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Abstract

We analyze the response of firms to the introduction of emissions permits in the Spanish

electricity market. While previous papers have focused on assessing the pass-through of emission

costs to electricity prices, there is still little evidence on how firms incorporate these costs in their

output or pricing decisions. If there are significant frictions in the market, the emissions price

might not be reflective of the opportunity cost of the permits, which could bias pass-through

estimates. We proceed in two steps. First, we hypothesize and test that the emissions market

price is the opportunity costs perceived by the firms. Second, we decompose the other channels

that might affect the pass-through, such as demand response, market power and heterogeneity

of cost shocks. Results are consistent with the price of the emissions as being reflective of the

opportunity cost of the free permits. We also find incomplete pass-through of emission costs

and pass-through distributions consistent with cleaner generators substituting dirtier ones at

the margin.
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1 Introduction

Understanding how firms respond to the introduction of cap-and-trade regulation and how this

affects the product market is of great importance to assess the benefits of these programs. One

of the main benefits of using cap-and-trade for pollution abatement, as opposed to command-and-

control methods, is that the former ensure that, in the absence of any other distortions, the lowest

abatement cost allocation will be achieved.

To achieve the least cost allocation, it is required, among other assumptions, that firms internal-

ize the costs of the emissions accordingly. Regardless of whether firms receive the permits for free

or not, the relevant cost that producers internalize when taking their pricing or output decisions is

the opportunity cost of using those permits. In a frictionless emissions markets, the opportunity

cost of permits is given by their market price. However, potential market distortions could open

a wedge between the true opportunity costs that firms internalize and the market price for those

permits. Market distortions might arise because of transaction costs, the threat of regulatory in-

tervention, the belief that future permit allocations will be based on current emissions, or because

of firms’ behavioral biases. The question of whether firms’ perceived opportunity costs fully reflect

the market price of permits has not bee explored extensively in an empirical setting.

One of the issues that has confounded the debate on the effects of pollution permits on firms’

decisions has been the belief that in competitive markets full internalization of the price of the

permits is necessarily associated with a full pass-through.1 Therefore, evidence on partial pass-

through has at times been interpreted as either evidence of firms not perceiving the price of the

emissions as their opportunity cost or evidence of firms exercising market power. Even though this

statement is true in some theoretical models, it does not hold generally.

The goal of the paper is to separately quantify these two important economic concepts (oppor-

tunity cost and pass-through of emission costs) in the context of electricity markets. Whereas the

opportunity cost relates to the degree to which firms incorporate the price of emissions into their

supplying behavior, the pass-through rate is concerned about how this opportunity cost translates

into higher equilibrium prices.

To address these issues, we examine the response of generators in the Spanish electricity market

to the introduction of the European Union Emissions Trading Scheme (EU ETS), a cap-and-trade

program regulating CO2 emissions from energy intensive sectors. Studying the pass-through rates

in the context of the EU ETS and electricity markets presents several advantages. From a policy

point of view, the electricity sector is currently the largest CO2 contributor in the European Union.2

Furthermore, the effects of CO2 permit prices on the marginal costs of generating electricity are

significant and vary by technology. This creates important interactions that affect the degree of

abatement in this market (e.g. through the increase in the production of cleaner technologies at

the expense of dirtier ones) and makes the potential impacts of the policy important.

1See Ellerman et al. (2010) for a discussion.
2In compliance with the EU’s Energy Roadmap 2050, it is expected that the sector will have to almost fully

eliminate its CO2 emissions by 2050.
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From an econometric perspective, analyzing the effect of emission costs in electricity markets

has the advantage that European CO2 prices can be considered exogenous cost shifters, as they

are traded across all Member States and across many sectors. Furthermore, there is substantial

variation in permit prices during the sample. Electricity markets are also particularly suited for

this analysis. First, there is rich micro-level data, including demand and supply curves that allow

us to be flexible in the estimation.3 The availability of detailed engineering-based cost estimates

also allows us to confront results from models that estimate those costs either directly or indirectly.

Furthermore, the institutions and industrial processes that affect firms’ strategic behavior in these

markets are well understood.4

We examine the hypothesis that the opportunity cost of the permits is the emissions market price

using two tests that rely on different assumptions. First, we construct structural form estimates

using predictions of optimal bidding from the multi-unit auction literature. Second, following

Reguant and Ellerman (2008), we derive a test of internalization which relies on predictions related

to firms’ incentives to turn on or off a particular power plant on a given day.

We then examine the pass-through of emission costs. We quantify the pass-though rate through

a structural approach based on auction-level data, and a reduced-form approach based on observed

equilibrium prices and quantities. Overall, we focus on demand elasticity, market power and het-

erogeneity in cost shocks as the main factors explaining the observed distribution of pass-through

rates.

We find evidence that Spanish electricity firms fully internalized the price of emissions rights.

Based on results of both reduced-form and structural models, one cannot reject that the market

price reflects the opportunity cost of the permits. This translated into a 50% price increase, due to a

combination of heterogeneous cost shocks and substitution effects across technologies. In contrast,

the cost pass-through is close to 100%.

This evidence has several policy-relevant conclusions. First, during the sample period, firms

were given emission permits for free. In contrast, starting January 2013, full auctioning of emission

permits becomes compulsory. The fact that firms internalized the full costs of free permits suggests

that auctioning of those permits should not have additional inflationary effects on electricity prices,

at least in the short run.5 Second, full cost internalization suggests that frictions or transaction

costs in the emission market are negligible, which as is well known is a necessary condition for the

Coase principle to apply. Last, evidence of full cost internalization also mitigates concerns over

distortions created by the allocation method: if firms had expected that future permit allocations

would increase with current emissions, they would have tended to over-produce, but this would had

led to partial rather than to full internalization of emission costs.

The contributions of the paper are twofold. First, this is one of the first papers to present strong

3This is particularly important for the estimation of pass-through rates, which can be greatly affected by functional
form assumptions (Besanko et al., 2005; Weyl and Fabinger, 2012).

4For seminal works on the study of strategic behavior in electricity markets, see von der Fehr and Harbord (1993)
and Green and Newbery (1992).

5This conclusion has been corroborated in the lab; see Goeree et al. (2010).
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firm-level empirical evidence supporting the hypothesis of full cost internalization in the presence

of pollution permits (Reguant and Ellerman, 2008; Fowlie, 2010). Second, this is the first paper

to quantify pass-through rates in the EU ETS market using micro-level data. More broadly, the

paper contributes to the understanding of both cost internalization and pass-through by taking

advantage of the presence of cost shocks due to the introduction of pollution permits.

The paper proceeds as follows. After reviewing the related literature, section 2 describes a

conceptual framework to define the terms of cost internalization and pass-through rates. We then

introduce the context and data of analysis in section 3. In section 4, we present the empirical

strategy to identify the degree of cost internalization and the empirical results. In section 5, we

identify and quantify of the pass-through, while section 6 concludes.

Related literature This paper is related to the literature on the effects of environmental policies

on firms’ decisions. It is closely related to the work by Reguant and Ellerman (2008), which also

presents evidence on firms internalizing the costs of the emissions in the Spanish electricity market.

McGuinness and Ellerman (2008) present evidence that electric utilities in the UK changed their

operational decisions in response to carbon prices in the EU ETS, although they do not directly

assess whether the response is consistent with full internalization.

In the context of other pollution markets, Kolstad and Wolak (2008) present evidence on how

firms used NOx prices to strategically exercise market power in the Californian electricity market. In

their study, they test for cost internalization using structural equations from the multi-unit auction

literature, as in this paper. They find evidence supporting the hypothesis that firms respond

differently to environmental cost shocks, as opposed to other marginal cost shocks. Fowlie (2010)

examines firm responses in the context of the NOx Budget Program, exploiting the differences in

allocation regimes. She finds suggestive evidence that firms internalized the costs of emissions,

and that the degree of internalization depended on the subsidization rate, as theory would predict.

Results of experiments in the lab (Goeree et al. (2010) and Wrake et al. (2010)) also confirm that,

after some initial rounds of learning, agents understand that the opportunity of costs of free permits

has to be internalized, so that their behavior converges to that predicted by the theory.

Regarding the pass-through analysis, this paper is related to previous papers that have examined

pass-through rates in the context of the EU ETS. For example, Sijm et al. (2006) estimate pass-

through rates using equilibrium prices and fuel cost data in the German electricity market.6 They

find pass-through rates that range between 0.60 and 1.17, depending on market conditions. Bushnell

et al. (2011) use a structural break that occurred in April 2006 in the EU ETS prices to measure

the pass-through rate, and Zachmann and Hirschhausen (2008) document whether it responds

asymmetrically to either positive or negative cost shocks. Whereas previous studies on pass-through

rates are based on market outcomes, this paper has the advantage of using finer micro-level data

to assess the response by firms more directly.

The relevance of identifying the pass-through rate in the presence of cost shocks extends beyond

6See the Annex by Keppler in Ellerman et al. (2010) for a review of this and other studies.
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emission markets, and has indeed been the subject of a more general literature. From a theoretical

perspective, the effects of cost changes on prices cannot be determined, as discussed in Besanko

et al. (2005) and Weyl and Fabinger (2012). Empirically, several settings have been examined

to answer this question. A big part of the literature has exploited changes in currency exchange

rates to examine the relevance of pass-through, as they can provide exogenous variation in costs

(Goldberg and Hellerstein, 2008). Some papers have focused on the incidence of taxes, also as a way

to measure the effects of observable cost changes. For instance, exploiting the variation in gasoline

taxes, Marion and Muehlegger (2011) provide evidence of full pass-through in the gasoline retail

market.7 Bonnet et al. (2012) have analyzed the incidence of vertical contracts on pass-through

rates using a structural model. As noted by Weyl and Fabinger (2012), “broader empirical work on

the range of pass-though rates and their relationship to more-easily-observable industry features

remains extremely limited.” This work contributes to this line of research.

2 Opportunity costs and pass-through

In this paper, we separately identify the opportunity cost CO2 emission permits and the pass-

through rates of such costs in the context of the Spanish electricity market.

Consider a simple model in which a single firm is facing demand D(p; ε), where p is the market

price and ε is a demand shock. The firm has costs C(Q;u), where Q is quantity and is u a cost

shock. The firm also faces environmental costs eτQ, where e is the emissions rate and τ is the

emissions permit price.8

Consider a situation in which the perceived costs by the firm are given by

TC(Q; γ) = C(Q;u) + γeτQ.

In this context, γ represents how the firm perceives the cost of emissions. The common assumption

is that the price of the emissions τ fully reflects the cost of the emissions, i.e., γ = 1. However,

in the case of emissions programs, there exists some policy debate on how firms actually treat

these costs in practice. Several reasons have been suggested to explain why firms could potentially

internalize only a fraction of emissions costs; for instance, firms’ difficulty in understanding that

emission costs entail an opportunity cost despite the fact that they were handed in for free, the

existence of transaction costs even when firms recognize that permits can be traded, the threat

of regulatory intervention if electricity prices increase too much due to the internalized emission

costs,9 or the belief that future permit allocations will be increasing in current emissions.

7Besanko et al. (2001) and Besanko et al. (2005) measure individual-firm pass-through rates for firms selling
differentiated products. In our set-up, there is a single pass-though rate since electricity is an homogeneous product,
and therefore there is a single market price.

8For the sake of simplicity, in this example we assume that the emission rate is constant in output. However, note
that in reality, this need not be the case given that different technologies have different emission rates.

9For instance, in 2006 the German antitrust authority sent a warning letter to one of the main electricity producers
stating that the prices charged to industrial consumers were abusive because the firm had passed-through more than
25% of CO2 prices. Similar episodes occurred in Belgium and in the UK. See Wrake et al. (2010) for details.
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Whereas the perceived opportunity costs, captured by γ, is a fundamental parameter of the

model, the pass-through rate is an equilibrium outcome. Consider the equilibrium supply as

S(p, τ ;u, γ). Using the market clearing condition, D(p; ε) = S(p, τ ;u, γ), by the implicit function

theorem the pass-through rate can be expressed as

ρ ≡ dp

dτ
=

Sτ (p, τ ;u, γ)

Dp(p; ε)− Sp(p, τ ;u, γ)
· (2.1)

It is important to note that this pass-through does not generally equal one, even in the presence

of competitive firms. However, under specific circumstances, ρ = 1. For instance, full pass-

through is achieved in competitive markets with inelastic demand. In this case, a firm changes

its supply curve one to one with the increase in costs (given that p = C ′(Q) + eτ , Sτ (p, τ ;u, γ) =

−Sp(p, τ ;u, γ)), and demand remains the same (Dp(p) = 0), so that the cost increase is fully passed-

through to market prices. Full pass-through is also achieved in competitive markets with perfectly

elastic supply, i.e., when marginal costs are flat.10

There is a common misconception that an incomplete pass-through goes hands in hands with

either market power or lack of cost internalization. Yet, it could also be consistent with competitive

behavior and full cost internalization under downward-sloping demand and upward-sloping supply.

In general, an incomplete pass-through can arise both in competitive markets or in the presence of

market power even under full internalization; it can also arise because the emissions price does not

reflect the true opportunity cost, whether there is market power or not. This is shown graphically

in Figure 2.1 in the form of three different examples.

Example (a) represents the case in which firms are competitive and they have linearly increasing

marginal cost. As long as demand is elastic, the pass-through is less than one. Example (b)

represents the case in which firms exercise market power. In the example, firms have constant

marginal cost but, consistent with many oligopoly models including Cournot or the multi-unit

auction setting, they increase their markup as they produce more q. Because the effective supply

curve is elastic, this is equivalent to example (a). Example (c) represents the case in which firms

the emissions price does not reflect the opportunity cost of the emissions. Because marginal costs

are constant, one should observe a full pass-through in a competitive equilibrium. However, since

there is partial cost internalization, consumers only face part of the cost increase. In this case, if

we wrongly assumed full internalization, we would be underestimating the pass-through rate. In

general, the actual observed pass-through is potentially a combination of these different factors: the

elasticity of supply and demand, the degree of market power, and the relevant opportunity costs.

As the previous discussion shows, to separately identify the different hypothesis for explaining

the observed pass-through in these markets, it is important to first design a test for cost internaliza-

tion. It is important to note that the test for cost internalization is a test on the supply curve only,

whereas the identification of the channels through which the pass-through is determined involves

10In this case, ρ in equation (2.1) is undefined as Sτ (p, τ ;u, γ) = −Sp(p, τ ;u, γ)→∞. To solve this indeterminacy,
let’s parametrize costs as C(Q) = Qα. Now, as α → 1, so that marginal costs become constant, Sτα = −Spα and
Dpα = 0, so that ρ→ 1.
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Figure 2.1: An incomplete pass-through is consistent with several hypothesis

(a) An incomplete pass-through is consistent with competitive behavior
when both demand and supply are elastic
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(c) An incomplete pass-through is consistent with partial internalization of
emissions costs
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both demand and supply.

3 Context and data

We study the decisions of electricity generators in the Spanish market following the introduction

of carbon permits. The electricity sector is one of the sectors most affected by the European Union

Emissions Trading Scheme (EU ETS), and it is therefore well-suited for this analysis. Furthermore,

the fact that generation decisions are made very frequently allows us to exploit the variation of

marginal costs due to changing carbon prices at a fine level. We briefly describe the context of our

analysis as well as the data that we use for the empirical analysis.

3.1 The European Union Emissions Trading Scheme

The EU ETS is the largest emissions control scheme in the world, affecting almost half of

European CO2 emissions, from approximately 10,000 energy-intensive installations across the EU.

It is also the first compulsory international trading system for CO2 emissions.11

The system works as follows. The EU sets a global cap on emissions and assigns a share of free

permits to each member state. Through the National Allocation Plans, Member States then allocate

their share of permits across sector and individual installations subject to EU approval.12 At the

end of each year, each company must surrender enough allowances to cover the emissions of all its

installations. To comply, firms can either submit their own allowances or freely trade them across

Member States; failure to comply implies a e40/t CO2 penalty, plus the obligation to purchase the

deficit in the market. Emission rights can be transacted bilaterally (i.e. company-to-company),

brokered (OTC market) or traded in exchanges.13

The first phase of the EU ETS, also known as the trial period, ran from January 2005 to

December 2007. Phase I covered only carbon dioxide emissions from energy related industries

(combustion installations with a rated thermal input exceeding 20MW, mineral oil refineries, coke

ovens), production and processing of ferrous metals, the mineral industry (cement clinker, glass

and ceramic bricks) and the pulp, paper and board industry. These activities represent around

40% of CO2 emissions in the European Union, the electricity sector being the largest contributor

in the group.14

Figure 3.1 shows the evolution of CO2 prices during the trial period. One of the striking

features is the substantial drop in prices around May 2006. This drop in price was induced by

the release of emissions reporting data from 2005, the first year of the policy. In light of the

11A non-mandatory precursor of the EU ETS is the Chicago Cimate Exchange, which was a voluntary greenhouse
gas (GHG) reduction and trading system.

12For details regarding the allocation of allowances in each Member State see Ellerman et al. (2007).
13To get some orders of magnitude, in 2005, the market transacted 262 Mt CO2 (e5.4 billion) through brokers (207

Mt) and exchanges (57 Mt), and a estimated figure of 100Mt (e1.8 billion) in the bilateral market (Point Carbon
2006). European Climate Exchange is the largest exchange in Europe (63%), followed by NordPool (24%), PowerNext
(8%) and the European Energy Exchange (4%).

14For more details on the EU ETS, see Ellerman et al. (2007) and Bahringer and Lange (2012).
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Figure 3.1: Evolution of EUA prices during the EU ETS trial period
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revealed information, which indicated a markedly lower level of emissions than had originally been

anticipated and therefore a lower marginal cost of meeting the cap, the price halved in a very short

period of time and subsequently declined to zero (Parsons et al., 2009). Even though we do not

explicitly exploit this drop in prices, it will contribute to the variation in CO2 prices that will help

identify the internalization and pass-through of emissions costs.15

3.2 The Spanish electricity market

The Spanish electricity market is a national market that produces between 15,000 and 45,000 MWh

hourly, has around 85,000 MW of installed capacity, and serves more than 40 million people.16 The

Spanish territory is interconnected with France, Morocco and Portugal. The electricity market has

an annual value of 6 to 8 Be.

The Spanish electricity market has been liberalized since 1998 and shares many features with

other liberalized electricity markets. More specifically, it operates in a sequence of markets: the

day-ahead market, several intra-day markets that operate close to real time, and the ancillary

services market.17 Participation in these markets is not compulsory, as market participants are

15Bushnell et al. (2009) and Zachmann and Hirschhausen (2008) explicitly exploit this change to analyze the
response of firms to changing market conditions.

16Compared to liberalized electricity markets in the United States, the Spanish electricity market has a size com-
parable to the Californian electricity market.

17The Spanish electricity market has gone through several reforms since its inception in 1998. For the sake of
clarity, we only describe here its main features during our sample period.
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allowed to enter into physical bilateral contracts. Still, the day-ahead market is very liquid and

concentrates the vast majority of trades.

The day-ahead market trades 24 hourly electricity products that are cleared once a day. On

the supply side, electricity producers, if not tied to a bilateral contract, submit supply functions

specifying the minimum price at which they are willing to produce a given amount of output. On

the demand side, distributors, independent retailers and large consumers submit demand functions

specifying the maximum price at which they are willing to purchase a given amount of electricity.

The market operator constructs a merit order dispatch by ordering the supply and demand bids

in ascending and descending order, respectively. By intersecting both curves, it determines the

winning bids and the market clearing price, which is paid to all dispatched units from the supply

side, and paid by all the accepted units from the demand side.

Once the day-ahead market closes, the System Operator studies the feasibility of the dispatch

and modifies it by adding or removing the energy required to solve local congestion. The System

Operator also runs several markets in which production units compete to commit their capacity

to provide ancillary services when needed. Following these procedures, market participants may

adjust their positions in either direction in a sequence of six intra-day markets.

During our sample period, electricity was essentially produced by four vertically integrated

incumbent firms. The generation mix was made of nuclear, coal, CCGTs, oil-gas, hydro power, and

renewable resources, of which wind was the most important. Table 3.1 provides information on the

production by each technology type during the sample period.

The regulatory framework of the Spanish electricity market was rather stable during our sample

period, with one notable exception. In March 2006, the government passed the Royal Decree 3/2006,

which implied that market prices would only be paid to firms’ net-sales; more specifically, firms’

production covered by the purchases of their downstream subsidiaries would be bought and sold

at a regulated price. As this might have had an effect on firms’ strategic behavior, we remove the

dates during which this Royal Decree was in place in some specifications.

3.3 The data

To perform the empirical analysis, we construct a data set that contains supply functions submitted

on a hourly basis by the Spanish electricity producers from January 2004 to June 2007.18 This

data set also contains both MWh produced at the plant level on an hourly basis, as well as unit

available capacity net of forced outages and planned shut downs. We also collect characteristics

at the unit level: maximum available capacity, type of fuel used, vintage, generating company,

geographic location, etc. We combine these data with other market outcomes, such as the hourly

day-ahead and final average electricity prices, and aggregate output by types of technology. We

also use publicly available information on CO2 allowance prices (EUA prices), as well as coal, gas,

18Data are publicly available at the system and market operator web sites, www.esios.ree.es and www.omel.es. The
Spanish and the Portuguese electricity markets merged in July 2007. As this had a significant impact on market
behavior, we have decided to truncate the data set at that date.
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Table 3.1: Production Mix in Spain, 2004-2007

2004 2005 2006 2007

Capacity (MW) 68,758 74,123 79,203 85,698
Coal 11,565 11,424 11,424 11,357
CCGT 8,233 12,224 15,500 20,958
Trad. oil/gas 6,947 6,647 6,647 4,810
Nuclear 7,876 7,876 7,716 7,716
Trad. Hydro 13,930 13,930 13,930 13,930
Renewable 10,984 12,633 14,465 17,329
Others 6,495 6,661 6,794 6,871

Gross annual production (GWh) 252,280 262,966 270,890 280,125
Coal 76,358 77,393 66,006 71,833
CCGT 28,974 48,885 63,506 68,139
Trad. oil/gas 7,697 10,013 5,905 2,397
Nuclear 63,606 57,539 60,126 55,102
Trad. Hydro 29,777 19,169 25,330 26,352
Renewable 23,387 28,142 30,782 35,729
Others 22,482 21,824 19,236 20,574

Notes: Data from Annual Report of the System Operator (2004-2007). Only generation in inland

territories is included.

and oil prices in international markets.

We also have reliable information on efficiency rates at the plant level (i.e., the rates at which

each plant converts the heat content of the fuel into output).19 Using similar techniques as Wolfram

(1999) and Borenstein et al. (2002), this information allows us to estimate the short-run marginal

costs of thermal plants, which also depend on the type of fuel each plant burns, the cost of the

fuel (as set in international input markets),20 and the short-run variable cost of operating and

maintaining the plant (O&M).

We have also collected annual information on CO2 emissions at the plant level from the National

Register, for the years 2001-2004. These data are merged with the emissions data during the EU-

ETS trial period 2005-2007. We have estimated emissions rates at the plant level for each year,

by dividing total emissions by total output at the annual level. Emissions rates do not fluctuate

much at the unit level and are consistent with typical fuel benchmark emissions for the generation

plants involved. Therefore, they are strongly correlated across units that use the same fuel. Among

coal units, imported coal plants have the lowest emissions rate around, 0.90 tons/MWh, whereas

lignite units are the dirtiest with an emissions rate ranging 1.00 to 1.10 tons/MWh. Natural gas

19This information has been provided to us by the System Operator, which used to be in charge of dispatching
production units according to their reported costs. We have updated this data set to include the new production
units (mainly CCGTs). This data are also used in Fabra and Toro (2005).

20For coal units, we use the MCIS Index, for fuel units we use the F.O.1% CIF NWE prices, and for gas units we
use the Gazexport-Ruhrgas prices. All series are in ce/te. We have downloaded this information from Bloomberg.

10



Table 3.2: Summary statistics of power generators

Coal Gas Peaking Total

Total number of units 36 38 15 89

Relative number of units (%) 41.1 41.6 17.3 100

Average vintage (year built) 1977 2005 1971 1989

Average capacity of units (MW) 314 472 346 383

Average capacity factor (MWh/MW) 0.65 0.37 0.07 0.43

Average emissions rate (tons/MWh) 0.95 0.35 0.72 0.65

Notes: Sample from 2004 to 2007, including all thermal units (except nuclear power plants) in the

Spanish electricity market that are active at some point during the period.

generators tend to have an emissions rate around 0.35 tons/MWh.

Table 3.2 summarizes the characteristics of power plants in the Spanish electricity market.

There are around 90 thermal units that are subject to emissions control. The units can be broadly

categorized in three different categories, depending on the fuel they use. Coal units are thermal

plants that use coal as their main fuel. In Spain, these plants typically use a combination of national

coal and imported coal. Depending on their inputs, they will have different emissions rates, which

average 0.95 tons/MWh. Combined cycle natural gas units (CCGTs) are of new construction and

have much lower emissions rates, averaging 0.35 tons/MWh. Since the marginal costs of CCGTs

are higher than those of coal units, they tend to be used less frequently. However, because of their

different emission rates, a high enough price of CO2 emission permits might reverse the ranking of

these two technologies in favor of CCGTs. Finally, peaking plants are oil-fired or gas-fired plants

that are more inefficient than newer gas plants and tend to operate very infrequently. One can see

that these plants are very old, with an average vintage of 1971, and a capacity factor only around

7% over the sample from 2002 to 2007.21

Table 3.3 summarizes the generation mix of the four major firms in the market that we will

be analyzing. These four firms own 59 of the 89 power generators affected by the cap-and-trade

mechanism, as well as most hydro and nuclear generators and part of the renewable resources. The

two largest firms have a over 6,000MW of installed thermal capacity. The composition of the mix

across firms is somewhat different: while firm 1 is more focused on coal and oil, firm 2 has a larger

presence in the CCGT segment, which makes it the most efficient firm in terms of emissions costs.

4 Evidence on Opportunity Costs

Identifying the value of the opportunity costs is a necessary condition for quantifying the pass-

through rate. Hence, we first discuss the empirical strategy and results regarding the internalization

21The capacity factor expresses how much a unit is utilized with regards to its full potential, and therefore can be
expressed as the average output of a unit (MWh) divided by its maximum capacity (MW).
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Table 3.3: Characteristics thermal plants of the 4 main firms

Firm 1 Firm 2 Firm 3 Firm 4
Avg. number of units 23 18 12 6
Avg. unit capacity (MW) 359.78 378.08 307.75 327.85
Avg. Vintage 1980 1980 1983 1979
Avg. emissions rate 0.79 0.70 0.82 0.88

Total capacity (MW) 8,220 6,683 3,754 1,967
Coal capacity (%) 64.4 18.2 55.6 80.1
CCGT capacity (%) 15.3 41.0 43.0 19.9
Oil/gas capacity (%) 20.3 39.8 12.4 0.0
Avg. hourly production (MWh) 3958.09 3234.51 1331.22 542.75

Notes: Sample from 2004 to 2007, including all thermal units (except nuclear power plants) in the Spanish

electricity market that are active at some point during the period.

of emissions costs. We use two models that complement each other: we first present a test of cost

internalization using a structural model of optimal bidding; we then measure cost internalization

based on daily participation decisions.

4.1 Test based on structural bidding equations

We start by estimating the degree of cost internalization by explicitly modeling strategic bidding

behavior, as predicted by the multi-unit auctions literature. More specifically, under the assumption

of profit-maximizing behavior, we infer the degree of emission costs internalization from the bids

submitted by firms in the day-ahead market.

Consider a model in which market demand is given by D(p; ε). Let S−i (p;u−i) denote the

aggregate supply of all firms in the market other than firm i, where p is the market price and

u−i is a vector of supply-side cost shocks. Then, the residual demand faced by firm i can be

written as DR
i (p; ε, u−i) = D(p; ε) − S−i(p;u−i). Under market clearing, firms produce over their

residual demand, so that firm i’s output is given by QSi = DR
i (p; ε, u−i). Under the assumption that

emissions costs are linear in output, firm i’s cost can be decomposed as the sum of production costs

C(QSi ;ui) and the firm’s perceived emissions costs, γieiτQ
S
i , where γi is the firm’s cost perception,

ei is the emissions rate and τ is the carbon price. Last, in order to allow for the effects of vertical

integration, we let QDi denote the electricity that firm i has to procure in the wholesale market in

order to cover its retail sales.22

We can write firm i’s profits in the day-ahead market as follows:23

πi(p; ε, u) = p
(
DR
i (p; ε, u−i)−QDi

)
− C(QSi ;ui)− γieiτQSi .

22In principle, retailers are allowed to submit downward sloping demand functions. However, in practice, retailers
submit vertical demand functions. The reason is that the vast majority of retail customers face fixed retail prices
that are not indexed to wholesale prices. Accordingly, we assume that the retailers’ purchases are independent of
wholesale prices.

23We have omitted revenues retail sales given that these are fixed and should thus not affect bidding incentives in
the electricity day-ahead market.
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Assuming that the profit function above is differentiable, in any equilibrium in which firm i is

setting the market price, the First Order Condition (FOC) of profit maximization must be satisfied

for firm i.24 Solving the FOC for p,

p = c(QSi ) + γieiτ +
∣∣∣∂DR

i

∂p

∣∣∣−1 (QSi −QDi ) ,
where c(QSi ) is the marginal production cost at QSi .

Based on this optimal bidding condition, we estimate the following empirical equation in those

hours in which firm i is setting the market price:

bijth −
∣∣∣∂D̂R

ith

∂pth

∣∣∣−1Qith = αj + βcjt + γiejτt + εijth, (4.1)

where

bjith = marginal bid offer by firm i when setting the price with unit j, hour h and day t,

αj = unit j fixed-effect,

cjt = marginal costs of marginal unit j,

ej = emissions rate of the marginal unit,

τt = daily cost of the CO2 allowances,

∂D̂Rith
∂pth

= estimated slope of residual demand curve at the margin,

Qith = inframarginal quantity for firm i at the margin,

εijth = error term (cost shock, model specification error and/or firm optimization error).

Some of the elements in the above specification are readily observed, such as emissions rates

and carbon prices. We construct the inframarginal quantity variable taking into account all offers

made by a firm, including both supply and demand units. Furthermore, given that we have fine

level data on hourly demand and supply functions, we can construct the ex-post residual demands

faced by each firm in each hour, which we use to compute the slope. Finally, given that we have

reliable marginal costs estimates, we use these in the regression as a control. However, to the extent

that other costs might not be accurately reflected into this variable, we also introduce unit fixed

effects.25

The parameters to be estimated are Θ = {α, β, γ}. Testing that the market price fully reflects

the opportunity costs of using permits involves testing γi = 1, which is the focus of our results

discussion.

Results Table 4.1 presents the structural estimates of opportunity costs. The structural esti-

mations are performed at the firm level. We present six different specifications for each firm, all

24As shown in de Frutos and Fabra (2012), this condition need not hold for those firms not setting the price, or for
those units that face a zero probability of being marginal.

25Results are also robust to allowing the marginal cost coefficient to be unit-specific.
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Table 4.1: Test based on structural equations

bijth = αj + βcjt + γiejτt +
∣∣∣∂D̂R

ijth

∂pth

∣∣∣−1

Qijth + εijth

All Firm 1 Firm 2 Firm 3 Firm 4

(1) No FE 1.059 1.034 1.063 1.237 1.099
(0.065) (0.065) (0.051) (0.055) (0.077)

(2) Unit FE 1.000 0.961 0.874 1.078 1.044
(0.023) (0.025) (0.040) (0.034) (0.083)

(3) Unit FE + season 0.981 0.949 0.855 1.033 1.023
(0.019) (0.026) (0.034) (0.021) (0.077)

(4) Spec.3 + RD excluded 0.963 0.948 1.022 0.991 0.830
(0.031) (0.023) (0.033) (0.053) (0.094)

(5) Spec.4 + Markup (IV) 0.966 0.967 1.029 0.732 0.871
(0.042) (0.041) (0.037) (0.074) (0.092)

Obs. 16,190 5,244 3,211 5,689 2,046

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. Standard errors clustered at the unit level.

of which include marginal cost estimates as controls, as well as unit, weekday, month and year

fixed effects. Given the potential endogeneity of the markup component
∣∣∣∂D̂Rith∂pth

∣∣∣−1Qith,26 it is

instrumented for most specifications. Given that the markup depends on market demand, we use

traditional demand-side shifters. Instruments include weather data (temperature, wind speed, hu-

midity), economic activity data, and renewable production, all of which are exogenous to firms’

choices. The first four specifications differ on whether we introduce unit fixed effects or on whether

we instrument prices. The fifth specification controls for the likely effects of Royal Decree (RD),

while the last specification excludes those dates when the RD was in place.

The estimated opportunity cost parameters from the above specifications are close to one for

firm 1, which is the largest firm in the market. This also true for firm 2, the second largest firm,

when we remove the effect of RD. It has been documented that firm 2 followed an anomalous

bidding behavior under RD 3/2006,27 thus suggesting that the estimates might be biased in the

other specifications. The parameter estimated for the two other firms is also close to one for most

specifications, but it varies more across specifications. One possible explanation for this result is

that small firms do not behave as closely to optimal bidding as bigger players, as shown in Hortaçsu

and Puller (2008). Another possible explanation is that these firms have a smaller portfolio of

26Note that the markup depends on equilibrium prices and it is therefore endogenous. One way to see why it can
be endogenous is to consider variation within generator. Everything else equal, the markup will tend to be smaller
when a generator has a particularly low cost draw, as it comes earlier in the merit order and thus, the inframarginal
quantity is smaller.

27The Spanish Regulatory Authority, CNE, published a report in July 2006 describing this anomalous behavior.

14



generators with less variation in marginal costs and emissions rates, making the identification more

sensitive to the controls and the included sample.

Finally, Table A.1 in the appendix presents alternative specifications to the ones presented in

this section. In particular, it uses an expanded data set in which observations “close to being

marginal” are also used, which depends on the bandwidth parameter. One can see that the results

are similar, overall providing evidence consistent with full internalization.

This test has relied on a explicit model of strategic behavior in this market, at the expense of

putting some structure on the behavioral assumptions regarding equilibrium strategies. Our next

test is less demanding in terms of the underlying strategic assumptions.

4.2 Test based on participation decisions

To assess the response of generators to carbon costs, we model the choice of a production unit

deciding whether to produce or not on a given day, as in Reguant and Ellerman (2008). Given that

generating units produce on those days in which their overall costs of turning on are below the

market price, the decision to produce or not on a given day is a function of the expected average

price that the unit is going to get for that day, as well as the costs that the unit incurs in producing,

including the opportunity costs of using emission permits. A dynamic continuation value might

also affect that decision. Furthermore, if the unit is owned by a large firm, its decision might also

depend on the effect that turning on or off a given unit has on market prices, and thus on the

revenues accrued through the firm’s remaining units.

The decision can be represented in a reduced-form fashion with the following inequality:

onjt =

{
1 if pt ≥ cjt + ejτt + ujt;

0 otherwise,
(4.2)

where
pt = daily electricity price,

cjt = marginal cost of a given unit,

ej = emissions rate of unit j,

τt = daily cost of the CO2 allowances,

ujt = other opportunity costs for a given unit.

The above equation suggests using the following strategy to identify whether firms are internal-

izing emissions costs or not:

onjt = αj + β1pjt + β2cjt + γejτt +Xjtβ3 + ωtδ + εjt, (4.3)

where, on top of the variables defined above, we have introduced unit fixed-effects αj , a vector of

time fixed-effects ωt (day of the week, month and year), and a vector of other variables affecting

opportunity cost of units Xit, such as the status of unit (on/off) and inframarginal output.

In the above framework, a test for cost internalization becomes a test of β1 = −γ, i.e. we
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test whether changes in expected prices have the same effect, but with opposite sign, as changes in

emission costs. The rationale is that these two changes have the same impact on the unit’s expected

profits, and hence should have a quantitatively similar effect on the unit participation decisions.

This approach has the advantage of allowing for a normalization of coefficients that does not rely

on cost data.

Alternatively, one could compare the coefficient on the marginal cost and the coefficient on

the carbon cost to test whether changes in these two components affect the participation decision

equally. However, this test might be biased to the extent that, unlike prices or emissions costs, the

marginal cost variable is not directly observable and might thus suffer from a measurement error.

We have therefore decided to use marginal cost estimates as a control rather than part of the test

itself.

It is also important to control for other elements that affect the opportunity cost of a given unit

when turning on/off. One of the controls that is particularly relevant is whether the unit was on or

not the previous day, as this affects the startup costs of the unit, and these can be large. Similarly,

it is important to control for the continuation value of starting up, given that the startup decision

commonly involves more than one day. The day of the week dummies and month dummies also

capture differences in the continuation value, which depends on weekly and seasonal fluctuations.

Given that this is a market in which there is potential for exercise of market power, we also

control for variables that are known to affect bidders’ incentives to withhold capacity. For instance,

the greater the firm’s inframarginal production, the greater the impact of the unit’s participation

decision on the firm’s profits through its effect on prices. Accordingly, in some specifications we

control for the inframarginal quantity of the firm owning the unit, as in Wolfram (1998).

In our last specification, we remove the dates for which the Royal Decree 3/2006 applied, as

described in section 3.2, as this might have affected firms’ strategic decisions, potentially biasing

the results.

Results Table 4.2 presents the reduced-form test of cost internalization based on units’ partic-

ipation decisions. The table reports the coefficients on price and emissions costs under different

specifications. The dependent variable is whether a unit is on or off at a given day, which is re-

gressed on the average market price, the unit emissions cost and a rich set of controls. Price is

instrumented for most specifications with demand shifters, using the same instrumental variables

as the ones described in section 4.1. The value of the ratio −γ/β1 is also included in the table with

an F-test of the equality β1 = −γ, which is the proposed internalization test.

The time controls included in the regressions are aimed at capturing the opportunity cost of

the units not included in the basic specification. In particular, the costs for a thermal plant when

deciding to run or not for a given day depend crucially on whether the unit is already turned on,

which becomes a state variable at the decision stage (Reguant, 2011). For this reason, we also run

the regressions when the plants are turned off at the beginning of the day.28 The advantage of

28Fowlie (2010) uses a similar approach in the context of the NOX Budget Program.
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Table 4.2: Test based on operational patterns

onjt = αj + β1pjt + β2cjt + γejτt +Xjtβ3 + ωtδ + εjt,

(1) (2) (3) (4) (5) (6) (7)

pt [β1] 8.766 10.697 5.673 5.668 6.032 5.818 7.198
(0.607) (0.937) (0.917) (0.916) (0.938) (0.927) (1.126)

eiτt [γ] -6.799 -8.423 -6.016 -5.932 -5.302 -5.674 -5.625
(1.652) (1.546) (1.105) (1.112) (1.928) (1.831) (2.845)

γ/β1 0.776 0.787 1.060 1.047 0.879 0.975 0.782

F-test (γ=β1) 0.193 0.137 0.717 0.780 0.728 0.942 0.619

Obs. 85,163 85,163 38,473 38,473 38,473 38,473 23,181
Mg. cost control Y Y Y Y Y Y Y
Price IV N Y Y Y Y Y Y
Only OFF N N Y Y Y Y Y
Infra. Quantity N N N Y Y Y Y
YearXMonth FE N N N N Y Y Y
Weekd.XUnit FE N N N N N Y Y
RD Excluded N N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity market. All

regressions include unit, weekday, month, year and Royal Decree fixed effects. Standard errors clustered at the unit

level. For easier comparison, prices and emissions costs are normalized in e10−3.

including only units that are turned off is that the estimated fixed effects and the day of the week

controls are conditional on the unit not being operative. Therefore, the controls will capture, at

least in part, the presence of startup costs.29

The results in Table 4.2 are consistent with the emissions price reflecting the opportunity cost

of the permits. In particular, −γ/β1 is close to 100% in the more complete specifications, and it

is in any case above 75% in all of them. In the specifications in which we control for the status of

the unit, the estimated ratios are very close to 100%. The estimated ratios are stable across these

different specifications, supporting the robustness of the hypothesis that firms fully internalize the

costs of emissions.

We include in the appendix additional specifications and results. Table A.2 presents several

robustness checks to the main specifications. It presents a set of regressions in which we use the

unit-specific quantity weighted market price, instead of the average price; a set of regressions in

which only the units that are on are used; and a set of regressions in which the coefficients on input

and the inframarginal quantity are allowed to be different by type of fuel and firm, respectively.

The point estimates are all within 0.78 and 1.06, and we cannot reject full internalization. The

29The estimated time effects go in the expected direction. For example, the day of the week has a declining value
as the week progresses, which is consistent with the continuation value of starting up being lower in the middle of
the week or during the weekend.
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most flexible specification has a coefficient of 0.975. Table A.3 presents estimates of the ratios when

the regressions are performed separately for each of the four main firms. We find that the ratio is

close to one for most firms, except for firm 3, which, in line with the structural results, appear to

be more sensitive to the specification used.

In sum, the evidence reported in this section is consistent with the hypothesis that firms per-

ceived the CO2 price as the relevant opportunity cost of generating emissions.

5 Evidence on Pass-through

In this section, we discuss the empirical strategy and results regarding the estimation of the

pass-through in this market that arises due to carbon emissions prices. One important clarification

is that the quantification is focused on isolating the partial effect of carbon prices on electricity

prices, holding the rest of input costs fixed. The measured pass-through does not account for

general equilibrium changes that could have been induced by the policy. Most importantly, the

computed pass-through will not include the potential effect of an EU-wide cap-and-trade market

on the relative prices of coal and gas. The pass-through rate that we measure does not include

any effects of the EU-ETS on investments either. In summary, our pass-through estimate has to

be interpreted as a short-run partial-equilibrium measure.

When measuring the pass-through, we differentiate two different measures: the price pass-

through rate and the cost pass-through rate. The price pass-through measures the effect of a one

euro increase in the price of CO2 on the electricity price. The cost pass-through takes into account

that the marginal cost shock faced by the firms depends on which technologies are setting the

price. It measures the effect on electricity prices of a one euro increase in the marginal cost of the

technology setting the price.

These two measures are tightly related to each other, but they emphasize two different aspects

that are crucial when considering the impacts of cap-and-trade. The price pass-through emphasizes

the market impacts of the policy, as it is a measure of electricity prices increases due to the

introduction of pollution costs. It ultimately measures the impacts faced by final consumers and

industrial manufacturers, and is thus very policy-relevant. The cost pass-through emphasizes more

directly the role of demand and supply in the market. With inelastic demand, homogeneous

producers and competitive behavior, models predict that the cost pass-through should be equal to

one. Deviations from such prediction can be used to identify the market structure in this industry.

Section 5.1 performs a structural computation of the marginal pass-through rates using auction-

level data. These simulated pass-through rates need to be interpreted as the pass-through rates

that we would expect in this market given the cost heterogeneity present in the market and the

market structure. Section 5.2 presents a reduced-form quantification of the pass-through based on

observed equilibrium prices and quantities and therefore does not rely heavily on the bidding data.
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5.1 Quantification based on simulated price responses

Given the previous evidence, we assume that the firms perceived the market price as the op-

portunity cost of emissions. Under this assumption, as presented in section 4.1, the equilibrium

bidding equations at the wholesale electricity auction are given by,

bijth = αj + βcjt + ejτt +
∣∣∣∂D̂R

ith

∂pth

∣∣∣−1(1− θi)Qith + εijth. (5.1)

We use these optimal bidding equations to simulate the marginal bidding response of firms to

changes in CO2 prices. We compute changes in optimal bids given small changes in the emissions

cost, so that we can safely take participation decisions as given.30 In particular, we compute the

counterfactual in which the cost of emissions increases by one euro, i.e. τ ′ = τ + 1. We then

compute implied pass-through rates.31

As shown in equation (5.1), an increase in carbon prices can affect optimal bids in two ways.

First, it affects marginal costs directly, through the component ejτt. Second, if firms are strategic,

it can affect the markup component by changing the shape of the residual demand as well as the

firm’s net inframarginal production.

The cost shock might also affect bidding by units that do not necessarily face a cost shock,

particularly hydro units. In order to account for the opportunity cost of hydro bids, we assume

that they would modify them in the same manner as their neighboring bids, so that their relative

strategic position in the supply curve would not change. Even though this is a limitation, this is a

rough way to capture the change in hydro bids.32

Table 5.1 represents a matrix of the simulated prices that we compute. In order to separate

demand and supply channels that affect the pass-through, we first compute a counterfactual in

which we hold demand fixed and we change bids in a competitive fashion.33 In these simulations,

the only change is an increase in bids corresponding to a one euro increase in the permits costs, i.e.

bids go up by ej . In this setting, the cost pass-through should be equal to one, except for cases in

which there is substitution across cleaner technologies at the margin, in which case the pass-through

could be above or below one. Second, we allow demand response, based on the observed demand

curve in the market.34

The third and fourth counterfactuals that we compute are analogous to the first two, but they

30Characterizing the optimal startup decision is beyond the scope of this paper. See Reguant (2011) for a compu-
tation of optimal strategies in the presence of fixed costs. Given that we are evaluating changes in bids for marginal
increases in emissions costs, participation decisions are likely to have a minor effect in the results.

31In order to compute optimal prices, we need to modify not only bids that are ex-post marginal, but bids that
are close to being marginal. Our implicit assumption is that bids close to the observed market price have a positive
probability to set the price and therefore reflect the marginal incentives faced by the firm.

32Modeling the dynamic decision of hydro is beyond the scope of this paper. An alternative simple shortcut would
have been to fix the amount of water used in a given month, and re-arrange as a function of marginal prices, as in
(Borenstein et al., 2002). We plan to consider this extension in future versions of the paper.

33It is important that the counterfactuals is about changes in bids. The baseline bid levels do not necessarily
represent competitive bids, as discussed below.

34Note that this demand curve will tend to be more inelastic than long-run electricity demand, so the estimate
provides an upper bound on pass-through once demand response is accounted for.
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Table 5.1: Simulated Bids and Pass-through Counterfactuals

Inelastic Demand Demand Response
Only MC Change Only MC Change

Inelastic Demand Demand Response
MC + Markup Change MC + Markup Change

allow the markup component to endogeneously change with the cost shocks. The markup can

change for two reasons: the inframarginal quantity might change if there are endogenous changes

of merit order within the firm, and the slope of the residual demand might change as a result of

other firms changing their bids.

Ideally, one would like to compute the overall equilibrium given the new prices. Given that we

compute perturbations around the equilibrium price, we follow the approach of looking only at best

response deviations and examine whether the markup impacts are substantive. We then update

prices for all firms with the new markups and examine the impact on price. from Unfortunately,

such counterfactual cannot be computed in one step. With this approach, we intend to capture, to

first order, some of the changes in markups in this market.

Results First, we present results in which we hold demand fixed and we only adjust firm bids

through an increase in marginal costs. We present these counterfactuals first as they are very useful

to provide an intuition behind the pass-through distribution that we observe in the data. Without

cost heterogeneity and inelastic demand, the cost pass-through should be exactly equal to one in

this setting. Therefore, any deviations from pass-through rates that are different than one comes

through the heterogeneity of marginal costs in the underlying supply curve.

Figure 5.1 shows the distribution of the cost pass-through rates, i.e. taking into account the

emissions rate of the marginal unit. Even though it is centered around 1, we see some departures

when there is substitution away from one technology to another. Note that if the marginal tech-

nology switches from coal to gas, this results in a cost pass-through below 1, whereas the opposite

is true if the marginal technology switches from gas to coal.

Given relative prices for coal and gas during the sample period and the limited extent of sub-

stitution between coal and gas unless CO2 prices are high enough, there remains the question of

whether the observed cost pass-through presents heterogeneity that is consistent with the exercise

of market power. In particular, if there are big firms that have a particular generation mix (coal

and gas), and fringe players that only have gas, one could expect to see more substitution than in

a competitive setting.35

To explore this claim, we perform the same pass-through rate calculation as above, i.e. with

inelastic demand and increase in bids proportional to the emissions rate of each plant. However,

35The potential for substantial production inefficiency in the particular case of the Spanish electricity market has
been pointed out in (Kühn and Machado, 2004).
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Figure 5.1: Distribution of pass-through rates with inelastic demand and marginal cost bidding
changes

The histogram represents the effect of a one euro increase in the marginal costs of the marginal

technology on the electricity price. The sample is restricted to hours in which the marginal

unit has a positive emission rate.

Table 5.2: Pass-through (PT) Results

Price Pass-through Cost pass-through
Inelastic Elastic Inelastic Elastic

Competitive 0.700 0.599 1.032 0.911
(0.277) (0.333) (0.184) (0.381)

[0.377, 0.939] [0.371, 0.833] [1.000, 1.000] [0.998, 1.000]

Only MC Change 0.696 0.505 1.061 0.789
(0.275) (0.382) (0.265) (0.531)

[0.372, 0.939] [0.359, 0.836] [1.000, 1.000] [0.695, 1.000

MC + Markup Change 0.695 0.470 1.084 0.753
(0.486) (0.562) (0.790) (0.928)

[0.245, 0.837] [0.371, 0.956] [0.377, 1.000] [0.961, 1.114]

Notes: Sample from January 2005 to March 2006. Period with Royal-Decree 3/2006 is excluded. Stan-

dard deviation of passthrough distribution in parenthesis. Interquantile range in brackets.Competitive

counterfactual replaces original marginal bids of thermal plants with engineering cost estimates.
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we take engineering costs as the baseline price bid level, instead of observed bids. We find that,

using engineering estimates for marginal cost prices, departures in cost pass-through rates due to

merit order switching occur in 11.03% of the hours of the sample.36 On the contrary, merit order

switches occur 16.91% of the hours using observed bids.37 These results suggest that part of the

observed merit order switching in the cost pass-through rate is due to different strategic market

positions across sellers.

Finally, we perform the counterfactuals allowing for both markup changes and demand response

as implied by the wholesale demand curves. Table 5.2 presents average pass-through rates for all

the cases considered. Discussion TBA.

5.2 Quantification based on observed price responses

A more conventional approach to estimating pass-through rates is to regress the wholesale

electricity price on allowance prices. Given that there is substantial variation in CO2 prices, one

can identify the price pass-through from observed electricity price responses, and not from the

structural bidding equations.

The baseline regression to identify the degree of price pass-through is:

pth = ρτt +Xthβ0 + ZSthβ1 + ZDthβ2 + ωthδ + εth, (5.2)

where
pth = hourly electricity price,

τt = daily cost of the CO2 allowances,

Xth = common controls,

ZSth = supply-side exogenous shifters and controls,

ZDth = demand-side exogenous shifters and controls,

ωth = time fixed-effects (hour, day of week, month and year).

where ρ is our parameter of interest as it identifies the equilibrium price pass-through. Strategies

to recover the marginal cost pass-through are discussed below.

The specification includes year and month, day of the week and hour fixed effects to control for

potential trends and seasonality within the year. We also allow for the hourly and day of the week

fixed effects to be different for every month. As common controls, we include European fuel prices

of coal, gas and oil, as well as their quadratic terms and quadratic terms of their differences. On

the demand side, we include weather, economic activity indicators and the other controls used in

the cost internalization analysis.38 We allow weather variables to have a different effect on price

36We define departures from unitary pass-through if the pass-through is not between 99.9%-100.1% to avoid count-
ing small fluctuations in the pass-through. Other definitions are also consistent with these differences, although the
percents are larger across the board as the definition gets narrower.

37If we exclude night hours, in which some power plants might have different incentives to stay online over night,
we still find a difference between competitive and strategic counterfactuals in the amount of switching (6.00% vs
9.43%, respectively).

38Economic activity indicators include a production index provided by the Spanish government and quarterly
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Figure 5.2: Estimating cost pass-through with heterogeneous cost shocks

Estimated passthrough if gas 
assumed as baseline 
(actually a switch from coal)

Estimated passthrough if 
coal assumed as baseline 
(actually a switch from gas)

Actual passthrough if 
switch from coal to gas

Actual passthrough if 
switch from gas to coal

A

B
C

D

depending on the month (for example, it is very different a warm day in the winter, which will tend

to reduce electricity consumption, than a warm day in the summer). On the supply side, we also

include controls for renewable capacity and output.

Similar to the internalization rate regressions, the main identifying assumption behind the pass-

through estimate is that, once we control for all relevant factors that might be correlated with the

electricity market, the remaining variation of the CO2 price can be considered exogenous. Note that

the assumption in this context is stronger than before, as the equilibrium pass-through equation is

a function of both demand and supply factors. One would expect many variables affecting demand

to be correlated with the prices of CO2 (e.g. growth rates, exchange rates, etc.), and therefore we

need to be very exhaustive when controlling for all relevant factors.

Identifying the cost pass-through is more challenging in this context, as one needs to control

for the emissions rate of the unit that would have set the price in the absence of the cost shock,

which is not observed. Using the actual emissions rate of the unit that is at the margin could

provide a biased estimate of the cost pass-through, as the effective cost shock at the margin is

endogenous. A regression without accounting for this endogeneity can generate biased estimates

in the presence of merit order switching, as exemplified in figure 5.2. The red lines represent the

growth rates in Spain.
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Table 5.3: Reduced-form price pass-through measures

pt = ρEUAt +Xtβ0 + ZSt β1 + ZDt β2 + ωt + εt,

(1) (2) (3) (4) (5)

EUAt(ρ) 1.172 1.145 0.921 0.593 0.440
(0.009) (0.030) (0.081) (0.053) (0.086)

Obs. 30,648 30,648 18,960 30,648 18,960

Basic controls N Y Y Y Y
RD Excluded N N Y N Y
Month-year FE N N N Y Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. Robust standard errors.

observed prices, whereas the black lines represent the costs of coal and gas absent any CO2 prices.

With CO2 prices, there is a switch and gas comes first in the merit order. If there is such merit

order switching between coal and gas, one will tend to overestimate the pass-through rate when

coal is observed at the margin (one would measure A instead of B, A > B) and underestimate the

pass-through rate in periods when gas is observed at the margin (one would measure C instead of

D, C < D).

In order to address this concern, we use a simulation approach to create a measure of the

marginal emissions rate that would have been at the margin if CO2 prices were zero. We regress

the electricity price on the emissions costs instrumenting the measure of emissions costs with the

simulated emissions cost if the counterfactual baseline marginal technology were to set the price.

Results Table 5.3 presents estimates of price pass-through rates in this market. The results

reveal substantial heterogeneity across specifications. We find that the estimated pass-through rate

has a wide range depending on the specifications, ranging from 0.43-1.17.

The raw relationship between electricity prices and carbon prices is 1.17, as shown in specifica-

tion (1). We get similar results if we include year and month fixed effects, as well as other controls:

hour-month fixed effects, daily temperature and wind speed interacted with month of the year to

allow for seasonality, wind output, day of the week dummies, holiday index, activity index, Spanish

GDP, coal, gas and oil linear and quadratic prices, as well as time trends.39 In specification (3),

we restrict the sample to exclude the royal-decree period. The price pass-through is close to 1.

Specifications (1)-(3) might have some omitted variables bias, as it is difficult to fully control

for all changes in demand and supply that could be potentially correlated with the evolution of

the CO2 price. To further address this concern, we include month of sample fixed effects. The

results change substantially. In specification (4) and (5), we find that the estimated pass-through

39The holiday index and the activity index are measures created by the System Operator to estimate demand
conditions in the market based on economic activity and labor patterns.
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is between 41-59%, depending on the specification. These more complete specifications seem to line

up best with our simulated estimates.

Table 5.4 presents estimates of the cost pass-through rates. In order to estimate the cost pass-

through, we separate the sample in two: one sample includes those hours in which coal technology

would have been at the margin, and the other sample includes those hours in which CCGT would

have been at the margin. We instrument the actual emissions cost at the margin with the emissions

costs of the technology that would have been at the margin. All specifications include the most

complete set of controls used in the price pass-through regressions.40

One can see that the pass-through rate estimated with the OLS specification, presented in

column (0), appears to be attenuated. Specifications (1)-(2) present the results for both technologies

pooled together. We find evidence that the cost pass-through rate is lower when coal is at the margin

than when gas is at the margin. The coal pass-through rate is below one, which is consistent with

the presence of switching in the merit order from coal to gas induced by the policy. When coal

would have been at the margin in the absence of merit order switching, we find a pass-through lower

than one. As a robustness check, we allow all the coefficients on the other controls to be different

in each subsample, in specification (3)-(6). We find that the results do not change substantially,

although the pass-through rate appears to be lower if we exclude the period from the Royal Decree.

The results provide evidence that, given the high degree of internalization in this market, the

implied cost pass-through rates were close to one. The evidence is also in line with merit order

switching from dirty to cleaner technologies. Unfortunately, given the number of controls and

limited within-month variation in the data, the standard errors are relatively large and we cannot

reject that the cost pass-through is equal to one for all technology groups.

Combining the reduced form evidence with the previous structural approach, we find interme-

diate levels of price pass-through (around 40-60%) and levels of cost pass-through close to one. The

simulated results suggest that there is scope for an attenuated cost pass-through, which arises in the

presence of substitution from coal to gas and residual demand response. The reduced-form evidence

is also consistent with incomplete price pass-through. The cost pass-through rate is also close to

one in the regression results, and we also find evidence of heterogeneous rates due to differences in

emissions costs.

6 Conclusions

We have presented an empirical assessment of the internalization and pass-through rates due to

the introduction of carbon permits in the Spanish electricity market. To quantify both rates, we

have analyzed results from both reduced-form and structural models. The analysis has benefited

from two important features of the market. First, we have exploited the fact that the evolution of

European-wide CO2 prices can be considered exogenous to the Spanish electricity market. Second,

40Similar to the price pass-through regression, results for the cost pass-through rate changes depending on the
number of controls included. We include a full battery of additional specifications in table A.4 in the appendix.
Similar to the case of the price pass-through, we find the set of month of sample fixed effects to matter the most.
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Table 5.4: Reduced-form cost pass-through measures

pt = ρejtEUAt +Xtβ0 + ZSt β1 + ZDt β2 + ωt + εt,

Coal subsample CCGT subsample
(0) (1) (2) (3) (4) (5) (6)

ejtEUAt(ρ) (Coal) 0.198 0.800 0.625 0.822 0.631
(0.047) (0.142) (0.260) (0.104) (0.166)

ejtEUAt(ρ) (CCGT) 0.382 1.194 1.035 1.088 0.886
(0.030) (0.106) (0.197) (0.142) (0.273)

Obs. 25,398 25,398 14,765 13,076 8,722 12,322 6,043

Instruments N Y Y Y Y Y
RD Excluded N Y N Y N Y
Month-year FE Y Y Y Y Y Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. Robust standard errors. Carbon costs of marginal unit instrumented with average emissions

costs if the sampled technology where to set the price in counterfactual without no carbon prices.

the richness of the micro-level data has allowed us to perform structural estimations without im-

posing strong assumptions on the shape of the demand and supply functions, nor on the way firms

behave in electricity markets.

The empirical results support the hypothesis that firms internalize the full cost of emissions

in this market, specially the bigger firms. Also, this generally translates into cost pass-through

rates close to one. In spite of cost pass-through being close to one, we find evidence of substitution

from dirtier (coal) to cleaner (gas) plants. The implied effects on price are less than one, given the

heterogeneity in emissions costs across technologies, being on average around 45-60%.
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A Additional Figure and Tables

Table A.1: Test based on structural equations - Bandwidth sensitivity

bijth = αj + βcjt + γiejτt +
∣∣∣∂D̂R

ijth

∂pth

∣∣∣−1

Qijth + εijth

Firm 1 Firm 2 Firm 3 Firm 4

bw = 1 Euro 0.981 0.966 0.989 0.805
(0.022) (0.029) (0.027) (0.064)

Obs. 475,318 508,233 579,641 227,623

bw = 2 Euro 0.976 0.959 0.995 0.783
(0.020) (0.026) (0.028) (0.062)

Obs. 714,699 692,069 687,914 255,182

bw = 3 Euro 0.982 0.957 1.002 0.755
(0.017) (0.026) (0.030) (0.061)

Obs. 752,763 729,210 705,462 260,284

bw = 4 Euro 0.988 0.955 1.005 0.727
(0.016) (0.026) (0.032) (0.060)

Obs. 752,783 729,836 705,694 260,364

bw = 5 Euro 0.992 0.952 1.003 0.701
(0.016) (0.026) (0.033) (0.061)

Obs. 752,783 729,836 705,694 260,364

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity market. It uses

specification 4 in table 4.2.
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Table A.2: Test based on operational patterns, additional specificationss

onjt = αj + β1pjt + +β2cjt + γejτt +Xjtβ3 + omegatδ + εjt,

Weighted Price Only On Flexible coeff.

pt [β1] 5.116 5.316 4.842 4.662 4.536 5.562
(0.859) (0.847) (0.610) (0.575) (0.544) (0.836)

eiτt [γ] -5.750 -6.143 -3.940 -3.927 -3.947 -5.911
(1.141) (1.158) (0.745) (0.772) (0.808) (1.188)

γ/β1 0.776 0.787 1.060 1.047 0.879 0.975

F-test 0.193 0.137 0.717 0.780 0.728 0.942

Obs. 38,473 38,473 46,690 46,690 46,690 38,473
Only OFF Y Y N N Y Y
Only ON N N Y Y N N
Mg. cost control N Y N Y Y Y
UnitXMg. cost control N Y N Y Y Y
FirmXInfraq control N N N N Y Y
Firm*net supply N N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity market. All

regressions include unit, weekday, month, year and Royal Decree fixed effects. Standard errors clustered at the unit

level. Prices and emissions costs are normalized in e10−3.

Table A.3: Test based on operational patterns, additional specificationss

onjt = αj + β1pjt + +βj2cjt + γejτt +Xjtβ3 + ωtδ + εjt,

Firm 1 Firm 2 Firm 3 Firm 4

pt [β1] 11.630 4.257 5.012 6.489
(2.421) (1.372) (2.004) (1.794)

eiτt [γ] -10.818 -4.779 -7.909 -6.665
(2.518) (1.595) (2.055) (1.059)

γ/β1 0.930 1.123 1.578 1.027

F-test 0.740 0.708 0.038 0.894

Obs. 8,422 12,016 7,440 1,760

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity market. All

regressions include unit, weekday, month, year and Royal Decree fixed effects. Standard errors clustered at the unit

level. Prices and emissions costs are normalized in e10−3.
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Table A.4: Reduced-form cost pass-through measures

pt = ρejtEUAt +Xtβ0 + ZSt β1 + ZDt β2 + ωt + εt,

(1) (2) (3) (4) (5)

ejtEUAt(ρ) (Coal) 1.348 0.657 0.862 0.830 0.800
(0.090) (0.150) (0.140) (0.142) (0.142)

ejtEUAt(ρ) (CCGT) 2.012 1.008 1.280 1.230 1.194
(0.063) (0.112) (0.104) (0.106) (0.106)

Obs. 25,398 25,398 25,398 25,398 25,398

Year-Month FE N Y Y Y Y
Month-Hour FE N N Y Y Y
MonthXTemp FE N N N Y Y
MonthXWind FE N N N N Y

Notes: Sample from January 2004 to June 2007, includes all thermal units in the Spanish electricity

market. Robust standard errors. Carbon costs of marginal unit instrumented with average emissions

costs if the sampled technology where to set the price in counterfactual without no carbon prices.
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