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NON-MANIPULABLE HOUSE ALLOCATION WITH RENT CONTROL

Tommy Andersson and Lars-Gunnar Svensson
∗

In many real-life house allocation problems, rents are bounded from
above by price ceilings imposed by the government or a local administra-
tion. This is known as rent control. Because some price equilibria may be
disqualified given such restrictions, a weaker equilibrium concept is sug-
gested. Given the weaker notion, this paper defines an allocation mech-
anism, tailored to capture the specific features of housing markets with
rent control, which always selects a weak price equilibrium. The main
results demonstrate the existence of a weak price equilibrium and that
the introduced allocation mechanism is efficient and non-manipulable
for any given price ceiling. In its two bounding cases, the mechanism re-
duces to the weak version of the serial dictatorship mechanism (Svensson,
1994) and the competitive price mechanism (Demange and Gale, 1985),
respectively. In this sense, the housing market with rent control, inves-
tigated in this paper, integrates two of the predominant models in the
two-sided matching literature into a more general framework.

Keywords: House allocation, rent control, rationing, weak price equi-
librium, priority efficiency, non-manipulability.

1. INTRODUCTION

HOUSE ALLOCATION IS a classical problem in the mechanism design literature. The aim is to
allocate a number of houses (or some other indivisible items such as jobs or tasks) among
a group of agents given that each agent is interested in renting, or buying, at most one
house. In an early paper, Hylland and Zeckhauser (1979) proposed the serial dictatorship
mechanism as a solution to this problem for the case when rents are exogenously given and
in the absence of existing tenants1. This deterministic rule assigns each agent a priority
according to some criteria (random, queue, etc.) and the agents have to choose a house
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1The problem with existing tenants is not considered in this paper. It was first investigated by
Shapley and Scarf (1974). See also Abdulkadiroğlu and Sönmez (1998), Ma (1994), Roth and Postlewaite
(1977), Roth (1982), and Svensson (1999) among others. Also, the ”kidney exchange problem” resembles a
housing market with existing tenants, see Roth et al. (2004) for a detailed discussion. The house allocation
model with both existing tenants and new applicants was first considered by Abdulkadiroğlu and Sönmez
(1999).
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from the set of ”remaining houses” when the agents with higher priorities have made their
choices. Svensson (1994) demonstrated that a weaker version of this mechanism (that also
allows for indifference relations) is Pareto efficient and non-manipulable.2

Even if the assumption of exogenously given and fixed rents is restrictive, it is satisfied
in many real-life applications. Examples include on-campus housing and public housing.
However, a priority based fixed price mechanism cannot take into consideration the exis-
tence of agents who are willing to accept higher rents to receive some other house in the
allocation process. In this sense, there are potential welfare gains by allowing for more flex-
ible rents. The obvious solution to this problem is to adopt a competitive price mechanism
for the allocation procedure. This idea has been advocated by Crawford and Knoer (1981),
Demange and Gale (1985), Demange et al. (1986), Leonard (1983), and Shapley and Shubik
(1972) among others. The type of housing markets were such mechanisms are applicable
are common in metropolitan areas. Also here, Pareto efficient and non-manipulable allo-
cation rules exist. More precisely, because the set of equilibrium prices forms a complete
lattice (Demange and Gale, 1985; Shapley and Shubik, 1972), the existence of a unique
minimal equilibrium price vector is guaranteed. Then by using this price vector as a direct
mechanism for allocating the houses, a Pareto efficient outcome where no agent has any
incentive to misrepresent his preferences is assured as demonstrated by Demange and Gale
(1985). See also Andersson and Svensson (2008), Leonard (1983), Sun and Yang (2003),
and Svensson (2009).

The serial dictatorship mechanism and the competitive price mechanism can be re-
garded as two polar cases for allocating houses when there are no existing tenants as rents
are totally non-flexible in the former and fully flexible in the latter. A third and intermediate
practice for allocating houses is that the government or the local administration, by laws or
ordinances, imposes a price ceiling and thereby allows for a limited flexibility in the rents.
Even if there has been a widespread agreement among economists that this type of rent
control generates a mismatch between houses and tenants, discourage new construction,
retard maintenance etc. (see e.g. Arnott, 1995; Turner and Malpezzi, 2003, for a detailed
discussion), this practice is widely used. As of year 2011, legislated rent control existed
in approximately 40 countries around the world including, e.g., Canada, Denmark, Egypt,
France, Germany, India, Italy, Netherlands, Spain, Sweden, Turkey, United Kingdom, and
United States.

A general problem on housing markets with rent control is that there typically will be an
unbalanced relationship between supply and demand (this is obviously also a problem for
housing markets where fixed price mechanisms are used). Thus, the phenomenon of a price
rigidity arises and a rationing mechanism is normally needed to facilitate the distribution
of houses among agents in additional to the rent leverage. This situation is studied in the
classical paper by Drèze (1975) where a variant of a competitive equilibrium based on
rationing was introduced.3 To model such a housing market, the rents (or prices) must be
bounded to belong to an exogenously given set that specifies the price ceilings as well as

2See e.g Ehlers (2002), Pápai (2000), and Zhou (1990) for additional results and characterizations.
3See also Cox (1980), Dehez and Drèze (1984), Kurz (1982), and van der Laan (1980) among others.
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the minimal acceptable rent (price) for the landlord (the ”reservation rent”). This is also
the type of housing market considered in this paper.4

The two exogenously given components at a housing market with rent control are (a)
the set that defines upper and lower bounds on rents, denoted by Ω, and (b) the rationing
mechanism. Here, it is assumed that the rationing mechanism is given by a priority-order
(again, it may be based on a queue, a random mechanism, needs, etc.) as in the case
when the serial dictatorship mechanism is adopted. In the bounding case when Ω only
contains a single vector of rents, our framework collapses to the generalization in Svensson
(1994) of the classical housing market considered by Hylland and Zeckhauser (1979). In
the other extreme case, when the set Ω not is bounded from above by price ceilings,
any rents that are weakly higher than the ”reservation rents” of the landlord are allowed.
Consequently, the housing market reduces to the classical market with competitive rents
(e.g. Demange and Gale, 1985; Shapley and Shubik, 1972). In such event, the rationing
mechanism will not play any role on the housing market. Hence, two of the predominant
house allocation models reduce to special cases of the housing market with rent control
considered in this paper.

Because the set of price equilibria that respects the price ceilings may be empty
for some preference profiles, a weaker version of the concept of a price equilibrium is
suggested. In this weakening, the rationing mechanism will play a role. It is, however,
desirable to marginalize the significance of the priority-order to respect the core meaning
of a price equilibrium. Noting that it is the price ceilings that may destroy the existence of
an equilibrium, the weakening of the price equilibrium concept, considered in this paper,
can roughly be described as follows. A price vector defines a weak price equilibrium if the
assignment of the houses to the agents is ”efficient”5, and each agent is assigned a house
from his demand-set (i.e. rationing is not needed) except in the limiting case when (i)
the price of each house in the demand-set equals the price ceiling and (ii) each house in
the demand-set is assigned to some other agent with a higher priority. In this sense, the
priority-order will only be effective in the special case when the rent (price) that is attached
to a house equals its exogenously given price ceiling.

We show the existence of a weak equilibrium price vector, and that the set of such vec-
tors has a unique minimal price vector. Using this insight, a rule where the minimal weak
equilibrium price vector is used as a direct mechanism for allocating the houses among
the agents is defined. This rule is called the ”minimal WPE mechanism”, and it is demon-

4If the indivisible items are jobs or positions, the interpretation of the model is that wages are bounded
from below by legislated minimum wages (corresponding to the price ceiling in the rent control model). In
this case, the upper bounds on wages (corresponding to the ”reservation rent” of the landlord in the rent
control model) is given by the employers maximum willingness to pay for a worker.

5Note that a Pareto improvement, as traditionally defined, need not respect a given priority-order.
Because the priority-order may be effective when considering a housing market with rent control, this
paper adopts an efficiency concept called ”priority efficiency”. This definition essentially states that the
assignment of the houses to the agents is ”efficient” if the priority-order is respected, and if it is not possible
to make a Pareto improvement by reallocating the houses among the agents and at the same time respect
the priority-order (see Definition 6). In the Introduction, however, we say that an assignment of houses is
”efficient” instead of ”priority efficient”.
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strated to be efficient and non-manipulable.6 In the limiting cases where rents are fixed
and where rents are fully flexible it reduces to the weak version of the serial dictatorship
mechanism (Svensson, 1994) and the competitive price mechanism (Demange and Gale,
1985), respectively.

To the best of our knowledge, this paper is the first to define an efficient and non-
manipulable allocation rule for a housing market with rent control. This does, of course,
not mean that this type of market has not been considered earlier. As already explained in
the above, many classical papers consider such a market (see e.g. Drèze, 1975, or footnote
3) but the main focus in those papers is the weakening of the price equilibrium concept in
exchange economies to handle the case with price rigidities when items are perfectly divisi-
ble. The case with indivisibilities on housing markets with price rigidities has recently been
considered by Talman and Yang (2008) and Zhu and Zhang (2011) where price adjustment
processes that converge to a ”constrained price equilibrium” are considered. However, their
rationing mechanisms are very different from the one considered in this paper as agents ex
ante are disqualified from being assigned specific houses. In our rationing mechanism, each
agent can ex ante be assigned any house, and weather rationing is needed or not is deter-
mined endogenously by the reported preferences of the agents. In addition, it is not clear
if their mechanisms are non-manipulable, and their considered models do not integrate the
two bounding models in the literature described in the above.

The allocation rule considered in this paper is also one of few in the literature that
integrates existing efficient and non-manipulable rules in a more general framework. A
famous example is the You-Request-My-House I-Get-Your-Turn mechanism, introduced
by Abdulkadiroğlu and Sönmez (1999), which integrates the serial dictatorship mechanism
with strict preferences (Hylland and Zeckhauser, 1979) and the top-trading cycles mech-
anism (Shapley and Scarf, 1974). Another example is the Kidney Exchange mechanism,
first investigated by Roth et al. (2004), where a generalized version of the top-trading cy-
cles mechanism (Shapley and Scarf, 1974) that also takes trading-chains into account is
considered. A third example is Pápai (2000) where a large class of mechanisms that solve
the house allocation problem is proposed. These rules are called hierarchical exchange
rules, and they can be regarded as a generalization of the top-trading cycles mechanism
(Shapley and Scarf, 1974) even if no initial ownership is assumed in the model. An im-
portant difference between these mechanisms and the one considered in this paper is that
the former mechanisms only work in the absence of monetary transfers whereas the rule
considered here can be applied to housing markets independently of if monetary transfers
can be carried out or not. To the best of our knowledge, the investigated mechanism is the
first efficient and non-manipulable rule for allocating houses that achieves this task.

The paper is outlined as follows. Section 2 introduces the house allocation model with
rent control. Section 3 defines a concept of efficiency that respects any given priority-
order, and so-called isolated sets of houses. The concept of a weak price equilibrium is

6Strictly speaking, this rule is demonstrated to be non-manipulable for ”almost all” utility profiles. For
the remaining profiles, it is an open question whether or not the mechanism is non-manipulable. See the
discussion following Definition 10 and Remark 1.
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defined and analyzed in Section 4. In particular, the set of weak equilibrium price vectors
is demonstrated to be nonempty. Finally, in Section 5, the ”minimal WPE mechanism” is
defined and proved to be non-manipulable.

2. THE HOUSING MARKET WITH RENT CONTROL

There is a finite set of houses and a finite set of agents denoted by H = {1, . . . , m}
and N = {1, . . . , n}, respectively. The houses in H do not have any existing tenants
by assumption. At some housing markets, it is natural to assume that there are several
owners of the houses but since our results do not require this, it is, for notational simplicity,
assumed that there is a single owner of all houses (our arguments extend with only a few
modifications to the case with multiple owners). Agents wish to buy, or rent, at most one
house and have an option not to buy, or rent, a house at all. This outside option is formally
represented by a null house, denoted by 0, which has an unlimited supply.
An assignment is a mapping μ : N → H ∪{0} such that μi = μi′ for i �= i′ only if μi = 0.

Hence, two distinct agents can not be assigned the same house in H . Denote by μ0 the set
of houses that not is assigned to any agent at assignment μ, i.e.:

μ0 = {h ∈ H ;μi �= h for all i ∈ N} ∪ {0}.

Note that the null house always is included in μ0, by construction, since its supply is
unlimited.
Let p ∈ R

m+1 be a price vector. A coordinate in p is denoted by ph and it represents
the price, or rent, of house h ∈ H ∪ {0}. The price of the null house is, without loss
of generality, always supposed to equal zero, i.e. p0 = 0. Price vectors are assumed to
be restricted by exogenously given lower and upper bounds denoted by p ∈ R

m+1 and
p ∈ R

m+1, respectively, where p ≤ p. The lower bounds can be thought of as the sellers
reservation prices or rents, and the upper bounds as a legislated rent control. Note also
that because p0 is always zero, it is clear that p

0
= p0 = 0. The price space is given by:

Ω = {p ∈ R
m+1; p

h
≤ ph ≤ ph for h ∈ H ∪ {0}}.

Each agent i ∈ N has preferences on pairs of houses and prices. Denote by Ri agent i’s
preference relation on the set of houses and prices (H ∪{0})×R. The corresponding strict
preference and indifference relations are denoted by Pi and Ii, respectively. The following
notation will be used: if h, h′ ∈ H ∪ {0} and phRip

′
h′, then agent i ∈ N weakly prefers

house h at price ph to house h′ at price p′h′.7 When the price vector is fixed during the
analysis (i.e. p = p′), the simplified notation hRih

′ is employed. Preferences are assumed
to be rational and monotonic for all agents i ∈ N , i.e., Ri is a complete and transitive
binary relation on (H∪{0})×R and phPip

′
h if ph < p′h. Further, preferences are assumed to

be continuous, i.e., the sets {ph ∈ R; phRip
′
h′} and {ph ∈ R; p′h′Riph} are closed for each

7Note that ph has a dual meaning. It represents the real number ph as well as the pair (h, ph). This will
not cause any confusion as ph is equivalent to the pair (h, ph) if and only if it is written in connection to
a preference relation.
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i ∈ N and all h, h′ ∈ H ∪ {0} and all p′h′ ∈ R. A preference profile, or for short a profile,
is a list R = (Ri)i∈N of the agents’ preferences. The set of profiles where preferences are
rational, monotonic and continuous is denoted by R.
A state is a pair (p, μ) consisting of a price vector and an assignment. The entire net

trade between any two states can be decomposed into a number of unique trading cycles
as explained in the following definition.8

Definition 1 Let (p, μ) and (p′, μ′) be two states. A group G ⊆ N of agents constitutes
a trading cycle if G is a sequence (i1, . . . , it) of distinct agents such that μij ∈ H for
2 ≤ j ≤ t, μ′

ij
= μij+1

for 1 ≤ j < t, and either:
(i) μ′

it = μi1 and μi1 ∈ H (closed trading cycle), or;
(ii) μ′

it ∈ μ0 and μi1 ∈ μ′
0 (open trading cycle).

For a given profile R, a state is a price equilibrium (PE, henceforth) if all prices are
weakly higher than the reservation price of the landlord (equal if the house is not assigned
to any agent) and each agent is assigned his weakly most preferred house at the given
prices. Formally:

Definition 2 For a given profile R ∈ R, a state (p, μ) is a price equilibrium if:
(i) ph ≥ p

h
for all h ∈ H ,

(ii) pµi
Riph for all i ∈ N and all h ∈ H ∪ {0}, and;

(iii) ph = p
h
for all h ∈ μ0.

On a housing market without price ceilings (i.e. when Ω not is bounded from above), it
is well-known that a PE exists under very general conditions, see e.g. Demange and Gale
(1985), Shapley and Shubik (1972), or Svensson (1983). If prices are bounded to belong to
Ω, an allowable PE does not exist for all profiles R ∈ R. Hence, a weakening of the concept
PE is needed to analyze housing markets with rent control (such a weakening is provided
in Section 4). This weakening must contain some kind of rationing mechanism as prices
alone cannot solve the allocation problem due to the price ceilings. Here, it is assumed
that the rationing mechanism is based on an exogenously given priority-order π. Formally,
π : N → N is a bijection where the highest ranked agent i ∈ N is the agent with πi = 1,
the second highest ranked agent i′ has πi′ = 2, and so on.

3. PRIORITY EFFICIENT ASSIGNMENTS AND ISOLATED SETS

Given that the priority-order may play a role in the allocation process, as explained
in Section 2, and the obvious observation that Pareto improvements not necessarily take

8We remark that an alternative presentation of Definition 1 is to describe the net trade by a number of di-
rected arcs from agents to houses, and from houses to agents. In this case, the description of closed and open
trading cycles would be more closely related to the description of top-trading cycles (Shapley and Scarf,
1974) and w-chains (Roth et al., 2004), respectively. Note, however, that top-trading cycles as well as w-
chains are mechanisms used to reallocate items among the agents in the case of initial ownership whereas
trading cycles, as defined in this paper, only are used as tools to describe allocative distinctions between
any two given states. Also, initial ownership is not assumed in this paper.
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the priority-order into account, the main objective of this section is to provide a notion
of efficiency that respects any given priority-order. This notion will play a key role when
weakening the concept of price equilibrium (Section 4). In addition, the existence of so-
called isolated sets of houses is established. These sets will be useful when proving the
non-emptiness of the set of weak price equilibria as well as the existence of an efficient
and non-manipulable allocation mechanism tailored for housing markets with rent control
(Section 5). Throughout this section, prices are assumed to be fixed. In this case, we recall,
from Section 2, that the simplified notation hRih

′ will be employed instead of phRiph′.
For a given assignment μ, the set of unenvied agents F and the set of envied agents E

are defined as:
F = {i ∈ N ; μi′Ri′μi for all i

′ ∈ N},
E = N \ F.

An assignment μ is envy-free if E is empty and all agents in N prefer their assigned house
to any unassigned house (Foley, 1967). Note also that if (p, μ) is a PE, then μ is envy-free
by Definition 2(ii).
Suppose now that E is nonempty, say i ∈ E. In this case, it will be convenient to single

out the agent with the highest priority that envies agent i (such an agent always exists, by
definition, whenever E is nonempty). This agent is said to have priority to envy agent i.

Definition 3 Agent i′ ∈ N has priority to envy agent i ∈ E at assignment μ if:
(i) μiPi′μi′, and;
(ii) for all i′′ ∈ N and i′′ �= i′, μiPi′′μi′′ only if πi′ < πi′′ .

The following definition introduces the concept of a priority respecting assignment.9

At such assignment, a higher ranked agent can never envy a lower ranked agent and,
furthermore, all agents weakly prefer their assigned house to any unassigned house.

Definition 4 Assignment μ is priority respecting if:
(i) μi′Piμi only if πi′ < πi for i, i

′ ∈ N , and;
(ii) μiRih if h ∈ μ0.

Note that if the assignment μ is envy-free, then it is priority respecting by definition. We
next remark that by the definition of envy-freeness, it follows that an envy-free assignment
cannot be Pareto dominated by a reallocation of the houses. However, when considering
priority respecting assignments, the set of envied agents may be nonempty and in this
case it may be possible to find a Pareto improving reallocation of the houses that respects
the given priority-order.10 Thus, a weaker concept than Pareto efficiency is obtained if
reallocations are restricted to priority respecting improvements.

9This concept is closely related to the concept of justified envy introduced by Balinski and Sönmez
(1999) and Abdulkadiroğlu and Sönmez (2003).

10To see this, suppose that N = {1, 2}, H = {a, b}, π1 < π2, aI1bP10 and aP2bP20. In this case,
the assignment (μ1, μ2) = (a, b) is priority respecting and E = {1}. However, the reallocation where
(μ′

1, μ
′
2) = (b, a) makes agent 2 strictly better off without harming agent 1.
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Definition 5 Assignment μ′ is a priority respecting improvement of assignment μ if
there is a sequence G = (i1, . . . , it) of distinct agents such that:
(1i) G is a closed or open trading cycle,
(1ii) μ′

i = μi for i ∈ N \ {i1, . . . , it},
(2i) μ′

iRiμi for all i ∈ N and μ′
iPiμi for some i ∈ N , and;

(2ii) if μ′
ij
Piμ

′
i for some i ∈ N \ {ij} and some 1 ≤ j ≤ t, then πij < πi.

Conditions (1i) and (1ii) state that μ′ is obtained from μ by one cyclical trade, and
conditions (2i) and (2ii) mean that the priority-order is respected in the Pareto improv-
ing reallocation of the houses. Consequently, if assignment μ is priority respecting, so is
assignment μ′.

Definition 6 An assignment μ is priority efficient if it is priority respecting and if there
are no priority respecting improvements of μ.

Note that if an assignment is envy-free, then it is also priority efficient, because it is
priority respecting (since E is empty) and it is not possible to find a priority respecting
improvement.

Lemma 1 If assignment μ is priority efficient, then the set of unenvied agents F is
nonempty.

Proof: Suppose that μ is priority efficient. To obtain a contradiction, assume that F = ∅.
But then, E = N by construction. First note that if μi = 0 for some i ∈ N , then i ∈ F .
Hence, μi �= 0 for all i ∈ N . Because E = N , let i1 ∈ E and define recursively a sequence
(i1, . . . , it) of distinct agents such that ij+1 has priority to envy ij for 1 ≤ j < t. Since
F = ∅, there are indices t and k such that it has priority to envy ik and k < t. But then
there is a priority respecting improvement of μ, denoted by μ′, defined by a closed trading
cycle where:
(i) μ′

ij
= μij+1

for k ≤ j ≤ t− 1,
(ii) μ′

it = μik , and;
(iii) μ′

ij
= μij for the remaining agents.

But this contradicts the assumption that μ is priority efficient. Hence, F �= ∅. Q.E.D.

We end this section by introducing the notion of an isolated set. Informally, a set S of
houses is isolated, at a given assignment, if the assignment is envy-free among the agents
that are assigned a house in S, and all agents that not are assigned a house in S strictly
prefer their assigned house to any house in the set S.

Definition 7 A set of houses S ⊂ H (S �= H) is isolated at assignment μ if:
(i) μiRih for all i ∈ N and all h ∈ S, and;
(ii) μiPih for all i ∈ N with μi /∈ S and all h ∈ S.
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Theorem 1 If the set of envied agents E is nonempty and if the assignment μ is priority
efficient, then there is an isolated set S ⊂ H of houses. In addition, S \ μ0 �= ∅.

Proof: See the Appendix. Q.E.D.

4. WEAK PRICE EQUILIBRIUM

This section provides a weakening of the concept of a price equilibrium. To motivate this
weakening, it is first observed that standard textbook arguments state that it is reasonable
that prices on houses that are overdemanded11 should increase. However, because prices
are bounded from above by the price vector p, it may not be possible to increase the prices
in such fashion that all overdemanded sets of houses are eliminated which is necessary
for obtaining a PE (see e.g. Demange et al., 1986; Hall, 1935; Mishra and Talman, 2010).
In other words, it is the price ceiling that may destroy the possibility to reach a PE. In
this case, some kind of rationing mechanism is needed. This rationing mechanism is here
given by the priority-order π as already explained in Section 2. It is, however, desirable
to marginalize the significance of π to respect the core meaning of a PE. By the above
arguments, this means that the priority-order should only be effective when the price of
one or several houses equal the upper price bound. This naturally leads to the following
requirement: if agent i strictly prefers the house assigned to agent i′ to his own at assignment
μ, then the price of the house assigned to agent i′ must equal the upper price bound and
agent i′ must have a higher priority than agent i. Formally:

pµi′Pipµi
only if πi′ < πi and pµi′ = pµi′ .

Note first that the former requirement always is satisfied when μ is priority respecting
(Definition 4) or priority efficient (Definition 6). Recall next, from Section 3, that there
exists no Pareto improving trading cycle at a PE but that the above condition alone, in
general, not necessarily is a guarantee for that (see, for instance, footnote 10). For this
reason, priority efficiency must be embedded in, instead of being a consequence of, the
weaker version of a PE. This leads to the following definition of a weak price equilibrium
(WPE, henceforth).

Definition 8 For a given profile R ∈ R and a given priority-order π, a state (p, μ) is a
weak price equilibrium if:

(i) p ∈ Ω,
(ii) μ is priority efficient,
(iii) pµi′Pipµi

only if pµi′ = pµi′ , and;
(iv) if h ∈ μ0 then ph = p

h
.

Note that the outcome of the weak version of the serial dictatorship mechanism (Svensson,

11That is when the number of agents that only demand houses from some set H ′ ⊂ H is strictly larger
than the number of elements in the set H ′, see e.g. Demange et al. (1986) or Mishra and Talman (2010).
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1994)12 is a WPE. This follows directly as it is a fixed price mechanism (i.e. p
h
= ph for all

h ∈ H∪{0}) that always generates a priority efficient assignment (Svensson, 1994, Theorem
1). Moreover, any PE is also a WPE. This observation is an immediate consequence of
Definition 2, the observation that any PE is envy-free (as previously remarked in Section
3), and the fact that Pareto efficiency is implied by envy-freeness (Svensson, 1983).

A price vector p is a WPE vector if there is an assignment μ such that the state (p, μ) is a
WPE. For a given profile R ∈ R, the set of WPE is denoted by ΣR, and the corresponding
set of WPE vectors is denoted by ΠR, i.e.:

ΠR = {p ∈ Ω; (p, μ) ∈ ΣR for some assignment μ}.

For purely technical reasons, it will sometimes be convenient to analyze a weaker version
of Definition 8 where only conditions (i)–(iii) are satisfied. In this case, the state is called
a weak quasi equilibrium (WQE, henceforth). As in the above, a price vector p is a WQE
vector if there is an assignment μ such that the state (p, μ) is a WQE. For a given profile
R ∈ R, the set of WQE is denoted by ΣR, and the set of WQE vectors is denoted by ΠR.
Clearly, ΣR ⊂ ΣR and ΠR ⊂ ΠR.

Proposition 1 For any profile R ∈ R, the set ΠR is nonempty, bounded and closed.

Proof: ΠR is bounded and nonempty because Ω is bounded and p ∈ ΠR, respectively.
To prove that ΠR is closed, suppose that R ∈ R and let (pj)∞j=1 be a convergent sequence

of price vectors such that pj ∈ ΠR and pj → p as j → ∞. Let (pj, μj) ∈ ΣR. Since there is
only a finite number of distinct assignments, it is, without loss of generality, assumed that
μj = μ for all j. To prove the result, we need to check that p ∈ ΠR, i.e., that conditions
(i)–(iii) of Definition 8 are satisfied. Condition (i) is trivially fulfilled as Ω is closed. For
the other two conditions:

Condition (ii). If μ is envy-free, then μ is priority efficient as remarked in Section 3.
Suppose instead μ is not priority efficient and that pµi′Pipµi

for some i, i′ ∈ N where i �= i′.
Then pjµi′

Pip
j
µi

for j ”sufficiently large” by continuity of the preferences. Hence, πi′ < πi

as (pj , μ) ∈ ΣR. Consequently, μ is priority respecting. It is now clear that there exists a
priority efficient assignment μ′, because if μ is not priority efficient then a priority efficient
assignment can be obtained by a sequence of priority respecting improvements. During this
sequence, all obtained assignments will be priority respecting as μ is priority respecting
(see Definition 5, and the discussion following it).

12In a formal description of this mechanism, let, without loss of generality, πi = i for all i ∈ N ,
and τi(H

′) = {h ∈ H ′;hRih
′ for all h′ ∈ H ′} for H ′ ⊂ H and any R ∈ R. Consider profile R ∈ R,

and define recursively a decreasing sequence {Ci}i∈N of maximal choice sets according to: C1 = H , and
Ci+1 = {h ∈ H ′; ∃μ such that μi′ ∈ τi′(Ci′ ) for i

′ ≤ i and μi+1 = h} for all i ∈ N \ {n}. The outcome
of the weak version of the serial dictatorship mechanism is given by the following set of individually
utility equivalent assignments: g(R) = {μ;μi ∈ τi(Ci) for all i ∈ N}. Note that if no monetary transfers
are feasible and indifference relations not are allowed, this mechanism reduces to the serial dictatorship
mechanism of Hylland and Zeckhauser (1979).
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Condition (iii). Suppose that pµi′Pipµi
for some i, i′ ∈ N where i �= i′. Then pjµi′

Pip
j
µi

for all j ”sufficiently large” by continuity of the preferences. But then pjµi′ = pµi′ for all j
”sufficiently large”. Hence, pµi′ = pµi′ . Q.E.D.

We conclude this section by proving the existence of a weak price equilibrium. Denote
by p∗ a minimal price vector in ΠR, i.e., a vector p∗ ∈ ΠR such that there is no p ∈ ΠR

where p �= p∗ and p ≤ p∗. Such a vector exist since ΠR is nonempty, bounded and closed
by Proposition 1. The following lemma which is due to Alkan et al. (1991, Perturbation
Lemma) will be useful in the proof of the result.

Lemma 2 If the state (p, μ) satisfies condition (ii) of Definition 2 and ph > p
h
for all

h ∈ H , then for each ε > 0 there exists another state (p′, μ′) satisfying conditions (i) and
(ii) of Definition 2 where ph − ε < p′h < ph for all h ∈ H .

Theorem 2 For any profile R ∈ R, if p∗ is a minimal price vector in ΠR, then p∗ ∈ ΠR.

Proof: Let (p∗, μ) ∈ ΣR, and suppose that p∗ is a minimal price vector in ΠR and that
the assignment μ is chosen so that the number #{h ∈ μ0; p∗h > p

h
} = ν is minimal. To

prove the statement, we need to establish that ν = 0 because then p∗ ∈ ΠR by Definition
8(iv). To obtain a contradiction, suppose that h′ ∈ μ0 and p∗h′ > p

h′ , i.e., ν > 0.

Note first that p∗µj
Rjp

∗
h′ for all j ∈ N by Definition 4(ii) since (p∗, μ) ∈ ΣR. Note next

that p∗µi
Iiph′ for some i ∈ N because if this not is the case, then it is possible to decrease

p∗h′ by a small ε > 0 which contradicts that p∗ is minimal.
It is next demonstrated that p∗µi

> p
µi

whenever p∗µi
Iip

∗
h′. To see this, let the assignment

μ′ be defined by μ′
i = h′ and μ′

j = μj for all j ∈ N \{i}. But then (p∗, μ′) ∈ ΣR by identical
arguments as in the above. Hence, ν > #{h ∈ μ′

0; p∗h > p
h
} if p∗µi

= p
µi

because h′ /∈ μ′
0

and μi ∈ μ′
0. But this contradicts that μ is chosen so that ν is minimal. Thus, p∗µi

> p
µi
.

It is now proved that i ∈ F whenever p∗µi
Iip

∗
h′. Suppose, to obtain a contradiction, that

i ∈ E. Let j ∈ N be the agent with priority to envy agent i, and define assignment μ′

as μ′
i = h′, μ′

j = μi, and μ′
k = μk for the remaining agents. Again, (p∗, μ′) ∈ ΣR which

contradicts that (p∗, μ) is priority efficient. Hence, i ∈ F .
Let now F ′ = {i ∈ F ; p∗µi

> p
µi
}. This set is nonempty by the above conclusions. Define

next the set F ′′ ⊂ F ′ in the following way: agent i ∈ F ′′ if and only if there is a sequence
(i1, . . . , it) of distinct agents ij ∈ F ′ for 1 ≤ j ≤ t such that i1 = i, p∗µij

Iijp
∗
µij+1

for

1 ≤ j < t, and p∗µit
Iitp

∗
h′. F ′′ is nonempty by the above conclusions. Let also:

S = {h ∈ H ; h = μi for some i ∈ F ′′} ∪ {h′}.
Note first that if S is isolated, then it is possible to decrease p∗h for each h ∈ S and generate
a new WQE, according to Lemma 2, contradicting that p∗ is minimal. For this reason, it
is, in the remaining part of the proof, assumed that S not is isolated. In this case, there
are agents k ∈ N − F ′ and l ∈ F ′′ such that p∗µk

Ikp
∗
µl
. We need to consider two cases:

Case (i) k ∈ F −F ′. Note first that k ∈ F −F ′ means that p∗µk
= p

µk
. Moreover, there is

an assignment μ′ and an open trading cycle (i1, . . . , it) such that i1 = k, i2 = l and ij ∈ F ′′
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for 1 < j ≤ t. Moreover, μ′
ij
= μij+1

for 1 ≤ j < t, μ′
it = h′ and μ′

i = μi for the remaining

agents. Hence, (p∗, μ′) ∈ ΣR and ν > #{h ∈ μ′
0; p∗h > p

h
} because h′ /∈ μ′

0 and μk ∈ μ′
0.

This is a contradiction to ν being minimal.
Case (ii) k ∈ E. In this case, there is a unique sequence (i1, . . . , it) of distinct agents such

that i1 ∈ F , ij ∈ E for 1 < j ≤ t, it = k, and ij has priority to envy ij+1 for 1 ≤ j < t.
Moreover, there is a sequence (it+1, . . . , ir) of distinct agents such that it+1 = l, ij ∈ F ′′ for
t < j ≤ r, p∗µij

Iijp
∗
µij+1

for t < j < r, and p∗µir
Iirp

∗
h′. Now if it′ = i1 for some t′ > t there

is a priority respecting improvement of μ where agents (i1, . . . , it, . . . , it′−1) constitute a
closed trading cycle. On the other hand, if ij �= i1 for all j > t then there is also a priority
respecting improvement of μ where agents (i1, . . . , ir) constitute an open trading cycle.
Hence, both situations is a contradiction to μ being priority efficient.
In summary, if ν > 0 then (p∗, μ) /∈ ΣR, which contradicts our assumption. Hence, ν = 0,

the desired conclusion. Q.E.D.

5. NON-MANIPULABILITY

In this section, a priority efficient and non-manipulable allocation mechanism that im-
plements a WPE state is defined. Formally, an allocation mechanism is a function f with
domain R that selects a WPE state as an outcome, i.e., f(R) ∈ ΣR. This paper employs
the following definition of non-manipulability.

Definition 9 An allocation mechanism f is manipulable at a profile R ∈ R by an
agent i ∈ N if there is a profile R′ = (R′

i, R−i) ∈ R, and two states f(R) = (p, μ) and
f(R′) = (p′, μ′) such that p′µ′

i
Pipµi

. If the mechanism f not is manipulable by any agent

i ∈ N at any profile R ∈ R, it is non-manipulable.

The analysis of non-manipulability will be done in a subset R̃ ⊂ R where the set R̃ is the
set of profiles such that no two houses are ”connected by indifference” at any price vector
p ∈ Ω.

Definition 10 For a given profile R ∈ R, houses h1 and ht in H ∪ {0} are connected by
indifference at price vector p ∈ Ω if there is a sequence (i1, . . . , it) of distinct agents and a
sequence (h1, . . . , ht) of distinct houses such that:
(i) ph1 ∈ {p

h1
, ph1

} and pht ∈ {p
ht
, pht

}, and;
(ii) phj

Iijphj+1
for 1 ≤ j ≤ t− 1.

We next argue that the restriction of profiles to R̃ is a mild assumption. More precisely,
for any profile R ∈ R̃, any sequence (i1, . . . , it) of distinct agents, any sequence (h1, . . . , ht)
of distinct houses and any choice of the price vector ph1

, the prices phj
may be chosen

so that ph1 = ph1
and phj

Iijphj+1
for 1 ≤ j ≤ t − 1. In that case, pht will be uniquely

determined by continuity and monotonicity of the preferences. However, if preferences
are chosen randomly, the probability is zero that pht = pht

since p is given exogenously.

Consequently, very few profiles are excluded in R̃ compared to R, i.e., ”almost all” profiles
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are included in R̃. We also remark that a common assumption in the house allocation
literature when no monetary transfers are allowed is that preferences are strict. Also this is
a mild assumption if preferences are chosen randomly since the probability of an indifference
is zero, i.e., very few preference profiles are excluded if only strict preferences are considered.
Thus, one can argue that the restriction of profiles to R̃ ⊂ R is an assumption of the same
character as assuming strict preferences in the absence of monetary transfers.
Proposition 2 below is a consequence of the choice R ∈ R̃ of profiles, and it shows that

given two WPE states the trading cycles connecting the states are such that if one agent
in a trading cycle is strictly better of by the trade, then all agents in that trading cycle are
weakly better of. This result will be useful in the strategic analysis, so the proposition is
formulated somewhat more general than necessary at this point. The proof is preceded by
some notation and two lemmas.

Notation 1 Consider the states (p, μ) ∈ ΣR and (p′, μ′) ∈ ΣR′ where R,R′ ∈ R̃, and
R′ = (R′

q, R−q) for some agent q ∈ N with p′µ′
q
Pqpµq . Then let: S1 = {h ∈ H ; p′h < ph},

S2 = {h ∈ H ; p′h = ph} ∪ {0}, and S3 = {h ∈ H ; p′h > ph}.13

Lemma 3 Consider the states, (p, μ) ∈ ΣR and (p′, μ′) ∈ ΣR′ where R,R′ ∈ R̃, and
R′ = (R′

q, R−q) for some agent q ∈ N with p′µ′
q
Pqpµq . Let (i1, . . . , it) be a sequence of

distinct agents such that:

μij ∈ S2 for 1 < j < t and μ′
ij
= μij+1

for 1 ≤ j < t.

If p′µ′
i1

Pi1pµi1
, then p′µ′

ij

Rijpµij
for 1 < j < t.

Proof: Let, without loss of generality, ij = j. With this notation, p′µ2
P1pµ1 by assump-

tion. Then since (p, μ) ∈ ΣR and μ2 ∈ S2, it is clear that p′µ2
= pµ2 = pµ2

and π2 < π1.
Now, if p′µj+1

Rjpµj
for 1 < j < t the proof is complete. To obtain a contradiction, let k

be the agent with the lowest index 1 < k < t such that pµk
Pkp

′
µk+1

. Note that this also
means that k �= q. Then because (p, μ) ∈ ΣR and μk ∈ S2, by assumption, it follows that
p′µk

= pµk
= pµk

and πk−1 < πk. Hence, k > 2 as π2 < π1. Moreover, by the above conclu-
sions about agent 1, there must exist an agent l with a highest index 1 ≤ l < k such that
p′µl+1

Plpµl
, p′µl+1

= pµl+1
= pµl+1

and πl+1 < πl. Now, p
′
µi+1

Iipµi
for l < i < k by definition of

agents l and k (again, i �= q). But then houses μl+1 and μk are connected by indifference,
which is a contradiction to R ∈ R̃. Hence, p′µj+1

Rjpµj
for 1 < j < t must be the case.

Q.E.D.

Lemma 4 Consider the states, (p, μ) ∈ ΣR and (p′, μ′) ∈ ΣR′ where R,R′ ∈ R̃, and
R′ = (R′

q, R−q) for some agent q ∈ N with p′µ′
q
Pqpµq .

(i) if μi ∈ S1, then p′µ′
i
Pipµi

, and;

(ii) if μ′
i ∈ S3, then pµi

Pip
′
µ′
i
.

13Note that the null house cannot belong to S1 or S3 as p′0 = p0 = p
0
= p0 = 0 by assumption.
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Proof: Note that part (i) holds by definition if i = q. Suppose now that i �= q. In this
case, p′µ′

i
Rip

′
µi

by Definition 8(iii) since (p′, μ′) ∈ ΣR′ and μi ∈ S1 (i.e. p′µi
< pµi

). But then

p′µi
Pipµi

by monotonicity as p′µi
< pµi

.
To prove part (ii), note that pµi

Ripµ′
i
by Definition 8(iii) since (p, μ) ∈ ΣR and μ′

i ∈ S3

(i.e. pµ′
i
< pµ′

i
). But then pµ′

i
Pip

′
µ′
i
by monotonicity since pµ′

i
< p′µ′

i
. Finally, we remark that

these arguments are also valid if i = q because at the state (p, μ), the preference relation
of agent q is given by Rq. Q.E.D.

Proposition 2 Consider the states, (p, μ) ∈ ΣR and (p′, μ′) ∈ ΣR′ where R,R′ ∈ R̃, and
R′ = (R′

q, R−q) for some agent q ∈ N . Let also a sequence (i1, . . . , it) of distinct agents be
a trading cycle such that p′µ′

il

Pilpµil
for some il in the trading cycle. Then:

p′µ′
ij

Rijpµij
and μ′

ij
∈ S1 ∪ S2 for 1 ≤ j ≤ t.

Proof: Without loss of generality, let the trading cycle be given by (1, . . . , t). Suppose
first that the trading cycle is closed and assume, without loss of generality, that l = 1.
Because p′µ′

1
P1pµ1 , by assumption, it follows from Lemma 4(ii) that μ2 = μ′

1 ∈ S1 ∪ S2. If

μ2 ∈ S1, it is clear from Lemma 4(i) that p′µ′
2
P2pµ2 , and if μ2 ∈ S2 it follows from Lemma

3 that p′µ′
2
R2pµ2 . In any case, μ3 = μ′

2 ∈ S1 ∪ S2 by Lemma 4(ii). By repeating exactly the

same arguments as in the case when j = 2 for all indices j = 3, . . . , t, we get p′µ′
j
Rjpµj

and

μ′
j ∈ S1 ∪ S2 for 1 ≤ j ≤ t.
Suppose now that the trading cycle is open. In this case, μ1 ∈ μ′

0 by Definition 1(ii). Note
first that μ1 ∈ S1 ∪ S2. This follows as μ1 ∈ S3 means that p′µ1

> pµ1 so (p′, μ′) /∈ ΣR′ by
Definition 8(iv) and μ1 ∈ μ′

0. But this contradicts our assumptions. Hence, μ1 ∈ S1∪S2. Let
now l be the lowest index in the open trading cycle such that p′µ′

l
Plpµl

. Obviously, identical

arguments as in the case of a closed trading cycle can be adopted to demonstrate that
p′µ′

j
Rjpµj

and μ′
j ∈ S1 ∪ S2 for l ≤ j ≤ t. Thus, if l = 1, the desired conclusion is obtained.

This is the case if μ1 ∈ S1 by Lemma 4(i). Suppose therefore that l �= 1 and μ1 /∈ S1 (so
μ1 ∈ S2, by the above conclusion). If μ1 ∈ S2, then p′µ1

= pµ1 = p
µ1

by Definition 8(iv) since

μ1 ∈ μ′
0 and (p′, μ′) ∈ ΣR′ . Note also that p′µ′

1
I1pµ1 by Definition 8(iii) as (p′, μ′) ∈ ΣR′

and l �= 1. To obtain a contradiction, let k be the lowest index 1 < k < l in the open
trading cycle such that pµk

Pkp
′
µ′
k
. In this case, p′µ′

k−1
= pµ′

k−1
since (p′, μ′) ∈ ΣR′ . Hence, μ1

and μ′
k−1 are connected by indifference which contradicts that R,R′ ∈ R̃. Thus, there is

no such agent k and, therefore p′µ′
j
Rjpµj

also for 1 ≤ j < l. This conclusion together with

Lemma 4(ii) give μ′
j ∈ S1 ∪ S2 for 1 ≤ j < l. Q.E.D.

Proposition 2 shows that when comparing two WPE states, there are two types of trading
cycles. In the first, at least one agent receives a strictly higher utility in the change from
(p, μ) to (p′, μ′) and, as a consequence, all agents in the trading cycle get a weakly higher
utility. In the second, all agents receive a weakly lower utility. This is formalized using the
following notation.
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Notation 2 Denote by N+ ⊂ N the set of agents belonging to a trading cycle where
at least one agent receives a strictly higher utility in the change from (p, μ) to (p′, μ′). Let
N− represent the remaining agents, i.e., N− = N \N+.

The following theorem establishes the uniqueness of a minimal price vector in ΠR.

Theorem 3 Let R ∈ R̃ and let p′, p′′ ∈ ΠR be any two minimal price vectors. Then
p ∈ ΠR, where ph = min{p′h, p′′h} for all h ∈ H .

Proof: Since p′, p′′ ∈ ΠR, there are assignments μ′ and μ′′ such that (p′, μ′) ∈ ΣR and
(p′′, μ′′) ∈ ΣR. Consider now the trading cycles for states (p′, μ′) and (p′′, μ′′), and define
N+ and N−. Note that:

pµi
= p′′µi

if i ∈ N+, and pµi
= p′µi

if i ∈ N−,

by construction of p and Proposition 2.
We first demonstrate that p ∈ ΠR, i.e, that there is some assignment μ̃ such that (p, μ̃) ∈

ΣR. We need to check that conditions (i)–(iii) of Definition 8 are satisfied. We note that
(i) follows trivially since p′, p′′ ∈ Ω. Let now the assignment μ be defined as:

μi = μ′′
i if i ∈ N+, and μi = μ′

i if i ∈ N−.

Consider agents i, l ∈ N and suppose that pµi
Plpµl

. We start by establishing:
(a) πi < πl, and;
(b) pµi

= pµi
.

This conditions are satisfied by Definition 8 if i, l ∈ N+ or i, l ∈ N− as (p′′, μ′′) ∈ ΣR and
(p′, μ′) ∈ ΣR, respectively. Suppose instead that i ∈ N+ and l ∈ N−. But then p′′µ′′

i
Plp

′
µ′
l

by the assumption pµi
Plpµl

, and the construction of p and μ. Since l ∈ N− it follows from
Proposition 2 that p′µ′

l
Rlp

′′
µ′′
l
. Thus, p′′µ′′

i
Plp

′′
µ′′
l
by monotonicity. Consequently, conditions (a)

and (b) must hold by Definition 8 as (p′′, μ′′) ∈ ΣR. The same arguments will do in the
case when l ∈ N+ and i ∈ N−.
If there is no priority respecting improvement of μ, then μ is priority efficient and (p, μ) ∈

ΣR by (a) and (b). Suppose instead that μ not is priority efficient. In this case, there is a
priority respecting improvement μ̃ of μ by Definitions 5 and 6. Note first that (a) always
is preserved in a priority respecting improvement (see Definition 5, and the discussion
following it). Moreover, if pµ̃i

Plpµ̃l
, then pµ̃i

Plpµl
since μ̃ is a Pareto improvement of μ.

Thus, pµ̃i
= pµ̃i

as (b) is valid for the assignment μ. Hence, conditions (a) and (b) are
preserved at the assignment μ̃. If μ̃ is not priority efficient, we can find another priority
respecting improvement of μ̃ that respects (a) and (b) by adopting the same arguments as
in the above. After a finite number of priority respecting improvements, a priority efficient
assignment that in addition satisfies (a) and (b) is obtained. Hence, conditions (i)–(iii) of
Definition 8 are satisfied. Consequently, p ∈ ΠR.
Note, finally, that p′ and p′′ are minimal price vectors in ΠR, by assumption, and belong

to ΠR by Theorem 2. This together with ΠR ⊂ ΠR, the construction p ≤ p′ and p ≤ p′′

yield p = p′ = p′′. Hence, p ∈ ΠR, the desired conclusion. Q.E.D.
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From Theorem 3, it is clear that the following mechanism is well defined for any R ∈ R̃.

Definition 11 The minimal WPE mechanism f is defined to be the mapping of profiles
R ∈ R̃ to a weak price equilibria (p∗, μ), where p∗ is the unique minimal price vector in
ΠR and μ is any selection of the assignments such that (p∗, μ) ∈ ΣR.

Note that in the bounding case when Ω contains a single price vector, the minimal
WPE mechanism makes the same selection as the weak version of the serial dictatorship
mechanism (Svensson, 1994). This follows as prices are fixed and the assignment generated
by the latter mechanism is priority efficient as already pointed out in Section 4. Moreover,
in the other limiting case when ph → ∞ for all h ∈ H , the set of weak price equilibria
coincides with the set of price equilibria (again, see Section 4). Then because the set
of price equilibria contains a unique minimum price vector (Shapley and Shubik, 1972;
Demange and Gale, 1985), this price vector must also be the minimal vector in ΠR, and
it follows that the competitive price mechanism (Demange and Gale, 1985) reduces to a
special case of the minimal WPE mechanism. Consequently, the main non-manipulability
results in Demange and Gale (1985, Theorem 2) and Svensson (1994, Theorem 1) can be
expressed as corollaries to the following theorem.

Theorem 4 Let f be a minimal WPE mechanism. Then f is cannot be manipulated by
any agent at any profile R ∈ R̃.

Proof: Suppose that agent q ∈ N can manipulate the mechanism at a profile R ∈ R̃.
Then there is a profile R′ = (R′

q, R−q) ∈ R̃ and two states (p, μ) = f(R) and (p′, μ′) = f(R′)
such that p′µ′

q
Pqpµq by Definition 9. This also means that N+ �= ∅ as q ∈ N+ by assumption.

To prove the theorem, it is sufficient to show that there is an isolated set S ⊂ S1. Then it
is possible to decrease ph for all h ∈ S by a small amount ε > 0 and obtain a new WPE
according to Lemma 2, which contradicts that (p, μ) is selected by the minimal WPE
mechanism.
Consider now the restriction μ+ of μ to N+, i.e., μ+ : N+ → H+ and μ+

i = μi, where H
+

is the range of μ+, i.e., H+ = {h ∈ H ∪ {0} ; h = μi for some i ∈ N+}. By Proposition 2,
H+ ⊂ S1∪S2. We next prove that the restriction μ+ of μ is priority efficient. Suppose that
the restriction μ+ is not priority efficient. Then there is a sequence (i1, . . . , it) of distinct
agents ij ∈ N+ for 1 ≤ j ≤ t, defining a trading cycle, which is a priority respecting
improvement of μ+ that can be ”blocked” by an agent k ∈ N−. This means that there is
an agent il ∈ {i1, . . . , it} such that pµil

Pkpµk
and πk < πil−1

. But then pµil
= pµil

since

(p, μ) = f(R). Note also that agent il−1 is the agent in N+ with priority to envy agent
il by definition of a priority respecting improvement. Consider now the state (p′, μ′), and
note that (a) μ′

r = μil for some agent r ∈ N+ or (b) μil ∈ μ′
0. We prove that in either case,

a contradiction to the assumption that μ+ is not priority efficient is obtained.
(a) If μil = μ′

r for some r ∈ N+, then pµ′
r
Pkpµk

since pµil
Pkpµk

by assumption. Further,
because μil = μ′

r ∈ S1 ∪ S2, by Proposition 2, monotonicity yields p′µ′
r
Pkpµk

. But
k ∈ N− and, therefore, p′µ′

r
Pkp

′
µ′
k
. Consequently, πr < πk by Definition 8(iii). Because
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agent il−i is the agent in N+ with priority to envy il, it is clear that πl−1 < πr. But
this together with πr < πk is a contradiction to πk < πil−1

.
(b) If μil ∈ μ′

0, then p′µil
= p

µil

as (p′, μ′) = f(R′). Now, pµk
Rkp

′
µ′
k
since k ∈ N−, and

p′µ′
k
Rkpµil

because μil ∈ μ′
0. Moreover, p

µil

Rkpµil
by monotonicity. Hence, pµk

Rkpµil

which contradicts that pµil
Pkpµk

.

We conclude that the restriction μ+ of the assignment μ to the groupN+ is priority efficient.
But then there is an isolated set S ⊂ S1 ∪ S2 such that:

(1) S �= ∅ and S ∩ μ0 = ∅,
(2) if G = {i ∈ N+;μi ∈ S} then pµi

Ripµl
for all i, l ∈ G, and;

(3) if i ∈ N+ \G then pµi
Pipk for all k ∈ S.

This follows because if some agent in N+ is envied by some agent in N+, then there is an
isolated set S ⊂ (S1 ∪ S2)∩ μ0 by Theorem 1, and if no agent in N+ is envied by an agent
in N+, the set S = {h ∈ S1 ∪ S2; h = μi for some i ∈ N+} satisfies points (1)–(3) from the
above. Note also that if S is isolated, then the set S ∩ μ0 is isolated.

It is next demonstrated that S ∩ S2 = ∅. Suppose that S ∩ S2 �= ∅. Then, there is an
agent i′ such that μi′ ∈ S ∩ S2 where the set S satisfies points (1)–(3) from the above.
Let (i1, . . . , it) be a trading cycle from μ to μ′ such that ij = i′ for some 1 ≤ j ≤ t. Then
ij ∈ N+ for all 1 ≤ j ≤ t, by Proposition 2, as i′ ∈ N+ is implied by the above construction
of S. We next consider two cases and prove that in each case a contradiction is obtained,
implying that S ∩ S2 = ∅.
(i) If μij ∈ S ∩ S2 for all 1 ≤ j ≤ t, then pµij

Iijpµij+1
for all 1 ≤ j ≤ t as S is envy-free.

This contradicts that ij ∈ N+ because at least one strict preference is required by
Notation 2.

(ii) If μij �∈ S ∩ S2 for some 1 ≤ j ≤ t, then there is an agent il such that μil �∈ S ∩ S2

and μ′
il
= μil+1

∈ S ∩S2 (or μ
′
il
∈ μ0). But then, pµil

Rilpµ′
il
, by Definition 7(i) as S is

isolated in S1∪S2. Then p′µil
Pilp

′
µ′
il

, by monotonicity, since μ′
il
∈ S∩S2 and μil ∈ S\S2.

But if (p′, μ′) = f(R′), then p′µ′
il

Rilp
′
µil

as p′µil
< pµil

. Hence, a contradiction.

We conclude that S ∩ S2 = ∅ and S ⊂ S1 must be the case. Then for all h ∈ S:

• pµi
Riph for all i ∈ N+ with μi ∈ S by Definition 7(i),

• pµi
Piph for all i ∈ N+ with μi �∈ S by Definition 7(ii),

• pµi
Piph for all i ∈ N−. This follows since p′µ′

i
Rip

′
h by Definition 8(iii) as p′h < ph ≤

p̄h. Hence, p
′
µ′
i
Piph by monotonicity. Then once more by monotonicity, pµi

Piph since

i ∈ N−.
These above three bullet points demonstrate that S ⊂ S1 is an isolated group for the entire
set H of houses. But then the proof is complete by the arguments in the beginning of the
proof. Q.E.D.

Remark 1 Finally, we remark that the result in Theorem 4 holds for the restricted
preference domain R̃. In fact, the minimal WPE mechanism is not defined when considering
profiles that not are included in R̃ as its definition requires the existence of a unique minimal
WPE vector and Theorem 3 is only proved for the profiles in R̃. It is an open question
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how to define the minimal WPE mechanism when considering the full preference domain.
However, as argued in the above, the set R̃ includes ”almost all” preference profiles in R.

APPENDIX

Definition 12 Suppose that assignment μ is priority efficient and E is nonempty. The
correspondence ϕ : F → 2F is then defined as follows. For i ∈ F , i′ ∈ ϕ(i) if there is a
sequence (i1, . . . , it) of distinct agents and an index k, 2 ≤ k ≤ t− 1, such that:

(i) i1 = i and it = i′,
(ii) ij ∈ E if and only if 2 ≤ j ≤ k,
(iii) ij has priority to envy ij+1 for 1 ≤ j < k,
(iv) μijIijμij+1

for k ≤ j < t.

Note that the definition of ϕ presupposes that F is nonempty. But this follows from
Lemma 1 as μ is priority efficient by assumption. Moreover, ϕ(i) may be empty for some
i ∈ F , and of course for all i ∈ F if μ(F ) is an isolated set.

PROOF OF THEOREM 1: Suppose, as in the theorem, that E �= ∅ and that μ is priority
efficient. Let, in addition, ϕ : F → 2F be the correspondence given by Definition 12. To
obtain a contradiction, suppose that there is no isolated set.

First it is demonstrated that ∪i∈Fϕ(i) = F . By contradiction, suppose that i′ ∈ F but
i′ �∈ ∪i∈Fϕ(i), and let F ′ ⊂ F be defined as: i ∈ F ′ if and only if there is a sequence
(i1, . . . , it) of distinct agents ij ∈ F such that i1 = i, it = i′ and μijIijμij+1

for 1 ≤ j < t.
Since there is no isolated set, by assumption, there is an agent i′′ ∈ E such that μi′′Ii′′μi for
some i ∈ F ′. But then there is also a sequence (iq, . . . , i0) of distinct agents, where q < 0,
such that:

• iq ∈ F and ij ∈ E if j > q,
• ij has priority to envy ij+1 for q ≤ j ≤ −1,
• i0 = i′′.

Note first that the existence of iq ∈ F follows as μ is priority efficient, i.e., if always
ij ∈ E then there would be a priority respecting improvement assignment where only
agents in E are trading, contradicting priority efficiency. But now we have a sequence
(iq, . . . , i0, i1, . . . , it) that satisfy properties (i)–(ii) in Definition 12. Hence, i′ = it ∈ ϕ(iq).
This shows that ∪i∈Fϕ(i) = F must be the case.

Now let F ∗ = {i ∈ F ;ϕ(i) �= ∅}. Then, F = ∪i∈Fϕ(i) = ∪i∈F ∗ϕ(i). Hence, for each i ∈ F ∗

there is an i′ ∈ F ∗ such that i ∈ ϕ(i′). Then there are sequences (i1, . . . , it), ij ∈ F ∗, of
distinct agents such that ij ∈ ϕ(ij+1) for 1 ≤ j ≤ t− 1. Consider some i1 ∈ F ∗ and choose
t as large as possible. This means that it ∈ ϕ(il) for some l < t. According to the definition
of ϕ, for each j ≤ t, there are sequences of agents satisfying properties (i)–(iv) of Definition
12 in the following way:

(i1j , i2j, . . . , iqjj) with i1j = ij+1 and iqjj = ij .
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Thus for j ≥ l:
(i1t, i2t, . . . , iqtt) with i1t = il and it = iqtt ∈ ϕ(i1t),

(i1t−1, i2t−1, . . . , iqt−1t−1) with i1t−1 = it and it−1 = iqt−1t−1 ∈ ϕ(i1t−1),
...

...,

(i1l+1, i2l+1, . . . , iql+1l+1) with i1l+1 = il+2 and il+1 = iql+1l+1 ∈ ϕ(i1l+1),

(i1l, i2l, . . . , iqll) with i1l = il+1 and il = iqll ∈ ϕ(i1l).
Construct now one sequence and rename the agents according to:

(i′1, i
′
2, . . . , i

′
t′) =

(i1t, i2t, . . . , iqtt, i2t−1, i3t−1, . . . , iqt−1t−1, . . . , i2l+1, i3l+1, . . . , iql+1l+1, i2l, i3l, . . . , iqll).
Here i′1 = i1t = il and i′t′ = iqll = il. Then, since i

′
1 = i′t′ , there must be indices k and p such

that the subsequence (i′k, i
′
k+1, . . . , i

′
p−1) contains only distinct agents and i′k = i′p. From the

construction of the sequence also follows that some agent in the subsequence belongs to E.
But then we can define a priority respecting improvement μ′ according to μ′

i′j+1
= μ′

i′j
for

j < p, μ′
i′1
= μ′

i′p and μ′
i = μi for the remaining agents. This is a contradiction to μ being

priority efficient. Hence, there must be an isolated set.
Finally, if the assignment μ : N → H is priority-efficient and the set of envied agents E

is nonempty, the same presumptions are valid for the assignment μ̃ : N → H \ μ0 where
μ̃i = μi for all i ∈ H . Hence, the assignment μ̃ has an isolated set S̃ where S̃ ∩μ0 = ∅. The
set S̃ is obviously also an isolated set for μ. Q.E.D.
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Dehez, P. and J. Drèze (1984): “On Supply-Constrained Equilibria,” Journal of Economic Theory, 33,

172–182.
Demange, G. and D. Gale (1985): “The Strategy Structure of Two-Sided Matching Markets,” Econo-

metrica, 53, 873–888.
Demange, G., D. Gale, and M. Sotomayor (1986): “Multi-Item Auctions,” Journal of Political Econ-

omy, 94, 863–872.
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