in Corollary 2 and M is the matrix which
(7,/)-th entry equals

mjj =

O (G(a2),....G(aq))
+1

0x;
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Example

We assume that:

Dd=1
@ m=p1ds + p2ds, Wwith0 < a; <ap=a;+1
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Example

We assume that:

O d=1

@ m=p1ds + p2ds, Wwith0 < a; <ap=a;+1
We obtain that:

L Gn(a . -
@ (unpon) = (21 by ) 22 (o1 o).
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Example

We assume that:

O d=1

@ m=p1ds + p2ds, Wwith0 < a; <ap=a;+1
We obtain that:

L Gn(a . -
@ (unpon) = (21 by ) 22 (o1 o).

Jr Cov (Lig()<mys Lg(<ary) dX

a*(p1)
Q

e th f02 e P (1=3) —Tdx =e*P f(p;) >0
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Example

We assume that:

Qd=1

Q m=pidy +p2dy, with0<a; <ax=a+1
We obtain that:

o Gn(a . s
O (Pr.ns P2.n) = ( (2 2),1 — P1n) %) (p1, p2)-

o*(p1) = JgCov (ig0)<ar)s Le()<ar) dx
Q

e 4m f02 e (-3 —1dx=e*Pf(p) >0

@ Vn(p1,n— p1) % N(0, (e*P/4) o2(py)).
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Example

We assume that:

Qd=1

Q m=pidy +p2dy, with0<a; <ax=a+1
We obtain that:

o Gn(a . s
O (Pr.ns P2.n) = ( (2 2),1 — P1n) %) (p1, p2)-

o*(p1) = JgCov (ig0)<ar)s Le()<ar) dx
Q

e 4m f02 e (-3 —1dx=e*Pf(p) >0

@ Vi(pLn — p1)/1(€*7/2)0(p1.n)] —— N(0,1).
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