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ABSTRACT. The aim of our work is to reconstruct an inclusion w immersed in a
fluid flowing in a larger bounded domain €2 via a boundary measurement on 9f2.
Here the fluid motion is assumed to be governed by the Stokes equations. We
study the inverse problem of reconstructing w thanks to the tools of shape
optimization by minimizing a Kohn-Vogelius type cost functional. We first
characterize the gradient of this cost functional in order to make a numerical
resolution. Then, in order to study the stability of this problem, we give
the expression of the shape Hessian. We show the compactness of the Riesz
operator corresponding to this shape Hessian at a critical point which explains
why the inverse problem is ill-posed. Therefore we need some regularization
methods to solve numerically this problem. We illustrate those general results
by some explicit calculus of the shape Hessian in some particular geometries.
In particular, we solve explicitly the Stokes equations in a concentric annulus.
Finally, we present some numerical simulations using a parametric method.

1. Introduction, notation and setting of the problem. The problem of re-
constructing an inclusion w immersed in a fluid, such as submarines or banks of
fish, flowing in a greater bounded domain ) has been investigated by many au-
thors. Sonars are the most common devices used to spot immersed bodies. These
systems use acoustic waves: active sonars emit acoustic waves (making themselves
detectable), while passive sonars only listen (and therefore are only able to detect
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targets that are noisy enough). To overcome these limitations, it would be interest-
ing to design systems imitating the lateral line systems of fish, a sense organ they
use to detect movement and vibration in the surrounding water, as emphasized
in [15].

In [4], Alvarez et al. studied this inverse problem in order to determine the shape
and the location of w via the measurement of the velocity of the fluid and the Cauchy
forces on the boundary 99Q. After, in [5], Alves et al. used a method mainly based on
the analysis of a system of nonlinear integral equations to determine the geometry
and the position of a rigid object immersed in a viscous and incompressible fluid.
In a more recent work [14], Conca et al. investigated the problem of the detection
of a moving obstacle in a perfect fluid with a boundary measurement. When the
obstacle is a ball, they showed that the position and the velocity of its center of
mass can be identified from a single boundary measurement. In [15], using complex
analysis tools, Conca et al. proved that this result cannot be generalized to any
solid. However, they extended the result to moving ellipses: they proved that a
solid with some symmetry properties can be partially detected. As expected for
an inverse problem, the numerical experiments which were conducted show some
difficulties to reconstruct the object. Those numerical difficulties are explained in a
recent paper of Badra et al. (see [8]). Using a least-squares approach, the authors
prove that the problem is severely ill-posed.

Here the fluid motion is assumed to be governed by the classical Stokes equations
with non-homogeneous Dirichlet boundary condition on the exterior boundary and
homogeneous Dirichlet boundary condition on the interior boundary. In order to
simplify the expression, we assume that the exterior forces are null but the same
results hold if we add a second member. This problem is classical and was studied
by many authors (see for example [4], [8], [29], [1], [9, 10]) due to its importance
in many applications involving fluid related technology and receive considerable
attention by engineers and mathematicians. It is known to be ill-posed and our
goal is to determine what sort of informations on the shape to be detected can be
recovered by the tools of shape optimization.

Following previous works on electrical impedance tomography by Afraites et al.
in [2] or [3] and Badra et al. in [8], we solve our inverse problem by minimizing
a cost functional. In our paper, we consider an other approach than the least-
squares cost functional for the same problem than the one studied in [8]. Indeed,
we show how to solve the inverse problem by defining a Kohn-Vogelius type cost
functional. Here we make the measurement only on a part of the exterior boundary
and not on the whole exterior boundary as in the classical Kohn-Vogelius approach
(see [2] for example). Thus, we consider here the Stokes equations with Dirichlet
and mixed boundary conditions. Then, we follow the classical recipe: first we
give an explicit formula for the gradient of this functional and compute after the
associated shape Hessian to study the stability. We show the compactness of the
Riesz operator corresponding to this shape Hessian at a critical point; this explains
why the inverse problem is ill-posed. We then illustrate this result by computing
explicitly this shape Hessian matrix for some particular geometries; we point out the
consequence of the high frequencies on the value of the smallest eigenvalue. Finally,
we present some numerical simulations with a regularization method: we use here
a parametric model.

The paper is organized as follows. Firstly, we introduce the notations, the overde-
termined problem that we consider and the Kohn-Vogelius cost functional Jxy .
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Secondly, in Section 2, we state the main results of this work. We recall an im-
portant identifiability result that we quote from Alvarez et al. (see [4, Theorem
1.2]) which ensures that the functional Jxy has a unique global minimum. The
first order derivatives of the state and of the cost functional are characterized and
the shape Hessian is explicitly computed. We then claim that the Riesz opera-
tor associated to the shape Hessian is compact. This result is crucial in the sense
that it explains all the stability difficulties that one has to face. Finally, in order
to illustrate the exponentially ill-posedness of this problem, we present an explicit
calculus of the shape Hessian in a concentric annulus and compare it with the elec-
trical impedance tomography case (i.e. the Laplacian case). In Section 3, we prove
those results. In the last part of this paper, we present some numerical attempts to
effectively reconstruct the inclusion w using shape derivative informations. Let us
point out that we use a parametric model of shape variation in order to highlight
the bad conditioning of the Hessian matrix. To remove the oscillations due to the
high frequencies, we propose an adaptive method which seems to be efficient. The
needed results on Stokes equations with mixed boundary conditions (a theorem of
existence and uniqueness of the solution and a local regularity result) are recalled
in Appendix A. Moreover, the explicit computations of the solution of the Stokes
equations in an annulus are detailed in Appendix B.

Introduction of the general notations. Let us introduce the notations that we adopt
in this paper. For a bounded Lipschitz open set Q& C RN (N = 2 or 3), we denote
by LP(2), W™P(Q) and H*(2) the usual Lebesgue and Sobolev spaces. We note in
bold the vectorial functions and spaces: LP(£2), W™?(Q), H?(2), etc. We denote
by || the measure of 2. Moreover, n represents the external unit normal to 92, and
for a smooth enough function u, we note Oyu the normal derivative of w. Finally,

we define the space
130) = {per2@). [ p=o}
Q

and we recall the following definition: for an open manifold O C 052,

H(l)éQ(O) = {u\o, uw e HY2(8Q), Upo\G = O}.

/

We denote by [Hééﬂ (O) the dual space of H(l)(/)2 (0).

The problem setting. Let 2 be a bounded, connected and Lipschitz open subset of
RY (N = 2 or 3). Let dy > 0 fixed (small). We define Oy, the set of all open
subsets w of Q with a C%! boundary such that d(z,d) > dy for all 2 € w and such
that Q\w is connected. The set Oy, is referred as the set of admissible geometries.
Notice that we make the assumption that the inclusion is far from the boundary
0. We also define 24, an open set with a C'"* boundary such that

{z € Q; d(z,09Q) > do/2} C Qg C {z € Q; d(z,090) > dy/3}.
Let f € HY 2(0Q) such that f # 0 satisfying the compatibility condition

(1) f-n=0.

o0
/
Let O be a non-empty subset of 92 and g € [Hééﬂ (O) be an admissible boundary
measurement. For w € Oy, let us consider the following overdetermined Stokes
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boundary value problem

—vAu+Vp = 0 in QN\w
dive = 0 in Q\w
(2) u = f on 90
u = 0 on Jw
—vOhu+pn = g on O.

Here the constant v > 0 represents the kinematic viscosity of the fluid, the vectorial
function u represents the velocity of the fluid and the scalar function p represents
the pressure.

We assume here that there exists w* € Og, such that (2) has a solution. Thus,
we consider the following geometric inverse problem:

(3) find we Oy, and a pair (u,p) which satisfy the overdetermined system (2).

We will tackle the inverse problem of reconstructing w thanks to the tools of shape
optimization. In order to recover the shape of the inclusion w, a usual strategy is
then to minimize a cost functional. The classical one is to work with a least squares
approach but here, we choose to work with a Kohn-Vogelius criterion. Indeed,
this one permits to obtain better numerical results (as emphasized in [2] for the
Laplacian case). Then, we consider in this work the following Kohn-Vogelius cost
functional

1
Jiv() =5 /Q\” IV (up — un) P,

where (up,pp) € H'(Q\@) x LZ(Q\@) is the unique solution of the Stokes problem
with Dirichlet boundary conditions

—vAup +Vpp = 0 in Q\E

(4) divup = 0 in Q\w
up = f on 00

up = 0 on Jw

and (un,py) € H (Q\@) x L2(Q\©) is the unique solution of the Stokes problem
with mixed boundary conditions

—vAuny+Vpy = 0 in N\w
divuny = 0 in Q\w
(5) —voqun +pyn = g on O
uny = f on IN\O
uny = 0 on Jw.

We refer to [12] or [19] for the results of existence, uniqueness and regularity of the
solutions of the Stokes problem with Dirichlet boundary conditions. Notice that we
assume the compatibility condition (1) associated to problem (4) is satisfied. Con-
cerning the mixed boundary conditions, we recall the main results used in this paper
in Appendix A. Hence, the existence and the uniqueness of the couple (un,pn) is
guaranteed by Theorem A.1.

Then, we try to minimize the Kohn-Vogelius cost functional Jgvy :
(6) w* = argmin Jxy (w).

[BISOFN

Indeed, if w* is solution of the inverse problem (3), then Jxy (w*) = 0 and (6) holds.
Conversely, if w* solves (6) with Jxv (w*) = 0, then this domain w* is a solution of
the inverse problem.

INVERSE PROBLEMS AND IMAGING VoOLUME 7, No. 1 (2013), 123-157



A KOHN-VOGELIUS FORMULATION 127

Introduction of the needed functional tools. To define the shape derivatives, we will
use the velocity method introduced by Murat and Simon in 1976 in [24]. To this
end, we need to introduce the space of admissible deformations

U :={0 € W*>*(R"); Supp 6 C Qq, } -

Then for V € U and t € [0,T) (where T > 0 is a fixed real number sufficiently
small), we define w; := (I+tV')(w). In this paper, V is referred as the perturbation
direction and we denote

Vo=V - n.
For details concerning the differentiation with respect to the domain, we refer to the
papers of Simon [27, 28] and the books of Henrot and Pierre [21] and of Sokolowski
and Zolsio [31].

2. Statement of main results.

Identifiability result. We quote an identifiability result in the Dirichlet case proved
by Alvarez et al. [4, Theorem 1.2]. In order to state it, let us precise a notation:
we denote by o the stress tensor defined by

o(u,p) :=v(Vu+' Vu) — plL.
Here ‘Vu is the transposed matrix of Vu. Notice that if divu = 0 in Q\w, one has
—div (o(u,p)) = —vAu + Vp in Q\w.

Theorem 2.1 (Alvarez et al., [4]). Let Q CRY (N =2 or 3) be a bounded C11
domain, and O a non-empty open subset of 0. Let

wo, w1 € {w CC Q; w is open, Lipschitz and Q\W is connected}

and f € H3/2(8Q) with f # 0, satisfying the flux condition f-n=0. For

a0
ex =0 ore, =1, let (uz,p;) for j =0,1, be a solution of
—div (o(uj,p;)) +exdiv(uj ®@u;) = 0 in Q\w;
divu; = 0 inQ\w;
u; = f onodf)
u; = 0 ondw;.

Assume that (uj,p;) are such that
o(ug,po)n=o(uy,p1)n on O.
Then wy = ws .

We can adapt this result to our problem, i.e. with —v9,u+pn instead of o (u, p)n,
with e, = 0, with Q Lipschitz and with f € H/2(99Q) (see [8, Theorem 2.2]). Hence
this result states that given a fixed f, two different geometries wy and w; in Oy,
yield two different measures g1 and g2. Thus problem (3) admits a unique solution.
Sensitivity with respect to the domain. The following result is based on [8, Proposi-
tions 2.1 and 2.5] and ensures that the solutions (up,pp) and (un, py) are differen-
tiable with respect to the domain. Moreover, we characterize the shape derivatives
of these solutions.

Proposition 1 (First order shape derivatives of the states). Let V € U be an
admissible deformation. The solutions (up,pp) and (un,pn) are differentiable
with respect to the domain and the shape derivatives (up,pp) and (Ui, ply) belong
to H?(Q4,\©0) x H'(Qq,\@). The couples (ulp,plp) € HY (@) x LEZ(QAN\®@) and
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(un, Ply) € HY(Q\W) x L2(Q\W) are respectively the only solutions of the following
boundary value problems

—vAup +Vp, = 0 in N\w
(7) divup, = 0 in Q\w
up = 0 on 0N
up = —Vidhup ondw
and
—vAuN +Vpy = 0 in Q\w
divuly = 0 in Q\w
(8) —vOpuly +pyn = 0 onO
uy = 0 on OO\O
uly = —VpOhuny ondw.

In order to simplify the expressions, we introduce the following notations:
(9) w:=up—uny and ¢:=pp—pn,
where (up,pp) solves (4) and (upn,pn) solves (5).

Proposition 2 (First order shape derivative of the functional). For V € U, the
Kohn-Vogelius cost functional Jxv is differentiable at w in the direction V' with

(10) DJKv(w).V:—/

1
(VOaw — qn) - dgupV, + 51// [Vw|® Vy,
Ow

ow
where (w, q) is defined by (9).

Second order analysis: justification of the instability. We study the stability of the
problem. First, we give an explicit formula for the shape Hessian when w € Oy,
in the following proposition. In order to simplify the expressions, we will use the
following notations:

(11) w =up—uly and ¢ :=pp —ph,
where (u'p, ) solves (7) and (uly, ply) solves (8).

Proposition 3 (Second order shape derivative of the functional). The solution
(u,p) is twice differentiable with respect to the domain. Moreover, for V € U, we
have

(12)

D*Jky (w).V.V = |:va, Vw — (Vanw’ +vVwn' —¢n— qn’) - Opup
Ow

— (V@nw — qn) . (anu/D + Van’)} Va
+ /aw div [(;V IVw|* — (10w — gn) - 8nuD>V] Va,

where (w, q) and (w’',q") are defined respectively by (9) and (11).

Let w* be a critical point of the Kohn-Vogelius functional. The following propo-
sition shows that the optimization problem (6) is unstable.
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Proposition 4 (Compactness at a critical point). Let w* € Oy, be a solution of
the inverse problem (3). We have

D Jgy (W*). V.V = —/ (vOpw' — ¢'n) - OyupVy,
dw*

where (w',q") is defined by (11). Moreover, the Riesz operator corresponding to

D2Jgy (w*) defined from HY2(dw*) to H™'/2(8w*) is compact.

The above proposition explains the difficulties encountered to solve numerically
this problem. Indeed, the gradient has not a uniform sensitivity with respect to
the deformation direction: hence, oscillations of the boundary generated by high
frequencies are to be expected (see Section 4 for the numerical simulations).
Explicit computation of the shape Hessian when O = 0f). We illustrate the compact
behavior of the shape Hessian in the case O = 9. We study it in the bi-dimensional
situation for some particular geometries. In order to simplify the expressions, we
assume v = 1. In the following, (€,,€p) := << Z?jg ) , < C(S)ISIZQ >) represents
the polar coordinates system.

Proposition 5 (Explicit calculus of the shape Hessian in a concentric annulus).
Let us assume that the optimum w* corresponds to the concentric annulus case

Q,={zeR? p<|z|<1}.

Set f = cos(nb)é,., n > 1 and the associated Neumann boundary condition g
(see (28)). Let p > 1 and let us define
gn = p2 _ n2p2n 49 (_1 + n2) p2+2n _ n2p4+2n 4 p2+4n
fn = 2(=14+ %) + 02 (<14 07) (=14 p) —n (=14 p?) (1+p*")
Ay = 2(=14p%) 4+ p3 (=14 )7 (=14 p%) +2p (1 4 p2) (=1 + p*)
—p? (=14 %) (14 p® + 4p* + p*? + p>+4P)
B, = (p2—p2p® +2 (=1 +p?) p2t2 — p2pttae 4 p2tir)
(3% + (84 p?) p?P — 2 (=1 + p?) p*T2P + p?p* 2P 4 3p7T4P) .
We have
D?Jgy (w*) [(coskf)e,. , (sinlf)e;] =0
and

D?Jgv (w*) [(cos kB)e€;. , (cosif)e;] = D* gy (w*) [(sin kb)e;. , (sinlh)e;]

1 .
—= (len—k\ + Rn7|n+”) if k—1=2n

2
- —% (Bnjnik + Rojnyy) i 1=k =2n
Rn,|n+k| + Rn,\n—l\ lf k? = l,
where
Rnp = _8”§+2n K2 pzzlp if p>1
B L TP o 31202 Gpt—4p0 4 o 4 165" In(p)
’ & (=343 = p+ %) (1= g2+ (1+ ) In(p)
R,o = 0.
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Remark 1. In particular, if |n — k| ¢ {0, 1}, notice that we can write the diagonal
elements of the shape Hessian under the form

D?Jgy (w*) [(coskf)€;. , (coskb)€;] = D> Tgy (w*) [(sin kb)e; , (sinkd)e;)

*87Tp2+2n e Pan+k|A|n+k\ N p2|n7k\A|n_k‘
&2 " Blntk| By

Let us compare our Stokes case with the electrical impedance tomography (E.I.T.)
situation (see [2, Proposition 3]). We make the computations of the E.IT. case with
Dirichlet boundary conditions (in [2], they impose Neumann boundary conditions).
Proceeding as in [2] and in this paper, we prove that, in the E.I.T. situation with
Dirichlet boundary conditions (and with f = cos(nf)é,, n > 1), the Hessian matrix
is defined similarly as in Proposition 5 with
_ 2 ,—242n 2p
R, = —mr L
(= 1+
Rn,O = 0.

Hence our shape Hessian has the same aspect than the Hessian in the E.I.T. case.

Example 1. In order to be complete, we give some examples of the influence of the
different parameters on the value of the smallest eigenvalue A1 of the shape Hessian
D2Jkv(w*) and hence on the reconstruction of the object.

In Table 1, we study the influence of the size of the object w*. We here assume
that f = cos(20)é, (i.e. n = 2) and k,l = 1,...,7. The regularizing behavior is

TABLE 1. Influence of the size of the object p on the smallest ei-
genvalue \; of the shape Hessian D% Jxy (w*).

p |09 0.7 0.5 0.3 0.1 0.05
A1 | 8.9401e4+05 1.0921e+03 3.9992 0.0019 3.1851e-10 1.9032e-14

emphasized: the more the object is far of the exterior boundary €2, the more the
functional is degenerated (and the more it is difficult to detect it).

In Table 2, we study the influence of the deformation directions. Here again
we assume n = 2 and we fix p = 0.7. As we expected taking into account of our

TABLE 2. Influence of the high frequencies on the smallest eigen-
value \; of the shape Hessian D?Jxy (w*).

E1]1,...5 1,,..10 1,...15 1,..30 1,..40 1,...,60

A1 | 6.4483e4+03 137.7707 14.5852 6.9862e-04 3.6934e-06 4.7546e-12

compactness result 4, we see that the problem is severely ill-posed for the high
frequencies.

In order to highlight this degeneracy and to compare our Stokes case with the
E.LT. case (with Dirichlet boundary conditions), we present in Figure 1 the spec-
trum of the shape Hessian matrix for 50 Fourier modes. Here again we fix n = 2
and p = 0.7. The results are presented in decimal logarithm scale to emphasize
the behavior of the spectrum. As a clear consequence, the corresponding mode is
poorly distinguished by the functional: the functional is almost flat in the direction
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FIGURE 1. The typical spectrum of the shape Hessian in decimal
logarithm scale

of high frequencies. We will have to take into account of this point for the numerical
simulations (see Section 4). Figure 1 also suggests that the E.IT. case is as ill-posed
as the Stokes case.

3. Proof of the main results. In order to simplify the expressions, we only detail
the case O = 912 but the proofs in the general case are simple adaptations of the
ones detailed here. We recall that we use the notations (w, q) and (w’,q’) defined
respectively by (9) and (11).

First order shape derivative. The proof of Proposition 1 is directly adapted of the
proof of Proposition 2.5 in [8] and we refer to this paper for the details. The main
difficulty is to prove the existence of the shape derivatives: it is obtained through
a generalized implicit function theorem proved by Simon (see [29, Theorem 6]).
The characterization of (u'p,p)) and (uly,ply) is obtained using classical results
of shape derivatives calculus (see [21, Chapter 5]).

Proof of Proposition 2. The Hadamard’s formula (see [21, Theorem 5.2.2]) leads:

1
DJkyv(w).V = / (wa:Vw’+2udiv(|V'w|2V)>
0@

1
(13) = / vVw:V(up —uly) + 7/ v|Vw|* V,
QN\w 2 ow
using the fact that V' = 0 on 0. Let us prove that
(14) / vVw : Vuly = 0.
0w
Applying Green’s Formula and using the system (8) solved by (u/n, ), we get
/ vWw:Vuy = —/ VA’U,/N"UJ—F/ vOpuly - w
O\w oO\w (D)
= - Vpﬁ\rw—&-/ RTINS
O\w (D)
= / pﬁvdivwf/ p?vw~n+/ vOpuly - w
0@ A(N\®) H(N\®D)
= O7
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since divw = 0 in Q\@, —vdpu/y, +pyn =0 on O, w = 0 on IN\O and w = 0 on
Ow. Notice that w € H(l)éQ(O) since w belongs to H/2(89) and vanishes on dQ\0.

Then, let us write vVw : Vu'p as an integral on dw. Proceeding as above,
o\@
we apply Green’s Formula on this term and use the system (7) solved by (u'p, pl)
to obtain

/ vWw:Vup = —/ qu~u’D+/ vopw - u'p
N\w Nw o(2\w)
7/ Vq~u'D+/ vopw - up
0w (D)
= / qdivub—/ qub-n—&—/ vopw - u'p
0w o(2\@) a(2\@)

/ (VOpw — qn) - up.
o(2\w)

Since up = 0 on 0N and up, = —OhupV; on dw, we obtain
(15) /\ vVw : Vulp = —/ (VOpw — qn) - OpupVi.
Q\w Ow

Gathering equations (13), (14) and (15), we check that

1
DJgy (w).V = —/ (VOphw — gn) - OqupVy + 51// |Vw\2 Va.
Ow ow

Characterization of the shape Hessian.

Proof of Proposition 3. The proof of the existence of the second order shape differ-
entiability of the states (up,pp) and (un,pn) is directly adapted from [8, Propo-
sition 2.3]. Thus we do not detail it here.

From Proposition 2, we have

1
DJky(w).V = / [2u IVw|® — (V0w — ¢n) -[“)nuD] Va
ow

/ div [(% [Vw|* — (v0qw — ¢n) ~8nuD>V},
O\w 2

since V' = 0 on 092. From Hadamard’s formula (see [21, Theorem 5.2.2]), this leads

D% Jgy (w). V.V = div ([I/Vw’ :Vw — (v0qw’ +vVwn' —¢'n—gn’) - dyup
N
—(vOaw — qn) - (Dt + qun’)} V)
+/ div ([;V |Vw|* — (v0qw — ¢n) - 6nuD} V) Va.
ow
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Since V = 0 on 0f), we then obtain

D% Jgy (w). V.V = {I/V'w’ :Vw — (v0aw' + vVwn' — ¢'n — ¢qn’) - dyup
Ow

— (V0w — qn) - (Opu'p + Van’)} Va

+/ div <[1I/ |Vw|* — (v0pw — ¢n) - anuD} V) Va.
ow 2
O

Justifying the ill-posedness of the problem. The instability of the inverse problem (3)
is proved using the same methods as those used in [8]. Therefore, we use a local
regularity argument (see Theorem A.2) in order to prove the compactness of the
Riesz operator corresponding to the shape Hessian at a solution of the inverse
problem. An alternative proof could be to use the hydrodynamical potential layers
as what is done in [2] for the Laplacian case.

In order to prove Proposition 4, we investigate the properties of stability of the
cost functional Jiy. Then we consider an admissible inclusion w* € Oy, which
is solution of problem (3). Then, w* realizes the absolute minimum of the crite-
rion Jxv, Jxv (w*) =0 and then up = un and pp = py in Q\w. Therefore

DQJK\/((U*).V.V = —/ (V@nw’ — q, Il) . 8nuD‘/n-
Ow*

Proof of Proposition 4. We first decompose D?Jxy (w*) as a composition of two
operators: for V € U,

DQJK\/(OJ*).V.V = <M(V), T(V)>H71/2(3“)*),1_11/2(3“,*)

where (-, -) denote the dual product between H~1/2(dw*) and H'/?(9w*). Here, the
operator T : H'/?(0w*) — HY?(8w*) is defined by

T(V):= —OqupVy
and the operator M : H2(0w*) — H™/2(dw*) is defined by
M(V) :=vihw' — ¢'n.

From the systems (7) and (8) and using the fact that up = un in Q\w* (and then
Onup = Opun on Ow*), we obtain the following system:

—-vVAw' +Vq¢ = 0 in Q\w*
divw’ = 0 in Q\w*

w = —u)y on IN
w = 0 on Ow*.

Since Ohup does not depend on V', notice that the operator T is linear continuous
as multiplier by a smooth function (see [23]). Now, let us prove the following
lemma which states that the operator M is compact. Hence, the Riesz operator
corresponding to the shape Hessian is compact as composition of linear continuous
operator with a compact one. O

Lemma 3.1. The operator M is compact.
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Proof. We decompose the operator M as follows:
M = Mg o M1
with
M : V e H/2(8w*) = My (V) := —uly € HY?(8Q),
and
My : & € HY2(0Q) — My(¥) := v9,® — xn € HV/2(9w*),

where (u/y, ply) is solution of (8) and where (®,y) € H' (Q\w*) x LZ(Q\w*) solves

—vVA®+Vyx = 0 in Q\w*
div® = 0 in Q\w*

(16) d — U on 0
® = 0 on Jw*.

Let us prove that M; is linear continuous and M, is compact. We check that
My =My 20M,
with
My, :V e HY2(0w*) = My 1 (V) := —8qunVy € HY?(8w*)
and with
My :n e HY2(0w*) = My o(V) := —z € H/?(09),

where the couple (z,q) € H (Q\w*) x L2(Q\w*) is solution of

—vAz+Vqg = 0 in Q\w*
divz = 0 in Q\w*

—vOpz+qgn = 0 on 0N
z = mn on Jw*.

Since Op,un does not depend on V, the operator M; ; is linear continuous as
multiplier by a smooth function (see [23]) and the operator M; o is clearly linear
continuous. Thus Mj is linear continuous.

Finally, we decompose M, as follows:

My = My z0Mszo0 M,
where
My ® € H/?(0Q) = (@, %) € H*(Qq,\w*) x H*(Qq,\w*)
with (®, ) solution of (16),
My : (v,€) € H?(Qg,\w¥) x H2(Qg,\w¥) — vdpv — &n € HY?(9w*)

and Ms 3 is the compact imbedding of H3/2(9w*) into H™Y/2(dw*). From the local
regularity theorem A.2, the operator My ; is linear continuous and the operator M3 2
is clearly linear continuous. Then, by composition Ms is compact, which concludes
the proof. O
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Explicit computation of the Hessian matrix in a concentric annulus. We recall that

o o 0 —sinf .
(&, 69) = (( Z?ﬁe > , ( Cz:; )) represents the polar coordinates system.

Proof of Proposition 5. By using the computations of the solutions up, un, up
and u’y (see Appendix B), we will compute the elements of the shape Hessian
D2Jkv ((cos kf)é;,. , (coslf)e;.) when the Dirichlet data on the exterior boundary is
taken as f = f(¢®t) = cos (nf)e;.. From the computations detailed in Appendix B,
we see that only the elements with k =1 or | k — I |= 2n have to be computed; the
other elements are zero.

Let us begin by the case kK = [. We have

D*Jxv ((coskf)e; , (coskb)er) = (~On(uiy —up) + (Pl — Pp)n(p,0), ~Vadnup)

| @+m.
dw*
with

E0)= ([?‘n+k‘77- cos (n+k)0 + f(‘n,kw cos (n—k)@) (KTZZT cos (n+k)0 + K}, cos (n—k:)H)

and with
F9)= (L\n+k\,r sin (n+k)0 + Lj,,—g,» sin (n—k)ﬁ) (an sin (n+k)0 + L,, ,- sin (n—k)@),

where K and L are defined by (29) and K, and L, . by (30). Since KP.=0
by computations, we have E(6) = 0 and then we have only to compute

D2Jkv ((cos kO)é€;. , (cosko)ée;.)

p /0 (E(0) + F(6))d0

= WP(Lanrkw-Lf,r + L|n—k|n-Lfm)

Set p1 = |n+ k| and ps = |n — k|. Defining &, £n, Ap,, Bp, and R, 5, as in the
statement of Proposition 5, we obtain after some computations

D% Jkv ((cos k)€, , (coskd)e;) = Ry py (p) + Rupy ().
Similarly, we prove that
Dy ((sin k)6 , (50 K0)E) = o, (0) + R ().

Let us now study the case |k — 1| = 2n. Set V :=(cos kf) €, and W :=(cos0) €;.
We denote (wyy, qyy) the shape derivative in the direction W (the pair (w’,¢’) is
defined in (11)). Then, using the linearity of the Stokes problem and the polarization
formula for the quadratic form, we prove that

D?Jkv ((coskb)e; , (coslh)e;) =

% (/ (—0wyy + qwn) - dnupV, +/ (—O0w'y, + ¢yym) - anuDWn> .
a a

w* w*
Let us focus on the first integral: the case of the second integral is obtained by
reversing the roles of k£ and [. Defining

G0)= (IN(‘,H_M’T cos (n+k)0 + IN(M_;QM cos (n—k)@) (KnD,T cos (n+1)0 + K, cos (n—l)@)
and
H(0)= (Z‘nJrk‘y,, sin (n+k)0 + ZM,M,T sin (nfk)ﬁ) (Lﬁr sin (n+1)0 + Ly, sin (nfl)0>,
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we have

/ (—0wly, + gyyn) - OpupV, :/ (G+H).
Ow* O

Using the fact that Kﬁr = 0, we then obtain i

o ifk—1=2n
/a (G+H) = pf|n,k|’,«LfW /O%(sin(n —k)0)sin((n+1)0) = —pﬁi‘n,kwLﬁr,

o if| —k=2n
Z;*(G—Ffﬂ::pfm+kJL£T1fW@hmn4—kW)$n«n——09)::—pﬂfm+kﬁLﬁr
Thus,

D?Jgy (w*) [(cos kO)€;. , (cosif)e;]
_PTyp (Zn"n,m n Zn,mu) it k—1=2n

9 T
= _%L'ﬁr (Zn,\n+k| + zn,|nfl|) ifl—k=2n
pWLE,r (En,\n+k\ + En,m,”) if k=1.
We proceed in the same way for D2 Jgv (w*) [(sin kf)e;. , (sinlf)ée;.]. O

4. Numerical experiments. Since the problem is severely ill-posed, we need some
regularization methods to solve it numerically, for example by adding to the func-
tional a penalization in terms of the perimeter. Indeed, this term leads to well
posed problems (see [13] or [16]). Here we choose to make a parametric regulariza-
tion using a parametric model of shape variations in order to first highlight the bad
conditioning of the shape Hessian matrix.

4.1. Framework for the numerical simulations. The numerical simulations
presented are made in dimension two using the finite elements library MELINA
(see [22]) and the mesh generator TRIANGLE (see [26]). We use a P3-P2 finite
elements discretization to solve the Stokes equations (4) and (5). The framework
is the following: we assume the kinematic viscosity v is equal to 1, the exterior
boundary is assumed to be the unit circle centered at the origin and we consider
the exterior Dirichlet boundary condition

() -{( 22t ) can).

where n = (nj,ng) is the exterior unit normal. Notice that f is such that the
compatibility condition (1) is satisfied. In order to have a suitable pair (measure g,
domain w*), we use a synthetic data: we fix a shape w*, solve the Stokes prob-
lem (4) in Q\w* using another finite elements method (here a P4-P3 finite elements
discretization) and extract the measurement g by computing —vd,u + pn on 9.
Except when mentioned, the simulations are performed in the case where O = 0€).
Here, we restrict ourselves to star-shaped domains and use polar coordinates for
parametrization: the boundary dw of the object can be then parametrized by

aw:{<z§>+mm<§$3),eemgm},
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where xg,y0 € R and where r is a C%! function, 27-periodic and without double
point. Taking into account of our main compactness result (Proposition 4), we
approximate the polar radius r by its truncated Fourier series

N
rn(0) = all + Z aly cos(kB) + bl sin(kh),
k=1
for the numerical simulations. Indeed this regularization by projection permits to
remove high frequencies generated by cos(kf) and sin(k6) for k >> 1, for which the
functional is degenerated.
Then, the unknown shape is entirely defined by the coefficients (a;, b;). Hence,

for k=1,..., N, the corresponding deformation directions are respectively,
1 0 cosf
Vi=Vy = < 0 ), Vo=V, = ( 1 ), V3(0) :=V,,(0) := ( sin 0 ),
Vorra(0) =V, (8)i=cos(k0) [ %7, Vorrs(0):=V, (6):=sin(ko) ( <7
2k+2 . ar . Sin 9 ) 2k+3 . by . sin 0 9

0 € [0,27m). The gradient is then compute component by component using its
characterization (see Proposition 2, formula (10)):

(VJKv(w))k —DJryv(w)- Vi, k=1,...,2N +3.

This equality is simply that

lim Jrv (T +tVi)(w)) — Jrv(w)
t—0 t

= DJK\/(UJ) . Vk

Notice that we have to solve only two Stokes problems (problems (4) and (5))
to compute the gradient. Indeed, the directional perturbations V' dependance is
explicit in formula (10).

Remark 2. An other possible functional is the least squares matching. In that
case, we also have to solve two Stokes problems to compute the shape gradient: one
for the state and one for the adjoint function (see [8]). Hence, the computation coast
of minimizing a least square matching or a Kohn-Vogelius functional is roughly the
same.

The optimization method used for the numerical simulations is here the classical
gradient algorithm with a line search (using the Wolfe conditions: see for example
[25, eq. (3.6) page 34]). Moreover, we here use N, := 100 discretization points
for the exterior boundary and N;,; := 75 for the interior boundary. In order to be
completely explicit, we detail this algorithm:

Algorithm 1

1. fix a number of iterations M and an initial shape wy,

2. mesh Q\@; using TRIANGLE (where w; denotes the i" iterate of the approxi-
mate shape),

3. solve problems (4) and (5) with w = w; using MELINA,

4. extract Vup, Vun, pp and py on Ow; and compute VJgy (w;) using for-
mula (10),

5. use the Wolfe conditions to compute a satisfying step length «,

6. move the coefficients associated to the shape: w;11 = w; — ;VJgy (w;),

7. get back to the step 2. while ¢ < M.
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Notice that the stopping criterion of the algorithm is here the number of itera-
tions. Obviously, this criterion can be modified and even improved but this simple
one permits to obtain efficient results and that is the reason why we chose it.

Remark 3. A regularized Newton method could be used (as in [18] for example)
in order to perform the numerical procedure using shape Hessian informations.
However, we do not use here an optimization method of order two due to the
expression of the shape Hessian (12). Indeed, notice that (u/p,pp) and (uir, Ply)
(and so (w',q")) depend on the perturbation direction V. Therefore, if we want to
compute this shape Hessian (for a shape parametrized by k parameters), then we
will have to solve 2 + 2 % k Stokes problems, which would be too costly.

4.2. Highlight of the degeneration of the functional. First, we want to detect
an obstacle w} contained in the class of objects with which we work. We want to
detect the obstacle which boundary is parametrized by:

" 0.15 . cosf
Bt = {( . )+ (0.65—0.25c059—0.1551n9> < " ) 0 c [0,271')},

that is to say with five parameters. In order to reconstruct this object, we work with
shapes parametrized respectively by five and fifteen parameters and we stop each
experiment when we obtain a residual value of the cost function Jgy: € ~ 1073,
Figure 2 shows that when we work with five parameters, the residual € corresponds

i —— 5 param.
o\ 15 param.

FIGURE 2. Reconstruction of wj with different numbers of parameters

to a very good approximation of the object. But the more we add parameters, the
more the functional flattens and the more the approximation corresponding to the
residual € is poor. Indeed, we see oscillations of the final object when we work with
high frequencies. We can also notice that it is longer to obtain the residual ¢ with
many parameters.

The same experiment was conducted to detect a more complicated obstacle which
does not belong to the discretized set of objects. It is parametrized by:

. 0.1 +0.5cos6@ + 0.1 cos 46
(17) Ouw = {( 0.5sin6 + 0.1 cos 460 ) , 0 € [O’QW)}'

Here again, the conclusion is the same (see Figure 3): high frequencies lead oscilla-
tions of the boundary and then a poorer approximation.

Here again, more iterations are needed to obtain the residual €. In order to
compare the errors, we represent on the second graph of Figure 3 the logarithm of the
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& (og e 21 param. , log err. 17 param,
—— near reg gression

FIGURE 3. Reconstruction of wj with different numbers of parameters

residual obtained with 17 parameters (noted log(J17)) versus the logarithm of the
residual obtained with 21 parameters (noted log(J21)). We then obtain a regression

J
line whose equation is given by y = 1.091z — 0.064. Hence 27— 0.938 J§i091 and

J21
this points out that when the number of iterations is big, the gap between Ji7 and

Jo1 is big too (Ji7 is much smaller than Jo7).

The problem is: how to know the mumber of parameters with which we must
work to well approximate the shape? Indeed, if we work with too few parameters
we cannot detect a non-trivial shape and if we work with too many parameters,
degeneracy of the functional leads problems. From now, we present some numerical
illustrations.

4.3. An adaptive method. A solution which seems to be efficient is to use an
adaptive method. It consists in increasing gradually the number of parameters
during the algorithm to a fixed final number of parameters. For example, if we
want to work with twenty-one parameters, we begin by working with two parameters
during five iterations, then with three parameters (we add the radius) during five
more iterations, and then we add two search parameters every fifteen iterations.

We also adapt the number of discretization points for the interior boundary
(we conserve the same for the exterior boundary). We fix a minimum number of
discretization points (here 40). Then, when we consider the perturbation directions
associated to cos(kf) and sin(k6), we discretize the interior boundary using N;,: =
9 x k points. This method permits to discretize half of a period using five points,
which seems suitable.

The algorithm is the same than Algorithm 1 described above. However, the
step 6. is replaced by

wit1(l:m) =w;(1:m) — a;VJIgy (w;)(1:m),

where w; (1 : m) represents the m first coefficients parametrizing the shape w; (the
same notation holds for VJgy (w;)(1 : m)). The number m grows to the fixed final
number of parameters following the procedure described previously. This process
permits to avoid the oscillations of the boundary as what is shown in Figure 4.
Indeed, we saw in Figure 3 that if we work with twenty-one parameters, oscillations
appear but we see in Figure 4 that it is not the case using this adaptive method. We
can notice that this adaptive method leads to steps in the evolution of the residual.
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FIGURE 4. Reconstruction of w3 using the adaptive method with 21 parameters

Hence this adaptive method seems to be efficient and permits to reconstruct the
obstacle removing the oscillations due to the high frequencies.

4.4. Detecting objects with corners. In order to test the performances of our
algorithm and of our adaptive method, we want now to detect more complicated ob-
stacles and particularly, we wonder if it is effective to reconstruct objects containing
straight lines and corners.

The first objective is then to detect the square wj; whose vertices are the points
(—0.55,—-0.55), (0.55, —0.55), (0.55,0.55) and (—0.55,0.55). We see in Figure 5 that

FIGURE 5. Reconstruction of wj using the adaptive method with 27 parameters

this reconstruction is quite efficient. However, if we want to reconstruct a smaller
object, the results are significantly worse. Indeed, in Figure 6, we reconstruct
the square w} whose vertices are the points (—0.2,—0.2), (0.2, —0.2), (0.2,0.2) and
(—0.2,0.2). We see that the detection is not good. This phenomenon concerning
the size of the object was underlined using the explicit calculus of the shape Hessian
in Table 1 (in Example 1).

Thus, the parametrization method coupling with our adaptive method seems to
be efficient to reconstruct obstacles, even if the shapes are not trivial. However, the
regularizing behavior complicate the detection of small objects or of distant parts
of the measurement domain.
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FIGURE 6. Reconstruction of wj using the adaptive method with 27 parameters

4.5. Influence of the size of the domain where measurements are made.
Let us consider the influence of the size of O, the part of the boundary where the
measurements are assumed to be made. We now restrict the domain O to some
part of 02. We precise that we use here exactly the same algorithm and the same
parameters and data that the ones used in Section 4.3. In particular we use the
previously described adaptive method and we want to reconstruct the object w3
which is given by (17).

In Figure 7, we make the measurement only on a semicircle. On the left of

FIGURE 7. Reconstruction of w3 using the adaptive method with
21 parameters restricting the measurement domain (O is a half of

09)

Figure 7, O is the upper semicircle. As we could expect, the reconstruction of the
object w3 is less efficient than in the case O = 99 (see Figure 4). In particular, the
bottom of the obstacle (i.e. the part exposed to the part of the exterior boundary
where we do not make the measurement) is poorly detected. We precise that here,
we do not obtain a residual € ~ 1073 as in the case O = 9 but only € ~ 6.8 -1073.
On the right of Figure 7, O is the lower semicircle. We obtain similar results. As we
expected, we see that in this case only the bottom of the obstacle is well detected.

In Figure 8, O is the right superior quart-circle. Here again, the reconstruction
is less efficient than in the case O = 9 and even in the previous case O = %HQ.
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FIGURE 8. Reconstruction of wj using the adaptive method with
21 parameters restricting the measurement domain (O is a quarter

of 59)

We can notice again that only the part exposed to the measurement domain O is
well determined. Here, we only obtain a residual € ~ 8.4 - 1073,

These two simulations emphasize an intuitive idea: the more the measurement
domain O C 92 is small, the more it is difficult to well reconstruct the object w.

4.6. Detecting more than one object. Theoretically, besides the regularity as-
sumptions, the main assumption is that Q\w is connected. This assumption does
not exclude the case of two or more inclusions in 2. Thus, we want now to de-
tect numerically two objects: a square wj whose vertices are the points (—0.6,0.1),
(—0.1,0.1), (—0.1,0.6) and (—0.6,0.6) and a circle w§ centered at (0.35, —0.35) with
radius 0.35. Here again we use the adaptive method described in Section 4.3. Since
the computation is significantly longer than the one with only one object, we stop
the experiment when the residual is € &~ 1.5e—02. We then obtain Figure 9.

FIGURE 9. Reconstruction of wf and w§ using the adaptive method
with 19 parameters

This result is satisfying and we can hope that it would be more efficient if we
increase the accuracy of the computation (using a better finite elements discretiza-
tion for example) and/or if we increase the computation time. Notice that the
non-smooth square is not as-well reconstructed as the circle: this is caused by the
polar representation we used.
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Notice an important remark. The parametric method that we adopted here to
detect the objects does not permit to modify the topology of the object w. Thus,
in order to detect two or more inclusions, we have to know how many objects are
included in €2. A solution could be to initialize the algorithm using the notion of
topological gradient (see for example [11], [20] or [30]) which could give us the number
of inclusions and their rough location, providing initial shapes for our optimization
method.

5. Conclusion. We have partially reconstructed an obstacle immersed in a fluid by
minimizing the Kohn-Vogelius functional. The Kohn-Vogelius approach proposed
here is not the classical one and permits to make the measurement only on a part
of the exterior boundary and not on the whole exterior boundary. We have used
shape optimization methods to compute the gradient and to motivate the use of a
parametric model to solve numerically the inverse problem. Indeed, this problem
is severely ill-posed. In order to highlight the exponentially ill-posedness of our
problem, we have computed explicitly the shape Hessian matrix in a concentric
annulus. We have then compared our Stokes case with the Laplacian situation and
have concluded that the two cases are as ill-posed. The numerical simulations made
in the bi-dimensional case were effective but oscillations appeared when we worked
with high frequencies. In order to remove these oscillations, the adaptive method
that we proposed seems to be efficient.

There is still some room for improvement principally concerning the numerical
issues. Our algorithm permits to reconstruct more than one object if we know
how many objects are included in the domain. The use of the notion of topological
gradient (see for example [11], [20] or [30]) could permit to give us the number of
inclusions and their rough location, providing initial shapes for our optimization
method.
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Appendix A. Some results on the Stokes problem with mixed conditions.
We recall classical results about the Stokes problem with mixed boundary condi-
tions: a theorem of existence and uniqueness of the solution and a local regularity
result.

In all this appendix, we note C a generic positive constant, only depending on
the geometry of the domain and on the dimension, which may change from line to
line.

First, let us introduce some notations: for Q an open set of RN (N € N*), an
open subset w CC ) and an open subset O C 0f) of the exterior boundary, we
define

Vo(\@) :={u e H'(Q\®); divu=0in Q\w, u =0 on dw U (9N\0)} .
Moreover, we denote respectively by (-,-)g\5 and (-, -)sq (or (-,-),) the dual-

ity product between [Hl(Q\w)}' and H*(Q\@) and the duality product between
H™/2(69) and HY/?(09).
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Theorem A.1 (Existence and uniqueness of the solution). Let Q be a bounded
Lipschitz open set of RNV (N € N*) and let w CC § be a Lipschitz open subset of Q
such that Q\w is connected. Let O be an open subset of the exterior boundary 02
and v > 0. Let

(£.9:ho, Bet, hint) € [H (Q\@)]) < L2 (Q\@) x H™1/2(0) x HY/2(90\0) x H'/* ().
Then, the problem

—vAu+Vp = f in N\w
dive = g in N\w
(18) —vOhu+pn = ho on O
U = hexr on ON\O
u = hiy on Ow

admits a unique solution (u,p) € H'(Q\@) x L2(Q\@) and the following estimate
holds:

1wl o) + [Pl e < C( 1F I vz + 1912w

+ [lholla-1/2(0) + [Peatlli/200\0) + 1Pintllm1/2 (50 )

Proof. Step 1: existence and uniqueness. Let us begin by studying the case of
null divergence. According to [7, Lemma 3.3], consider H € H'(Q\@) such that

divH =0, H = hjns on 0w, H = heg on 0Q\O such that H -n=0and
AQUW
satisfying
(19) [Hll g o\z) < C (Hhi"lt||H1/2(6w) + Hhemt||H1/2(aQ\6)) :
Then the couple (U :=u — H,p) € H'(Q\@) x L?(Q\@) satisfies
—vAU +Vp = f+vAH in Q\w
divU = 0 in O\w
—v0aU +pn = hege +v0yH on O
U =0 on ON\O
U =0 on Ow.

According to Lax-Milgram’s theorem, there exists a unique U € Vo (Q\w) such
that for all v € Vo(Q\W)

(20) v VU : Vv = (f,v)g\5 —V VH:Vv — (ho +vo H,v),
oO\w 0w

and we have, using (19),

21) Ul ) < CUF g ey + 1Pintllmz o)
+ ||hethH1/2(aQ\5) + ”hO“H*l/?(O) )

In particular (20) is true for all v € Vo (Q\w) NH{(2\@). Then using De Rham’s
theorem (see for example [6, Lemma 2.7]), there exists p € L?(Q\w), up to an
additive constant, such that for all v € H}(Q\w)

(22)
v VU:V'Uf/ pdivv:<f w,v> —v VH :Vov.
/Q\w e e R
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According to [7, Lemma 3.3] or [19, Theorem 3.2], we define ¢, € H'(Q\@) such

that divepy = 1in Q\w, ¢ = 0 on IQ\O and ¢ = 0 on dw with / ey -nF0.
_ o

Let v € H'(Q\@) such that v = 0 on IN\O, v = 0 on dw and define

1
cp(v) = —/ v-n.
Jo@rw) ox -1 Jo@z)

Using again [7, Lemma 3.3] or [19, Theorem 3.2], we define v2 € Vo (Q\@) in such
a way that v = vy + vs + c(v)py, where v; € Hy(Q\T) satisfies the following
equality: dive; = div (v — ¢,(v)e ). Then, using (20) and (22), we obtain

/ UVU:VU—/ pdivvz(f,v}mw—u/ VH :Vv
o\w o\w 0@

- <h0 +VanHav>O +/

VUV (aey) - [ pdiv(a@en)
Q\w Q\w

- (F.a@ennatv | _VH S (aelon) + {ho + vouH (w)ex)o-

Therefore, choosing the additive constant for p such that

/ D= 1// VU :Vpy
o\w o\w

—(fra@en)gs v . VH :Vpy + (ho +v0nH,c,(v)py)o
we prove that there exists a unique pair (U,p) € Vo(Q2\w) x L2(Q2\w) such that
for all v € H' (Q\@) with v = 0 on IN\O and v = 0 on Jw,

(23)
/ VVU:VU—/ pdive = (f,v)g\5— v VH:Vv—(ho+voH,v),.
OAN\w Q\w O\w
Step 2: estimate. Let v := v + ¢(p)py, where
1
c(p) == —— P
P 0] o

and v € H}(Q\w) is such that divo = p — ¢(p) and ||5HH(1)(Q\E) < Cllpllza\z) (see
[7, Lemma 3.3]). Using v in (23), and according to (21), we obtain
Ul o\z) T 1Pz (o)
<C (HfH[Hl(Q\w)]’ + ||h’int||H1/2(8w) + ||hemt||H1/2(aﬂ\6) + ||h0||H*1/2(O))

and hence

1wl vz + [Pl oo
<C (HfH[Hl(Q\w)]’ + [[Pintll /20wy + [[eatllm/200\0) + ||h0||H—1/2(0))

Step 3: case g # 0. The first part of the theorem is proved for g = 0. The case
g # 0 is obtained by a lifting argument. Let us define
1
0] Jow
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where

(g) = —
T I0G] Jos?

and where, according to [19, Theorem 3.2] or [7, Lemma 3.3], ugy € Hy(Q\) is such
that divug = g — c(g) and [|ug|lm: \z) < CllgllLz(@\@)- Thus ug is such that

/Q\ug =0, divug =g in N\w and ||ugllg (@) < CllgllLz\w)-
Thus, defining ug := u — ug and
f:veHl(Q\w)»—Mf,v)Q\w—y VH:Vv—v Vug: Vo,
Q\w Q\w
the problem (18) is equivalent to
Find (uo,p) € Vo(Q\w) x L2(Q\w) such that
/ VV'UJO:va/ pdivv:<f, v> — (ho +vOnH , v),
\rj 0\& Q\w o
Vv € H(Q\@), v =0 on dw, v = 0 on IQ\O.
Then we proceed in the same manner as the case g = 0. O
Let us now state and prove a local regularity result on the solution of the Stokes
problem with mixed boundary conditions. We first introduce the following nota-
tions: for k, m € N, k < m and for two open sets 2 et 5 such that Q5 C Qq, we

denote by X*™(Qy, Q5) the space of functions in H* (€1) such that their restriction
to Q2 belongs to H™(§2). Similarly, we note X*"™ (€, Q2) the space of functions

in [Hl(Ql)T such that their restriction to 5 belongs to H™ (Q5).

Theorem A.2 (Local regularity result). Let k € N, v > 0, Q a bounded Lipschitz
open set of RN (N € N*) and w an open set with a C*11 boundary such that
w CC N and Q\wW is connected. Let O be an open subset of the exterior boundary 09

and v > 0. Let C and C' two smooth open subsets of Q\w such that dw C OC,
dw C C', C \Ow C C' and C" C ). Let

(fv g, ho, h'emta hint)
e X*’k(Q\w, C/) « XO,k—%—l(Q\w7 C/) > H—l/Q(O) « H1/2(aQ\6) % Hk+%(8w).

We consider (u,p) € HY(Q\w) x L2(Q\W) the solution of the following Stokes prob-
lem

—vAu+Vp = f in Q\w

dive = g in Q\w
(24) —vopu+pn = ho on O
U = hegt on IQ\O
u = hijn: on Ow.

Then (u,p) belongs to H*"2(C) x H¥1(C) and the following estimate holds:
HUHHH?(c) + ||p||Hk+1(c) < C( ||f||x*‘k(sz\w,c/) + ||9||xo,k+1(sz\a,cf)
+ ||hOHH—1/2(O) + Hhemt||Hl/2(aQ\5) + ||h1',ntHHk+%(aw) )
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Proof. First, let us consider the case k = 0. We define V =CUw, V' =C'Uw and
p € CX () such that 0 < p <1l,p=1inV and ¢ =0 in Q\V'. Let

(u,p) € H/(Q\@) x L2(Q\w)

the solution of problem (24) given by Theorem A.1. Using (24) we check

—vA(pu) +V(pp) = f in C'
div(pu) = g in ¢/

pu = 0 on 9V’

pu = hiy on Ow,

where f := of — vuAp — 20VuVp + pVe belongs to L2(C') and g := pg+u -V
belongs to H'(C’). From the regularity of the solutions of the Stokes equations
with Dirichlet boundary conditions (see for example [12] or [19]), ¢u € H*(C'),
op € HY(C") and from the expression of f and § we obtain

loullgz ey + lepllm ey < C( lef L2y + leglla e
+ el @@ + IPlaomy + Mrimtllgs o, )-

Using this inequality and the estimate on [|u|lg g5 and [l 2g\g) given by
Theorem A.1, we obtain the announced estimate for £k = 0. We then proceed by
induction for the cases & > 1. O

Appendix B. Resolution of the Stokes equations in a concentric annulus.
In this section, we solve explicitly some Stokes boundary value problems set in the
concentric annulus

Q,={zeR’p<|z]<1}.

The pair (€,,€p) := (( :?sg ) , < _czlsn; >) represents the polar coordinates

system.

In order to simplify the expressions, we here assume v = 1 and O = 92. We first
use the partial differential equations to derive the special form of the solution, then
reduce the resolution of the boundary value problem to some linear system.

B.1. Using the PDE. Noticing that the incompressibility condition divu = 0
implies that the pressure p is harmonic, we pass in polar coordinates (r, #) in which p
can be expanded in Laurent’s series. Hence we seek the velocity u and the pressure
under the form:

<ar<MWU_ 2t e a p0) =Y palre
wmnb = ug(r,0) ) Zun,e(r)eme e e nezpn e

nez
with
po(r) =ap+ Bolnr and p,(r) = anr!™ + ﬂnr_‘"l, ne€zZ*.
We distinguish the case n = 0 of the other Fourier modes.
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Case n = 0. We are led to solve:

1 1 BO 1/

1
" / "
Uy, +— Uy, — —= Ugyr=— and Upg+ — Uypy — —= Ugg =0
0,r r 0,r 72 ;T 0,6 r 0,60 72 s )

T
whose solutions are
By Bo Bo,g
ugr(r) = Agpr + —= + ?TIHT and  uga(r) = Ag,or + ——.
r r
The incompressibility condition imposes:
By Bo,g
uo, (1) = —T’ and  uge(r) = Ager + r) .
Case n # 0. We are led to solve the system:
” 3./ 21 -1 —In|—1
un,r + Fun,r - nr2 Un,r = |n| [a’ﬂrln‘ - Bn’l“ Inl ]
" 1,/ 241 _ - -1 —|n|—1 —2
Up 0 + rlUne — nr-2|— Un,p = 1N [an'f‘ln‘ + ﬁnT' In| —2r uny,«] .

As we have a triangular system, we first determine the radial component u, ,. We
get after some calculations

4

{um(r) = Ay, " 4 By g2 Bring if = £
[nl+1

U (1) = Ap "L By r 14 22 [—a" rinl+t 4 7‘nﬁilr""‘+1} else.

Then we solve the equation in the angular component and impose the incompress-
ibility condition to get

) = Al B et g (29 1Y
’ | o 2 8
*%ﬂn(Sg(n) +nlnr)  ifn=+1,
n = A, ir" ' =B, ir "+ a,i sg(n) n inl+1
et - e ( 2 A(nl+n)"
; Sg(n) n “n|+1
- 1
+0ni ( 5 T ] = 1)) r else,

where sg(n) denotes the sign of n. Since we deal with states taking real values, we
have obviously

A—n,r = Bn,r
Q_p = Qg
ﬁ—n = 6n

The solution u. Noticing u,, = ( Z"’r ), we have for n > 1
n,0

)

Bn T . n —_ nn—
’U,n(’l") = An,rrnil 1 + ’ 1- +an7,n+1 «r ) +5nT1 " 4(, 1).
1 rn+1 —1 n+2 i 27711
4(1+n) 4(n—1)

with p = Z (anr‘"l + ﬁnr_‘"l) +ag. We characterize in the same way the solution

nez*
for n < 1.
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The normal derivative O,u. We easily obtain for n > 1

(25) Outun(r) = (n—l)An,rr"_2< : >+(n+1)fi+2 ( ! )

n _n
+anr”< sz, )—l—ﬂnr_”( ”—*éi )
1 1

and we characterize O,u,, in the same way for n < 1.
The Neumann boundary condition —d,u + pn. We easily obtain for n > 1

— n—2 l1—n Bn’T ntl
(26) - anun(r) +pan = Amrr ( 1(1 - n) ) * 2 ( 7i(n + 1) )

n l_ﬂ 1+ﬁ
(e (220)
nr=j Tl

and we characterize —0nu, + p,n in the same way for n < 1.

B.2. Solving the boundary value problems. In order to compute the shape
hessian at €2,, we have to solve two types of boundary value problem: first a Dirich-
let’s one then a mixed one with Dirichlet boundary condition on the inner boundary
and a Neumann boundary condition on the outer one. We recall that we assume
for these computations that O = 9. Thus Problem (5) is now

—vAuny+Vpy = 0 in Q\w
divuny = 0 in Q\w
—vohun +pyn = g on 0f)
uny = 0 on dw.

From now, we only focus on the cases n > 1. We point out that we will choose
boundary data such that all the coefficient will be real valued. Thus

A—n,r = Bn,r = Bn,r
Q_p = a, = Qp
/B—n = Bn = /Bn

The solution up of the Dirichlet Stokes system. Let us consider f(¢#9) ¢ L?(S!)
and £ ¢ L?(pS'). One seeks u and p such that

u = f(ewt) (9) = < 7Eem’t)

u = f(”lt)(e) = ( Ttint) 9
The boundary conditions are expanded in Fourier series:

(ezt Z (ezt)einG and €$t Z f‘(;‘i‘mf)eine7

nez nez

'Lnt (int) 1n9 (Z"t) (int) 1n9
= fine and O)=>_fs
nez neEZ
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We have to seek the (unique) solution of the following linear system

Ade + Bl 4n2—4a5 * 4nn—4 woo= T(‘:’%t))

ext

Ae = Bl 42124 wot 42n_—n - e )
o 1A£’, + p—n—anD' + 4n7:_4pn+1 D 4n717_4 l-ngD _ T({?tt)
T L A e A

We pomt out that we will choose boundary data such that all the coefficients AL,
BP . af and B2 will be real valued. We denote

M, = (p" —p~")* =n?(p—p~1)%
Using the fact that
02— n2p% 42 ( 1+ n2) PP 2 piHn  p2an 2 gy
we then get the solution of the linear system:

n*(1=p*)+ (n+2)(p*" = 1) (can)

AD
mr oM, o oM, i
R p~ ") = p(p" —p™") L(ine)
2Mn n,r
—n _ n (int)
L p=p )+ (n+2)p(p" = p7") o
2M,, i
(ext)
gb _ n*(1—p*) 4+ (n—2)(1 - p? )f(m)+( ) +n(p* = 1) fuo
mr oM, oM, i
L= n)p "(p~ =p)+p" " =0T L)
Mn n,r
n _ n (int)
L e =p7 ) +np(p" = p7") Fus
2M,, i
_ _ _ _ (ext)
p _ (A=p"+n=2)1-p"?) (e n(l—p2)=(1—=p*") fno
o, = A nr +2(1+n) A .
+(n*2)p‘”(pfp‘l)+p‘1(p"fp"‘l) (int)
2Mn n,r
. (L+n)p"(p—p~ ")+ (0" = 1) £U5Y
2M,, i
_ _ n (ext)
gp = (=20-p 41— ") plesn) y ML= p A+ —p*) Jne
" M, M, i
L+n)p"(p—p ")+ (0" = 41)
BN 0V e R Ut e
oM, :
n —1 -1/ n (int)
np"(p—p )+ p (" = p7") Jap
2n—1
+2(n—1) M, i

Remark 4. We quote from Englis and Peetre that M, is called an Almansi deter-
minant (see [17]). This arise in connection with the following interpolation problem:
try to reconstruct a function f of the type f(z) = P(z) + e**Q(x) where P and @
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are poynomials of respective degree m, and n, given its value at m + n points
L1,T2,-- s Tm+n-

Remark 5. To compare the factorization in the case of the Laplacian and the
case of the Stokes system, we recall that in the case of the Laplacian, we find a
denominator equal to

plnl — p=inl = p—ln\(p2\n| -1)= p—\n\(pln\ _ 1)(p|n| +1).
In the case of Stokes system, we rewrite the denominator as
My = (o = 571" 4 Inl(e? = p7)) (0 = 71 = Inl(p? = p72)).

Application to our case for up. We get

n?(1—p*)+(nt2) (p~ " ~1) n((1—p=2")+n2(1-p?)
AP 20, 2M,
’ 2 2 2n 2n 2
Bﬁ’,r B nZ(1—p )JrQ(]Zn?)(l ") (A=p 2)]\4;[:(9 1) frr
B e Y ) n(1=p=?)—(1-p~?") fno
fere (n—2>(1—pj\f§>+<1—p2n> n(ff,’lwu-p%) 1
n — 2(1—n) o

. 1
We choose f(¢®1)(9) = f(0) = cos (nf) €., n > 1 and f(") = 0. Hence f,, = 3
fn,a =0 and

n®(1=p*)+(n+2)(p_*" 1)

AP 2M,

) n?(1=p*)+(n=2)(1-p*")
B, _1 o, .
ab 2| a—ptrm-2)a-p=%

D My,

B (n72><1fp1;2>+<17p2">

n

The solution upn of the mixed Stokes system. The coefficients are denoted A},
BN, and o and ). To fulfill the boundary conditions

—Oqun +pNEr =g if [z =1 and  un =g if |2| = p,

we have to seek the (unique) solution of the following linear system
(27)

4 — 4 .
(1-n)AY, + (1+n)BY, + 1 Dol + Zn Y = g\t
(ext)
2+4+n 2—n 9,
(1 - n)A'rJXr - (1 + n)Brlxr 4 0‘7]?7 + 4 57]:] = %
n—1 AN —n—1pnN n+1 n N 1—n n N (int)
A B =
P n,r + P n,r + 4n+4an + P 4n_46n n,r
(int)
n—1 AN N -1 +1n+2 N 1-n 2= N N Yne
A - B nrl =
p nyr P + Iyt T p—ye :
We denote

Nn — 3p2 4 (8 4 n2)p2’n _ 2(_1 4 n2)p2+2n 4 n2p4+2n 4 3p2+4n
which can be written under the form
N, =3(p" —p ™) +n?(p—p )2 +8(1+p7?).
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The solution of the system corresponding to a general Neumann problem with
Dirichlet conditions on the interface is obtained after expanding the inverse of the
matrix corresponding to (27). We get

_ (TL + 2)(p—2n - 1) + n2(p2 - 1) +4n (ext)

AN =
mr 2(n— )N, Irr
ext
=) (= ) gy
2N, i
L3t 2)p(p" = p™) +dn +2)pp = p7h) + A DT i
2Nn n,r
—n — n -n —1-n (int)
L+ 4)p7p = p7T) +3np(p" = p") +4(n +2)p71 " o
2N, i
BN — _’I’L2(1 — p2) + (n — 2)(p2n — 1) + 4ng(e:tt)
T 2(1+n)N, e
) - 1) 40202~ 1) +dn +2) 985"
2(1+ n)N, i
B =2)p(p " —p") — (0> +8)p"(p~! —p) —2(n+2)pl + n Gn)
2N, T
n — n —n —-n n— n— (int)
L2 p=pTh) —npp" —p") —dn(p' " —p" ) — A(n42)p" " o
2N, i
2-n)(p 2=+ (p " -1)+4 .,
o = 5 (2= n)( ])V ( ) glet
o —om (ext)
Jr2(4+n)(1—p Ht(1—p ) -4,
N, i
n—1 —n __ n+3 n o 7n_~_4_n 1—-n )
o0+ n)( )p(p™" —p") ﬁ;\(fﬁ p ")+ (4 —n)p glint)
— 1" _ 1 3 n—1_ 1-n 4 1-n (int)
+2(1+n)(n ) "(p—p 1) +3(p pr")+4p " Yo
N, i
BN _ (’I’L + 2)(0_2 — 1) + (p2n — 1) +4 (ext)
n - Nn gn,r
ext
LA =)+ (P = ) +2(n—2) 91"
N, i
1+nn _—1+3—1 n o__ —n+n+4 n—1 )
(- 1)( )" (p—p~") pN(p p ")+ (n+4)p glin®)
n
n — - n -n (int)
fo(n )™ (p=p ) =p " (p" —p™") —4p—1—nGns

Nn 1
The Dirichlet-to-Neumnn map. Here, we have to take the Neumann data

g(emt) — ggemt)e—; +géezt)e—é

corresponding to the choice of the Dirichlet data f(¢**). In order to simplify the
expression and to get closer to our case, we assume f(79) = 0. Omitting the
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exponent (¢*) a straightforward calculation gives
4— 4
gor = AR(1—n)+BD.(1+n)+ el + gD
2 2 —
gao = 1(A2,(1—n) = BR.(1+n) - el + = pP),

where Fourier coefficients A,’Z " BP P and 6,’? are given above. The expression

n,r’ ='n

with respect to the Fourier coefficients f, , and f,, ¢ is then given by

42 —n?)(1 = p~*) +2n(p~*" = p*") + (p" — p~")* + n*(p = p7")?
9n,or = — M fn,r

LA = p7) #2007 = p7) 0 = p7 ) A " = 07 fre

n i
and
An(1—p7?) +2(p7" = p*") A (" — p")2 40 (p—p7!)?
gn,6 =1 M fnﬂ'
An®(1—p=2) + 2n(p™" = p*") + (p~" = p")? + n*(p~" = p)?
- M fn,0~

We illustrate the mapping (fn.r, fn,0) = (gn,r, gn,e) via the linear transformation

< 9n,r > _ Ag?l) Ag’,zQ) < Jor )
In,6 AS) ALY fn6

where

A A=A =) o = 0P + (0" = p )P A0 (p - p )
1,1 M,

AW A= pT) 42007 = p ) 4= pT )2+ n(p" = p )
1,2 .

N

AP = CAnP(L=pT) 2 =)+ (0 = ") (0! p)2.
: A

We can deduce the Dirichlet-to-Neumann map from this representation: in the
trigonometric basis it is represented by a block diagonal matrix; its n—th diagonal
is given by the matrix A = (AEZ))i7j=172.

Application to our case for un. In our case, with f(¢=t)(9) = f(0) = cos (nf) é,,
n > 1 and f0m) = 0, we then obtain

(28)
42 =n) (1= p7?) +20(p72" = p*") + (p" = p~")? + P(p — p~')?
9nor = — M fn,r
An(l=p7) +2(07" = p*) +0(p" —p ") + 0P (p—p7)?
In,o =1 M fn,r-
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Hence

N _ (2 (e D) 4n2(p% 1) +4n n((1—p~2")4+n?(1-p?)

An,r 2(n—1)Ny, 2N,

BN ,nZ<1fp"‘)+((nf2))]<vp2"71>+4n _ (4+n)<p2"71(>+n"‘>(]pv271>+4<n+2> In,r
n,r 2(14n)Np, 2(14n)Np ’

ol H =M 2D+ D o (d4m)A—p D+ (1p ) a b
7]7\‘] Nn n 1
n (n+2)(p=2=1)+(p?"—1)+4 (A=n)(p~2 =1+ (p*>" —1)+2(n—2)

Nﬁr N’VL

B.3. The formulae for the shape derivatives. Now, let us focus on the formulae
for the shape derivatives u/, and u/y. In this section, we deform the domain via
the vector field V' = coskf €.. We then have V;, = coskf. Here again, we only
focus on the cases n > 1.

The formula for the shape derivative u,. For n > 1, we set

(29)
KnD,r = AE,T(I 7n)pn72+pin72BD (1+TL) 7Oénp Z +BD Z
2 —
LY, = AP (1-n)p2—p"2BP,(1+n) - alpr” - 2 4 B0y < il

the respective Fourier coefficients of —Onup(p,6). As it has been noticed, when

n > 1, we have

KP, .=KP. and LP . =-LD.
We will then focus on the coefficients AET,BET, n/ and 571?/ for n > 1. Let us
point out that the computations give K2, = 0. We have (see (25))
_anuD(p, 9) — (Kv?, in6 + KPnr —1n0)é" +1<L713, in6 T Lgnr —1710)59
—_ i(Llerein LET‘ e 1n9)
and then
LD 1(n+k)0+L9 —i(n+k)6 D ei(nfk)0+Ll_7 )efi(nfk)e
—OnUp ‘/n =i Ll é@ +i L L 69-
2 2
Hence
—Oaup Vi = _Lgr(sin ((n + k)0) + sin ((n — k)a)) &5.
We denote

1p0—' + E 1;0067‘7

pEl, i

up= )

pEl, i

where I, = {n+k,n—k,—n—k,—n+k}. Let us assume that —1,0,1 & I,, ;
(the other cases can be treated similarly). We know that

D/
D’ _ AD p—1 D’ .Ipl+1 p| D’ 17\1)\&
wl.(r) Pl 4 — = p+1 +oay T T+ + B, =14
BD! 1
uP’ — i 4D -1 _ Por Ipl+1 [ £ __bp
ot = 1<A”’Trp T oo (289(7’) 4p+4>

+ Bt P! <4];14 - ;W(P)) )
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We use the superposition principles: we use the fact that we have to use a
linear system associated to a Dirichlet problem and then the coefficients associated
to u),(r) when p = |n+ k| and p = |n — k| must satisfy the follovving linear system

AD’ BD' p ol D’ _ 0
p,r + b,r + 4p+4 P + 4p 45
’ ’ + 2 ’ 2 P ’
AD . BD p D D _ 0
D7 b7 + 4p_|_4ap 4]3 46
p—1 gD’ -p—1gD’ +1,, D’ p l-pgD’  _ gD
pPrAg. +p o T 4p+4pp + Ty By o
_ / o ’ p + 2 ’ 2 ’
p:D 1A£r - p p lB£r + 4p - 4pp+1a5 + 4p 4p1 pﬁD _ LE’T.

We remark that the second side of the linear system is independent of k. Once the
coefficients are computed, we use (26) to get

(—Onup + ppom)(p,0) = (K\Z;kl,r cos (n +k)f + Kﬁ;kw cos (n — k)H) €

(L agsin (4 B+ LDy sin (0 — K)6) .

where
KD = AD (1 —p)pP=2+ p P 2BD (1 +p) + ab' p? (1 ) + 8D pr ( )
’ ’ _ ’ p
LD = AD(1=p)pr2 = p? 2BR (1 +p) — ol PS4 gD 4

The formula for the shape derivative u’y,. We adopt the same strategy. We have
only to write the corresponding Neumann condition on the exterior boundary (i.e.
for |x| = 1). For n > 1, we set

KN, = AN (=) 4 p BN, (1) ol B
n— —n— n+2 -n 2—-n
LT]Xr = A7]X7(1_n)p 2 -p 2Br];[,r(1+n) _anp 4 +5N 4
the respective Fourier coefficients of —Onun(p, 8). The computations give
KY.=0
and
LN
_ A 2)p (= p ) +4p(p" = p") + 20(n = 1)p"(p7* — 1) Flexn
M,
2n2(p™ —n -2 n —n f(eat)
W22 (P" 4 pT) (P2 = )+ 20(p" — p7") + (14977
M,, i
We solve the system
’ o ’ 4 — P ’ 4 + P ’
(1-p)AN. + (1+p)p P 2BY, + Taﬁ’ + —=By =0
’ ’ p —+ 2 ’ ’
L e Tﬁg 0
p—1 AN’ —p—1pgN’ +1, N’ p 1-pgN' _ [N
s S pr Ty 4#’ t o1’ o
’ ’ + 2 ’ 2 — p ’
p—1gN  _ -p—1pN p +1,, N PP N' _ [N
P p,T P p,T + 4p + 4pp 4p 4 ﬁp n,r
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We get
AN P47 (p—pT) +3pp(p” —pT") + A+ 2pT "
" 2N, N
By, = P*pP(p—p~") —pp(p” —p7P) —4p(p' P — pP) —4A(p +2)pP ! N
v 2N, N
’ —1)p P _ 1 -1 _ ,1-p A 1—p
aN = o1 4R ) 3 —p ) A Ny
p Np
’ Y4 _ -1y _ -1 p__ —p _4 —1-p
BY = op-12 (p=p")—p ]\(]p pP) —4p .
p

We have to compute now
(—Onuly + pym)(p,0) = (fo;rkw cos (n + k)0 + fo:k\,r cos (n — k)@) é,

_ <L|J¥L/+k|,7' sin(n + k)0 + L\bel—klﬂ“ sin (n — k)@) €y

where
! ! _ P ’ 7 n p ’ _ p
Kyl = A (L=p)p" ™ 4o B (L p) g p (L= )+ B e (L4 )
' ' - —p— 4 rop+2 ;. 2—D
Ly = AL =p)p = p BN (L p) — o) e B o

Finally it comes
(—On(uy — up) + (Py — Pp)n) (p.0)
= (f(\n+k;\,r cos (n+ k)0 + f(‘n,k‘,r cos (n — k)@) é.,
_ (ZMW sin (n + k)0 + Lj,_p|, sin (n — k)9> &

where

D’ N’ T D’ N’
(30) Ky, =KP — KN and L,, =LY — LY.
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