
ESTIMATING TREATMENT EFFECTS WITH A NONPARAMETRIC RANDOM

COEFFICIENTS SELECTION EQUATION

ERIC GAUTIER AND STEFAN HODERLEIN

Abstract. In this paper we study a binary treatment model where the outcome equation is of un-

restricted form, and the selection equation contains multiple unobservables that enter through a non-

parametric random coefficients specification. This specification is flexible because it allows for complex

unobserved heterogeneity of economic agents and non-monotone selection into treatment. Employing

continuous instruments, we establish that both the marginal conditional distributions of Y0 and Y1,

the outcome for the untreated, respectively treated, given first stage random coefficients, are identified.

We can thus identify an average treatment effect, conditional on first stage unobservables called U-

CATE, which yields most treatment effects parameters that depend on averages, like ATE and ATT.

Moreover, we provide sharp bounds on the variance, the joint distribution of Y0, Y1 and the distribu-

tion of treatment effects. When the outcomes are continuously distributed, we provide novel and weak

conditions that allow to point identify the conditional distribution of Y0, Y1, given the unobservables.

This allows to derive every treatment effect parameter, e.g. the distribution of treatment effects and

the proportion of individuals who benefit from treatment. Finally, we present estimators together with

their rates of convergence and we evaluate them in a simulation study.
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1. Introduction

In this paper we consider estimation of treatment effect parameters in the presence of multiple

sources of unobserved heterogeneity in the selection equation. We consider the following treatment

effect model

Y = Y0 +∆D, where ∆ = Y1 − Y0,(1.1)

D = 1
{
V − Z ′Γ−Θ > 0

}
.(1.2)

To understand structure and limitations of this model, consider first the outcome equation (1.1):

Here, Y0 and ∆ denote scalar random coefficients in a model with a binary endogenous regressor

D. Note that this outcome equation allows for unrestricted heterogeneity, since it is equivalent to a

nonseparable model Y = ψ(D,U), with U being a (potentially infinite) vector of unobserved variables.

The random coefficients have an interpretation: Y0 is the outcome in the control group or base state,

Y1 the outcome in the treated group, and ∆ = Y1 − Y0 is the net gain from an ideal exogenous move

of an individual from state 0 to state 1, called the effect of treatment. In our model, both Y0 and Y1

may be continuous or discrete, and individuals are observed in either of the two states 0 or 1.

In this model, participation in the treatment is endogenous: Individuals select themselves into

treatment, if the net (expected) utility of participating in the treatment is positive, as formalized

in equation (1.2), where 1 denotes the indicator function. This net utility depends on a vector of

continuous instrumental variables (V,Z ′) ∈ RL which are observable to the econometrician. It also

depends, in a nonseparable fashion, on unobserved parameters (Γ′,Θ) ∈ RL which are allowed to vary

across the population. Because the scale of the net utility cannot be identified, we set the coefficient

of V to 1. This can be done if, in the original scale, the coefficient of V is positive1.

To fix ideas, one may think of the instruments as cost factors or elements of information about

the net utility of treatment, and of the random slope coefficients as reflecting the heterogeneous

impact of these factors on net utility. The random intercept can be interpreted as contributions to net

utility that are unobserved to the econometrician such as the anticipated gains of being treated plus

possibly some random term (e.g., the random intercept of the cost function). While we allow for a rich

structure in terms of unobservables that goes significantly beyond the common “scalar unobservable

threshold crossing” model, we remark that at the same time we place potentially restrictive structure

by requiring that this model be linear in parameters, and that the unobservables in the selection

1We can change V in −V if it is negative.
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equation have the same dimension as the vector of exogenous variables. While we do not literally

believe in an exact linear structure on individual level, we think of a linear index structure as a good

first order approximation. Rather than aiming to capture higher order terms in observable variables,

in this paper we rather want to place emphasis on the dependence of the participation decision on an

unobserved structure in a way that is more in line with structural economics.

The main results in this paper establish that under very general conditions,

(1.3) fΓ′,Θ, fYj |Γ′,Θ
2, j = 0, 1, and E[∆ | Γ = γ,Θ = θ],

are point identified. Moreover, we provide sharp bounds on V ar[∆] and F∆. Finally when the outcome

is continuous, under additional conditions we show that V ar[∆|Γ = γ,Θ = θ], f∆|Γ,Θ and fY0,Y1|Γ,Θ

are point identified. Let us now elaborate on the individual objects.

The average treatment effect, conditional on first stage preference parameters, E[∆|Γ = γ,Θ =

θ], abbreviated U-CATE, is similar in spirit to the marginal treatment effect (MTE, see Björklund

and Moffitt (1987), and Heckman and Vytlacil (2005)) and shares many of its appealing properties

(policy invariance, interpretation in terms of willingness to pay for people at the margin of indifference,

averages like the average treatment effect (ATE) are straightforwardly derived, etc.).

It differs in as far as instead of depending on a single first stage unobservable, it allows to

condition on the entire vector Γ,Θ of heterogenous first stage parameters. Unlike the scalar unob-

servable threshold crossing model, the selection equation neither imply monotonicity nor uniformity

(see Imbens and Angrist (1994) and Heckman and Vytlacil (2005)), as soon as L ≥ 2. It thus allows

for more general heterogeneity patterns in the selection equation. In particular, there may be both

compliers and defiers in the population. Because of this generality, the model (1.2) is suggested in

Heckman and Vytlacil (2005) as a benchmark nonseparable, nonmonotonic model.

The marginals, fYj |Γ′,ΘfΓ′,Θ, j = 0, 1, are identified under the same conditions as U-CATE

without appealing to randomized experiments or selection on unobservables. From the marginals we

can recover the unconditional marginals, as well as many other parameters, like the quantile treatment

effect (QTE), see Abadie, Angrist and Imbens (2000) and Chernozhukov and Hansen (2005). We also

derive sharp bounds for (1) the variance of treatment effect (VaTE), (2) the CDF of the two potential

outcomes, and (3) the CDF of treatment effects.3

2Throughout this paper, we will refer to the density and cumulative distribution function (CDF for short) of a vector

A as fA, respectively FA, we will write fA|B(·|b) and FA|B(·|b) the conditional densities and CDF of A given B = b.
3The bounds for (2) stem from the classical bounds of Hoeffding (1940) and Frechet (1951) and are used in Heckman,

Smith and Clements (1997), Manski (1997) and Heckman and Smith (1998). Fan and Park (2010) and Firpo and Ridder
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These bounds are potentially wide, and obtaining point identification under plausible condi-

tions is thus desirable. To point identify the conditional variance of treatment effects (U-CVaTE)

V ar[∆|Γ = γ,Θ = θ], and thus also the unconditional variance, we impose the additional assumption

that conditional on (Γ′,Θ), Y0 and ∆ are uncorrelated. For the Unobservables Conditioned Distri-

bution of Treatment Effects (U-CDiTE) f∆|Γ′,Θ we impose the stronger assumption that Y0 and ∆

are independent conditional on Γ,Θ (which we denote as Y0 ⊥ ∆|Γ,Θ)4. Conditional independence

assumptions between the gain ∆ and the base state Y0 are made in Heckman, Smith and Clements

(1997), Heckman and Clements (1998). However, in these references the independence assumption is

conditional on D, or on observable variables X. In contrast, one attractive feature of the approach

put forward in this paper is that the independence is conditional on the unobservables entering the

selection equation (as well as control variables X). This makes this assumption more likely to hold,

as we argue in detail in Section 3.4 using extensions of the Roy model. The unobservables in the

selection equation contain information on ex-ante forecast of the gains and cost factors. At this point,

we would only like to point out that this assumption is satisfied, if there exist otherwise unrestricted

mappings ψ0, ψ∆ such that Y0 = ψ0(Γ
′,Θ, U0), and ∆ = ψ∆(Γ

′,Θ, U∆), with U0, U∆ possibly infinite

dimensional, such that U0 ⊥ U∆ ⊥ (Γ′,Θ).5 This paper therefore shows that allowing for several

sources of unobserved heterogeneity in the selection equation is important, not just in its own right,

but also to allow for more dependence between the gain ∆ and the base state Y0, and still point

identify distributional treatment effect parameters.

Another material assumption is a support condition. When L, the dimension of instruments is

2 or larger, we impose a condition relating the support of the instruments and that of the unobserved

heterogeneity parameters. Though we can deal with instruments with bounded support, it is a type

of “large” support assumption which is required to fully recover the entire distribution of random

(2008) apply the Makarov (1981) bounds to infer bounds on the distribution of treatment effects, Fan and Zhu (2009)

obtain bounds for functionals of the joint distribution of potential outcomes, like inequality measures based on the

distribution of treatment effects. Unlike these references the bounds are obtained in the case of possible selection on

observables and unobservables. As we shall see, the bounds on the distribution of treatment effects are also sharper than

what a direct application of the Makarov bounds would yield because they are averages of Makarov bounds on CDFs of

the marginals conditional on the observables and unobservables of equation (1.2).
4We indeed assume Y0 ⊥ ∆|Γ,Θ, X with some observables X that are used as control variables. This can make

the independence assumption more likely in the same spirit as the missing at random assumption in the missing data

literature. However, in total, we are able to condition both on X and the unobserved heterogeneity Γ,Θ.
5 This can be interpreted as the fact that the selection equation reveals information about the common endogenous

factors; there is (potentially complicated) remaining heterogeneity in Y0 and ∆, but it is independent of everything else.
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coefficients in the selection equation. When L = 1, we establish that when the variation of our

instruments is small relative to that of the unobserved heterogeneity parameters, we can identify the

average, variance or distribution of effects for the subpopulation defined by the range of the instrument.

This subpopulation is related to the one considered in Angrist, Graddy and Imbens (2000), the LATE

of Imbens and Angrist (1994) being a special case. We suspect that something similar is feasible for

L ≥ 2, but leave it for future research.

Based on these identification results, we provide sample counterparts estimators and obtain

their rates of convergence. It is known from Beran, Feuerverger and Hall (1996), Hoderlein, Klemelä

and Mammen (2010) and Gautier and Kitamura (2009) that the estimation of the distribution of ran-

dom coefficients in the single equation case with exogenous regressors is an ill-posed inverse problem.

We extend these papers by allowing dependence between the random coefficients and the regressors

and by relaxing the full support assumption on the regressors6. Similar to Imbens and Newey (2009),

we deal with an endogenous regressorD in equation (1.1) through a triangular system with an equation

for the endogenous regressor but we allow for multiple sources of unobserved heterogeneity entering

in a nonseparable fashion in (1.2).

In contrast to all of these references, in our approach the first stage (selection) equation allows

for multiple sources of unobserved heterogeneity, and monotonicity is not imposed. Estimation of

the marginals (Y0 +∆,Γ′,Θ), (Y0,Γ
′,Θ) and (Γ′,Θ), U-CATE, VaTE or extensions of the QTE, then

relies on solving ill-posed inverse problems that involve the Radon transform. The estimation of the

distribution of treatment effects is a deconvolution problem and features thus in addition another

ill-posed inverse problem (see also Heckman, Smith and Clements (1997) and Heckman and Smith

(1998)). More precisely, in our setup, it consists of a conditional deconvolution problem with unknown

but estimable distributions of (1) the signal plus error and of (2) the error. Evdokimov (2010) considers

conditional deconvolution in nonparametric panel data models with unobserved heterogeneity. In

classical deconvolution, the density of Y0 is known and the characteristic function of Y0+∆ is estimated

via the empirical characteristic function which estimates the true characteristic function at rate 1/
√
N .

An extension studied in the statistics literature considers the case where the density of Y0 is estimable

at rate 1/
√
N using a preliminary sample (see, e.g. Neumann (1997), Johannes (2009) and Comte

and Lacour (2011)). In this paper the Fourier transforms of the densities of (Y0 + ∆,Γ′,Θ) and

(Y0,Γ
′,Θ) with respect to the first argument are estimated solving inverse problems using the same

6In (1.1) D and (Y0,∆) are dependent and D has a limited support, in (1.2) we will allow V to have limited support

and (V,Z′) and (Γ′,Θ) to be dependent but independent given control variables.
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sample. Getting unconditional parameters requires to compute an integral over the conditional effects

weighted by the joint density of the random coefficients.

More generally, this paper touches upon two related sets of literatures. The first is the treat-

ment effect literature, in particular the part that is related to distributional treatment effects, the

second is the random coefficients literature. First, we obtain results for treatment effect parameters

that depend on averages. This is related to the important contributions of LATE (Imbens and An-

grist(1994)) and MTE (Björklund and Moffitt (1987), Heckman and Vytlacil (1999, 2005, 2007)). But

we also obtain results on the marginals which are related to the quantile treatment effects of Abadie,

Angrist and Imbens (2002), Chernozhukov and Hansen (2005), and to results by Heckman, Smith and

Clements (1997), Heckman and Smith (1998), Carneiro, Hansen and Heckman (2003), Aakvik, Heck-

man and Vytlacil (2005), Abbring and Heckman (2007) and Fan and Zhu (2009), Fan and Park (2010)

and Firpo and Ridder (2008). Note that the first two results on quantile treatment effect essentially

require a rank invariance assumption, i.e., the individuals retain their ordering both in the treatment

and the control group, an assumption which may only be weakened slightly. This assumption is re-

strictive, and has been criticized, see Heckman, Smith and Clements (1997). Carneiro, Hansen and

Heckman (2003) and Aakvik, Heckman and Vytlacil (2005) consider a factor model approach that

allows to identify the distribution of treatment effects. Because we implicitly recover the distribution

of unobservables in the selection equation, our identification strategy has some similarities with that

of Lewbel (2000) and Lewbel (2007) for the semi-parametric binary choice and endogenous selection

model, but allows to handle multiple sources of unobserved heterogeneity that enter the index in the

selection equation in a nonseparable, linear random coefficients fashion. Moffitt (2008) considers a

model with multiple sources of unobserved heterogeneity in the selection equation, which enter in a

more general form than the linear index structure of equation (1.2), but he imposes monotonicity.

Klein (2010) considers a different specification where a second source of unobserved heterogeneity

enters the scalar unobservable threshold crossing in a nonseparable fashion. The two sources of unob-

served heterogeneity are independent and it is observed that recovering the distribution of unobserved

heterogeneity is a nonlinear inverse problem.

The second related line of work is the literature on nonparametric random coefficients models.

Random coefficients models allow the preference or production parameters to vary across the popula-

tion. In this paper, we specifically allow for different individuals to have different costs and benefits of

treatment. We emphasize the nonparametric aspect of our analysis, which allows to be flexible about

the form of unobserved heterogeneity. References in econometrics include Elbers and Ridder (1982),



7

Heckman and Singer (1984), Beran and Hall (1992), Beran, Feuerverger and Hall (1996), Ichimura

and Thompson (1998), Fox and Gandhi (2009), Hoderlein, Klemelä and Mammen (2010), Gautier

and Kitamura (2009) and Gautier and Le Pennec (2011). Fox and Gandhi (2009) study identification

of the distribution of unobserved heterogeneity in Roy models, however they focus on the case of

discretely supported random coefficients, and do not allow for a random intercept in the selection

equation. The last three references focus on continuous random coefficients, and recognize that the

estimation of the density of the latent random coefficients vector is a statistical inverse problem in this

scenario. The literature on the treatment of these problems is extensive in statistics and econometrics,

and we refer to Carrasco, Florens and Renault (2007) for a survey of applications in economics.

This paper is structured as followed. In section 2, we introduce the model formally, and discuss

the basic assumptions. In section 3 we establish the main identification results. We show that under

the baseline assumptions the marginals of each potential outcome are identified, conditional on random

coefficients. This allows to obtain the U-CATE, many other treatment effect parameters that only

depend on averages, and other parameters that solely depend on marginals, like the QTE. Moreover,

we obtain bounds on the variance of treatment effects, on the joint distribution of the two potential

outcomes, and consequently also on the distribution of treatment effects. Finally, in section 3.4,

we introduce two nested assumptions that allow to point identify the variance and the distribution

of treatment effects. We discuss the interpretation of these assumptions and their relevance in the

context of extensions of the Roy model, discuss how they aid in identification, and present again sample

counterparts estimators. In section 4, we present estimators and obtain general rates of convergence

for our estimators. In section 5, we analyze the finite sample behavior through a simulation study,

before an outlook concludes.

2. The Random Coefficients Model and Assumptions

This section introduces the formal setup in which we analyze the effects of treatment. We

distinguish between two cases. The first one is the case where we have a vector of unobservables, and

is the core innovation in this paper. The second one is the “traditional” case, which features a scalar

unobservable and is displayed largely for comparison. Before we discuss these scenarios in detail, we

start, however, by introducing some crucial pieces of notation and basic probabilistic assumptions.

Throughout this paper, we use uppercase letters for random variables and lowercase for their

realizations. In addition to the observable variables (Y,D, V, Z) which have already been introduced

above, we assume that there might be another observable random vector X on which we may want
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to condition upon when doing inference. Examples include household characteristics like age, gender,

race etc. We do not impose any restriction on the dependence of Y0, Y1, V , Z, Γ, Θ on X, besides

regularity conditions which we detail below. As with Y , we denote by X0 and X1 the random variable

X when D is 0, respectively 1.

The data consists of the realizations of N independent and identically distributed copies of the

population random variables, which we denote as (yi, di, vi, z
′
i, x

′
i)i=1,...,N , where N is the sample size.

We denote by supp (A) or supp (fA), the support of the random vector A and by Int(A) the interior

of a set A.

For mathematical convenience, in the case where L ≥ 2, it is useful to renormalize the index

in (1.2). This could be done in several ways. In this paper, we assume that the (random) coefficient

of V in the original net utility scale has a sign. A more general sufficient condition is presented in

Section 6. Other than being more interpretable, the approach put forward in this paper allows us to

handle the case where V has bounded support, too. As a next step, we divide by ∥(Z ′, 1)∥, and use

the notations S̃ = (Z ′, 1)′/∥(Z ′, 1)∥, Ṽ = V/∥(Z ′, 1)∥ and Γ̃ = (Γ′,Θ)′. Then, (1.2) becomes

(2.1) D = 1{S̃′Γ̃ < Ṽ }.

We invoke the following assumptions (when L = 1 simply drop Z and Γ below).

Assumption 2.1. (A-1) The conditional distribution of (V,Z,Θ,Γ′) given X = x is absolutely con-

tinuous with respect to the Lebesgue measure for almost every x in supp (X) ;

(A-2) (V,Z)⊥(Y0,Γ
′,Θ)|X and (V,Z)⊥(Y1,Γ

′,Θ)|X ;

(A-3) 0 < P(D = 1|X) < 1 a.s. ;

(A-4) X0 = X1 a.s. .

Assumption (A-1) defines the setup of this paper as one with continuous instruments. In

Sections 3.4.3, 4.3.3 and 4.3.4, we strengthen (A-1) to

(A-1’) The conditional distribution of (Y0, Y1, V, Z,Θ,Γ
′) given X = x is absolutely continuous with

respect to the Lebesgue measure for almost every x in supp (X).

It is only in these sections that we consider the particular case where the outcomes are continuous.

The responses Y0 and Y1 are allowed to be heterogeneous in a general way and of the form Y0 =

ψ0(X,Γ
′,Θ, U0) and Y1 = ψ1(X,Γ

′,Θ, U1) where U0 and U1 account for unobserved heterogeneity and

can be infinite dimensional. Assumption (A-1) also implies an exclusion restriction: conditional on
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X = x, Z is still continuous and has variation. In practice, this is achieved when Z contains variables

that are not in the list of regressors X.

Assumption (A-2) requires the instruments to be independent of the random parameters given

some variables X which are either exogenous or act as control variables. We allow (Y0,Γ
′,Θ) and

(Y1,Γ
′,Θ) to depend on (V,Z) (unconditional endogeneity of the instruments) as long as we have

at hand control variables X which yield independence. Randomization or pseudorandomization is a

classical tool to generate instrumental variables satisfying this assumption unconditional on X. When

L ≥ 2, Assumption (A-2) can be written in terms of the renormalized instruments as

(Ṽ , S̃) ⊥ (Y0, Γ̃
′)|X and (Ṽ , S̃) ⊥ (Y1, Γ̃

′)|X.

Assumption (A-3) states that for any x ∈ X, there is always a fraction of the population that

participates in treatment, and one that does not. Finally, Assumption (A-4) states that X is not

caused by the treatment. As in Heckman and Vytlacil (2005), this last assumption is not strictly

required for econometric analysis. However, it makes the inferred quantities more interpretable, and

allows to still capture the total effects of D on Y , after conditioning on X.

It is possible, when considering only one unobservable, to consider a model where (1.2) is

replaced by

(2.2) D = 1{µ(V,Z) > Θ}

where µ is a CDF and Θ|X ∼ U(0, 1). This is a well established model studied, among others,

in Heckman and Vytlacil (1998, 2005, 2007). We do not present the extension of their results in

terms of variance and distribution of treatment effects in this text in order to make the presentation

more concise. The arguments are closely related to the single unobservable case used for purpose

of comparison below. This one unobservable framework extends the IV framework where general

heterogeneity in response but not in choices is allowed. Additive separability has a strong implication

called “monotonicity” in Imbens and Angrist (1994) and “uniformity” in Heckman and Vytlacil (2005):

conditional on X = x where x belongs to supp(X), for arbitrary (v, z) and (v′, z′) in supp(V,Z ′),

if the instruments are moved for everyone from (v, z) to (v′, z′) then either for every θ ∈ [0, 1],

1{µ(v, z) > θ} ≥ 1{µ(v′, z′) > θ} or for every θ ∈ [0, 1], 1{µ(v, z) > θ} < 1{µ(v′, z′) > θ}, i.e., there

are either no compliers, or no defiers.

This is a substantial restriction regarding heterogeneity in choices of treatment. The case with

more than two sources of unobserved heterogeneity in D that we advocate in this paper allows for
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more general heterogeneity in treatment choices in which uniformity breaks down. To see this, fix

v ∈ supp(Ṽ ) and take s and s′ in supp
(
f
S̃|Ṽ (·|v)

)
and denote by Ds(γ) = 1{s′γ < v}. In Figure 1 we

consider the case where L = 2, v = 0 and thus the origin is where the two lines (defined through their

normal vectors s and s′) intersect. For an unobserved heterogeneity parameter γ in zone 2, Ds = 0

and Ds′ = 1 while, for γ in zone 4, Ds = 1 and Ds′ = 0, i.e., parts of the population may be compliers,

parts defiers.

Figure 1. Non uniformity with more that 2 unobservables

Assumptions (A-1) and (A-2) together yield that the score function satisfies

(2.3) π(v, x) =

∫ v

−∞
fΘ|X(t|x)dt

when L = 1. In the case when L ≥ 2,

π(s, v, x) = P(D = 1|S̃ = s, Ṽ = v,X = x)(2.4)

=

∫
RL

1{γ′s < v}f
Γ̃|X(γ|x)dγ(2.5)

=

∫ v

−∞

∫
Ps,u

f
Γ̃|X(γ|x)dPs,u(γ)du(2.6)

=

∫ v

−∞
R[f

Γ̃|X(·|x)](s, u)du.(2.7)

Here, R is called the Radon transform (see, e.g., Helgason (1999)), and Ps,u = {γ : γ′s = u} is the

affine hyperplane of dimension L − 1 defined through the direction s and distance u to the origin,

where s is in an hemisphere H of SL−1 (here H+ = {x ∈ SL−1 : xL ≥ 0}), and u ∈ R . The Radon

transform is a bounded operator. When applied to a function f ∈ L1(RL), it yields the integral of
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that function on Ps,u

R[f ](s, u) =

∫
Ps,u

f(γ)dPs,u(γ)

where dPs,u is the Lebesgue measure on Ps,u. Mathematical results regarding this integral transfor-

mation (including injectivity and an inversion formula involving the adjoint of the Radon transform)

can be found in Natterer (1996) and Helgason (1999). Statistical inverse problems involving this type

of operator on the whole space appear in several problems in tomography (see, e.g., Korostelev and

Tsybakov (1993) and Cavalier (2000, 2001)), but also when one wishes to estimate the distribution

of random coefficients in the linear model with random coefficients (see Beran, Feuerverger and Hall

(1996) and Hoderlein, Klemelä and Mammen (2010)).

Assumption 2.2. When L = 1, for every x ∈ supp (X),

supp
(
fV |X(·|x)

)
⊃ supp

(
fΘ|X(·|x)

)
.

When L ≥ 2, for every x ∈ supp (X) , supp
(
f
S̃|X(·|x)

)
= H+ and for every s ∈ Int(H+),

supp
(
f
Ṽ |S̃,X(·|s, x)

)
⊃

 inf
γ∈supp

(
f
Γ̃|X(·|x)

) s′γ, sup
γ∈supp

(
f
Γ̃|X(·|x)

) s′γ
 .

Assumption 2.2 is a large support assumption. It implies that the instruments have a large

enough support to apprehend the whole distribution of the unobserved heterogeneity vector. This is

crucial in our setup, as we want to recover the entire multivariate distribution of heterogeneity factors

Γ̃, and implicitly use this information to infer the average treatment effect from the conditional

treatment effects. Assumption 2.2 is not required when L = 1 to obtain treatment effect parameters

conditional on the unobserved heterogeneity Θ, however, it is required to obtain population averages.

When it is not satisfied, we can only make statements about a particular subpopulation related to the

variation of the instrument, this is similar to the population apprehended by LATE of Imbens and

Angrist (1994), see also Angrist, Grady and Imbens (2000). A similar assumption to Assumption 2.2

is made in Lewbel (2007). Unlike Gautier and Kitamura (2009), Assumption 2.2 still allows one of

the instruments, for instance V , to have bounded support.

Finally, Heckman and Smith (1998) consider the case where in a welfare analysis one would like

to consider treatment effects in terms of some social welfare criterion U which could be more general

than simply the potential outcomes (e.g. consider a more general utility function than income if Y

is income). Within our framework, it is easy to consider the case where the gains are expressed in

terms U(Y1, X)−U(Y0, X), for a known utility function U, by simply replacing everywhere, including
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(1.1), Y, Y0, Y1 by U(Y,X), U(Y0, X), U(Y1, X) and transform the variables yi into U(yi, xi) for

i = 1, . . . , N .

3. Identification of Structural Parameters

This section discusses identification and estimation of the distribution of random coefficients,

fΓ′,Θ, the marginal distribution of Y0 and Y1, respectively, given random coefficients, fYj |Γ′,Θ, j = 0, 1,

and several implied parameters, like U-CATE. Moreover, we show that the joint distribution and the

variance of treatment effects are partially identified, and provide sharp bounds. Finally, we propose

an additional assumption that allows us to point identify the variance and distribution of treatment

effects, and argue that it is likely to be satisfied in many economically relevant cases.

3.1. A Central Result for Identification. We start again by clarifying the notation. In what

follows we denote by g the extension of a function g as 0 outside its domain of definition, e.g. a

regression function where regressors have bounded support outside of this support. Moreover, denote

by R the Radon transform, and by R−1 its inverse. We use these objects in the following argument,

which is at the core of our identification strategy.

First, note that Assumptions (A-1) and (A-2) yield that for (v, s′, x′) in supp
(
Ṽ , S̃′, X ′

)
,

E
[
ϕ(Y )D|S̃ = s, Ṽ = v,X = x

]
=

∫
supp(Γ̃)

E[ϕ(Y1)1{γ′s < v}|S̃ = s, Ṽ = v, Γ̃ = γ,X = x]f
Γ̃|X(γ|x)dγ

=

∫
supp(Γ̃)

1{γ′s < v}E[ϕ(Y1)|S̃ = s, Ṽ = v, Γ̃ = γ,X = x]f
Γ̃|X(γ|x)dγ

=

∫
supp(Γ̃)

1{γ′s < v}E[ϕ(Y1)|Γ̃ = γ,X = x]f
Γ̃|X(γ|x)dγ.

for any function ϕ such that E[|ϕ(Y1)|] <∞. Thus, by arguments from the previous section,

(3.1) E[ϕ(Y )D|S̃ = s, Ṽ = v,X = x] =

∫ v

−∞
R
[
E[ϕ(Y1)|Γ̃ = ·, X = x]f

Γ̃|X(·|x)
]
(s, u)du.

which yields, almost everywhere (a.e. for short) for u in supp
(
f
Ṽ |S̃,X(·, s, x)

)
,

(3.2) ∂vE[ϕ(Y )D|S̃ = s, Ṽ = ·, X = x](u) = R
[
E[ϕ(Y1)|Γ̃ = ·, X = x]f

Γ̃|X(·|x)
]
(s, u).

The right hand side of (3.2) is 0 for u outside

[
inf

γ∈supp
(
f
Γ̃|X(·|x)

) s′γ, sup
γ∈supp

(
f
Γ̃|X(·|x)

) s′γ
]
(see

Figure 2). Under Assumption 2.2 we hence know that extending the left hand side of (3.2) as 0 is

innocuous.
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Figure 2. Radon transform and extensions

These arguments motivate our first theorem. To avoid tedious repetitions, we mostly display

results for L ≥ 2. The case of a scalar random coefficient is analogous. It can be obtained by leaving

out the inverse of the Radon transform, and adapting the conditioning set accordingly replacing Ṽ

and Γ̃ by V and Θ.

Theorem 3.1. Consider an arbitrary function ϕ such that E [|ϕ(Y0)|+ |ϕ(Y1)|] < ∞. Let L ≥ 2,

and assume that Assumptions 2.1 and 2.2 hold. Then, almost surely in x in supp(X), the following

statements are true:

f
Γ̃|X(·|x) = R−1

[
∂vE

[
D
∣∣∣(S̃, Ṽ ) = ·, X = x

]]
(3.3)

E
[
ϕ(Y1)

∣∣∣Γ̃ = ·, X = x
]
f
Γ̃|X(·|x) = R−1

[
∂vE

[
ϕ(Y )D

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(3.4)

E
[
ϕ(Y0)

∣∣∣Γ̃ = ·, X = x
]
f
Γ̃|X(·|x) = R−1

[
∂vE

[
ϕ(Y )(D − 1)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]
.(3.5)

Discussion of Theorem 3.1: 1. This set of results always equate a structural parameter of

interest on the left hand side to an object that can be estimated from data on the right hand side.

It is instructive for this first result to compare them with the corresponding results that would be

obtained in the scalar unobservable case (L = 1),

fΘ|X (·|x) = ∂vE[D|V = ·, X = x](3.6)

E [ϕ(Y1)|Θ = ·, X = x]fΘ|X(·|x) = ∂vE [ϕ(Y )D|V = ·, X = x](3.7)

E [ϕ(Y0)|Θ = ·, X = x]fΘ|X(·|x) = ∂vE[ϕ(Y )(D − 1)|V = ·, X = x].(3.8)

All the results in the scalar unobservable case involve only one unbounded operator: a partial derivative

with respect to v. In contrast, the results in the multiple unobservable case involve in addition a second
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unbounded operator: the inverse of the Radon transform, thus showing the more complex ill-posed

inverse nature of estimation in this setup. More specifically, in the single unobservable case, the

density of the scalar random coefficient Θ, conditional on exogenous factors X, is identified by the

derivative of the propensity score with respect to v, see equation (3.6). In contrast, in order to recover

the (conditional) density of Γ̃ in the case of multiple unobservables, one has to also apply the inverse

Radon transform to recover a similar object, see equation (3.3). The same remark applies to the

comparison between equations (3.7) and (3.8) in the single unobservable case, and their counterparts

(equations (3.4) and (3.5) respectively) in the multiple unobservable case: it is always the inverse

Radon transform we have to apply. By trivial manipulations, using the identity for ϕ, we can recover

a Heckman and Vytlacil (1998, 2005, 2007) type result,

E [∆|Θ = ·, X = x] =
∂vE [Y |V = ·, X = x]

∂vE[D|V = ·, X = x]
,

and can obviously provide an analog in the case of several unobservables. Because of its paramount

importance, we focus on the discussion of this conditional average treatment effect in a separate section

below.

2. Another important point to notice in Theorem 3.1 is the wide range of functions ϕ that

can be used. Using for example ϕ(y) = 1 {(−∞, y]} allows to obtain (partial) CDFs, while using

ϕ(t) = exp(ity) allows to obtain partial Fourier transforms, which can be employed to recover densities.

This is illustrated in the following corollary.

Corollary 3.1. Let Assumptions 2.1 and 2.2 be true, the marginal distributions of (Y0, Γ̃) and (Y1, Γ̃)

given X = x are identified. Integrating out Γ̃, we obtain

FY1|X(y|x) =
∫
RL

R−1

[
∂vE

[
1 {Y ≤ y}D

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)dγ,

and analogously for FY0|X(y|x).

From these CDFs we can obtain any inequality measure (e.g. the Gini index) for the outcome

in the treated and control group. It is important to notice that these quantities are obtained without

an ideal randomized experiment. As one example, we may obtain the quantile treatment effect (QTE)

of Abadie, Angrist and Imbens (2002), and Chernozhukov and Hansen (2005), which is defined as,

QTE(x, τ) = q(1, x, τ)− q(0, x, τ)

where q(1, x, τ) and q(0, x, τ) are the quantiles of FY1|X(y|x) and FY0|X(y|x), as well as the related

average effect
∫ 1
0 QTE(x, τ)dτ, by simply inverting the CDFs obtained from Corollary 3.1.
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3. When L = 1, because we do not have R−1 in the formulas, Assumption 2.2 is not necessary

and it is possible to consider cases where the support of the instrument V is not rich enough to provide

identification for every value of the unobservable.

Proposition 3.1. Let Assumption 2.1 hold. For almost every x in supp(X) such that

P
(
Θ ∈ supp

(
fV |X(·|x)

)
|X = x

)
> 0, we obtain that for every function ϕ s. th. E [|ϕ(Y0)|+ |ϕ(Y1)|] <

∞,

fΘ|X,Θ∈supp(fV |X(·|x)) (·|x) =
∂vE[D|(V = ·, X = x)]∫

R ∂vE[D|(V = ·, X = x)](t)dt
(3.9)

E [ϕ(Y1)|Θ = ·, X = x]fΘ|X,Θ∈supp(fV |X(·|x))(·|x) =
∂vE [ϕ(Y )D|V = ·, X = x](t)∫
R ∂vE [D|V = ·, X = x](t)dt

,(3.10)

and analogously for E [ϕ(Y0)|Θ = ·, X = x]. This result allows to identify a large variety of

parameters of interest, starting with marginals of potential outcomes

FY0|Θ∈supp(fV |X(·|x)),X(y|x) =

∫
supp(fV |X(·|x)) ∂vE[1 {Y ≤ y} (D − 1)|V = ·, X = x](t)dt∫

supp(fV |X(·|x)) ∂vE[D|V = ·, X = x](t)dt
.

and including average or quantile treatment effects, variance and distribution of treatment effects

(under the respective assumptions to point identify theses quantities that we make below). The

subpopulation for which we can make inference is the same as in Angrist, Grady and Imbens (2000).

We conjecture that an analog result holds in the case of a multivariate unobservable.

To close this discussion, we remark that the equalities in Theorem 3.1 hold a.e., for convenience

we will no longer mention this in the remainder of the paper. In the following, we discuss a key

implication of Theorem 3.1. Due to its great importance, we state it in a separate subsection.

3.2. The Average Treatment Effect Conditional on Unobservables (U-CATE). In this sec-

tion we extend the notion of the MTE in Björklund and Moffitt (1987) and Heckman and Vytlacil

(1998, 2005, 2007) to our setup with potentially several unobservables. In the presence of only one

unobservable in the selection equation, we call the parameter

U − CATE(θ, x) := E[∆|Θ = θ,X = x],

the Unobservables Conditioned Average Treatment Effect (U-CATE, for short). It is the average

effect of treatment for the subpopulation with unobserved heterogeneity parameter equal to θ and

observable X = x. The parameter U − CATE(θ, x) has the same interpretation as the MTE. It

corresponds to the average effect for a subpopulation with X = x who would be indifferent between
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participation and non-participation in the treatment, if they were exogenously assigned a value v of

V such that v = θ. The U-CATE parameter has the advantage that it can be generalized easily to

the case where L ≥ 2 as

U − CATE(γ, x) := E[∆|Γ̃ = γ,X = x].

It is the average effect of treatment for the subpopulation with first stage unobserved heterogeneity

vector equal to γ and observables X = x. It is also the average effect for people with X = x who would

be indifferent between participation and non-participation in the treatment, if they were exogenously

assigned a value (s, v) of (S̃, Ṽ ), such that s′γ = v. Because Assumption (A-2) yields that

E
[
∆|Γ̃ = γ,X = x,

(
S̃, Ṽ

)
= (s, v)

]
= E

[
Y1|Γ̃ = γ,X = x,

(
S̃, Ṽ

)
= (s, v)

]
− E

[
Y0|Γ̃ = γ,X = x,

(
S̃, Ṽ

)
= (s, v)

]
= E[Y1|Γ̃ = γ,X = x]− E[Y0|Γ̃ = γ,X = x]

= E[∆|Γ̃ = γ,X = x],

U − CATE(γ, x) does not depend on the values taken by the instruments
(
S̃, Ṽ

)
. It is thus policy

invariant. All these properties are essential properties of the MTE. The extensions of MTE suggested in

Heckman and Vytlacil (2005) for non additively separable models in the first stage selection equation

do not satisfy these properties simultaneously so we believe that U-CATE is a natural parameter

to extend the standard treatment effects analysis to more general models for the treatment choice.

Moreover, like in Heckman and Vytlacil (2005), a large variety of treatment effect measures that

depend on averages can be written as weighted averages of the U-CATE parameter. The ATE for

example can be obtained from U-CATE under Assumption 2.2. To this end, we employ the general

results in the previous subsection, with ϕ(y) = y, ∀y ∈ R and make use of the following assumption.

Assumption 3.1. E[|Y1|+ |Y0|] <∞.

In the following, we derive U-CATE formally, which is straightforward given the results above.

Theorem 3.2. Suppose assumptions 2.1 and 3.1 hold. When L = 1, we obtain for almost every θ,

(3.11) U − CATE(θ, x)fΘ|X(θ|x) = ∂vE [Y |V = ·, X = x ] (θ).

Suppose now that L ≥ 2 and invoke Assumption 2.2. Then, for almost every γ in RL,

(3.12) U − CATE(γ, x)f
Γ̃|X(γ|x) = R−1

[
∂vE

[
Y
∣∣∣(S̃, Ṽ ) = ·, X = x

]]
(γ).
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Obviously, from this equation it is trivial to solve for U-CATE by simply plugging in the

expressions for fΘ|X(γ|x) (respectively f
Γ̃|X(γ|x)) from Theorem 3.1 into this equation. The right

hand side of (3.12) is a natural extension of the local instrumental variable estimator (LIV for short).

If U−CATE(γ, x) is found to be not constant in one dimension of γ, it is an indication of heterogeneous

“costs factors” in this specific direction. We then conclude that accounting for it through a random

coefficients specification is essential for recovery of the classical treatment effect parameters.

U-CATE is a building block from which we may derive a large variety of treatment effect

parameters that depend on averages, e.g., the average treatment effect, or the treatment effect on the

treated:

ATE(x) =

∫
RL

U − CATE(γ, x)f
Γ̃|X(γ|x)dγ =

∫
RL

R−1

[
∂vE

[
Y
∣∣∣(S̃, Ṽ ) = ·, X = x

]]
(γ)dγ

ATT (x) =

∫
RL

hATT (γ, x)U − CATE(γ, x)f
Γ̃|X(γ|x)dγ =

∫
RL

hATT (γ, x)R
−1

[
∂vE

[
Y
∣∣∣(S̃, Ṽ ) = ·, X = x

]]
(γ)dγ

where hATT (γ, x) = E
[
1
{
S̃′Γ̃ < Ṽ

}
|X = x

]−1
E
[
1
{
S̃′γ < Ṽ

}
|X = x

]
, and analogously for the

treatment effect on the untreated. In Section 3.4, we discuss a natural extension of U-CATE to obtain

more general treatment effect parameters which depend on the whole distribution of treatment effects,

or on the full joint distribution of (Y0, Y1, Γ̃).

This concludes our discussion of the point identified effects; however, we can use the results in

Theorem 3.1 in additional ways, as the following subsection illustrates.

3.3. Bounds on the Variance and the Distribution of Treatment Effects. As discussed above,

Theorem 3.1 reveals that under our assumptions, the marginals of Y1 and Y0, conditional on preference

parameters, are identified. This information about the marginals, as well as moments of the marginals,

can be used to bound moments of the difference Y1 − Y0, as well as the distribution of this difference,

as this section illustrates.

For the formal statement of the bounds, we require the following notation. Let

FL(y0, y1|x) = max

{∫
RL

R−1

[
∂vE

[
1 {Y ≤ y} (2D − 1)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)dγ − 1, 0

}
FU (y0, y1|x) = min

{∫
RL

R−1

[
∂vE

[
1 {Y ≤ y} (D − 1)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)dγ ,∫
RL

R−1

[
∂vE

[
1 {Y ≤ y}D

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)dγ

}
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and

FL(δ|x) =
∫
RL

sup
y∈R

max

{
R−1

[
∂vE

[
1 {Y ≤ y}D

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)

−R−1

[
∂vE

[
1 {Y ≤ y − δ} (D − 1)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ), 0

}
dγ

FU (δ|x) = 1 +

∫
RL

inf
y∈R

min

{
R−1

[
∂vE

[
1 {Y ≤ y}D

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)

−R−1

[
∂vE

[
1 {Y ≤ y − δ} (D − 1)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ), 0

}
dγ.

Now we are in a position to characterize the bounds for the variance and the distribution of

treatment effects in our baseline scenario.

Theorem 3.3. Suppose that Assumptions 2.1 and 2.2 hold. Then we obtain that, almost surely in x

in supp(X), for every (y0, y1, δ) ∈ R3,

(3.13) FL(y0, y1|x) ≤ FY0,Y1|X(y0, y1|x) ≤ FU (y0, y1|x)

and

(3.14) FL(δ|x) ≤ F∆|X(δ|x) ≤ FU (δ|x).,

if in addition E
[
(Y0)

2 + (Y1)
2
]
<∞, then(

V ar(∆|X = x) +

(∫
RL

R−1

[
∂vE

[
Y
∣∣∣(S̃, Ṽ ) = ·, X = x

]]
(γ)dγ

)2

+

∫
RL

R−1

[
∂vE

[
(1− 2D)Y

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)dγ

)2

≤ 4

∫
RL

R−1

[
∂vE

[
(D − 1)Y 2

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)dγ

∫
RL

R−1

[
∂vE

[
DY 2

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)dγ.

Note that this result implies that we can bound the variance and the distribution of treatment

effects, V ar(∆|X = x) and F∆|X(δ|x), respectively, entirely by observable quantities. The bounds

on the variance are very easy to obtain and do not need to be obtained from the CDFs. The bound

(3.13) is a direct application of the Fréchet-Hoeffding bounds, like Heckman, Smith and Clements

(1997), Manski (1997) and Heckman and Smith (1998). It is obtained from the conditional CDFs

FY0|X(y0, x) = E
Γ̃

[
F
Y0|X,Γ̃

(y0|x, Γ̃)
]
and FY1|X(y1|x) = E

Γ̃

[
F
Y1|X,Γ̃

(y1|x, Γ̃)
]
. The bound (3.14) is,

like Fan and Park (2010) and Firpo and Ridder (2008), a consequence of the Makarov bounds. Firpo

and Ridder (2008) show that, unlike the Fréchet-Hoeffding bounds which are uniformly sharp, the

Makarov bounds are only pointwise sharp (unless the outcomes are binary). We show that the average
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Makarov bounds are pointwise sharp and tighter than the Makarov bounds on the average distribution.

(3.14) is obtained by taking the expectation of the Makarov bounds evaluated at F
∆|X,Γ̃

(δ|x, Γ̃). In a

similar fashion, we derive sharper bounds on F∆ from (3.14) by averaging over covariates than what

we would obtain by calculating the Makarov bounds from the CDFs of Y0 and Y1, i.e.,

EX

[
FL(δ|X)

]
≤ F∆(δ) ≤ EX

[
FU (δ|X)

]
.

(3.13) and (3.14) are obtained integrating out the unobservables, they take the random coeffi-

cients structure in the selection equation into account. While the above mentioned references present

bounds in the case of randomized experiments or selection on observables, we obtain for the first time

bounds in the case where there could be endogenous selection into treatment.

Confidence bands and bounds on functionals of F∆|X can be obtained in a similar spirit as Fan

and Park (2010) and Firpo and Ridder (2008). Bounds on functionals of FY0,Y1|X could be obtained in

similar spirit of Fan and Zhu (2009). Unlike these references, these bounds would hold in the case of

endogenous selection. They would also be tighter because we exploit the specific random coefficients

structure in the selection equation. Nevertheless, these bounds could be large in practice. Hence, we

now discuss possible alternatives that provide point identification.

3.4. Point Identification of Variance and Distribution of Treatment Effects. In this section,

as well as in Sections 4.3.3 and 4.3.4, we consider the particular situation where the random variables

Y0 and Y1 are continuously distributed. We thus replace (A-1) by (A-(1)’) in Assumption 2.1.

As we have just seen, in order to point identify the variance and the distribution of treatment

effects, it is imperative to invoke further assumptions. In our endogenous setup, these assumptions

involve the unobservables. For the identification of the distribution of treatment effects, we make the

following key assumption.

Assumption 3.2. Y0⊥∆ |Γ̃, X

A slightly weaker form is sufficient for point identification of the variance of treatment effects.

Heckman, Smith and Clements (1997) considers independence of the base state and the gains given

D. We argue below that controlling for a vector of random coefficients instead of D retains the same

spirit as in Heckman, Smith and Clements (1997), but makes the assumption more plausible. Heckman

and Smith (1998) consider independence given a vector of observable characteristics X. As we argue

subsequently in various extensions of the Roy model, it is important to control for the unobserved



20 GAUTIER AND HODERLEIN

heterogeneity that enter in the selection equation as well. To keep the notation minimal, we suppress

henceforth the dependence on X.

Assumption 3.2 can be readily interpreted in terms of control functions. It is useful to think of

Y as being generated by a nonseparable model; in this case Y = ψ(D,U), and Y0 = ψ(0, U), as well as

Y1 = ψ(1, U) = Y0 +∆. If we identify U with a high dimensional unobservable, e.g., preferences, it is

interesting to note that this implies that our random coefficients Y0 and ∆ are two different functions

of these unobservables, i.e., Y0 = a(U) = ψ(0, U) and ∆ = b(U) = ψ(1, U) − ψ(0, U). Without loss

of generality, one could further partition the set of unobservable in vectors U0, U1, and U2, and write

Y0 = a(U0, U2) and ∆ = b(U1, U2).

Assumption 3.2 restricts the heterogeneity appearing in this model. It is best understood in

terms of the reformulation introduced above, namely Y0 = a(U0, U2) and ∆ = b(U1, U2). A sufficient

condition for Assumption (3.2) is that (Γ′,Θ) = U2, and U0 ⊥ U1|(Γ′,Θ) (for the latter it would in

turn be sufficient that U0 ⊥ U1 ⊥ (Γ′,Θ) ). In words, there is a common driving factor that causes

the selection bias and the dependence between Y0 and ∆. This factor is given by (Γ′,Θ), which,

even though it is not recovered for every individual, implicitly serves as a control function. There is

remaining randomness in Y0 and ∆, however, once the driving factor for endogeneity in this system,

i.e., (Γ′,Θ), is accounted for, there is no leftover dependence.

Note that it does not mean that Y0 ⊥ ∆. In fact, unless there is no endogenous selection there

will generally be dependence between Y0, and Y1−Y0. In summary, there is endogenous selection into

treatment, but as far as it is endogenous, it can be summarized by (Γ′,Θ). Note that the assumption

is more likely to hold in the model with several unobservables in the selection equation, in the sense

that there is not just a single factor that we can employ to control for endogeneity, but a full vector

of such variables.

The next subsection details that this assumption is sensible in several extensions of the Roy

model.

3.4.1. The Example of The Roy Model. The aim of this section is to show that Assumption 3.2 is

satisfied for several extensions of the popular Roy model. Consider a model where the individuals

have at their disposal an information set I at the time of their decision to participate in the program.

They select themselves into treatment if and only if their expected net utility exceeds expected costs.

Formally, the individuals choose D = 1 if and only if

E[Y1 − Y0 − C1|I] > 0,
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where C1 denotes the costs associated with participating in treatment. For simplicity, throughout

this subsection, we do not assume to condition on observed factors X. However, we note that they

could be used to make Assumption 3.2 more plausible. We use the notation ∆ = E[∆|I]+Ξ. We also

assume that the expected costs E[C1|I] can be approximated on individual level by a linear function,

i.e., E[C1|I] ∼= Γ0 − Γ1V + Γ
′
Z, where Γ1 > 0 almost surely (the original V can be changed to −V ).

Since the population is heterogeneous, these coefficients vary across the population. Dividing the

expected net utility of treatment by Γ1, we obtain the selection equation (1.2) with Γ = Γ/Γ1 and

Θ = (Γ0 − E[∆|I])/Γ1.

Let us consider a first setup where Assumption 3.2 is satisfied. Suppose that Γ0−Γ1V +Γ
′
Z =

h0(Ψ) + h1(Ψ)V + h2(Ψ)′Z where Ψ denotes some deep economic parameters. When L ≥ 2 we have

Γ =
h2(Ψ)

h1(Ψ)
=

(
h2 1(Ψ)

h1(Ψ)
, . . . ,

h2 L−1(Ψ)

h1(Ψ)

)′
.

It is reasonable to believe that when L is relatively large and the instruments are well chosen Γ

captures a lot of features of the deep parameters Ψ. The following assumption considers an ideal

situation.

Assumption 3.3 (Invertibility). There is a bijective mapping from Ψ into Γ = h2(Ψ)/h1(Ψ).

It implies that Ψ and hence also Γ0 and Γ1 are σ(Γ)-measurable, where σ(A) denotes the sigma

algebra generated by a random vector A. Hence E[∆|I] = −Γ1Θ + Γ0 is σ(Γ,Θ)-measurable. Note

that we do not have to know or estimate this mapping.

Assume as well

Assumption 3.4. Ξ is σ(Γ,Θ)-measurable.

When I ⊃ σ(Γ,Θ) Assumption 3.4 can be rewritten in the form Ξ = 0, i.e. the agents have

perfect foresight.

Proposition 3.2. Assumptions 3.3 and 3.4 imply Assumption 3.2. Also, Assumption 3.2 is satisfied

even if we switch the labels between 0 and 1.

Proposition 3.2 is a direct consequence of the decomposition ∆ = E[∆|I] + Ξ. Indeed the

assumptions yield that ∆ is σ(Γ,Θ)-measurable and Y0 ⊥ ∆|Γ,Θ is trivially satisfied as conditional

on the unobservables the treatment effect is constant. Having an assumption that is independent of

the labeling is a desirable property when there is no specific treatment but simply two different states,

e.g., two different employment sectors.
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In the second setup we assume more generally that the forecast error on the gains is independent

of the outcome in base state, given the rescaled sources of unobserved heterogeneity in the selection

equation.

Assumption 3.5. Ξ ⊥ Y0|Γ,Θ.

The following proposition simply relies on the decomposition ∆ = E[∆|I] + Ξ.

Proposition 3.3. Assumptions 3.3 and 3.5 imply Assumption 3.2.

Note, however, that if Γ and Θ are known to the agents at the time the decision is made,

E[∆|I] = U − CATE is identified and f
Ξ|Γ̃ is identified if f

∆|Γ̃ is identified, see Section 3.4.3. Invert-

ibility has thus a strong implication regarding the structure of the ex-ante information set.

In the third setup we relax Assumption 3.3 from setups 1 and 2 to allow Γ0,Γ1 to not be

σ(Γ)-measurable. The following proposition gives a more general sufficient condition for Assumption

3.2 to hold that is satisfied under Assumptions 3.3 and 3.5.

Proposition 3.4. Assume that Γ1 = λ(Γ,Ξ1) for some measurable function λ, and that (Γ0,Ξ,Ξ1) ⊥

Y0|Γ,Θ, then Assumption 3.2 is satisfied.

The proposition follows from the fact that

∆ = E[∆|I] + Ξ

= −λ(Γ,Ξ1)Θ + Γ0 + Ξ.

Note that, when in the original scale one coordinate of Γ is non random, then Γ1 ∈ σ(Γ) and

thus there exists a measurable function λ such that Γ1 = λ(Γ,Ξ1). Proposition (3.4) is also satisfied

when Γ1 is non random or when Γ1 = Ξ1 and (Γ0,Ξ,Ξ1) ⊥ Y0|Γ,Θ. Moreover, it is worth mentioning

that there could be arbitrary dependence between (Γ0,Ξ,Ξ1) holding fixed Γ,Θ and that we do not

assume that (Γ0,Ξ,Ξ1) ⊥ Y0 but rather that they can only depend on each other through Γ,Θ.

The assumptions of Proposition 3.4 allow for more complex structure of the ex-ante information

set than Assumptions 3.3 and 3.5. Indeed E[∆|I] = −λ1(Γ,Ξ1)Θ+Γ0 can be different from U-CATE

if λ is non constant in its last argument and/or constant in others (e.g. the agent does not fully know

some of his Γ’s).

Proposition 3.4 is the most general sufficient condition for Assumption 3.2 to hold that we

present. It could certainly be further generalized. Thus there is a wide class of structural models that

encompass generalizations of the Roy model for which Assumption 3.2 can hold.
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3.4.2. Variance of the Treatment Effect. In the following we show that the Unobservables Condi-

tioned Variance of the treatment effects, called U-CVaTE and defined as V ar (∆ |Θ = θ,X = x) and

V ar
(
∆
∣∣∣Γ̃ = γ,X = x

)
, in the cases of L = 1, and L ≥ 2 , respectively, is point identified under

an assumption that is similar in spirit, but weaker than the full independence assumption specified

above. It is the following conditional uncorrelatedness.

Assumption 3.6. E
[
Y 2
0 + Y 2

1

]
< ∞, E [Y0∆ |Γ,Θ, X ] = E [Y0 |Γ,Θ, X ]E [∆ |Γ,Θ, X ]. When L = 1,

there are no Γ’s in the conditioning set.

For the sake of completeness, we retain the case of a single unobservable in the selection

equation.

Theorem 3.4. Let Assumptions 2.1 and 3.6 hold, and L = 1. Then, almost surely in x in supp(X),

for almost every θ ∈ supp(Θ)

V ar (∆ |Θ = θ,X = x) fΘ|X(t|x) = ∂vE [Y 2 |V = ·, X = x ](t)

+
∂vE [Y |V = ·, X = x ](t)∂vE [(1− 2D)Y |V = ·, X = x ](t)

fΘ|X(t|x)
.

In the case where L ≥ 2, if we also invoke Assumption 2.2, we obtain that for almost every γ ∈ supp(Γ̃),

V ar
(
∆
∣∣∣Γ̃ = γ,X = x

)
f
Γ̃|X(γ|x) = R−1

[
∂vE

[
Y 2
∣∣∣(S̃, Ṽ ) = ·, X = x

]]
(γ)

+

R−1

[
∂vE

[
Y
∣∣∣(S̃, Ṽ ) = ·, X = x

]]
(γ)R−1

[
∂vE

[
(1− 2D)Y

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)

f
Γ̃|X(γ|x)

.

Finally, under the same additional Assumption 2.2, it holds that

V ar(∆|X = x) =

∫
R
V ar(∆|Θ = θ,X = x)fΘ|X(t|x)dt+

∫
R
(E[∆|Θ = θ,X = x]−ATE(x))2 fΘ|X(t|x)dγ.

when L = 1, and

V ar(∆|X = x) =

∫
RL

V ar(∆|Γ̃ = γ,X = x)f
Γ̃|X(γ|x)dγ+

∫
RL

(
E[∆|Γ̃ = γ,X = x]−ATE(x)

)2
f
Γ̃|X(γ|x)dγ.

when L ≥ 2.

These rather involved formulae provide nevertheless a succinct description of the conditional

variance, which does not require material assumptions beyond instrument independence, no correlation

between base state and treatment effect, conditional on all observable and unobservable variables

(Assumption 3.6), and a specific relation between the variation of the instruments and the support of
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the unobserved heterogeneity in the model for the selection into treatment (Assumption 2.2). When

L = 1, but the latter assumption does not hold, we may again identify the variance of the treatment

effect for the population such that Θ ∈ supp
(
fV |X(·|x)

)
given X = x.

3.4.3. U-CDiTE and Treatment Effect Parameters that Depend on the Distribution of Treatment Ef-

fects or the Joint Distribution of Potential Outcomes. This section extends the analysis of the previous

subsections to distributions of treatment effects. We define the Conditional Distribution of Treatment

Effects as

U − CDiTE(δ, θ, x) := f∆|Θ,X(δ|θ, x)

when L = 1 and

U − CDiTE(δ, γ, x) := f
∆|Γ̃,X(δ|γ, x)

when L ≥ 2. This quantity is the distribution of treatment effects for the subpopulation with unob-

served heterogeneity parameter (respectively vector) from the first stage selection equation equal to

θ (respectively γ) and observables X = x. It is also the distribution of the gains in terms of Y1 − Y0

for people with X = x who would be indifferent between participation and non-participation in the

treatment if they were exogenously assigned the value v of V (respectively (s, v) of (S̃, Ṽ )), such that

v = θ (respectively s′γ = v). It is straightforward to check that, akin to U-CATE, Assumption (A-2)

yields that U −CDiTE(θ, x) (respectively U −CDiTE(γ, x)) does not depend on the values taken by

the instrument V (respectively
(
S̃, Ṽ

)
), and is hence policy invariant. This quantity is at the heart

of any calculation of more general treatment effects parameters that go beyond averages and depend

on the distribution of either the treatment effects Y1 − Y0, or the joint of potential outcomes (Y1, Y0).

To calculate some of these distributional treatment effects we sometimes have to replace As-

sumption 2.1 (A-2) by the following stronger assumption.

Assumption 3.7.

(V,Z)⊥(Y0, Y1,Γ
′,Θ)|X.

More specifically, out of the list of the following parameters, which can be deduced from U-

CDiTE, Assumption 3.7 is required to obtain the last three,

f∆|X(δ|x) =
∫
RL

U − CDiTE(δ, γ, x)f
Γ̃|X(γ|x)dγ

P (∆ > 0|X = x) =

∫
R
1 {δ > 0}

∫
RL

U − CDiTE(δ, γ, x)f
Γ̃|X(γ|x)dγdδ

fY0,Y1|X(y0, y1|x) =
∫
RL

U − CDiTE(y1 − y0, γ, x)fY0|Γ̃,X(y0|γ, x)fΓ̃|X(γ|x)dγ



25

f∆|D=1,X(δ|x) =
∫
RL

hATT (γ, x)U − CDiTE(δ, γ, x)f
Γ̃|X(γ|x)dγ

f∆|D=1,Y0,X(δ|y0, x) =
∫
RL

hATT (γ, x)U − CDiTE(δ, γ, x)f
Y0|Γ̃,X(y0|γ, x)fΓ̃|X(γ|x)dγ.

At this stage, it is important to recall that f
Y0|Γ̃,X(y0|γ, x)fΓ̃|X(γ|x) may be obtained from Theorem

3.17. Setting ϕ(y) = eity in Theorem 3.1 yields, almost surely in x in supp(X),

F1 [fY0+∆,Θ] (t, ·) = ∂vE [eitYD|V = ·, X = x]

F1 [fY0,Θ] (t, ·) = ∂vE[eitY (D − 1)|V = ·, X = x],

while, when L ≥ 2, under Assumption 2.2, we obtain

F1

[
f
Y0+∆,Γ̃|X(·|x)

]
(t, ·) = R−1

[
∂vE

[
eitYD

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

F1

[
f
Y0,Γ̃|X(·|x)

]
(t, ·) = R−1

[
∂vE

[
eitY (D − 1)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]
.

where F1 denotes the Fourier transform of the joint density seen as a function of its first variable,

holding the other arguments fixed. This object is called a partial Fourier transform.

The importance of Assumption 3.2 is that it allows factorization, i.e.,

F1

[
f
Y0+∆,Γ̃|X(·|x)

]
= F1

[
f
Y0,Γ̃|X(·|x)

]
F1

[
f
∆,Γ̃|X(·|x)

]
,

when L ≥ 2. We make moreover use of the following integrability assumption.

Assumption 3.8. For almost every x in supp(X), for every θ in supp
(
fθ|X(·|x)

)
, respectively for every

γ in supp
(
f
Γ̃|X(·|x)

)
, U −CDiTE(·, θ, x), respectively U −CDiTE(·, γ, x), belong to L1(R)∩L2(R).

Finally, we require a last technical assumption, which is common in the deconvolution literature.

Assumption 3.9. When L = 1,

∀x ∈ supp (X) , ∀(t, θ) ∈ R× supp
(
fΘ|X(·|x)

)
, F

[
fY0|Θ,X(·|θ, x)

]
(t) ̸= 0

while when L ≥ 2,

∀x ∈ supp (X) , ∀(t, γ) ∈ R× supp
(
f
Γ̃|X(·|x)

)
, F

[
f
Y0|Γ̃,X(·|γ, x)

]
(t) ̸= 0

where F is the Fourier transform.

7Similar expressions can be obtained when L = 1, but are omitted for brevity of exposition. Moreover, in that

case, when Assumption 2.2 does not hold, we may again identify the above parameters for the population such that

Θ ∈ supp
(
fV |X(·|x)

)
and X = x.
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We believe that it is possible to weaken this assumption and allow for isolated zeros in the spirit

of Devroye (1989) , Carrasco and Florens (2011) and Evdokimov and White (2011) among others but

prefer not to elaborate on this in this article.

Theorem 3.5. Let Assumptions 2.1 (with (1)), 3.2, 3.8 and 3.9 hold. In case L = 1, for every δ in

R, almost surely in x in supp(X), for every θ in supp
(
fΘ|X(·|x)

)
, we obtain

(3.15) U − CDiTE(δ, θ, x) =
1

2π

∫ ∞

−∞
e−itδ ∂vE [eitYD |V = ·, X = x ](θ)

∂vE [eitY (D − 1) |V = ·, X = x ](θ)
dt;

while, in case L ≥ 2, for every δ in R, almost surely in x in supp(X), for every γ in supp
(
f
Γ̃|X(·|x)

)
,

we obtain:

(3.16) U − CDiTE(δ, γ, x) =
1

2π

∫ ∞

−∞
e−itδ

R−1

[
∂vE

[
eitYD

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)

R−1

[
∂vE

[
eitY (D − 1)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)

dt.

Note that there is a slight abuse of notations in (3.15) and (3.16) because the numerators and

denominators are only defined almost surely in θ, respectively γ. Implicitly, as in Heckman, Smith

and Clements (1997), this result can be used to derive a test for the validity of Assumption 3.2: if

for some x and θ (respectively γ ) U − CDiTE(δ, θ, x) (respectively U − CDiTE(δ, γ, x)) fails to be

a density, it is an indication that Assumption 3.2 is incorrect.

4. Estimation of Structural Parameters

In this section we focus on the case where L ≥ 2, the case where L = 1 requires minor

modifications.

4.1. Estimation of Quantities Related to Marginals. We consider the following regularized

inverse8 of the Radon transform

(4.1) AT [f ](γ) :=

∫
H+

∫ ∞

−∞
KT (s

′γ − u)f(s, u)dudσ(s)

where dσ denotes the classical spherical measure9 on the sphere SL−1 and

(4.2) ∀u ∈ R, KT (u) := 2(2π)−L

∫ ∞

0
cos(tu)tL−1ψ

(
t

T

)
dt

8Up to our knowledge this modification of the classical Radon inverse has not been studied earlier in the literature.

9Its mass is the area of the sphere.
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where T is a smoothing parameter and ψ is a symmetric rapidly decaying function in the Schwartz

class

S(R) =
{
f ∈ C∞(R) : ∀α, β ∈ N, |x|α

∣∣∣∂βf(x)∣∣∣ −→
|x|→∞

0

}
,

such that ψ(0) = 1. For simplicity of exposition we will take ψ = ψ0 where ψ0 : x 7→ exp
(
1−max

{
1

1−x2 , 0
})

which has also support in [−1, 1].

The previous identification sections suggest using this regularized inverse as a building block

for a sample counterparts estimator of the inverse Radon transform of, say, a derivative of a regression

function, i.e.,

ATN

[
̂

∂vE[ϕ(Y )ς(D)|(S̃, Ṽ ) = ·, X = x]

]
(γ)

where ς(D) is either D or D − 1 and
̂

∂vE[ϕ(Y )ς(D)|(S̃, Ṽ ) = (·), X = x] is the extension as 0 outside

supp
(
S̃, Ṽ

)
of an estimator of the derivative of the regression function (e.g., using local polynomi-

als). Moreover, TN is chosen adequately, and tends to infinity as N goes to infinity. Replacing the

various inverse Radon transforms by these regularized sample counterparts yields the following set of

estimators:

̂U − CATE(γ, x)f
Γ̃
(γ) = ATN

[
̂

∂vE[Y |(S̃, Ṽ ) = ·, X = x]

]
(γ),(4.3)

̂
F1

[
f
Y0+∆,Γ̃|X(·|x)

]
(t, γ) = ATN

[
̂

∂vE[eitYD|(S̃, Ṽ ) = ·, X = x]

]
(γ),(4.4)

̂
F1

[
f
Y0,Γ̃|X(·|x)

]
(t, γ) = ATN

[
̂

∂vE[eitY (D − 1)|(S̃, Ṽ ) = ·, X = x]

]
(γ),(4.5)

f̂
Γ̃|X(γ|x) = max

{
ATN

[
̂

∂vE[D|(S̃, Ṽ ) = ·, X = x]

]
(γ), 0

}
10.(4.6)

These individual elements can now be used to estimate many of the previously discussed quantities.

From the first estimator, we may, for example, construct an estimator of the ATE.

ÂTE(x) =

∫
RL

̂U − CATE(γ, x)f
Γ̃|X(γ|x)dγ =

∫
RL

ATN

[
̂

∂vE[Y |(S̃, Ṽ ) = ·, X = x]

]
(γ)1{γ ∈ BN}dγ,

where BN is a large enough closed set in RL which diameter depends on the sample size.

Alternative estimators that circumvent the numerical integration in (4.1) can be obtained as

follows. Start out by defining

∀u ∈ R, K̃T (u) := −2(2π)−L

∫ T

0
sin(tu)tLψ

(
t

T

)
dt.
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where K ′
T (u) = K̃T (u), with KT defined by (4.2) and

(4.7) BT [f ](γ) :=

∫
H+

∫ ∞

−∞
K̃T (s

′γ − u)f(s, u)dudσ(s).

Because KT is the Fourier transform of a function in S(R), KT and K̃T belong to S(R). Thus, they

decay to zero faster than any polynomial and belong to any Lp(R)11.

In addition, for the alternative estimators, we require the following assumption.

Assumption 4.1. (i) For almost every s ∈ H+ and almost surely in x ∈ supp(X),

supp
(
f
Ṽ |S̃,X(·|s, x)

)
= R.

(ii) For the function ϕ considered, for almost every s ∈ H+ and almost surely x ∈ supp(X), v 7→

E[ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, v), X = x] is continuous and v 7→ E[ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, v), X = x]

and v 7→ ∂vE[ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, v), X = x] are bounded by a polynomial in v.

This assumption allows an integration by parts argument for the regularized inverse, which

produces a structure that is easier to implement. It is based on the following proposition.

Proposition 4.1. Under Assumption 4.1, for every T ∈ R and γ ∈ RL,

AT

[
∂vE

[
ϕ(Y )ς(D)|(S̃, Ṽ ) = (·), X = x

]]
(γ) = BT

[
E
[
ϕ(Y )ς(D)|(S̃, Ṽ ) = (·), X = x

]]
(γ)(4.8)

= E

 K̃T (S̃
′γ − Ṽ )ϕ(Y )ς(D)

f
S̃,Ṽ |X(S̃, Ṽ |x)

∣∣∣∣∣∣X = x

 .(4.9)

Equation (4.8) suggests that one can take as an estimator BT applied to an estimator of the

regression function. (4.9) suggests the following trimmed sample counterpart estimator

(4.10)
1

N

N∑
i=1

K̃TN
(s̃′iγ − ṽi)TτN (ϕ(yi))ς(di)

max
(
f̂
S̃,Ṽ ,X

(s̃i, ṽi, x),mN

) KηN (xi − x)

where f̂
S̃,Ṽ ,X

is a plug-in estimator for f
S̃,Ṽ ,X

, mN is a trimming factor and Kη is a standard multi-

variate kernel with bandwidth vector ηN , Tτ is defined for τ positive and x in R by

Tτ (x) = −τN1{x < −τN}+ x1{|x| ≤ τN}+ τN1{x > τN}

TN , τN , m−1
N and η−1

N go to infinity as N goes to infinity. Trimming is introduced to avoid dividing by

quantities that are too close to zero. Recall that this estimator can only be computed when f
S̃,Ṽ |X(·|x)

has full support, almost surely in x in supp(X), implying that the density decays to zero both for large

11This is a very nice feature that is not shared for the classical Radon inverse where ψ(x) = 1{x ∈ [−1, 1]}, also these

yield good approximation results for the target quantities in every Lp(RL).
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v and commonly when s approaches the boundary of H+12. In particular, the true density f
S̃,Ṽ ,X

is

not bounded away from zero. Moreover we are replacing f
S̃,Ṽ ,X

by an estimator, implying that the

denominator could also be small due to estimation error. The truncation parameter τN is useful when

ϕ is unbounded and ϕ(Y0) (if ς(D) = D − 1) or ϕ(Y1) (if ς(D) = D) have fat tails. In the absence of

conditioning on covariates X, the estimator simplifies to

(4.11)
1

N

N∑
i=1

K̃TN
(s̃′iγ − ṽi)TτN (ϕ(yi))ς(di)

max
(
f̂
S̃,Ṽ

(s̃i, ṽi),mN

) .

4.2. Estimation of the U-CDiTE and of the Distribution of Treatment Effects. An estimator

for U-CDiTE is obtained by applying the same principles. First, one may compute the following

integral

(4.12)

̂U − CDiTE(δ, γ, x) =
1

2π

∫ ∞

−∞
e−itδK(thN,γ)

̂
F1

[
f
Y0+∆,Γ̃|X(·|x)

]
(t, γ)

̂
F1

[
f
Y0,Γ̃|X(·|x)

]
(t, γ)

1

{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃|X(·|x)

]
(t, γ)

∣∣∣∣ > tN,t,γ

}
dt

where N is the sample size, hN,γ is a bandwidth going to zero with N , K denotes a kernel, tN,t,γ a

proper trimming factor.

A typical example of a kernel isK(t) = 1{|t| ≤ 1}, with hN,γ = 1/R∆
N,γ it amounts to truncation

of high frequencies. Devroye (1989) uses max(1− |t|, 0) for the estimation with L1(R) loss. It is also

possible to take K = ψ where ψ belongs to S(R) and is such that ψ(0) = 1 like in Section 4.1. In

Section 5 we take K(t) = ψ0(t) with support in [−1, 1] (recall that ψ0(t) = exp
(
1−max

{
1

1−t2
, 0
})

).

For every γ, the quantity
∣∣∣F1

[
f
Y0,Γ̃|X(·|x)

]
(t, γ)

∣∣∣ in the denominator of (4.12), decays to zero when

t goes to infinity13. A smoothing kernel K should put less weight (possibly zero weight) on high

frequencies14 because this is where the denominator is small in modulus and the variance of the

estimator can blow-up. In theory the bandwidth hN,γ may depend on γ15 because of the possible

different rates of decay of
∣∣∣F1

[
f
Y0,Γ̃|X(·|x)

]
(t, γ)

∣∣∣ for different values of γ.
Compared to usual deconvolution estimators, (4.12) also has an indicator function with a

trimming factor. It is used because we are considering a case where the denominator is unknown and

12This is because S̃ is a rescaled vector of original instruments and assuming that the density does not decay to

zero when s approaches the boundary of H+ would be a very strong assumption on the tails of the distributions of the

original instruments (see, e.g., Beran, Feuerverger and Hall (1996) and Hoderlein, Klemelä and Mammen (2011)).

13This is a consequence of the Riemann-Lebesgue lemma.

14The parameter t is the frequency.

15Every smoothing parameter can also depend on x but we omit it ease of notations.
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has to be estimated. For that reason the denominator can also be small due to estimation error. This

is the same structure as the estimator proposed in Neumann (1997)16.

In the simulation study in Section 5, we take hN,γ and tN,t,γ that do not depend on t and γ

for the smoothing parameters in the estimators of the numerator and denominator in (4.12). Using

K = ψ0 we also obtain exactly the same graphs for (4.12) regardless of whether or not we trim, so we

present results with tN,t,γ = 0. This is an important feature in practice, because in Proposition 4.5

we impose to tune tN,t,γ = rY0,N . But rY0,N is unknown since it depends on the smoothness of f
Y0,Γ̃|X

which is impossible to estimate. We believe that this is just a technical issue and that in practice no

trimming works perfectly fine at least for smooth f
Y0,Γ̃|X (super smooth in our simulation example

because it is Gaussian).

An estimator of the unconditional distribution of treatment effects uses as plug-ins (4.12) and

an estimator of the mixing density f
Γ̃|X ; it is given by

(4.13) f̂∆|X(δ|x) =
∫
RL

̂U − CDiTE(δ, γ, x)f̂
Γ̃|X(γ|x)1{γ ∈ BN}dγ.

4.3. Rates of Convergence. To analyze the rate of convergence of our estimators, we have to

introduce additional notation. We denote by ∥ · ∥p for p ∈ [1,∞) the classical Lp norms and by ∥ · ∥∞
the essential supremum norm, also called sup-norm. Moreover, for ease of notation we again omit the

conditioning on X in this section.

4.3.1. Estimation of Generic Quantities. In this section we consider the estimation of one of the

plug-in terms of the form

g(γ) = R−1

[
∂vE

[
ϕ(Y )ς(D)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ),

for some function ϕ and ς(D) is either D or 1−D, by an estimator of the form (4.11)

ĝ(γ) =
1

N

N∑
i=1

K̃TN
(s̃′iγ − ṽi)TτN (ϕ(yi))ς(di)

max
(
f̂
S̃,Ṽ

(s̃i, ṽi),mN

) .

where TN , τN and m−1
N increase with the sample size.

We restrict our attention to the sup-norm loss because this is what is later required in Assumption

4.3 and Proposition 4.5 for plug-in estimation. We specify the result to the case of ordinary smooth

16In Neumann (1997) and Comte and Lacour (2011) because the characteristic function of Y0 is estimated at rate

1/
√
N , tN,t,γ could be taken equal to N−1/2, independent of t and γ.
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functions (Sobolev classes). We will work with the following Sobolev spaces of all locally integrable

functions that have weak derivatives up to order s in N \ {0} (see, e.g., Evans (1998))

W s,∞(RL) :=
{
f ∈ L∞(RL) : ∀|α| ≤ s, ∂αf ∈ L∞(RL)

}
where α ∈ NL, |α| :=

∑L
l=1 αl and ∂αf :=

∏L
l=1 ∂

αl
l f is the αth-weak partial derivative of f . It is

equipped with the norm

∥f∥s,∞ :=
∑

α: |α|≤s

∥∂αf∥∞.

We will consider the following Sobolev ellipsoids defined for M positive by

W s,∞(M) :=
{
f ∈W s,∞(RL) : ∥f∥s,∞ ≤M

}
.

In what follows, BN is a closed set in RL and we denote by d(BN ) its diameter for the Euclidian norm.

Proposition 4.2. Let Assumption 4.1 hold, and assume moreover that

(i) g belongs to Ws
∞(M) for some s in N \ {0} and M positive ;

(ii) there exists α positive such that log(T 3
N/mN ) + L log(d(BN )) ≤ α ;

(iii) there exists a sequence rIV,N going to 0 as N goes to infinity and MIV positive such that with

probability one

(4.14) limN→∞r
−1
IV,N max

i=1,...,N

∣∣∣fS̃,Ṽ (s̃i, ṽi)− f̂
S̃,Ṽ

(s̃i, ṽi)
∣∣∣ ≤MIV ;

then for some constants M(α) (which only depends on α and L) and C(s) (which only depends on s

and ψ), with probability one, for every ϵ positive there exists N large enough such that

∥(ĝ − g)1{BN}∥∞ ≤ (MIV + ϵ)min (τN , ∥ϕ∥∞) rIV,Nm
−1
N

∥∥∥∥∥∥E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f̂
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
∥∥∥∥∥∥

∞

+ (MIV + ϵ)min (τN , ∥ϕ∥∞) rIV,Nm
−3/2
N (M(α) + ϵ)

(
logN

N

)1/2

T
L+1/2
N

+m
−1/2
N (M(α) + ϵ)min (τN , ∥ϕ∥∞)

(
logN

N

)1/2

T
L+1/2
N

+min (τN , ∥ϕ∥∞) sup
γ∈BN

∫
{
(s,v): f

S̃,Ṽ
(s,v)<mN

} ∣∣∣K̃TN
(s′γ − v)

∣∣∣ dσ(s)dv
+MC(s)T−s

N

+
1

(2π)L
TL+2
N ∥|t|Lψ∥1E[|ϕ(Yj)|1{|ϕ(Yj)| > τN}]

where j = 1 if ζ(D) = D and j = 0 if ζ(D) = 1−D.
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Let us make a few comments on this result.

(1) When supp(Γ̃) is bounded then we can take BN = supp(Γ̃) = supp(g).

(2) Condition (4.15) can be relaxed to ”bounded in probability” if we simply want to prove

convergence in probability. This is actually the only thing that we need for the properties of

the estimation of U-CDiTE that will follow.

(3) There are various ways to bound from above

E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f̂
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
 .

A first uniform upper bound uses

E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f̂
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
 ≤ |SL−1|

2
∥K̃TN

∥1

where |SL−1| is the surface of the sphere SL−1. A second uniform upper bound, that has an

analytic form17 is given by

E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f̂
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
 ≤ E




∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f̂
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
2

1/2

≤ m−1
N T 2L+1

N .

The last inequality uses (7.5) in the appendix.

(4) Because K̃TN
is integrable18,

∫{
(s,v): f

S̃,Ṽ
(s,v)<mN

} ∣∣∣K̃TN
(s′γ − v)

∣∣∣ dσ(s)dv goes to zero as mN

goes to zero and the rate of convergence to zero depends on the tails of f
S̃,Ṽ

. Fat tails imply

that this term is small. It could be made equal to zero if f
S̃,Ṽ

were bounded away from zero.

(5) The contribution MC(s)T−s
N is an upper bound on the approximation error for functions in

the ellipsoid W s,∞(RL).

(6) We use truncation, because we deal with the fluctuation terms using the basic Bernstein in-

equality. It is possible to use the Bernstein inequality for random variables with bounded Orlicz

norms (see, e.g., Lemma 2.2.11 of Van der Vaart and Wellner (1996)), or other concentration

results and avoid truncation in certain cases. When ϕ is bounded, we can take τN = ∥ϕ∥∞
and the last term in the above upper bound disappears. In Proposition 4.2, we considered the

property of estimators involving truncation for the estimation of the numerator of U-CATE

17We expect that it is not as sharp as the previous upper bound where, unfortunately, we do not have an upper

bound for ∥K̃TN ∥1 in terms of its dependence in TN .

18It belongs to S(R).
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and for the estimation of the conditional variance of treatment effect when |Y0| and |Y1| can

take arbitrarily large values. Because E [|ϕ(Y0)|+ |ϕ(Y1)|] < ∞, E [|ϕ(Y1)|1{|ϕ(Y1)| > τN}]

and E [|ϕ(Y0)|1{|ϕ(Y0)| > τN}] go to zero when τN goes to infinity.

In the ideal case where: (1) f
S̃,Ṽ

is bounded away from zero, (2) its density is smooth enough

for the first term to be negligible and (3) the bias due to truncation is negligible (e.g. when ϕ is

bounded), we obtain, for some MI , with probability 1,

limN→∞

(
logN

N

)− s
2s+2L+1

∥ĝ − g∥∞ ≤MI

by taking TN of the order of (N/ log(N))1/(2s+2L+1). Recall that the rate of direct density estimation

would be (N/ log(N))s/(2s+L). This is important, because it says that the degree of ill-posedness due

to the presence of the unbounded operator is L+1
2 . Recall that in positron emission tomography,

the classical statistical inverse problem involving the Radon transform, the degree of ill-posedness is

L−1
2 (see, e.g., Korostelev and Tsybakov (1993)). Here we pay an additional price of 1 due to the

extra differentiation. However, this degree of ill-posedness does not properly account for the difficulty

of the problem. Equation (3.1) states that a regression function r is of the form r = Qf where Q

is an operator which has an unbounded inverse. The quantity L−1
2 only accounts for the smoothing

properties of the operatorK. But for identification we assumed that, in the original scale, all regressors

but possibly V have full support. This implies that in most cases f
S̃
(s) is not bounded away from zero

and the rate of estimation of the regression function with L∞ loss is slower than when the regressors

have support on a compact set and their density is bounded from below. Estimation of a regression

function when the density of the regressor can be 0 on its support (degeneracy) has been studied by

several authors (see, e.g., Hall, Marron, Neumann, Tetterington (1997), Guerre (1999) and Gaiffas

(2005) and (2009))19. In our inverse problem setup this translates in the fact that in many cases∫{
(s,v): f

S̃,Ṽ
(s,v)<mN

} ∣∣∣K̃TN
(s′γ − v)

∣∣∣ dσ(s)dv cannot be made negligible which implies that a second

degree of ill-posedness also has to be taken into account. Finally, a third degree of ill-posedness can

appear when the conditional distributions of ϕ(Y0) and/or ϕ(Y1) given Γ̃ have heavy tails.

An analogue of Proposition 4.2 has already been established when ϕ = 1 in Gautier and

Kitamura (2009) with the scaling of Section 6 and an estimator based on smoothed projection kernels

in the Fourier domain. In this paper, we use a function ψ in S(R) for the same reason for which we

used smoothed projection kernels in Gautier and Kitamura (2009): to obtain rates of convergence for

19 Upper bounds in an inverse problem setting for specific estimators are given in Hoderlein, Klemelä and Mammen

(2011) and Gautier and Kitamura (2009).
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all Lp risks for 1 ≤ p ≤ ∞20. In Gautier and Le Pennec (2011) this smoothed projection kernel is

used together with the Littlewood-Paley decomposition and a quadrature formula to obtain a needlet

estimator. Gautier and Le Pennec (2011) provide minimax lower bounds for the estimation when

ϕ = 1 and show that their data-driven estimator is adaptive.

We have only considered the estimation of smooth functions for simplicity. If we consider

“super smooth” functions, we expect that for certain functions ψ we could replace MC(s)T−s
N by an

exponentially small term. In that case, like in statistical deconvolution (see, e.g., Butucea (2004) and

Butucea and Tsybakov (2007)), for a nicely behaved density of the instruments and for ϕ bounded, we

could obtain parametric rates of convergence up to a logarithmic factor. Cavalier (2000) considers the

estimation at a point of super smooth functions for the positron emission tomography problem in RL.

The setup we consider is more involved because the inverse problem involves an extra derivative and

we are in a regression framework with (1) random regressors whose density could be arbitrarily close

to zero on its support and (2) possibly fat tails of the variables of interest. We do however consider

super smooth functions in the more classical deconvolution framework in Section 4.3.4.

4.3.2. Estimation of the Plug-in Terms for f
∆|Γ̃. In this section we consider the estimation of the

partial Fourier transforms which are used as plug-ins in Section 4.3.4. Denote by

g(γ, t) = R−1

[
∂vE

[
eitY ς(D)

∣∣∣(S̃, Ṽ ) = ·, X = x
]]

(γ)

and consider an estimator of the form (4.11)

ĝ(γ, t) =
1

N

N∑
i=1

K̃TN
(s̃′iγ − ṽi)e

ityiς(di)

max
(
f̂
S̃,Ṽ

(s̃i, ṽi),mN

)
For technical reasons we introduce a maximum value Rmax

N for the inverse of the smoothing parameter

h−1
N,γ

21 in the estimator (4.12). In section 4.3.4 we will only be able to adjust h−1
N,γ in the range

[0, Rmax
N ].

Proposition 4.3. Make Assumption 4.1 and assume

(i) there exists s in N \ {0} and M positive such that for every t in R, Re [g(γ, t)] and Im [g(γ, t)]

belong to Ws
∞(M) ;

(ii) there exists α positive such that log(T 3
N/mN ) + log(Rmax

N ) + L log(d(BN )) ≤ α ;

20This is important to handle those plug-in terms to allow to use the whole range of the Hölder and Young inequalities.

21This is a classical feature of wavelet thresholding estimators and is called a maximal resolution level.
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(iii) there exists a sequence rIV,N going to 0 as N goes to infinity and MIV positive such that with

probability one

(4.15) limN→∞r
−1
IV,N max

i=1,...,N

∣∣∣fS̃,Ṽ (s̃i, ṽi)− f̂
S̃,Ṽ

(s̃i, ṽi)
∣∣∣ ≤MIV ;

then for some constants M(α) (which only depends on α and L) and C(s) (which only depends on s

and ψ), with probability one, for every ϵ positive there exists N large enough such that

sup
t∈[−Rmax

N ,Rmax
N ], γ∈BN

|(ĝ − g) (t, γ)|

≤ 2(MIV + ϵ)rIV,Nm
−1
N


∥∥∥∥∥∥E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f̂
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
∥∥∥∥∥∥

∞

+m
−1/2
N (M(α) + ϵ)

(
logN

N

)1/2

T
L+1/2
N


+ 2m

−1/2
N (M(α) + ϵ)

(
logN

N

)1/2

T
L+1/2
N

+ 2 sup
γ∈BN

∫
{
(s,v): f

S̃,Ṽ
(s,v)<mN

} ∣∣∣K̃TN
(s′γ − v)

∣∣∣ dσ(s)dv
+ 2MC(s)T−s

N

This is the same upper bound as in Proposition 4.2 up to a factor 2 (we separate the real and

imaginary part of eity) and to a larger constant M(α)), and the same remarks apply.

4.3.3. Estimation of f∆. We start with a proposition that relates the estimation of f∆ to the estimation

of f
Γ̃
and of f

∆|Γ̃. To this end, we make the following assumptions.

Assumption 4.2. f
Γ̃
∈ L∞ (RL

)
and there existsM∆ positive such that sup

δ∈R, γ∈supp(Γ̃) f∆|γ̃(δ|γ) ≤

M∆.

In the next proposition we give an upper bound on the error in estimating f∆ when we use the

estimator (4.13).

Proposition 4.4. Let Assumptions (1) and 4.2 hold, then for every measurable set BN in RL,

∥∥∥f̂∆ − f∆

∥∥∥2
2
≤ 3M∆

∫
Bc
N

f
Γ̃
dγ +M∆

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
2

∞


+ 3∥f

Γ̃
∥∞

(
1 +

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

)2 ∥∥∥(f̂∆|Γ̃(·|⋆)− f
∆|Γ̃(·|⋆)

)
1{⋆ ∈ BN}

∥∥∥2
2
.(4.16)
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When supp(Γ̃) is bounded, and f
Γ̃
is bounded away from zero on its support, then we can take

BN = supp(Γ̃). Otherwise BN should be (1) small enough so that f
Γ̃
is bounded away from zero on

BN (recall as well that its diameter should not grow faster than polynomially in N to be able to apply

the result from Section 4.3.1), and (2) large enough so that P(Γ̃ ∈ Bc
N ) =

∫
Bc
N
f
Γ̃
dγ is small.

The next section studies the convergence to zero of the term

∥∥∥(f̂∆|Γ̃(·|⋆)− f
∆|Γ̃(·|⋆)

)
1{⋆ ∈ BN}

∥∥∥
2
.

4.3.4. Estimation of f
∆|Γ̃. In order to work with smoothing and trimming factors in (4.12) that are

independent of t and γ, we work with sup-norm consistency of the estimators of the partial Fourier

transforms.

Assumption 4.3.

sup
t∈[−Rmax

N ,Rmax
N ], γ∈BN

∣∣∣∣ ̂
F1

[
f
Y0+∆,Γ̃

]
−F1

[
f
Y0+∆,Γ̃

]∣∣∣∣ = Op (rY0+∆,N )

sup
t∈[−Rmax

N ,Rmax
N ], γ∈BN

∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
−F1

[
f
Y0,Γ̃

]∣∣∣∣ = Op (rY0,N ) .

Recall that Rmax
N is a maximal resolution level and we assume that h−1

N,γ ≤ Rmax
N and that BN

is a domain in RL that could grow as N goes to infinity if supp(Γ̃) is unbounded. Rates of estimation

rY0+∆,N and rY0,N are given in Section 4.3.2.

Unlike deconvolution with noise observed on a preliminary sample, in this setup each rate is nonpara-

metric; it is the rate of estimation in the respective inverse problems. Rates in sup norm are given in

Proposition 4.2.

Proposition 4.5. Let Assumptions 2.1 (with (1)), 2.2, 3.2, 3.8, 3.9, 4.2 hold. Assume that K has

support in [−1, 1] and that h−1
N,γ ≤ Rmax

N . Take tN,t,γ = rY0,N . The following upper bound holds

∥∥∥(f̂∆|Γ̃(·|⋆)− f
∆|Γ̃(·|⋆)

)
1{⋆ ∈ BN}

∥∥∥2
2

(4.17)

= Op

(∫
BN∩supp(Γ̃)

∫ ∞

−∞

[
(1−K(t hN,γ))

2
∣∣∣F1

[
f
∆|Γ̃

]
(t|γ)

∣∣∣2(4.18)

+
K(t hN,γ)

2∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣2
(
r2Y0+∆,N +

∣∣∣F1

[
f
∆,Γ̃

]
(t, γ)

∣∣∣2 r2Y0,N

) dtdγ
 .
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The first term in the upper bound is the square of the approximation bias. Consider now the

following classes of ellipsoids for f
∆|Γ̃

Aδ,r,a(L) =

{
f ∈ L2(R) :

∫ ∞

−∞
|F [f ](t)|2 (1 + t2)δ exp (2a|t|r) dtdγ ≤ L2

}
where r ≥ 0, a > 0, δ ∈ R and δ > 1/2 if r = 0, l > 0. The case r > 0 corresponds to an extension

of the case of super smooth functions, otherwise the functions are extensions of ordinary smooth

functions (in the Sobolev class). When K(t) = 1{|t| ≤ 1}, hN,γ is of the form 1/R∆
N , and f belongs

to Aδ,r,a(L) then we have∫ ∞

−∞
(1−K(t hN,γ))

2 |F [f ](t)|2 dt ≤ L2
((
R∆

N

)2
+ 1
)−δ

exp
(
−2a

(
R∆

N

)r)
.

The next proposition considers the case when K(t) = 1{|t| ≤ 1} and hN,γ is of the form 1/R∆
N .

We make the following assumption on the decay rate of
∣∣∣F1

[
f
Y0|Γ̃

]
(t|γ)

∣∣∣ that strengthens Assumption

3.9.

Assumption 4.4. There exits s ≥ 0, b > 0, η ∈ R (η > 0 if s = 0) and k0, k1 > 0 such that for every

γ in supp(Γ̃),

k0(1 + t2)−η/2 exp (−b|t|s) ≤
∣∣∣F1

[
f
Y0|Γ̃

]
(t|γ)

∣∣∣ ≤ k1(1 + t2)−η/2 exp (−b|t|s)

In the proposition below we use the short hand notation λN = λ
(
BN ∩ supp(Γ̃)

)
, where λ(B)

is the Lebesgue measure of a set B.

Proposition 4.6. Let Assumptions 2.1 (with (1)), 2.2, 3.2, 3.8, 3.9, 4.2 and 4.3 and 4.4. Assume

for every γ ∈ supp(Γ̃), f
∆|Γ̃(·|γ) belongs to Aδ,r,a(L). The following upper bounds hold for every

R∆
N ≤ Rmax

N and BN measurable set in RL,

(A-1) if s = r = 0, then

λ−1
N

∥∥∥(f̂∆|Γ̃(·|⋆)− f
∆|Γ̃(·|⋆)

)
1{⋆ ∈ BN}

∥∥∥2
2

= Op

((
R∆

N

)−2δ
+ r2Y0+∆,N

(
R∆

N

)2η+1
+ r2Y0,N

(
R∆

N

)2max(η−δ,0)+1
)
;

(A-2) if s > 0 and r = 0,

λ−1
N

∥∥∥(f̂∆|Γ̃(·|⋆)− f
∆|Γ̃(·|⋆)

)
1{⋆ ∈ BN}

∥∥∥2
2

= Op

((
R∆

N

)−2δ
+ e2b(R

∆
N )s
(
r2Y0+∆,N

(
R∆

N

)2η+1−s
+ r2Y0,N

(
R∆

N

)min(1+2η−s,2(η−δ))
))

;
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(A-3) if s = 0 and r > 0, then

λ−1
N

∥∥∥(f̂∆|Γ̃(·|⋆)− f
∆|Γ̃(·|⋆)

)
1{⋆ ∈ BN}

∥∥∥2
2
= Op

((
R∆

N

)−2δ
e−2a(R∆

N )r + r2Y0+∆,N

(
R∆

N

)2η+1
+ r2Y0,N

)
;

(A-4) if s > 0 and r > 0, then

λ−1
N

∥∥∥(f̂∆|Γ̃(·|⋆)− f
∆|Γ̃(·|⋆)

)
1{⋆ ∈ BN}

∥∥∥2
2

= Op

((
R∆

N

)−2δ
e−2a(R∆

N )r + r2Y0+∆,N

(
R∆

N

)2η+1−s
e2b(R

∆
N )s + r2Y0,N∆

(
R∆

M

))
where

∆
(
R∆

M

)
=
(
R∆

N

)min(1+2η−s,2(η−δ))
e2b(R

∆
N )s1{s > r}+

(
R∆

N

)max(2(η−δ),0)
e2(b−a)(R∆

N )s1{r = s, b ≥ a}

+ 1{{r > s} ∪ {r = s, b < a}}.

When supp(Γ̃) is bounded then λN is a constant.

We did not want to include results in other norms than the L2 norm for brevity of exposition. However

it is possible to obtain rates of convergence in sup-norm for an estimator with K = ψ, where ψ belongs

to S(R) and ψ(0) = 1. It would also be possible to use the sup-norm adaptive22 estimator of Lounici

and Nickl (2011).

5. Simulation study

We consider the model (1.1)-(1.2) with the added specification

Y0 = 1 + 1.5Γ + Θ+ ε0

Y1 = 3 + 2.5Γ−Θ+ ε1

where (Γ,Θ, ε0, ε1) = (1,−0.5, 0, 0) +W , W is a centered Gaussian random vector with covariance

matrix 
1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1

 ,

S̃ = (cosNt, sinNt) where Nt is a truncated Gaussian random variable with mean π/2 and variance

π2/16 on the interval [0, π], V is a Gaussian random variable with mean -0.2 and variance 4 and V , Nt

22 Specific to the case where the distribution of the error is known.
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and (Γ,Θ, ε0, ε1) are independent. The sample size considered in the simulation study is N = 10 000

and we have performed S = 100 Monte Carlo repetitions.

We present the results with the estimators (4.3)-(4.6), using ψ = ψ0. They outperformed the

easier to calculate estimator (4.11) slightly. All numerical integrations were carried out by quadrature

methods23. The choice of the smoothing parameters for the estimation of fΓ,Θ were TN = 6 for

the regularized Radon inverse and hN = 1 for the bandwidth of the local polynomial estimator of

∂vE
[
D
∣∣∣(S̃, Ṽ ) = ·

]
, while we took TN = 10 and hN = 1 for the estimation of ̂U − CATE × fΓ,Θ

and did not use truncation.

In Figures 3 and 4 we compare the truth, an empirical average of estimators over S = 100

simulations, and one typical simulation.
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Figure 3. True fΓ,Θ (left), average over S replications of the estimator (middle) and

the estimator calculated for one data set (right).

Figure 3, based on the rectangle [−4, 6] × [−5.5, 4.5], shows that most of the mass of f̂Γ,Θ is

concentrated in a box around the mode at (1,−0.5). Because U −CATE is a conditional expectation

given (Γ,Θ), it will only be well estimated at points where the density fΓ,Θ is not too low. Based on

f̂Γ,Θ we experimented with several rectangular domains. Table 1 presents the empirical distribution

23We tried to apply an importance sampling Monte-Carlo method to calculate the multiple integrals using as proposals

a Cauchy distribution for the integral with respect to v and a uniform distribution for the integral with respect to ϕ

(s = (cosϕ, sinϕ)). Due to the presence of the S(R) function ψ0 in KT this Monte-Carlo approximation do have finite

variance but the variance was too big to have a sufficiently good precision even using the highest possible sample size

that we could generate in R. The variance of this Importance Sampling Monte-Carlo method is infinite if we replace ψ0

by an indicator function. It is possible that another choice of rapidly decreasing function ψ can make it feasible.
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over S = 100 replications of

ÂTEj =

∫
Bj

̂U − CATE × fΓ,Θ(γ, θ)dγdθ

ÂTT j =

∫
Bj

hATT (γ) ̂U − CATE × fΓ,Θ(γ, θ)dγdθ

for estimators calculated on three such domains. The index j = 1 corresponds to B1 = [−1.5, 3.5] ×

[−3, 2] (2.5 standard errors in each direction), the index j = 2 corresponds to B2 = [−1.75, 3.75] ×

[−3.25, 2.25] (2.75 standard errors in each direction), while the index j = 3 corresponds to B3 =

[−2, 4]× [−3.5, 2.5] (3 standard errors in each direction). For reference one should note that the true

ATE is 4 while the true ATT calculated via Monte-Carlo is 4.507 (0.0016).

Mean P5 P10 Median P90 P95

ÂTE1 3.91 2.98 3.28 3.88 4.67 4.81

ÂTT 1 4.24 3.31 3.54 4.22 5.03 5.13

ÂTE2 4.09 3.04 3.31 4.05 5.02 5.21

ÂTT 2 4.46 3.37 3.61 4.42 5.36 5.61

ÂTE3 4.22 2.89 3.21 4.22 5.42 5.69

ÂTT 3 4.62 3.13 3.60 4.58 5.77 6.09

Table 1. The estimators indexed by 1 (resp. 2 and 3) correspond to the integration

of ̂U − CATE × fΓ,Θ on B1 (resp. B2 and B3).

The plots in Figure 4 illustrate how our estimator performs for: the estimation of U−CATE×

fΓ,Θ (top), and the estimation of U −CATE only (bottom). For the former, we have used the domain

B1, while for the latter we have employed the smaller domain B4 = [−0.5, 2.5] × [−2, 1]. Note that

U − CATE × fΓ,Θ should always be much more difficult to estimate than fΓ,Θ because it involves a

regression function with a conditional expectation with respect to (Γ,Θ) and the density of (Γ,Θ) is

not bounded away from zero. In the same spirit, U −CATE should be even more difficult to estimate

in this simulation setup as the tails of the numerator are fatter than that of the denominator. However,

this simulation study shows how estimators of the denominator and numerator of U −CATE that do

not perform extremely well when the risk is defined in terms of the sup-norm (see, e.g., the heights of

the peaks), can perform reasonably well when estimating U − CATE.

On the left panel of Figure 5 we compare the true U − CDiTE(δ, (1,−0.5)) to an estimator

with K(t) = exp
(
1−max

{
1

1−t2
, 0
})

and R∆
N,γ = 0.85. On the right panel we compare the true f∆
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Figure 4. CATE × fΓ,Θ (up) and CATE (down), truth (left), average over S repli-

cations of the estimator (middle) and the estimator calculated for one data set (right).

to an estimator obtained via a numerical integration on the box B1, with the same choice of R∆
N,γ and

without trimming. Indeed, we tried several values of a trimming parameter and all estimates were

virtually indistinguishable. Both estimators are calculated on the sample that we present on the right

panel in figures 3 and 424.

In this simulation study we observe that the estimation of U-CATE is paradoxically more

difficult than the estimation of U-CDiTE. Indeed, in our setup the denominator of U-CATE has

thinner tails than the numerator. It is the opposite for U-CDiTE where the denominator has fatter

tails than the numerator. Also, for U-CDiTE, the target density is super smooth and it is known that

we can obtain very good rates of convergence for deconvolution estimators in that case (see the rates

(A-4) in Proposition 4.6). Most quantities of interest are conditional expectations given (Γ,Θ). For

these quantities it is vain to attempt to obtain an estimate at points where the density of (Γ,Θ) is too

24Averaging estimators calculated on our 100 replications would have taken too long given that we carry each nu-

merical integration by quadrature methods and have to calculate many multiple integrals.
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Figure 5. Comparison between (1) an estimator of U-CDiTE and the truth calculated

at (1,−0.5), the mode of (Γ,Θ), (left) and (2) an estimator of f∆ and the truth.

low. We recommend to start by drawing plots of the density of (Γ,Θ), and ruling out such areas25. It

is also more trustworthy to plot U-CATE on a small domain. A graphical representation of U-CATE

allows to study the influence of the unobservables on the expected gains. With the data generating

process of this simulation study it is clear both unobservables have an effect. It is thus essential

to account for these two different sources of unobserved heterogeneity to get unbiased estimators of

treatment effects parameters such as ATE or ATT. Obviously, the choice of a domain of integration

is important when integration with respect to (γ, θ) has to be carried out. We recommend defining

the domain of integration as the set
{
(γ, θ) : f̂Γ,Θ(γ, θ) > τ

}
or equivalently to calculate an integral

against f̂Γ,Θ(γ, θ)1
{
f̂Γ,Θ(γ, θ) > τ

}
. In this simulation study, the box B1 = [−1.5, 3.5] × [−3, 2]

corresponds to the choice τ ≈ 0.021
∥∥∥f̂Γ,Θ∥∥∥

∞
while the box B2 = [−1.75, 3.75] × [−3.25, 2.25] (which

seems to perform better to estimate the ATE and ATT) corresponds to the choice τ ≈ 0.001
∥∥∥f̂Γ,Θ∥∥∥

∞
.

The domain B1 contains 90% of the total mass while the domain B2 contains 94% of the total mass26.

25Recall that the estimator of Gautier and Le Pennec (2011) is adaptive and thus achieves the minimax rate of

convergence without having to chose a smoothing parameter.

26Indeed we have
∫ 6

−4

∫ 4.5

−5.5
ES

[
f̂Γ,Θ

]
(γ, θ)dγdθ ≈ 1.014 while

∫
B1

ES

[
f̂Γ,Θ

]
(γ, θ)dγdθ ≈ 0.916 and∫

B2
ES

[
f̂Γ,Θ

]
(γ, θ)dγdθ ≈ 0.952.
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6. An Alternative Scaling of the Random Coefficients Binary Choice Model

In this section, we present a different estimation approach in the case of the partial Fourier

transforms. It is based on the scaling in Ichimura and Thomson (1998), Gautier and Kitamura (2009)

and Gautier and Le Pennec (2011). Equation (1.2) is of the form D = 1{(V,Z ′, 1)(1,−Γ′,−Θ)′ > 0}.

Because the scale of (1,−Γ′,−Θ) is not identified, instead of normalizing the first coordinate (the

coefficient of V ) to be one, we can work with the vector Γ = (1,−Γ′,−Θ)/∥(1,−Γ′,−Θ)∥27 which is of

norm 1. This yields slightly more flexibility because for identification we have just have to assume that

the support of Γ belongs to an hemisphere (see Gautier and Kitamura (2009)) and it is not required

that in the original scale one specific coefficient is positive. We also rescale the instruments so that

S = (V,Z ′, 1)′/∥(V,Z ′, 1)∥. Both S and Γ belong to the sphere SL of the Euclidian space RL+1. We

advertise this alternative approach here, because rescaling by one coefficient is potentially instable

numerically, if one chooses as a “special” regressor V one for which the coefficient in the original scale

of utilities can be close to zero for some individuals.

Under the above scaling (1.2) becomes D = 1{S′Γ > 0}. Consider for example the case of

F1

[
fY0,Γ

]
.

E[(1−D)eitY |S = s] = E[(1−D)eitY0 |S = s]

= E[eitY0 ]− E[1{s′Γ > 0}eitY0 ] (using (A− 2)

= E[eitY0 ]−
∫
SL

1
{
s′γ > 0

}(
F1

[
fY0,Γ

]
(t, γ)

)
dσ(γ)

= E[eitY0 ]−H
(
F1

[
fY0,Γ

]
(t, ·)

)
(s)

=
1

2
E[eitY0 ]−H

((
F1

[
fY0,Γ

]
(t, ·)

)−)
(s)(6.1)

where σ is the spherical measure on SL, H is the hemispherical transform (see, e.g., Gautier and

Kitamura (2009)) and f− is the odd part28 of a function f .

Assumption 6.1. (A-1) The rescaled vector of instruments S has a density with respect to σ and

its support is the whole hemisphere H+ = {s ∈ SL : sL+1 ≥ 0}.

27 Though the notation Γ has already been used in Section 3.4.1, here it is denoting something different.
28Odd, respectively even, functions are the closure in L2( SL) of continuous functions such that ∀s ∈ SL, f(−s) =

−f(s), respectively ∀s ∈ SL, f(−s) = f(s) . Each function in L2(SL) is the sum of its odd and even part. We denote

by L2
odd(SL) the subspace of L2(SL) of odd functions.
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(A-2) Γ has a density fΓ with respect to σ which is defined point-wise and has support included in

some hemisphere H = {s ∈ SL : s′ n ≥ 0}, where n is a vector of norm 1 that does not need

to be known.

Assumption 6.1 (1) corresponds to full support of the instruments. It is stronger than Assump-

tion 2.2. Assumption 6.1 (2) is satisfied under the specification (1.1) where in the original scale the

coefficient of V has a sign which is known, but it is slightly more general. Equation (6.1) yield that,

under Assumption 6.1 (2), E[(1 − D)eitY |S = s] − 1
2E[e

itY0 ] can be extended in a unique way as an

odd function defined on the whole SL (it is initially only defined on H+ according to Assumption 6.1

(1)) through

∀s ∈ H+, RY0(t, s) = E[(1−D)eitY |S = s]− 1

2
E[eitY0 ]

∀s ∈ −H+, RY0(t, s) = −RY0(t,−s).

It is remarkable that E[eitY0 ] is also identified in this model. This is due to the smoothing properties

of H. Indeed (see, e.g., Gautier and Kitamura (2009)), because RY0(t, ·) belong to H(L2
odd(SL)), it

is continuous and odd. Thus for any point s̃ on the boundary of H+, RY0(t, s̃) = −RY0(t,−s̃). This

yields

(6.2) lim
s→s̃, s∈H+

E[(1−D)eitY |S = s] + lim
s→−s̃, s∈H+

E[(1−D)eitY |S = s] = E[eitY0 ].

Because the right hand side does not depend on s̃, an efficient estimator would take into account all

these relations for all s̃ on the boundary of H+. Given an estimator ̂F [fY0 ] (t) of E[eitY0 ], we can

get an estimator of F1 [fY0,Γ] with the same formulas as in Gautier and Kitamura (2009) or Gautier

and Le Pennec (2011) replacing 2yi − 1 by 2(xi − 1)eityi + ̂F1 [fY0 ] (t). In the case of the estimator

of Gautier and Kitamura (2009) (see the reference for more details) and delayed means smoothing

kernels we get

(6.3)

̂
F1

[
fY0,Γ

]
(t, γ) = max

 2

|SL|

TN−1∑
p=0

χ(2p+ 1, 2TN )h(2p+ 1, L)

λ(2p+ 1, L)C
ν(L)
2p+1(1)

 1

N

N∑
i=1

(
2(xi − 1)eityi + ̂F [fY0 ] (t)

)
C

ν(L)
2p+1(s

′γ)

max
(
f̂S(si),mN

)
 , 0

 ,

where |SL| = 2π(L+1)/2

Γ((L+1)/2) is the surface measure of SL, h(n,L) = (2n+L−1)(n+L−1)!
n!(L−1)!(n+L−1) , ν(L) = (L −

1)/2, λ(2p + 1, L) = (−1)p|SL−1|1·3···(2p−1)
(L)(L+2)···(L+2p) , χ(n, T ) = ψ(n/T ) where ψ : [0,∞) → [0,∞) is infinitely

differentiable, nonincreasing, such that ψ(x) = 1 if x ∈ [0, 1], 0 ≤ ψ(x) ≤ 1 if x ∈ [1, 2], ψ(x) = 0 if
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x ≥ 2, and Cν
n(·) are the Gegenbauer polynomials 29. TN is the smoothing parameter, mN a trimming

factor and f̂S an estimator of the density of S.

7. Appendix

7.0.5. Proof of Proposition 4.1. Because KT and K̃T belong to S(R), due to Assumption 4.1 (ii), for

the function ϕ considered, for almost every s in H+, v 7→ E[ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, v)]K̃T (v) and v 7→

∂vE[ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, v)]KT (v) are in L1(R) and lim|v|7→∞ E[ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, v)]KT (v) = 0.

This yields

AT

[
∂vE

[
ϕ(Y )ς(D)|(S̃, Ṽ ) = (·), X = x

]]
(γ)

=

∫
supp

(
f
S̃,Ṽ |X(·|x)

) K̃T (s
′γ − u)E

[
ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, u), X = x

]
dudσ(s) (by integration by parts)

=

∫
supp

(
f
S̃,Ṽ |X(·|x)

) K̃T (s
′γ − u)E

[
ϕ(Y )ς(D)|(S̃, Ṽ ) = (s, u), X = x

] f
S̃,Ṽ |X(s, u|x)
f
S̃,Ṽ |X(s, u|x)

dudσ(s)

=

∫
supp

(
f
S̃,Ṽ |X(·|x)

) E
[
K̃T (s

′γ − u)ϕ(Y )ς(D)

f
S̃,Ṽ |X(s, u|x)

∣∣∣∣∣ (S̃, Ṽ ) = (s, u), X = x

]
f
S̃,Ṽ |X(s, u|x)dudσ(s)

= E

 K̃T (S̃
Tγ − U)ϕ(Y )ς(D)

f
S̃,Ṽ |X(S̃, Ṽ |x)

∣∣∣∣∣∣X = x

 (by the law of iterated conditional expectations)

Q.E.D.

7.0.6. Proof of Proposition 4.2. We use the notations

gIm,τ (γ) =
1

N

N∑
i=1

K̃TN
(s̃′iγ − ṽi)TτN (ϕ(yi))ς(di)

max
(
f
S̃,Ṽ

(s̃i, ṽi),mN

) ,

gIτ (γ) =
1

N

N∑
i=1

K̃TN
(s̃′iγ − ṽi)TτN (ϕ(yi))ς(di)

f
S̃,Ṽ

(s̃i, ṽi)
,

gI(γ) =
1

N

N∑
i=1

K̃TN
(s̃′iγ − ṽi)ϕ(yi)ς(di)

f
S̃,Ṽ

(s̃i, ṽi)
,

29The Gegenbauer polynomials are given by

Cν
n(t) =

[n/2]∑
l=0

(−1)l(ν)n−l

l!(n− 2l)!
(2t)n−2l, ν > −1/2, n ∈ N

where (a)0 = 1 and for n in N \ {0}, (a)n = a(a+ 1) · · · (a+ n− 1) = Γ(a+ n)/Γ(a).
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where the superscript I stands for ideal (this is because we replace the estimator of the density in

the denominator by the true density). For two sequences of positive numbers (an)n∈N and (bn)n∈N,

we write an . bn when there exists M positive such that an ≤ Mbn and an ≍ bn when an . bn and

bn . an.

Let us start by stating a few results on K̃T . Recall that

K̃T (u) =
2

(2π)L

∫ ∞

0
sin(−tu)t|t|L−1ψ

(
t

T

)
dt

therefore by the change of variables

K̃T (u) =
2TL+1

(2π)L

∫ ∞

0
sin(−Ttu)t|t|L−1ψ(t)dt

thus ∣∣∣K̃T (u)
∣∣∣ ≤ 2TL+1

(2π)L

∫ ∞

0
tLψ(t)dt

and
∫∞
0 tLψ(t)dt is a constant independent of T because ψ ∈ S(RL), therefore

(7.1)
∣∣∣K̃T

∣∣∣
∞

. TL+1.

Similarly we can show that

(7.2)
∣∣∣K̃ ′

T

∣∣∣
∞

. TL+2

which implies that ∀(u, v) ∈ R2, ∣∣∣K̃T (u)− K̃T (v)
∣∣∣
∞

. TL+2|u− v|

which in turns yields ∣∣∣|K̃T (u)| − |K̃T (v)|
∣∣∣
∞

. TL+2|u− v|

and ∀(s, v) ∈ SL−1 × R, ∣∣∣K̃T (s
′γ − v)− K̃T (s

′γ − v)
∣∣∣ . TL+2|γ − γ|(7.3) ∣∣∣|K̃T (s

′γ − v)| − |K̃T (s
′γ − v)|

∣∣∣ . TL+2|γ − γ|(7.4)

where on the right hand side of (7.3) and (7.4) | · | is the Euclidian norm in RL.

Also, because

K̃T (u) =
1

(2π)L

∫ ∞

−∞
e−iutt|t|L−1ψ

(
t

T

)
dt,

∣∣∣K̃T

∣∣∣
2
=

{∫ ∞

−∞
t2Lψ2

(
t

T

)
dt

}1/2
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= T (2L+1)/2

{∫ ∞

−∞
t2Lψ2(t)dt

}1/2

. T (2L+1)/2.(7.5)

We now rely on the decomposition

ĝ − g =
(
ĝ − gIm,τ

)
+
(
gIm,τ − E

[
gIm,τ

])
+
(
E
[
gIm,τ

]
− E

[
gIτ
])

+
(
E
[
gIτ
]
− E

[
gI
])

+
(
E
[
gI
]
− g
)

:= Sp + Se +Bt +Btrunc +Ba

where the expectation is with respect to (S̃i, Ṽi)
N
i=1

30. The contribution Sp corresponds to the sto-

chastic component due to plug-in, Se to the stochastic component of the infeasible estimator gIm,τ , Bt

to the trimming bias, Btrunc to the bias due to truncation and Ba to the approximation bias.

Let us study first the contribution of the term Sp. The following upper bounds hold

∥Sp∥∞ =

∥∥∥∥∥∥ 1

N

N∑
i=1

K̃TN
(s̃′i · −ṽi)TτN (ϕ(yi))ς(di)

max
(
f
S̃,Ṽ

(s̃i, ṽi),mN

)
max

(
f
S̃,Ṽ

(s̃i, ṽi),mN

)
max

(
f̂
S̃,Ṽ

(s̃i, ṽi),mN

) − 1

1{· ∈ BN}

∥∥∥∥∥∥
∞

≤ min (τN , ∥ϕ∥∞)

∥∥∥∥∥∥ 1

N

N∑
i=1

∣∣∣K̃TN
(s̃′i · −ṽi)

∣∣∣1{· ∈ BN}

max
(
f
S̃,Ṽ

(s̃i, ṽi),mN

)
∥∥∥∥∥∥
∞

max
i=1,...,N

∣∣∣∣∣∣
max

(
f
S̃,Ṽ )

(s̃i, ṽi),mN

)
max

(
f̂
S̃,Ṽ

(s̃i, ṽi),mN

) − 1

∣∣∣∣∣∣
≤ m−1

N min (τN , ∥ϕ∥∞)

∥∥∥∥∥∥ 1

N

N∑
i=1

∣∣∣K̃TN
(s̃′i · −ṽi)

∣∣∣1{· ∈ BN}

max
(
f
S̃,Ṽ

(s̃i, ṽi),mN

)
∥∥∥∥∥∥
∞

max
i=1,...,N

∣∣∣fS̃,Ṽ (s̃i, ṽi)− f̂
S̃,Ṽ

(s̃i, ṽi)
∣∣∣

≤ m−1
N min (τN , ∥ϕ∥∞) (∥T1∥∞ + ∥T21{BN}∥∞) max

i=1,...,N

∣∣∣fS̃,Ṽ (s̃i, ṽi)− f̂
S̃,Ṽ

(s̃i, ṽi)
∣∣∣

where

T1(γ) = E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)


T2(γ) =
1

N

N∑
i=1


∣∣∣K̃TN

(s̃′iγ − ṽi)
∣∣∣

max
(
f
S̃,Ṽ

(s̃i, ṽi),mN

) − E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)


We just have to consider the term ∥T21{BN}∥∞. We cover BN byN(N,L) Euclidian balls (Bi)
N(N,L)
i=1 of

centers (γi)
N(N,L)
i=1 and radius R(N,L). Because BN is compact we have N(N,L) ≍ d(BN )LR(N,L)−L.

30Thus we do not integrate against the distribution of Γ̃.
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For M(α) positive and an appropriately chosen sequence (vN ) to be defined later

P (vN∥T21{BN}∥∞ ≥M(α))(7.6)

≤ P

 ∪
i=1,...,N(N,L)

{vN |T2(γi)| ≥M(α)/2}


+ P

(
∃i ∈ {1, . . . ,N(N,L)} : vN sup

γ∈Bi

|T2(γ)− T2(γi)| ≥M(α)/2

)
.

(7.7)

By taking R(N,L) ≍ mNv
−1
N T

−(L+2)
N M(α) for a well chosen constant, the first term on the right hand

side is equal to zero. This follows from the fact that T2 is Lipschitz with a constant proportional to

m−1
N T

−(L+2)
N . This is a consequence of (7.4). For such a choice of R(N,L),

(7.8) P (vN∥T2∥∞ ≥M(α)) ≤ N(N,L) sup
i=1,...,N(N,L)

P (vN |T2(γi)| ≥M(α)/2) .

Now

P (vN |T2(γi)| ≥M(α)/2)

= P

∣∣∣∣∣∣
N∑
j=1

∣∣∣K̃TN

(
s̃′jγi − ṽj

)∣∣∣
max

(
f
S̃,Ṽ

(s̃i, ṽi),mN

)
m−1

N TL+1
N

− E


∣∣∣K̃TN

(
S̃′γi − Ṽ

)∣∣∣
max

(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
m−1

N TL+1
N

∣∣∣∣∣∣ ≥ t


≤ 2 exp

{
−1

2

(
t2

ω + Lt/3

)}
(Bernstein inequality)(7.9)

where

t = T
−(L+1)
N v−1

N mNNM(α)/2

ω ≥
N∑
j=1

var


∣∣∣K̃TN

(
s̃′jγi − ṽj

)∣∣∣
m−1

N TL+1
N


L ≥ sup

(s,v)∈supp(S̃,Ṽ )

∣∣∣∣∣∣ K̃TN
(s′γi − v)

max
(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
m−1

N TL+1
N

∣∣∣∣∣∣ ≍ 1 (using (7.1)).

As

N∑
j=1

var


∣∣∣K̃TN

(
S̃′
jγi − Ṽj

)∣∣∣
max

(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
m−1

N TL+1
N

 ≤
m2

N

T
2(L+1)
N

N∑
j=1

E




∣∣∣K̃TN

(
S̃′γi − Ṽ

)∣∣∣
max

(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
2

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≤
mNNT

2L+1
N

T
2(L+1)
N

(Due to (7.5))

we shall take ω = mNNT
2L+1
N T

−2(L+1)
N .

Now choose vN such that t ≍M(α)
√
ω log(N). Thus ω is the leading term in the denominator of the

exponent in (7.9). The corresponding vN is

vN ≍ (logN)−1/2ω−1/2T
−(L+1)
N mNN

≍
(

N

logN

)1/2

m
1/2
N T

−(L+1/2)
N .

For these choices of the parameters

(7.10)
t2

ω + Lt/3
≍ (logN)M(α)2

and

R(N,L) ≍
(

N

logN

)−1/2

m
1/2
N T

−3/2
N M(α).

Due to (7.5) and because by assumption log(T 3
N/mN ) + L log(d(BN )) ≤ α, we obtain

(7.11) N(N,L) ≍ d(BN )LR(N,L)−L = exp ((α+ L/2) logN + o(logN)) .

Equations (7.8), (7.9), (7.10) and (7.11) imply that, for a positive constants C and C2,

(7.12)

P

((
N

logN

)1/2

T
−(L+1/2)
N m

1/2
N ∥T21{BN}∥∞ ≥M(α)

)
≤ C exp

{
(logN)((α+ L/2)− C2M(α)2)

}
holds. For a large enough M(α), (α + L/2) − C2M(α)2 < −1 which implies summability of the left

hand side in (7.12), hence by the first Borel-Cantelli lemma for M(α) large enough with probability

one

limN→∞

(
N

logN

)1/2

T
−(L+1/2)
N m

1/2
N ∥T2∥∞ < M(α).

In summary, we have obtained that for some constant MIV and M(α), with probability one,

for every ϵ positive, there exists N large enough such that

∥Sp1{BN}∥∞ ≤(MIV + ϵ)min (τN , ∥ϕ∥∞) rIV,Nm
−1
N


∥∥∥∥∥∥E


∣∣∣K̃TN

(
S̃′γ − Ṽ

)∣∣∣
max

(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)
∥∥∥∥∥∥

∞

+m
−1/2
N (M(α) + ϵ)

(
N

logN

)−1/2

T
L+1/2
N

}
.
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For the same reason, on the same event of probability 1, for every ϵ positive, there exists N

large enough such that

∥Se1{BN}∥∞ ≤ m
−1/2
N (M(α) + ϵ)min (τN , ∥ϕ∥∞)

(
N

logN

)−1/2

T
L+1/2
N .

Consider now the bias term induced by trimming, evaluated at a point γ,

Bt(γ) = E

K̃TN

(
S̃′γ − Ṽ

)
min (ϕ(Y ), τN ) ς(D)

fS̃,Ṽ (S̃, Ṽ )

 fS̃,Ṽ (S̃, Ṽ )

max
(
fS̃,Ṽ (S̃, Ṽ ),mN

) − 1


=

∫
{(s,v): fS̃,Ṽ (s,v)<mN}

E
[
min (ϕ(Y ), τN ) ς(D)|S̃ = s, Ṽ = v

]
K̃TN (s′γ − v)

(
fS̃,Ṽ (s, v)m

−1
N − 1

)
dσ(s)dv.

This yields the following upper bound

|Bt(γ)| ≤ min (τN , ∥ϕ∥∞)

∫
{
(s,v): f

S̃,Ṽ
(s,v)<mN

} ∣∣∣K̃TN
(s′γ − v)

∣∣∣ dσ(s)dv.
Consider now the truncation bias Btrunc. We obtain

|Btrunc| ≤ E
[∣∣∣K̃TN

(S̃Tγ − Ṽ )TτN (ϕ(Y ))ζ(D)
∣∣∣]

which allows to conclude using (7.1) with an explicit constant.

The upper bound for the approximation bias Ba is obtained as follows. Note that, for x in RL,

E[gI ](x) = F−1
[
ψ
( ·
T

)
F [g](·)

]
(x)

= ρT ∗ g(x)

where ∗ is the usual convolution and

ρT (x) =
1

(2π)L

∫ ∞

−∞
e−iξ′xψ

(
ξ

T

)
dξ

= TLρ1

( x
T

)
.(7.13)

The collection (ρT )T>0 is an approximate identity because of (7.13) and
∫∞
−∞ ρT (x)dx = 1(= ψ(0)).

The rest of the argument is classical and is based on

g − E[gI ](x) =
∫
RL

(g(x)− g(x− y)) ρT (y)dy.

Let us do the argument for s = 1 and s = 2 only for simplicity of the notations.

Case where s = 1.

The inequalities

∥g − E[gI ]∥∞ ≤ Lg

∫
RL

|y||ρT (y)|dy
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≤ ∥g∥1,∞T−1

∫
RL

|y||ρ1(y)|dy

hold with Lg the Lipschitz constant of g which is itself upper bounded by ∥g∥1,∞. The last integral is

finite because ρ1 is in S(RL). Indeed ρ1 is the Fourier transform of a function in S(RL).

Case where s = 2.

Denoting by Dg(x).y the differential of g at x applied to y, because ψ and thus ρ1 is symmetric,

∥g − E[gI ]∥∞ =

∫
RL

(g(x)− g(x− y)−Dg(x).y)ρT (y)dy.

This yields

∥g − E[gI ]∥∞ =

∫
RL

∫ 1

0
(Dg(x− λy)−Dg(x)).ydλρT (y)dy

≤ ∥g∥2,∞
∫
RL

|y|2|ρT (y)|dy

≤ ∥g∥2,∞T−2

∫
RL

|y|2|ρ1(y)|dy

where again
∫
RL |y|2|ρ1(y)|dy <∞ because ρ1 is in S(RL).

The upper bounds on the bias due to truncation follow from the expression of the difference

between the two expectations when Assumption 2.1 holds.

Q.E.D.

7.0.7. Proof of Proposition 4.3. The proof of this result is almost the same as the proof of Proposition

4.2. We will thus only stress the differences. We will use the notation

∥f − g∥∞ := sup
t∈[−Rmax

N ,Rmax
N ], γ∈BN

|(f − g) (t, γ)| .

We start by observing that

∥f − g∥∞ ≤ ∥Re(f)−Re(g)∥∞ + ∥Im(f)− Im(g)∥∞

this yields the factor 2 in the upper bound of the proposition. Then it is easy to check that we

obtain the same upper bounds for both the error on the estimation of the real part and the error on

the estimation of the imaginary part. For both, all the terms can be bounded like in the proof of

Proposition 4.2 (taking τN = 1 and noting that ∥ϕ∥∞ = 1 as here ϕ is either cos or sin) besides the

term Sa, the stochastic component of the infeasible estimator gIm,τ .
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We shall cover BN by N(N,L) balls (Bi)
N(N,L)
i=1 of centers

(
γi, ti

)N(N,L)

i=1
and radius R(N,L) (will

be the same as in the proof of Proposition 4.2) where balls are defined as

Bi =
{
(γ, t) : |γ − γi|+ |t− ti| ≤ R(N,L)

}
and again the norm |γ − γi| is the Euclidian norm in RL while |t− ti| is the absolute value. Because

Bd(0, 1) × [−1, 1] is compact31 it can be covered by a number of balls of the order of R(N,L)−(L+1)

(the extra dimension due to t) and thus N(N,L) ≍ Rmax
N d(BN )LR(N,L)−(L+1).

The choice of R(N,L) is based on the same reasoning as before and the fact that the functions

(γ, t) → K̃TN
(s′γ − v) cos(ty)

max
(
f
S̃,Ṽ

(s, v),mN

)
and

(γ, t) → E

 K̃TN
(S̃′γ − Ṽ ) cos(tY )

max
(
f
S̃,Ṽ

(
S̃, Ṽ

)
,mN

)


are Lipschitz with constant m−1
N TL+2

N . The same is true if we replace sin by cos. We can thus take

the same t, ω and L and thus vN as in the proof of Proposition 4.2. However due to the different

covering number the constant C1 changes which yields a different constant M(α).

Q.E.D.

7.0.8. Proof of Proposition 4.4. First note that(
f̂∆ − f∆

)
(δ) = −

∫
RL

f
∆|Γ̃(δ|γ)fΓ̃(γ)1{γ ∈ Bc

N}dγ

+

∫
RL

(
f̂
∆|Γ̃(δ|γ)− f

∆|Γ̃(δ|γ)
)
f
Γ̃
(γ)1{γ ∈ BN}dγ

+

∫
RL

f̂
∆|Γ̃(δ|γ)

(
f̂
Γ̃
(γ)− f

Γ̃
(γ)
)
1{γ ∈ BN}dγ

which yields∣∣∣(f̂∆ − f∆

)
(δ)
∣∣∣ ≤ ∫

RL

f
∆|Γ̃(δ|γ)fΓ̃(γ)1{γ ∈ Bc

N}dγ

+

∫
RL

∣∣∣f̂∆|Γ̃(δ|γ)− f
∆|Γ̃(δ|γ)

∣∣∣ fΓ̃(γ)1{γ ∈ BN}dγ

+

∫
RL

f̂
∆|Γ̃(δ|γ)

∣∣∣f̂Γ̃(γ)− f
Γ̃
(γ)
∣∣∣1{γ ∈ BN}dγ

≤
∫
RL

f
∆|Γ̃(δ|γ)fΓ̃(γ)1{γ ∈ Bc

N}dγ

31Bd(0, 1) is a Euclidian ball centered at 0 or radius 1.
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+

∫
RL

∣∣∣f̂∆|Γ̃(δ|γ)− f
∆|Γ̃(δ|γ)

∣∣∣ fΓ̃(γ)1{γ ∈ BN}dγ

+

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

∫
RL

∣∣∣f̂∆|Γ̃(δ|γ)
∣∣∣ fΓ̃(γ)1{γ ∈ BN}dγ

≤
∫
RL

f
∆|Γ̃(δ|γ)fΓ̃(γ)1{γ ∈ Bc

N}dγ

+

(
1 +

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

)∫
RL

∣∣∣f̂∆|Γ̃(δ|γ)− f
∆|Γ̃(δ|γ)

∣∣∣ fΓ̃(γ)1{γ ∈ BN}dγ

+

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

∫
RL

f
∆|Γ̃(δ|γ)fΓ̃(γ)1{γ ∈ BN}dγ

≤
∫
RL

f
∆|Γ̃(δ|γ)fΓ̃(γ)1{γ ∈ Bc

N}dγ

+

(
1 +

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

)∫
RL

∣∣∣f̂∆|Γ̃(δ|γ)− f
∆|Γ̃(δ|γ)

∣∣∣ fΓ̃(γ)1{γ ∈ BN}dγ

+M∆

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

thus, using the Cauchy-Schwartz inequality

(
f̂∆ − f∆

)2
(δ) ≤ 3

∫
RL

f2
∆|Γ̃(δ|γ)fΓ̃(γ)1{γ ∈ Bc

N}dγ

+ 3

(
1 +

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

)2 ∫
RL

(
f̂
∆|Γ̃(δ|γ)− f

∆|Γ̃(δ|γ)
)2
f
Γ̃
(γ)1{γ ∈ BN}dγ

+ 3M2
∆

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
2

∞

≤ 3M∆

∫
RL

f
∆,Γ̃

(δ, γ)1{γ ∈ Bc
N}dγ

+ 3∥f
Γ̃
∥∞

(
1 +

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
∞

)2 ∫
RL

(
f̂
∆|Γ̃(δ|γ)− f

∆|Γ̃(δ|γ)
)2

1{γ ∈ BN}dγ

+ 3M2
∆

∥∥∥∥∥ f̂Γ̃ − f
Γ̃

f
Γ̃

1{BN}

∥∥∥∥∥
2

∞

.

The inequality is now obtained by integration over δ.

Q.E.D.
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7.0.9. Proof of Proposition 4.5. We introduce the notations

f
∆|Γ̃(δ|γ) :=

1

2π

∫ ∞

−∞
K(t hN,γ)e

−iδtF1

[
f
∆|Γ̃

]
(t|γ)dt,

R(t, γ) :=

1

{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ > rY0,N

}
̂

F1

[
f
Y0,Γ̃

]
(t, γ)

− 1

F1

[
f
Y0,Γ̃

]
(t, γ)

.

The following decomposition holds at a fixed γ by means of the Plancherel identity∥∥∥(f̂∆|Γ̃ − f
∆|Γ̃

)
(·|γ)

∥∥∥2
2
≤ 4

∥∥∥(f∆|Γ̃ − f
∆|Γ̃

)
(·|γ)

∥∥∥2
2

+
2

π

∫ ∞

−∞

K(t hN,γ)
2∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣2
∣∣∣∣( ̂

F1

[
f
Y0+∆,Γ̃

]
−F1

[
f
Y0+∆,Γ̃

])
(t, γ)

∣∣∣∣2 dt
+

2

π

∫ ∞

−∞
K(t hN,γ)

2|R(t, γ)|2
∣∣∣∣( ̂

F1

[
f
Y0+∆,Γ̃

]
−F1

[
f
Y0+∆,Γ̃

])
(t, γ)

∣∣∣∣2 dt
+

2

π

∫ ∞

−∞
K(t hN,γ)

2
∣∣∣F1

[
f
Y0+∆,Γ̃

]
(t, γ)

∣∣∣2 |R(t, γ)|2dt.
We conclude using Lemma 7.1 below and the fact that by conditional independence∣∣∣F1

[
f
Y0+∆,Γ̃

]
(t, γ)

∣∣∣2∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣4 =

∣∣∣F1

[
f
∆,Γ̃

]
(t, γ)

∣∣∣2∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣2 .
Q.E.D.

Lemma 7.1 below is an adaptation of the lemma of Neumann (1997). Denote by

ψ(t, γ) :=
1∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ min

1,
rY0,N∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣
 .

Lemma 7.1.

sup
t∈[−Rmax

N ,Rmax
N ], γ∈BN

{
ψ(t, γ)−1 |R(t, γ)|

}
= Op(1).

7.0.10. Proof of Lemma 7.1. We distinguish between two cases.

Case 1: Let t and γ be such that
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ < 2rY0,N . Then, ψ(t, γ)−1 ≤ 2
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣
and it suffices to upper bound in probability

∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ |R(t, γ)|. By definition of R(t, γ),∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ |R(t, γ)| ≤ 1 on the event

{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ ≤ rY0,N

}
, while∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ |R(t, γ)| ≤ (rY0,N )−1

∣∣∣∣( ̂
F1

[
f
Y0,Γ̃

]
−F1

[
f
Y0,Γ̃

])
(t, γ)

∣∣∣∣ on the complementary event



55{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ > rY0,N

}
. This yields

sup
(t,γ):

∣∣∣F1

[
f
Y0,Γ̃

]
(t,γ)

∣∣∣<2rY0,N

{
ψ(t, γ)−1 |R(t, γ)|

}
= Op(1).

Case 2: Let now t and γ be such that
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ ≥ 2rY0,N . Then, ψ(t, γ)−1 ≤ 2 (rY0,N )−1
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣2
and it suffices to upper bound in probability (rY0,N )−1

∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣2 |R(t, γ)|.
By definition of R(t, γ),

(rY0,N )−1
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣2 |R(t, γ)|
≤ (rY0,N )−1

∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ (1{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ ≤ rY0,N

}

+

∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)−F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ 1

{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ > rY0,N

}
Using

1∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ ≤
1∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ +
∣∣∣∣( ̂

F1

[
f
Y0,Γ̃

]
−F1

[
f
Y0,Γ̃

])
(t, γ)

∣∣∣∣∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ ∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ ,
we obtain

(rY0,N )
−1
∣∣∣F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣2 |R(t, γ)|
≤ (rY0,N )

−1
∣∣∣F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣1{∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣ ≤ rY0,N

}

+ (rY0,N )
−1


∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)−F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣+
∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)−F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣2∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣
1

{∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣ > rY0,N

}

≤ (rY0,N )
−1
∣∣∣F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣1{∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣ ≤ rY0,N

}
+

(
(rY0,N )

−1

∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)−F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣
+(rY0,N )

−2

∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)−F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣2
)
1

{∣∣∣∣ ̂
F1

[
fY0,Γ̃

]
(t, γ)

∣∣∣∣ > rY0,N

}
.

From the definition of the upper bound on the rate rY0,N , the last term in the sum is, uniformly in t

and γ such that
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ ≥ 2rY0,N , bounded in probability.



56 GAUTIER AND HODERLEIN

Moreover, because
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ ≥ 2rY0,N ,

1

{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ ≤ rY0,N

}
≤ 1

{∣∣∣∣( ̂
F1

[
f
Y0,Γ̃

]
−F1

[
f
Y0,Γ̃

])
(t, γ)

∣∣∣∣ ≥ ∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣− rY0,N

}
≤ 1

{∣∣∣∣( ̂
F1

[
f
Y0,Γ̃

]
−F1

[
f
Y0,Γ̃

])
(t, γ)

∣∣∣∣ ≥ ∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ /2}

≤ 2

∣∣∣∣( ̂
F1

[
f
Y0,Γ̃

]
−F1

[
f
Y0,Γ̃

])
(t, γ)

∣∣∣∣∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣
which yields

(rY0,N )−1
∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣1{∣∣∣∣ ̂
F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣∣ ≤ rY0,N

}
≤ (rY0,N )−1

∣∣∣∣( ̂
F1

[
f
Y0,Γ̃

]
−F1

[
f
Y0,Γ̃

])
(t, γ)

∣∣∣∣ ,
thus the first term is also, uniformly in t and γ such that

∣∣∣F1

[
f
Y0,Γ̃

]
(t, γ)

∣∣∣ ≥ 2rY0,N , bounded in

probability.

Q.E.D.

7.0.11. Proof of Proposition 4.6. The proposition follows from adapting the upper bounds in Comte

and Lacour (2011), (4.17) and the assumptions made.

Q.E.D.
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[27] Gäıffas, S. (2005): “Convergence Rates for Pointwise Curve Estimation with a Degenerate Design”. Mathematical

Methods of Statistics, 14, 1-27.
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